Sharma, Deepak; Singh, Gurmeet; Kumar, Dinesh; Singh, Mankaran
2015-01-01
The objective of the present study was to prepare the fast disintegrating tablet of Salbutamol Sulphate, Cetirizine Hydrochloride in combined tablet dosage form for respiratory disorders such as bronchitis, asthma, and coughing for pediatrics and geriatrics. The tablets were prepared by direct compression technique. Superdisintegrant such as Sodium Starch Glycolate was optimized as 4% on the basis of least disintegration time. Different binders such as MCC and PVP K-30 were optimized along with optimized superdisintegrant concentration. 1% MCC was selected as optimum binder concentration on the basis of least disintegration time. The tablets were evaluated for hardness, friability, weight variation, wetting time, disintegration time, and drug content uniformity. Optimized formulation was further evaluated by in vitro dissolution test, drug-excipient compatibility, and accelerated stability study. Percent weight variation and content uniformity were within the acceptable limit. The friability was less than 1%. The wetting time and disintegration time were practically good for all formulations. FTIR studies and accelerated stability study showed that there was no interaction between the drug and excipients. It was concluded that, by employing commonly available pharmaceutical excipients such as superdisintegrants, hydrophilic and swellable excipients and proper filler, a fast disintegrating tablet of Salbutamol Sulphate, Cetirizine Hydrochloride in combined tablet dosage form, were formulated successfully with desired characteristics. PMID:25810924
Preformulation Studies of Selected Pretreatment and Therapeutic Compounds
1982-07-01
Mefloquine Hydrochloride) Placebo Tablets 39 Manufacturing Formula 40 Final Weight Variation 42 Disintegration Test 43 In-Process Control Analyses 44...average "weight of 563.9 mg. Disintegration times in 900 ml of water (37°C) were around 35 seconds for six tablets , Each tablet had an average thickness...WGROS ( M an .va*. ohm It nseew M nev op ,adIpit 6p 6"Wee dmme6) Antimalarials; preformulations; antileishminiasie; capsule production; tablet
Oral Disintegration Tablets of Stavudine for HIV Management: A New Technological Approach
Sankar, V.; Ramakrishna, B.; Devi, P. Shalini; Karthik, S.
2012-01-01
Stavudine oral disintegration tablets were formulated to minimize the bitter taste and to reduce the first-pass hepatic metabolism. The various precompression parameters like the angle of repose, bulk density, compressibility index and Hausner's ratio were determined for the powder blend. In this study, 14 formulations of stavudine oral disintegration tablet were prepared by direct compression method. The tablets were evaluated for weight variation, percentage friability, disintegration time, hardness, wetting time and water absorption ratio. The in vitro dissolution study results of the batch S1 (stavudine+crospovidone+sodium starch glycollate) are encouraging as highest dissolution rate (99.2% in 100 min) and lowest time of disintegration (56 s) was achieved. The in vivo drug release studies were carried out in rabbits and the relative bioavailability of formulation S1 was found to be 2.83 times greater than that of conventional tablets. PMID:23798782
Oral Disintegration Tablets of Stavudine for HIV Management: A New Technological Approach.
Sankar, V; Ramakrishna, B; Devi, P Shalini; Karthik, S
2012-11-01
Stavudine oral disintegration tablets were formulated to minimize the bitter taste and to reduce the first-pass hepatic metabolism. The various precompression parameters like the angle of repose, bulk density, compressibility index and Hausner's ratio were determined for the powder blend. In this study, 14 formulations of stavudine oral disintegration tablet were prepared by direct compression method. The tablets were evaluated for weight variation, percentage friability, disintegration time, hardness, wetting time and water absorption ratio. The in vitro dissolution study results of the batch S1 (stavudine+crospovidone+sodium starch glycollate) are encouraging as highest dissolution rate (99.2% in 100 min) and lowest time of disintegration (56 s) was achieved. The in vivo drug release studies were carried out in rabbits and the relative bioavailability of formulation S1 was found to be 2.83 times greater than that of conventional tablets.
Formulation and Evaluation of Mouth Dissolving Tablets of Cinnarizine
Patel, B. P.; Patel, J. K.; Rajput, G. C.; Thakor, R. S.
2010-01-01
The purpose of this research was to develop mouth dissolve tablets of cinnarizine by effervescent, superdisintegrant addition and sublimation methods. All the three formulations were evaluated for disintegration time, hardness and friability, among these superdisintegrant addition method showed lowest disintegration time; hence it was selected for further studies. Further nine batches (B1-B9) were prepared by using crospovidone, croscarmellose sodium and L-HPC in different concentrations such as 5, 7.5 and 10%. All the formulations were evaluated for weight variation, hardness, friability, drug content, in vitro disintegration time, wetting time, in vitro dissolution. Formulation with 10% L-HPC showed the less disintegration time (25.3 s) and less wetting time (29.1 s). In vitro dissolution studies showed total drug release at the end of 6 min. PMID:21218071
Formulation and Evaluation of Tramadol hydrochloride Rectal Suppositories.
Saleem, M A; Taher, M; Sanaullah, S; Najmuddin, M; Ali, Javed; Humaira, S; Roshan, S
2008-09-01
Rectal suppositories of tramadol hydrochloride were prepared using different bases and polymers like PEG, cocoa butter, agar and the effect of different additives on in vitro release of tramadol hydrochloride was studied. The agar-based suppositories were non-disintegrating/non-dissolving, whereas PEGs were disintegrating/dissolving and cocoa butter were melting suppositories. All the prepared suppositories were evaluated for various physical parameters like weight variation, drug content and hardness. The PEG and cocoa butter suppositories were evaluated for macromelting range, disintegration and liquefaction time. In vitro release study was performed by USP type I apparatus. The prepared suppositories were within the permissible range of all physical parameters. In vitro drug release was in the order of PEG>Agar>cocoa butter. Addition of PVP, HPMC in agar suppositories retards the release. The mechanism of drug release was diffusion controlled and follows first order kinetics. The results suggested that blends of PEG of low molecular weight (1000) with high molecular weight (4000 and 6000) in different percentage and agar in 10% w/w as base used to formulate rapid release suppositories. The sustained release suppositories can be prepared by addition of PVP, HPMC in agar-based suppositories and by use of cocoa butter as base.
Sharma, Deepak
2013-01-01
Recent developments in fast disintegrating tablets have brought convenience in dosing to pediatric and elderly patients who have trouble in swallowing tablets. The objective of the present study was to prepare the fast disintegrating tablet of salbutamol sulphate for respiratory disorders for pediatrics. As precision of dosing and patient's compliance become important prerequisites for a long-term treatment, there is a need to develop a formulation for this drug which overcomes problems such as difficulty in swallowing, inconvenience in administration while travelling, and patient's acceptability. Hence, the present investigation were undertaken with a view to develop a fast disintegrating tablet of salbutamol sulphate which offers a new range of products having desired characteristics and intended benefits. Superdisintegrants such as sodium starch glycolate was optimized. Different binders were optimized along with optimized superdisintegrant concentration. The tablets were prepared by direct compression technique. The tablets were evaluated for hardness, friability, weight variation, wetting time, disintegration time, and uniformity of content. Optimized formulation was evaluated by in vitro dissolution test, drug-excipient compatibility, and accelerated stability study. It was concluded that fast disintegrating tablets of salbutamol sulphate were formulated successfully with desired characteristics which disintegrated rapidly; provided rapid onset of action; and enhanced the patient convenience and compliance. PMID:23956881
Design, Formulation, and Physicochemical Evaluation of Montelukast Orally Disintegrating Tablet
Aslani, Abolfazl; Beigi, Maryam
2016-01-01
Background: Orally disintegrating tablets (ODTs) are a modern form of tablets that when placed in the oral cavity, disperses rapidly. These tablets have advantages, particularly good applications for children and old patients who have a complication in chewing or swallowing solid dosage forms. The aim of this study was to design, formulate, and evaluate the physicochemical properties of 5 mg montelukast ODTs for the prevention of asthma and seasonal allergies. Methods: Formulations were prepared with different amounts of super disintegrating agents and effervescent bases as disintegrant agents. Flowability and compressibility of mixed powders were evaluated. The prepared formulations were tested for hardness, thickness, friability, weight variation, drug content, wetting time, disintegration time, dissolution study, and moisture uptake studies. Results: The compressibility index and angle of repose were in the range of 15.87%–23.43% and 32.93–34.65, respectively. Hardness, thickness, friability, wetting time, and content uniformity of formulations were in the range of 33.7–37.1 N, 3.00–3.81 mm, 0.27%–0.43%, 31–50 s and 96.28%–99.90%, respectively. Disintegration time of the tablets prepared with super disintegrating agents, effervescent bases, and combination of two were in the range of 30–50, more than 60 and 20–36 s, respectively. Conclusions: Mixture of powders and tablets passed all the specified tests. The results showed formulations prepared by super disintegrating agents and super disintegrating agents with effervescent bases had shorter disintegration time compared to formulations with effervescent bases alone. PMID:27857833
Formulation and Evaluation of Mouth Disintegrating Tablets of Atenolol and Atorvastatin
Sarfraz, R. M.; Khan, H. U.; Mahmood, A.; Ahmad, M.; Maheen, S.; Sher, M.
2015-01-01
In this study, mouth-disintegrating tablets of atenolol and atorvastatin combination were formulated using superdisintegrants to impart fast disintegration. Fifteen formulations were prepared based on different concentrations of two superdisintegrants, croscarmellose sodium and Kyron-T134. Three different techniques such as direct compression, effervescent and sublimation were used to study the effect of manufacturing processes, nature and concentration of superdisintegrants on various features of these tablets. Five formulations were made using each method. Precompression studies like bulk density, tapped density, angle of repose, Carr's compressibility index, Hausner's ratio and compatibility studies such as Fourier transform infrared spectroscopy and differential scanning calorimetry were performed. Various features such as hardness, thickness, diameter, weight variation, friability, disintegration time, dissolution studies, wetting time, wetting volume, water absorption ratio, modified disintegration, uniformity of contents and stability were evaluated. Finally results were statistically analyzed by the application of one way ANOVA test. Formulation F13 containing Kyron-T134 (6%) and croscarmellose sodium (2%) was found to be the best among all fifteen formulations prepared in all aspects evaluated. Sublimation method is found to be the best among three methods of preparation used. PMID:25767322
Pharmaceutical and analytical evaluation of triphalaguggulkalpa tablets
Savarikar, Shreeram S.; Barbhind, Maneesha M.; Halde, Umakant K.; Kulkarni, Alpana P.
2011-01-01
Aim of the Study: Development of standardized, synergistic, safe and effective traditional herbal formulations with robust scientific evidence can offer faster and more economical alternatives for the treatment of disease. The main objective was to develop a method of preparation of guggulkalpa tablets so that the tablets meet the criteria of efficacy, stability, and safety. Materials and Methods: Triphalaguggulkalpa tablet, described in sharangdharsanhita and containing guggul and triphala powder, was used as a model drug. Preliminary experiments on marketed triphalaguggulkalpa tablets exhibited delayed in vitro disintegration that indicated probable delayed in vivo disintegration. The study involved preparation of triphalaguggulkalpa tablets by Ayurvedic text methods and by wet granulation, dry granulation, and direct compression method. The tablets were evaluated for loss on drying, volatile oil content, % solubility, and steroidal content. The tablets were evaluated for performance tests like weight variation, disintegration, and hardness. Results: It was observed that triphalaguggulkalpa tablets, prepared by direct compression method, complied with the hardness and disintegration tests, whereas tablets prepared by Ayurvedic text methods failed. Conclusion: Direct compression is the best method of preparing triphalaguggulkalpa tablets. PMID:21731383
Formulation development and optimization: Encapsulated system of Atenolol and Glyburide.
Maboos, Madiha; Yousuf, Rabia Ismail; Shoaib, Muhammad Harris
2016-03-01
Objective of this study is to develop; tablet-in-a capsule system, to deliver Atenolol 25mg and Glyburide 5mg in the hard gelatin capsule. In order to improve patient compliance and reduce problems associated with complex therapeutic regimen Atenolol (cardio-selective beta-blocker) and Glyburide (anti-diabetic; sulfonylurea) are commonly, prescribed to the diabetic hypertensive patient. Metgod: In present work six different formulations of Atenolol (AF1-AF6) and Glyburide (GF1-GF6) were prepared by direct compression method using Avicel, Lactose DC, Crospovidone and Magnesium Stearate in different proportions and encapsulated in hard gelatin shells. Post compression parameters i.e. weight variation, diameter variation, thickness variation, hardness variation, % friability, disintegration, % drug release were determined at different pH 1.2, 4.5 and 6.8, and subjected to dissolution profile comparison through similarity factor (ƒ2). Stability studies were performed and shelf lives were calculated by R-Gui Stab R console 2.15.2 and determined to be 15 and 27 months for Atenolol and Glyburide respectively. The percentage drug contents of Atenolol and Glyburide were estimated spectrophotometerically at 286 nm and 314.7 nm respectively. Formulations CF1-CF6 (encapsulated) were subjected to weight variation, disintegration and dissolution tests and subjected to model dependant analysis for dissolution studies. The simultaneous quantitation of Atenolol and Glyburide for content assay was done by HPLC method of analysis. formulation CF6 is showing highest coefficient of correlation values for all models applied. So we can conclude that the proposed system can improve patient compliance by increasing the ease of administration of two drugs together.
Gowda, Veeran; Pabari, Ritesh M; Kelly, John G; Ramtoola, Zebunnissa
2015-06-01
The objective of the present study was to evaluate the influence of Prosolv® and Prosolv®: Mannitol 200 direct compression (DC) fillers on the physicomechanical characteristics of oral dispersible tablets (ODTs) of crystalline atorvastatin calcium. ODTs were formulated by DC and were analyzed for weight uniformity, hardness, friability, drug content, disintegration and dissolution. Three disintegration time (DT) test methods; European Pharmacopoeia (EP) method for conventional tablets (Method 1), a modification of this method (Method 2) and the EP method for oral lyophilisates (Method 3) were compared as part of this study. All ODTs showed low weight variation of <2.5%. Prosolv® only ODTs showed the highest tablet hardness of ∼ 73 N, hardness decreased with increasing mannitol content. Friability of all formulations was <1% although friability of Prosolv®:Mannitol ODTs was higher than for pure Prosolv®. DT of all ODTs was <30 s. Method 2 showed the fastest DT. Method 3 was non-discriminatory giving a DT of 13-15 s for all formulations. Atorvastatin dissolution from all ODTs was >60% within 5 min despite the drug being crystalline. Prosolv® and Prosolv®:Mannitol-based ODTs are suitable for ODT formulations by DC to give ODTs with high mechanical strength, rapid disintegration and dissolution.
[Application of β-cyclodextrin in the formulation of ODT tablets containing ibuprofen].
Zimmer, Łukasz; Kasperek, Regina; Poleszak, Ewa
2014-01-01
Oral disintegrating tablet (ODT) dissolves or disintegrates in saliva and then it is swallowed. Diluent in direct compression formulation has a dual role: it increases bulk of the dosage form and it promotes binding of the constituent particles of the formulation. Hence, selection of diluent is important in tablets produced by direct compression method. The aim of this work was to exame feasibility of preparing and optimizing oral disintegrating tablet formulation using β-cyclodextrin as a diluent. 400 mg round tablets were prepared by direct compression method on single punch tablet press using flat plain-face. 60% β-CD and MCC (microcrystalline cellulose - MCC-Vivapur 102) were used at different proportions for all the formulations. 5% of Kollidon CL was added as superdisintegrant. The eight formulations prepared were assessed for weight variation, thickness, disintegration time, hardness and dissolution rate according to FP IX. A dissolution test was performed at 37ºC using the paddle method at 50 rpm with 900 mL phosphate buffer (pH 6.8) as a dissolution medium. The content of ibuprofen sodium was found inside the ± 5% of the theoretical value. Hardness values of presented tablets were in the range 0.11-0.15 kG/mm2. Friability of the tablets lower than 1% indicates that the developed formulations can be processed and handled without excessive care. Disintegration time was in the range of 86 to 161 s. The results confirm the good mechanical properties of tablets containing β-CD. A composition with 20% β-CD and 40% MCC fulfilled a maximum requisite of an optimum formulation. These properties were similar to Ludiflash, the formulation used for comparison purposes. In the present study, higher concentration of β cyclodextrin was found to improve the hardness of tablets without increasing the disintegration time.
Time-dependent cell disintegration kinetics in lung tumors after irradiation
NASA Astrophysics Data System (ADS)
Chvetsov, Alexei V.; Palta, Jatinder J.; Nagata, Yasushi
2008-05-01
We study the time-dependent disintegration kinetics of tumor cells that did not survive radiotherapy treatment. To evaluate the cell disintegration rate after irradiation, we studied the volume changes of solitary lung tumors after stereotactic radiotherapy. The analysis is performed using two approximations: (1) tumor volume is a linear function of the total cell number in the tumor and (2) the cell disintegration rate is governed by the exponential decay with constant risk, which is defined by the initial cell number and a half-life T1/2. The half-life T1/2 is determined using the least-squares fit to the clinical data on lung tumor size variation with time after stereotactic radiotherapy. We show that the tumor volume variation after stereotactic radiotherapy of solitary lung tumors can be approximated by an exponential function. A small constant component in the volume variation does not change with time; however, this component may be the residual irregular density due to radiation fibrosis and was, therefore, subtracted from the total volume variation in our computations. Using computerized fitting of the exponent function to the clinical data for selected patients, we have determined that the average half-life T1/2 of cell disintegration is 28.2 days for squamous cell carcinoma and 72.4 days for adenocarcinoma. This model is needed for simulating the tumor volume variation during radiotherapy, which may be important for time-dependent treatment planning of proton therapy that is sensitive to density variations.
Setting Ideal Lubricant Mixing Time for Manufacturing Tablets by Evaluating Powder Flowability.
Nakamura, Shohei; Yamaguchi, Saori; Hiraide, Rikiha; Iga, Kumi; Sakamoto, Takatoshi; Yuasa, Hiroshi
2017-10-01
We investigated the effectiveness of using Carr's flowability index (FI) and practical angle of internal friction (Φ) as indexes for setting the target Mg-St mixing time needed for preparing tablets with the target physical properties. We used FI as a measure of flowability under non-loaded conditions, and Φ as a measure of flowability under loaded conditions for pharmaceutical powders undergoing direct compression with varying concentrations of Mg-St and mixing times. We evaluated the relationship between Mg-St mixing conditions and pharmaceutical powder flowability, analyzed the correlation between the physical properties of the tablets (i.e., tablet weight variation, drug content uniformity, hardness, friability, and disintegration time of tablets prepared using the pharmaceutical powder), and studied the effect of Mg-St mixing conditions and pharmaceutical powder flowability on tablet properties. Mg-St mixing time highly correlated with pharmaceutical powder FI (R 2 = 0.883) while Mg-St concentration has low correlation with FI, and FI highly correlated with the physical properties of the tablet (R 2 values: weight variation 0.509, drug content variation 0.314, hardness 0.525, friability 0.477, and disintegration time 0.346). Therefore, using pharmaceutical powder FI as an index could enable prediction of the physical properties of a tablet without the need for tableting, and setting the Mg-St mixing time by using pharmaceutical powder FI could enable preparation of tablets with the target physical properties. Thus, the FI of the intermediate product (i.e., pharmaceutical powder) is an effective index for controlling the physical properties of the finished tablet.
Hoashi, Yohei; Tozuka, Yuichi; Takeuchi, Hirofumi
2013-01-01
The purpose of this study was to develop and test a novel and simple method for evaluating the disintegration time of rapidly disintegrating tablets (RDTs) in vitro, since the conventional disintegration test described in the pharmacopoeia produces poor results due to the difference of its environmental conditions from those of an actual oral cavity. Six RDTs prepared in our laboratory and 5 types of commercial RDTs were used as model formulations. Using our original apparatus, a good correlation was observed between in vivo and in vitro disintegration times by adjusting the height from which the solution was dropped to 8 cm and the weight of the load to 10 or 20 g. Properties of RDTs, such as the pattern of their disintegrating process, can be assessed by verifying the load. These findings confirmed that our proposed method for an in vitro disintegration test apparatus is an excellent one for estimating disintegration time and the disintegration profile of RDTs.
Self-disintegrating Raney metal alloys
Oden, Laurance L.; Russell, James H.
1979-01-01
A method of preparing a Raney metal alloy which is capable of self-disintegrating when contacted with water vapor. The self-disintegrating property is imparted to the alloy by incorporating into the alloy from 0.4 to 0.8 weight percent carbon. The alloy is useful in forming powder which can be converted to a Raney metal catalyst with increased surface area and catalytic activity.
Review of Disintegrants and the Disintegration Phenomena.
Desai, Parind Mahendrakumar; Liew, Celine Valeria; Heng, Paul Wan Sia
2016-09-01
Disintegrant is one of the most important components in a typical tablet dosage form. It is responsible for ensuring the break-up of the tablet matrix upon ingestion. Disintegrants act by different mechanisms, and a number of factors may affect their performance. It is important for formulators to understand how disintegrants function so as to be able to judiciously use disintegrants to develop optimized formulations. If the formulator is required to implement the quality by design paradigm while developing a tablet formulation, it would be important to determine the impact of component ranges and process variations on tablet performance and of particular importance, tablet disintegration. Thus, a better understanding of the mechanisms of disintegrants and the tablet disintegration processes can be critical to product design success. This review aims to provide an overview of tablet disintegrants and the disintegration processes with particular focus on the factors affecting the functionalities of disintegrants. An updated compendium of different techniques employed to evaluate disintegrant action and measure disintegration time is also provided. The objective of this review is to assemble the knowledge about disintegrants and the measurement of tablet disintegratability so that the information provided could be of help to tablet formulation development. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Formulation studies for mirtazapine orally disintegrating tablets.
Yıldız, Simay; Aytekin, Eren; Yavuz, Burçin; Bozdağ Pehlivan, Sibel; Ünlü, Nurşen
2016-01-01
Orally disintegrating tablets (ODTs) recently have gained much attention to fulfill the needs for pediatric, geriatric, and psychiatric patients with dysphagia. Aim of this study was to develop new ODT formulations containing mirtazapine, an antidepressant drug molecule having bitter taste, by using simple and inexpensive preparation methods such as coacervation, direct compression and to compare their characteristics with those of reference product (Remereon SolTab). Coacervation method was chosen for taste masking of mirtazapine. In vitro characterization studies such as diameter and thickness, weight variation, tablet hardness, tablet friability and disintegration time were performed on tablet formulations. Wetting time and in vitro dissolution tests of developed ODTs also studied using 900 mL 0.1 N HCl medium, 900 mL pH 6.8 phosphate buffer or 900 mL pH 4.5 acetate buffer at 37 ± 0.2 °C as dissolution medium. Ratio of Eudragit® E-100 was chosen as 6% (w/w) since the dissolution profile of A1 (6% Eudragit® E-100) was found closer to the reference product than A2 (4% Eudragit® E-100) and A3 (8% Eudragit® E-100). Group D, E and F formulations were presented better results in terms of disintegration time. Dissolution results indicated that Group E and F formulations showed optimum properties in all three dissolution media. Formulations D1, D4, D5, E3, E4, F1 and F5 found suitable as ODT formulations due to their favorable disintegration times and dissolution profiles. Developed mirtazapine ODTs were found promising in terms of showing the similar characteristics to the original formulation.
Rajkumar, Arthi D; Reynolds, Gavin K; Wilson, David; Wren, Stephen; Hounslow, Michael J; Salman, Agba D
2016-09-01
Tablet disintegration is a fundamental parameter that is tested in vitro before a product is released to the market, to give confidence that the tablet will break up in vivo and that active drug will be available for absorption. Variations in tablet properties cause variation in disintegration behaviour. While the standardised pharmacopeial disintegration test can show differences in the speed of disintegration of different tablets, it does not give any mechanistic information about the underlying cause of the difference. With quantifiable disintegration data, and consequently an improved understanding into tablet disintegration, a more knowledge-based approach could be applied to the research and development of future tablet formulations. The aim of the present research was to introduce an alternative method which will enable a better understanding of tablet disintegration using a particle imaging approach. A purpose-built flow cell was employed capable of online observation of tablet disintegration, which can provide information about the changing tablet dimensions and the particles released with time. This additional information can improve the understanding of how different materials and process parameters affect tablet disintegration. Standard USP analysis was also carried out to evaluate and determine whether the flow cell method can suitably differentiate the disintegration behaviour of tablets produced using different processing parameters. Placebo tablets were produced with varying ratios of insoluble and soluble filler (mannitol and MCC, respectively) so that the effect of variation in the formulation can be investigated. To determine the effect of the stress applied during granulation and tableting on tablet disintegration behaviour, analysis was carried out on tablets produced using granular material compressed at 20 or 50bar, where a tableting load of either 15 or 25kN was used. By doing this the tablet disintegration was examined in terms of the tablet porosity by monitoring the tablet area and particle release. It was found that when 20 and 50bar roller compaction pressure was used the USP analysis showed almost identical disintegration times for the consequent tablets. With the flow cell method a greater tablet swelling was observed for the lower pressure followed by steady tablet erosion. Additionally, more particles were released during disintegration due to the smaller granule size distribution within the tablet. When a higher tableting pressure was applied the tablet exhibited a delay in the time taken to reach the maximum swelling area, and slower tablet erosion and particle release were also observed, largely due to the tablet being much denser causing slower water uptake. This was in agreement with the USP analysis data. Overall it was confirmed by using both the standard USP analysis and flow cell method that the tablet porosity affects the tablet disintegration, whereby a more porous tablet disintegrates more slowly. But a more in-depth understanding was obtained using the flow cell method as it was determined that tablets will swell to varying degrees and release particles at different rates depending on the roller compaction and tableting pressure used. Copyright © 2016 Elsevier B.V. All rights reserved.
Formulation and Evaluation of New Glimepiride Sublingual Tablets.
Al-Madhagi, Wafa; Abdulbari Albarakani, Ahmed; Khaled Alhag, Abobakr; Ahmed Saeed, Zakaria; Mansour Noman, Nahlah; Mohamed, Khaldon
2017-01-01
Oral mucosal delivery of drugs promotes rapid absorption and high bioavailability, with a subsequent immediate onset of pharmacological effect. However, many oral mucosal deliveries are compromised by the possibility of the patient swallowing the active substance before it has been released and absorbed locally into the systemic circulation. The aim of this research was to introduce a new glimepiride formula for sublingual administration and rapid drug absorption that can be used in an emergency. The new sublingual formulation was prepared after five trials to prepare the suitable formulation. Two accepted formulations of the new sublingual product were prepared, but one of them with disintegration time of 1.45 min and searching for preferred formulation, the binder, is changed with Flulac and starch slurry to prepare formula with disintegration time of 21 seconds that supports the aim of research to be used in an emergency. The five formulations were done, after adjusting to the binder as Flulac and aerosil with disintegration time of 21 seconds and accepted hardness as well as the weight variation. The assay of a new product (subglimepiride) is 103% which is a promising result, confirming that the formula succeeded. The new product (subglimepiride) is accepted in most quality control tests and it is ready for marketing.
Tan, Qunyou; Zhang, Li; Zhang, Liangke; Teng, Yongzhen; Zhang, Jingqing
2012-01-01
Pyridostigmine bromide (PTB) is a highly soluble and extremely bitter drug. Here, an economic complexation technology combined with direct tablet compression method has been developed to meet the requirements of a patient friendly dosage known as taste-masked dispersible tablets loaded PTB (TPDPTs): (1) TPDPTs should have optimal disintegration and good physical resistance (hardness); (2) a low-cost, simple but practical preparation method suitable for industrial production is preferred from a cost perspective. Physicochemical properties of the inclusion complex of PTB with beta-cyclodextrin were investigated by Fourier transformed infrared spectroscopy, differential scanning calorimetry and UV spectroscopy. An orthogonal design was chosen to properly formulate TPDPTs. All volunteers regarded acceptable bitterness of TPDPTs. The properties including disintegration time, weight variation, friability, hardness, dispersible uniformity and drug content of TPDPTs were evaluated. The dissolution profile of TPDPTs in distilled water exhibited a fast rate. Pharmacokinetic results demonstrated that TPDPTs and the commercial tablets were bioequivalent.
Formulation and evaluation of dried yeast tablets using different techniques.
Al-Mohizea, Abdullah M; Ahmed, Mahrous O; Al-jenoobi, Fahad I; Mahrous, Gamal M; Abdel-Rahman, Aly A
2007-08-01
The aim of this study was to prepare and evaluate dried yeast tablets using both direct compression and dry granulation techniques in comparison with the conventional wet granulation as well as commercial product. Wet granulation technique is not favorable for producing the yeast tablets due to the problems of color darkening and the reduction of the fermentation power of the yeast as a result of the early start of the fermentation process due to the presence of moisture. Twenty six formulae of dried yeast tablets were prepared and evaluated. Certain directly compressible vehicles were employed for preparing these tablets. The quality control tests (weight uniformity, friability, disintegration time and hardness) of the prepared dried yeast tablets were performed according to B.P. 1998 limits. All batches of the prepared tablets complied with the B.P. limits of weight uniformity. Moreover, small values of friability % (1% or less) were obtained for all batches of dried yeast tablets with acceptable hardness values, indicating good mechanical properties which can withstand handling. On the other hand, not all batches complied with the limit of disintegration test which may be attributed to various formulation component variables. Therefore, four disintegrating agents were investigated for their disintegrating effect. It was found that the method of preparation, whether it is direct compression, dry granulation or wet granulation, has an effect on disintegration time of these dried yeast tablets and short disintegration times were obtained for some of the formulae. The shortest disintegration time was obtained with those tablets prepared by direct compression among the other techniques. Therefore, the direct compression is considered the best technique for preparation of dried yeast tablets and the best formula (which showed shorter disintegration time and better organoleptic properties than the available commercial yeast tablets) was chosen. Drug content for dried yeast granular powder, and the chosen best prepared formula, was determined by gas chromatography (GC). It was found that this formula gave the same alcohol content produced by an equal amount of the dried yeast granular powder. This result in conjunction with weight uniformity indicated drug content uniformity of the prepared dried yeast tablets.
Modes of Disintegration of Solid Foods in Simulated Gastric Environment
Kong, Fanbin
2009-01-01
A model stomach system was used to investigate disintegration of various foods in simulated gastric environment. Food disintegration modes and typical disintegration profiles are summarized in this paper. Mechanisms contributing to the disintegration kinetics of different foods were investigated as related to acidity, temperature, and enzymatic effect on the texture and changes in microstructure. Food disintegration was dominated by either fragmentation or erosion, depending on the physical forces acting on food and the cohesive force within the food matrix. The internal cohesive forces changed during digestion as a result of water penetration and acidic and enzymatic hydrolysis. When erosion was dominant, the disintegration data (weight retention vs. disintegration time) may be expressed with exponential, sigmoidal, and delayed-sigmoidal profiles. The different profiles are the result of competition among the rates of water absorption, texture softening, and erosion. A linear-exponential equation was used to describe the different disintegration curves with good fit. Acidity and temperature of gastric juice showed a synergistic effect on carrot softening, while pepsin was the key factor in disintegrating high-protein foods. A study of the change of carrot microstructure during digestion indicated that degradation of the pectin and cell wall was responsible for texture softening that contributed to the sigmoidal profile of carrot disintegration. PMID:20401314
Postolache, Liliana; Gafiţanu, Eliza
2012-01-01
The present study was based on the impact of the superdisintegrants incorporation mechanism on the immediate realese of the tablets final performances. The aim was the selection of the working method to obtain Ranitidine 150 mg tablets with the desiderate quality and in reproducible conditions. The effect of the incorporation mode of sodium starch glycolate on the aspect, granules size distribution and flowing properties of the lubricated product, and also the weight uniformity, hardness, disintegration, friability, and dissolution of the Ranitidine 150 mg tablets prepared by dry granulation was studied. The addition mode of the disintegrant was realized in three ways: intragranular, extragranular, and distributed equally between the two phases. The distribution range for the tablets weight was established. Relative standard distribution was calculed for the weight and hardness of the uncoated tablets. The powder flow and, implicit, the weight uniformity of the uncoated tablets was positive influenced by the extragranular incorporation of the superdisintegrant. The disintegration time was identical for all the three disintegrant addition modes, and the hardness and the friability were not significantly influenced by working method, the obtained values were similar. For the developed formulations, the percent of the ranitidine dissolution was high, but higher in the extragranular incorporation. For the product quality the extragranular addition mode seemed the best method to incorporate the superdisintegrant.
Weight loss during therapy with olanzapine orally disintegrating tablets: two case reports.
Kozumplik, Oliver; Uzun, Suzana; Jakovljević, Miro
2009-03-01
The aim of this article is to report weight loss in patients with schizophrenia after switching from olanzapine standard oral tablet (SOT) to olanzapine orally disintegrating tablets (ODT). In the first case report, the patient was switched to olanzapine ODT in daily dosage of 20 mg, while in the second case report, the patient was switched to olanzapine ODT in daily dosage of 15 mg, and weight loss was similar (14 kg vs. 15 kg). Switching patients from olanzapine SOT to olanzapine ODT treatment resulted in significant weight loss that was maintained during 12 months in both case reports. Further controlled clinical investigations are necessary to evaluate change in weight during treatment with olanzapine ODT, and to improve our understanding of this change.
A Review of Disintegration Mechanisms and Measurement Techniques.
Markl, Daniel; Zeitler, J Axel
2017-05-01
Pharmaceutical solid dosage forms (tablets or capsules) are the predominant form to administer active pharmaceutical ingredients (APIs) to the patient. Tablets are typically powder compacts consisting of several different excipients in addition to the API. Excipients are added to a formulation in order to achieve the desired fill weight of a dosage form, to improve the processability or to affect the drug release behaviour in the body. These complex porous systems undergo different mechanisms when they come in contact with physiological fluids. The performance of a drug is primarily influenced by the disintegration and dissolution behaviour of the powder compact. The disintegration process is specifically critical for immediate-release dosage forms. Its mechanisms and the factors impacting disintegration are discussed and methods used to study the disintegration in-situ are presented. This review further summarises mathematical models used to simulate disintegration phenomena and to predict drug release kinetics.
Xu, Xiaoming; Gupta, Abhay; Sayeed, Vilayat A; Khan, Mansoor A
2013-05-01
Various adverse events including esophagus irritations have been reported with the use of alendronate tablets, likely attributed to the rapid tablet disintegration in the mouth or esophagus. Accordingly, the disintegration of six alendronate tablet drug products was studied using a newly developed testing device equipped with in-line sensors, in addition to the official compendial procedure for measuring the disintegration time. The in-line sensors were used to monitor the particle count and solution pH change to assess the onset and duration of disintegration. A relatively large variation was observed in the disintegration time of the tested drug products using the compendial method. The data collected using the in-line sensors suggested that all tested drug products exhibited almost instantaneous onset of disintegration, under 2 s, and a sharp drop in solution pH. The drop in pH was slower for tablets with slower disintegration. The in-house prepared alendronate test tablets also showed similar trends suggesting rapid solubilization of the drug contributed to the fast tablet disintegration. This research highlights the usefulness of the newly developed in-line analytical method in combination with the compendial method in providing a better understanding of the disintegration and the accompanying drug solubilization processes for fast disintegrating tablet drug products. Copyright © 2013 Wiley Periodicals, Inc.
Rachid, Ousama; Rawas-Qalaji, Mutasem; Simons, F Estelle R; Simons, Keith J
2012-11-01
Epinephrine is the drug of choice in the management of anaphylaxis. For first-aid treatment in the community, epinephrine autoinjectors (E-autos) are commonly prescribed, but are underutilized. In our laboratory, we developed a series of first-generation rapidly-disintegrating sublingual tablets (RDSTs) containing 40mg of epinephrine. One RDST had similar bioavailability to epinephrine 0.3mg from an auto-injector, as confirmed in a validated rabbit model, while other formulations containing different non-medicinal ingredients (NMIs) and with similar in vitro characteristics demonstrated much lower bioavailability. Subsequently, we evaluated the effect of changing the grade and proportion of NMIs, specifically mannitol and microcrystalline cellulose (MCC), on the in vitro characteristics of second- and third-generation RDSTs. Weight variation, content uniformity, breaking force, and friability were tested using official USP methods. Novel validated methods that simulate ambient conditions of the sublingual cavity were developed to test disintegration time, wetting time, and dissolution. Using these methods, it was possible to measure the effects of making small changes in NMIs on the in vitro characteristics of the formulations. The RDST formulation that resulted in the best in vitro characteristics contained the optimum proportion of mannitol and a specific ratio of coarse and fine particle grades of MCC. Appropriate comparative testing resulted in the selection of the RDST with the optimum in vitro characteristics. Copyright © 2012 Elsevier B.V. All rights reserved.
Sildenafil vaginal suppositories: preparation, characterization, in vitro and in vivo evaluation.
Shanmugam, Srinivasan; Kim, Young-Hun; Park, Jeong-Hee; Im, Ho Taek; Sohn, Young Taek; Kim, Kyeong Soo; Kim, Yong-Il; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon; Woo, Jong Soo
2014-06-01
The main objective was to investigate the in vitro release profile/kinetics, and in vivo plasma pharmacokinetics (PK) and organ biodistribution (BD) of the prepared sildenafil vaginal suppositories (SVS). Suppositories containing 25 mg of sildenafil were prepared by the cream melting technique using Witepsol H-15 as a suppository base. The suppositories were characterized for weight variation, content uniformity, hardness, disintegration time and crystallinity change. The in vitro dissolution in pH 4.5, and in vivo plasma PK and organ BD of sildenafil from SVS in female Sprague Dawley rats, were also investigated. The mean weight variation, content uniformity, hardness and disintegration time of the prepared SVS were 1.127 ± 0.020 g, 98.25 ± 2.50%, 2.5 ± 0.08 kg and 9 ± 1.0 min, respectively. The release of sildenafil from the SVS was more than 90% at 30 min, with a release kinetic of Hixson--Crowell model and non-Fickian diffusion (n = 0.464). The plasma PK study demonstrated a significantly lower Cmax (∼10 times) and AUC0-24 h (∼13 times) of sildenafil in plasma following intravaginal (IVG) administration of suppositories compared to oral (PO) administration of sildenafil solution. Nevertheless, the organ BD study showed a phenomenally higher Cmax (∼40 times) and AUC0-24 h (∼20 times) of sildenafil in uterus following IVG administration of suppositories than PO administration of sildenafil solution. This study demonstrated enhanced sildenafil exposure in the uterus following IVG administration of SVS, which could be used to target the uterus for therapeutic benefits.
Blaesi, Aron H; Saka, Nannaji
2017-11-01
In recent studies, we have introduced melt-processed polymeric cellular dosage forms to achieve both immediate drug release and predictable manufacture. Dosage forms ranging from minimally-porous solids to highly porous, open-cell and thin-walled structures were prepared, and the drug release characteristics investigated as the volume fraction of cells and the excipient molecular weight were varied. In the present study, both minimally-porous solid and cellular dosage forms consisting of various weight fractions of Acetaminophen drug and polyethylene glycol (PEG) excipient are prepared and analyzed. Microstructures of the solid forms and the cell walls range from single-phase solid solutions of the excipient and a small amount of drug molecules to two-phase composites of the excipient and tightly packed drug particles. Results of dissolution experiments show that the minimally-porous solid forms disintegrate and release drug by slow surface erosion. The erosion rate decreases as the drug weight fraction is increased. By contrast, the open-cell structures disintegrate rapidly by viscous exfoliation, and the disintegration time is independent of drug weight fraction. Drug release models suggest that the solid forms erode by convective mass transfer of the faster-eroding excipient if the drug volume fraction is small. At larger drug volume fractions, however, the slower-eroding drug particles hinder access of the free-flowing fluid to the excipient, thus slowing down erosion of the composite. Conversely, the disintegration rate of the cellular forms is limited by diffusion of the dissolution fluid into the excipient phase of the thin cell walls. Because the wall thickness is of the order of the drug particle size, and the particles are enveloped by the excipient during melt-processing, the drug particles cannot hinder diffusion through the excipient across the walls. Thus the disintegration time of the cellular forms is mostly unaffected by the volume fraction of drug in the walls. Copyright © 2017 Elsevier B.V. All rights reserved.
Rahim, Haroon; Khan, Mir Azam; Sadiq, Abdul; Khan, Shahzeb; Chishti, Kamran Ahmad; Rahman, Inayat U
2015-05-01
The current study was undertaken to compare the binding potential of Prunus armeniaca L. and Prunus domestica L. gums in tablets' formulations. Tablet batches (F-1 to F-9) were prepared Diclofenac sodium as model drug using 5%, 7.5% and 10% of each Prunus armeniaca L., Prunus domestica L. gums as binder. PVP K30 was used as a standard binder. Magnesium stearate was used as lubricant. Flow properties of granules (like bulk density, tapped density, Carr's index, Hausner's ratio, angle of repose) as well as the physical parameters of compressed tablets including hardness, friability, thickness and disintegration time were determined. Flow parameters of granules of all the batches were found good. Physical parameters (drug content, weight variation, thickness, hardness, friability, disintegration time) of formulated tablets were found within limit when tested. The dissolution studies showed that tablets formulations containing each Prunus domestica showed better binding capacity compared to Prunus armeniaca gum. The binding potential increased as the concentration of gums increased. The FTIR spectroscopic investigation showed that the formulations containing plant gum are compatible with the drug and other excipients used.
Psychosocial predictors of cannabis use in adolescents at risk.
Hüsler, Gebhard; Plancherel, Bernard; Werlen, Egon
2005-09-01
This research has tested a social disintegration model in conjunction with risk and protection factors that have the power to differentiate relative, weighted interactions among variables in different socially disintegrated groups. The model was tested in a cross-sectional sample of 1082 at-risk youth in Switzerland. Structural equation analyses show significant differences between the social disintegration (low, moderate, high) groups and gender, indicating that the model works differently for groups and for gender. For the highly disintegrated adolescents results clearly show that the risk factors (negative mood, peer network, delinquency) are more important than the protective factors (family relations, secure sense of self). Family relations lose all protective value against negative peer influence, but personal variables, such as secure self, gain protective power.
Brniak, Witold; Jachowicz, Renata; Pelka, Przemyslaw
2015-09-01
Even that orodispersible tablets (ODTs) have been successfully used in therapy for more than 20 years, there is still no compendial method of their disintegration time evaluation other than the pharmacopoeial disintegration test conducted in 800-900 mL of distilled water. Therefore, several alternative tests more relevant to in vivo conditions were described by different researchers. The aim of this study was to compare these methods and correlate them with in vivo results. Six series of ODTs were prepared by direct compression. Their mechanical properties and disintegration times were measured with pharmacopoeial and alternative methods and compared with the in vivo results. The highest correlation with oral disintegration time was found in the case of own-construction apparatus with additional weight and the employment of the method proposed by Narazaki et al. The correlation coefficients were 0.9994 (p < 0.001), and 0.9907 (p < 0.001) respectively. The pharmacopoeial method correlated with the in vivo data much worse (r = 0.8925, p < 0.05). These results have shown that development of novel biorelevant methods of ODT's disintegration time determination is eligible and scientifically justified.
Brniak, Witold; Jachowicz, Renata; Pelka, Przemyslaw
2015-01-01
Even that orodispersible tablets (ODTs) have been successfully used in therapy for more than 20 years, there is still no compendial method of their disintegration time evaluation other than the pharmacopoeial disintegration test conducted in 800–900 mL of distilled water. Therefore, several alternative tests more relevant to in vivo conditions were described by different researchers. The aim of this study was to compare these methods and correlate them with in vivo results. Six series of ODTs were prepared by direct compression. Their mechanical properties and disintegration times were measured with pharmacopoeial and alternative methods and compared with the in vivo results. The highest correlation with oral disintegration time was found in the case of own-construction apparatus with additional weight and the employment of the method proposed by Narazaki et al. The correlation coefficients were 0.9994 (p < 0.001), and 0.9907 (p < 0.001) respectively. The pharmacopoeial method correlated with the in vivo data much worse (r = 0.8925, p < 0.05). These results have shown that development of novel biorelevant methods of ODT’s disintegration time determination is eligible and scientifically justified. PMID:27134547
Kaale, Eliangiringa; Hope, Samuel M; Jenkins, David; Layloff, Thomas
2016-01-01
To assess the quality of cotrimoxazole tablets produced by a Tanzanian manufacturer by a newly instituted quality assurance programme. Tablets underwent a diffuse reflectance spectroscopy procedure with periodic quality assessment confirmation by assay and dissolution testing using validated HPTLC techniques (including weight variation and disintegration evaluations). Based on results from the primary test methods, the first group of product was <80% compliant, whereas subsequent groups reached >99% compliance. This approach provides a model for rapidly assuring product quality of future procurements of other products that is more cost-effective than traditional pharmaceutical testing techniques. © 2015 John Wiley & Sons Ltd.
NEW METHODOLOGY FOR DEVELOPMENT OF ORODISPERSIBLE TABLETS USING HIGH-SHEAR GRANULATION PROCESS.
Ali, Bahaa E; Al-Shedfat, Ramadan I; Fayed, Mohamed H; Alanazi, Fars K
2017-05-01
Development of orodispersible delivery system of high mechanical properties and low disintegration time is a big challenge. The aim of the current work was to assess and optimize the high shear granulation process as a new methodology for development of orodispersible tablets of high quality attributes using design of experiment approach. A two factor, three levels (32), full factorial design was carried out to investigate the main and interaction effects of independent variables, water amount (XI) and granulation time (X2) on the characteristics of granules and final product, tablet. The produced granules were analyzed for their granule size, density and flowability. Furthermore, the produced tablets were tested for: weight variation, breaking force/ crushing strength, friability, disintegration time and drug dissolution. Regression analysis results of multiple linear models showed a high correlation between the adjusted R-squared and predicted R-squared for all granules and tablets characteristics, the difference is less than 0.2. All dependent responses of granules and tablets were found to be impacted significantly (p < 0.05) by the two independent variables. However, water amount demonstrated the most dominant effect for all granules and tablet characteristics as shown by higher its coefficient estimate for all selected responses. Numerical optimization using desirability function was performed to optimize the variables under study to provide orodispersible system within the USP limit with respect of mechanical properties and disintegration time. It was found that the higher desirability (0.915) could be attained at the low level pf water (180 g) and short granulation time (1.65 min). Eventually, this study provides the formulator with helpful information in selecting the proper level of water and granulation time to provide an orodispersible system of high crushing strength and very low disintegration time, when high shear granulation methodology was used as a method of manufacture.
Dabaghian, Farid; Khademian, Sedigheh; Azadi, Amir; Zarshenas, Mohammad
2016-05-01
As the most common form of dementia, Alzheimer disease is characterized by progressive loss of memory and deterioration of cognitive functions. It is predicted that about 75.63 million people would suffer from dementia by 2030. Apart from conventional remedies, the application of herbal medicines is on the rise. There are numerous natural medicaments reported in the traditional manuscript of Persian medicine. Accordingly, in the present study, the intended remedy was selected and an appropriate pharmacognostical and pharmaceutical evaluations were performed. By searching through the traditional pharmaceutical manuscripts such as Qarabadeen-e-Salehi, Qarabadeen-e-Azam, Qarabadeen-e-Ghaderi and Canon of Medicine, a simple but proven compound remedy (frankincense and black pepper) was selected. A floating tablet was designed and formulated from those herbal components. Related pharmaceutical assessments such as weight variation, hardness, friability, and disintegration tests as well as pharmacognostical evaluations such as microscopic characterization, TLC, GC/MS, FT/IR fingerprints, and radical scavenging activity assessment (DPPH) were performed. The resulting formulation, as a floating tablet, included 60% of frankincense gum and 15% of black pepper along with appropriate pharmaceutical ingredients (weight variation: 0.219±0.004 g, hardness: 6.50±0.67, friability: 0.45%, disintegration time >30 min). Microscopic characterization demonstrated stone cells, calcium oxalate crystals, sclereids of endocarp and pitted cells of mesocarp of pepper fruits as well as oil drops of frankincense gum. TLC fingerprinting showed classes of secondary metabolites related to both components. GC/MS analysis revealed Acetyl acetate and trans-Caryophyllene as the main constituent. Moderate radical scavenging activity (IC50 >100 µg/ml) was calculated for the methanol extract of tablets. Carrying out and validating a GC method for standardization of the formulated tablet, and having the structure for the effectiveness of these medicinal herbs in Alzheimer may be the horizon for a new Alzheimer-targeted medicine.
Dabaghian, Farid; Khademian, Sedigheh; Azadi, Amir; Zarshenas, Mohammad
2016-05-01
As the most common form of dementia, Alzheimer disease is characterized by progressive loss of memory and deterioration of cognitive functions. It is predicted that about 75.63 million people would suffer from dementia by 2030. Apart from conventional remedies, the application of herbal medicines is on the rise. There are numerous natural medicaments reported in the traditional manuscript of Persian medicine. Accordingly, in the present study, the intended remedy was selected and an appropriate pharmacognostical and pharmaceutical evaluations were performed. By searching through the traditional pharmaceutical manuscripts such as Qarabadeen-e-Salehi, Qarabadeen-e-Azam, Qarabadeen-e-Ghaderi and Canon of Medicine, a simple but proven compound remedy (frankincense and black pepper) was selected. A floating tablet was designed and formulated from those herbal components. Related pharmaceutical assessments such as weight variation, hardness, friability, and disintegration tests as well as pharmacognostical evaluations such as microscopic characterization, TLC, GC/MS, FT/IR fingerprints, and radical scavenging activity assessment (DPPH) were performed. The resulting formulation, as a floating tablet, included 60% of frankincense gum and 15% of black pepper along with appropriate pharmaceutical ingredients (weight variation: 0.219±0.004 g, hardness: 6.50±0.67, friability: 0.45%, disintegration time >30 min). Microscopic characterization demonstrated stone cells, calcium oxalate crystals, sclereids of endocarp and pitted cells of mesocarp of pepper fruits as well as oil drops of frankincense gum. TLC fingerprinting showed classes of secondary metabolites related to both components. GC/MS analysis revealed Acetyl acetate and trans-Caryophyllene as the main constituent. Moderate radical scavenging activity (IC 50 >100 µg/ml) was calculated for the methanol extract of tablets. Carrying out and validating a GC method for standardization of the formulated tablet, and having the structure for the effectiveness of these medicinal herbs in Alzheimer may be the horizon for a new Alzheimer-targeted medicine.
Disintegration of nano-embedded microparticles after deposition on mucus: A mechanistic study.
Ruge, Christian A; Bohr, Adam; Beck-Broichsitter, Moritz; Nicolas, Valérie; Tsapis, Nicolas; Fattal, Elias
2016-03-01
The conversion of colloidal drug carriers/polymeric nanoparticles into dry microparticulate powders (e.g., by spray-drying) is a prominent approach to overcome the aerodynamic limitations of these formulations for delivery via inhalation. However, to what extent such nano-embedded microparticles disintegrate into individual/intact nanoparticles after contacting relevant physiological media has so far not been addressed. Polymeric nanoparticles were spray-dried into nano-embedded microparticles (NEMs) using different amounts of trehalose as embedding matrix excipient. Formulations were characterized and then evaluated for their disintegration behavior after aerosolization onto model mucus. Although a rapid and complete aqueous redispersion was observed for specific excipient/nanoparticle weight ratios (i.e., greater than 1/1), the same formulations revealed no disintegration after deposition onto a static mucus layer. Double-labeled NEMs powders (i.e., dual color staining of polymeric nanoparticles and trehalose) demonstrated rapid matrix dissolution, while the nanoparticle aggregates persisted. When deposited onto agitated mucus, however, sufficient disintegration of NEMs into individual polymeric nanoparticles was observed. These findings indicate that mechanical forces are necessary to overcome the attraction between individual nanoparticles found within the NEMs. Thus, it remains questionable whether the lung mechanics (e.g., breathing, mucociliary clearance) acting on these formulations will contribute to the overall disintegration process. Copyright © 2015 Elsevier B.V. All rights reserved.
Kushner, Joseph; Langdon, Beth A; Hicks, Ian; Song, Daniel; Li, Fasheng; Kathiria, Lalji; Kane, Anil; Ranade, Gautam; Agarwal, Kam
2014-02-01
The impact of filler-lubricant particle size ratio variation (3.4-41.6) on the attributes of an immediate-release tablet was compared with the impacts of the manufacturing method used (direct compression or dry granulation) and drug loading (1%, 5%, and 25%), particle size (D[4,3]: 8-114 μm), and drug type (theophylline or ibuprofen). All batches were successfully manufactured, except for direct compression of 25% drug loading of 8 μm (D[4,3]) drug, which exhibited very poor flow properties. All manufactured tablets possessed adequate quality attributes: tablet weight uniformity <4% RSD, tablet potency: 94%-105%, content uniformity <6% RSD, acceptance value ≤ 15, solid fraction: 0.82-0.86, tensile strength >1 MPa, friability ≤ 0.2% weight loss, and disintegration time < 4 min. The filler-lubricant particle size ratio exhibited the greatest impact on blend and granulation particle size and granulation flow, whereas drug property variation dominated blend flow, ribbon solid fraction, and tablet quality attributes. Although statistically significant effects were observed, the results of this study suggest that the manufacturability and performance of this immediate-release tablet formulation is robust to a broad range of variation in drug properties, both within-grade and extra-grade excipient particle size variations, and the choice of manufacturing method. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
Chawla, Bharat; Luxton-Andrew, Heather
2008-04-01
To investigate the long-term weight loss outcomes during usual clinical practice after switching from olanzapine standard oral tablet (SOT) to olanzapine orally disintegrating tablets (ODT). In this open-label prospective study, 26 patients with schizophrenia who were clinically stable on olanzapine SOT treatment were switched to olanzapine ODT. All other aspects of treatment remained constant. Weight was recorded at 3, 6, and 12 months. Patients incurred an average weight loss of 2.7 +/- 0.7 kg (p = 0.001) after switching patients from olanzapine SOT to olanzapine ODT at 12 months. Peak weight loss was observed at 6 months; however, significant weight loss was achieved as early as 3 months. The majority (81.9%) of patients lost weight, while 18.1% had no weight change or weight gain. Body mass index (BMI) significantly decreased by 1.0 +/- 0.3 kg/m(2) (p = 0.001). Interestingly, patients treated with higher doses of olanzapine (> or = 20 mg) incurred a greater weight loss of their body weight (5.6%), compared to those treated with lower doses (< 20 mg), who lost 1.9% of their body weight (p = 0.04). This study demonstrated that, in usual clinical practice, switching patients from olanzapine SOT to olanzapine ODT treatment resulted in significant weight loss that was maintained over 12 months. 2008 John Wiley & Sons, Ltd.
Al-Tabakha, Moawia M; Arida, Adi Issam; Fahelelbom, Khairi M S; Sadek, Bassem; Saeed, Dima Ahmed; Abu Jarad, Rami A; Jawadi, Jeevani
2015-01-01
The purpose of this study was to assess the in vitro performances of "vegetable" capsules in comparison to hard gelatin capsules in terms of shell weight variation, reaction to different humidity conditions, resistance to stress in the absence of moisture, powder leakage, disintegration and dissolution. Two types of capsules made of HPMC produced with (Capsule 2) or without (Capsule 3) a gelling agent and hard gelatin capsules (Capsule 1) were assessed. Shell weight variability was relatively low for all tested capsules shells. Although Capsule 1 had the highest moisture content under different humidity conditions, all capsule types were unable to protect the encapsulated hygroscopic polyvinylpyrrolidone (PVP) powder from surrounding humidity. The initial disintegration for all Capsule 1 occurred within 3 min, but for other types of capsules within 6 min (n = 18). Dissolution of acetaminophen was better when the deionized water (DIW) temperature increased from 32 to 42 °C in case of Capsule 1, but the effect of temperature was not significant for the other types of capsules. Acetaminphen dissolution from Capsule 1 was the fastest (i.e. >90% in 10 min) and independent of the media pH or contents unlike Capsule 2 which was influenced by the pH and dissolution medium contents. It is feasible to use hypromellose capsules shells with or without gelling agent for new lines of pharmaceutical products, however, there is a window for capsule shells manufacturing companies to improve the dissolution of their hypromellose capsules to match the conventional gelatin capsule shells and eventually replace them.
NASA Astrophysics Data System (ADS)
Mahajan, Viabhav
Biodegradation of polymeric films used for mulch film applications in agriculture not only eliminates problems of sorting out and disposal of plastics films, but also ensures increased yields in crop growth and cost reduction. One such polymer which is completely biodegradable in the soil is poly 3-hydroxy butanoic acid copolymer, which is a promising alternative to non-biodegradable incumbent polyethylene mulch films. The purpose of mulch film made of poly 3-hydroxy butanoic acid copolymers is to sustain itself during the crop growth and disintegrate and eventually biodegrade back to nature after the crop cycle is over. The disintegration phase of the biodegradation process was evaluated for poly 3-hydroxy butanoic acid copolymer incorporated with no additive, antimicrobial additives, varying amount of crystallinities, another biodegradable polymer, and in different soils, with or without varying soil moisture content. The tools used for quantification were weight loss and visual observation. The test method was standardized using repeatability tests. The onset of disintegration was optimized with addition of right anti-microbial additives, higher crystallinity of film, blending with other biodegradable polymers, compared to virgin poly 3-hydroxy butanoic acid copolymer film. The onset of disintegration time was reduced when soil moisture content was reduced. After the onset of disintegration, the polymer film was physically and mechanically deteriorated, withering away in soil, which is possible to tailor with the crop growth cycle.
21 CFR 172.870 - Hydroxypropyl cellulose.
Code of Federal Regulations, 2014 CFR
2014-04-01
... by weight aqueous solution at 25 degrees C. (2) A cellulose ether containing propylene glycol groups... disintegrator in tablets or wafers containing dietary supplements of vitamins and/or minerals. The additive is...
21 CFR 172.870 - Hydroxypropyl cellulose.
Code of Federal Regulations, 2013 CFR
2013-04-01
... viscosity of 10 centipoises for a 10 percent by weight aqueous solution at 25 degrees C. (2) A cellulose... use as a binder and disintegrator in tablets or wafers containing dietary supplements of vitamins and...
21 CFR 172.870 - Hydroxypropyl cellulose.
Code of Federal Regulations, 2012 CFR
2012-04-01
... viscosity of 10 centipoises for a 10 percent by weight aqueous solution at 25 degrees C. (2) A cellulose... use as a binder and disintegrator in tablets or wafers containing dietary supplements of vitamins and...
Liew, Kai Bin; Tan, Yvonne Tze Fung; Peh, Kok Khiang
2015-04-01
Manufacturing process and superdisintegrants used in orally disintegrating tablet (ODT) formulation are often time discussed. However, the effect of suitable filler for ODT formulation is not explored thoroughly. The aim of this study was to develop a novel taste masked and affordable donepezil hydrochloride ODT with fast disintegration time and stable to improve medication compliance of Alzheimer's disease patient. The ODT was manufactured using simple wet-granulation method. Crospovidone XL-10 was used as superdisintegrant and optimization was done by comparing the effect of three grades of lactose monohydrate compound as filler: Starlac®, Flowlac® and Tablettose®. Formulations containing higher amount of colloidal silicon dioxide showed increase in hardness, weight, disintegration time and wetting time after stability study. Formulation E which containing 50% of Starlac® was found with shortest in vitro disintegration time (21.7 ± 1.67 s), in vivo disintegration time (24.0 ± 1.05 s) and in vitro disintegration time in artificial salvia (22.5 ± 1.67 s). Physical stability studies at 40 °C/75% RH for 6 months, Fourier transform infrared spectroscopy analysis and X-ray diffraction results showed that the formulation was stable. The drug-released profile showed that 80% of donepezil hydrochloride was released within 1 min. A single-dose, fasting, four-period, seven-treatment, double-blinded study involving 16 healthy human volunteers was performed to evaluate the palatability of ODT. Formulation VII containing 10 mg of ammonium glycyrrhizinate was able to mask the bitter taste of the drug. The product has the potential to be commercialized and it might serve as solution for non-compliance among the Alzheimer's disease patients.
Uzunović, Alija; Vranić, Edina
2009-01-01
Dissolution rate of two fluoroquinolone antibiotics (ciprofloxacin and moxifloxacin) was analysed in presence/absence of three antacid formulations. Disintegration time and neutralisation capacity of antacid tablets were also checked. Variation in disintegration time indicated the importance of this parameter, and allowed evaluation of the influence of postponed antacid-fluoroquinolone contact. The results obtained in this study showed decreased dissolution rate of fluoroquinolone antibiotics from tablets in simultaneous presence of antacids, regardless of their type and neutralisation capacity. PMID:19284403
Kawano, Yayoi; Ito, Akihiko; Sasatsu, Masanaho; Machida, Yoshiharu; Onishi, Hiraku
2010-12-01
Using furosemide (FU) as a model drug, we examined the wet granulation method as a way to improve the taste masking and physical characteristics of orally disintegrating tablets (ODTs). In the wet granulation method, yogurt powder (YO) was used as a corrective and maltitol (MA) was used as a binding agent. The taste masked FU tablets were prepared using the direct compression method. Microcrystalline cellulose (Avicel® PH-302) and mannitol were added as excipients at a mixing ratio of 1/1 by weight. Based on the results of sensory test on taste, the prepared granules markedly improved the taste of FU, and a sufficient masking effect was obtained at the YO/FU ratio of 1 or more. Furthermore, it was found that the masking effect achieved by YO granules made with the wet granulation method was similar to or better than that produced by the granules made with dry granulation method. All types of tablets displayed sufficient hardness (over 3.5×10(-2) kN), and rapidly disintegrating tablets were obtained with YO granules produced at a mixing ratio of FU/YO=1/1, which disintegrated within 20 s. Disintegration time lengthened as the mixing ratio of YO to FU increased. In the mixing ratio of FU/YO=1/1, the hardness of tablets with granules made by the wet granulation method exceeded that of tablets with granules made by the dry granulation method, with minimal differences in disintegration time. The hardness and disintegration time of the tablets with granules made by the wet granulation method could be controlled by varying the compression force. In conclusion, YO was found to be a useful additive for masking unpleasant tastes. FU ODTs with improved taste, rapid disintegration and greater hardness could be prepared with YO-containing granules made by the wet granulation method using MA as a binding agent.
Yehia, Soad Ali; El-Ridi, Mohamed Shafik; Tadros, Mina Ibrahim; El-Sherif, Nolwa Gamal
2015-01-01
Purpose: The current work aimed to develop promising Fexofenadine hydrochloride (FXD) liquisolid tablets able to increase its oral bioavailability and shorten time to reach maximum plasma concentrations (Tmax). Methods: Eighteen liquisolid powders were developed based on 3 variables; (i) vehicle type [Propylene glycol (PG) or Cremophor® EL (CR)], (ii) carrier [Avicel® PH102] to coat [Aerosil® 200] ratio (15, 20, 25) and (iii) FXD concentration in vehicle (30, 35, 40 %, w/w). Pre-compression studies involved identification of physicochemical interactions and FXD crystallinity (FT-IR, DSC, XRD), topographic visualization (SEM) and estimation of flow properties (angle of repose, Carr’s index, Hausner’s ratio). CR-based liquisolid powders were compressed as liquisolid tablets (LST 9 – 18) and evaluated for weight-variation, drug-content, friability-percentage, disintegration-time and drug-release. The pharmacokinetics of LST-18 was evaluated in healthy volunteers relative to Allegra® tablets. Results: Pre-compression studies confirmed FXD dispersion in vehicles, conversion to amorphous form and formation of liquisolid powders. CR-based liquisolid powders showed acceptable-to-good flow properties suitable for compaction. CR-based LSTs had appropriate physicochemical properties and short disintegration times. Release profile of LST-18 showed a complete drug release within 5 min. Conclusion: LST-18 succeeded in increasing oral FXD bioavailability by 62% and reducing Tmax to 2.16 h. PMID:26819931
Formulation development and comparative in vitro study of metoprolol tartrate (IR) tablets.
Husain, Tazeen; Shoaib, Muhammad Harris; Yousuf, Rabia Ismail; Maboos, Madiha; Khan, Madeeha; Bashir, Lubna; Naz, Shazia
2016-05-01
The objective of the present work was to develop Immediate Release (IR) tablets of Metoprolol Tartrate (MT) and to compare trial formulations to a reference product. Six formulations (F1-F6) were designed using central composite method and compared to a reference brand (A). Two marketed products (brands B and C) were also evaluated. F1-F6 were prepared with Avicel PH101 (filler), Crospovidone (disintegrant) and Magnesium Stearate (lubricant) by direct compression. Pharmacopoeial and non-pharmacopoeial methods were used to assess their quality. Furthermore, drug profiles were characterized using model dependent and independent (f(2)) approaches. Brands B and C and F5 and F6 did not qualify the tests for content uniformity. Moreover, brand B did not meet weight variation criteria and brand C did not satisfy requirements for single point dissolution test. Of the trial formulations, F2 failed the test for uniformity in thickness while F4 did not disintegrate within time limit. Only F1 and F3 met all quality parameters and were subjected to accelerated stability testing without significant alterations in their physicochemical characteristics. Based on AIC and r(2)(adjusted) values obtained by applying various kinetic models, drug release was determined to most closely follow Hixson-Crowell cube root law. F1 was determined to be the optimized formulation.
Biodegradation of poly(hydroxy butanoic acid) copolymer mulch films in soil
NASA Astrophysics Data System (ADS)
Kukade, Pranav
Agricultural mulch films that are used to cover soil of crop rows contribute to earlier maturation of crops and higher yield. Incineration and landfill disposals are the most common means of disposal of the incumbent polyethylene (PE) mulch films; however, these are not environment friendly options. Biodegradable mulch films that can be rototilled into the soil after crop harvest are a promising alternative to offset problems such as landfill disposal, film retrieval and disposal costs. In this study, an in-house laboratory scale test method was developed in which the rate of disintegration, as a result of biodegradation of films based on polyhydroxybutanoic acid (PHB) copolymers was investigated in a soil environment using the residual weight loss method. The influence of soil composition, moisture levels in the soil, and industry-standard anti-microbial additive in the film composition on the rate of disintegration of PHB copolymer films was investigated. The soil composition has significant effect on the disintegration kinetics of PHB copolymer films, since the increasing compost levels in the soil lowered the rate of disintegration of the film. Also, with the increase in moisture level up to a threshold limit, the microbial activity and, hence, the rate of disintegration increased. Lastly, the developed lab-scale test protocol was found to be sensitive to even small concentrations of industry-standard antimicrobial additive in the film composition.
Kasperek, Regina; Polski, Andrzej; Sobótka-Polska, Karolina; Poleszak, Ewa
2014-01-01
Polymers are widely used in drug manufacturing. Researchers studied their impact on the bioavailability of active substances or on physical properties of tablets for many years. To study the influence of polymer excipients, such as microcrystalline cellulose (Avicel PH 101, Avicel PH 102), croscarmellose sodium, crospovidone or polyvinylpyrrolidone, on the release profile of papaverine hydrochloride from tablets and on the physical properties of tablets. Six series of uncoated tablets were prepared by indirect method, with previous wet granulation. Tablets contained papaverine hydrochloride and various excipients. The physical properties of the prepared granules, tablets and the release profile of papaverine hydrochloride from tablets were examined. The content of papaverine hydrochloride from the release study were determined spectrophotometrically. All tablets met the pharmacopoeia requirements during following tests: the disintegration time of tablets, uncoated tablets resistance to abrasion, the weight uniformity and dose formulations, their dimensions, the resistance to crushing of tablets and the drug substance content in the tablet. In four cases more than 80% of papaverine was released up to 2 min, in one formula it was up to 5 min, and in last one up to 10 min. Tablets containing crospovidone disintegrated faster than tablets with croscarmellose sodium. Adding gelatinized starch to the tablet composition increased the disintegration time, hardness and delayed the release of papaverine. During the wet granulation process, granules containing polyvinylpyrrolidone were characterized by a suitable flow properties and slightly prolonged disintegration time. Tablets containing Avicel PH 102 compared to tablets with Avicel PH 101 had less weight loss during the test of mechanical resistance, improved hardness and faster release profile of papaverine from tablets.
Pawar, Harshal Ashok; Jadhav, Pravin
2015-01-01
The objective of the present research work was to isolate, purify and characterize Cordia dichotoma gum and investigate its disintegration property in oral tablets. The isolated gum was tested for physicochemical characteristics such as solubility, pH (1% w/w in water), swelling index, loss on drying, ash value, bulk and tapped density, Carr's index, Hausner's ratio and angle of repose. The Orodispersible tablets of valsartan were prepared by direct compression method and evaluated for average weight (mg), drug content (%), thickness (mm), hardness (kg/cm(2)), friability (%), wetting time (sec), water absorption ratio (%) and disintegration time (sec). FTIR studies revealed that there was no interaction between drug, gum and other excipients used in the study. The F4 batch with disintegration time 26.34 ± 0.78 s and in vitro release 99.64 ± 0.43% was selected as optimized formulation. This formulation was compared with conventional marketed formulation and was found superior. Batch F4 was subjected to stability studies for three months and was tested for its disintegration time, drug contents and dissolution behaviour. Batch F4 was found stable for three months at accelerated temperature. Copyright © 2014 Elsevier B.V. All rights reserved.
Meka, Venkata Srikanth; Yee, Phung; Sheshala, Ravi
2016-01-01
In the past few years, there are number of researchers carrying out their research on the excipients derived from polysaccharides and some of these researches show that natural excipients are comparable and can serve as an alternative to the synthetic excipients. Hence, the objectives of this research are to characterize the naturally sourced chickpea starch powder and to study the pharmaceutical excipient behavior of chickpea starch in gliclazide immediate release (IR) tablets. In this research, the binding properties of chickpea starch were compared to that of povidone, whereas the disintegrant properties of chickpea starch were compared to those of crospovidone, croscarmellose sodium and sodium starch glycolate. Flow property of chickpea starch was assessed with the measurement of bulk density, tapped density, compressibility index and angle of repose. Calibration curve for gliclazide in phosphate buffer pH 7.4 was developed. Gliclazide IR tablets were then produced with direct compression method. Physicochemical characteristics of the tablets, including thickness, tablet weight uniformity, hardness, disintegration time and friability were evaluated. Then, in vitro dissolution studies were performed by following United States Pharmacopeia (USP) dissolution method. The dissolution results were analyzed and compared with t30, t50, dissolution efficiency (DE). Lastly, drug-excipient compatibility studies, including Fourier transform infrared (FTIR) spectroscopic analysis and differential scanning calorimetric (DSC) analysis were carried out. Fair flow property was observed in the chickpea starch powder. Furthermore, the tablets produced passed all the tests in physicochemical characteristics evaluation except hardness and disintegration test. Additionally, in vitro dissolution studies show that chickpea starch acted as a disintegrant instead of a binder in gliclazide IR tablets and its disintegrant properties were comparable to those of crospovidone, croscarmellose sodium and sodium starch glycolate. Besides that, gliclazide was also compatible with the excipients used. Chickpea starch acted as a disintegrant in gliclazide IR tablets, instead of a binder. Therefore, chickpea starch can be a promising disintegrant in gliclazide IR tablets.
Formulation and Evaluation of a Novel Matrix-Type Orally Disintegrating Ibuprofen Tablet
Tayebi, Hoda; Mortazavi, Seyed Alireza
2011-01-01
Orally disintegrating tablets (ODTs) are capable of turning quickly into a liquid dosage form in contact with the saliva, thus possessing the advantages of both the solid dosage forms particularly stability and liquid dosage forms specially ease of swallowing and pre-gastric absorption of drug. The aim of this study was to prepare a novel matrix-type buccal fast disintegrating ibuprofen tablet formulation using special polymers, water soluble excipients, super-disintegrants and quickly soluble granules. For this purpose different tablet formulations of ibuprofen were prepared. The amount of ibuprofen in each formulation was 100 mg. Eight groups of formulation were prepared (A-H series), accounting for a total number of 45 formulations. Formulations prepared were examined in terms of different physicochemical tests including powder/granule flowability, appearance, thickness, uniformity of weight, hardness, friability and disintegration time. Results of formulation F22a (in series F), was found to be acceptable, making it the chosen formulation for further studies. Then, by adding various flavorants and sweeteners to this formulation, complementary series of formulations, named G and H, were prepared. Following the comparison of their taste with each other through asking 10 volunteers, the most suitable formulation regarding the taste, being formulation F22s, was chosen as the ultimate formulation. This formulation had PVP, ibuprofen and croscarmellose as the intra-granular components and xylitol and saccharin as the extra-granular ingredients. Formulation F22s was found to be acceptable in terms of physicochemical tests conducted, showing quick disintegration within the buccal cavity, appropriate hardness and rather low friability. Hence formulation F22s was selected as the final formulation. PMID:24250378
Key acceptability attributes of orodispersible films.
Scarpa, Mariagiovanna; Paudel, Amrit; Kloprogge, Frank; Hsiao, Wen Kai; Bresciani, Massimo; Gaisford, Simon; Orlu, Mine
2018-04-01
The features rendering orodispersible films (ODFs) patient-centric formulations are widely discussed in the scientific literature. However there is a lack of research studies exploring ODF characteristics with a potential impact on end-user acceptability. The aim of this study was to identify the key ODF characteristics affecting end-user acceptability by developing in vitro test methods for the prediction of ODFs acceptability and correlate these formulation characteristics with the data obtained from a human panel study. Four drug-free single-polymer films were prepared by solvent casting. Solutions of poly(vinyl) alcohol (PVOH) 39 KDa (P1), PVOH 197 KDa (P2), carboxymethylcellulose (CMC) 395 KDa (C1), and CMC 725 KDa (C2) were prepared. Texture analysis and Dynamic Mechanical Analysis (DMA) were used to assess film tack. Petri dish and drop methods were used to assess disintegration time. A human panel of 24 healthy young adults was employed to identify end-user acceptability criteria of the four study film samples. Texture analysis data of ODF tack were not found to be in agreement with the in vivo perceived stickiness in the mouth. However, measurement of the area under the adhesive force curve obtained by DMA correlated with in vivo perceived stickiness data for all samples. The disintegration times obtained by drop method were more comparable to human panel data than the petri dish method. Hence DMA and drop methods proved to be promising methodologies for the prediction of the end-user acceptability. The type and molecular weight of the film-forming polymer had a strong influence on stickiness perception, whereas only polymeric molecular weight influenced perceived disintegration time. The human panel study showed that Participant Reported Outcomes (PROs) for the perceived stickiness in the mouth and disintegration time of test films received significantly different scores between samples, and thus were identified as the key attributes with the potential to affect the end-user acceptability. ODF stickiness and disintegration time should therefore be evaluated at an early stage of the drug product design. Copyright © 2018 Elsevier B.V. All rights reserved.
IUPAC Periodic Table of Isotopes for the Educational Community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holden N. E.; Holden,N.E.; Coplen,T.B.
2012-07-15
John Dalton first proposed the concept of atomic weights of the elements in the first decade of the nineteenth century. These atomic weights of the chemical elements were thought of as constants of nature, similar to the speed of light. Dmitri Mendeleev arranged the atomic weights of the elements in ascending order of value and used the systematic variation of their chemical properties to produce his Periodic Table of the Elements in 1869. Measurement of atomic weight values became an important chemical activity for a century and a half. Theodore Richards received a Noble Prize for his work in thismore » area. In 1913, Fredrick Soddy found a species of radium, which had an atomic weight value of 228, compared to the familiar radium gas value of 226. Soddy coined the term 'isotope' (Greek for 'in the same place') to account for this second atomic weight value in the radium position of the Periodic Table. Both of these isotopes of radium are radioactive. Radioactive isotopes are energetically unstable and will decay (disintegrate) over time. The time it takes for one half of a sample of a given radioactive isotope to decay is the half-life of that isotope. In addition to having different atomic weight values, radium-226 and radium-228 also have different half-life values. Around the same time as Soddy's work, J.J. Thomson (discoverer of the electron) identified two stable (non-radioactive) isotopes of the same element, neon. Over the next 40 years, the majority of the known chemical elements were found to have two or more stable (or long-lived radioactive isotopes that contribute significantly to the determination of the atomic weights of the elements).« less
Pillai, Priya; Archana, G
2008-03-01
Keratinases play an important role in biotechnological applications such as improvement of feather meal, enzymatic dehairing and production of amino acids or peptides from high molecular weight substrates. Bacillus subtilis P13, isolated from Vajreshwari hot spring (45-50 degrees C) near Mumbai, India, produces a neutral serine protease and has an optimum temperature of 65 degrees C. This enzyme preparation was keratinolytic in nature and could disintegrate whole chicken feathers, except for the remnants of shafts. The enzyme preparation also exhibited depilation of goat hides with the recovery of intact animal hair. The enzyme preparation could release peptides from ground feathers and bring about their weight reduction; however, similar action on hair was relatively weak. A single major PMSF-sensitive protease band could be detected upon zymogram analysis, indicating that a single enzyme may be responsible for feather degradation and hide depilation. The importance of these findings in the biotechnological application for feather and leather industries is discussed.
Disintegration of liquid sheets
NASA Technical Reports Server (NTRS)
Mansour, Adel; Chigier, Norman
1990-01-01
The development, stability, and disintegration of liquid sheets issuing from a two-dimensional air-assisted nozzle is studied. Detailed measurements of mean drop size and velocity are made using a phase Doppler particle analyzer. Without air flow the liquid sheet converges toward the axis as a result of surface tension forces. With airflow a quasi-two-dimensional expanding spray is formed. The air flow causes small variations in sheet thickness to develop into major disturbances with the result that disruption starts before the formation of the main break-up region. In the two-dimensional variable geometry air-blast atomizer, it is shown that the air flow is responsible for the formation of large, ordered, and small chaotic 'cell' structures.
Kremser, Christian; Albrecht, Karin; Greindl, Melanie; Wolf, Christian; Debbage, Paul; Bernkop-Schnürch, Andreas
2008-06-01
The objective of this study was to use magnetic resonance imaging (MRI) to detect the time when and the location at which orally delivered mucoadhesive drugs are released. Drug delivery systems comprising tablets or capsules containing a mucoadhesive polymer were designed to deliver the polymer to the intestine in dry powder form. Dry Gd-DTPA [diethylenetriaminepentaacetic acid gadolinium(III) dihydrogen salt hydrate] powder was added to the mucoadhesive polymer, resulting in a susceptibility artifact that allows tracking of the application forms before their disintegration and that gives a strong positive signal on disintegration. Experiments were performed with rats using T(1)-weighted spin-echo imaging on a standard 1.5-T MRI system. The susceptibility artifact produced by the dry Gd-DTPA powder in tablets or capsules was clearly visible within the stomach of the rats and could be followed during movement towards the intestine. Upon disintegration, a strong positive signal was unambiguously observed. The time between ingestion and observation of a positive signal was significantly different for different application forms. Quantification of the remaining mucoadhesive polymer in the intestine 3 h after observed release showed significant differences in mucoadhesive effectiveness. MRI allows detection of the exact time of release of the mucoadhesive polymer in vivo, which is a prerequisite for a reliable quantitative comparison between different application forms.
Kondo, Keita; Niwa, Toshiyuki; Danjo, Kazumi
2012-01-01
This report describes a new disintegration tester that can determine not only the disintegration time of orally rapidly disintegrating tablets (ODT), but also the disintegration behavior and mechanism. Using the tester, the disintegration properties of the tablets prepared in a previous study were examined. The purpose of this study is to confirm the utility of the tester as an instrument for evaluating the disintegration properties of ODT and determine relations among time, behavior and mechanism of the disintegration. Results demonstrated that in vitro disintegration time in the tester is similar to that in the commercial disintegration tester for ODT and is highly correlated with oral disintegration time. Observations of disintegration process revealed that a difference in disintegration behavior between tablets compressed at 50-75 MPa and 100 MPa; the disintegration behavior of the tablets were designated immediate disintegrating type and gradual disintegrating type, respectively. The dynamic swelling profile and water absorption profile indicated that the disintegration mechanism of the tablets involved wicking action induced by swelling of the disintegrant; the disintegration time was closely related to the initial rates of swelling and water absorption. Furthermore, the mechanism of water absorption of tablets compressed at 50-75 MPa and 100 MPa shows anomalous diffusion and case-II transport, respectively. The shift in this mechanism is consistent with differences in disintegration time and behavior between the tablets. These findings suggest that information on disintegration properties obtained by our tester is useful for understanding of disintegration phenomena of ODT.
Grey-matter network disintegration as predictor of cognitive and motor function with aging.
Koini, Marisa; Duering, Marco; Gesierich, Benno G; Rombouts, Serge A R B; Ropele, Stefan; Wagner, Fabian; Enzinger, Christian; Schmidt, Reinhold
2018-06-01
Loss of grey-matter volume with advancing age affects the entire cortex. It has been suggested that atrophy occurs in a network-dependent manner with advancing age rather than in independent brain areas. The relationship between networks of structural covariance (SCN) disintegration and cognitive functioning during normal aging is not fully explored. We, therefore, aimed to (1) identify networks that lose GM integrity with advancing age, (2) investigate if age-related impairment of integrity in GM networks associates with cognitive function and decreasing fine motor skills (FMS), and (3) examine if GM disintegration is a mediator between age and cognition and FMS. T1-weighted scans of n = 257 participants (age range: 20-87) were used to identify GM networks using independent component analysis. Random forest analysis was implemented to examine the importance of network integrity as predictors of memory, executive functions, and FMS. The associations between GM disintegration, age and cognitive performance, and FMS were assessed using mediation analyses. Advancing age was associated with decreasing cognitive performance and FMS. Fourteen of 20 GM networks showed integrity changes with advancing age. Next to age and education, eight networks (fronto-parietal, fronto-occipital, temporal, limbic, secondary somatosensory, cuneal, sensorimotor network, and a cerebellar network) showed an association with cognition and FMS (up to 15.08%). GM networks partially mediated the effect between age and cognition and age and FMS. We confirm an age-related decline in cognitive functioning and FMS in non-demented community-dwelling subjects and showed that aging selectively affects the integrity of GM networks. The negative effect of age on cognition and FMS is associated with distinct GM networks and is partly mediated by their disintegration.
Formulation and evaluation of microsphere based oro dispersible tablets of itopride hcl
2012-01-01
Background The purpose of the present work is to mask the intensely bitter taste of Itopride HCl and to formulate an Oro dispersible tablet (ODT) of the taste-masked drug by incorporation of microspheres in the tablets for use in specific populations viz. pediatrics, geriatrics and patients experiencing difficulty in swallowing. Methods With this objective in mind, microspheres loaded with Itopride HCl were prepared by solvent evaporation method using acetone as solvent for pH-sensitive polymer, Eudragit EPO and light liquid paraffin as the encapsulating medium. The prepared microspheres were characterized with regard to yield, drug content, flow properties, particle size and size distribution, surface features, in vitro drug release and taste. The ODTs so prepared from these microspheres were evaluated for hardness, thickness, weight variation, friability, disintegration time, drug content, wetting time, water absorption ratio, moisture uptake, in vitro dispersion, in vitro disintegration, in vitro drug release and stability. Results The average size of microspheres was found to be satisfactory in terms of the size and size distribution. Microspheres prepared were of a regular spherical shape. Comparison of the dissolution profiles of microspheres in different pH media showed that microspheres having drug: polymer ratio of 1:2 produced a retarding effect in simulated salivary fluid (pH 6.8) and were further used for formulation into ODTs after addition of suitable amounts of excipients such as superdisintegrant, diluent, sweetener and flavor of directly compressible grade. Conclusions Effective taste-masking was achieved for Itopride HCl by way of preparation of microspheres and ODTs of acceptable characteristics. PMID:23351176
Formulation and evaluation of microsphere based oro dispersible tablets of itopride hcl.
Shah, Sanjay; Madan, Sarika; Agrawal, Ss
2012-09-03
The purpose of the present work is to mask the intensely bitter taste of Itopride HCl and to formulate an Oro dispersible tablet (ODT) of the taste-masked drug by incorporation of microspheres in the tablets for use in specific populations viz. pediatrics, geriatrics and patients experiencing difficulty in swallowing. With this objective in mind, microspheres loaded with Itopride HCl were prepared by solvent evaporation method using acetone as solvent for pH-sensitive polymer, Eudragit EPO and light liquid paraffin as the encapsulating medium. The prepared microspheres were characterized with regard to yield, drug content, flow properties, particle size and size distribution, surface features, in vitro drug release and taste. The ODTs so prepared from these microspheres were evaluated for hardness, thickness, weight variation, friability, disintegration time, drug content, wetting time, water absorption ratio, moisture uptake, in vitro dispersion, in vitro disintegration, in vitro drug release and stability. The average size of microspheres was found to be satisfactory in terms of the size and size distribution. Microspheres prepared were of a regular spherical shape. Comparison of the dissolution profiles of microspheres in different pH media showed that microspheres having drug: polymer ratio of 1:2 produced a retarding effect in simulated salivary fluid (pH 6.8) and were further used for formulation into ODTs after addition of suitable amounts of excipients such as superdisintegrant, diluent, sweetener and flavor of directly compressible grade. Effective taste-masking was achieved for Itopride HCl by way of preparation of microspheres and ODTs of acceptable characteristics.
3D extrusion printing of high drug loading immediate release paracetamol tablets.
Khaled, Shaban A; Alexander, Morgan R; Wildman, Ricky D; Wallace, Martin J; Sharpe, Sonja; Yoo, Jae; Roberts, Clive J
2018-03-01
The manufacture of immediate release high drug loading paracetamol oral tablets was achieved using an extrusion based 3D printer from a premixed water based paste formulation. The 3D printed tablets demonstrate that a very high drug (paracetamol) loading formulation (80% w/w) can be printed as an acceptable tablet using a method suitable for personalisation and distributed manufacture. Paracetamol is an example of a drug whose physical form can present challenges to traditional powder compression tableting. Printing avoids these issues and facilitates the relatively high drug loading. The 3D printed tablets were evaluated for physical and mechanical properties including weight variation, friability, breaking force, disintegration time, and dimensions and were within acceptable range as defined by the international standards stated in the United States Pharmacopoeia (USP). X-ray Powder Diffraction (XRPD) was used to identify the physical form of the active. Additionally, XRPD, Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) and differential scanning calorimetry (DSC) were used to assess possible drug-excipient interactions. The 3D printed tablets were evaluated for drug release using a USP dissolution testing type I apparatus. The tablets showed a profile characteristic of the immediate release profile as intended based upon the active/excipient ratio used with disintegration in less than 60 s and release of most of the drug within 5 min. The results demonstrate the capability of 3D extrusion based printing to produce acceptable high-drug loading tablets from approved materials that comply with current USP standards. Copyright © 2018 Elsevier B.V. All rights reserved.
El-Shenawy, Ahmed A; Ahmed, Mahmoud M; Mansour, Heba F; Abd El Rasoul, Saleh
2017-08-01
The present study planed to develop new fast dissolving tablets (FDTs) of torsemide. Solid dispersions (SDs) of torsemide and sorbitol (3:1) or polyvinylpyrrolidone (PVP) k25 were prepared. The prepared SDs were evaluated for in-vitro dissolution. Fourier transform infrared spectroscopy and differential scanning calorimetry for SDs revealed no drug/excipient interactions and transformation of torsemide to the amorphous form. Torsemide/sorbitol SD was selected for formulation of torsemide FDTs by direct compression method. Box-Bhenken factorial design was employed to design 15 formulations using croscarmellose sodium and crospovidone at different concentrations. The response surface methodology was used to analyze the effect of changing these concentrations (independent variables) on disintegration time (Y 1 ), percentage friability (Y 2 ), and amount torsemide released at 10 min. The physical mixtures of torsemide and the used excipients were evaluated for angle of repose, Hausner's ratio, and Carr's index. The prepared FDTs tablets were evaluated for wetting and disintegration time, weight variation, drug content, percentage friability, thickness, hardness, and in vitro release. Based on the in-vitro results and factorial design characterization, F10 and F7 were selected for bioavailability studies following administration to Albino New Zealand rabbits. They showed significantly higher C max and (AUC 0-12 ) and shorter T max than those obtained after administration of the corresponding ordinary commercial Torseretic ® tablets. Stability study was conducted for F10 that showed good stability upon storage at 30°C/75% RH and 40°C/75% RH for 3 months.
Formulation and evaluation of sublingual tablets containing Sumatriptan succinate
Prajapati, Shailesh T; Patel, Parth B; Patel, Chhagan N
2012-01-01
Objective: Sumatriptan succinate is a selective 5-hydroxytryptamine-1 receptor agonist effective in the acute treatment of migraine headaches, having low bioavailability of about 15% orally due to first-pass metabolism. The purpose of this research was to mask the intensely bitter taste of Sumatriptan succinate and to formulate fast-acting, taste-masked sublingual tablet formulation. Materials and Methods: Taste masking was performed by solid dispersion method with mannitol and ion exchange with Kyron T 114 because it releases the drug in salivary pH. The resultant batches were evaluated for in-vivo taste masking as well compatability study (Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC)). For a better feel in the mouth, menthol and sweetener Na saccharine were added to the tablet formulation. The tablets were prepared by direct compression and evaluated for weight variation, thickness, friability, drug content, hardness, disintegration time, wetting time, in vitro drug release, and in vitro permeation study. Results and Discussion: Optimized batches disintegrated in vitro within 28-34 s. Maximum drug release could be achieved with in 10 min for the solid dispersion batches and 14-15 min for the ion-exchange batches with Kyron T 114. The optimized tablet formulation showed better taste and the formulated sublingual tablets may act as a potential alternate for the Sumatriptan succinate oral tablet. Conclusion: Sumatriptan succinate can be successfully taste-masked by both the solid dispersion method using mannitol by the melting method and Ion exchange resin with Kyron T114. It was also concluded that prepared formulation improve bioavailability by prevention of first pass metabolism. PMID:23373008
Chen, Wei-Lin; Liu, Shih-Jen; Leng, Chih-Hsiang; Chen, Hsin-Wei; Chong, Pele; Huang, Ming-Hsi
2014-02-01
Vaccine adjuvant is conferred on the substance that helps to enhance antigen-specific immune response. Here we investigated the disintegration characteristics and immunotherapy potency of an emulsified delivery system comprising bioresorbable polymer poly(ethylene glycol)-polylactide (PEG-PLA), phosphate buffer saline (PBS), and metabolizable oil squalane. PEG-PLA-stabilized oil-in-water emulsions show good stability at 4 °C and at room temperature. At 37 °C, squalane/PEG-PLA/PBS emulsion with oil/aqueous weight ratio of 7/3 (denominated PELA73) was stable for 6 weeks without phase separation. As PEG-PLA being degraded, 30% of free oil at the surface layer and 10% of water at the bottom disassociated from the PELA73 emulsion were found after 3 months. A MALDI-TOF MS study directly on the DIOS plate enables us to identify low molecular weight components released during degradation. Our results confirm the loss of PLA moiety of the emulsifier PEG-PLA directly affected the stability of PEG-PLA-stabilized emulsion, leading to emulsion disintegration and squalane/water phase separation. As adjuvant for cancer immunotherapeutic use, an HPV16 E7 peptide antigen formulated with PELA73 plus immunostimulatory CpG molecules could strongly enhance antigen-specific T-cell responses as well as anti-tumor ability with respected to non-formulated or Alum-formulated peptide. Accordingly, these advances may be a potential immunoregulatory strategy in manipulating the immune responses induced by tumor-associated antigens. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
A critical review on tablet disintegration.
Quodbach, Julian; Kleinebudde, Peter
2016-09-01
Tablet disintegration is an important factor for drug release and can be modified with excipients called tablet disintegrants. Tablet disintegrants act via different mechanisms and the efficacy of these excipients is influenced by various factors. In this review, the existing literature on tablet disintegration is critically reviewed. Potential disintegration mechanisms, as well as impact factors on the disintegration process will be discussed based on experimental evidence. Search terms for Scopus and Web of Science included "tablet disintegration", "mechanism tablet disintegration", "superdisintegrants", "disintegrants", "swelling force", "disintegration force", "disintegration mechanisms", as well as brand names of commonly applied superdisintegrants. References of identified papers were screened as well. Experimental data supports swelling and shape recovery as main mechanisms of action of disintegrants. Other tablet excipients and different manufacturing techniques greatly influence the disintegration process. The use of different excipients, experimental setups and manufacturing techniques, as well as the demand for original research led to a distinct patchwork of knowledge. Broader, more systematic approaches are necessary not only to structure the past but also future findings.
Evaluation of different fast melting disintegrants by means of a central composite design.
Di Martino, Piera; Martelli, Sante; Wehrlé, Pascal
2005-01-01
Fast-disintegration technologies have encountered increased interest from industries in the past decades. In order to orientate the formulators to the choice of the best disintegrating agent, the most common disintegrants were selected and their ability to quickly disintegrate direct compressed tablets was evaluated. For this study, a central composite design was used. The main factors included were the concentration of disintegrant (X1) and the compression force (X2). These factors were studied for tablets containing either Zeparox or Pearlitol 200 as soluble diluents and six different disintegrants: L-HPC LH11 and LH31, Lycatab PGS, Vivasol, Kollidon CL, and Explotab. Their micromeritics properties were previously determined. The response variables were disintegration time (Y1), tensile strength (Y2), and porosity (Y3). Whatever the diluent, the longest disintegration time is obtained with Vivasol as the disintegrant, while Kollidon CL leads to the shortest disintegration times. Exception for Lycatab PGS and L-HPC LH11, formulations with Pearlitol 200 disintegrate faster. Almost the same results are obtained with porosity: no relevant effect of disintegrant concentration is observed, since porosity is mainly correlated to the compression force. In particular, highest values are obtained with Zeparox as the diluent when compared to Pearlitol 200 and, as the type of disintegrant is concerned, no difference is observed. Tensile strength models have been all statistically validated and are all highly dependent on the compression force. Lycatab PGS concentration does not affect disintegration time, mainly increased by the increase of compression pressure. When Pearlitol 200 is used with Vivasol, disintegration time is more influenced by the disintegrant concentration than by the compression pressure, an increase in concentration leading to a significant and relevant increase of the disintegration time. With Zeparox, the interaction between the two controlled variables is more complex: there is no effect of compression force on the disintegration time for a small amount of disintegrant, but a significant increase for higher concentrations. With Kollidon CL, the main factor influencing the disintegration time is the compression force, rather than the disintegrant concentration. Increasing both the compression force and the disintegrant concentration leads to an increase of the disintegration time. For lower Kollidon CL percentages, the compression pressure increases dramatically the tablet disintegration. With the Explotab, whatever the increase of compression force, the disintegrant concentration leads to an increase of the disintegration time. According to Student's t-test, only the compression force significantly and strongly influences the disintegration time when Pearlitol 200 is used. A slight interaction and some trends nevertheless appear: above 150 MPa, increasing the disintegrant concentration leads to a shortened disintegration time, below this limit the opposite effect is observed.
Adversity, time, and well-being: A longitudinal analysis of time perspective in adulthood.
Holman, E Alison; Silver, Roxane Cohen; Mogle, Jacqueline A; Scott, Stacey B
2016-09-01
Despite the prominence of time in influential aging theories and the ubiquity of stress across the life span, research addressing how time perspective (TP) and adversity are associated with well-being across adulthood is rare. Examining the role of TP in coping with life events over the life span would be best accomplished after large-scale population-based exposure to a specific event, with repeated assessments to examine within- and between-person differences over time. A national sample aged 18-91 years (N = 722, M = 49.4 years) was followed for 3 years after the September 11, 2001 (9/11) terrorist attacks. Respondents completed assessments of 9/11-related television (TV) exposure 9-21 days after the attacks, temporal disintegration 2 months post-9/11, and TP, ongoing stress, and well-being at 12, 24, and 36 months post-9/11. Results provided support for measurement invariance of TP across time and across age. Early 9/11-related TV exposure was significantly associated with greater temporal disintegration. Temporal disintegration and ongoing stress, in turn, were associated with between- and within-person variation in past TP. This effect was qualified by an age interaction that indicated a stronger relationship between ongoing stress and past TP for younger compared with older adults. Past and future TP were significantly and independently related to individual differences and within-person variation in psychological well-being, regardless of age. Future work should incorporate adversity as an important correlate of TP across adulthood. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Yoshita, Tomohiro; Uchida, Shinya; Namiki, Noriyuki
2013-01-01
Disintegration time is an important characteristic of orally disintegrating tablets (ODTs), and evaluation of disintegration time is a key step in formulation development, manufacturing, and clinical practice. In this study, we aimed to clarify the clinical disintegration time of ODTs that are currently used clinically, and to evaluate its correlation with the in vitro disintegration time of ODTs which was measured using Tricorptester, a newly developed disintegration testing apparatus. The clinical disintegration time of 17 ODT products was measured in healthy volunteers (n=9-10; age range, 21-28 years). A randomized single-blind trial was performed; each tablet was placed on the tongues of the participants, and it disintegrated in their oral cavities. No significant difference was observed in the clinical disintegration time of each ODT among the 3 groups to which the subjects were randomly assigned. The clinical disintegration time of the 17 ODT products was between 17.6 s and 33.8 s. The in vitro disintegration time of 26 clinically used ODT products measured using Tricorptester ranged between 4.40 s and 30.4 s. A significant positive correlation was observed between in vitro and clinical disintegration times (r=0.79; p<0.001). This study shows that all the tested products, which are clinically available in Japan, showed good disintegration and that the disintegration time varied according to the product. In addition, the in vitro disintegration time of ODTs measured using Tricorptester is a good reflection of the disintegration time in the oral cavity.
Watanabe, Yoshiteru; Mukai, Baku; Kawamura, Ken-ichi; Ishikawa, Tatsuya; Namiki, Michihiro; Utoguchi, Naoki; Fujii, Makiko
2002-02-01
In an attempt to achieve chronopharmacotherapy for asthma, press-coated tablets (250 mg), which contained aminophylline in the core tablet in the form of low-substituted hydroxypropylcellulose (L-HPC) and coated with crystalline cellulose (PH-102) and polyethylene glycol (PEG) at various molecular weights and mixing ratios in the amounts of PH-102 and PEG as the outer shell (press-coating material), were prepared (chronopharmaceutics). Their applicability as timed-release (delayed-release) tablets with a lag time of disintegration and a subsequent rapid drug release phase was investigated. Various types of press-coated tablets were prepared using a tableting machine, and their aminophylline dissolution profiles were evaluated by the JP paddle method. Tablets with the timed-release characteristics could be prepared, and the lag time of disintegration was prolonged as the molecular weight and the amount of PEG, for example PEG 500,000, in the outer shell were increased. The lag time of disintegration could be controlled by the above-mentioned method, however, the pH of the medium had no effect on disintegration of the tablet and dissolution behavior of theophylline. The press-coated tablet (core tablet:aminophylline 50 mg, L-HPC and PEG 6000; outer shell:PH-102:PEG = 8:2 200 mg) with the timed-release characteristics was administered orally to rabbits for an in vivo test. Theophylline was first detected in plasma more than 2 h after administration; thus, this tablet showed a timed-release characteristics in the gastrointestinal tract. The time (tmax) required to reach the maximum plasma theophylline concentration (Cmax) observed after administration of the press-coated tablet was significantly (p < 0.05) delayed compared with that observed after administration of aminophylline solution in the control experiment. However, there was no difference in Cmax and area under the plasma theophylline concentration-time curve (AUC0-->24) between the press-coated tablet and aminophylline solution. These results suggest that the press-coated aminophylline tablet (with the timed-release characteristic) offers a promising forms of theophylline chronotherapy for asthma.
Desai, Parind M; Liew, Celine V; Heng, Paul W S
2013-02-14
The aim of this study was to develop a responsive disintegration test apparatus that is particularly suitable for rapidly disintegrating tablets (RDTs). The designed RDT disintegration apparatus consisted of disintegration compartment, stereomicroscope and high speed video camera. Computational fluid dynamics (CFD) was used to simulate 3 different designs of the compartment and to predict velocity and pressure patterns inside the compartment. The CFD preprocessor established the compartment models and the CFD solver determined the numerical solutions of the governing equations that described disintegration medium flow. Simulation was validated by good agreement between CFD and experimental results. Based on the results, the most suitable disintegration compartment was selected. Six types of commercial RDTs were used and disintegration times of these tablets were determined using the designed RDT disintegration apparatus and the USP disintegration apparatus. The results obtained using the designed apparatus correlated well to those obtained by the USP apparatus. Thus, the applied CFD approach had the potential to predict the fluid hydrodynamics for the design of optimal disintegration apparatus. The designed visiometric liquid jet-mediated disintegration apparatus for RDT provided efficient and precise determination of very short disintegration times of rapidly disintegrating dosage forms. Copyright © 2012 Elsevier B.V. All rights reserved.
Pabari, Rm; Ramtoola, Z
2012-07-01
The aim of this study was to evaluate the influence of disintegration mechanism of various types of disintegrants on the absorption ratio (AR), wetting time (WT), and disintegration time (DT) of orodispersible tablets (ODTs). ODTs were prepared by direct compression using mannitol as filler and disintegrants selected from a range of swellable, osmotic, and porous disintegrants. Tablets formed were characterized for their water AR, WT, and DT. The porosity and mechanical strength of the tablets were also measured. Results show that the DT of formulated ODTs was directly related to the WT and was a function of the disintegration mechanism of the disintegrant used. The lowest WT and DT were observed for tablets formulated using the osmotic disintegrant sodium citrate and these tablets also showed the lowest AR and porosity. The wetting and disintegration of tablets containing the highly swellable disintegrant, sodium starch glycollate, was slowest despite their high water AR and high tablet porosity. Rapid wetting and disintegration of ODTs were therefore not necessarily related to the porosity of the tablets.
Pabari, RM; Ramtoola, Z
2012-01-01
The aim of this study was to evaluate the influence of disintegration mechanism of various types of disintegrants on the absorption ratio (AR), wetting time (WT), and disintegration time (DT) of orodispersible tablets (ODTs). ODTs were prepared by direct compression using mannitol as filler and disintegrants selected from a range of swellable, osmotic, and porous disintegrants. Tablets formed were characterized for their water AR, WT, and DT. The porosity and mechanical strength of the tablets were also measured. Results show that the DT of formulated ODTs was directly related to the WT and was a function of the disintegration mechanism of the disintegrant used. The lowest WT and DT were observed for tablets formulated using the osmotic disintegrant sodium citrate and these tablets also showed the lowest AR and porosity. The wetting and disintegration of tablets containing the highly swellable disintegrant, sodium starch glycollate, was slowest despite their high water AR and high tablet porosity. Rapid wetting and disintegration of ODTs were therefore not necessarily related to the porosity of the tablets. PMID:23112534
Disintegration of highly soluble immediate release tablets: a surrogate for dissolution.
Gupta, Abhay; Hunt, Robert L; Shah, Rakhi B; Sayeed, Vilayat A; Khan, Mansoor A
2009-01-01
The purpose of the work was to investigate correlation between disintegration and dissolution for immediate release tablets containing a high solubility drug and to identify formulations where disintegration test, instead of the dissolution test, may be used as the acceptance criteria based on International Conference on Harmonization Q6A guidelines. A statistical design of experiments was used to study the effect of filler, binder, disintegrating agent, and tablet hardness on the disintegration and dissolution of verapamil hydrochloride tablets. All formulation variables, i.e., filler, binder, and disintegrating agent, were found to influence tablet dissolution and disintegration, with the filler and disintegrating agent exerting the most significant influence. Slower dissolution was observed with increasing disintegration time when either the filler or the disintegrating agent was kept constant. However, no direct corelationship was observed between the disintegration and dissolution across all formulations due to the interactions between different formulation components. Although all tablets containing sodium carboxymethyl cellulose as the disintegrating agent, disintegrated in less than 3 min, half of them failed to meet the US Pharmacopeia 30 dissolution criteria for the verapamil hydrochloride tablets highlighting the dependence of dissolution process on the formulation components other than the disintegrating agent. The results identified only one formulation as suitable for using the disintegration test, instead of the dissolution test, as drug product acceptance criteria and highlight the need for systematic studies before using the disintegration test, instead of the dissolution test as the drug acceptance criteria.
Hori, Katsuhito; Yoshida, Naoko; Okumura, Tomonori; Okamura, Yasufumi; Kawakami, Junichi
2010-08-01
Orally disintegrating (OD) tablets are widely used in clinical practice. However, drug information on the choice and dispensing based on their stability after opening packages and usability in patients and dispensaries is not sufficient. The aim of this study was to investigate possible evaluation methods of the stability and usability of amlodipine OD tablets. Additives of the brand were changed in April 2009, and therefore the previous and current forms and two generics, current and newly marketed (in November 2009) products of different firms, were used. OD tablets were stored at 25 degrees C and 75% relative humidity for 3 months after opening the packages, and their physicochemical properties were evaluated. Their weight, diameter, thickness, and color difference increased slightly from the initial state. The extent of the change in their hardness, disintegration time, and friability was different among products. These physicochemical changes were acceptable in dispensary practice. Storage after opening the packages did not affect their dissolution rate. The dissolution rate at the initial state of the current brand was slower than that of the previous one. All products used were able to be dispensed by an automatic tablet-packing machine and applied to the so-called simple suspension method for intubational administration. Sensory evaluation tests revealed no major difference in the oral disintegration time, taste, impression, and preference among products. In conclusion, the stability and usability of amlodipine OD tablets used in this study were examined using several methods, and they can be used equivalently from the stability and usability viewpoints.
Performance of tablet disintegrants: impact of storage conditions and relative tablet density.
Quodbach, Julian; Kleinebudde, Peter
2015-01-01
Tablet disintegration can be influenced by several parameters, such as storage conditions, type and amount of disintegrant, and relative tablet density. Even though these parameters have been mentioned in the literature, the understanding of the disintegration process is limited. In this study, water uptake and force development of disintegrating tablets are analyzed, as they reveal underlying processes and interactions. Measurements were performed on dibasic calcium phosphate tablets containing seven different disintegrants stored at different relative humidities (5-97%), and on tablets containing disintegrants with different mechanisms of action (swelling and shape recovery), compressed to different relative densities. Disintegration times of tablets containing sodium starch glycolate are affected most by storage conditions, which is displayed in decreased water uptake and force development kinetics. Disintegration times of tablets with a swelling disintegrant are only marginally affected by relative tablet density, whereas the shape recovery disintegrant requires high relative densities for quick disintegration. The influence of relative tablet density on the kinetics of water uptake and force development greatly depends on the mechanism of action. Acquired data allows a detailed analysis of the influence of storage conditions and mechanisms of action on disintegration behavior.
Desai, Parind Mahendrakumar; Er, Patrick Xuan Hua; Liew, Celine Valeria; Heng, Paul Wan Sia
2014-10-01
Investigation of the effect of disintegrants on the disintegration time and hardness of rapidly disintegrating tablets (RDTs) was carried out using a quality by design (QbD) paradigm. Ascorbic acid, aspirin, and ibuprofen, which have different water solubilities, were chosen as the drug models. Disintegration time and hardness of RDTs were determined and modeled by executing combined optimal design. The generated models were validated and used for further analysis. Sodium starch glycolate, croscarmellose sodium, and crospovidone were found to lengthen disintegration time when utilized at high concentrations. Sodium starch glycolate and crospovidone worked synergistically in aspirin RDTs to decrease disintegration time. Sodium starch glycolate-crospovidone mixtures, as well as croscarmellose sodium-crospovidone mixtures, also decreased disintegration time in ibuprofen RDTs at high compression pressures as compared to the disintegrants used alone. The use of sodium starch glycolate in RDTs with highly water soluble active ingredients like ascorbic acid slowed disintegration, while microcrystalline cellulose and crospovidone drew water into the tablet rapidly and quickened disintegration. Graphical optimization analysis demonstrated that the RDTs with desired disintegration times and hardness can be formulated with a larger area of design space by combining disintegrants at difference compression pressures. QbD was an efficient and effective paradigm in understanding formulation and process parameters and building quality in to RDT formulated systems.
Characterising the disintegration properties of tablets in opaque media using texture analysis.
Scheuerle, Rebekah L; Gerrard, Stephen E; Kendall, Richard A; Tuleu, Catherine; Slater, Nigel K H; Mahbubani, Krishnaa T
2015-01-01
Tablet disintegration characterisation is used in pharmaceutical research, development, and quality control. Standard methods used to characterise tablet disintegration are often dependent on visual observation in measurement of disintegration times. This presents a challenge for disintegration studies of tablets in opaque, physiologically relevant media that could be useful for tablet formulation optimisation. This study has explored an application of texture analysis disintegration testing, a non-visual, quantitative means of determining tablet disintegration end point, by analysing the disintegration behaviour of two tablet formulations in opaque media. In this study, the disintegration behaviour of one tablet formulation manufactured in-house, and Sybedia Flashtab placebo tablets in water, bovine, and human milk were characterised. A novel method is presented to characterise the disintegration process and to quantify the disintegration end points of the tablets in various media using load data generated by a texture analyser probe. The disintegration times in the different media were found to be statistically different (P<0.0001) from one another for both tablet formulations using one-way ANOVA. Using the Tukey post-hoc test, the Sybedia Flashtab placebo tablets were found not to have statistically significant disintegration times from each other in human versus bovine milk (adjusted P value 0.1685). Copyright © 2015 Elsevier B.V. All rights reserved.
Chaheen, Mohammad; Soulairol, Ian; Bataille, Bernard; Yassine, Ahmad; Belamie, Emmanuel; Sharkawi, Tahmer
2017-07-01
Disintegrants are used as excipients to ensure rapid disintegration of pharmaceutical tablets and further ensure proper dissolution of the active pharmaceutical ingredient. This study investigates disintegration mechanisms of chitin and common disintegrants. Swelling assessment (swelling force and swelling ratio) in different media, and compaction behavior (pure or mixed with other excipients) tabletability, deformation (Heckel modeling), and compact disintegration times were investigated on the tested disintegrants (alginic acid calcium salt, crospovidone, sodium starch glycolate, croscarmellose sodium, and chitin). Results show that the physicochemical properties of the disintegration medium such as pH and ionic strength, as well as other formulation ingredients, affect the disintegrant functionalities. Heckel analysis using the mean yield pressure "Py" shows that alginic acid calcium salt is the most brittle among the studied disintegrants, while crospovidone has the most plastic deformation mechanism, followed by chitin. Chitin showed good tabletability and disintegration properties that were not influenced by the physicochemical formulation environment. Chitin is largely available and easily modifiable and thus a promising material that could be used as a multifunctional excipient in tablet formulation. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
[Stability of disintegration in health food].
Ma, Lan; Zhao, Xin; Zhou, Shuang; Yang, Dajin
2012-11-01
To study the change of disintegration of different formulation samples which stored in the artificial climate box or room temperature and provide the technical support for health food monitoring. According to the method of Chinese Pharmacopoeia and British Pharmacopoeia. Appendix XII A. Disintegration 2010. Disintegration of the non-accelerate, accelerated after 1, 2 and 3 months samples were determined by the disintegrator, respectively. Sample properties, the ingredients of the samples, the proportions of the capsule and treatment methods have some effect on the stability of the disintegration. The disintegration time of health food will be changed particularly after they were accelerated under the condition of (38 +/- 1) degrees C/75% RH. Especially the disintegration time of soft capsules were significantly prolonged. The composition and properties of samples were the main factors that affected the disintegration.
Reduction of excess sludge production using mechanical disintegration devices.
Strünkmann, G W; Müller, J A; Albert, F; Schwedes, J
2006-01-01
The usability of mechanical disintegration techniques for the reduction of excess sludge production in the activated sludge process was investigated. Using three different disintegration devices (ultrasonic homogeniser, stirred media mill, high pressure homogeniser) and different operational parameters of the disintegration, the effect of mechanical disintegration on the excess sludge production and on the effluent quality was studied within a continuously operated, laboratory scale wastewater treatment system with pre-denitrification. Depending on the operational conditions and the disintegration device used, a reduction of excess sludge production of up to 70% was achieved. A combination of mechanical disintegration with a membrane bioreactor process with high sludge age is more energy effective concerning reduction of sludge production than with a conventional activated sludge process at lower sludge ages. Depending on the disintegration parameters, the disintegration has no, or only minor, negative effect on the soluble effluent COD and on the COD-removal capacity of the activated sludge process. Nitrogen-removal was slightly deteriorated by the disintegration, whereas the system used was not optimised for nitrogen removal before disintegration was implemented.
Yoshida, Miyako; Hazekawa, Mai; Haraguchi, Tamami; Uchida, Takahiro
2015-01-01
The purpose of this study was to evaluate the palatabilities of the original and nine generic versions of famotidine orally disintegrating tablets (FODTs) by means of disintegration times and bitterness intensities determined using in combination disintegration device and taste sensor comparison of human gustatory sensation tests. The disintegration times were determined using a new disintegration testing equipment for ODTs, the OD-mate and bitterness intensities were determined using the SA501C taste-sensing system. The disintegration time and bitterness of each FODT was evaluated in gustatory sensation tests. There was a good correlation between the disintegration times of 10 FODTs estimated in human gustatory testing and those found using the OD-mate. The bitterness intensities of FODTs at 10, 20 and 30 s after starting the disintegration using the OD-mate and the values determined by the taste sensor were highly correlated with the bitterness intensities determined in gustatory sensation testing. A combination of the OD-mate and the SA501C was capable of predicting the palatabilities, disintegration properties and bitterness intensity of FODTs.
Jung, Huijeong Ashley; Augsburger, Larry L
2012-07-01
An automatic disintegration tester was developed and used to explore disintegration mechanism and times of rapidly disintegrating tablets. DT50, the time required for a tablet to decrease in its thickness by half, allowed an unbiased determination of disintegration time. Calcium silicate concentration, Explotab® concentration, DiPac®/Xylitab® ratio as fillers, and compression pressure were evaluated using a central composite model design analysis for their DT50, tensile strength, and friability. Tablets that could reasonably be handled (friability <10%) could be produced. The expansion coefficient (n) and the exponential rate constant (k) for disintegrating tablets, originally measured by Caramella et al. using force kinetics, could be determined from axial displacement data measured directly without the need to assume that disintegration force generation was indicative of changes in tablet volume. The n values of tablets containing calcium silicate, Ditab® and/or Xylitab®, magnesium stearate, and Explotab® suggested that the amount of Explotab® was not a significant factor in determining the disintegration mechanism; however, the type of disintegrant used did alter the n value. Primojel® and Explotab®, which are in the same class of disintegrants, exhibited similar DT50, n, and k. Polyplasdone® XL exhibited a much higher n, while yielding faster DT50, suggesting that its performance is more dependent on facilitating the interfacial separation of particles. AcDiSol® showed no apparent moisture sensitivity in regards to disintegration efficiency. The use of the novel apparatus proved to be useful in measuring disintegration efficiency of rapidly disintegrating tablets and in providing valuable information on the disintegration phenomena.
Tomita, Takashi; Kohda, Yukinao; Kudo, Kenzo
2018-01-01
For patients with dysphagia in medical facilities and nursing homes, food thickeners are routinely used to aid the ingestion of medicines such as tablets. However, some types of thickeners affect the disintegration and dissolution of tablets, such as rapidly-disintegrating magnesium oxide tablets and donepezil hydrochloride orally disintegrating tablets. Additionally, delayed disintegration and dissolution of tablets affect a drug's efficacy. As an example, with Voglibose orally disintegrating tablets, marked differences are observed in changes in glucose levels during glucose tolerance testing. When using food thickeners to aid tablet ingestion, it is therefore necessary to select a product that has little effect on drug disintegration, dissolution, and activity.
Hussain, Munir A; Chang, Rong-Kun; Sandefer, Erik; Page, Richard C; Digenis, George A
2003-03-01
[corrected] To evaluate the in vivo disintegration behavior of tablets and capsules of a bile acid sequestrant, DMP 504, in beagle dogs and to assess the significance of the in vitro disintegration of the dosage forms on subsequent in vivo behavior in order to draw possible in vitro-in vivo correlations. Tablet and capsule formulations of a bile acid sequestrant, DMP 504, were formulated with samarium oxide and neutron activated to produce radioactive 53Sm to noninvasively evaluate their in vivo behavior in beagle dogs by gamma-scintigraphy. A four-way crossover design was completed (n = 4) in which (a) tablets from two different batches were administered under the fasted condition and manufactured using different lots of drug substance where one batch exhibited relatively faster in vitro disintegration time (30 min) than the other tablet batch, which resulted in slower disintegration (45 min), (b) a capsule formulation was administered to fasted beagles, and (c) the tablet having slower in vitro disintegration was also administered in the fed state, and its in vivo disintegration was compared to that observed in the fasted state. Tablets manufactured using a lot of DMP 504 having relatively fast in vitro disintegration (approximately 30 min) resulted in relatively rapid in vivo disintegration time (15 min) in the fasted condition. This in vivo disintegration time was comparable to the in vivo disintegration of the capsules (17 min) even though the in vitro capsule disintegration time was considerably faster (2 min). Tablets prepared using a drug substance that provided a longer in vitro disintegration time (approximately 45 min) resulted in a slower in vivo disintegration (63 min). There was no difference observed in the in vivo disintegration behavior in fasted and fed dogs for the tablets that provided slower in vitro disintegration. In vivo disintegration of tablets of the bile acid sequestrant DMP 504 correlated with in vitro disintegration times. Gamma-Scintigraphy continues to be a good tool to use during early stages of product development to investigate in vivo performance of dosage forms. The results of this study provided evidence that the physical chemical specifications of the drug substance may not always be indicative of in vitro or in vivo performance of tablet dosage form, even when formulation and process are not changed.
Tablet disintegration studied by high-resolution real-time magnetic resonance imaging.
Quodbach, Julian; Moussavi, Amir; Tammer, Roland; Frahm, Jens; Kleinebudde, Peter
2014-01-01
The present work employs recent advances in high-resolution real-time magnetic resonance imaging (MRI) to investigate the disintegration process of tablets containing disintegrants. A temporal resolution of 75 ms and a spatial resolution of 80 × 80 µm with a section thickness of only 600 µm were achieved. The histograms of MRI videos were quantitatively analyzed with MATLAB. The mechanisms of action of six commercially available disintegrants, the influence of relative tablet density, and the impact of disintegrant concentration were examined. Crospovidone seems to be the only disintegrant acting by a shape memory effect, whereas the others mainly swell. A higher relative density of tablets containing croscarmellose sodium leads to a more even distribution of water within the tablet matrix but hardly impacts the disintegration kinetics. Increasing the polacrilin potassium disintegrant concentration leads to a quicker and more thorough disintegration process. Real-time MRI emerges as valuable tool to visualize and investigate the process of tablet disintegration.
Assessment of disintegrant efficacy with fractal dimensions from real-time MRI.
Quodbach, Julian; Moussavi, Amir; Tammer, Roland; Frahm, Jens; Kleinebudde, Peter
2014-11-20
An efficient disintegrant is capable of breaking up a tablet in the smallest possible particles in the shortest time. Until now, comparative data on the efficacy of different disintegrants is based on dissolution studies or the disintegration time. Extending these approaches, this study introduces a method, which defines the evolution of fractal dimensions of tablets as surrogate parameter for the available surface area. Fractal dimensions are a measure for the tortuosity of a line, in this case the upper surface of a disintegrating tablet. High-resolution real-time MRI was used to record videos of disintegrating tablets. The acquired video images were processed to depict the upper surface of the tablets and a box-counting algorithm was used to estimate the fractal dimensions. The influence of six different disintegrants, of different relative tablet density, and increasing disintegrant concentration was investigated to evaluate the performance of the novel method. Changing relative densities hardly affect the progression of fractal dimensions, whereas an increase in disintegrant concentration causes increasing fractal dimensions during disintegration, which are also reached quicker. Different disintegrants display only minor differences in the maximal fractal dimension, yet the kinetic in which the maximum is reached allows a differentiation and classification of disintegrants. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of sorbed water on disintegrant performance of four brands of Polacrilin Potassium NF.
Bele, Mrudula H; Derle, Diliprao V
2012-03-01
Polacrilin Potassium NF is a commonly used weak cation exchange resin disintegrant in pharmaceutical tablets. The objective of this research was to evaluate the effects of sorbed moisture on physical characteristics and disintegrant performance of four brands of Polacrilin Potassium NF. The disintegrants were stored in five different relative humidity chambers and their dynamic vapor adsorption-desorption analysis, effect of moisture on their compressibility, compactability, particle size, morphology, water uptake rate, and disintegration ability were studied. Moisture seemed to plasticize the disintegrants, reducing their yield pressures. However, certain optimum amount of moisture was found to be useful in increasing the compactablity of the tablets containing disintegrants. The tablets, however, lost their tensile strengths beyond this optimum moisture content. Moisture caused two brands of the disintegrants to swell; however, two other brands aggregated upon exposure to moisture. Swelling without aggregation increased the water uptake, and in turn the disintegrant performance. However, aggregation probably reduced the porosities of the disintegrants, reducing their water uptake rate and disintegrant performance. Different brands of Polacrilin Potassium NF differed in the abilities to withstand the effects of moisture on their functionality. Effect of moisture on disintegrant performance of Polacrilin Potassium NF needs to be considered before its use in tablets made by wet granulation.
Rojas, John; Guisao, Santiago; Ruge, Vanesa
2012-12-01
Spironolactone is a drug derived from sterols that exhibits an incomplete oral absorption due to its low water solubility and slow dissolution rate. In this study, formulations of spironolactone with four disintegrants named as croscarmellose sodium, crospovidone, sodium starch glycolate and microcrystalline cellulose II (MCCII) were conducted. The effect of those disintegrants on the tensile strength, disintegration time and dissolution rate of spironolactone-based compacts was evaluated using a factorial design with three categorical factors (filler, lubricant, and disintegrant). The swelling values, water uptake and water sorption studies of these disintegrants all suggested that MCCII compacts disintegrate by a wicking mechanism similar to that of crospovidone, whereas a swelling mechanism was dominant for sodium starch glycolate and croscarmellose sodium. The disintegration time of MCCII and sodium starch glycolate remained unchanged with magnesium stearate. However, this lubricant delayed the disintegration time of crospovidone and croscarmellose sodium. MCCII presented the fastest disintegration time independent of the medium and lubricant employed. The water sorption ratio and swelling values determined sodium starch glycolate followed by croscarmellose sodium as the largest swelling materials, whereas crospovidone and MCCII where the least swelling disintegrants. The swelling property of sodium starch glycolate and croscarmellose sodium was strongly affected by the medium pH. The disintegration time of spironolactone compacts was faster when starch was used as a filler due to the formation of soft compacts. In this case, the type of filler employed rather than the disintegrant had a major effect on the disintegration and dissolution times of spironolactone.
Morita, Yutaka; Tsushima, Yuki; Yasui, Masanobu; Termoz, Ryoji; Ajioka, Junko; Takayama, Kozo
2002-09-01
Many kinds of rapidly disintegrating or oral disintegrating tablets (RDT) have been developed to improve the ease of tablet administration, especially for elderly and pediatric patients. In these cases, knowledge regarding disintegration behavior appears important with respect to the development of such a novel tablet. Ordinary disintegration testing, such as the Japanese Pharmacopoeia (JP) method, faces limitations with respect to the evaluation of rapid disintegration due to strong agitation. Therefore, we have developed a novel apparatus and method to determine the dissolution of the RDT. The novel device consists of a disintegrating bath and CCD camera interfaced with a personal computer equipped with motion capture and image analysis software. A newly developed RDT containing various types of binder was evaluated with this protocol. In this method, disintegration occurs in a mildly agitated medium, which allows differentiation of minor distinctions among RDTs of different formulations. Simultaneously, we were also able to detect qualitative information, i.e., morphological changes in the tablet during disintegration. This method is useful for the evaluation of the disintegration of RDT during pharmaceutical development, and also for quality control during production.
Evaluation of synthesized cross linked polyvinyl alcohol as potential disintegrant.
Patel, Ashok R; Vavia, Pradeep R
2010-01-01
The present study deals with evaluation of crosslinked poly vinyl alcohol (PVA) as a potential disintegrant. Crosslinking of PVA was carried out using glutaraldehyde as a crosslinker, in presence of acidic conditions. The crosslinking reaction was optimized for a) polymer: crosslinker ratio; b) temperature requirement and c) reaction duration. Certain physical parameters of the disintegrant (including sedimentation volume, hydration capacity, specific surface area and bulk and tap density) were determined and compared to the known disintegrants. Characterization was carried out using FT-IR, DSC, XRD, SEM and Photo microscopy studies. The developed excipient was also studied for acute toxicity in rats and found to be safe for oral use. Disintegration property of formed product was compared to known disintegrant (Ac-Di-Sol) and it was found to give better results. The disintegration mechanism of developed disintegrant was postulated based on results obtained from various physical evaluations including: Study of effect of disintegrant concentration, fillers, and hardness, mode of incorporation and method of granulation on disintegration activity. By changing the condition parameters of well known crosslinking reaction of PVA, we obtained a crosslinked product which had excellent disintegration activity, good flow and optimal tableting properties.
Emulsions and rectal formulations containing myrrh essential oil for better patient compliance.
Etman, M; Amin, M; Nada, A H; Shams-Eldin, M; Salama, O
2011-06-01
Myrrh has long been used for its circulatory, disinfectant, analgesic, antirheumatic, antidiabetic, and schistosomicidal properties. Myrrh essential oil (MEO) was extracted from the oleo-gum resin of Commiphora molmol and formulated into emulsions and suppositories to mask/avoid its bitter taste. Three oil-in-water emulsions (E1-E3) were formulated and taste was evaluated by 10 volunteers. Particle size distribution was measured and correlated with excipients and the method of preparation. Physical and chemical stability testing was carried out for the optimum formulation (E2). Seven suppository formulations were investigated (F1-F7). Suppocire AML (F1) and Suppocire CM (F2) were chosen as fatty bases, and polyethylene glycol (PEG) 1500 (F3), PEG 4000 (F4), and a PEG blend (50% PEG 6000 + 30% PEG 1500 + 20% PEG 400) (F5) were chosen as water-soluble bases. A blend of PEG 1500 and Suppocire CM was also used (F7). Camphor (5%) was added to PEG 1500 (F6). Disintegration time, release rate, DSC, fracture points, and weight uniformity were evaluated. The overall average bitterness for formulations E1, E2, and E3 was 6.44, 4.15, and 3.45, respectively. Suppositories containing Suppocire AML had the fastest disintegration time (1.5 min) with dissolution efficiency (DE) of 56.8%. F3 containing PEG 1500 had a fast disintegration time of 2.5 min and maximum DE of 93.5%. The PEG blend had satisfactory release: (DE = 90.9%). A mixed fatty and water-soluble base (F7) had a disintegration time of 5 min and low DE (33.4%). A stable MEO emulsion with acceptable taste was formulated to improve patient acceptance and compliance. F3 suppositories yielded satisfactory results, while formulations containing fatsoluble bases exhibited poor release.
Effect of Tensor Range in Nuclear Two-Body Problems
DOE R&D Accomplishments Database
Feshbach, H.; Schwinger, J.; Harr, J. A.
1949-11-01
The interaction between neutron and proton in the triplet state is investigated, a wide variation in the values of both central and tensor ranges are included; the per cent D state in the deuteron and the effective triplet range have been computed; the results are applied tot he discussion of the magnetic moment of the deuteron, the photoelectric disintegration of the deuteron, and neutron-proton scattering.
Iwao, Yasunori; Tanaka, Shoko; Uchimoto, Takeaki; Noguchi, Shuji; Itai, Shigeru
2013-05-01
With the aim of directly predicting the functionality and mechanism of disintegrants during the disintegration and dissolution of tablets, we investigated an analysis method based on available surface area, which is the surface area of a drug in a formulation in direct contact with the external solvent during dissolution. We evaluated the following disintegrants in this study: sodium starch glycolate (Glycolys), crospovidone (Kollidon CL), carboxymethylcellulose calcium (CMC-Ca), low-substituted hydroxypropylcellulose (L-HPC), and croscarmellose sodium (Ac-Di-Sol). When disintegrant was added to a 50% ethenzamide tablet formulation, an increase in the dissolution rate dependent on disintegrant concentration was observed, according to the type of disintegrant. In addition, the available surface area also differed between disintegrants. For Glycolys, CMC-Ca, and Ac-Di-Sol, a rapid increase in available surface area and a large increase in maximum available surface area (Smax) were observed due to high swellability and wicking, even when the disintegrant concentration was only 1.0%. In contrast, for Kollidon CL and LH-21, a gradual increase in available surface area was observed, depending on the disintegrant concentration. To evaluate the disintegrant ability, Δtmax and ΔSmax were calculated by subtracting peak time (tmax) at 5.0% from that at 1.0% and subtracting Smax at 1.0% from that at 5.0%, respectively, and it was found that the water absorption ratio had strong negative correlations with Δtmax and ΔSmax. Therefore, this study demonstrates that analysis of only available surface area and parameters thereby obtained can directly provide useful information, especially about the disintegration ability of disintegrants. Copyright © 2013 Elsevier B.V. All rights reserved.
Dansereau, Richard J; Crail, Debbie J; Perkins, Alan C
2009-02-01
Bisphosphonates as a class have the potential to cause upper gastrointestinal irritation. Although the generic alendronate sodium tablets are bioequivalent to the branded product, a potential concern is that the pharmaceutical attributes of the various generic formulations my affect the potential for local irritation and tolerability. The in vitro disintegration times were determined using the method described in the US Pharmacopeia 30 (USP 30). The disintegration of three generic alendronate sodium tablets 70 mg available in the United States was compared to that of the branded product. The mean disintegration times of the generic alendronate sodium tablets ranged from 9 to 10 s for the Barr lots to 108 s for the Watson lot. The disintegration time of the branded product (Fosamax) was 53 s. The three Barr lots and one Teva lot had rapid disintegration times which were similar to the disintegration standards (< 30 s) for orally disintegrating tablets. Since there is no established disintegration time for alendronate sodium tablets there can be no assurance that the generic tablets are equivalent to the branded product in terms of esophageal exposure. However, the in vitro disintegration times have not been correlated with in vivo disintegration performance. Copies of generic alendronate sodium tablets are approved based on the results of single-dose bioavailability studies in healthy subjects and this is not considered adequate to establish similar disintegration characteristics.
The influence of granulation on super disintegrant performance.
Zhao, Na; Augsburger, Larry L
2006-02-01
The purpose of this study is to identify the causes of efficiency loss of super disintegrants following granulation or reworking. Two processes, precompression and prewetting, were proposed to simulate the processes during dry and wet granulation, respectively. The disintegration efficiency of the resulting disintegrant granules was tested in model formulations composed of dicalcium phosphate and lactose with the unprocessed disintegrants as controls. No significant difference was shown in the intrinsic swelling and the water uptake abilities of all super disintegrants following dry granulation. However, a significant decrease was observed for both Primojel and Polyplasdone XL10 in the rate of water being absorbed into the tablet matrix following wet granulation, but not for Ac-Di-Sol. United States Pharmacopeia (USP) disintegration testing without disc revealed a significant increase in disintegration time for tablets formulated with dry granulated Primojel and Polyplasdone XL10 and all wet granulated disintegrants. The increase in particle size following granulation appears to be the cause of the loss in disintegration efficiency. In conclusion, Ac-Di-Sol is less affected by both precompression and prewetting. The efficiency of Primojel and Polyplasdone XL10 is highly dependent on their particle size. Descreasing the particle size tends to increase their efficiency. Due to the size increase following granulation, a higher addition level of super disintegrant is required to ensure fast and uniform disintegration of tablets prepared by granulation.
Ahuja, Munish; Kumar, Ashok; Yadav, Parvinder; Singh, Kuldeep
2013-06-01
In the present study Mimosa pudica seed mucilage was isolated, characterized and evaluated as tablet binder and disintegrant. Several properties of mucilage like high swelling index and gelling nature prompted us to explore its applications as disintegrating and binding agent. Disintegrant properties were evaluated by formulating directly compressed hydrochlorothiazide tablets containing 1%-10% (w/w) of seed mucilage as disintegrant and compared with the standard disintegrants. The disintegration time of mucilage containing tablets was found to be in the order of 3%>1%>5%>7.5%>10%. On comparative evaluation with standard disintegrants, it was observed that the order of disintegration of tablets was Ac-Di-Sol
Disintegration of Nannochloropsis sp. cells in an improved turbine bead mill.
Pan, Zhidong; Huang, Ying; Wang, Yanmin; Wu, Zhiwei
2017-12-01
The Nannochloropsis sp. cells in aqueous solution were disintegrated in an improved bead mill with turbine agitator. The disintegration rates of cell samples disrupted under various operating parameters (i.e., circumferential speed, bead size, disintegration time, and cell concentration) were analyzed. An experimental strategy to optimize the parameters affecting the cell disintegration process was proposed. The results show that Nannochloropsis sp. cells can be effectively disintegrated in the turbine stirred bead mill under the optimum condition (i.e., circumferential speed of 2.3m/s, concentration of 15vol.%, disintegration time of 40min and bead size of 0.3-0.4mm). The disintegration mechanism was discussed via the selection and breakage functions from population balance modelling. It is revealed that the impact and compression effects of stirring beads are more effective for the disruption of coarser fraction of cells, and the shear effect dominates the production of finer fractions of disintegrated cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Novel Disintegration Tester for Solid Dosage Forms Enabling Adjustable Hydrodynamics.
Kindgen, Sarah; Rach, Regine; Nawroth, Thomas; Abrahamsson, Bertil; Langguth, Peter
2016-08-01
A modified in vitro disintegration test device was designed that enables the investigation of the influence of hydrodynamic conditions on disintegration of solid oral dosage forms. The device represents an improved derivative of the compendial PhEur/USP disintegration test device. By the application of a computerized numerical control, a variety of physiologically relevant moving velocities and profiles can be applied. With the help of computational fluid dynamics, the hydrodynamic and mechanical forces present in the probe chamber were characterized for a variety of device moving speeds. Furthermore, a proof of concept study aimed at the investigation of the influence of hydrodynamic conditions on disintegration times of immediate release tablets. The experiments demonstrated the relevance of hydrodynamics for tablet disintegration, especially in media simulating the fasted state. Disintegration times increased with decreasing moving velocity. A correlation between experimentally determined disintegration times and computational fluid dynamics predicted shear stress on tablet surface was established. In conclusion, the modified disintegration test device is a valuable tool for biorelevant in vitro disintegration testing of solid oral dosage forms. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Dansereau, Richard J; Crail, Debbie J; Perkins, Alan C
2008-04-01
The aim of this study was to evaluate the in vitro disintegration and dissolution of 26 alendronic acid tablets (70 mg) on the market in Canada, Germany, the Netherlands, and the United Kingdom compared to the branded product (Fosamax). The disintegration and dissolution times were determined using the methods described in the United States Pharmacopeia 30 (USP 30). The disintegration of four orally disintegrating tablets (non-bisphosphonates) and branded film-coated risedronate sodium tablets were included for comparison. The mean disintegration times of the alendronic acid tablets ranged from 14 s for Pharmachemie (Netherlands) to 342 s (5.7 min) for Betapharm (Germany). The mean disintegration time of the branded product tablets ranged from 43 to 78 s. Six of the 26 companies market alendronic acid tablets with very rapid disintegration times which are similar to those of orally disintegrating tablets (non-bisphosphonates). The alendronic acid tablets with very rapid mean disintegration times are as follows: Pharmachemie (Netherlands), 14 s; Novopharm (Canada), 13-24 s; GRY-Pharma (Germany), 21 s; Juta Pharma (Germany), 30 s; APS/Teva (United Kingdom), 26 and 37 s; and Teva (UK), 14-29 s. Since there is no established disintegration time for alendronic acid tablets there can be no assurance that the copy tablets are equivalent to the branded product in terms of esophageal drug exposure. However, the in vitro disintegration times have not been correlated with in vivo disintegration and performance. The dissolution of all the bisphosphonate tablets was rapid with greater than 80% dissolved in 15 min and all products conformed to the USP 30 specification. The dissolution of all alendronic acid tablets was rapid and complete and conformed to the established USP 30 specifications which should ensure adequate drug absorption from the copy products. However, copies of alendronic acid tablets are approved based on the results of single-dose bioavailability studies in healthy subjects and this is not adequate to establish similar disintegration characteristics.
Walker, A D; Adachi, J D
2011-09-01
The aim of this study was to evaluate the in vitro disintegration of the five newly available Canadian generic risedronate 35 mg tablets compared to the innovator (branded) product, ACTONEL * *ACTONEL is a registered trade name of Warner Chilcott Company, LLC. (risedronate sodium) 35 mg. Tablets were inspected for colour and appearance. Disintegration times were determined using United States Pharmacopeia 33 (USP33-NF 28) methods. Disintegration onset time was also evaluated. The mean disintegration onset time values for the generic risedronate 35 mg tablets ranged from 2 to 29 seconds, and the mean disintegration completion times ranged from 81 to 260 seconds. The mean disintegration onset and completion time values for the ACTONEL 35 mg tablets were 23 and 43 seconds respectively. Four out of the five generic tablets tested had shorter disintegration onset times than the branded product; two of the generic tablet products had very fast disintegration onset times i.e. 2-3 seconds. Disintegration completion time for all five generic products tested was longer than that observed for the branded product; two generic products had disintegration completion time values five to six times longer than the branded product. Differences in the in vitro disintegration times were observed between the generic risedronate 35 mg tablets commercially available in Canada and the branded product, ACTONEL. The rapid disintegration onset times of two generic products may be important as this could increase the possibility of drug exposure in both the mouth and the esophagus during swallowing, resulting in unwanted localized irritation. However, it should be noted that an in vitro/in vivo correlation has not been established. Until such studies are completed it may be important to be aware of such in vitro disintegration differences when evaluating patients with newly presenting upper gastrointestinal complaints upon being switched from the branded product to generic formulations.
El-Nabarawi, Mohamed A.; Tayel, Saadia A.; Soliman, Nadia A.; Abo Enin, Hadel A.
2013-01-01
Objective: A stress induced rise in the blood pressure. Some believe that patients with hypertension are characterized by a generalized state of increased anxiety. Aim: The purpose of this study is to prepare a fixed dose bi therapy using bisoprolol hemifumarate (BH) as antihypertensive drug and buspirone hydrochloride (BuHCl) as anxiolytic drug, which can be used to treat both diseases concomitantly. Using sublingual tablets is hopeful to improve the BuHCl poor oral bioavailability and to facilitate administration to patients experiencing problems with swallowing. Materials and Methods: A total of 5mg BH and 10mg BuHCl were selected based on compatibility study. A 3×22 full factorial design was adopted for the optimization of the tablets prepared by direct compression method. The effects of the filler type, the binder molecular weight, and the binder type were studied. The prepared formulae were evaluated according to their physical characters as hardness, friability, disintegration time (new modified method and in vivo disintegration time) and wetting properties. In vitro drugs dissolute, permeation through the buccal mucosa and the effect of storage were analyzed by a new valid high pressure liquid chromatography (HPLC) method. Bioavailability study of the selected formula study was carried out and followed by the clinical. Results: The optimized tablet formulation showed accepted average weight, hardness, wetting time, friability, content uniformity, disintegration time (less than 3 min). Maximum drug release could be achieved with in 10 min. In addition enhancing drug permeation through the buccal mucosa and, the maximum concentration of the drug that reached the blood was in the first 10 min which means a rapid onset of action and improved the extent of both drug's absorption. Conclusion: The results revealed that sublingual (F6) tablets containing both drugs would maintain rapid onset of action, and increase bioavailability. BuHCl with BH can be attributed to the marked decline in DBP and SBP. That led to a reduction in the MAP. PMID:24082695
el-Arini, Silvia Kocova; Clas, Sophie-Dorothée
2002-01-01
The in vitro disintegration behavior of fast dissolving systems manufactured by the main commercialized technologies was studied using the texture analyzer (TA) instrument. Quantitative parameters were employed to characterize the effect of the major test variables on the disintegration profiles. The average disintegration profiles of the products were compared using the test conditions that minimized these effects and at the same time mimicked the in vivo situation in the patient's mouth. The differences in the disintegration mechanisms of the fast dissolving systems were reflected in the shape of their disintegration profiles and in the parameters derived from the profiles. The differences were explained in relation to the technology and/or formulation characteristics involved in the manufacture of each product. The in vitro disintegration times obtained under the simulated in vivo conditions were correlated with the reported in vivo disintegration times.
Theory of positive disintegration as a model of adolescent development.
Laycraft, Krystyna
2011-01-01
This article introduces a conceptual model of the adolescent development based on the theory of positive disintegration combined with theory of self-organization. Dabrowski's theory of positive disintegration, which was created almost a half century ago, still attracts psychologists' and educators' attention, and is extensively applied into studies of gifted and talented people. The positive disintegration is the mental development described by the process of transition from lower to higher levels of mental life and stimulated by tension, inner conflict, and anxiety. This process can be modeled by a sequence of patterns of organization (attractors) as a developmental potential (a control parameter) changes. Three levels of disintegration (unilevel disintegration, spontaneous multilevel disintegration, and organized multilevel disintegration) are analyzed in detail and it is proposed that they represent behaviour of early, middle and late periods of adolescence. In the discussion, recent research on the adolescent brain development is included.
Guide for Visual Inspection of Structural Concrete Building Components.
1991-07-01
Formalin Aqueous solution of formaldehyde disintegrates concrete Fruit juices Most fruit juices have little, if any, effect as tartaric acid and citric ...corrected. Cracks in concrete can be either passive or active. Passive cracks can be caused by construction ei-ors, material shrinkage, variations in...commonly in heavily trafficked areas. Too much water in the mix causes excessive bleeding, which brings fines and cements to the surface, weakening the
Hydrophilic excipients modulate the time lag of time-controlled disintegrating press-coated tablets.
Lin, Shan-Yang; Li, Mei-Jane; Lin, Kung-Hsu
2004-08-16
An oral press-coated tablet was developed by means of direct compression to achieve the time-controlled disintegrating or rupturing function with a distinct predetermined lag time. This press-coated tablet containing sodium diclofenac in the inner core was formulated with an outer shell by different weight ratios of hydrophobic polymer of micronized ethylcellulose (EC) powder and hydrophilic excipients such as spray-dried lactose (SDL) or hydroxypropyl methylcellulose (HPMC). The effect of the formulation of an outer shell comprising both hydrophobic polymer and hydrophilic excipients on the time lag of drug release was investigated. The release profile of the press-coated tablet exhibited a time period without drug release (time lag) followed by a rapid and complete release phase, in which the outer shell ruptured or broke into 2 halves. The lag phase was markedly dependent on the weight ratios of EC/SDL or EC/HPMC in the outer shell. Different time lags of the press-coated tablets from 1.0 to 16.3 hours could be modulated by changing the type and amount of the excipients. A semilogarithmic plot of the time lag of the tablet against the weight ratios of EC/SDL or EC/HPMC in the outer shell demonstrated a good linear relationship, with r = 0.976 and r = 0.982, respectively. The predetermined time lag prior to the drug release from a press-coated tablet prepared by using a micronized EC as a retarding coating shell can be adequately scheduled with the addition of hydrophilic excipients according to the time or site requirements.
Zhang, Da-wei; Zhao, Ming-ming; He, Hong-qiu; Guo, Shun-xing
2013-09-15
HIV-1 integrase, an essential enzyme for retroviral replication, is a validated target for anti-HIV therapy development. The catalytic core domain of integrase (IN-CCD) is capable of catalyzing disintegration reaction. In this work, a hairpin-shaped disintegration substrate was designed and validated by enzyme-linked immunosorbent assay; a molecular beacon-based assay was developed for disintegration reaction of IN-CCD. Results showed that the disintegration substrate could be recognized and catalyzed by IN-CCD, and the disintegration reaction can be monitored according to the increase of fluorescent signal. The assay can be applied to real-time detection of disintegration with advantages of simplicity, high sensitivity, and excellent specificity. Copyright © 2013 Elsevier Inc. All rights reserved.
Optimization of thermo-alkaline disintegration of sewage sludge for enhanced biogas yield.
Shehu, Muhammad Sani; Abdul Manan, Zainuddin; Alwi, Sharifah Rafidah Wan
2012-06-01
Optimization of thermo-alkaline disintegration of sewage sludge for enhanced biogas yield was carried out using response surface methodology (RSM) and Box-Behnken design of experiment. The individual linear and quadratic effects as well as the interactive effects of temperature, NaOH concentration and time on the degree of disintegration were investigated. The optimum degree of disintegration achieved was 61.45% at 88.50 °C, 2.29 M NaOH (24.23%w/w total solids) and 21 min retention time. Linear and quadratic effects of temperature are most significant in affecting the degree of disintegration. The coefficient of determination (R(2)) of 99.5% confirms that the model used in predicting the degree of disintegration process has a very good fitness with the experimental variables. The disintegrated sludge increased the biogas yield by 36%v/v compared to non-disintegrated sludge. The RSM with Box-Behnken design is an effective tool in predicting the optimum degree of disintegration of sewage sludge for increased biogas yield. Copyright © 2012 Elsevier Ltd. All rights reserved.
Berardi, Alberto; Bisharat, Lorina; Blaibleh, Anaheed; Pavoni, Lucia; Cespi, Marco
2018-06-20
Tablets disintegration is often the result of a size expansion of the tablets. In this study, we quantified the extent and direction of size expansion of tablets during disintegration, using readily available techniques, i.e. a digital camera and a public domain image analysis software. After validating the method, the influence of disintegrants concentration and diluents type on kinetics and mechanisms of disintegration were studied. Tablets containing diluent, disintegrant (sodium starch glycolate-SSG, crospovidone-PVPP or croscarmellose sodium-CCS) and lubricant were prepared by direct compression. Projected area and aspect ratio of the tablets were monitored using image analysis techniques. The developed method could describe the kinetics and mechanisms of disintegration qualitatively and quantitatively. SSG and PVPP acted purely by swelling and shape recovery mechanisms. Instead, CCS worked by a combination of both mechanisms, the extent of which changed depending on its concentration and the diluent type. We anticipate that the method described here could provide a framework for the routine screening of tablets disintegration using readily available equipment. Copyright © 2018. Published by Elsevier Inc.
The effect of glicerol and sorbitol plasticizers toward disintegration time of phyto-capsules
NASA Astrophysics Data System (ADS)
Pudjiastuti, Pratiwi; Hendradi, Esti; Wafiroh, Siti; Harsini, Muji; Darmokoesoemo, Handoko
2016-03-01
The aim of research is determining the effect of glycerol and sorbitol toward the disintegration time of phyto-capsules, originated capsules from plant polysaccharides. Phyto-capsules were made from polysaccharides and 0.5% (v/v) of glycerol and sorbitol of each. The seven capsules of each were determined the disintegration time using Erweka disintegrator. The mean of disintegration time of phyto-capsules without plasticizers, with glycerol and sorbitol were 25'30"; 45'15" and 35'30" respectively. The color and colorless gelatin capsules showed the mean of disintegration time 7'30" and 2'35" respectively.
A New Test Unit for Disintegration End-Point Determination of Orodispersible Films.
Low, Ariana; Kok, Si Ling; Khong, Yuet Mei; Chan, Sui Yung; Gokhale, Rajeev
2015-11-01
No standard time or pharmacopoeia disintegration test method for orodispersible films (ODFs) exists. The USP disintegration test for tablets and capsules poses significant challenges for end-point determination when used for ODFs. We tested a newly developed disintegration test unit (DTU) against the USP disintegration test. The DTU is an accessory to the USP disintegration apparatus. It holds the ODF in a horizontal position, allowing top-view of the ODF during testing. A Gauge R&R study was conducted to assign relative contributions of the total variability from the operator, sample or the experimental set-up. Precision was compared using commercial ODF products in different media. Agreement between the two measurement methods was analysed. The DTU showed improved repeatability and reproducibility compared to the USP disintegration system with tighter standard deviations regardless of operator or medium. There is good agreement between the two methods, with the USP disintegration test giving generally longer disintegration times possibly due to difficulty in end-point determination. The DTU provided clear end-point determination and is suitable for quality control of ODFs during product developmental stage or manufacturing. This may facilitate the development of a standardized methodology for disintegration time determination of ODFs. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Brniak, Witold; Jachowicz, Renata; Krupa, Anna; Skorka, Tomasz; Niwinski, Krzysztof
2013-01-01
The compendial method of evaluation of orodispersible tablets (ODT) is the same disintegration test as for conventional tablets. Since it does not reflect the disintegration process in the oral cavity, alternative methods are proposed that are more related to in vivo conditions, e.g. modified dissolution paddle apparatus, texture analyzer, rotating shaft apparatus, CCD camera application, or wetting time and water absorption ratio measurement. In this study, three different co-processed excipients for direct compression of orally disintegrating tablets were compared (Ludiflash, Pharmaburst, F-Melt). The properties of the prepared tablets such as tensile strength, friability, wetting time and water absorption ratio were evaluated. Disintegration time was measured using the pharmacopoeial method and the novel apparatus constructed by the authors. The apparatus was based on the idea of Narazaki et al., however it has been modified. Magnetic resonance imaging (MRI) was applied for the analysis of the disintegration mechanism of prepared tablets. The research has shown the significant effect of excipients, compression force, temperature, volume and kind of medium on the disintegration process. The novel apparatus features better correlation of disintegration time with in vivo results (R(2) = 0.9999) than the compendial method (R(2) = 0.5788), and presents additional information on the disintegration process, e.g. swelling properties.
Mittapalli, R K; Qhattal, H S Sha; Lockman, P R; Yamsani, M R
2010-11-01
The main objective of the present study was to develop an orally disintegrating tablet formulation of domperidone and to study the functionality differences of superdisintegrants each obtained from two different sources on the tablet properties. Domperidone tablets were formulated with different superdisintegrants by direct compression. The effect of the type of superdisintegrant, its concentration and source was studied by measuring the in-vitro disintegration time, wetting time, water absorption ratios, drug release by dissolution and in-vivo oral disintegration time. Tablets prepared with crospovidone had lower disintegration times than tablets prepared from sodium starchglycolate and croscarmellose sodium. Formulations prepared with Polyplasdone XL, Ac-Di-Sol, and Explotab (D series) were better than formulations prepared with superdisintegrants obtained from other sources (DL series) which had longer disintegration times and lower water uptake ratios. The in-vivo disintegration time of formulation D-106 containing polyplasdone XL was significantly lower than that of the marketed formulation Domel-MT. The results from this study suggest that disintegration of orally disintegrating tablets is dependent on the nature of superdisintegrant, concentration in the formulation and its source. Even though a superdisintegrant meets USP standards there can be a variance among manufacturers in terms of performance. This is not only limited to in-vitro studies but carries over to disintegration times in the human population.
Zaheer, Kamran; Langguth, Peter
2018-03-01
Food induced viscosity can delay disintegration and subsequent release of API from solid dosage form which may lead to severe reduction in the bioavailability of BCS type III compounds. Formulations of such tablets need to be optimized in view of this postprandial viscosity factor. In this study, three super disintegrants, croscarmellose sodium (CCS), cross-linked polyvinylpolypyrrolidone (CPD), and sodium starch glycolate (SSG) were assessed for their efficiency under simulated fed state. Tablets containing these disintegrants were compressed at 10 and 30 KN, while taking lactose as a soluble filler. In addition to other compendial tests, disintegration force of these formulations was measured by texture analysis. Comparison of parameters derived from force - time curves revealed a direct relation of maximum disintegration force (F max ) and disintegration force development rate (DFDR) with compressional force in fasted state, whereas an inverse relationship of F max and DFDR with compressional force was observed in fed state. The gelling tendency of disintegrants influenced the rate of release of API in simulated fed and fasted states when compressional force was changed. These observations recommend the evaluation of formulations in simulated fed state, in the development stage, with an objective of minimizing the negative impact of food induced viscosity on disintegration. Use of disintegrants that act without gelling or can counteract the effect of gelling is recommended for tablet formulations with reduced disintegration time (DT) and mean dissolution time (MDT) in fed state, respectively.
El-Setouhy, Doaa Ahmed; Basalious, Emad B; Abdelmalak, Nevine Shawky
2015-08-01
Formulation of sublingual tablets of drugs with limited permeability poses a great challenge due to their poor absorption. In this study, bioenhanced sublingual tablets (BESTs) of zolmitriptan were prepared using novel surfactant binder (Pluronic® p123/Syloid® mixture) to enhance tablet disintegration and dissolution. Microencapsulated polysorbate 80 (Sepitrap™ 80) were included in the composition of BESTs to enhance the drug transport through the sublingual mucosa. Tablets were evaluated for in vitro/in vivo disintegration, in vitro dissolution and ex vivo permeation. Solubility studies confirmed that phosphate buffer; pH 6.8 could be used as dissolution medium for sublingual tablets of zolmitriptan. BEST-5 containing Pluronic® p123/Syloid® mixture and Sepitrap™ 80 exhibited the shortest in vitro/in vivo disintegration times (<30s), the highest dissolution at early time dissolution points and the highest enhancement of drug transport through mucosal membrane. The in vivo pharmacokinetic study using human volunteers showed a significant increase in the rate and extent of sublingual absorption with less variations of Tmax after sublingual administration of both BEST-5 and Zomig-ZMT ODT. Our results proposed that Pluronic® p123/Syloid® mixture and Sepitrap™ 80 could be promising for the development of sublingual tablets for rapid onset of action of drugs with limited permeability. Copyright © 2015 Elsevier B.V. All rights reserved.
Eren, Beytullah; Karadagli, Fatih
2012-03-06
Physical disintegration of representative toilet papers was investigated in this study to assess their disintegration potential in sewer systems. Characterization of toilet papers from different parts of the world indicated two main categories as premium and average quality. Physical disintegration experiments were conducted with representative products from each category according to standard protocols with improvements. The experimental results were simulated by mathematical model to estimate best-fit values of disintegration rate coefficients and fractional distribution ratios. Our results from mathematical modeling and experimental work show that premium products release more amounts of small fibers and disintegrate more slowly than average ones. Comparison of the toilet papers with the tampon applicators studied previously indicates that premium quality toilet papers present significant potential to persist in sewer pipes. Comparison of turbulence level in our experimental setup with those of partial flow conditions in sewer pipes indicates that drains and small sewer pipes are critical sections where disintegration of toilet papers will be limited. For improvement, requirements for minimum pipe slopes may be increased to sustain transport and disintegration of flushable products in small pipes. In parallel, toilet papers can be improved to disintegrate rapidly in sewer systems, while they meet consumer expectations.
Otsuka, Makoto; Yamanaka, Azusa; Uchino, Tomohiro; Otsuka, Kuniko; Sadamoto, Kiyomi; Ohshima, Hiroyuki
2012-01-01
To measure the rapid disintegration of Oral Disintegrating Tablets (ODT), a new test (XCT) was developed using X-ray computing tomography (X-ray CT). Placebo ODT, rapid disintegration candy (RDC) and Gaster®-D-Tablets (GAS) were used as model samples. All these ODTs were used to measure oral disintegration time (DT) in distilled water at 37±2°C by XCT. DTs were affected by the width of mesh screens, and degree to which the tablet holder vibrated from air bubbles. An in-vivo tablet disintegration test was performed for RDC using 11 volunteers. DT by the in-vivo method was significantly longer than that using the conventional tester. The experimental conditions for XCT such as the width of the mesh screen and degree of vibration were adjusted to be consistent with human DT values. Since DTs by the XCT method were almost the same as the human data, this method was able to quantitatively evaluate the rapid disintegration of ODT under the same conditions as inside the oral cavity. The DTs of four commercially available ODTs were comparatively evaluated by the XCT method, conventional tablet disintegration test and in-vivo method.
Low, Ariana; Kok, Si Ling; Khong, Yuetmei; Chan, Sui Yung; Gokhale, Rajeev
2015-11-01
No standard time or pharmacopoeia disintegration test method for orodispersible films (ODFs) exists. The USP disintegration test for tablets and capsules poses significant challenges for end-point determination when used for ODFs. We tested a newly developed disintegration test unit (DTU) against the USP disintegration test. The DTU is an accessory to the USP disintegration apparatus. It holds the ODF in a horizontal position, allowing top-view of the ODF during testing. A Gauge R&R study was conducted to assign relative contributions of the total variability from the operator, sample or the experimental set-up. Precision was compared using commercial ODF products in different media. Agreement between the two measurement methods was analysed. The DTU showed improved repeatability and reproducibility compared to the USP disintegration system with tighter standard deviations regardless of operator or medium. There is good agreement between the two methods, with the USP disintegration test giving generally longer disintegration times possibly due to difficulty in end-point determination. The DTU provided clear end-point determination and is suitable for quality control of ODFs during product developmental stage or manufacturing. This may facilitate the development of a standardized methodology for disintegration time determination of ODFs. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3893-3903, 2015. Copyright © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Oral Solid Dosage Form Disintegration Testing - The Forgotten Test.
Al-Gousous, Jozef; Langguth, Peter
2015-09-01
Since its inception in the 1930s, disintegration testing has become an important quality control (QC) test in pharmaceutical industry, and disintegration test procedures for various dosage forms have been described by the different pharmacopoeias, with harmonization among them still not quite complete. However, because of the fact that complete disintegration does not necessarily imply complete dissolution, much more research has been focused on dissolution rather than on disintegration testing. Nevertheless, owing to its simplicity, disintegration testing seems to be an attractive replacement to dissolution testing as recognized by the International Conference on Harmonization guidelines, in some cases. Therefore, with proper research being carried out to overcome the associated challenges, the full potential of disintegration testing could be tapped saving considerable efforts allocated to QC testing and quality assurance. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Investigation of the performance of the disintegration test for dietary supplements.
Almukainzi, May; Salehi, Mahnor; Araci Bou-Chacra, Nadia; Löbenberg, Raimar
2010-12-01
The aim of this study was to investigate how beaker size, basket assembly, use of disk, and immersion medium impact the disintegration time of dietary supplements. The disintegration times were determined for five tablet and two capsule products. A two-station disintegration tester was used with Apparatus A or Apparatus B as described in the United States Pharmacopeia (USP) chapters, <701> and <2040>. Two beakers complying with the harmonized specifications were used, one with a volume of 1,000 mL and one with a 1,500-mL volume. The disintegration data were analyzed using ANOVA for the following factors: beaker size, equipment (App A and B) and condition (with/without disk). Two tablet products were not sensitive to any changes in the test conditions or equipment configurations. One product was only partially sensitive to the test conditions. The other products showed impact on the disintegration time for all test conditions. The results revealed that these tablet products might pass or fail current USP disintegration requirements depending on the equipment configuration. Similar results were obtained for the two investigated capsule formulations. One product might fail current USP disintegration requirements if the large beaker was used, but might pass the disintegration requirements when the small beaker was used. Hydroxy propyl methyl cellulose capsules were mostly influenced if sodium instead of a potassium buffer was used as the immersion medium. The results demonstrate that the current harmonized ICH specifications for the disintegration test are insufficient to make the disintegration test into reliable test for dietary supplements.
Hobbs, David; Karagianis, Jamie; Treuer, Tamas; Raskin, Joel
2013-12-01
Orodispersible tablets (ODTs) are tablet or wafer forms of medication that disintegrate in the mouth, aided only by saliva. ODTs rely on different fast dissolve/disintegration manufacturing technologies. Disintegration time differences for several olanzapine ODT forms were investigated. Risperdal M-Tab(®) was included as a non-olanzapine ODT comparator. Eleven olanzapine ODT examples and orodispersible risperidone strengths were evaluated in vitro for formulation composition, manufacturing method, disintegration and dissolution characteristics, and formulation differences in comparison with freeze dried Zydis(®) ODT. Automated dissolution test equipment captured ODT dissolution rates by measuring real-time release of active ingredient. A high-speed video camera was used to capture tablet disintegration times in warm simulated saliva. The main outcome measure was the disintegration and dissolution characteristics of the ODT formulations. The ODT manufacturing method was associated with time to disintegrate; the fastest were freeze dried tablets, followed by soft compressed tablets and then hard/dense tablets. Olanzapine Zydis(®) was the only ODT that completely disintegrated in less than 4 s for all strengths (5, 10, 15, and 20 mg), followed by 5-mg Prolanz FAST(®) (12 s) and then risperidone ODT 4 mg (40 s). Reasons for slow dissolution of the olanzapine generics may include low product potency, excipient binding, excipient solubility, active ingredient particle size and incomplete disintegration. Differences in the formulation and manufacturing process of olanzapine ODTs appear to have a strong influence on the disintegration time of the active compound; differences that may potentially impact their use in clinical practice.
NASA Astrophysics Data System (ADS)
Hochberger, Juergen; Bredt, Marion; Mueller, Gudrun; Hahn, Eckhart G.; Ell, Christian
1993-05-01
In the following study three different pulsed laser lithotripsy systems were compared for the fine fragmentation of identical sets of natural and synthetic gallstones `in vitro.' Using a pulsed coumarin dye laser (504 nm), a pulsed rhodamine 6G dye laser (595 nm), and a pulsed Alexandrite laser (755 nm) a total of 184 concrements of known chemical composition, size, and weight were disintegrated to a fragment size of
Mild disintegration of the green microalgae Chlorella vulgaris using bead milling.
Postma, P R; Miron, T L; Olivieri, G; Barbosa, M J; Wijffels, R H; Eppink, M H M
2015-05-01
In this work, the mild disintegration of the microalgae Chlorella vulgaris for the release of intracellular products has been studied. By means of bead milling the microalgae suspensions were successfully disintegrated at different biomass concentrations (25-145 gDW kg(-1)) over a range of agitator speeds (6-12 m s(-1)). In all cases over 97% of cell disintegration was achieved resulting in a release of water soluble proteins. A clear optimum rate of disintegration and protein release was observed at an agitator speed of 9-10 m s(-1) regardless of the biomass concentration. Selective extraction of water soluble proteins was observed as proteins released sooner than cell disintegration took place. Proteins could be released at 85% lower energy input than for cell disintegration resulting in specific energy consumptions well below 2.5 kWh kgDW(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.
Effect of turbulence on the disintegration rate of flushable consumer products.
Karadagli, Fatih; Rittmann, Bruce E; McAvoy, Drew C; Richardson, John E
2012-05-01
A previously developed model for the physical disintegration of flushable consumer products is expanded by investigating the effects of turbulence on the rate of physical disintegration. Disintegration experiments were conducted with cardboard tampon applicators at 100, 150, and 200 rotations per minute, corresponding to Reynold's numbers of 25,900, 39,400, and 52,900, respectively, which were estimated by using computational fluid dynamics modeling. The experiments were simulated with the disintegration model to obtain best-fit values of the kinetic and distribution parameters. Computed rate coefficients (ki) for all solid sizes (i.e., greater than 8, 4 to 8, 2 to 4, and 1 to 2 mm) increased strongly with Reynold's number or rotational speed. Thus, turbulence strongly affected the disintegration rate of flushable products, and the relationship of the ki values to Reynold's number can be included in mathematical representations of physical disintegration.
Optimization of formulation and processing of Moringa oleifera and spirulina complex tablets.
Zheng, Yi; Zhu, Fan; Lin, Dan; Wu, Jun; Zhou, Yichao; Mark, Bohn
2017-01-01
Objective: To prepare a more comprehensive nutrition, more balanced proportion of natural nutritional supplement tablets with Moringa oleifera leaves and spirulina the two nutrients which have complementary natural food ingredients. Method: On the basis of research M. oleifera leaves with spirulina nutrient composition was determined on M. oleifera leaves and spirulina ratio of raw materials, and the choice of microcrystalline cellulose, sodium salt of caboxy methyl cellulose(CMC),magnesium stearate excipient, through single factor and orthogonal experiment, selecting the best formula tablets prepared by powder direct compression technology, for preparation of M. oleifera and spirulina complex tablets. Results: The best ratio of raw material for the M. oleifera leaves powder: spirulina powder was 7:3, the best raw materials for the tablet formulation was 88.5%, 8.0% microcrystalline cellulose, CMC 2.0%, stearin magnesium 1.5%, the optimum parameters for the raw material crushing 200-300 mesh particle size, moisture content of 7%, tableting pressure 40 kN. Conclusion: Through formulation and process optimization, we can prepare more comprehensive and balanced nutrition M. oleifera and spirulina complex tablets, its sheet-shaped appearance, piece weight variation, hardness, friability, disintegration and other indicators have reached the appropriate quality requirements.
Zielewicz, Ewa; Tytła, Malwina
2015-01-01
The ultrasonic disintegration of excess sludge is placed after the mechanical thickening but before the digestion tanks in order to intensify the process of sludge stabilization. The effects obtained directly after ultrasonic disintegration depend on many factors and can be grouped in two main categories: factors affecting the quality of sludge and those associated with the construction of disintegrators and its parameters. The ultrasonic disintegration research was carried out using three types of structural solutions of disintegrators. Two of them, that is, WK-2000 ultrasonic generator (P = 400 W) working with a thin sonotrode and WK-2010 ultrasonic generator (P = 100-1000 W) working with a new type construction emitter lens sonotrode, were compared with the influence of a washer with a flat emitter. The investigations have shown that in the same sludge, using the same value of volumetric energy, the resulting effect depends on the construction of the ultrasonic disintegrator, that is, design of the head and the ratio between the field of the emitter and the field of the chamber in sonicated medium.
Enhancement of ultrasonic disintegration of sewage sludge by aeration.
Zhao, He; Zhang, Panyue; Zhang, Guangming; Cheng, Rong
2016-04-01
Sonication is an effective way for sludge disintegration, which can significantly improve the efficiency of anaerobic digestion to reduce and recycle use of sludge. But high energy consumption limits the wide application of sonication. In order to improve ultrasonic sludge disintegration efficiency and reduce energy consumption, aeration was introduced. Results showed that sludge disintegration efficiency was improved significantly by combining aeration with ultrasound. The aeration flow rate, gas bubble size, ultrasonic density and aeration timing had impacts on sludge disintegration efficiency. Aeration that used in later stage of ultrasonic irradiation with low aeration flow rate, small gas bubbles significantly improved ultrasonic disintegration sludge efficiency. At the optimal conditions of 0.4 W/mL ultrasonic irradiation density, 30 mL/min of aeration flow rate, 5 min of aeration in later stage and small gas bubbles, ultrasonic sludge disintegration efficiency was increased by 45% and one third of ultrasonic energy was saved. This approach will greatly benefit the application of ultrasonic sludge disintegration and strongly promote the treatment and recycle of wastewater sludge. Copyright © 2015. Published by Elsevier B.V.
Disintegration performance of renal multivitamin supplements.
Stamatakis, M K; Meyer-Stout, P J
1999-04-01
Vitamins have traditionally been regulated as dietary supplements and have not been required to meet the same rigorous product quality performance standards as drug products. Impaired product performance, such as failure to disintegrate and/or dissolve in the gastrointestinal tract, could limit the absorption of vitamins. Furthermore, patients with renal disease have been reported to experience a wide range in gastrointestinal pH, which could influence a product's performance. The purpose of this study was to determine the effect of pH on the in vitro disintegration of renal multivitamin supplements. Products were studied using the United States Pharmacopeial Convention standard disintegration apparatus. Products were tested in simulated gastric fluid, neutral fluid, and intestinal fluid. Product failure was defined as two or more individual tablets or capsules failing to disintegrate completely within compendial limits. Of 11 products tested, 4 products failed the disintegration study test in all pH conditions. Sixty-four percent of the products showed statistically significant differences in disintegration time (DT) based on pH. As pH increased, time to disintegration increased. The DT of commercially available renal multivitamin supplements was highly variable. Poorest product performance was shown in simulated intestinal fluid. The pH significantly affected in vitro disintegration in greater than half the products tested. How this affects dissolution and in vivo performance has yet to be studied.
Szakonyi, G; Zelkó, R
2013-05-20
One of the promising approaches to predict in vivo disintegration time of orally disintegrating tablets (ODT) is the use of texture analyzer instrument. Once the method is able to provide good in vitro in vivo correlation (IVIVC) in the case of different tablets, it might be able to predict the oral disintegration time of similar products. However, there are many tablet parameters that influence the in vivo and the in vitro disintegration time of ODT products. Therefore, the measured in vitro and in vivo disintegration times can occasionally differ, even if they coincide in most cases of the investigated products and the in vivo disintegration times may also change if the aimed patient group is suffering from a special illness. If the method is no longer able to provide good IVIVC, then the modification of a single instrumental parameter may not be successful and the in vitro method must be re-set in a complex manner in order to provide satisfactory results. In the present experiment, an optimization process was developed based on texture analysis measurements using five different tablets in order to predict their in vivo disintegration times, and the optimized texture analysis method was evaluated using independent tablets. Copyright © 2013 Elsevier B.V. All rights reserved.
Consumer vinegar test for determining calcium disintegration.
Mason, N A; Patel, J D; Dressman, J B; Shimp, L A
1992-09-01
A consumer test and standardized methods were compared for measuring the disintegration of calcium tablets, and the disintegration results were compared with results of dissolution testing to determine the ability of the consumer test of disintegration to predict bioavailability of calcium. Disintegration of 17 calcium supplement products, in tablet form, was studied in Simulated Gastric Fluid Test Solution, USP, without pepsin (GF), in distilled water, and in white distilled vinegar. For disintegration testing with GF and with distilled water, six tablets of each product were placed in an apparatus and immersed in the solution at 37 degrees C for 60 minutes. Six tablets of each product were tested in 200 mL of vinegar at room temperature for 30 minutes. Disintegration was determined by visual observation. Seven products were tested for dissolution in GF or water. Three samples of each product were tested at intervals over 120 minutes for calcium content. Results of testing with an ion-selective electrode were converted to milligrams and compared with the calcium content of the tablets (as claimed on the package label). The mean disintegration times of various calcium products in vinegar ranged from 1.8 to greater than 30 minutes. The mean time in distilled water and GF ranged from 1.6 to greater than 60 minutes and from 1.0 to greater than 60 minutes, respectively. Results were in agreement in 87% to 93% of cases between the consumer vinegar test and the standardized disintegration test methods, a significant correlation. No correlation was found between disintegration time and the extent of dissolution. The disintegration and dissolution of commercially available calcium tablets was highly variable.(ABSTRACT TRUNCATED AT 250 WORDS)
Yoon, Seong-Hoon; Lee, Sangho
2005-09-01
Mathematical models were developed to elucidate the relationships among process control parameters and the effect of these parameters on the performance of anoxic/oxic biological wastewater processes combined with sludge disintegrators (A/O-SD). The model equations were also applied for analyses of activated sludge processes hybrid with sludge disintegrators (AS-SD). Solubilization ratio of sludge in the sludge disintegrator, alpha, hardly affected sludge reduction efficiencies if the biomass was completely destructed to smaller particulates. On the other hand, conversion efficiency of non-biodegradable particulates to biodegradable particulates, beta, significantly affected sludge reduction efficiencies because beta was directly related to the accumulation of non-biodegradable particulates in bioreactors. When 30% of sludge in the oxic tank was disintegrated everyday and beta was 0.5, sludge reduction was expected to be 78% and 69% for the A/O-SD and AS-SD processes, respectively. Under this condition, the sludge disintegration number (SDN), which is the amount of sludge disintegrated divided by the reduced sludge, was calculated to be around 4. Due to the sludge disintegration, live biomass concentration decreased while other non-biodegradable particulates concentration increased. As a consequence, the real F/M ratio was expected to be much higher than the apparent F/M. The effluent COD was maintained almost constant for the range of sludge disintegration rate considered in this study. Nitrogen removal efficiencies of the A/O-SD process was hardly affected by the sludge disintegration until daily sludge disintegration reaches 40% of sludge in the oxic tank. Above this level of sludge disintegration, autotrophic biomass concentration decreases overly and TKN in the effluent increases abruptly in both the A/O-SD and AS-SD processes. Overall, the trends of sludge reduction and effluent quality according to operation parameters matched well with experimental results found in literatures.
Arafat, Basel; Wojsz, Magdalena; Isreb, Abdullah; Forbes, Robert T; Isreb, Mohammad; Ahmed, Waqar; Arafat, Tawfiq; Alhnan, Mohamed A
2018-06-15
Fused deposition modelling (FDM) 3D printing has shown the most immediate potential for on-demand dose personalisation to suit particular patient's needs. However, FDM 3D printing often involves employing a relatively large molecular weight thermoplastic polymer and results in extended release pattern. It is therefore essential to fast-track drug release from the 3D printed objects. This work employed an innovative design approach of tablets with unique built-in gaps (Gaplets) with the aim of accelerating drug release. The novel tablet design is composed of 9 repeating units (blocks) connected with 3 bridges to allow the generation of 8 gaps. The impact of size of the block, the number of bridges and the spacing between different blocks was investigated. Increasing the inter-block space reduced mechanical resistance of the unit, however, tablets continued to meet pharmacopeial standards for friability. Upon introduction into gastric medium, the 1 mm spaces gaplet broke into mini-structures within 4 min and met the USP criteria of immediate release products (86.7% drug release at 30 min). Real-time ultraviolet (UV) imaging indicated that the cellulosic matrix expanded due to swelling of hydroxypropyl cellulose (HPC) upon introduction to the dissolution medium. This was followed by a steady erosion of the polymeric matrix at a rate of 8 μm/min. The design approach was more efficient than a comparison conventional formulation approach of adding disintegrants to accelerate tablet disintegration and drug release. This work provides a novel example where computer-aided design was instrumental at modifying the performance of solid dosage forms. Such an example may serve as the foundation for a new generation of dosage forms with complicated geometric structures to achieve functionality that is usually achieved by a sophisticated formulation approach. Copyright © 2018 Elsevier B.V. All rights reserved.
[Preparation and quality control of pyridostigmine bromide orally disintegrating tablet].
Zhang, Li; Tan, Qun-you; Cheng, Xun-guan; Wang, Hong; Hu, Ni-ni; Zhang, Jing-qing
2012-05-01
To prepare orally disintegrating tablets containing pyridostigmine bromide and optimize formulations. Solid dispersion was prepared using solvent evaporation-deposition method. The formulation was optimized by central composite design-response surface methodology (RSM plus CCD) with disintegration time as a reference parameter. The orally disintegrating tablets showed integrity and were smooth with desirable taste and feel in mouth. The disintegration time was less than 30 s. The cumulative drug dissolution was around 8.5% (around 2.5 mg which was less than bitterness threshold of pyridostigmine bromide of 3 mg) within 5 min in water while the cumulative drug dissolution was higher than 95% within 2 min in 0.1 N HCl. The orally disintegrating tablets are reasonable in formulation, feasible in technology and patient-friendly.
Linka, Wojciech Andrzej; Wojtaszek, Ilona; Zgoda, Marian Mikołaj; Kołodziejczyk, Michał Krzysztof
2015-01-01
Dry extracts are now frequently used in medicine as an alternative to synthetic drugs. In the case of tablet technology with dry plant extracts, the proper selection of disintegrants (superdisintegrants) is particularly important. Objectives. The aim of this study was to evaluate the usefulness of the polymers constituting superdisintegrants (Vivasol®, Vivastar®, Polyplasdone XL) in uncoated tablet formulation of alcoholic extracted from Asparagus officinalis. Dry the ethanol extract of Asparagus officinalis, Vivasol®, Vivastar®, Vivapur®, Kollidon VA64, Polyplasdone XL, magnesium stearate. Direct compression. Paddle method was carried out to study pharmacopoeial parameters and pharmaceutical availability. The calculation of equivalency factors: similarity [f2] and the difference [f1]. Approximation results. Tablets brownish-green, with a smooth and uniform surface, without stains, chipping and damage. The determined average weight of the tablets compiled with the standards. The test friability and crushing strength revealed that the most mechanically strong tablets contained Vivasol, Vivastar, Polyplasdone XL. These tablets also have a longer disintegration and dissolution time compared with tablets containing only Vivasol. These differences are also confirmed by the calculated f2 and f1. The addition of a mixture of Polyplasdone XL and Vivastar to Vivasol significantly increases the mechanical strength of the tablets (crushing strength, resistance to crushing). The addition of a mixture of Polyplasdone XL and Vivastar to Vivasol paradoxically increases the disintegration time of tablets (11.1 min). Single superdisintegrant breaks up the tablet more effectively than a mixture of superdisintegrants.
Siden, Rivka; Wolf, Matthew
2013-06-01
The administration of oral chemotherapeutic drugs can be problematic in patients with swallowing difficulties. Inability to swallow solid dosage forms can compromise compliance and may lead to poor clinical outcome. The current technique of tablet crushing to aid in administration is considered an unsafe practice. By developing a technique to disintegrate tablets in an oral syringe, the risk associated with tablet crushing can be avoided. The purpose of this study was to determine the feasibility of using disintegration in an oral syringe for the administration of oral chemotherapeutic tablets. Eight commonly used oral chemotherapeutic drugs were tested. Tablets were placed in an oral syringe and allowed to disintegrate in tap water. Various volumes and temperatures were tested to identify which combination allows for complete disintegration of the tablet in the shortest amount of time. The oral syringe disintegration method was considered feasible if disintegration occurred in ≤15 min and in ≤20 mL of water and the dispersion passed through an oral syringe tip. The following tablets were shown to disintegrate within 15 min and in <20 mL of water: busulfan, cyclophosphamide 50 mg, dasatinib, imatinib, methotrexate, and thioguanine. For these drugs, drug-specific information pamphlets can be prepared for patient or caregiver use. Mercaptopurine, cyclophosphamide 25 mg, and mitotane tablets did not pass the disintegration test. Disintegrating oral chemotherapeutic tablets in a syringe provides a closed system to administer hazardous drugs and allows for the safe administration of oral chemotherapeutic drugs in a tablet form to patients with swallowing difficulties.
Kumari, Parveen; Rathi, Pooja; Kumar, Virender; Lal, Jatin; Kaur, Harmeet; Singh, Jasbir
2017-07-01
This study was oriented toward the disintegration profiling of the diclofenac sodium (DS) immediate-release (IR) tablets and development of its relationship with medium permeability k perm based on Kozeny-Carman equation. Batches (L1-L9) of DS IR tablets with different porosities and specific surface area were prepared at different compression forces and evaluated for porosity, in vitro dissolution and particle-size analysis of the disintegrated mass. The k perm was calculated from porosities and specific surface area, and disintegration profiles were predicted from the dissolution profiles of IR tablets by stripping/residual method. The disintegration profiles were subjected to exponential regression to find out the respective disintegration equations and rate constants k d . Batches L1 and L2 showed the fastest disintegration rates as evident from their bi-exponential equations while the rest of the batches L3-L9 exhibited the first order or mono-exponential disintegration kinetics. The 95% confidence interval (CI 95% ) revealed significant differences between k d values of different batches except L4 and L6. Similar results were also spotted for dissolution profiles of IR tablets by similarity (f 2 ) test. The final relationship between k d and k perm was found to be hyperbolic, signifying the initial effect of k perm on the disintegration rate. The results showed that disintegration profiling is possible because a relationship exists between k d and k perm . The later being relatable with porosity and specific surface area can be determined by nondestructive tests.
Uchida, Takahiro; Yoshida, Miyako; Hazekawa, Mai; Haraguchi, Tamami; Furuno, Hiroyuki; Teraoka, Makoto; Ikezaki, Hidekazu
2013-09-01
The purpose of this study was to evaluate and compare the palatability of 10 formulations (the original manufacturer's formulation and nine generics) of amlodipine orally disintegrating tablets (ODTs) by means of human gustatory sensation testing, disintegration/dissolution testing and the evaluation of bitterness intensity using a taste sensor. Initially, the palatability, dissolution and bitterness intensity of the ODTs were evaluated in gustatory sensation tests. Second, the disintegration times of the ODTs were measured using the OD-mate, a newly developed apparatus for measuring the disintegration of ODTs, and lastly, the bitterness intensities were evaluated using an artificial taste sensor. Using factor analysis, the factors most affecting the palatability of amlodipine ODTs were found to be disintegration and taste. There was high correlation between the disintegration times of the 10 amlodipine ODTs estimated in human gustatory testing and those found using the OD-mate. The bitterness intensities of amlodipine ODTs 10, 20 and 30 s after starting the conventional brief dissolution test and the values determined by the taste sensor were highly correlated with the bitterness intensities determined in gustatory sensation testing. The OD-mate and the taste sensor may be useful for predicting the disintegration and bitterness intensity of amlodipine ODTs in the mouth. © 2013 Royal Pharmaceutical Society.
Orally disintegrating films: A modern expansion in drug delivery system.
Irfan, Muhammad; Rabel, Sumeira; Bukhtar, Quratulain; Qadir, Muhammad Imran; Jabeen, Farhat; Khan, Ahmed
2016-09-01
Over the past few decades, tendency toward innovative drug delivery systems has majorly increased attempts to ensure efficacy, safety and patient acceptability. As discovery and development of new chemical agents is a complex, expensive and time consuming process, so recent trends are shifting toward designing and developing innovative drug delivery systems for existing drugs. Out of those, drug delivery system being very eminent among pediatrics and geriatrics is orally disintegrating films (ODFs). These fast disintegrating films have superiority over fast disintegrating tablets as the latter are associated with the risks of choking and friability. This drug delivery system has numerous advantages over conventional fast disintegrating tablets as they can be used for dysphasic and schizophrenic patients and are taken without water due to their ability to disintegrate within a few seconds releasing medication in mouth. Various approaches are employed for formulating ODFs and among which solvent casting and spraying methods are frequently used. Generally, hydrophilic polymers along with other excipients are used for preparing ODFs which allow films to disintegrate quickly releasing incorporated active pharmaceutical ingredient (API) within seconds. Orally disintegrating films have potential for business and market exploitation because of their myriad of benefits over orally disintegrating tablets. This present review attempts to focus on benefits, composition, approaches for formulation and evaluation of ODFs. Additionally, the market prospect of this innovative dosage form is also targeted.
Childhood Disintegrative Disorder as a Complication of Chicken Pox.
Verma, Jitendra Kumar; Mohapatra, Satyakam
2016-01-01
Childhood disintegrative disorder (CDD) is characterized by late onset (>3 years of age) of developmental delays in language, social function and motor skills. Commonly there is no antecedent physical disorder leading to childhood disintegrative disorder. The present case report describes a child who developed childhood disintegrative disorder at the age of 6 years after an episode of chicken pox.
Dissolution testing of orally disintegrating tablets.
Kraemer, Johannes; Gajendran, Jayachandar; Guillot, Alexis; Schichtel, Julian; Tuereli, Akif
2012-07-01
For industrially manufactured pharmaceutical dosage forms, product quality tests and performance tests are required to ascertain the quality of the final product. Current compendial requirements specify a disintegration and/or a dissolution test to check the quality of oral solid dosage forms. These requirements led to a number of compendial monographs for individual products and, at times, the results obtained may not be reflective of the dosage form performance. Although a general product performance test is desirable for orally disintegrating tablets (ODTs), the complexity of the release controlling mechanisms and short time-frame of release make such tests difficult to establish. For conventional oral solid dosage forms (COSDFs), disintegration is often considered to be the prerequisite for subsequent dissolution. Hence, disintegration testing is usually insufficient to judge product performance of COSDFs. Given the very fast disintegration of ODTs, the relationship between disintegration and dissolution is worthy of closer scrutiny. This article reviews the current status of dissolution testing of ODTs to establish the product quality standards. Based on experimental results, it appears that it may be feasible to rely on the dissolution test without a need for disintegration studies for selected ODTs on the market. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.
Applicability of two automated disintegration apparatuses for rapidly disintegrating (mini)tablets.
Sieber, Daniel; Lazzari, Alessia; Quodbach, Julian; Pein, Miriam
2017-03-01
Orally disintegrating (mini)tablets (OD(M)Ts) are of interest in the field of pharmaceutics. Their orodispersible character is defined by the disintegration time, which is measured with a basket apparatus according to the European Pharmacopoeia. This method, however, lacks applicability for ODTs and especially ODMTs. New disintegration apparatuses have been described in literature, but a qualification to assess the applicability has not been described. A qualification procedure for two automated disintegration apparatuses, OD-mate and Hermes apparatus, is introduced. Aspects of the operational qualification as well as precision and accuracy regarding a performance qualification were evaluated for both apparatuses analog to the ICH guideline Q2. While the OQ study is performed separately for each apparatus, accuracy and precision were performed following the same protocol for both testers. Small RSDs (16.9% OD-mate; 15.2% Hermes compared to 32.3% for the pharmacopeial method) were found despite very fast disintegration times (1.5 s for both apparatuses). By comparing these RSDs to practical examples, the authors propose threshold values for repeatability depending on the mean disintegration time. Obtained results from the qualification were used to assess the applicability of both apparatuses.
Comparative study on novel test systems to determine disintegration time of orodispersible films.
Preis, Maren; Gronkowsky, Dorothee; Grytzan, Dominik; Breitkreutz, Jörg
2014-08-01
Orodispersible films (ODFs) are a promising innovative dosage form enabling drug administration without the need for water and minimizing danger of aspiration due to their fast disintegration in small amounts of liquid. This study focuses on the development of a disintegration test system for ODFs. Two systems were developed and investigated: one provides an electronic end-point, and the other shows a transferable setup of the existing disintegration tester for orodispersible tablets. Different ODF preparations were investigated to determine the suitability of the disintegration test systems. The use of different test media and the impact of different storage conditions of ODFs on their disintegration time were additionally investigated. The experiments showed acceptable reproducibility (low deviations within sample replicates due to a clear determination of the measurement end-point). High temperatures and high humidity affected some of the investigated ODFs, resulting in higher disintegration time or even no disintegration within the tested time period. The methods provided clear end-point detection and were applicable for different types of ODFs. By the modification of a conventional test system to enable application for films, a standard method could be presented to ensure uniformity in current quality control settings. © 2014 Royal Pharmaceutical Society.
NASA Astrophysics Data System (ADS)
Żubrowska-Sudoł, Monika; Podedworna, Jolanta; Bisak, Agnieszka; Sytek-Szmeichel, Katarzyna; Krawczyk, Piotr; Garlicka, Agnieszka
2017-11-01
The main goal of the study was to evaluate the effects of mechanical sludge disintegration for enhancing full scale anaerobic digestion of municipal sludge. Batch disintegration tests and lab dewatering tests were also performed aiming at determining the release of organic compounds and assessing the impact of disintegration of excess sludge before the fermentation process of mixed sludge on the dewaterability of post-fermented sludge, respectively. In the study a disc disintegrator driven by a motor with a power of 30 kW, revolutions n = 2950 rpm has been used. It was shown that with increase of energy consumed in the disintegration, the increased amounts of organic compounds were released from the sludge. It was also documented that the introduction of the excess sludge disintegration prior to fermentation tank, resulted in a significant increase in biogas production (by an average of 33.9%) and in increase in volatile total solids reduction in the fermented sludge (by an average of 22.7%). Moreover, the obtained results indicate the possibility of obtaining a higher degree of sludge dewatering, which was subjected to anaerobic stabilization with using disintegrated excess sludge.
Kavitha, S; Yukesh Kannah, R; Rajesh Banu, J; Kaliappan, S; Johnson, M
2017-11-01
The present study investigates the synergistic effect of combined bacterial disintegration on mixed microalgal biomass for energy efficient biomethane generation. The rate of microalgal biomass lysis, enhanced biodegradability, and methane generation were used as indices to assess efficiency of the disintegration. A maximal dissolvable organics release and algal biomass lysis rate of about 1100, 950 and 800mg/L and 26, 23 and 18% was achieved in PA+C (protease, amylase+cellulase secreting bacteria), C (cellulase alone) and PA (protease, amylase) microalgal disintegration. During anaerobic fermentation, a greater production of volatile fatty acids (1000mg/L) was noted in PA+C bacterial disintegration of microalgal biomass. PA+C bacterial disintegration improve the amenability of microalgal biomass to biomethanation process with higher biodegradability of about 0.27gCOD/gCOD, respectively. The energy balance analysis of this combined bacterial disintegration of microalgal biomass provides surplus positive net energy (1.14GJ/d) by compensating the input energy requirements. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration.
Wang, Fen; Wang, Yong; Ji, Min
2005-08-31
Ultrasonic energy can be applied as pre-treatment to disintegrate sludge flocs and disrupt bacterial cells' walls, and the hydrolysis can be improved, so that the rate of sludge digestion and methane production is improved. In this paper, by adding NaHCO3 to mask the oxidizing effect of OH, the mechanisms of disintegration are investigated. In addition, kinetics models for ultrasonic sludge disintegration are established by applying multi-variable linear regression method. It has been found that hydro-mechanical shear forces predominantly responsible for the disintegration, and the contribution of oxidizing effect of OH increases with the amount of the ultrasonic density and ultrasonic intensity. It has also been inferred from the kinetics model which dependent variable is SCOD+ that both sludge pH and sludge concentration significantly affect the disintegration.
Correlation of dissolution and disintegration results for an immediate-release tablet.
Nickerson, Beverly; Kong, Angela; Gerst, Paul; Kao, Shangming
2018-02-20
The drug release rate of a rapidly dissolving immediate-release tablet formulation with a highly soluble drug is proposed to be controlled by the disintegration rate of the tablet. Disintegration and dissolution test methods used to evaluate the tablets were shown to discriminate manufacturing process differences and compositionally variant tablets. In addition, a correlation was established between disintegration and dissolution. In accordance with ICH Q6A, this work demonstrates that disintegration in lieu of dissolution is suitable as the drug product quality control method for evaluating this drug product. Copyright © 2017 Elsevier B.V. All rights reserved.
Radwan, Asma; Zaid, Abdel Naser; Jaradat, Nidal; Odeh, Yousef
2017-04-01
The clinical implications of food-drug interactions may have to be taken seriously into account with oral drugs administration in order to minimize variations in drug bioavailability. Food intake may alter physiological changes in the pH and viscosity of the gastrointestinal lumen, which could affect the oral absorption of drugs. The aim of the present study was to have an insight on the effect of media parameters: viscosity and pHon the oral absorption of ciprofloxacin HCl from solid formulations using a model food: Corchorus olitorius (Jute) Soup. In vitro disintegration and dissolution rates of ciprofloxacin tablet were evaluated using compendia buffer media in the presence/absence of C. olitorius leaves. These in vitro data were then input to GastroPlus™ to predict ciprofloxacin absorption profiles under fasted and fed states. The present study demonstrated the significance of luminal pH and viscosity on the dissolution and disintegration of solid formulations following postprandial ingestion of the viscous soup. The tablets showed prolonged disintegration times and reduced dissolution rates in this soup, which could be attributed to the postprandial elevation in media viscosity and reduced solubility at elevated gastricpH. The predicted model under fed state showed no impact on AUC but prolonged T max and a decrease in C max . Concomitant intake of C. olitorius soup with ciprofloxacin might have negative effect on the rate of drug release from conventional immediate release tablets. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of ultrasonic disintegration of excess sewage sludge.
Zielewicz, Ewa
2016-10-01
Breaking down sludge floc (sonodyspergation effect) and destruction of the cell membranes of microorganisms forming floc is a direct effect of ultrasonic disintegration of sludge excess. This results in release of organic material by liquid sludge (the sonolysis effect). Desired technological effects of the disintegration are: to shorten the hydrolytic phase of fermentation, to increase the production of biogas (source of renewable energy) and an increased mineralization (stability) of fermented sludge. The presented study demonstrates research covering thickened excess sludge of various physicochemical properties, collected from nine municipal sewage treatment plants. The sludge was subjected to ultrasonic disintegration using three differently constructed disintegrators and different proportions of sonification area. Direct effects of disintegration were monitored and recorded using selected indicators describing changes in the properties of sludge and increase of substance dispersed and dissolved in the supernatant liquid to be filtered. Studies have demonstrated that those (direct) effects of ultrasonic disintegration depend on the physicochemical properties of the sludge (foremost the concentration of dry solids) that determine their variable susceptibility to the disintegration methods. The direct effects also depend on optimal process conditions (which consist of the construction of the ultrasonic disintegrator), the geometric proportions of the sonication area and the operating parameters of disintegration (which could be appropriately matched to the characteristics of sludge). The most preferable results were obtained for ultrasonic disintegration of sludge with a dry matter concentration C 0 < 4.2 %. The highest effect of sonolysis-an almost 30-fold increase in the COD dissolved in the supernatant-was obtained for the sludge of lowest dry matter (C 0 = 2.0 %), which was sonicated in a reactor with a short transducer of the largest radiating surface area, as well as the lowest ratio between this area and area of reactor. The best effects of disagglomeration of flocks have corresponded with the high value of power density U UD = 880-900 WL(-1).
Uebbing, Lukas; Klumpp, Lukas; Webster, Gregory K; Löbenberg, Raimar
2017-01-01
Drug product performance testing is an important part of quality-by-design approaches, but this process often lacks the underlying mechanistic understanding of the complex interactions between the disintegration and dissolution processes involved. Whereas a recent draft guideline by the US Food and Drug Administration (FDA) has allowed the replacement of dissolution testing with disintegration testing, the mentioned criteria are not globally accepted. This study provides scientific justification for using disintegration testing rather than dissolution testing as a quality control method for certain immediate release (IR) formulations. A mechanistic approach, which is beyond the current FDA criteria, is presented. Dissolution testing via United States Pharmacopeial Convention Apparatus II at various paddle speeds was performed for immediate and extended release formulations of metronidazole. Dissolution profile fitting via DDSolver and dissolution profile predictions via DDDPlus™ were performed. The results showed that Fickian diffusion and drug particle properties (DPP) were responsible for the dissolution of the IR tablets, and that formulation factors (eg, coning) impacted dissolution only at lower rotation speeds. Dissolution was completely formulation controlled if extended release tablets were tested and DPP were not important. To demonstrate that disintegration is the most important dosage form attribute when dissolution is DPP controlled, disintegration, intrinsic dissolution and dissolution testing were performed in conventional and disintegration impacting media (DIM). Tablet disintegration was affected by DIM and model fitting to the Korsmeyer-Peppas equation showed a growing effect of the formulation in DIM. DDDPlus was able to predict tablet dissolution and the intrinsic dissolution profiles in conventional media and DIM. The study showed that disintegration has to occur before DPP-dependent dissolution can happen. The study suggests that disintegration can be used as performance test of rapidly disintegrating tablets beyond the FDA criteria. The scientific criteria and justification is that dissolution has to be DPP dependent, originated from active pharmaceutical ingredient characteristics and formulations factors have to be negligible.
Uebbing, Lukas; Klumpp, Lukas; Webster, Gregory K; Löbenberg, Raimar
2017-01-01
Drug product performance testing is an important part of quality-by-design approaches, but this process often lacks the underlying mechanistic understanding of the complex interactions between the disintegration and dissolution processes involved. Whereas a recent draft guideline by the US Food and Drug Administration (FDA) has allowed the replacement of dissolution testing with disintegration testing, the mentioned criteria are not globally accepted. This study provides scientific justification for using disintegration testing rather than dissolution testing as a quality control method for certain immediate release (IR) formulations. A mechanistic approach, which is beyond the current FDA criteria, is presented. Dissolution testing via United States Pharmacopeial Convention Apparatus II at various paddle speeds was performed for immediate and extended release formulations of metronidazole. Dissolution profile fitting via DDSolver and dissolution profile predictions via DDDPlus™ were performed. The results showed that Fickian diffusion and drug particle properties (DPP) were responsible for the dissolution of the IR tablets, and that formulation factors (eg, coning) impacted dissolution only at lower rotation speeds. Dissolution was completely formulation controlled if extended release tablets were tested and DPP were not important. To demonstrate that disintegration is the most important dosage form attribute when dissolution is DPP controlled, disintegration, intrinsic dissolution and dissolution testing were performed in conventional and disintegration impacting media (DIM). Tablet disintegration was affected by DIM and model fitting to the Korsmeyer–Peppas equation showed a growing effect of the formulation in DIM. DDDPlus was able to predict tablet dissolution and the intrinsic dissolution profiles in conventional media and DIM. The study showed that disintegration has to occur before DPP-dependent dissolution can happen. The study suggests that disintegration can be used as performance test of rapidly disintegrating tablets beyond the FDA criteria. The scientific criteria and justification is that dissolution has to be DPP dependent, originated from active pharmaceutical ingredient characteristics and formulations factors have to be negligible. PMID:28442890
Influence of pH on in vitro disintegration of phosphate binders.
Stamatakis, M K; Alderman, J M; Meyer-Stout, P J
1998-11-01
Hyperphosphatemia, a common complication in patients with end-stage renal disease, is treated with oral phosphate-binding medications that restrict phosphorus absorption from the gastrointestinal (GI) tract. Impaired product performance, such as failure to disintegrate and/or dissolve in the GI tract, could limit the efficacy of the phosphate binder. Disintegration may be as important as dissolution for predicting in vitro product performance for medications that act locally on the GI tract, such as phosphate binders. Furthermore, patients with end-stage renal disease have a wide range in GI pH, and pH can influence a product's performance. The purpose of this study was to determine the effect of pH on in vitro disintegration of phosphate binders. Fifteen different commercially available phosphate binders (seven calcium carbonate tablet formulations, two calcium acetate tablet formulations, three aluminum hydroxide capsule formulations, and three aluminum hydroxide tablet formulations) were studied using the United States Pharmacopeia (USP) standard disintegration apparatus. Phosphate binders were tested in simulated gastric fluid (pH 1.5), distilled water (pH 5.1), and simulated intestinal fluid (pH 7.5). Product failure was defined as two or more individual tablets or capsules failing to disintegrate completely within 30 minutes. Results indicate that 9 of the 15 phosphate binders tested showed statistically significant differences in disintegration time (DT) based on pH. The percentage of binders that passed the disintegration study test in distilled water, gastric fluid, and intestinal fluid were 80%, 80%, and 73%, respectively. The findings of this study show that the disintegration of commercially available phosphate binders is highly variable. The pH significantly affected in vitro disintegration in the majority of phosphate binders tested; how significantly this affects in vivo performance has yet to be studied.
Disintegration of excess activated sludge--evaluation and experience of full-scale applications.
Zábranská, J; Dohányos, M; Jenícek, P; Kutil, J
2006-01-01
Anaerobic digestion of sewage sludge can be improved by introducing a disintegration of excess activated sludge as a pretreatment process. The disintegration brings a deeper degradation of organic matter and less amount of output sludge for disposal, a higher production of biogas and consequently energy yield, in some cases suppression of digesters foaming and better dewaterability. The full-scale application of disintegration by a lysate-thickening centrifuge was monitored long term in three different WWTPs. The evaluation of contribution of disintegration to biogas production and digested sludge quality was assessed and operational experience is discussed. Increment of specific biogas production was evaluated in the range of 15-26%, organic matter in digested sludge significantly decreased to 48-49%. Results proved that the installation of a disintegrating centrifuge in WWTPs of different sizes and conditions would be useful and beneficial.
Radwan, Asma; Wagner, Manfred; Amidon, Gordon L; Langguth, Peter
2014-06-16
Food intake may delay tablet disintegration. Current in vitro methods have little predictive potential to account for such effects. The effect of a variety of factors on the disintegration of immediate release tablets in the gastrointestinal tract has been identified. They include viscosity of the media, precipitation of food constituents on the surface of the tablet and reduction of water diffusivity in the media as well as changes in the hydrodynamics in the surrounding media of the solid dosage form. In order to improve the predictability of food affecting the disintegration of a dosage form, tablet disintegration in various types of a liquefied meal has been studied under static vs. dynamic (agitative) conditions. Viscosity, water diffusivity, osmolality and Reynolds numbers for the different media were characterized. A quantitative model is introduced which predicts the influence of the Reynolds number in the tablet disintegration apparatus on the disintegration time. Viscosity, water diffusivity and media flow velocity are shown to be important factors affecting dosage form disintegration. The results suggest the necessity of considering these parameters when designing a predictive model for simulating the in vivo conditions. Based on these experiments and knowledge on in vivo hydrodynamics in the GI tract, it is concluded that the disintegration tester under current pharmacopoeial conditions is operated in an unphysiological mode and no bioprediction may be derived. Recommendations regarding alternative mode of operation are made. Copyright © 2013 Elsevier B.V. All rights reserved.
Liu, Yali; Li, Peng; Qian, Rong; Sun, Tianyu; Fang, Fangzhi; Wang, Zonghua; Ke, Xue; Xu, Bohui
2018-08-01
The primary objective of this study was to mask bitter taste and decrease the disintegration time of carbinoxamine maleate (CAM) orally disintegrating tablets (ODTs). In order to screen the prescription of ODTs, a novel modified in vitro disintegration method (MIVDM) was developed to measure the in vitro disintegration time. In this method, different concentrations of ethanol served as disintegration medium in order to delay the in vitro water absorption and disintegration process of tablets. The MIVDM demonstrated good in vitro and in vivo correlation and proved more precise and discriminative than other reported methods. In this research, ion exchange resins (IERs) were used to mask bitter taste for improving mouthfeel. The drug-resin ratio and reaction temperature were investigated to obtain the optimum carbinoxamine resin complexes (CRCs). The characterization of CRCs revealed an amorphous state. ODTs were prepared by direct compression. Superdisintegrants and diluents of ODTs were screened first. Further optimization was carried out by using Box-Behnken design. The effect of (X 1 ) mannitol/microcrystalline cellulose ratio, (X 2 ) the amount of low-substituted hydroxypropylcellulose and (X 3 ) the hardness was investigated for achieving the lowest (Y) in vitro disintegration time. Technological characterization, wetting time, water absorption ratio, and roughness degree were evaluated. The CRCs and ODTs proved successful taste-masking efficiency. The end product improved patients' compliance. The developed MIVDM was practical for commercial use.
Hooper, Patrick; Lasher, Jason; Alexander, Kenneth S; Baki, Gabriella
2016-02-20
Industrial manufacturing of solid oral dosage forms require quality tests, such as friability, hardness, and disintegration. The United States Pharmacopeia (USP) disintegration test uses 900mL of water. However, recent studies of orally disintegrating tablets (ODTs) have shown that this volume does not accurately portray the oral environment. In our study, various tests were conducted with a more moderate amount of water that accurately resembles the oral environment. A simulated wetting test was performed to calculate the water absorption ratio. Results showed that wetting was comparable to disintegration. Although the wetting test worked for most types of ODTs, it had limitations that produced inaccurate results. This led to the use of a modified shaking water bath test. This test was found to work for all types of ODT products and was not subject to the limitations of the wetting test. The shake test could provide disintegration times rather than water permeation times; however, it could not be used to calculate the water absorption ratio. A strong correlation was observed between the standardized shake test and the USP disintegration times for the tablets. This shake test could be used during the development stages and quality tests for ODTs with relative ease. Copyright © 2015 Elsevier B.V. All rights reserved.
Adjei, Frank Kumah; Osei, Yaa Asantewaa; Kuntworbe, Noble
2017-01-01
The disintegrant potential of native starches of five new cassava (Manihot esculenta Crantz.) varieties developed by the Crops Research Institute of Ghana (CRIG) was studied in paracetamol tablet formulations. The yield of the starches ranged from 8.0 to 26.7%. The starches were basic (pH: 8.1–9.9), with satisfactory moisture content (≤15%), swelling capacity (≥20%), ash values (<1%), flow properties, and negligible toxic metal ion content, and compatible with the drug. The tensile strength (Ts), crushing strength (Cs), and friability (Ft) of tablets containing 5–10% w/w of the cassava starches were similar (p > 0.05) to those containing maize starch BP. The disintegration times of the tablets decreased with increase in concentration of the cassava starches. The tablets passed the disintegration test (DT ≤ 15 min) and exhibited faster disintegration times (p > 0.05) than those containing maize starch BP. The disintegration efficiency ratio (DER) and the disintegration parameter DERc of the tablets showed that cassava starches V20, V40, and V50 had better disintegrant activity than maize starch BP. The tablets passed the dissolution test for immediate release tablets (≥70% release in 45 min) with dissolution rates similar to those containing maize starch BP. PMID:28781909
Quodbach, Julian; Kleinebudde, Peter
2014-11-01
The aim of this study is the introduction of a novel apparatus that is capable of continuously measuring the particle size reduction of disintegrating tablets and analysis of the obtained results. The apparatus is constructed such that no particles pass directly through the pumping system. Thereby, the overall energy input into the particle suspension is reduced, and continuous measurement is possible without rapid destruction of the generated particles. The detected particle sizes at the beginning and at the end of the measurement differ greatly, depending on the applied disintegrant. The median particle sizes at the end of the measurement vary between 621.5 and 178.0 μm for different disintegrants. It is demonstrated that the particle size reduction follows an exponential function and that the fit parameters can be used to describe the disintegration behavior. A strong correlation between the median particle size of crospovidone disintegrants and generated particle size of the tablets is observed. This could be due to a more homogeneous distribution of the disintegrant particles in the tablets. Similar trends are observed for sodium starch glycolate and croscarmellose sodium. The new apparatus provides an innovative method to describe disintegrant effectiveness and efficiency. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Soh, Josephine Lay Peng; Grachet, Maud; Whitlock, Mark; Lukas, Timothy
2013-02-01
This is a study to fully assess a commercially available co-processed mannitol for its usefulness as an off-the-shelf excipient for developing orally disintegrating tablets (ODTs) by direct compression on a pilot scale (up to 4 kg). This work encompassed material characterization, formulation optimisation and process robustness. Overall, this co-processed mannitol possessed favourable physical attributes including low hygroscopicity and compactibility. Two design-of-experiments (DoEs) were used to screen and optimise the placebo formulation. Xylitol and crospovidone concentrations were found to have the most significant impact on disintegration time (p < 0.05). Higher xylitol concentrations retarded disintegration. Avicel PH102 promoted faster disintegration than PH101, at higher levels of xylitol. Without xylitol, higher crospovidone concentrations yielded faster disintegration and reduced tablet friability. Lubrication sensitivity studies were later conducted at two fill loads, three levels for lubricant concentration and number of blend rotations. Even at 75% fill load, the design space plot showed that 1.5% lubricant and 300 blend revolutions were sufficient to manufacture ODTs with ≤ 0.1% friability and disintegrated within 15 s. This study also describes results using a modified disintegration method based on the texture analyzer as an alternative to the USP method.
Quasifree (e,e'p) reaction on /sup 3/He
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jans, E.; Barreau, P.; Bernheim, M.
1982-10-04
The proton momentum distribution of /sup 3/He has been determined up to momenta of 310 MeV/c by use of the reaction /sup 3/He(e,e'p). The experimental missing energy resolution, deltaE/sub m/ = 1.2 MeV, was sufficient to separate the two- and three-body breakup channels. Results for the three-body disintegration have been obtained up to missing energy values of 80 MeV. The resulting spectral function is compared with the predictions of Faddeev and variational calculations.
Kelley, Patrick B; Abraham, Edathara C
2003-10-01
alphaB-crystallin, a member of the small heat-shock protein (hsp) family of proteins, is able to function as a molecular chaperone by protecting other proteins from stress-induced aggregation by recognizing and binding to partially unfolded species of damaged proteins. The present work has investigated the role of phenylalanine-28 (F28) of the 22RLFDQFF28 region of alphaB-crystallin in maintaining chaperone function and oligomeric structure under physiological condition and under thermal stress. Bovine alphaB-crystallin was cloned for the first time and the cDNA sequence revealed greater than 90% homology to that of human, rat and mouse alphaB-crystallins. F28 was mutated to a serine followed by expression of the mutant F28S and the wild-type alphaB (alphaB-wt) in E. coli and subsequent purification of the protein by size-exclusion chromatography. Secondary and tertiary structure analyses showed some structural changes in the mutant. Chaperone activity and oligomeric size of the mutant was unchanged at 37 degrees C whereas at 58 degrees C the chaperone activity was significantly decreased and the oligomeric size ranged from low molecular weight to high molecular weight showing disintegration of the oligomeric structure. The data support the idea that the participation of large oligomeric structure rather than smaller units is required to have optimal chaperone activity and the hydrophobic F28 residue is needed for maintaining the native oligomeric structure under thermal stress.
Stewart, Barry J; Wardle, Simon J; Haniford, David B
2002-08-15
The frequency of DNA transposition in transposition systems that employ a strand transfer step may be significantly affected by the occurrence of a disintegration reaction, a reaction that reverses the strand transfer event. We have asked whether disintegration occurs in the Tn10 transposition system. We show that disintegration substrates (substrates constituting one half of the strand transfer product) are assembled into a transpososome that mimics the strand transfer intermediate. This strand transfer transpososome (STT) does appear to support an intermolecular disintegration reaction, but only at a very low level. Strikingly, assembly of the STT is not dependent on IHF, a host protein that is required for de novo assembly of all previously characterized Tn10 transpososomes. We suggest that disintegration substrates are able to form both transposon end and target type contacts with transposase because of their enhanced conformational flexibility. This probably allows the conformation of DNA within the complex that prevents the destructive disintegration reaction, and is responsible for relaxing the DNA sequence requirements for STT formation relative to other Tn10 transpososomes.
Stewart, Barry J.; Wardle, Simon J.; Haniford, David B.
2002-01-01
The frequency of DNA transposition in transposition systems that employ a strand transfer step may be significantly affected by the occurrence of a disintegration reaction, a reaction that reverses the strand transfer event. We have asked whether disintegration occurs in the Tn10 transposition system. We show that disintegration substrates (substrates constituting one half of the strand transfer product) are assembled into a transpososome that mimics the strand transfer intermediate. This strand transfer transpososome (STT) does appear to support an intermolecular disintegration reaction, but only at a very low level. Strikingly, assembly of the STT is not dependent on IHF, a host protein that is required for de novo assembly of all previously characterized Tn10 transpososomes. We suggest that disintegration substrates are able to form both transposon end and target type contacts with transposase because of their enhanced conformational flexibility. This probably allows the conformation of DNA within the complex that prevents the destructive disintegration reaction, and is responsible for relaxing the DNA sequence requirements for STT formation relative to other Tn10 transpososomes. PMID:12169640
Differences in In Vitro Disintegration Time among Canadian Brand and Generic Bisphosphonates
Olszynski, Wojciech P.; Adachi, Jonathan D.; Davison, K. Shawn
2014-01-01
The objective of this study was to compare the disintegration times among Canadian-marketed brand (alendronate 70 mg, alendronate 70 mg plus vitamin D 5600 IU, and risedronate 35 mg) and generic (Novo-alendronate 70 mg and Apo-alendronate 70 mg) once-weekly dosed bisphosphonates. All disintegration tests were performed with a Vanderkamp Disintegration Tester. Disintegration was deemed to have occurred when no residue of the tablet, except fragments of insoluble coating or capsule shell, was visible. Eighteen to 20 samples were tested for each bisphosphonate group. The mean (±standard deviation) disintegration times were significantly (P < 0.05) faster for Apo-alendronate (26 ± 5.6 seconds) and Novo-alendronate (13 ± 1.1 seconds) as compared to brand alendronate (147 ± 50.5 seconds), brand alendronate plus vitamin D (378 ± 60.5 seconds), or brand risedronate (101 ± 20.6 seconds). The significantly faster disintegration of the generic tablets as compared to the brand bisphosphonates may have concerning safety and effectiveness implications for patients administering these therapies. PMID:25349772
Differences in In Vitro Disintegration Time among Canadian Brand and Generic Bisphosphonates.
Olszynski, Wojciech P; Adachi, Jonathan D; Davison, K Shawn
2014-01-01
The objective of this study was to compare the disintegration times among Canadian-marketed brand (alendronate 70 mg, alendronate 70 mg plus vitamin D 5600 IU, and risedronate 35 mg) and generic (Novo-alendronate 70 mg and Apo-alendronate 70 mg) once-weekly dosed bisphosphonates. All disintegration tests were performed with a Vanderkamp Disintegration Tester. Disintegration was deemed to have occurred when no residue of the tablet, except fragments of insoluble coating or capsule shell, was visible. Eighteen to 20 samples were tested for each bisphosphonate group. The mean (±standard deviation) disintegration times were significantly (P < 0.05) faster for Apo-alendronate (26 ± 5.6 seconds) and Novo-alendronate (13 ± 1.1 seconds) as compared to brand alendronate (147 ± 50.5 seconds), brand alendronate plus vitamin D (378 ± 60.5 seconds), or brand risedronate (101 ± 20.6 seconds). The significantly faster disintegration of the generic tablets as compared to the brand bisphosphonates may have concerning safety and effectiveness implications for patients administering these therapies.
Sewage sludge disintegration by high-pressure homogenization: a sludge disintegration model.
Zhang, Yuxuan; Zhang, Panyue; Ma, Boqiang; Wu, Hao; Zhang, Sheng; Xu, Xin
2012-01-01
High-pressure homogenization (HPH) technology was applied as a pretreatment to disintegrate sewage sludge. The effects of homogenization pressure, homogenization cycle number, and total solid content on sludge disintegration were investigated. The sludge disintegration degree (DD(COD)), protein concentration, and polysaccharide concentration increased with the increase of homogenization pressure and homogenization cycle number, and decreased with the increase of sludge total solid (TS) content. The maximum DD(COD) of 43.94% was achieved at 80 MPa with four homogenization cycles for a 9.58 g/L TS sludge sample. A HPH sludge disintegration model of DD(COD) = kNaPb was established by multivariable linear regression to quantify the effects of homogenization parameters. The homogenization cycle exponent a and homogenization pressure exponent b were 0.4763 and 0.7324 respectively, showing that the effect of homogenization pressure (P) was more significant than that of homogenization cycle number (N). The value of the rate constant k decreased with the increase of sludge total solid content. The specific energy consumption increased with the increment of sludge disintegration efficiency. Lower specific energy consumption was required for higher total solid content sludge.
Childhood disintegrative disorder: distinction from autistic disorder and predictors of outcome.
Rosman, N Paul; Bergia, Berta M
2013-12-01
Childhood disintegrative disorder, a rare, relentlessly progressive neurologic disorder, first described by Heller in 1908, remains a condition of great interest. It has long been debated whether it is a discrete disorder or simply a late-onset variant of childhood autism. We have studied 6 cases of childhood disintegrative disorder, collected over 8 years, and followed for 2.5 to 22 years (mean 8.6 years). Childhood disintegrative disorder begins later in life than autism, and following a period of entirely normal development; the regression is more global and more severe than in autism; seizures are more frequent than in autism, yet demonstrable organicity in childhood disintegrative disorder is decidedly rare. Lastly, the prognosis is usually much worse than in autism, but in those cases with neither seizures nor epileptiform activity on electroencephalography (EEG), the outcome may be more favorable. Childhood disintegrative disorder should be viewed as a condition distinct from childhood autism.
Silvestri, Daniele; Wacławek, Stanisław; Gončuková, Zuzanna; Padil, Vinod V T; Grübel, Klaudiusz; Černík, Miroslav
2018-05-24
A novel method for assessing the disintegration degree (DD) of waste activated sludge (WAS) with the use of differential centrifugal sedimentation method (DCS) was shown herein. The method was validated for a WAS sample at four levels of disintegration in the range of 14.4-82.6% corresponding to the median particle size range of 8.5-1.6 µm. From the several sludge disintegration methods used (i.e. microwave, alkalization, ultrasounds and peroxydisulfate activated by ultrasounds), the activated peroxydisulfate disintegration resulted in the greatest DD 83% and the smallest median particle size of WAS. Particle size distribution of pretreated sludge, measured by DCS, was in a negative correlation with the DD, determined from soluble chemical oxygen demand (SCOD; determination coefficient of 0.995). Based on the obtained results, it may be concluded that the DCS analysis can approximate the WAS disintegration degree.
A new formulation for orally disintegrating tablets using a suspension spray-coating method.
Okuda, Y; Irisawa, Y; Okimoto, K; Osawa, T; Yamashita, S
2009-12-01
The aim of this study was to design a new orally disintegrating tablet (ODT) that has high tablet hardness and a fast oral disintegration rate using a new preparation method. To obtain rapid disintegration granules (RDGs), a saccharide, such as trehalose, mannitol, or lactose, was spray-coated with a suspension of corn starch using a fluidized-bed granulator (suspension method). As an additional disintegrant, crospovidone, light anhydrous silicic acid, or hydroxypropyl starch was also included in the suspension. The RDGs obtained possessed extremely large surface areas, narrow particle size distribution, and numerous micro-pores. When tabletting these RDGs, it was found that the RDGs increased tablet hardness by decreasing plastic deformation and increasing the contact frequency between granules. In all tablets, a linear relationship was observed between tablet hardness and oral disintegration time. From each linear correlation line, a slope (D/H value) and an intercept (D/H(0) value) were calculated. Tablets with small D/H and D/H(0) values could disintegrate immediately in the oral cavity regardless of the tablet hardness and were considered to be appropriate for ODTs. Therefore, these values were used as key parameters to select better ODTs. Of all the RDGs prepared in this study, mannitol spray-coated with a suspension of corn starch and crospovidone (2.5:1 w/w ratio) showed most appropriate properties for ODTs; fast in vivo oral disintegration time, and high tablet hardness. In conclusion, this simple method to prepare superior formulations for new ODTs was established by spray-coating mannitol with a suspension of appropriate disintegrants.
Galahad Redux: An Assessment of the Disintegration of Merrill’s Marauders
1975-06-06
Disintegration of Merrill’s Marauders 00 »m^ John B. Gaither, MAJ, USA » >«^ U.S. Army Command and General Staff College fQ Fort lieavenworth... Disintegration of Merrill’s Marauders 5 TYPE OF REPORT » PERIOD COVERED Final report 6 Jun 75 6 PERFORMING ORG. REPORT NUMBER 7. AUTHORC...analyze the disintegration of Merrill’s Marauders, by emphasizing the intangible, subjective factors present in the leadership environment. The
Abraham, Anuji; Olusanmi, Dolapo; Ilott, Andrew J; Good, David; Murphy, Denette; Mcnamara, Daniel; Jerschow, Alexej; Mantri, Rao V
2016-06-01
Understanding the behavior of tablet disintegrants is valuable in the development of pharmaceutical solid dosage formulations. In this study, high-resolution magnetic resonance imaging has been used to understand the hydration behavior of a series of commercial sodium starch glycolate (SSG) samples, providing robust estimates of tablet disintegration rate that could be correlated with physicochemical properties of the SSGs, such as the extent of phosphorus (P) cross-linking as obtained from infra-red spectroscopy. Furthermore, elemental analysis together with powder X-ray diffraction has been used to quantify the presence of carboxymethyl groups and salt impurities, which also contribute to the disintegration behavior. The utility of Fast Low Angle SHot magnetic resonance imaging has been demonstrated as an approach to rapidly acquire approximations of the volume of a disintegrating tablet and, together with a robust voxel analysis routine, extract tablet disintegration rates. In this manner, a complete characterization of a series of SSG grades from different sources has been performed, showing the variability in their physicochemical properties and demonstrating a correlation between their disintegration rates and intrinsic characteristics. The insights obtained will be a valuable aid in the choice of disintegrant source as well as in managing SSG variability to ensure robustness of drug products containing SSG. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Tytła, Malwina; Zielewicz, Ewa
2017-09-13
This paper aimed to indicate the characteristics of excess sludge, which have the greatest impact on the effects obtained during its ultrasonic disintegration (UD). The direct and technological effects observed after sludge disintegration and anaerobic digestion (AD) depend on the factors affecting the quality of its matrix and simply on the parameters of a disintegrator. Sludge samples originate from a Central Waste Water Treatment Plant in Gliwice, and were collected after mechanical thickening by a monthly period. This approach allowed to observe the temporal changes of sludge characteristics, in a continuous manner. To evaluate the achieved disintegration effects, the following indicators were used: degree of disintegration (DD COD ) and the author's indicators describing the direct and technological effects of UD (ID i , IT i , IT d ), based on the changes in the sludge characteristics. Disintegration was carried out by means of an ultrasonic device equipped with a thin sonotrode. AD was conducted under mesophilic conditions for 20 days. Statistical analysis confirmed that the most important parameters of sludge, which determine obtained effects, were total and volatile solids, capillary suction time, concentration of chemical oxygen demand and pH value. The investigations have also showed that the increase in sludge temperature during its disintegration has a significant impact on the magnitude of other effects obtained in the process.
Fast disintegrating tablets: Opportunity in drug delivery system
Parkash, Ved; Maan, Saurabh; Deepika; Yadav, Shiv Kumar; Hemlata; Jogpal, Vikas
2011-01-01
Fast disintegrating tablets (FDTs) have received ever-increasing demand during the last decade, and the field has become a rapidly growing area in the pharmaceutical industry. Oral drug delivery remains the preferred route for administration of various drugs. Recent developments in the technology have prompted scientists to develop FDTs with improved patient compliance and convenience. Upon introduction into the mouth, these tablets dissolve or disintegrate in the mouth in the absence of additional water for easy administration of active pharmaceutical ingredients. The popularity and usefulness of the formulation resulted in development of several FDT technologies. FDTs are solid unit dosage forms, which disintegrate or dissolve rapidly in the mouth without chewing and water. FDTs or orally disintegrating tablets provide an advantage particularly for pediatric and geriatric populations who have difficulty in swallowing conventional tablets and capsules. This review describes various formulations and technologies developed to achieve fast dissolution/dispersion of tablets in the oral cavity. In particular, this review describes in detail FDT technologies based on lyophilization, molding, sublimation, and compaction, as well as approaches to enhancing the FDT properties, such as spray drying and use of disintegrants. In addition, taste-masking technologies, experimental measurements of disintegration times, and dissolution are also discussed. PMID:22247889
Oh, Young-Khee; Lee, Ki-Ryong; Ko, Kwang-Baik; Yeom, Ick-Tae
2007-06-01
A new wastewater treatment process combining a membrane bioreactor (MBR) with chemical sludge disintegration was tested in bench scale experiments. In particular, the effects of the disintegration treatment on the excess sludge production in MBR were investigated. Two MBRs were operated. In one reactor, a part of the mixed liquor was treated with NaOH and ozone gas consecutively and was returned to the bioreactor. The flow rate of the sludge disintegration stream was 1.5% of the influent flow rate. During the 200 days of operation, the MLSS level in the bioreactor with the disintegration treatment was maintained relatively constant at the range of 10,000-11,000 mg/L while it increased steadily up to 25,000 mg/L in the absence of the treatment. In the MBR with the sludge disintegration, relatively constant transmembrane pressures (TMPs) could be maintained for more than 6 months while the MBR without disintegration showed an abrupt increase of TMP in the later phase of the operation. In conclusion, a complete control of excess sludge production in the membrane-coupled bioreactor was possible without significant deterioration of the treated water quality and membrane performances.
Model test of anchoring effect on zonal disintegration in deep surrounding rock masses.
Chen, Xu-Guang; Zhang, Qiang-Yong; Wang, Yuan; Liu, De-Jun; Zhang, Ning
2013-01-01
The deep rock masses show a different mechanical behavior compared with the shallow rock masses. They are classified into alternating fractured and intact zones during the excavation, which is known as zonal disintegration. Such phenomenon is a great disaster and will induce the different excavation and anchoring methodology. In this study, a 3D geomechanics model test was conducted to research the anchoring effect of zonal disintegration. The model was constructed with anchoring in a half and nonanchoring in the other half, to compare with each other. The optical extensometer and optical sensor were adopted to measure the displacement and strain changing law in the model test. The displacement laws of the deep surrounding rocks were obtained and found to be nonmonotonic versus the distance to the periphery. Zonal disintegration occurs in the area without anchoring and did not occur in the model under anchoring condition. By contrasting the phenomenon, the anchor effect of restraining zonal disintegration was revealed. And the formation condition of zonal disintegration was decided. In the procedure of tunnel excavation, the anchor strain was found to be alternation in tension and compression. It indicates that anchor will show the nonmonotonic law during suppressing the zonal disintegration.
Model Test of Anchoring Effect on Zonal Disintegration in Deep Surrounding Rock Masses
Chen, Xu-Guang; Zhang, Qiang-Yong; Wang, Yuan; Liu, De-Jun; Zhang, Ning
2013-01-01
The deep rock masses show a different mechanical behavior compared with the shallow rock masses. They are classified into alternating fractured and intact zones during the excavation, which is known as zonal disintegration. Such phenomenon is a great disaster and will induce the different excavation and anchoring methodology. In this study, a 3D geomechanics model test was conducted to research the anchoring effect of zonal disintegration. The model was constructed with anchoring in a half and nonanchoring in the other half, to compare with each other. The optical extensometer and optical sensor were adopted to measure the displacement and strain changing law in the model test. The displacement laws of the deep surrounding rocks were obtained and found to be nonmonotonic versus the distance to the periphery. Zonal disintegration occurs in the area without anchoring and did not occur in the model under anchoring condition. By contrasting the phenomenon, the anchor effect of restraining zonal disintegration was revealed. And the formation condition of zonal disintegration was decided. In the procedure of tunnel excavation, the anchor strain was found to be alternation in tension and compression. It indicates that anchor will show the nonmonotonic law during suppressing the zonal disintegration. PMID:23997683
Mechanisms of palatal epithelial seam disintegration by Transforming Growth Factor (TGF)-β3
Ahmed, Shaheen; Liu, Chang-Chih; Nawshad, Ali
2007-01-01
TGFβ3 signaling initiates and completes sequential phases of cellular differentiation that is required for complete disintegration of the palatal medial edge seam, that progresses between 14 to 17 embryonic days in the murine system, which is necessary in establishing confluence of the palatal stroma. Understanding the cellular mechanism of palatal MES disintegration in response to TGFβ3 signaling will result in new approaches to defining the causes of cleft palate and other facial clefts that may result from failure of seam disintegration. We have isolated MES primary cells to study the details of MES disintegration mechanism by TGFβ3 during palate development using several biochemical and genetic approaches. Our results demonstrate a novel mechanism of MES disintegration where MES, independently yet sequentially, undergoes cell cycle arrest, cell migration and apoptosis to generate immaculate palatal confluency during palatogenesis in response to robust TGFβ3 signaling. The results contribute to a missing fundamental element to our base knowledge of the diverse roles of TGFβ3 in functional and morphological changes that MES undergo during palatal seam disintegration. We believe that our findings will lead to more effective treatment of facial clefting. PMID:17698055
Impact of food processing on rye product properties and their in vitro digestion.
Johansson, Daniel P; Gutiérrez, José L Vázquez; Landberg, Rikard; Alminger, Marie; Langton, Maud
2018-06-01
Rye products have been reported to elicit postprandial insulin and glucose responses which may be beneficial for prevention of type-2 diabetes. However, mechanisms underlying variations in responses related to processing techniques are not fully understood. Five differently processed rye products (sourdough-fermented bread, fermented and unfermented crispbread, extrusion-cooked rye, and porridge) and refined wheat bread were characterised. Two in vitro methods, a dynamic method simulating digestion in the stomach and small intestine and a static method, simulating conditions in the stomach were used to determine viscosity development, structural changes and release of glucose during digestion. Structural and compositional differences induced by processing influenced product digestion. Gastric disintegration and digesta particle size were related to characteristics of the starch/protein matrix, while digesta viscosity was reduced due to fibre degradation during fermentation. More cohesive boluses were associated with slower glucose release. Sourdough fermentation increased amylose leakage and appeared to inhibit starch hydrolysis despite low digesta viscosity and rapid disintegration. The net release of glucose during digestion of foods is determined by several factors which may vary in their importance depending on product specific properties.
Khan, Shagufta; Kataria, Prashant; Nakhat, Premchand; Yeole, Pramod
2007-06-22
The purpose of this research was to mask the intensely bitter taste of ondansetron HCl and to formulate a rapid-disintegrating tablet (RDT) of the taste-masked drug. Taste masking was done by complexing ondansetron HCl with aminoalkyl methacrylate copolymer (Eudragit EPO) in different ratios by the precipitation method. Drug-polymer complexes (DPCs) were tested for drug content, in vitro taste in simulated salivary fluid (SSF) of pH 6.2, and molecular property. Complex that did not release drug in SSF was considered taste-masked and selected for formulation RDTs. The complex with drug-polymer ratio of 8:2 did not show drug release in SSF; therefore, it was selected. The properties of tablets such as tensile strength, wetting time, water absorption ratio, in vitro disintegration time, and disintegration in the oral cavity were investigated to elucidate the wetting and disintegration characteristics of tablets. Polyplasdone XL-10 7% wt/wt gave the minimum disintegration time. Tablets of batch F4 containing spray-dried mannitol and microcrystalline cellulose in the ratio 1:1 and 7% wt/wt Polyplasdone XL-10 showed faster disintegration, within 12.5 seconds, than the marketed tablet (112 seconds). Good correlation between in vitro disintegration behavior and in the oral cavity was recognized. Taste evaluation of RDT in human volunteers revealed considerable taste masking with the degree of bitterness below threshold value (0.5) ultimately reaching to 0 within 15 minutes, whereas ondansetron HCl was rated intensely bitter with a score of 3 for 10 minutes. Tablets of batch F4 also revealed rapid drug release (t(90), 60 seconds) in SGF compared with marketed formulation (t(90), 240 seconds; P < .01). Thus, results conclusively demonstrated successful masking of taste and rapid disintegration of the formulated tablets in the oral cavity.
Yamaguchi, T; Yao, Y; Kihara, Y
2006-01-01
A novel sludge disintegration system (JFE-SD system) was developed for the reduction of excess sludge production in wastewater treatment plants. Chemical and biological treatments were applied to disintegrate excess sludge. At the first step, to enhance biological disintegration, the sludge was pretreated with alkali. At the second step, the sludge was disintegrated by biological treatment. Many kinds of sludge degrading microorganisms integrated the sludge. The efficiency of the new sludge disintegration system was confirmed in a full-scale experiment. The JFE-SD system reduced excess sludge production by approximately 50% during the experimental period. The quality of effluent was kept at quite a good level. Economic analysis revealed that this system could significantly decrease the excess sludge treatment cost.
Disintegration of a Liquid Jet
NASA Technical Reports Server (NTRS)
Haenlein, A
1932-01-01
This report presents an experimental determination of the process of disintegration and atomization in its simplest form, and the influence of the physical properties of the liquid to be atomized on the disintegration of the jet. Particular attention was paid to the investigation of the process of atomization.
Code of Federal Regulations, 2011 CFR
2011-01-01
... that amount of radioactive material which disintegrates at the rate of 37 billion atoms per second... material which disintegrates at the rate of 37 thousand atoms per second; Millicurie means that amount of radioactive material which disintegrates at the rate of 37 million atoms per second; Particle accelerator...
Kavitha, S; Kaliappan, S; Adish Kumar, S; Yeom, Ick Tae; Rajesh Banu, J
2015-09-01
In the present study, the influence of NaCl mediated bacterial disintegration of waste activated sludge (WAS) was evaluated in terms of disintegration and biodegradability of WAS. Floc disruption was efficient at 0.03 g/g SS of NaCl, promoting the shifts of extracellular proteins and carbohydrates from inner layers to extractable--soluble layers (90 mg/L), respectively. Outcomes of sludge disintegration reveal that the maximum solubilization achieved was found to be 23%, respectively. The model elucidating the parameter evaluation, explicates that floc disrupted--bacterially disintegrated sludge (S3) showed superior biodegradability of about 0.23 (gCOD/gCOD) than the bacterially disintegrated (S2) and control (S3) sludges of about 0.13 (gCOD/gCOD) and 0.05 (gCOD/gCOD), respectively. Cost evaluation of the present study affords net profits of approximately 2.5 USD and -21.5 USD in S3 and S2 sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bragg, Rebecca R; Freeman, Lisa M; Fascetti, Andrea J; Yu, Zengshou
2009-01-15
To test the quality, disintegration properties, and compliance with labeling regulations for representative commercially available taurine and carnitine dietary products. Evaluation study. 11 commercially available taurine and 10 commercially available carnitine products. For each product, the amount of taurine or carnitine was determined and compared with the label claim. All products were evaluated for concentrations of mercury, arsenic, and selenium. Disintegration properties of 5 taurine and 8 carnitine products were determined in vitro. Labels were evaluated for compliance with FDA guidelines. 10 of 11 taurine and 10 of 10 carnitine products were within 10% of the stated label claim. Three of 11 taurine and 6 of 10 carnitine products were within 5% of the stated label claim. The median percentage difference between laboratory analysis and label claim was -5.7% (range, -26.3% to 2.5%) for taurine and 3.6% (range, -2.6% to 8.8%) for carnitine. No substantial amount of contamination with mercury, arsenic, or selenium was found in any of the products. During disintegration testing, 1 of 5 taurine products and 5 of 8 carnitine products did not disintegrate within 45 minutes during at least 1 test. Disintegration time for those that did disintegrate ranged from 1.7 to 37.0 minutes. All product labels conformed with FDA regulations. Taurine and carnitine products evaluated in this study closely adhered to manufacturer claims and labeling guidelines. However, disintegration testing suggested high variability in some products, possibly limiting uptake and use by animals that receive them.
[Disintegration of visible light-cured composite resins caused by long-term water immersion].
Hino, T; Arai, K
1989-05-01
The purpose of this study is to clarify a cause of disintegration of composite resins by long-term immersion in distilled water. Three kinds of visible light-cured composite resins (Heliosit, Plurafil Super and Visio Dispers) and one conventional composite resin (Clearfil F II) were prepared as the specimens with a 20 mm diameter and 1 mm thickness. These specimens were immersed in distilled water at 37 +/- 1 degree C for 3 years. These specimens were analysed and observed by a comprehensive multi analyzer and scanning electron microscope. The other hand residues in distilled water were analysed by infrared (IR) and nuclear magnetic resonance (NMR) spectrometers. The surface layer of all four composite resins showed signs of disintegration. The composite resins with abundant dissolved substances had disintegrated markedly, and such disintegration occurred deep inside the specimens. In IR and 1H-NMR spectra of dissolved substances, two visible light-cured composite resins (Heliosit and Plurafil Super) could be detected unreacted monomers, but one visible light-cured composite resin (Visio Dispers) and one conventional composite resin (Clearfil F II) could not be detected them. In 1H-NMR spectra of dissolved substances of all four composite resins, new signals not composed originally were observed. The progress of disintegration were demonstrated clearly. The dissolved substances were shown as the disintegrated substance between resin matrixs and silane coupling agents. It is suggested that the disintegration of composite resins by long-term water immersion is derived from hydrolysis.
Jonsson, C B; Roth, M J
1993-01-01
Retroviral integrases mediate site-specific endonuclease and transesterification reactions in the absence of exogenous energy. The basis for the sequence specificity in these integrase-viral DNA recognition processes is unknown. Structural analogs of the disintegration substrate were made to analyze the disintegration reaction mechanism for the Moloney murine leukemia virus (M-MuLV) integrase (IN). Modifications in the target DNA portion of the disintegration substrate decreased enzymatic activity, while substitution of the highly conserved CA in the viral long terminal repeat portion had no effect on activity. The role of the His-Cys finger region in catalysis was addressed by N-ethylmaleimide (NEM) modification of the cysteine residues of M-MuLV IN as well as by mutations. Both integration activities, 3' processing, and strand transfer, were completely inhibited by NEM modification of M-MuLV IN, while disintegration activity was only partially sensitive. However, structural analogs of the disintegration substrates that were modified in the target DNA and had the conserved CA removed were not active with NEM-treated M-MuLV IN. In addition, mutants made in the His-Cys region of M-MuLV IN were examined and found to also be completely blocked in integration but not disintegration activity. These data suggest that the domains of M-MuLV IN that are required for the forward integration reaction substrate differ from those required for the reverse disintegration reaction substrate. Images PMID:8350412
Desktop 3D printing of controlled release pharmaceutical bilayer tablets.
Khaled, Shaban A; Burley, Jonathan C; Alexander, Morgan R; Roberts, Clive J
2014-01-30
Three dimensional (3D) printing was used as a novel medicine formulation technique for production of viable tablets capable of satisfying regulatory tests and matching the release of standard commercial tablets. Hydroxypropyl methylcellulose (HPMC 2208) (Methocel™ K100M Premium) and poly(acrylic acid) (PAA) (Carbopol(®) 974P NF) were used as a hydrophilic matrix for a sustained release (SR) layer. Hypromellose(®) (HPMC 2910) was used as a binder while microcrystalline cellulose (MCC) (Pharmacel(®) 102) and sodium starch glycolate (SSG) (Primojel(®)) were used as disintegrants for an immediate release (IR) layer. Commercial guaifenesin bi-layer tablets (GBT) were used as a model drug (Mucinex(®)) for this study. There was a favourable comparison of release of the active guaifenesin from the printed hydrophilic matrix compared with the commercially available GBT. The printed formulations were also evaluated for physical and mechanical properties such as weight variation, friability, hardness and thickness as a comparison to the commercial tablet and were within acceptable range as defined by the international standards stated in the United States Pharmacopoeia (USP). All formulations (standard tablets and 3D printed tablets) showed Korsmeyer-Peppas n values between 0.27 and 0.44 which indicates Fickian diffusion drug release through a hydrated HPMC gel layer. Copyright © 2013 Elsevier B.V. All rights reserved.
Childhood Disintegrative Disorder: Issues for DSM-IV.
ERIC Educational Resources Information Center
Volkmar, Fred R.
1992-01-01
This paper presents evidence regarding the validity of the diagnostic concept of "autistic-like" childhood disintegrative disorder, also known as Heller syndrome or as disintegrative psychosis. Its inclusion in the DSM-IV (Diagnostic and Statistical Manual) is supported, and proposed criteria and narrative description are provided.…
Amelian, Aleksandra; Szekalska, Marta; Wilczewska, Agnieszka Zofia; Basa, Anna; Winnicka, Katarzyna
2016-01-01
The aim of this study was to develop orally disintegrated tablets (ODT) with loratadine using Parteck ODT and Ludiflash--new commercially available tableting excipients based on co-processed mannitol. ODT containing loratadine were prepared with 3% addition of various superdisintegrants (AcDiSol, Kollidon CL-F and Kollidon CL-SF) by direct compression method. Obtained tablets were characterized for friability, pore structure, and wetting and disintegration time measured by four independents methods. In order to identify possible interactions between loratadine and the excipients, differential scanning calorimetry was used. The results showed that all formulated ODT were characterized by appropriate mechanical properties (friability < 1%), the uniform content of the drug substance and pleasant mouth feeling. Disintegration time below 30 s was observed in formulations with crospovidones as disintegrant.
Zubrowska-Sudol, M
2018-04-01
The goal of the study was to evaluate the possibility of carbon source recovery from excess sludge by mechanical disintegration for biological denitrification. The total efficiency of denitrification, unit demand for organic compounds for denitrification, unit volume of disintegrated sludge and unit cost of nitrogen removal as a function of energy density used for excess sludge disintegration (70, 140 and 210 kJ/L) were analyzed. In the study a full-scale disc disintegrator was used (motor power: 30 kWh, motor speed: 2,950 rpm). It was shown that the amounts of organic compounds released from the activated sludge flocs at all tested levels of energy density are high enough to be used to intensify the removal of nitrogen compounds from wastewater. It was also documented that the energy density provided during process of disintegration was an important factor determining the characteristics of organic compounds obtained under the disintegration for their use in order to intensify the process of denitrification. The highest value of total efficiency of denitrification (50.5 ± 3.1 mg N/L) was obtained for carbon source recovery from excess sludge at 70 kJ/L, but the lowest unit cost of nitrogen removal occurred for 140 kJ/L (0.0019 ± 0.0011 EUR/g N).
Interaction of lactoferrin and lysozyme with casein micelles.
Anema, Skelte G; de Kruif, C G Kees
2011-11-14
On addition of lactoferrin (LF) to skim milk, the turbidity decreases. The basic protein binds to the caseins in the casein micelles, which is then followed by a (partial) disintegration of the casein micelles. The amount of LF initially binding to casein micelles follows a Langmuir adsorption isotherm. The kinetics of the binding of LF could be described by first-order kinetics and similarly the disintegration kinetics. The disintegration was, however, about 10 times slower than the initial adsorption, which allowed investigating both phenomena. Kinetic data were also obtained from turbidity measurements, and all data could be described with one equation. The disintegration of the casein micelles was further characterized by an activation energy of 52 kJ/mol. The initial increase in hydrodynamic size of the casein micelles could be accounted for by assuming that it would go as the cube root of the mass using the adsorption and disintegration kinetics as determined from gel electrophoresis. The results show that LF binds to casein micelles and that subsequently the casein micelles partly disintegrate. All micelles behave in a similar manner as average particle size decreases. Lysozyme also bound to the casein micelles, and this binding followed a Langmuir adsorption isotherm. However, lysozyme did not cause the disintegration of the casein micelles.
Goel, Honey; Tiwary, Ashok K; Rana, Vikas
2011-01-01
The objective of the present work was to optimize the formulation of fast disintegrating tablets (FDTs) of ondansetron HCl containing novel superdisintegrants, possessing sufficient mechanical strength and disintegration time comparable to those containing crospovidone or croscarmellose sodium. The FDTs were formulated using a novel superdisintegrant (chitosan-alginate (1:1) interpolymer complex and chitin) to achieve a sweet tasting disintegrating system. The results revealed that chitin (5-20%) increased the porosity and decreased the DT of tablets. At higher concentrations chitin maintained tablet porosity even at 5.5 kg crushing strength. Ondansetron HCl was found to antagonize the wicking action of glycine. Further, evaluation of the mechanism of disintegration revealed that glycine transported the aqueous medium to different parts of the tablets while the chitosan-alginate complex swelled up due to transfer of moisture from glycine. This phenomenon resulted in breakage of the tablet within seconds. For preparing optimized FDTs, the reduced model equations generated from Box-Behnken design (BBD) were solved after substituting the known disintegration time of FDTs containing superdisintegrants in the reduced model equations. The results suggested that excipient system under investigation not only improved the disintegration time but also made it possible to prepare FDTs with higher crushing strength as compared to tablets containing known superdisintegrants.
Coordinated disintegration reactions mediated by Moloney murine leukemia virus integrase.
Donzella, G A; Jonsson, C B; Roth, M J
1996-01-01
The protein-DNA and protein-protein interactions important for function of the integrase (IN) protein of Moloney murine leukemia virus (M-MuLV) were investigated by using a coordinated-disintegration assay. A panel of M-MuLV IN mutants and substrate alterations highlighted distinctions between the intermolecular and intramolecular reactions of coordinated disintegration. Mispairing of the crossbone single-strand region and altered long terminal repeat (LTR) positioning affected the intermolecular, but not the intramolecular, reactions of coordinated disintegration. Partial components of the crossbone substrate were coordinated by M-MuLV IN, indicating a reliance on both LTR and target DNA determinants for substrate assembly. The intramolecular reaction was dependent on the presence of either the HHCC domain or a crossbone LTR 5' single-stranded tail. An M-MuLV IN mutant without the HHCC domain (Ndelta105) catalyzed reduced levels of double disintegration but not single disintegration. A separately purified HHCC domain protein (Cdelta232) stimulated double disintegration mediated by Ndelta105, suggesting a role of the N-terminal HHCC domain in stable IN-IN and IN-DNA interactions. Significantly, crossbone substrates lacking the LTR 5' tails were not recognized by the fingerless Ndelta105 protein. Collectively, these data suggest similar roles of the HHCC domain and 5' LTR tail in substrate recognition and modulation of IN activity. PMID:8648728
Fayed, Mohamed H; Abdel-Rahman, Sayed I; Alanazi, Fars K; Ahmed, Mahrous O; Tawfeek, Hesham M; Al-Shedfat, Ramadan I
2017-01-01
Application of quality by design (QbD) in high shear granulation process is critical and need to recognize the correlation between the granulation process parameters and the properties of intermediate (granules) and corresponding final product (tablets). The present work examined the influence of water amount (X,) and wet massing time (X2) as independent process variables on the critical quality attributes of granules and corresponding tablets using design of experiment (DoE) technique. A two factor, three level (32) full factorial design was performed; each of these variables was investigated at three levels to characterize their strength and interaction. The dried granules have been analyzed for their size distribution, density and flow pattern. Additionally, the produced tablets have been investigated for weight uniformity, crushing strength, friability and percent capping, disintegration time and drug dissolution. Statistically significant impact (p < 0.05) of water amount was identified for granule growth, percent fines and distribution width and flow behavior. Granule density and compressibility were found to be significantly influenced (p < 0.05) by the two operating conditions. Also, water amount has significant effect (p < 0.05) on tablet weight unifornity, friability and percent capping. Moreover, tablet disintegration time and drug dissolution appears to be significantly influenced (p < 0.05) by the two process variables. On the other hand, the relationship of process parameters with critical quality attributes of granule and final product tablet was identified and correlated. Ultimately, a judicious selection of process parameters in high shear granulation process will allow providing product of desirable quality.
Knöös, Patrik; Topgaard, Daniel; Wahlgren, Marie; Ulvenlund, Stefan; Piculell, Lennart
2013-11-12
A new technique has been developed using NMR chemical shift imaging (CSI) to monitor water penetration and molecular transport in initially dry polymer tablets that also contain small low-molecular weight compounds to be released from the tablets. Concentration profiles of components contained in the swelling tablets could be extracted via the intensities and chemical shift changes of peaks corresponding to protons of the components. The studied tablets contained hydrophobically modified poly(acrylic acid) (HMPAA) as the polymer component and griseofulvin and ethanol as hydrophobic and hydrophilic, respectively, low-molecular weight model compounds. The water solubility of HMPAA could be altered by titration with NaOH. In the pure acid form, HMPAA tablets only underwent a finite swelling until the maximum water content of the polymer-rich phase, as confirmed by independent phase studies, had been reached. By contrast, after partial neutralization with NaOH, the polyacid became fully miscible with water. The solubility of the polymer affected the water penetration, the polymer release, and the releases of both ethanol and griseofulvin. The detailed NMR CSI concentration profiles obtained highlighted the clear differences in the disintegration/dissolution/release behavior for the two types of tablet and provided insights into their molecular origin. The study illustrates the potential of the NMR CSI technique to give information of importance for the development of pharmaceutical tablets and, more broadly, for the general understanding of any operation that involves the immersion and ultimate disintegration of a dry polymer matrix in a solvent.
Shawahna, Ramzi; Hroub, Abdel Kareem; Abed, Eliama; Jibali, Sondos; Al-Saghir, Ruba; Zaid, Abdel Naser
2016-01-01
Atorvastatin reduces morbidity and mortality due to cardiovascular events. This study was conducted to assess the prices and pharmaceutical quality of innovator atorvastatin 20 mg with its locally available generics in Palestine and to assess the suitability of their interchangeability. The prices of innovator and generic atorvastatin 20 mg were determined and compared. Innovator atorvastatin and four generic products were tested for their pharmaceutical quality. Tablets were tested for their drug contents, weight uniformity, hardness, disintegration and dissolution. Three out of four generics were less expensive than the innovator. Pharmaceutical quality assessments were satisfactory and within limits for all atorvastatin tested products. The average weight ranged from 206.6 ± 8.40 to 330 ± 3.92 mg and the %RSDs were within the permitted limits as per USP. Tablet hardness ranged from 102 ± 1.41 to 197.4 ± 6.88 kg and drug contents ranged from 92.2% to 105.3%. All products disintegrated within permitted time limits and showed very rapid dissolution. Products released more than 85% of their drug contents in less than 15 min. Our results showed that all tested innovator and generic atorvastatin products were of good pharmaceutical quality. Despite the lack of in vivo evaluation, our results indicate that these products are equivalent in vitro. Considering the in vitro release characteristics, these products might be used interchangeably. However, regulatory authorities permit the use of in vitro data in establishing similarity between immediate release oral dosage forms containing biopharmaceutical classification system class I and III drugs only.
Karadagli, Fatih; McAvoy, Drew C; Rittmann, Bruce E
2009-05-01
The processes that flushable solid products may undergo after discharge to wastewater systems are (1) physical disintegration of solids resulting from turbulence, (2) direct dissolution of water-soluble components, (3) hydrolysis of solids to form soluble components, and (4) biodegradation of soluble and insoluble components. We develop a mathematical model for physical disintegration of flushable solid consumer products and test it with two different flushable products--product A, which has 40% water soluble-content, and product B, which has no water-soluble components. We present our modeling analysis of experimental results, from which we computed disintegration rate constants and fractional distribution coefficients for the disintegration of larger solids. The rate constants for solids of product A in units of (hour(-1)) are 0.45 for > 8-mm, 2.25 x 10(-2) for 4- to 8-mm, 0.9 x 10(-2) for 2- to 4-mm, and 1.26 x 10(-2) for 1- to 2-mm solids. The rate constants for solids of product B in units of hour(-1) are 1.8 for > 8-mm, 1.8 for 4- to 8-mm, 3.6 x 10(-1) for 2- to 4-mm, and 2.25 x 10(-3) for 1- to 2-mm solids. As indicated by the rate constants, larger solids disintegrate at a faster rate than smaller solids. In addition, product B disintegrated much faster and went mostly to the smallest size range, while product A disintegrated more slowly and was transferred to a range of intermediate solid sizes.
Disintegration/dissolution profiles of copies of Fosamax (alendronate).
Epstein, S; Cryer, B; Ragi, S; Zanchetta, J R; Walliser, J; Chow, J; Johnson, M A; Leyes, A E
2003-01-01
Poor quality has been reported for some generics and other copies of original products. We performed a pilot study to compare the disintegration/dissolution profiles of FOSAMAX (alendronate) 70 mg tablets with those of copies of FOSAMAX that were manufactured outside the United States. We used the standard United States Pharmacopeia (USP) disintegration method to evaluate FOSAMAX 70 mg tablets and 13 copies. At least 12 (n = 12) dosage units were tested for each product (except Fosmin, n = 10). The dissolution profiles of FOSAMAX and one representative copy were also compared. Nine copies (Osteomax, Defixal, Fosmin, Endronax, Osteomix, Genalmen, Fixopan, Osteoplus, and Fosval) disintegrated two- to ten-fold faster than FOSAMAX. Three other copies (Neobon, Regenesis, and Ostenan) disintegrated at least five-fold slower than FOSAMAX. Neobon is a softgel capsule, so special consideration was given to this different dosage form. One copy (Arendal) did not fall into either category but exhibited potentially large inter- and intra-lot variability. Dissolution of alendronate from Regenesis lagged behind that from FOSAMAX. Slower disintegration may reduce efficacy because bisphosphonates must be taken in the fasting state and contact with food or even certain beverages severely reduces bioavailability. Faster disintegration (or the use of gel-caps or other alterations to the drug formulation) could increase the risk of esophagitis, an adverse event associated with prolonged contact of the esophagus with bisphosphonates. These disintegration and dissolution results suggest that important differences may exist between FOSAMAX and its copies with regard to bioavailability, pharmacokinetics, and clinical efficacy and safety profiles. Additional testing is warranted to evaluate the pharmacokinetics and clinical safety of these copies.
Erden, G
2013-01-01
Meat processing wastewater sludge has high organic content but it is very slow to degrade in biological processes. Anaerobic digestion may be a good alternative for this type of sludge when the hydrolysis, known to be the rate-limiting step of biological sludge anaerobic degradation, could be eliminated by disintegration. This investigation deals with disintegration of meat processing wastewater sludge. Microwave (MW) irradiation and combined alkaline pretreatment and MW irradiation were applied to sludge for disintegration purposes. Disintegration performance of the methods was evaluated with disintegration degree based on total and dissolved organic carbon calculations (DD(TOC)), and the solubilization of volatile solids (S(VS)) in the pretreated sludge. Optimum conditions were found to be 140 degrees C and 30 min for MW irradiation using response surface methodology (RSM) and pH = 13 for combined pretreatment. While DD(TOC) was observed as 24.6% and 54.9, S(VS) was determined as 8.54% and 42.5% for MW pretreated and combined pretreated sludge, respectively. The results clearly show that pre-conditioning of sludge with alkaline pretreatment played an important role in enhancing the disintegration efficiency of subsequent MW irradiation. Disintegration methods also affected the anaerobic biodegradability and dewaterability of sludge. An increase of 23.6% in biogas production in MW irradiated sludge was obtained, comparing to the raw sludge at the end of the 35 days of incubation. This increase was observed as 44.5% combined pretreatment application. While MW pretreatment led to a little improvement of the dewatering performance of sludge, in combined pretreatment NaOH deteriorates the sludge dewaterability.
Guo, Qing; Ye, Aiqian; Lad, Mita; Ferrua, Maria; Dalgleish, Douglas; Singh, Harjinder
2015-03-01
The understanding of the disintegration and gastric emptying of foods in the stomach is important for designing functional foods. In this study, a dynamic stomach model (human gastric simulator, HGS) was employed to investigate the disintegration and subsequent emptying of two differently structured whey protein emulsion gels (soft and hard gels).The gels were mechanically ground into fragments to reproduce the particle size distribution of an in vivo gel bolus. The simulated gel bolus was prepared by mixing gel fragments and artificial saliva, and exposed to 5 hours of simulated gastric digestion in the presence and absence of pepsin. Results showed that regardless of pepsin, the soft gel always disintegrated faster than the hard gel. The presence of pepsin significantly accelerated the disintegration of both gels. In particular, it enhanced abrasion of the soft gel into fine particles (<0.425 mm) after 180 min of processing. The emptying of the gels was influenced by the combined effects of the original particle size of the gel boluses and their disintegration kinetics in the HGS. In the presence or absence of pepsin, the larger particles of the soft gel emptied slower than the hard one during the first 120 min of process. However, in the presence of pepsin, the soft gel emptied faster than the hard one after 120 min because of a higher level of disintegration. These findings highlight the role of food structure, bolus properties and biochemical effects on the disintegration and gastric emptying patterns of gels during gastric digestion.
Brief Report: Childhood Disintegrative Disorder as a Likely Manifestation of Vitamin B12 Deficiency
ERIC Educational Resources Information Center
Malhotra, Savita; Subodh, B. N.; Parakh, Preeti; Lahariya, Sanjay
2013-01-01
Childhood disintegrative disorder is a rare disorder, characterized by regression of acquired skills after a period of normal development. The case of childhood disintegrative disorder presented here was found to have vitamin B12 deficiency and hyperhomocysteinemia on extensive evaluation to find a probable cause for regression. This case…
Minimisation of costs by using disintegration at a full-scale anaerobic digestion plant.
Winter, A
2002-01-01
Various half-scale and lab-scale investigations have already shown that the disintegration of excess sludge is a possible pre-treatment to optimise anaerobic digestion. To control these results different methods of disintegration were investigated at a full-scale plant. Two stirred ball mills and a plant for oxidation with ozone were applied. A positive influence of disintegration on the anaerobic biodegradability can be established with application of a stirred ball mill. Biogas production as well as the degree of degradation were increased by about 20%. Laboratory investigations also validate that disintegration increases the polymer demand and leads to a lower solid content after dewatering. A higher pollution level of process water after dewatering even with ammonia and COD corroborates the results of the anaerobic degradation. Capital costs for the stirred ball mill, costs for energy, manpower and maintenance can be covered if the specific costs for disposal are high. If the development of costs in future and the current discussion about sludge disposal are taken into account sewage sludge disintegration can be a suitable technique to minimise costs at waste water treatment plants.
Torge, Afra; Grützmacher, Philipp; Mücklich, Frank; Schneider, Marc
2017-06-15
Nano-embedded microparticles represent a promising approach to deliver nanoparticles to the lungs. Microparticles with an appropriate aerodynamic diameter enable an application by dry powder inhaler and the transport of nanoparticles into the airways. By disintegration after deposition, nanoparticles can be released to exhibit their advantages such as a sustained drug release and delivery of the drug across the mucus barrier. The use of an appropriate matrix excipient to embed the nanoparticles is essential for the necessary disintegration and release of nanoparticles. In this context we investigated the influence of mannitol on the morphology, aerodynamic properties and disintegration behavior of nano-embedded microparticles. PLGA nanoparticles and mannitol were spray dried each as sole component and in combination in three different ratios. An influence of the mannitol content on the morphology was observed. Pure mannitol microparticles were solid and spherical, while the addition of nanoparticles resulted in raisin-shaped hollow particles. The different morphologies can be explained by diffusion processes of the compounds described by the Péclet-number. All powders showed suitable aerodynamic properties. By dispersion of the powders in simulated lung fluid, initial nanoparticle sizes could be recovered for samples containing mannitol. The fraction of redispersed nanoparticles was increased with increasing mannitol content. To evaluate the disintegration under conditions with higher comparability to the in vivo situation, spray-dried powders were exposed to >90% relative humidity. The disintegration behavior was monitored by analyzing roughness values by white light interferometry and supporting SEM imaging. The exposure to high relative humidity was shown to be sufficient for disintegration of the microparticles containing mannitol, releasing morphologically unchanged nanoparticles. With increasing mannitol content, the disintegration occurred faster and to a higher degree. Under these conditions, microparticles only composed of nanoparticles did not disintegrate. By enabling the release of nanoparticles from nano-embedded microparticles, mannitol was shown to be an ideal excipient to convert nanoparticles by spray drying into an inhalable dry power formulation. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Teng-Kai; Yang, Hung-Ju; Lee, Liang-Min; Liao, Chun-Hou
2013-07-01
Effective stone disintegration by extracorporeal shockwave lithotripsy (ESWL) may depend on patient- and stone-related factors. We investigated predictors of disintegration failure in ESWL for a solitary ureteral calculus. From July 2008 to May 2010, 203 patients who underwent ESWL for a solitary ureteral calculus were enrolled. Clinical and radiologic data were collected, and factors related to ESWL failure were analyzed. Fifty-two patients (25.6%) showed ESWL failure, with a mean follow-up of 41 days. Forty patients (19.7%) required retreatment, including 12 who underwent repeat ESWL and 28 who underwent curative ureteroscopy. Patients with ESWL failure had significantly higher body weight, body mass index (BMI), and buttock circumference (BC) than patients for whom ESWL was successful. Univariate analysis showed that stone burden (odds ratio [OR], 1.04; 95% confidence interval [CI], 1.03-1.06) and BC (OR, 1.06; 95% CI, 1.01-1.11) were predictors of ESWL failure, while BMI was a potential predictor with borderline significance (OR, 1.09; 95% CI, 0.99-1.20). Multivariate analysis showed that stone burden (OR, 1.04; 95% CI, 1.03-1.06) was a significant predictor for all patients. On stratifying patients according to the level of ureteral calculi, BC was found to be an independent predictor (OR, 1.35; 95% CI, 1.02-1.80) for ESWL failure for middle/lower ureteral calculi and BMI (OR, 1.47; 95% CI, 1.13-1.91) for upper ureteral calculi. Stone burden is the main predictor of ESWL failure for all patients with ureteral calculi. BC and BMI are independent predictors for ESWL failure for middle/lower and upper ureteral calculi, respectively. Copyright © 2012. Published by Elsevier B.V.
Delmas, Henri; Le, Ngoc Tuan; Barthe, Laurie; Julcour-Lebigue, Carine
2015-07-01
This work aims at investigating for the first time the key sonication (US) parameters: power density (DUS), intensity (IUS), and frequency (FS) - down to audible range, under varied hydrostatic pressure (Ph) and low temperature isothermal conditions (to avoid any thermal effect). The selected application was activated sludge disintegration, a major industrial US process. For a rational approach all comparisons were made at same specific energy input (ES, US energy per solid weight) which is also the relevant economic criterion. The decoupling of power density and intensity was obtained by either changing the sludge volume or most often by changing probe diameter, all other characteristics being unchanged. Comprehensive results were obtained by varying the hydrostatic pressure at given power density and intensity. In all cases marked maxima of sludge disintegration appeared at optimum pressures, which values increased at increasing power intensity and density. Such optimum was expected due to opposite effects of increasing hydrostatic pressure: higher cavitation threshold then smaller and fewer bubbles, but higher temperature and pressure at the end of collapse. In addition the first attempt to lower US frequency down to audible range was very successful: at any operation condition (DUS, IUS, Ph, sludge concentration and type) higher sludge disintegration was obtained at 12 kHz than at 20 kHz. The same values of optimum pressure were observed at 12 and 20 kHz. At same energy consumption the best conditions - obtained at 12 kHz, maximum power density 720 W/L and 3.25 bar - provided about 100% improvement with respect to usual conditions (1 bar, 20 kHz). Important energy savings and equipment size reduction may then be expected. Copyright © 2014 Elsevier B.V. All rights reserved.
Cao, Qing-Ri; Kim, Tae-Wan; Lee, Beom-Jin
2007-07-18
Two types of the carnauba wax-based lipophilic matrix tablet using spray-dried granules (SDT) or directly compressible powdered mixtures (DCT) were prepared for sustained release. The model drug was a highly water-soluble potassium citrate and loaded about 74% of the total tablet weight. The SDT slowly eroded and disintegrated during the release study without showing sustained release when the hydrophilic excipients were added. In contrast, the DCT was more efficient for sustained release. The release rate decreased with increasing carnauba wax concentration. In particular, the sustained release rate was markedly pronounced when the lipophilic stearyl alcohol and stearic acid were combined with the carnauba wax. The surface of the intact DCT appeared to be smooth and rusty. The DCT rose to the surface from the bottom of the vessel during the release test, and numerous pores and cracks with no signs of disintegration were also observed after the release test. The release profile was dependent on the formulation composition and preparation method of the matrix tablet. Diffusion-controlled leaching through the channels of the pores and cracks of the lipophilic matrix tablet (DCT) is a key to the sustained release.
Yoon, Seong-Hoon
2003-04-01
In order to prevent excess sludge production during wastewater treatment, a membrane bioreactor-sludge disintegration (MBR-SD) system has been introduced, where the disintegrated sludge is recycled to the bioreactor as a feed solution. In this study, a mathematical model was developed by incorporating a sludge disintegration term into the conventional activated sludge model and the relationships among the operational parameters were investigated. A new definition of F/M ratio for the MBR-SD system was suggested to evaluate the actual organic loading rate. The actual F/M ratio was expected to be much higher than the apparent F/M ratio in MBR-SD. The kinetic parameters concerning the biodegradability of organics hardly affect the system performance. Instead, sludge solubilization ratio (alpha) in the SD process and particulate hydrolysis rate constant (k(h)) in biological reaction determine the sludge disintegration number (SDN), which is related with the overall economics of the MBR-SD system. Under reasonable alpha and k(h) values, SDN would range between 3 and 5 which means the amount of sludge required to be disintegrated would be 3-5 times higher for preventing a particular amount of sludge production. Finally, normalized sludge disintegration rate (q/V) which is needed to maintain a certain level of MLSS in the MBR-SD system was calculated as a function of F/V ratio.
Simplified formulations with high drug loads for continuous twin-screw granulation.
Meier, R; Thommes, M; Rasenack, N; Krumme, M; Moll, K-P; Kleinebudde, P
2015-12-30
As different batches of the same excipients will be intermixed during continuous processes, the traceability of batches is complicated. Simplified formulations may help to reduce problems related to batch intermixing and traceability. Twin-screw granulation with subsequent tableting was used to produce granules and tablets, containing drug, disintegrant and binder (binary and ternary mixtures), only. Drug loads up to 90% were achieved and five different disintegrants were screened for keeping their disintegration suitability after wetting. Granule size distributions were consistently mono-modal and narrow. Granule strength reached higher values, using ternary mixtures. Tablets containing croscarmellose-Na as disintegrant displayed tensile strengths up to 3.1MPa and disintegration times from 400 to 466s, resulting in the most robust disintegrant. Dissolution was overall complete and above 96% within 30 min. Na-starch glycolate offers tensile strengths up to 2.8MPa at disintegration times from 25s to 1031s, providing the broadest application window, as it corresponds in some parts to different definitions of orodispersible tablets. Tablets containing micronized crospovidone are not suitable for immediate release, but showed possibilities to produce highly drug loaded, prolonged release tablets. Tablets and granules from simplified formulations offer great opportunities to improve continuous processes, present performances comparable to more complicated formulations and are able to correspond to requirements of the authorities. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liang, Dan; Liu, Chuanlian
2016-06-01
Using a coccolith weight analytic software (Particle Analyser), we analyze most abundant coccolith species in a sediment core from the central Western Pacific Warm Pool (WPWP) and calculate coccolith size and weight variations over the last 200 ka. These variations are compared with the trends of sea surface temperature (SST), primary productivity (PP), sea surface salinity (SSS), and insolation. Our results demonstrate that the size and weight of the coccoliths varied in response to variations of these factors, and their average total weight is primarily related to the relative abundance of the dominant species GEO ( Gephyrocapsa oceanica). The variation in weight of EMI ( Emiliania huxleyi) and GEE ( Gephyrocapsa ericsonii) are mainly influenced by nutrients, and the variation of GEM ( G. muellerae conformis) and GEO ( G. oceanica) weight are mainly influenced by SST. For all of the taxa weight, PP and SST present apparent precession or semi-precession cycles, we consider that the mono-coccolith weight of the Equatorial Western Pacific is primarily affected by precession drived thermocline and nutricline variation.
Bjarnadottir, G D; Johannsson, M; Magnusson, A; Rafnar, B O; Sigurdsson, E; Steingrimsson, S; Asgrimsson, V; Snorradottir, I; Bragadottir, H; Haraldsson, H M
2017-09-01
Methylphenidate (MPH) is a prescription stimulant used to treat attention-deficit hyperactivity disorder. MPH is currently the preferred substance among most intravenous (i.v.) substance users in Iceland. Four types of MPH preparations were available in Iceland at the time of study: Immediate-release (IR), sustained-release (SR), osmotic controlled-release oral delivery (OROS) tablet and osmotic-controlled release (OCR). MPH OROS has previously been rated the least desirable by i.v. users and we hypothesized that this was associated with difficulty of disintegrating MPH from OROS formulation. The aim of the study was to measure the amount of MPH and the viscosity of the disintegrated solutions that were made from the four MPH formulations by four i.v.-users and non-users. A convenience sample of four i.v. substance users and 12 non-users. Non-users imitated the methods applied by experienced i.v. substance users for disintegrated MPH formulations. Both groups managed to disintegrate over 50% of MPH from IR and SR formulations but only 20% from OROS (p<0.0001). The viscosity of the disintegrated MPH was significantly higher for MPH OROS and MPH OCR and the preparation was significantly more time-consuming than for the other MPH samples. No differences were observed between users and non-users. To our knowledge, this is the first investigation of viscosity and the amount of disintegrated MPH from prescription drugs for i.v. use. The results indicate that the ease of disintegration, amount of MPH and viscosity may explain the difference in popularity for i.v. use between different MPH formulations. Copyright © 2017 Elsevier B.V. All rights reserved.
Use of anaerobic hydrolysis pretreatment to enhance ultrasonic disintegration of excess sludge.
Li, Xianjin; Zhu, Tong; Shen, Yang; Chai, Tianyu; Xie, Yuanhua; You, Meiyan; Wang, Youzhao
2016-01-01
To improve the excess sludge disintegration efficiency, reduce the sludge disintegration cost, and increase sludge biodegradability, a combined pretreatment of anaerobic hydrolysis (AH) and ultrasonic treatment (UT) was proposed for excess sludge. Results showed that AH had an advantage in dissolving flocs, modifying sludge characteristics, and reducing the difficulty of sludge disintegration, whereas UT was advantageous in damaging cell walls, releasing intracellular substances, and decomposing macromolecular material. The combined AH-UT process was an efficient method for excess sludge pretreatment. The optimized solution involved AH for 3 days, followed by UT for 10 min. After treatment, chemical oxygen demand, protein, and peptidoglycan concentrations reached 3,949.5 mg O2/L, 752.5 mg/L and 619.1 mg/L, respectively. This work has great significance for further engineering applications, namely, reducing energy consumption, increasing the sludge disintegration rate, and improving the biochemical properties of sludge.
Guggi, Davide; Marschütz, Michaela K; Bernkop-Schnürch, Andreas
2004-04-15
This study examined the influence of the pH on the mucoadhesive and cohesive properties of polyarcylic acid (PAA) and thiolated PAA. The pH of PAA (molecular mass: 450 kDa) and of a corresponding PAA-cysteine conjugate was adjusted to 3, 4, 5, 6, 7 and 8. The amount of immobilised thiol groups and disulfide bonds was determined via Ellman's reagent. Tablets were compressed out of each pH-batch of both thiolated and unmodified PAA and the swelling behaviour, the disintegration time and the mucoadhesiveness were evaluated. The amount of thiol/disulfide groups per gram thiolated PAA of pH 3 and pH 8 was determined to be 332 +/- 94 micromol and 162 +/- 46 micromol, respectively. The thiolated PAA tablets displayed a minimum four-fold higher water uptake compared to unmodified PAA tablets. A faster and higher water uptake of both polymer types was observed above pH 5. Thiolated polymer tablets showed a 3-20-fold more prolonged disintegration time than unmodified PAA tablets. The cohesiveness of PAA-cysteine conjugate increased at higher pH, whereas the unmodified PAA behaved inversely. A 3-7-fold stronger mucoadhesiveness was observed for the PAA-cysteine conjugate tablets compared to unmodified PAA tablets. For both thiolated and unmodified polymer the mucoadhesiveness was 2-4-fold enhanced below pH 5. The difference in mucoadhesion between the two polymer types was most pronounced at these lower pH values. In this study substantial information regarding the pH-dependence of mucoadhesion and cohesion of unmodified polyacrylates and of thiolated polyacrylates is provided, representing helpful basic information for an ameliorated deployment of these polymers.
Castro, Silvina G.; Dib, Alicia; Suarez, Gonzalo; Allemandi, Daniel; Lanusse, Carlos; Sanchez Bruni, Sergio; Palma, Santiago D.
2013-01-01
The main objectives of this study were (a) to evaluate the in vitro performance of the rapid disintegration tablets as a way to improve the solid dispersions and (b) to study the in vivo pharmacokinetics of the albendazole modified formulation in dogs. Rapid disintegration of tablets seems to be a key factor for efficiency of solid dispersions with regard to improvement of the albendazole bioavailability. The in vivo assays performed on dogs showed a marked increase in drug plasma exposure when albendazole was given in solid dispersions incorporated into rapid disintegration tablets compared with conventional solid dosage form. PMID:24063016
Sludge reduction in a small wastewater treatment plant by electro-kinetic disintegration.
Chiavola, Agostina; Ridolfi, Alessandra; D'Amato, Emilio; Bongirolami, Simona; Cima, Ennio; Sirini, Piero; Gavasci, Renato
2015-01-01
Sludge reduction in a wastewater treatment plant (WWTP) has recently become a key issue for the managing companies, due to the increasing constraints on the disposal alternatives. Therefore, all the solutions proposed with the aim of minimizing sludge production are receiving increasing attention and are tested either at laboratory or full-scale to evaluate their real effectiveness. In the present paper, electro-kinetic disintegration has been applied at full-scale in the recycle loop of the sludge drawn from the secondary settlement tank of a small WWTP for domestic sewage. After the disintegration stage, the treated sludge was returned to the biological reactor. Three different percentages (50, 75 and 100%) of the return sludge flow rate were subjected to disintegration and the effects on the sludge production and the WWTP operation efficiency evaluated. The long-term observations showed that the electro-kinetic disintegration was able to drastically reduce the amount of biological sludge produced by the plant, without affecting its treatment efficiency. The highest reduction was achieved when 100% return sludge flow rate was subjected to the disintegration process. The reduced sludge production gave rise to a considerable net cost saving for the company which manages the plant.
Characterization of White Matter Injury in a Rat Model of Chronic Cerebral Hypoperfusion.
Choi, Bo-Ryoung; Kim, Dong-Hee; Back, Dong Bin; Kang, Chung Hwan; Moon, Won-Jin; Han, Jung-Soo; Choi, Dong-Hee; Kwon, Kyoung Ja; Shin, Chan Young; Kim, Bo-Ram; Lee, Jongmin; Han, Seol-Heui; Kim, Hahn Young
2016-02-01
Chronic cerebral hypoperfusion can lead to ischemic white matter injury resulting in vascular dementia. To characterize white matter injury in vascular dementia, we investigated disintegration of diverse white matter components using a rat model of chronic cerebral hypoperfusion. Chronic cerebral hypoperfusion was modeled in Wistar rats by permanent occlusion of the bilateral common carotid arteries. We performed cognitive behavioral tests, including the water maze task, odor discrimination task, and novel object test; histological investigation of neuroinflammation, oligodendrocytes, myelin basic protein, and nodal or paranodal proteins at the nodes of Ranvier; and serial diffusion tensor imaging. Cilostazol was administered to protect against white matter injury. Diverse cognitive impairments were induced by chronic cerebral hypoperfusion. Disintegration of white matter was characterized by neuroinflammation, loss of oligodendrocytes, attenuation of myelin density, structural derangement at the nodes of Ranvier, and disintegration of white matter tracts. Cilostazol protected against cognitive impairments and white matter disintegration. White matter injury induced by chronic cerebral hypoperfusion can be characterized by disintegration of diverse white matter components. Cilostazol might be a therapeutic strategy against white matter disintegration in patients with vascular dementia. © 2015 American Heart Association, Inc.
Numerical simulation on zonal disintegration in deep surrounding rock mass.
Chen, Xuguang; Wang, Yuan; Mei, Yu; Zhang, Xin
2014-01-01
Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration phenomenon was confirmed and its mechanism is revealed. It is found to be the result of circular fracture which develops within surrounding rock mass under the high geostress. The fractured shape of zonal disintegration was determined, and the radii of the fractured zones were found to fulfill the relationship of geometric progression. The numerical results were in accordance with the model test findings. The mechanism of the zonal disintegration was revealed by theoretical analysis based on fracture mechanics. The fractured zones are reportedly circular and concentric to the cavern. Each fracture zone ruptured at the elastic-plastic boundary of the surrounding rocks and then coalesced into the circular form. The geometric progression ratio was found to be related to the mechanical parameters and the ground stress of the surrounding rocks.
Numerical Simulation on Zonal Disintegration in Deep Surrounding Rock Mass
Chen, Xuguang; Wang, Yuan; Mei, Yu; Zhang, Xin
2014-01-01
Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration phenomenon was confirmed and its mechanism is revealed. It is found to be the result of circular fracture which develops within surrounding rock mass under the high geostress. The fractured shape of zonal disintegration was determined, and the radii of the fractured zones were found to fulfill the relationship of geometric progression. The numerical results were in accordance with the model test findings. The mechanism of the zonal disintegration was revealed by theoretical analysis based on fracture mechanics. The fractured zones are reportedly circular and concentric to the cavern. Each fracture zone ruptured at the elastic-plastic boundary of the surrounding rocks and then coalesced into the circular form. The geometric progression ratio was found to be related to the mechanical parameters and the ground stress of the surrounding rocks. PMID:24592166
Magnetic Resonance Imaging to Visualize Disintegration of Oral Formulations.
Curley, Louise; Hinton, Jordan; Marjoribanks, Cameron; Mirjalili, Ali; Kennedy, Julia; Svirskis, Darren
2017-03-01
This article demonstrates that magnetic resonance imaging can visualize the disintegration of a variety of paracetamol containing oral formulations in an in vitro setting and in vivo in the human stomach. The different formulations had unique disintegration profiles which could be imaged both in vitro and in vivo. No special formulation approaches or other contrast agents were required. These data demonstrate the potential for further use of magnetic resonance imaging to investigate and understand the disintegration behavior of different formulation types in vivo, and could potentially be used as a teaching tool in pharmaceutical and medical curricula. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Sato-Masumoto, Naoko; Masada, Sayaka; Takahashi, Satoshi; Terasaki, Sachiko; Yokota, Yoichi; Hakamatsuka, Takashi; Goda, Yukihiro
2015-04-23
For many years now, a number of Western herbs have been widely used in health food products in Japan and as pharmaceuticals in Europe. There are few or no mandated criteria concerning the quality of these herbal health food products, thus clarification is warranted. Here, we performed disintegration tests of 26 pharmaceutical and health food products containing the Western herbs ginkgo leaf and chaste tree fruit, in accord with the Japanese Pharmacopoeia. All eight pharmaceutical herbal products found in the European market completely disintegrated within the defined test time, and 11 of the 18 tested herbal products distributed as health foods in Japan disintegrated. Among the incompatible products identified in the Pharmacopoeia test, some products remained intact after incubation in water for 60 min. To ensure the efficacy of Western herbal products sold as health food in Japan, quality control, including disintegration, is therefore recommended, even though these products are not regulated under the Pharmaceutical Affairs Law.
NASA Astrophysics Data System (ADS)
Han, Fengshan; Wu, Xinli; Li, Xia; Zhu, Dekang
2018-02-01
Zonal disintegration phenomenon was found in deep mining roadway surrounding rock. It seriously affects the safety of mining and underground engineering and it may lead to the occurrence of natural disasters. in deep mining roadway surrounding rock, tectonic stress in deep mining roadway rock mass, horizontal stress is much greater than the vertical stress, When the direction of maximum principal stress is parallel to the axis of the roadway in deep mining, this is the main reasons for Zonal disintegration phenomenon. Using ABAQUS software to numerical simulation of the three-dimensional model of roadway rupture formation process systematically, and the study shows that when The Direction of maximum main stress in deep underground mining is along the roadway axial direction, Zonal disintegration phenomenon in deep underground mining is successfully reproduced by our numerical simulation..numerical simulation shows that using ABAQUA simulation can reproduce Zonal disintegration phenomenon and the formation process of damage of surrounding rock can be reproduced. which have important engineering practical significance.
Zawieja, Iwona; Lidia, Wolny; Marta, Próba
2017-07-01
Submission of excess sludge initial disintegration process significantly affects the efficiency of anaerobic stabilization process. Expression of increasing the concentration of organic matter in dissolved form is to increase sludge disintegration. As a result of chemical modification is an increase of the chemical oxygen demand and the concentration of volatile fatty acids. The aim of this study was to determine the impact of the disintegration process with selected chemical reagents to increase the concentration of organic substances in dissolved form. The process of chemical disintegration of excess sludge was treated using the following reagents: Mg(OH) 2 , Ca(OH) 2 , HCl, H 2 SO 4 , H 2 O 2 . The modification was carried out at ambient temperature for 2, 6 and 24h. During sludge disintegration it was noticed the growth of indicators values that confirmed the susceptibility of prepared sludge to biodegradation. Copyright © 2017 Elsevier Inc. All rights reserved.
Kavitha, S; Rajesh Banu, J; IvinShaju, C D; Kaliappan, S; Yeom, Ick Tae
2016-12-01
Mechanical disintegration of sludge through ultrasonication demands high energy and cost. Therefore, in the present study, a comprehensive investigation was performed to analyze the potential of a novel method, fenton mediated sonic disintegration (FSD). In FSD process, extracellular polymeric substance (EPS) of sludge was first removed via fenton treatment. It was subsequently disintegrated via ultrasonication. Energetic assessment and economic analysis were then performed using net energy and cost gain (spent) as key factor to evaluate the practical viability of the FSD process. FSD was found to be superior over sonic disintegration based on its higher sludge solubilization (34.4% vs. 23.2%) and methane production potential (0.3gCOD/gCOD vs. 0.2gCOD/gCOD). Both energy analysis and cost assessment of the present study revealed that FSD could reduce the energy demand of ultrasonication considerably with a positive net profit of about 44.93USD/Ton of sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sato-Masumoto, Naoko; Masada, Sayaka; Takahashi, Satoshi; Terasaki, Sachiko; Yokota, Yoichi; Hakamatsuka, Takashi; Goda, Yukihiro
2015-01-01
For many years now, a number of Western herbs have been widely used in health food products in Japan and as pharmaceuticals in Europe. There are few or no mandated criteria concerning the quality of these herbal health food products, thus clarification is warranted. Here, we performed disintegration tests of 26 pharmaceutical and health food products containing the Western herbs ginkgo leaf and chaste tree fruit, in accord with the Japanese Pharmacopoeia. All eight pharmaceutical herbal products found in the European market completely disintegrated within the defined test time, and 11 of the 18 tested herbal products distributed as health foods in Japan disintegrated. Among the incompatible products identified in the Pharmacopoeia test, some products remained intact after incubation in water for 60 min. To ensure the efficacy of Western herbal products sold as health food in Japan, quality control, including disintegration, is therefore recommended, even though these products are not regulated under the Pharmaceutical Affairs Law. PMID:28930200
Ramirez, Ivan; Mottet, Alexis; Carrère, Hélène; Déléris, Stéphane; Vedrenne, Fabien; Steyer, Jean-Philippe
2009-08-01
Anaerobic digestion disintegration and hydrolysis have been traditionally modeled according to first-order kinetics assuming that their rates do not depend on disintegration/hydrolytic biomass concentrations. However, the typical sigmoid-shape increase in time of the disintegration/hydrolysis rates cannot be described with first-order models. For complex substrates, first-order kinetics should thus be modified to account for slowly degradable material. In this study, a slightly modified IWA ADM1 model is presented to simulate thermophilic anaerobic digestion of thermally pretreated waste activated sludge. Contois model is first included for disintegration and hydrolysis steps instead of first-order kinetics and Hill function is then used to model ammonia inhibition of aceticlastic methanogens instead of a non-competitive function. One batch experimental data set of anaerobic degradation of a raw waste activated sludge is used to calibrate the proposed model and three additional data sets from similar sludge thermally pretreated at three different temperatures are used to validate the parameters values.
Lei, Ting; Guan, Ming; Liu, Jia; Lin, Hung-Cheng; Pfattner, Raphael; McGuire, Allister F.; Huang, Tsung-Ching; Shao, Leilai; Cheng, Kwang-Ting; Tok, Jeffrey B.-H.; Bao, Zhenan
2017-01-01
Increasing performance demands and shorter use lifetimes of consumer electronics have resulted in the rapid growth of electronic waste. Currently, consumer electronics are typically made with nondecomposable, nonbiocompatible, and sometimes even toxic materials, leading to serious ecological challenges worldwide. Here, we report an example of totally disintegrable and biocompatible semiconducting polymers for thin-film transistors. The polymer consists of reversible imine bonds and building blocks that can be easily decomposed under mild acidic conditions. In addition, an ultrathin (800-nm) biodegradable cellulose substrate with high chemical and thermal stability is developed. Coupled with iron electrodes, we have successfully fabricated fully disintegrable and biocompatible polymer transistors. Furthermore, disintegrable and biocompatible pseudo-complementary metal–oxide–semiconductor (CMOS) flexible circuits are demonstrated. These flexible circuits are ultrathin (<1 μm) and ultralightweight (∼2 g/m2) with low operating voltage (4 V), yielding potential applications of these disintegrable semiconducting polymers in low-cost, biocompatible, and ultralightweight transient electronics. PMID:28461459
Lei, Ting; Guan, Ming; Liu, Jia; Lin, Hung-Cheng; Pfattner, Raphael; Shaw, Leo; McGuire, Allister F; Huang, Tsung-Ching; Shao, Leilai; Cheng, Kwang-Ting; Tok, Jeffrey B-H; Bao, Zhenan
2017-05-16
Increasing performance demands and shorter use lifetimes of consumer electronics have resulted in the rapid growth of electronic waste. Currently, consumer electronics are typically made with nondecomposable, nonbiocompatible, and sometimes even toxic materials, leading to serious ecological challenges worldwide. Here, we report an example of totally disintegrable and biocompatible semiconducting polymers for thin-film transistors. The polymer consists of reversible imine bonds and building blocks that can be easily decomposed under mild acidic conditions. In addition, an ultrathin (800-nm) biodegradable cellulose substrate with high chemical and thermal stability is developed. Coupled with iron electrodes, we have successfully fabricated fully disintegrable and biocompatible polymer transistors. Furthermore, disintegrable and biocompatible pseudo-complementary metal-oxide-semiconductor (CMOS) flexible circuits are demonstrated. These flexible circuits are ultrathin (<1 μm) and ultralightweight (∼2 g/m 2 ) with low operating voltage (4 V), yielding potential applications of these disintegrable semiconducting polymers in low-cost, biocompatible, and ultralightweight transient electronics.
Tanaka, Nobuyuki; Imai, Keiji; Okimoto, Kazuto; Ueda, Satoshi; Tokunaga, Yuji; Ohike, Atsuo; Ibuki, Rinta; Higaki, Kazutaka; Kimura, Toshikiro
2005-11-28
The goal of this study is to develop a novel sustained-release (SR) system for poorly water-soluble drugs by applying solid dispersion (SD) technique for improving the solubility. The developed SR system, disintegration-controlled matrix tablet (DCMT), consists of hydrogenated soybean oil (HSO) as wax and SD granules containing low-substituted hydroxypropylcellulose (L-HPC) as a disintegrant. In this study, nilvadipine (NiD) was chosen as a model compound. Sustained-release profiles of NiD from DCMT were identically controlled in several dissolution mediums in spite of varying pH and agitation speed. The release of NiD from DCMT was sustained more effectively by increasing the amount of wax or by decreasing the amount of disintegrant, and supersaturation of NiD was achieved without any re-crystallization in dissolution medium. The release rate of NiD from DCMT was controlled by the disintegration rate of tablet. The release profile of NiD was described by the Hixson-Crowell's model better than zero-order kinetics, first-order kinetics and Higuchi's model, which supports that the release of NiD from DCMT is regulated by the disintegration of the tablet. From this study, it was clarified that DCMT was one of the promising SR systems applying SD for the poorly water-soluble drugs.
Horkovics-Kovats, Stefan
2014-02-01
Dissolution profile of a finished dosage form (FDF) contains hidden information regarding the disintegration of the form and the particle properties of the active pharmaceutical ingredient. Here, an extraction of this information from the dissolution profile without limitation to sink conditions is provided. In the article, mathematical relationships between the continuously measured dissolution profile of an FDF containing uniform or heterogeneous particles and its disintegration rate are developed. Further, the determinability of the disintegration kinetics and particle properties released from an FDF using the derived recurrent procedure was analyzed. On the basis of the theoretical data sets, it was demonstrated that the introduced analysis of dissolution profiles correctly identifies the disintegration rate of FDF containing multiple particle types. Furthermore, for known disintegration rates, the intrinsic lifetime of particles (time needed for total particle dissolution in infinite volume) released from the FDF and their relative amount can be determined. The extractable information from FDF dissolution time profiles can be utilized in designing of the formulation process, resulting in improved understanding of FDF properties, contributing thus to the implementation of quality by design in the FDF development. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
Application of freeze-drying technology in manufacturing orally disintegrating films.
Liew, Kai Bin; Odeniyi, Michael Ayodele; Peh, Kok-Khiang
2016-01-01
Freeze drying technology has not been maximized and reported in manufacturing orally disintegrating films. The aim of this study was to explore the freeze drying technology in the formulation of sildenafil orally disintegrating films and compare the physical properties with heat-dried orally disintegrating film. Central composite design was used to investigate the effects of three factors, namely concentration of carbopol, wheat starch and polyethylene glycol 400 on the tensile strength and disintegration time of the film. Heat-dried films had higher tensile strength than films prepared using freeze-dried method. For folding endurance, freeze-dried films showed improved endurance than heat-dried films. Moreover, films prepared using freeze-dried methods were thicker and had faster disintegration time. Formulations with higher amount of carbopol and starch showed higher tensile strength and thickness whereas formulations with higher PEG 400 content showed better flexibility. Scanning electron microscopy showed that the freeze-dried films had more porous structure compared to the heat-dried film as a result of the release of water molecule from the frozen structure when it was subjected to freeze drying process. The sildenafil film was palatable. The dissolution profiles of freeze-dried and heat-dried films were similar to Viagra® with f2 of 51.04 and 65.98, respectively.
Sadeghi, Mozhgan; Hemmati, Salar; Hamishehkar, Hamed
2016-01-01
Disintegrants are the key excipients administered in tablet formulations to boost the decomposition of the tablet into smaller pieces in the gastrointestinal environment, thereby increasing the available surface area and enhancing a more rapid release of the active ingredient. Polysuccinimide (PSI), a biodegradable polymer synthesized from aspartic acid, was reacted with starch and fully assessed by CHN, (1)H-NMR, and FTIR. PSI-grafted starch (PSI-St) was synthesized and applied as a disintegrant in the formulation of a rapidly disintegrating tablet of Ondansetron, a nausea and vomiting medicine. The tablet formulated with the newly developed superdisintegrant was evaluated for hardness, friability, disintegration time, and dissolution rate, and the results were compared with tablets formulated with an identical composition of test formulation differing only in type of disintegrant. Tablets prepared with starch and tablets prepared with sodium starch glycolate (SSG) were used as negative and positive controls, respectively. Dissolution study results indicated that although the onset of disintegration action was faster for SSG than PSI-St, higher amounts of drug were released from tablets formulated from PSI-St than from those formulated from SSG during 10 min. It was concluded that the novel synthesized superdisintegrant has an appropriate potential for the application in the formulation of fast dissolving tablets.
Sadeghi, Mozhgan; Hemmati, Salar; Hamishehkar, Hamed
2016-05-01
Disintegrants are the key excipients administered in tablet formulations to boost the decomposition of the tablet into smaller pieces in the gastrointestinal environment, thereby increasing the available surface area and enhancing a more rapid release of the active ingredient. Polysuccinimide (PSI), a biodegradable polymer synthesized from aspartic acid, was reacted with starch and fully assessed by CHN, 1 H-NMR, and FTIR. PSI-grafted starch (PSI-St) was synthesized and applied as a disintegrant in the formulation of a rapidly disintegrating tablet of Ondansetron, a nausea and vomiting medicine. The tablet formulated with the newly developed superdisintegrant was evaluated for hardness, friability, disintegration time, and dissolution rate, and the results were compared with tablets formulated with an identical composition of test formulation differing only in type of disintegrant. Tablets prepared with starch and tablets prepared with sodium starch glycolate (SSG) were used as negative and positive controls, respectively. Dissolution study results indicated that although the onset of disintegration action was faster for SSG than PSI-St, higher amounts of drug were released from tablets formulated from PSI-St than from those formulated from SSG during 10 min. It was concluded that the novel synthesized superdisintegrant has an appropriate potential for the application in the formulation of fast dissolving tablets.
Vraníková, Barbora; Gajdziok, Jan; Doležel, Petr
2017-03-01
The preparation of liquisolid systems (LSS) represents a promising method for enhancing a dissolution rate and bioavailability of poorly soluble drugs. The release of the drug from LSS tablets is affected by many factors, including the disintegration time. The evaluation of differences among LSS containing varying amounts and types of commercially used superdisintegrants (Kollidon® CL-F, Vivasol® and Explotab®). LSS were prepared by spraying rosuvastatin solution onto Neusilin® US2 and further processing into tablets. Varying amounts of superdisintegrants were used and the differences among LSS were evaluated. The multiple scatter plot method was used to visualize the relationships within the obtained data. All disintegrants do not showed negative effect on the flow properties of powder blends. The type and concentration of superdisintegrant had an impact on the disintegration time and dissolution profiles of tablets. Tablets with Explotab® showed the longest disintegration time and the smallest amount of released drug. Fastest disintegration and dissolution rate were observed in tablets containing Kollidon® CL-F (≥2.5% w/w). Also tablets with Vivasol® (2.5-4.0% w/w) showed fast disintegration and complete drug release. Kollidon® CL-F and Vivasol® in concentration ≥2.5% are suitable superdisintegrants for LSS with enhanced release of drug.
Sarkar, Srimanta; Ooi, Shing Ming; Liew, Celine Valeria; Tan, Bing Xun; Heng, Paul Wan Sia
2014-11-20
This study investigated the influence of different disintegrants, present in different substrate physical forms, on dimensional recovery of multi-component tablets prepared at different compression pressures. Formulations containing model drug, metformin, (10%, w/w), different disintegrants (10%, w/w), and lactose (80%, w/w) were compressed directly or after granulation using polyvinyl pyrrolidone (1%, w/w) as binder, into tablets (350 mg, 10mm diameter) at 150, 200, and 250 N/mm(2) compression pressures. Tablets were characterized for immediate dimensional recovery (IR) after ejection from the die, latent dimensional recovery (LR) over 24 h, tensile strength, and disintegration. The IR was predominantly contributed by crystalline components whereas LR was brought about by polymeric materials. With increased compression pressure, higher degree of plastic deformation of the polymeric disintegrants resulted in tablet with lower LR and higher tensile strength. Presence of polyvinyl pyrrolidone in the granules contributed considerably to plastic deformation, and the tablets produced had lower LR, higher tensile strength, and longer disintegration time. This study indicated that use of granules as the feed substrate physical form and a prudent selection of components may enable the coating of resultant tablets immediately after compression without the risk of coat damage due to LR. Copyright © 2014 Elsevier B.V. All rights reserved.
The Dynamic Mu Transpososome: MuB activation prevents disintegration
Lemberg, Kathryn M.; Schweidenback, Caterina T. H.; Baker, Tania A.
2007-01-01
Summary DNA transposases use a single active center to sequentially cleave the transposable element DNA and join this DNA to a target site. Recombination requires controlled conformational changes within the transposase to ensure that these chemically distinct steps occur at the right time and place, and that the reaction proceeds in the net forward direction. Mu transposition is catalyzed by a stable complex of MuA transposase bound to paired Mu DNA ends (a transpososome). We find that Mu transpososomes efficiently catalyze disintegration when recombination on one end of the Mu DNA is blocked. The MuB activator protein controls the integration vs. disintegration equilibrium. When MuB is present, disintegration occurs slowly and transpososomes that have disintegrated catalyze subsequent rounds of recombination. In the absence of MuB, disintegration goes to completion. These results together with experiments mapping the MuA-MuB contacts during DNA joining suggest that MuB controls progression of recombination by specifically stabilizing a concerted transition to the ‘joining’ configuration of MuA. Thus, we propose that MuB's interaction with the transpososome actively promotes coupled joining of both ends of the element DNA into the same target site and thus may provide a mechanism to antagonize formation of single-end transposition products. PMID:17988683
Variations of archived static-weight data and WIM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, C.J.; Gillmann, R.; Kent, P.M.
1998-12-01
Using seven-card archived, static-weight and weigh-in-motion (WIM), truck data received by FHWA for 1966--1992, the authors examine the fluctuations of four fiducial weight measures reported at weight sites in the 50 states. The reduced 172 MB Class 9 (332000) database was prepared and ordered from 2 CD-ROMS with duplicate records removed. Front-axle weight and gross-vehicle weight (GVW) are combined conceptually by determining the front axle weight in four-quartile GVW categories. The four categories of front axle weight from the four GVW categories are combined in four ways. Three linear combinations are with fixed-coefficient fiducials and one is that optimal linearmore » combination producing the smallest standard deviation to mean value ratio. The best combination gives coefficients of variation of 2--3% for samples of 100 trucks, below the expected accuracy of single-event WIM measurements. Time tracking of data shows some high-variation sites have seasonal variations, or linear variations over the time-ordered samples. Modeling of these effects is very site specific but provides a way to reduce high variations. Some automatic calibration schemes would erroneously remove such seasonal or linear variations were they static effects.« less
Elnaggar, Yosra Shaaban R; El-Massik, Magda A; Abdallah, Ossama Y; Ebian, Abd Elazim R
2010-06-01
The recent challenge in orally disintegrating tablets (ODT) manufacturing encompasses the compromise between instantaneous disintegration, sufficient hardness, and standard processing equipment. The current investigation constitutes one attempt to fulfill this challenge. Maltodextrin, in the present work, was utilized as a novel excipient to prepare ODT of meclizine. Tablets were prepared by both direct compression and wet granulation techniques. The effect of maltodextrin concentrations on ODT characteristics--manifested as hardness and disintegration time--was studied. The effect of conditioning (40 degrees C and 75% relative humidity) as a post-compression treatment on ODT characteristics was also assessed. Furthermore, maltodextrin-pronounced hardening effect was investigated using differential scanning calorimetry (DSC) and X-ray analysis. Results revealed that in both techniques, rapid disintegration (30-40 s) would be achieved on the cost of tablet hardness (about 1 kg). Post-compression conditioning of tablets resulted in an increase in hardness (3 kg), while keeping rapid disintegration (30-40 s) according to guidance of the FDA for ODT. However, direct compression-conditioning technique exhibited drawbacks of long conditioning time and appearance of the so-called patch effect. These problems were, yet, absent in wet granulation-conditioning technique. DSC and X-ray analysis suggested involvement of glass-elastic deformation in maltodextrin hardening effect. High-performance liquid chromatography analysis of meclizine ODT suggested no degradation of the drug by the applied conditions of temperature and humidity. Overall results proposed that maltodextrin is a promising saccharide for production of ODT with accepted hardness-disintegration time compromise, utilizing standard processing equipment and phenomena of phase transition.
Rasool, Bazigha Kadhim Abdul; Fahmy, Sahar Abdelsattar; Galeel, Omar Waleed Abdul
2012-10-01
To determine the effect of chitosan, starch powder, polyvinylpyrrolidone (PVP), Avicel PH 101 powder, Avicel PH 102 granules as a function of different concentrations on the solubility, disintegration and hence dissolution of furosemide from immediate release tablet dosage forms. The tablets were prepared by the wet granulation method and evaluated for hardness, friability, disintegration and in vitro dissolution. Chitosan 7% w/w showed the fastest disintegration of furosemide tablets among the other disintegrants studied. This was attributed to its highest swelling properties and velocity constant of water uptake. The step of adding chitosan during tablet preparation had a great effect on the physical properties and dissolution profiles of the prepared tablets with external addition of chitosan showed best results compared to best results comparing to internal-external or internal addition. The most appropriate force of compression was 4ton/cm(2). The selected formula F15 containing 7% w/w chitosan was successful and showed a high significant (p<0.001) enhancement in disintegration and dissolution behaviors of furosemide tablets in comparison with the commercially available Furosemide ® tablets. These results were supported by the simulated data where F15 formula showed the highest plasma concentration C-max 1.89mcg/mL after 0.5 hr compared to C-max 1.05mcg/mL after 1hr for the reference. The present study demonstrated that chitosan is a very good candidate to be used as a tablet disintegrant and was able to enhance the dissolution of poorly absorbable drugs.
Randale, Shivsagar Ashok; Dabhi, Chandu Somatbhai; Tekade, Avinash Ramrao; Belgamwar, Veena Shailendra; Gattani, Surendra Ganeshlal; Surana, Sanjay Javarilal
2010-04-01
The purpose of this study was to mask the intensely bitter taste of metoclopramide HCl and to formulate a rapid disintegrating tablet (RDT) of the taste-masked drug. Taste masking was done by complexing metoclopramide HCl with aminoalkyl methacrylate copolymer (Eudragit EPO) in different ratio by the extrusion-precipitation method. Drug-polymer complexes (DPCs) were tested for drug content, in vitro taste in simulated salivary fluid (SSF) of pH 6.8, taste evaluation in oral cavity and molecular property. The complex having drug-polymer ratio of 1 : 2 shows significant taste masking, confirmed by drug release in SSF and in-vivo taste evaluation; therefore, it was selected for further study. Taste evaluation of DPCs in human volunteers revealed considerable taste masking with the degree of bitterness below threshold value (0.5) within 10 s, whereas, metoclopramide HCl was rated intensely bitter with a score of +3 for 10 s. Tablets were evaluated for various parameters like tensile strength, wetting time, water absorption ratio, in-vitro disintegration time, and disintegration in oral cavity. The effect of diluents, lubricants and sweetening agent (Xylisorb) on the disintegration time was also evaluated. Tablets of batch F3 containing mannitol and microcrystalline cellulose in the ratio 1 : 1 and 8% w/w crosspovidone showed faster disintegration (within 20 s) than the marketed formulation (180 s). Good correlation between in vitro disintegration behavior and in the oral cavity was recognized. Tablets of batch F3 also revealed rapid drug release (t(90), 90 s) in SGF compared with marketed formulation (t(90), 600 s).
Gurram, Rajesh Kumar; Gandra, Suchithra; Shastri, Nalini R
2016-03-10
The objective of the study was to design and optimize a disintegrating pellet formulation of microcrystalline cellulose by non-aqueous extrusion process for a water sensitive drug using various statistical tools. Aspirin was used as a model drug. Disintegrating matrix pellets of aspirin using propylene glycol as a non-aqueous granulation liquid and croscarmellose as a disintegrant was developed. Plackett-Burman design was initially conducted to screen and identify the significant factors. Final optimization of formula was performed by response surface methodology using a central composite design. The critical attributes of the pellet dosage forms (dependent variables); disintegration time, sphericity and yield were predicted with adequate accuracy based on the regression model. Pareto charts and contour charts were studied to understand the influence of factors and predict the responses. A design space was constructed to meet the desirable targets of the responses in terms of disintegration time <5min, maximum yield, sphericity >0.95 and friability <1.7%. The optimized matrix pellets were enteric coated using Eudragit L 100. The drug release from the enteric coated pellets after 30min in the basic media was ~93% when compared to ~77% from the marketed pellets. The delayed release pellets stored at 25°C/60% RH were stable for a period of 10mo. In conclusion, it can be stated that the developed process for disintegrating pellets using non-aqueous granulating agents can be used as an alternative technique for various water sensitive drugs, circumventing the application of volatile organic solvents in conventional drug layering on inert cores. The scope of this study can be further extended to hydrophobic drugs, which may benefit from the rapid disintegration property and the use of various hydrophilic excipients used in the optimized pellet formulation to enhance dissolution and in turn improve bioavailability. Copyright © 2016 Elsevier B.V. All rights reserved.
Standardization of the finished product: Habbe Irqun Nisa - A Unani anti-inflammatory formulation.
Husain, S Farhan; Ahmad, Irshad; Shamsi, Shariq
2012-07-01
Habb (Pill) is one of the important dosage forms of Unani system of medicine. A number of effective formulations are manufactured in form of Habb because of its various advantages. Out of these, Habbe Irqun Nisa (HI) is a popular anti-inflammatory formulation used in the treatment of Warame Mafasil (arthritis) and Irqun Nisa (sciatica). Nowadays, with increased incidence of these diseases many non-steroidal anti-inflammatory drugs (NSAIDs) are being used in their treatment. Owing to the adverse effects of these drugs, the use of herbal medicines is seen as a better alternative. The basic requirement for the development of Unani system of Medicine is the standardization of single and compound drugs. HI is mentioned in National Formulary of Unani Medicne and selected for the present study. HI was prepared manually with the powder of crude drugs, passed through sieve no. 100 and mixed with 1% w/w of gum acacia in mucilage form. It was then dried at 60°C for 90 min and then tested for its standardization on different physicochemical parameters, e.g. organoleptic properties, pH values, moisture content, ash values, friability, hardness, weight variation, disintegration time, and thin layer chromatography (TLC). The data evolved from this study will make it a validated product and will help in the quality control of other finished products in future research.
Pharmacokinetics and anti-hypertensive effect of metoprolol tartrate rectal delivery system.
Abou el Ela, Amal El Sayeh F; Allam, Ayat A; Ibrahim, Ehsan H
2016-01-01
The main aim of this work was to develop rectal suppositories for better delivery of metoprolol tartrate (MT). The various bases used were fatty, water soluble and emulsion bases. The physical properties of the prepared suppositories were characterized such as weight variation, hardness, disintegration time, melting range and the drug content uniformity. The in vitro release of MT from the prepared suppositories was carried out. The evaluation of the pharmacological effects of MT on the blood pressure and heart rate of the healthy rabbits after the rectal administration compared to the oral tablets was studied. Moreover, the formulation with the highest in vitro release and the highest pharmacological effects would be selected for a further pharmacokinetics study compared to the oral tablets. The results revealed that the emulsion bases gave the highest rate of the drug release than the other bases used. The reduction effect of the emulsion MT suppository base on the blood pressure and heart rate was found to be faster and greater than that administered orally. The selected emulsion suppository base (F11) showed a significant increase in the AUC (1.88-fold) in rabbits as compared to the oral tablets. From the above results we can conclude that rectal route can serve as an efficient alternative route to the oral one for systemic delivery of MT which may be due to the avoidance of first-pass effect in the liver.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., where applicable, content uniformity, disintegration times, and/or dissolution rates. (d) Pharmaceutical..., disintegration times and/or dissolution rates. (e) Bioequivalence means the absence of a significant difference...
Comments on filament-disintegration and its relation to other aspects of solar activity.
NASA Technical Reports Server (NTRS)
Dodson, H. W.; Hedeman, E. R.; Rovira De Miceli, M.
1972-01-01
Studies of sudden disintegrations of filaments in solar cycles 19 and 20 (to 1969) indicate that such events occur frequently. Approximately 30% of all large filaments in these cycles disintegrated in the course of their transit across the solar disk. 'Major' flares occurred with above average frequency on the last day on which 141 large disappearing filaments were observed. Relationships between a disintegrating filament on July 10-11, 1959, a prior major flare, a newly formed spot, and concomitant growth of H-alpha plage are presented. Observation of prior descending prominence material apparently directed towards the location of the flare of July 15, 1959 is reported. The development of the filament-associated flare of Feb. 13, 1967 is described.
NASA Astrophysics Data System (ADS)
Bruthans, Jiri; Filippi, Michal; Zare, Mohammad
2016-04-01
In salt caves in the halite karst in SE Iran the disintegration of rock salt into individual grains can be observed. Highly disintegrated blocks and individual grains form a major volume of debris in many caves on islands in the Persian Gulf. Larger cave rooms have often perfectly arched roof. The perfect geometry of rooms and interlocking of salt grains indicate that evolution of room cross-sections in these caves is controlled by feedback between gravity-induced stress and rock salt disintegration in similar way as in evolution of sandstone landforms (Bruthans et al. 2014). Those portions of rock salt, which are under compressional stress, disintegrate much slower than portions under tensile stress. Important question is the kind of weathering mechanism responsible for intergranular disintegration of rock salt. The relationship between disintegration, its rate and cave climate was studied. Clearly the fastest disintegration rate was found in caves with strong air circulation (i.e, short caves with large cross-sections, open on both ends). Temperature and air humidity changes are considerable in these caves. On the other hand the disintegration is very slow in the inner parts of long caves with slow air circulation or caves with one entrance. The best example of such caves is the inner part of 3N Cave on Namakdan salt diapir with nearly no air circulation and stable temperature and humidity, where disintegration of rock salt into grains is missing. Strong effect of cave climate on disintegration rate can be explained by deliquescence properties of halite. Halite is absorbing air moisture forming NaCl solution if relative humidity (RH) exceeds 75 % (at 20-30 oC). In the Persian Gulf region the RH of the air is passing the 75 % threshold in case of 91% days (Qeshm Island, years 2002-2005), while in mountainous areas in mainland this threshold is less commonly reached. In most of nights (91 %) in Persian Gulf the air with RH >75 % is entering the salt caves and air moisture is wetting the dry rock and slightly diluting the percolating brine in ceiling of the caves, which is otherwise just saturated with respect to halite. During days the RH is <75% and brine partly dries up and precipitates halite. By repeating the cycle of dissolution and precipitation of halite and possibly also by temperature changes the rock salt is disintegrated into interlocked salt grains, whose behavior is then strongly controlled by gravity-induced stress. Research was funded by the Czech Science Foundation (GA CR No. 16-19459S). Reference: Bruthans J, Soukup J., Vaculíková J., Filippi M., Schweigstillova J., Mayo A.L., Masin D., Kletetschka G.,Rihosek J. (2014): Sandstone landforms shaped by negative feedback between stress and erosion. Nature Geoscience 7(8): 597-601.
Zhao, Na; Augsburger, L L
2006-01-01
The purpose of this study is to investigate factors influencing croscarmellose sodium functionality with special emphasis on developing a discriminating model tablet formulation to evaluate product brand-to-brand variability. The particle size distribution, water uptake, and swelling properties of five brands of croscarmellose sodium in either neutral water or 0.1 N HCl were studied. Differences were observed in all properties between brands. Media with acidic pH had a negative impact, but to different extents, on both the water uptake and swelling of all croscarmellose sodium brands due to the presence of carboxymethyl sodium substituents. A tablet matrix composed of lactose (75% w/w) and dicalcium phosphate (25% wt/wt) was used to compare the functional equivalency of the five brands of croscarmellose sodium. The tablet disintegration times were inversely proportional to the swelling ability of superdisintegrant in the testing medium regardless of medium temperature and disintegrant concentration. In conclusion; the particle size, total degree of substitution, and the ratio of basic to acidic substituents are important factors that should be considered during product optimization. The tablet matrix composed of lactose and dicalcium phosphate at a weight ratio of 3:1 can be used as a model formulation for product lot-to-lot consistency and product brand-to-brand comparison purposes.
Disintegration of sublingual tablets: proposal for a validated test method and acceptance criterion.
Weda, M; van Riet-Nales, D A; van Aalst, P; de Kaste, D; Lekkerkerker, J F F
2006-12-01
In the Netherlands the market share of isosorbide dinitrate 5 mg sublingual tablets is dominated by 2 products (A and B). In the last few years complaints have been received from health care professionals on product B. During patient use the disintegration of the tablet was reported to be slow and/or incomplete, and ineffectiveness was experienced. In the European Pharmacopoeia (Ph. Eur.) no requirement is present for the disintegration time of sublingual tablets. The purpose of this study was to compare the in vitro disintegration time of products A and B, and to establish a suitable test method and acceptance criterion. A and B were tested with the Ph. Eur. method described in the monograph on disintegration of tablets and capsules as well as with 3 modified tests using the same Ph. Eur. apparatus, but without movement of the basket-rack assembly. In modified test 1 and modified test 2 water was used as medium (900 ml and 50 ml respectively), whereas in modified test 3 artificial saliva was used (50 ml). In addition, disintegration was tested in Nessler tubes with 0.5 and 2 ml of water. Finally, the Ph. Eur. method was also applied to other sublingual tablets with other drug substances on the Dutch market. With modified test 3 no disintegration could be achieved within 20 min. With the Ph. Eur. method and modified tests 1 and 2 product A and B differed significantly (p < 0. 001), with product B having longer disintegration times. These 3 methods were capable of discriminating between products and between batches. The time measured with the Ph. Eur. method was significantly lower compared to modified tests 1 and 2 (p < 0.001) and correlated well with the Nessler tube results. It is concluded that the in vivo complaints on product B could be related to the in vitro data. Furthermore, it is proposed that for immediate release of sublingual tablets the disintegration time should be tested. The Ph. Eur. method is considered suitable for this test. In view of the products currently on the market and taking into consideration requirements in the United States Pharmacopeia and Japanese Pharmacopoeia, an acceptance criterion of not more than 2 min is proposed.
Hsu, Wen-Yu; Huang, Si-Sheng; Lee, Bo-Shyan; Chiu, Nan-Ying
2010-06-01
The purpose of this study was to compare efficacy and safety among intramuscular olanzapine, intramuscular haloperidol, orally disintegrating olanzapine tablets, and oral risperidone solution for agitated patients with psychosis during the first 24 hours of treatment in an acute care psychiatric ward. Forty-two inpatients from an acute care psychiatric ward of a medical center in central Taiwan were enrolled. They were randomly assigned to 1 of the 4 treatment groups (10-mg intramuscular olanzapine, 10-mg olanzapine oral disintegrating tablet, 3-mg oral risperidone solution, or 7.5-mg intramuscular haloperidol). Agitation was measured by using the excited component of the Positive and Negative Syndrome Scale (PANSS-EC), the Agitation-Calmness Evaluation Scale, and the Clinical Global Impression--Severity Scale during the first 24 hours. There were significant differences in the PANSS-EC total scores for the 4 intervention groups at 15, 30, 45, 60, 75, and 90 minutes after the initiation of treatment. More significant differences were found early in the treatment. In the post hoc analysis, the patients who received intramuscular olanzapine or orally disintegrating olanzapine tablets showed significantly greater improvement in PANSS-EC scores than did patients who received intramuscular haloperidol at points 15, 30, 45, 60, 75, and 90 minutes after injection. These findings suggest that intramuscular olanzapine, orally disintegrating olanzapine tablets, and oral risperidone solution are as effective treatments as intramuscular haloperidol for patients with acute agitation. Intramuscular olanzapine and disintegrating olanzapine tablets are more effective than intramuscular haloperidol in the early phase of the intervention. There is no significant difference in effectiveness among intramuscular olanzapine, orally disintegrating olanzapine tablets, and oral risperidone solution.
Kilor, Vaishali A; Sapkal, Nidhi P; Awari, Jasmine G; Shewale, Bharti D
2010-03-01
In the present study, an attempt was made to prepare immediate-release enteric-coated pellets of aceclofenac, a poorly soluble nonsteroidal anti-inflammatory drug that has a gastrointestinal intolerance as its serious side effect. Formulation of enteric-coated pellets with improved solubility of aceclofenac could address both of these problems. To achieve these goals, pellets were prepared by extrusion-spheronization method using pelletizing agents that can contribute to the faster disintegration and thereby improve the solubility of the drug. Different disintegrants like beta-cyclodextrin, kollidon CL, Ac-Di-Sol, and sodium starch glycolate were tried in order to further improve disintegration time. The pellets were characterized for drug content, particle size distribution, flow properties, infrared spectroscopy, surface morphology, disintegration rate, and dissolution profile. The formulations, which showed best disintegration and dissolution profiles, were coated with Eudragit L100-55, an enteric-coated polymer which does not dissolve at gastric pH but dissolves at intestinal pH, releasing the drug immediately in the dissolution medium. The optimized enteric-coated formulation containing 20% kappa-carrageenan, lactose, and sodium starch glycolate as a disintegrant did inhibit the release of the drug for 2 h in 0.1 N HCl, whereas 87% of the drug was released within 45 min. The improvement was substantial when it was compared with solubility of pure drug under the same conditions. Thus, dissolution profiles suggested that combination of kappa-carrageenan and sodium starch glycolate resulted into fast-disintegrating, immediate-release pellets, overcoming the bioavailability problem of the poorly soluble drug, aceclofenac, and enteric coating of these pellets avoids the exposure of aceclofenac to ulcer-prone areas of the gastrointestinal tract.
Ultrasound pretreatment of filamentous algal biomass for enhanced biogas production.
Lee, Kwanyong; Chantrasakdakul, Phrompol; Kim, Daegi; Kong, Mingeun; Park, Ki Young
2014-06-01
The filamentous alga Hydrodictyon reticulatum harvested from a bench-scale wastewater treatment pond was used to evaluate biogas production after ultrasound pretreatment. The effects of ultrasound pretreatment at a range of 10-5000 J/mL were tested with harvested H. reticulatum. Cell disruption by ultrasound was successful and showed a higher degree of disintegration at a higher applied energy. The range of 10-5000 J/mL ultrasound was able to disintegrated H. reticulatum and the soluble COD was increased from 250 mg/L to 1000 mg/L at 2500 J/mL. The disintegrated algal biomass was digested for biogas production in batch experiments. Both cumulative gas generation and volatile solids reduction data were obtained during the digestion. Cell disintegration due to ultrasound pretreatment increased the specific biogas production and degradation rates. Using the ultrasound approach, the specific methane production at a dose of 40 J/mL increased up to 384 mL/g-VS fed that was 2.3 times higher than the untreated sample. For disintegrated samples, the volatile solids reduction was greater with increased energy input, and the degradation increased slightly to 67% at a dose of 50 J/mL. The results also indicate that disintegration of the algal cells is the essential step for efficient anaerobic digestion of algal biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pandey, Preetanshu; Levins, Christopher; Pafiakis, Steve; Zacour, Brian; Bindra, Dilbir S; Trinh, Jade; Buckley, David; Gour, Shruti; Sharif, Shasad; Stamato, Howard
2018-07-01
The objective of this study was to improve the disintegration and dissolution characteristics of a highly water-soluble tablet matrix by altering the manufacturing process. A high disintegration time along with high dependence of the disintegration time on tablet hardness was observed for a high drug loading (70% w/w) API when formulated using a high-shear wet granulation (HSWG) process. Keeping the formulation composition mostly constant, a fluid-bed granulation (FBG) process was explored as an alternate granulation method using a 2 (4-1) fractional factorial design with two center points. FBG batches (10 batches) were manufactured using varying disingtegrant amount, spray rate, inlet temperature (T) and atomization air pressure. The resultant final blend particle size was affected significantly by spray rate (p = .0009), inlet T (p = .0062), atomization air pressure (p = .0134) and the interaction effect between inlet T*spray rate (p = .0241). The compactibility of the final blend was affected significantly by disintegrant amount (p < .0001), atomization air pressure (p = .0013) and spray rate (p = .05). It was observed that the fluid-bed batches gave significantly lower disintegration times than the HSWG batches, and mercury intrusion porosimetry data revealed that this was caused by the higher internal pore structure of tablets manufactured using the FBG batches.
Jayamani, Jayaraman; Ravikanth Reddy, R; Madhan, Balaraman; Shanmugam, Ganesh
2018-02-01
Excess accumulation of collagen (fibrosis) undergoes self-aggregation, which leads to fibrillar collagen, on the extracellular matrix is the hallmark of a number of diseases such as keloids, hypertrophic scars, and systemic scleroderma. Direct inhibition or disintegration of collagen fibrils by small molecules offer a therapeutic approach to prevent or treat the diseases related to fibrosis. Herein, the anti-fibrotic property of Glucono-δ-lactone (GdL), known as acidifier, on the fibrillation and its disintegration of collagen was investigated. As collagen fibrillation is pH dependent, the pH modulation property of GdL is attractive to inhibit self-association of collagen. Optical density and microscopic data indicate that GdL elicits concentration-dependent fibril inhibition and also disintegrates pre-formed collagen fibrils. The simultaneous pH analysis showed that the modulation(lowering) of pH by GdL is the primary cause for its anti-fibrotic activity. The intact triple helical structure of collagen upon treatment of GdL suggests that collagen fibril disintegration can be achieved without affecting the native structure of collagen which is essential for any anti-fibrotic agents. Saturation transfer difference (STD) NMR result reveals that GdL is in proximity to collagen. The present results thus suggest that GdL provides a lead to design novel anti-fibrotic agents for the pathologies related to collagen deposition. Copyright © 2017 Elsevier B.V. All rights reserved.
Palatal Seam Disintegration: To Die or Not to Die? That Is No Longer the Question
Nawshad, Ali
2008-01-01
Formation of the medial epithelial seam (MES) by palatal shelf fusion is a crucial step of palate development. Complete disintegration of the MES is the final essential phase of palatal confluency with surrounding mesenchymal cells. In general, the mechanisms of palatal seam disintegration are not overwhelmingly complex, but given the large number of interacting constituents; their complicated circuitry involving feedforward, feedback, and crosstalk; and the fact that the kinetics of interaction matter, this otherwise simple mechanism can be quite difficult to interpret. As a result of this complexity, apparently simple but highly important questions remain unanswered. One such question pertains to the fate of the palatal seam. Such questions may be answered by detailed and extensive quantitative experimentation of basic biological studies (cellular, structural) and the newest molecular biological determinants (genetic/dye cell lineage, gene activity, kinase/enzyme activity), as well as animal model (knockouts, transgenic) approaches. System biology and cellular kinetics play a crucial role in cellular MES function; omissions of such critical contributors may lead to inaccurate understanding of the fate of MES. Excellent progress has been made relevant to elucidation of the mechanism(s) of palatal seam disintegration. Current understanding of palatal seam disintegration suggests epithelial–mesenchymal transition and/or programmed cell death as two most common mechanisms of MES disintegration. In this review, I discuss those two mechanisms and the differences between them. PMID:18629865
Hot-stage microscopy for determination of API particles in a formulated tablet.
Simek, Michal; Grünwaldová, Veronika; Kratochvíl, Bohumil
2014-01-01
Although methods exist to readily determine the particle size distribution (PSD) of an active pharmaceutical ingredient (API) before its formulation into a final product, the primary challenge is to develop a method to determine the PSD of APIs in a finished tablet. To address the limitations of existing PSD methods, we used hot-stage microscopy to observe tablet disintegration during temperature change and, thus, reveal the API particles in a tablet. Both mechanical and liquid disintegration were evaluated after we had identified optimum milling time for mechanical disintegration and optimum volume of water for liquid disintegration. In each case, hot-stage micrographs, taken before and after the API melting point, were compared with image analysis software to obtain the PSDs. Then, the PSDs of the APIs from the disintegrated tablets were compared with the PSDs of raw APIs. Good agreement was obtained, thereby confirming the robustness of our methodology. The availability of such a method equips pharmaceutical scientists with an in vitro assessment method that will more reliably determine the PSD of active substances in finished tablets.
Sharmila, V Godvin; Dhanalakshmi, P; Rajesh Banu, J; Kavitha, S; Gunasekaran, M
2017-11-01
In the present study, the deflocculated sludge was disintegrated through thin layer immobilized titanium dioxide (TiO 2 ) as photocatalyst under solar irradiation. The deflocculation of sludge was carried out by 0.05g/g SS of sodium citrate aiming to facilitate more surface area for subsequent TiO 2 mediated disintegration. The proposed mode of disintegration was investigated by varying TiO 2 dosage, pH and time. The maximum COD solubilization of 18.4% was obtained in the optimum 0.4g/L of TiO 2 dosage with 5.5 pH and exposure time of 40min. Anaerobic assay of disintegrated samples confirms the role of deflocculation as methane yield was found to be higher in deflocculated (235.6mL/gVS) than the flocculated sludge (146.8mL/gVS). Moreover, the proposed method (Net cost for control - Net cost for deflocculation) saves sludge management cost of about $132 with 53.8% of suspended solids (SS) reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kavitha, S; Saranya, T; Kaliappan, S; Adish Kumar, S; Yeom, Ick Tae; Rajesh Banu, J
2015-01-01
The present study investigates the impacts of phase separated disintegration through CaCl2 (calcium chloride) mediated biosurfactant producing bacterial pretreatment. In the initial phase of the study, the flocs were disintegrated (deflocculation) with 0.06g/gSS of CaCl2. In the subsequent phase, the sludge biomass was disintegrated (cell disintegration) through potent biosurfactant producing new novel bacteria, Planococcus jake 01. The pretreatment showed that suspended solids reduction and chemical oxygen demand solubilization for deflocculated - bacterially pretreated sludge was found to be 17.14% and 14.14% which were comparatively higher than flocculated sludge (treated with bacteria alone). The biogas yield potential of deflocculated - bacterially pretreated, flocculated, and control sludges were observed to be 0.322(L/gVS), 0.225(L/gVS) and 0.145(L/gVS) respectively. To our knowledge, this is the first study to present the thorough knowledge of biogas production potential through a novel phase separated biosurfactant bacterial pretreatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Disintegration impact on sludge digestion process.
Dauknys, Regimantas; Rimeika, Mindaugas; Jankeliūnaitė, Eglė; Mažeikienė, Aušra
2016-11-01
The anaerobic sludge digestion is a widely used method for sludge stabilization in wastewater treatment plant. This process can be improved by applying the sludge disintegration methods. As the sludge disintegration is not investigated enough, an analysis of how the application of thermal hydrolysis affects the sludge digestion process based on full-scale data was conducted. The results showed that the maximum volatile suspended solids (VSS) destruction reached the value of 65% independently on the application of thermal hydrolysis. The average VSS destruction increased by 14% when thermal hydrolysis was applied. In order to have the maximum VSS reduction and biogas production, it is recommended to keep the maximum defined VSS loading of 5.7 kg VSS/m(3)/d when the thermal hydrolysis is applied and to keep the VSS loading between 2.1-2.4 kg VSS/m(3)/d when the disintegration of sludge is not applied. The application of thermal hydrolysis leads to an approximately 2.5 times higher VSS loading maintenance comparing VSS loading without the disintegration; therefore, digesters with 1.8 times smaller volume is required.
Jung, Kyung-Won; Hwang, Min-Jin; Yun, Yeo-Myeong; Cha, Min-Jung; Ahn, Kyu-Hong
2014-09-01
In this current study, we present a modified hydrodynamic cavitation device that combines an electric field to substitute for the chemical addition. A modified HC system is basically an orifice plate and crisscross pipe assembly, in which the crisscross pipe imparts some turbulence, which creates collision events. This study shows that for maximizing disintegration, combining HC system, which called electric field-assisted modified orifice plate hydrodynamic cavitation (EFM-HC) in this study, with an electric field is important. Various HC systems were compared in terms of disintegration of WAS, and, among them, the EFM-HC system exhibited the best performance with the highest disintegration efficiency of 47.0±2.0% as well as the destruction of WAS morphological characteristics. The experimental results clearly show that a conventional HC system was successfully modified. In addition, electric field has a great potential for efficient disintegration of WAS for as a additional option in a combination treatment. This study suggests continued research in this field may lead to an appropriate design for commercial use. Copyright © 2014 Elsevier B.V. All rights reserved.
Kavitha, S; Jessin Brindha, G M; Sally Gloriana, A; Rajashankar, K; Yeom, Ick Tae; Rajesh Banu, J
2016-01-01
An investigation was performed to study the influence of ultrasonic aided bacterial disintegration on the aerobic degradability of sludge. In first phase of the study, effective floc disruption was achieved at an ultrasonic specific energy input of 2.45kJ/kg TS with 44.5mg/L of Extracellular Polymeric Substance (EPS) release including 0.035U/mL and 0.025U/mL protease and amylase activity respectively. In second phase, experimental outcomes revealed bacterial disintegration of floc disrupted-sludge showing a maximum solubilization of about 23% and was observed to be superior to bacterially disintegrated (11%) and control (6%), respectively. The result of aerobic biodegradability of ultrasonic aided bacterially pretreated sludge showed volatile solids (VS) degradation of about 40.2%. The kinetic study of aerobic biodegradability through non linear regression modelling reveals that floc disrupted sludge showed better biodegradability with decay constant of about 0.19d(-1) relatively higher than the control (0.14d(-1)) and bacterially disintegrated (0.17d(-1)) sludges. Copyright © 2015 Elsevier Ltd. All rights reserved.
Suenaga, Shin; Osada, Mitsumasa
2018-04-17
Dynamic viscoelasticities were measured for chitin nanofiber (ChNF) dispersions prepared with various concentrations, disintegration times, acidities, and crystalline structures. The 0.05 w/v% dispersions of pH neutral ChNFs continuously exhibited elastic behavior. The 0.05 w/v% dispersions of acidified ChNFs, on the other hand, transitioned from a colloidal dispersion to a critical gel and then exhibited elastic behavior with increasing ChNF concentration. A double-logarithmic chart of the concentration vs. the storage modulus was prepared and indicated the fractal dimension and the nanostructure in the dispersion. The results determined that the neutral α- and β-ChNFs were dispersed but showed some remaining aggregations and that the acidified β-ChNFs were completely individualized. In addition, the α-chitin steadily disintegrated with increasing disintegration time, and the aspect ratio of the β-chitin decreased as a result of the exscessive disintegration. The storage moduli of the ChNFs were greater than those of chitin solutions, nanorods, and nanowhiskers with the same solids concentrations. Copyright © 2018 Elsevier B.V. All rights reserved.
Sewage sludge disintegration by combined treatment of alkaline+high pressure homogenization.
Zhang, Yuxuan; Zhang, Panyue; Zhang, Guangming; Ma, Weifang; Wu, Hao; Ma, Boqiang
2012-11-01
Alkaline pretreatment combined with high pressure homogenization (HPH) was applied to promote sewage sludge disintegration. For sewage sludge with a total solid content of 1.82%, sludge disintegration degree (DD(COD)) with combined treatment was higher than the sum of DD(COD) with single alkaline and single HPH treatment. NaOH dosage ⩽0.04mol/L, homogenization pressure ⩽60MPa and a single homogenization cycle were the suitable conditions for combined sludge treatment. The combined sludge treatment showed a maximum DD(COD) of 59.26%. By regression analysis, the combined sludge disintegration model was established as 11-DD(COD)=0.713C(0.334)P(0.234)N(0.119), showing that the effect of operating parameters on sludge disintegration followed the order: NaOH dosage>homogenization pressure>number of homogenization cycle. The energy efficiency with combined sludge treatment significantly increased compared with that with single HPH treatment, and the high energy efficiency was achieved at low homogenization pressure with a single homogenization cycle. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hydrophobic polymers for orodispersible films: a quality by design approach.
Borges, Ana Filipa; Silva, Branca M A; Silva, Cláudia; Coelho, Jorge F J; Simões, Sérgio
2016-10-01
To develop orodispersible films (ODF) based on hydrophobic polymers with higher stability to ordinary environmental humidity conditions without compromising their fast disintegration time. A quality by design approach was applied to screen three different formulations each one based on a different hydrophobic polymer: polyvinyl acetate, methacrylate-based copolymer and shellac. The screening formulations were characterized regarding their mechanical properties, residual water content, disintegration time and appearance, in order to find a suitable ODF formulation according to established critical quality attributes. The selected critical process parameters for the selection of appropriate ODF formulations were the percentage of the different excipients and the plasticizer type. Three hydrophobic-based matrices with fast disintegration were developed. These were generically composed by a hydrophobic polymer, a stabilizer, a disintegrant and a plasticizer. It verified that the common components within the three different formulations behave differently depending on the system/chemical environment that they were included. It was shown that it is possible to develop oral films based on hydrophobic polymers with fast disintegration time, good texture and appearance, breaking a paradigm of the ODF research field.
Tritt-Goc, Jadwiga; Kowalczuk, Joanna
2002-05-01
The disintegration behavior of paracetamol tablets was studied by magnetic resonance imaging (MRI) using the Snapshot FLASH method. The total time of the single experiment is 425 ms and allows the study of the disintegration process in real time. The study was carried out in vitro under acidic gastric pH conditions and may help to predict the behavior of paracetamol tablets in the stomach after oral administration. It was shown that in spite of identical conditions, the disintegration of the tablets under study was different. The distribution of protons of 4-(N-acetyl)aminophenol within the paracetamol tablet was shown to be homogeneous. The study was carried out in a non-destructive way by the SPI MRI method.
Components of released liquid from ultrasonic waste activated sludge disintegration.
Wang, Fen; Lu, Shan; Ji, Min
2006-05-01
Ultrasound can be applied as a pretreatment to disintegrate sludge. In this paper, by observing the solution concentration of polysaccharide, protein, DNA, Ca and Mg before and after disintegration, the main components in the released liquid are analyzed. It has been found that the predominant component of the released liquid in this research is protein. Ultrasound can destroy the extracellular polymeric substances (EPS), which is important to the sludge flocs structure. Ca2+ and Mg2+, which play a key role in binding the EPS are released into the aqueous phase. As a result, the sludge flocs are loosened. Under the effect of the hydraulic shear force, the sludge is disintegrated. Then the hydraulic shear forces destroy the cell walls, the substances inside the cells are released into the aqueous phase.
Effect of Calcium Ions on the Disintegration of Enteric-Coated Solid Dosage Forms.
Al-Gousous, Jozef; Langguth, Peter
2016-02-01
To investigate the effect of calcium ions on the disintegration of enteric-coated dosage forms, disintegration testing was performed on enteric-coated aspirin tablets in the presence and absence of calcium in the test media. The results show that the presence of calcium ions retards the disintegration of enteric-coated dosage forms. This finding, which has not been reported in scientific literature, sheds light on the importance of conducting well-designed detailed investigations into the potential of calcium from dietary sources, calcium supplements, antacids, and/or phosphate binders affecting the absorption of drugs formulated into enteric-coated dosage forms. Moreover, it shows the necessity to investigate the potential of the occurrence of additional nutrient-excipient interactions. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Use of hydrodynamic disintegration to accelerate anaerobic digestion of surplus activated sludge.
Grübel, Klaudiusz; Machnicka, Alicja
2009-12-01
Hydrodynamic disintegration of activated sludge resulted in organic matter and polymers transfer from the solid phase into the liquid phase. Disintegration by hydrodynamic cavitation had a positive effect on the degree and rate of excess sludge anaerobic digestion. Also, addition of a part of anaerobic digested sludge containing adapted microorganisms resulted in acceleration of the process. The disruption of cells of foam microorganisms and addition to the digestion process led to an increase of biogas production.
Majumdar, R; Alexander, K S; Riga, A T
2010-05-01
Polyethylene glycols (PEGs) are well known as excipients in tablet dosage formulations. PEGs are generally known to be inert and have very few interactions with other components in the solid dosage forms. However, the physical nature of PEGs and how they affect the disintegration of tablets is not very well understood for the different molecular weights of PEGs. The knowledge of the effect of molecular weight of PEGs on their physical properties and the effect of humidity on the physical properties of PEGs are important parameters for the choice of a PEG to be acceptable as an excipient in pharmaceutical formulations. This study was done to determine the precision of the DSC physical properties for a wide range of PEGs with varying molecular weights from 194 to 23000 daltons. Nine different molecular weights of PEGs were examined in a DSC controlled Heat-Cool-Heat-Cool-Heat (HCHCH) cycle and the observed reproducible values of melting temperature, heat of fusion, crystallization temperature and the heat of crystallization were compared with values obtained from the literature and the observed percent crystallinity was again cross-checked by X-ray Diffraction (XRD) studies. The comparison values indicated acceptable precision. This study was also done to check the effect of humidity on the DSC physical properties for the entire range of PEGs. The results indicated that humidity probably has a higher effect on the physical properties of the low molecular weight PEGs as compared to the high molecular weight PEGs.
NASA Astrophysics Data System (ADS)
Feather, N.
2016-03-01
General preface; Author's preface; 1. The systematics of stable nuclei; 2. Regularities in x-disintegration; 3. Regularities in β-disintegration; 4. Spontaneous fission and the number of the elements; References and author index; Subject index.
Kawano, Yayoi; Ito, Akihiko; Sasatsu, Masanaho; Machida, Yoshiharu
2010-01-01
We investigated several methods of taste masking in the preparation of orally disintegrating tablets (ODTs), using furosemide (FU) as a model drug. Four types of FU preparations were prepared: granules with maltitol (MA), granules with yogurt powder (YO), a physical mixture of FU and MA, and a physical mixture of FU and YO. All taste-masking granules were prepared using the dry granulation method. The taste of each type of preparation was evaluated. All four preparations markedly improved the taste of the FU tablets, but the mixing ratios of the correctives did not affect the masking effect. No difference in masking effect was found between MA and YO in the physical mixtures, but the masking effect in the granules with YO was superior to that of the granules with MA. Taste-masked FU tablets were prepared using the direct compression method; crystalline cellulose (Avicel PH-302) and mannitol were added as excipients at the mixing ratio of 1/1. All four types of tablets displayed sufficient hardness, but MA-containing tablets were harder than YO-containing tablets. The hardness of the tablets prepared from YO granules increased as the YO content increased. The most rapidly disintegrating tablets were those of YO granules prepared at a mixing ratio of FU/YO=1/1, which disintegrated within 20 s, followed by the tablets of MA granules prepared at a mixing ratio of FU/MA=1/1. The disintegration times of the tablets made from physical mixtures, in contrast, were longer than 200 s. Disintegration time lengthened as the mixing ratio of YO or MA increased. The hardness and disintegration time of these tablets could be controlled by varying the compression pressure. We found that YO is more useful than MA in masking unpleasant tastes and confirmed that orally disintegrating tablets with taste-masking function can be prepared using granules of YO prepared using the dry granulation method as a new corrective.
Energy potential of the modified excess sludge
NASA Astrophysics Data System (ADS)
Zawieja, Iwona
2017-11-01
On the basis of the SCOD value of excess sludge it is possible to estimate an amount of energy potentially obtained during the methane fermentation process. Based on a literature review, it has been estimated that from 1 kg of SCOD it is possible to obtain 3.48 kWh of energy. Taking into account the above methane and energy ratio (i.e. 10 kWh/1Nm3 CH4), it is possible to determine the volume of methane obtained from the tested sludge. Determination of potential energy of sludge is necessary for the use of biogas as a source of power generators as cogeneration and ensure the stability of this type of system. Therefore, the aim of the study was to determine the energy potential of excess sludge subjected to the thermal and chemical disintegration. In the case of thermal disintegration, test was conducted in the low temperature 80°C. The reagent used for the chemical modification was a peracetic acid, which in an aqueous medium having strong oxidizing properties. The time of chemical modification was 6 hours. Applied dose of the reagent was 1.0 ml CH3COOOH/L of sludge. By subjecting the sludge disintegration by the test methods achieved an increase in the SCOD value of modified sludge, indicating the improvement of biodegradability along with a concomitant increase in their energy potential. The obtained experimental production of biogas from disintegrated sludge confirmed that it is possible to estimate potential intensity of its production. The SCOD value of 2576 mg O2/L, in the case of chemical disintegration, was obtained for a dose of 1.0 ml CH3COOH/L. For this dose the pH value was equal 6.85. In the case of thermal disintegration maximum SCOD value was 2246 mg O2/L obtained at 80°C and the time of preparation 6 h. It was estimated that in case of thermal disintegration as well as for the chemical disintegration for selected parameters, the potential energy for model digester of active volume of 5L was, respectively, 0.193 and 0,118 kWh.
Observation of lunar radon emanation with the Apollo 15 alpha particle spectrometer.
NASA Technical Reports Server (NTRS)
Gorenstein, P.; Bjorkholm, P.
1972-01-01
The alpha particle spectrometer, a component of the orbital Sim Bay group of 'geochemistry' experiments on Apollo 15, was designed to detect alpha particles emitted during the decay of isotopes of radon gas and her daughter products. The purpose was to measure the gross activity of radon on the lunar surface and to find possible regions of increased local activity. Results are presented from a partial analysis of Apollo 15 data. For the moon as a whole, Rn220 was not observed and the upper limit on its decay rate above the lunar surface is 0.00038 disintegrations/sq cm-sec. Rn222 was marginally observed. Possible variations of radon activity on the lunar surface are being investigated. Po210 (a daughter product of Rn222) has been detected in a broad region from west of Mare Crisium to the Van de Graaff-Orlov region. The observed count rate is (4.6 plus or minus 1.4) x 0.001 disintegrations/sq cm-sec. The observed level of Po210 activity is in excess of the amount that would be in equilibrium with Rn222 by about an order of magnitude. This implies that larger levels of radon emanation have occurred on the moon within a time scale of 10 to 100 years.
... by your doctor.If you are taking the rapidly disintegrating tablet, remove the tablet from the package just before ... of reach of children. Store the tablets and rapidly disintegrating tablets away from light, at room temperature or in ...
Rush, Steven D; Vernak, Charlene; Zhao, Fang
2017-01-01
Dehydroepiandrosterone supplementation is used to treat a variety of conditions. Rapid-dissolving tablets are a relatively novel choice for compounded dehydroepiandrosterone dosage forms. While rapid-dissolving tablets offer ease of administration, there are uncertainties about the physical and chemical stability of the drug and dosage form during preparation and over long-term storage. This study was designed to evaluate the stability of dehydroepiandrosterone rapid-dissolving tablets just after preparation and over six months of storage. The Professional Compounding Centers of America rapid-dissolving tablet mold and base formula were used to prepare 10-mg strength dehydroepiandrosterone rapid-dissolving tablets. The formulation was heated at 100°C to 110°C for 30 minutes, released from the mold, and cooled at room temperature for 30 minutes. The resulting rapid-dissolving tablets were individually packaged in amber blister packs and stored in a stability chamber maintained at 25°C and 60% relative humidity. The stability samples were pulled at pre-determined time points for evaluation, which included visual inspection, tablet weight check, United States Pharmacopeia disintegration test, and stability-indicating high-performance liquid chromatography. The freshly prepared dehydroepiandrosterone rapiddissolving tablets exhibited satisfactory chemical and physical stability. Time 0 samples disintegrated within 40 seconds in water kept at 37°C. The high-performance liquid chromatographic results confirmed that the initial potency was 101.9% of label claim and that there was no chemical degradation from the heating procedure. Over six months of storage, there were no significant changes in visual appearance, physical integrity, or disintegration time for any of the stability samples. The high-performance liquid chromatographic results also indicated that dehydroepiandrosterone rapid-dissolving tablets retained >95% label claim with no detectable degradation products. The dehydroepiandrosterone rapid-dissolving tablets investigated in this pilot study were physically and chemically stable during preparation and over six months of storage at 25°C and 60% relative humidity. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Ambulatory care trends in Germany: a road toward more integration of care?
Redaelli, Marcus; Meuser, Susanne; Stock, Stephanie
2012-01-01
Traditionally, Germany has a weak primary care system. In addition, the number of general practitioners (GPs) has declined in the past years. Main challenges are an aging population, disintegration of care, variations in care, an increase in chronic conditions, and a shortage of GPs especially in rural areas. Policy reacted by implementing financial incentives for GPs in rural areas and special GP training programs. Improvements in chronic care aim to better integrate care through Disease Management Programs, the electronic health card, and voluntary primary care schemes. The largest challenge to be addressed is the delegation of physician tasks to physician assistants.
Positive Disintegration as a Process of Symmetry Breaking.
Laycraft, Krystyna
2017-04-01
This article presents an analysis of the positive disintegration as a process of symmetry breaking. Symmetry breaking plays a major role in self-organized patterns formation and correlates directly to increasing complexity and function specialization. According to Dabrowski, a creator of the Theory of Positive Disintegration, the change from lower to higher levels of human development requires a major restructuring of an individual's psychological makeup. Each level of human development is a relatively stable and coherent configuration of emotional-cognitive patterns called developmental dynamisms. Their main function is to restructure a mental structure by breaking the symmetry of a low level and bringing differentiation and then integration to higher levels. The positive disintegration is then the process of transitions from a lower level of high symmetry and low complexity to higher levels of low symmetry and high complexity of mental structure.
Impact of influent COD/N ratio on disintegration of aerobic granular sludge.
Luo, Jinghai; Hao, Tianwei; Wei, Li; Mackey, Hamish R; Lin, Ziqiao; Chen, Guang-Hao
2014-10-01
Disintegration of aerobic granular sludge (AGS) is a challenging issue in the long-term operation of an AGS system. Chemical oxygen demand (COD)-to-nitrogen (N) ratio (COD/N), often variable in industrial wastewaters, could be a destabilizing factor causing granule disintegration. This study investigates the impact of this ratio on AGS disintegration and identifies the key causes, through close monitoring of AGS changes in its physical and chemical characteristics, microbial community and treatment performance. For specific comparison, two lab-scale air-lift type sequencing batch reactors, one for aerobic granular and the other for flocculent sludge, were operated in parallel with three COD/N ratios (4, 2, 1) applied in the influent of each reactor. The decreased COD/N ratios of 2 and 1 strongly influenced the stability of AGS with regard to physical properties and nitrification efficiency, leading to AGS disintegration when the ratio was decreased to 1. Comparatively the flocculent sludge maintained relatively stable structure and nitrification efficiency under all tested COD/N ratios. The lowest COD/N ratio resulted in a large microbial community shift and extracellular polymeric substances (EPS) reduction in both flocculent and granular sludges. The disintegration of AGS was associated with two possible causes: 1) reduction in net tyrosine production in the EPS and 2) a major microbial community shift including reduction in filamentous bacteria leading to the collapse of granule structure. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yang, Baixue; Wei, Chen; Yang, Yang; Wang, Qifang; Li, Sanming
2018-04-06
To evaluate parameters about wettability, water absorption or swelling of excipients in forms of powders or dosage through various methods systematically and explore its correlation with tablet disintegration. The water penetration and swelling of powders with different proportions of excipients including microcrystalline cellulose (MCC), mannitol, low-substituted hydroxypropyl cellulose (L-HPC), crospolyvinylpyrrolidone (PVPP), carboxymethyl starch sodium (CMS-Na), croscarmellose sodium (CCMC-Na) and magnesium stearate (MgSt) were determined by Washburn capillary rise. Both contact angle of water on the excipient compacts and surface swelling volume were measured by sessile drop technique. Moreover, the test about water absorption and swelling of compacts was fulfilled by a modified method. Eventually, the disintegration of tablets with or without loratadine was performed according to the method described in USP. These parameters were successfully identified by the methods above, which proved that excipient wettability or swelling properties varied with the structure of excipients. For example, MgSt could improve the water uptake, while impeded tablet swelling. Furthermore, in the present study it is verified that tablet disintegration was closely related to these parameters, especially wetting rate and initial water absorption rate. The higher wetting rate of water on tablet or initial water absorption rate, the faster swelling it be, resulting in the shorter tablet disintegration time. The methods utilized in the present study were feasible and effective. The disintegration of tablets did relate to these parameters, especially wetting rate and initial water absorption rate.
Variation of growth in height and weight of children. II. After infancy.
Sorva, R; Lankinen, S; Tolppanen, E M; Perheentupa, J
1990-05-01
To provide for early detection of abnormal changes in growth, we propose the monitoring of all children for changes in relative height and relative weight as indirect indicators of growth velocity. To this end we analyzed the growth of 2,156 children, as recorded by the child health surveillance services at ages 2 to 19 years. From their data we constructed growth standards on charts of a novel type, which allow direct reading of relative height (SD score, SDS) and relative weight (percentage deviation of weight from median weight for height and sex, %DW). Variation in height explained most (mean 60%) of the variation in weight, and age did not contribute significantly. Hence, our weight charts are height-based. Next, we defined the variations of changes in (delta) SDS and %DW during the different periods of growth. The group means of changes in each period were zero. Variation in delta SDS is widest at the earliest ages, then decreases until year 9-10 (girls) and 10-11 (boys), and again increases. For delta %DW the picture is similar. We present these variations as diagrams for use in growth screening.
Fast disintegrating films containing anastrozole as a dosage form for dysphagia patients.
Satyanarayana, Dixit Anil; Keshavarao, Kulkarni Parthasarathi
2012-12-01
The objective of the present research was to ensure safety during oral administration of medications to dysphagia patients, by preparing fast disintegrating films (FDF) containing anastrozole (ANS) which disintegrate rapidly when placed on the tongue. Films were prepared by solvent-casting method using various polymers such as hydroxyl propyl methyl cellulose (HPMC E5 LV), hydroxy propyl cellulose (HPC), poly vinyl alcohol (PVA) and sodium alginate (Na Alginate). Among the formulations examined, film prepared using HPMC E5 LV (F1) exhibited shorter disintegration time (15 sec) with satisfactory mechanical properties. Fourier transformer infrared (FTIR) & differential scanning calorimetry (DSC) analysis revealed no chemical incompatibility between drug and excipients used in the formulation. Surface morphology revealed even distribution of ANS in the film. Dissolution of drug from F1 formulation was rapid with more than 90% drug release in 240 sec. Pharmacokinetic parameters showed no statistical difference between F1 (test) and drug solution (control) indicating comparable plasma level-time profiles. The film showed an excellent stability for 24 weeks when stored at refrigerated temperature (2-8°C). These findings suggest that the fast disintegrating film as a promising candidate for delivery of ANS in dysphagic patients.
Release kinetics of papaverine hydrochloride from tablets with different excipients.
Kasperek, Regina; Polski, Andrzej; Zimmer, Łukasz; Poleszak, Ewa
2014-01-01
The influence of excipients on the disintegration times of tablets and the release of papaverine hydrochloride (PAP) from tablets were studied. Ten different formulations of tablets with PAP were prepared by direct powder compression. Different binders, disintegrants, fillers, and lubricants were used as excipients. The release of PAP was carried out in the paddle apparatus using 0.1 N HCl as a dissolution medium. The results of the disintegration times of tablets showed that six formulations can be classified as fast dissolving tablets (FDT). FDT formulations contained Avicel PH 101, Avicel PH 102, mannitol, (3-lactose, PVP K 10, gelatinized starch (CPharmGel), Prosolv Easy Tab, Prosolv SMCC 90, magnesium stearate, and the addition of disintegrants such as AcDiSol and Kollidon CL. Drug release kinetics were estimated by the zero- and first-order, Higuchi release rate, and Korsmeyer-Peppas models. Two formulations of the tablets containing PVP (K10) (10%), CPharmGel (10% and 25%), and Prosolv Easy Tab (44% and 60%) without the addition of a disintegrant were well-fitted to the kinetics models such as the Higuchi and zero-order, which are suitable for controlled- or sustained-release.
Release Kinetics of Papaverine Hydrochloride from Tablets with Different Excipients
Kasperek, Regina; Polski, Andrzej; Zimmer, Łukasz; Poleszak, Ewa
2014-01-01
Abstract The influence of excipients on the disintegration times of tablets and the release of papaverine hydrochloride (PAP) from tablets were studied. Ten different formulations of tablets with PAP were prepared by direct powder compression. Different binders, disintegrants, fillers, and lubricants were used as excipients. The release of PAP was carried out in the paddle apparatus using 0.1 N HCl as a dissolution medium. The results of the disintegration times of tablets showed that six formulations can be classified as fast dissolving tablets (FDT). FDT formulations contained Avicel PH 101, Avicel PH 102, mannitol, (3-lactose, PVP K 10, gelatinized starch (CPharmGel), Prosolv Easy Tab, Prosolv SMCC 90, magnesium stearate, and the addition of disintegrants such as AcDiSol and Kollidon CL. Drug release kinetics were estimated by the zero- and first-order, Higuchi release rate, and Korsmeyer-Peppas models. Two formulations of the tablets containing PVP (K10) (10%), CPharmGel (10% and 25%), and Prosolv Easy Tab (44% and 60%) without the addition of a disintegrant were well-fitted to the kinetics models such as the Higuchi and zero-order, which are suitable for controlled- or sustained-release. PMID:25853076
Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization.
Tiehm, A; Nickel, K; Zellhorn, M; Neis, U
2001-06-01
The pretreatment of waste activated sludge by ultrasonic disintegration was studied in order to improve the anaerobic sludge stabilization. The ultrasound frequency was varied within a range from 41 to 3217 kHz. The impact of different ultrasound intensities and treatment times was examined. Sludge disintegration was most significant at low frequencies. Low-frequency ultrasound creates large cavitation bubbles which upon collapse initiate powerful jet streams exerting strong shear forces in the liquid. The decreasing sludge disintegration efficiency observed at higher frequencies was attributed to smaller cavitation bubbles which do not allow the initiation of such strong shear forces. Short sonication times resulted in sludge floc deagglomeration without the destruction of bacteria cells. Longer sonication brought about the break-up of cell walls, the sludge solids were distintegrated and dissolved organic compounds were released. The anaerobic digestion of waste activated sludge following ultrasonic pretreatment causing microbial cell lysis was significantly improved. There was an increase in the volatile solids degradation as well as an increase in the biogas production. The increase in digestion efficiency was proportional to the degree of sludge disintegration. To a lesser degree the deagglomeration of sludge flocs also augmented the anaerobic volatile solids degradation.
Chemokine Signaling during Midline Epithelial Seam Disintegration Facilitates Palatal Fusion
Suttorp, Christiaan M.; Cremers, Niels A.; van Rheden, René; Regan, Raymond F.; Helmich, Pia; van Kempen, Sven; Kuijpers-Jagtman, Anne M.; Wagener, Frank A.D.T.G.
2017-01-01
Disintegration of the midline epithelial seam (MES) is crucial for palatal fusion, and failure results in cleft palate. Palatal fusion and wound repair share many common signaling pathways related to epithelial-mesenchymal cross-talk. We postulate that chemokine CXCL11, its receptor CXCR3, and the cytoprotective enzyme heme oxygenase (HO), which are crucial during wound repair, also play a decisive role in MES disintegration. Fetal growth restriction and craniofacial abnormalities were present in HO-2 knockout (KO) mice without effects on palatal fusion. CXCL11 and CXCR3 were highly expressed in the disintegrating MES in both wild-type and HO-2 KO animals. Multiple apoptotic DNA fragments were present within the disintegrating MES and phagocytized by recruited CXCR3-positive wt and HO-2 KO macrophages. Macrophages located near the MES were HO-1-positive, and more HO-1-positive cells were present in HO-2 KO mice compared to wild-type. This study of embryonic and palatal development provided evidence that supports the hypothesis that the MES itself plays a prominent role in palatal fusion by orchestrating epithelial apoptosis and macrophage recruitment via CXCL11-CXCR3 signaling. PMID:29164113
Production and characterization of pellets using Avicel CL611 as spheronization aid.
Puah, Sin Yee; Yap, Hsiu Ni; Chaw, Cheng Shu
2014-03-01
The study looked into the feasibility of producing pellet using Avicel CL611 as spheronization aid by the extrusion/spheronization technique. Pellets were formulated to contain either 20% or 40% Avicel CL611 and lactose monohydrate as the other sole ingredient. Water is used as liquid binder. Quality of pellets and extrudates were analyzed for size distribution, shape, surface tensile strength and disintegration profile. More water was needed when higher Avicel CL611 fraction was used during the production of pellets. The pellets of larger size were obtained by increasing the water content. Pellets with aspect ratios of ∼1.1 were produced with high spheronization speed at short residence time. Higher tensile strength was achieved when increasing the water content and the fraction of Avicel CL611 during pellet production. These pellets also took longer time to disintegrate, nonetheless all the pellets disintegrated within 15 min. A positive linear relationship was obtained between the tensile strength and time for pellets to disintegrate. Strong but round pellets that disintegrate rapidly could be produced with Avicel CL611 as spheronization aid using moderately soluble compounds such as lactose.
Muzíková, J
2006-03-01
The paper examines the strength and disintegration time of compacts from the mixtures of two types of Tablettosas. Tablettosa 70 and Tablettosa 100 with microcrystalline cellulose represented by Vivapur 102. The mixtures of dry binders were prepared in the ratios of 3:1, 1:1, and 1:3. The effect of two concentrations of the lubricant magnesium stearate on the strength and disintegration time of compacts was also examined. Tablet strength increased with higher representation of microcrystalline cellulose in the mixture, and decreased with higher stearate concentration. The compacts from the mixtures with Tablettosa 100 showed higher strength. Disintegration time was highest in the compacts with the largest perccintage of microcrystalline cellulose, and longer in the case of the mixtures with Tablettosa 100. Stearate did not exert a negative effect on disintegration time. In the mixtures of Tablettosas with Vivapur 102 in a ratio of 1:1, the effect of the model active ingredient acetylsalicylic acid on the above-mentioned properties of tablets was tested. acetylsalicylic acid produced a further decrease in the strength of compacts and shortened the disintegration time in more instances in the cased of the mixtures with Tahlettosa 100.
NASA Astrophysics Data System (ADS)
Ashikin Yaakub, Nur; Shamsul Anuar, Mohd; Tahir, Suraya Mohd
2018-04-01
The focus of this study is to elucidate the effects of adding super disintegrants (SSG and Acdisol) to a filler (lactose) in terms of the compaction behaviour and mechanical strength of the formed binary tablets. The tablets were formed in a uniaxial die compaction process with compaction pressures ranging from 37.7MPa to 150.7 MPa. Consequently, the findings indicated that the increasing of the compaction pressure and the percentage mass composition of the super disintegrants would led to the increased in the strength of the tablets as well as their plastic energies, where this was more apparent for the case of the binary lactose/Acdisol tablets. In addition, as the compaction pressure increased, the maximum ejection pressure required to eject the tablet from the die cavity also increased. In contrast, a decreased in the maximum ejection pressure was observed as the composition of both super disintegrants increased in the lactose-super disintegrant binary tablets. In conclusion, the addition of super disintegrant; SSG with lactose and Acdisol with lactose; would enhanced the mechanical strength of lactose based tablets especially for the case of acdisol-lactose binary tablets in the experimental conditions adopted in this current work.
Muzíková, J; Páleník, L
2005-05-01
The paper studies the tensile strength and disintegration time of compacts from the mixed dry binder MicroceLac 100. Tensile strength and disintegration time of tablets were tested in connection with the following factors: compression force, compression rate, addition of magnesium stearate, addition of ascorbic acid, the model active principle. The compression forces employed were 5, 6, and 7 kN, compression rates, 20 and 40 mm/min, stearate concentration 0, 0.4, and 0.8%, ascorbic acid concentration, 25 and 50%. With increasing addition of the stearate, the strength of compacts from MicroceLacu 100 was decreased for both compression rates, but with a higher rate, in a concentration of 0.4%, the decrease in strength was more marked. Disintegration time was increased with compression force and the addition of the stearate, but in all cases it was very short. Increased addition of ascorbic acid further intensified the decrease in the strength of compacts and decreased the disintegration time and the effect of the stearate on it. Disintegration time of compacts with ascorbic acid in a concentration of 50% did not increase with compression force.
Formulation of multiparticulate systems as lyophilised orally disintegrating tablets.
Alhusban, Farhan; Perrie, Yvonne; Mohammed, Afzal R
2011-11-01
The current study aimed to exploit the electrostatic associative interaction between carrageenan and gelatin to optimise a formulation of lyophilised orally disintegrating tablets (ODTs) suitable for multiparticulate delivery. A central composite face centred (CCF) design was applied to study the influence of formulation variables (gelatin, carrageenan and alanine concentrations) on the crucial responses of the formulation (disintegration time, hardness, viscosity and pH). The disintegration time and viscosity were controlled by the associative interaction between gelatin and carrageenan upon hydration which forms a strong complex that increases the viscosity of the stock solution and forms tablet with higher resistant to disintegration in aqueous medium. Therefore, the levels of carrageenan, gelatin and their interaction in the formulation were the significant factors. In terms of hardness, increasing gelatin and alanine concentration was the most effective way to improve tablet hardness. Accordingly, optimum concentrations of these excipients were needed to find the best balance that fulfilled all formulation requirements. The revised model showed high degree of predictability and optimisation reliability and therefore was successful in developing an ODT formulation with optimised properties that were able deliver enteric coated multiparticulates of omeprazole without compromising their functionality. Copyright © 2011 Elsevier B.V. All rights reserved.
Corá, Luciana A; Romeiro, Fernando G; Paixão, Fabiano C; Américo, Madileine F; Oliveira, Ricardo B; Baffa, Oswaldo; Miranda, José Ricardo A
2006-08-01
To employ the AC Biosusceptometry (ACB) technique to evaluate in vitro and in vivo characteristics of enteric coated magnetic hydroxypropyl methylcellulose (HPMC) capsules and to image the disintegration process. HPMC capsules filled with ferrite (MnFe2O4) and coated with Eudragit were evaluated using USP XXII method and administered to fasted volunteers. Single and multisensor ACB systems were used to characterize the gastrointestinal (GI) motility and to determine gastric residence time (GRT), small intestinal transit time (SITT) and orocaecal transit time (OCTT). Mean disintegration time (t50) was quantified from 50% increase of pixels in the imaging area. In vitro and in vivo performance of the magnetic HPMC capsules as well as the disintegration process were monitored using ACB systems. The mean disintegration time (t50) calculated for in vitro was 25+/-5 min and for in vivo was 13+/-5 min. In vivo also were determined mean values for GRT (55+/-19 min), SITT (185+/-82 min) and OCTT (240+/-88 min). AC Biosusceptometry is a non-invasive technique originally proposed to monitoring pharmaceutical dosage forms orally administered and to image the disintegration process.
Possible Disintegrating Planet Artist Concept
2012-05-21
This artist concept depicts a comet-like tail of a possible disintegrating super Mercury-size planet candidate as it transits, or crosses, its parent star, named KIC 12557548. The results are based on data from NASA Kepler mission.
ON IMPROVING THE DISINTEGRATION OF AYURVEDIC PILLS CONTAINING GUGGULU
Chaube, Anjana; Dixit, S.K.; Sharma, P.V.
1995-01-01
An attempt is made in this communication to report a better way of preparing guggulu – containing pills. This technique improves the disintegration time of the preparation, thus enhancing its therapeutic value. PMID:22556694
Variations in the Life Cycle of Anemone patens L. (Ranunculaceae) in Wild Populations of Canada
Kricsfalusy, Vladimir
2016-01-01
Based on a study of a perennial herb Anemone patens L. (Ranunculaceae) in a variety of natural habitats in Saskatchewan, Canada, eight life stages (seed, seedling, juvenile, immature, vegetative, generative, subsenile, and senile) are distinguished and characterized in detail. The species ontogenetic growth patterns are investigated. A. patens has a long life cycle that may last for several decades which leads to the formation of compact clumps. The distribution and age of clumps vary substantially in different environments with different levels of disturbance. The plant ontogeny includes the regular cycle with reproduction occurring through seeds. There is an optional subsenile vegetative disintegration at the end of the life span. The following variations in the life cycle of A. patens are identified: with slower development in young age, with an accelerated development, with omission of the generative stage, with retrogression to previous life stages in mature age, and with vegetative dormancy. The range of variations in the life cycle of A. patens may play an important role in maintaining population stability in different environmental conditions and management regimes. PMID:27376340
Constraining properties of disintegrating exoplanets
NASA Astrophysics Data System (ADS)
Veras, D.; Carter, P. J.; Leinhardt, Z. M.; Gänsicke, B. T.
2017-09-01
Evaporating and disintegrating planets provide unique insights into chemical makeup and physical constraints. The striking variability, depth (˜10 - 60%) and shape of the photometric transit curves due to the disintegrating minor planet orbiting white dwarf WD 1145+017 has galvanised the post-main- sequence exoplanetary science community. We have performed the first tidal disruption simulations of this planetary object, and have succeeded in constraining its mass, density, eccentricity and physical nature. We illustrate how our simulations can bound these properties, and be used in the future for other exoplanetary systems.
High-Throughput Synthetic Chemistry Enabled by Organic Solvent Disintegrating Tablet.
Li, Tingting; Xu, Lei; Xing, Yanjun; Xu, Bo
2017-01-17
Synthetic chemistry remains a time- and labor-intensive process of inherent hazardous nature. Our organic solvent disintegrating tablet (O-Tab) technology has shown potential to make industrial/synthetic chemistry more efficient. As is the case with pharmaceutical tablets, our reagent-containing O-Tabs are mechanically strong, but disintegrate rapidly when in contact with reaction media (organic solvents). For O-Tabs containing sensitive chemicals, they can be further coated to insulate them from air and moisture. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Jong-Il; Cho, Sang-Min; Cui, Jing-Hao; Cao, Qing-Ri; Oh, Euichaul; Lee, Beom-Jin
2013-10-15
Although the taste-masking of bitter drug using ion exchange resin has been recognized, in vitro testing using an electronic tongue (e-Tongue) and in vivo bitterness test by human panel test was not fully understood. In case of orally disintegrating tablet (ODT) containing bitter medicine, in vitro and in vivo disintegration is also importance for dosage performance. Donepezil hydrochloride was chosen as a model drug due to its bitterness and requires rapid disintegration for the preparation of ODT. In this study, ion exchange resin drug complex (IRDC) at three different ratios (1:2, 1:1, 2:1) was prepared using a spray-drying method and then IRDC-loaded ODT containing superdisintegrants (crospovidone, croscarmellose sodium, and sodium starch glycolate) were prepared by the direct compression method. The physical properties and morphologies were then characterized by scanning electron microscopy (SEM), X-ray powder diffraction (PXRD) and electrophoretic laser scattering (ELS), respectively. The in vitro taste-masking efficiency was measured with an electronic tongue (e-Tongue). In vivo bitterness scale was also evaluated by human volunteers and then we defined new term, "bitterness index (BI)" to link in vitro e-Tongue. There was a good correlation of IRDC between in vitro e-Tongue values and in vivo BI. Furthermore, IRDC-loaded ODT showed good in vitro/in vivo correlation in the disintegration time. The optimal IRDC-loaded ODTs displayed similar drug release profiles to the reference tablet (Aricept(®) ODT) in release media of pH 1.2, pH 4.0, pH 6.8 and distilled water but had significantly better palatability in vivo taste-masking evaluation. The current IRDC-loaded ODT according to the in vitro and in vivo correlation of disintegration and bitter taste masking could provide platforms in ODT dosage formulations of donepezil hydrochloride for improved patient compliances. Copyright © 2013 Elsevier B.V. All rights reserved.
Changes in ice dynamics along the northern Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Seehaus, Thorsten; Marinsek, Sebastian; Cook, Alison; Van Wessem, Jan-Melchior; Braun, Matthias
2017-04-01
The climatic conditions along the Antarctic Peninsula have undergone considerable changes during the last 50 years. A period of pronounced air temperature rise, increasing ocean temperatures as well as changes in the precipitation pattern have been reported by various authors. Consequently, the glacial systems showed changes including widespread retreat, surface lowering as well as variations in flow speeds. During the last decades numerous ice shelves along the Antarctic Peninsula retreated, started to break-up or disintegrated completely. The loss of the buttressing effect caused tributary glaciers to accelerate with increasing ice discharge along the Antarctic Peninsula. Quantification of the mass changes is still subject to considerable errors although numbers derived from the different methods are converging. The aim is to study the reaction of glaciers at the northern Antarctic Peninsula to the changing climatic conditions and the readjustments of tributary glaciers to ice shelf disintegration, as well as to better quantify the ice mass loss and its temporal changes. We analysed time series of various satellite sensors (ERS-1/2 SAR, ENVISAT ASAR, RADARSAT-1, ALOS PALSAR, TerraSAR-X/TanDEM-X, ASTER, Landsat) to detect changes in ice dynamics of 74 glacier basins along the northern Antarctic Peninsula (<65°). Intensity feature tracking techniques were applied on data stacks from different SAR satellites over the last 20 years to infer temporal trends in glacier surface velocities. In combination with ice thickness reconstructions and modeled climatic mass balance fields regional imbalances were calculated. Variations in ice front position were mapped based on optical and SAR satellite data sets. Along the west coast of the northern Antarctic Peninsula an increase in flow speeds by 40% between 1992 and 2014 was observed, whereas glaciers on the east side (north of former Prince-Gustav Ice Shelf) showed a strong deceleration. Nearly all former ice shelf tributaries showed similar reactions to ice shelf disintegration, with a significant acceleration and frontal retreat after ice shelf break-up and a subsequent deceleration and front stabilization. In total an ice discharge of 17.93±6.22 Gt/a was estimated for the study region in the period 2010-2014. Regional mass balance estimates indicate nearly balanced mass budgets in the period 1992-1996 and positive imbalances in more recent years (2010-2014), dominated by the clearly positive mass balances along the west coast due to high climatic mass balances. The detailed multi-mission time series analysis of glacier changes supports the interpretation of the ongoing processes in this region and allows multi temporal imbalance estimates.
Liotta, Flavia; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco
2014-01-01
The role of the moisture content and particle size (PS) on the disintegration of complex organic matter during the wet anaerobic digestion (AD) process was investigated. A range of total solids (TS) from 5% to 11.3% and PS from 0.25 to 15 mm was evaluated using carrot waste as model complex organic matter. The experimental results showed that the methane production rate decreased with higher TS and PS. A modified version of the AD model no.1 for complex organic substrates was used to model the experimental data. The simulations showed a decrease of the disintegration rate constants with increasing TS and PS. The results of the biomethanation tests were used to calibrate and validate the applied model. In particular, the values of the disintegration constant for various TS and PS were determined. The simulations showed good agreement between the numerical and observed data.
Influence of diligent disintegration on anaerobic biomass and performance of microbial fuel cell.
Divyalakshmi, Palanisamy; Murugan, Devaraj; Rai, Chockalingam Lajapathi
2017-12-01
To enhance the performance of microbial fuel cells (MFC) by increasing the surface area of cathode and diligent mechanical disintegration of anaerobic biomass. Tannery effluent and anaerobic biomass were used. The increase in surface area of the cathode resulted in 78% COD removal, with the potential, current density, power density and coulombic efficiency of 675 mV, 147 mA m -2 , 33 mW m -2 and 3.5%, respectively. The work coupled with increased surface area of the cathode with diligent mechanical disintegration of the biomass, led to a further increase in COD removal of 82% with the potential, current density, power density and coulombic efficiency of 748 mV, 229 mA m -2 , 78 mW m -2 and 6% respectively. Mechanical disintegration of the biomass along with increased surface area of cathode enhances power generation in vertical MFC reactors using tannery effluent as fuel.
Loo, Billy W.
1982-01-01
A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).
Permeable polyaniline articles for gas separation
Wang, Hsing-Lin [Los Alamos, NM; Mattes, Benjamin R [Santa Fe, NM
2009-07-21
Immersion precipitation of solutions having 15%-30% (w/w) and various molecular weights of the emeraldine base form of polyaniline in polar aprotic solvents are shown to form integrally skinned asymmetric membranes and fibers having skin layers <1 .mu.m thick which exhibit improved rates of gas transport while preserving good selectivity. These membranes can be further transformed by an acid doping process after fabrication to achieve excellent permeation rates and high selectivities for particular gas separations. Prior to the use of concentrated EB solutions, the formation of integrally skinned asymmetric membranes was not possible, since films and fibers made from <5% w/w polyaniline solutions were found to disintegrate during the IP process.
Permeable polyaniline articles for gas separation
Wang, Hsing-Lin; Mattes, Benjamin R.
2004-09-28
Immersion precipitation of solutions having 15%-30% (w/w) and various molecular weights of the emeraldine base form of polyaniline in polar aprotic solvents are shown to form integrally skinned asymmetric membranes and fibers having skin layers <1 .mu.m thick which exhibit improved rates of gas transport while preserving good selectivity. These membranes can be further transformed by an acid doping process after fabrication to achieve excellent permeation rates and high selectivities for particular gas separations. Prior to the use of concentrated EB solutions, the formation of integrally skinned asymmetric membranes was not possible, since films and fibers made from <5% w/w polyaniline solutions were found to disintegrate during the IP process.
Kołodziejczyk, Michał Krzysztof; Kołodziejska, Justyna; Zgoda, Marian Mikołaj
2012-01-01
Metformin hydrochloride after buformin and phenformin belongs to the group of biguanid derivatives used as oral anti-diabetic drugs. The object of the study is the technological analysis and the potential effect of biodegradable macromolecular polymers on the technological and therapeutic parameters of oral anti-diabetic medicinal products with metformin hydrochloride: Siofor, Formetic, Glucophage, Metformax in doses of 500mg and 1000mg and Glucophage XR in a dose of 500 mg of modified release. Market therapeutic products containing 500 and 1000 mg of metformin hydrochloride in a normal formulation and 500 mg of metformin hydrochloride in a formulation of modified release were analyzed. Following research methods were used: technological analysis of tablets, study of disintegration time of tablets, evaluation of pharmaceutical availability of metformin hydrochloride from tested therapeutic products, mathematical and kinetic analysis of release profiles of metformin hydrochloride, statistical analysis of mean differences of release coefficients. The percentage of excipients in the XR formulation is higher and constitutes 50.5% of a tablet mass. However, in standard formulations the percentage is lower, between 5.5% and 12.76%. On the basis of the results of disintegration time studies, the analysed therapeutic products can be divided into two groups, regardless the dose. The first one are preparations with faster (not fast!) disintegration: Glucophage i Metformax. The second group are preparations with slower disintegration, more balanced in the aspect of a high dose of the biologically active substance: Formetic and Siofor. Products with a lower content of excipients (Metformax, Glucophage) disintegrate in a faster way. The disintegration rate of the products with a higher content of excipients (Formetic, Siofor) is slower. The appearance of metformin hydrochloride concentration in the gastrointestinal contents, balanced in time, caused by a slower disintegration-dissolving of a tablet, is conducive to the reduction of gastrointestinal side effects and better tolerance of the therapeutic product by a patient. The study on pharmaceutical availability indicated relevant kinetic differences between tested therapeutic products. They are particularly visible between standard formulations and the one with prolonged release (Glucophage XR500). Its release profile bears features of kinetics similar to zero-order reactions. Tested therapeutic products contain a large amount of the biologically active substance in relation to the content of excipients. A higher content of excipients in a single tablet mass distinguishes Siofor in comparison with Glucophage i Metformax. The excipients used in the formulations of tested preparations are comparable. A higher percentage of binding agents (HPMC, PVP) is observed, but there is a lack of typical disintegrants which results in a longer disintegration time up to 15 minutes. Siofor disintegrates at the same time as Formetic, but longer than Glucophage i Metformax. Considering the large content of the active substance and pharmacological properties of metformin hydrochloride, such a disintegration might have beneficial consequences, because the amount of the free active substance in the gastrointestinal tract will increase over the longer time period what will reduce the level of gastrointestinal side effects. The release profiles of metformin hydrochloride from tested therapeutic products are comparable. The Glucophage XR 500 formulation with the release kinetics of metformin hydrochloride similar to the zero-order kinetics is completely different from the others. The above is confirmed by the mathematical analysis of release profiles of metformin hydrochloride from tested preparations where equations of lines describing the release profile are characterized by similar values of correlation coefficients.
Yang, Baixue; Xu, Lu; Wang, Qiuxiao; Li, Sanming
2016-12-01
To investigate the modulation of the wettability of excipients by different types of surfactants and its impacts on the disintegration of tablets and drug release. The critical micelle concentration (CMC) of surfactants, including sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), dodecyl trimethyl ammonium bromide (DTAB), cetyltrimethyl ammonium bromide (CTAB) and polysorbate (Tween-20 and Tween-80), was obtained using the platinum ring method. Contact angles of surfactant solutions on the excipient compacts and double-distilled water on the mixture of surfactant and the other excipient (magnesium stearate (MgSt) or sodium alginate (SA)) were measured by the sessile drop technique. Besides, surface free energy of excipients was calculated by the Owens method. Finally, the disintegration of tablets and in vitro dissolution testing were performed according to the method described in USP. The wettability of excipients could be enhanced to different extent with low concentration of surfactant solutions and maintained stable basically after CMC. For MgSt (hydrophobic excipient), the shorter the hydrophobic chain (C 12 , including SDS and DTAB), the better the wettability with the addition of surfactant in the formulation, leading to the shorter disintegration time of tablets and higher drug release rate. In contrast, the wettability of SA (hydrophilic excipient) was reduced by adding surfactant, resulting in the longer disintegration time of tablets and lower release rate. The modulation of the wetting of pharmaceutical excipients by surfactant had changed the disintegration time of tablets and drug release rate to a greater extent.
Balata, Gehan F; Zidan, Ahmad S; Abourehab, Mohamad AS; Essa, Ebtessam A
2016-01-01
The objective of this research was to improve the dissolution of simvastatin and to incorporate it in rapid disintegrating tablets (RDTs) with an optimized disintegration and dissolution characteristics. Polyoxyethylene–polypropylene block copolymer (poloxamer 188) was employed as a hydrophilic carrier to prepare simvastatin solid dispersions (SDs). Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC) and X-ray diffractometry were employed to understand the interaction between the drug and the carrier in the solid state. The results obtained from Fourier transform infrared spectroscopy showed absence of any chemical interaction between the drug and poloxamer. The results of differential scanning calorimetry and X-ray diffractometry confirmed the conversion of simvastatin to distorted crystalline state. The SD of 1:2 w/w drug to carrier ratio showed the highest dissolution; hence, it was incorporated in RDT formulations using a 32 full factorial design and response surface methodology. The initial assessments of RDTs demonstrated an acceptable flow, hardness, and friability to indicate good mechanical strength. The interaction and Pareto charts indicated that percentage of croscarmellose sodium incorporated was the most important factor affecting the disintegration time and dissolution parameter followed by the hardness value and their interaction effect. Compression force showed a superior influence to increase RDT’s porosity and to fasten disintegration rather than swelling action by croscarmellose sodium. On the other hand, croscarmellose sodium was most important for the initial simvastatin release. The results suggest the potential use of poloxamer 188-based SD in RDT for the oral delivery of poor water-soluble antihyperlipidemic drug, simvastatin. PMID:27757012
Zhao, Junshu; Koo, Otilia; Pan, Duohai; Wu, Yongmei; Morkhade, Dinesh; Rana, Sandeep; Saha, Partha; Marin, Arturo
2017-09-01
In formulation development, certain excipients, even though used in small quantities, can have a significant impact on the processability and performance of the dosage form. In this study, three common disintegrants, croscarmellose sodium (CCS), crospovidone (xPVP), and sodium starch glycolate (SSG) as well as the surfactant sodium lauryl sulfate (SLS) were evaluated for their impact on the processability and performance of a typical dry granulation formulation. Two model compounds, the mechanically brittle and chemically inert acetaminophen and the mechanically ductile carboxylic acid aspirin, were used for the evaluation. It was found that the disintegrants were generally identical in their impact on the processability and little difference was observed in the granulation and compression processes. The exception is that when xPVP was used in the formulation of the brittle acetaminophen, lower compression forces were needed to reach the same tablet hardness, suggesting a binding effect of xPVP for such systems. In general, CCS and xPVP tend to provide slightly better disintegration than SSG. However, in the case of aspirin, a strong hydrogen bonding interaction between the carboxylic acid group of aspirin and the carbonyl group of xPVP was observed, resulting in slower release of the drug after fast disintegration. SLS was found to have a significant impact on the processability due to its lubricating effect, resulting in higher compression forces needed to achieve the target tablet hardness. Due to the higher degree of compression, the disintegration and dissolution of both drugs became slower despite the wetting effect of SLS.
Atomic layer deposition-A novel method for the ultrathin coating of minitablets.
Hautala, Jaana; Kääriäinen, Tommi; Hoppu, Pekka; Kemell, Marianna; Heinämäki, Jyrki; Cameron, David; George, Steven; Juppo, Anne Mari
2017-10-05
We introduce atomic layer deposition (ALD) as a novel method for the ultrathin coating (nanolayering) of minitablets. The effects of ALD coating on the tablet characteristics and taste masking were investigated and compared with the established coating method. Minitablets containing bitter tasting denatonium benzoate were coated by ALD using three different TiO 2 nanolayer thicknesses (number of deposition cycles). The established coating of minitablets was performed in a laboratory-scale fluidized-bed apparatus using four concentration levels of aqueous Eudragit ® E coating polymer. The coated minitablets were studied with respect to the surface morphology, taste masking capacity, in vitro disintegration and dissolution, mechanical properties, and uniformity of content. The ALD thin coating resulted in minimal increase in the dimensions and weight of minitablets in comparison to original tablet cores. Surprisingly, ALD coating with TiO 2 nanolayers decreased the mechanical strength, and accelerated the in vitro disintegration of minitablets. Unlike previous studies, the studied levels of TiO 2 nanolayers on tablets were also inadequate for effective taste masking. In summary, ALD permits a simple and rapid method for the ultrathin coating (nanolayering) of minitablets, and provides nanoscale-range TiO 2 coatings on porous minitablets. More research, however, is needed to clarify its potential in tablet taste masking applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Chaban, Vitaly V; Prezhdo, Victor V; Prezhdo, Oleg V
2012-03-27
Vapor pressure grows rapidly above the boiling temperature, and past the critical point liquid droplets disintegrate. Our atomistic simulations show that this sequence of events is reversed inside carbon nanotubes (CNT). Droplets disintegrate first and at low temperature, while pressure remains low. The droplet disintegration temperature is independent of the CNT diameter. In contrast, depending on CNT diameter, a temperature that is much higher than the bulk boiling temperature is required to raise the internal pressure. The control over pressure by CNT size can be useful for therapeutic drug delivery. © 2012 American Chemical Society
Centkowska, Katarzyna; Sznitowska, Małgorzata
2008-01-01
Fast disintegrating sublingual tablets containing nitroglycerin either complexed with beta-cyclodextrin (NTG-CD) or titrated with crosspovidone (NTG-CP) were prepared using Starch 1500 or StarLac as disintegrants. Regarding disintegration time and stability of the active substance Starch 1500 was more appropriate for NTG-CD while for NTG-CP StarLac was suitable. Stability of NTG was better in NTG-CD tablets than in NTG-CP tablets, however, within 12 months of storage at 25 degrees C the loss of NTG in all formulations was still greater than 10%.
[Oral disintegrating tablets. A new, modern, solid dosage form].
Popa, Graţiela; Gafiţanu, Eliza
2003-01-01
The pharmaceutical market shows lately an increasing interest in orally disintegrating tablets, due to their good acceptability among certain age categories (ex. elderly, children), and other patients with difficulties in swallowing classic solid dosage forms. Some of the methods of preparing such tablets have gained industrial applicability: molding, lyophilization, direct compression with highly soluble excipients, super disintegrants and/or effervescent systems. Some of the patients have had a good impact on the pharmaceutical market and more improvements are expected in the next few years, with new drugs to be formulated as fast dissolving dosage formulations.
Drug abuse: consequences in terms of family pathology and disintegration.
Visser, L
1991-01-01
This article examines some of the consequences of drug addiction in terms of family pathology and family disintegration. It briefly elucidates the role of the family in developing and maintaining drug addiction in family members. The concept of 'secondary' sufferers of the illness of drug addiction is examined. An actual case history will be presented in order to facilitate analysis of some of the forms of pathology and disintegration so often seen in the family of the drug addict. Within the family context, the question of who, if anyone, is the victim of drug addiction, is raised.
Kampas, P; Parsons, S A; Pearce, P; Ledoux, S; Vale, P; Churchley, J; Cartmell, E
2007-04-01
The primary driver for a successful biological nutrient removal is the availability of suitable carbon source, mainly in the form of volatile fatty acids (VFA). Several methods have been examined to increase the amount of VFAs in wastewater. This study investigates the mechanism of mechanical disintegration of thickened surplus activated sludge by a deflaker technology for the production of organic matter. This equipment was able to increase the soluble carbon in terms of VFA and soluble chemical oxygen demand (SCOD) with the maximum concentration to be around 850 and 6530 mgl(-1), for VFA and SCOD, respectively. The particle size was reduced from 65.5 to 9.3 microm after 15 min of disintegration with the simultaneous release of proteins (1550 mgl(-1)) and carbohydrates (307 mgl(-1)) indicating floc disruption and breakage. High performance size exclusion chromatography investigated the disintegrated sludge and confirmed that the deflaker was able to destroy the flocs releasing polymeric substances that are typically found outside of cells. When long disintegration times were applied (>or=10 min or >or=9000 kJkg(-1)TS of specific energy) smaller molecular size materials were released to the liquid phase, which are considered to be found inside the cells indicating cell lysis.
Test of cold asphalt storability based on alternative approaches
NASA Astrophysics Data System (ADS)
Abaffyová, Zora; Komačka, Jozef
2017-09-01
Cold asphalt products for potholes repairs should be workable (soft enough) for long time to ensure their applicability. Storability is assessed indirectly using various tests of workability. Therefore, simple test methods (self-compaction and disintegration test) was developed and verified to investigate changes of storability of this group of cold asphalts. Selfcompaction of the tested mixture in the upturned Abram’s cone for the cement concrete slump test and in the mould for the California Bearing Ratio test was assessed in first stage. After that the video record of disintegration test was taken. During this test, the mould was lifted up and the mixture fell off the mould (Abram’s cone) or disintegrate (CBR mould). The drop of surface after 10 min self-compaction and netto time related to falling out or disintegration of the mixture were used to evaluate the mixture from storability point of view. It was found out the self-compaction test has not a potential to reveal and prove changes of mixture properties. Based on the disintegration test results it can be stated this test at 5 °C using the upturned Abram’s cone could be a suitable approach to determine qualitative changes of a cold mixture from storability point of view.
Tawfeek, Hesham M; Faisal, Waleed; Soliman, Ghareb M
2018-06-01
The aim of this study was to develop orally disintegrating tablets (ODTs) for enalapril maleate (EnM) to facilitate its administration to the elderly or other patients having dysphagia. Compatibility between EnM and various excipients was studied using differential scanning calorimetry. ODTs of EnM were prepared by direct compression of EnM mixtures with various superdisintegrants. The tablets were evaluated for physical properties including drug content, hardness, friability, disintegration time, wetting time, and drug release. The antihypertensive effect of the optimum EnM ODTs was evaluated in vivo in hypertensive rats and compared with commercial EnM formulation. EnM ODTs had satisfactory results in terms of drug content and friability. Tablet wetting and disintegration were fast and dependent on the used superdisintegrant where croscarmellose showed the fastest wetting and disintegration time of ∼7 s. EnM release from the tablets was rapid where complete release was obtained in 10-15 min. Selected EnM ODTs rapidly and efficiently reduced the rat's blood pressure to its normal value within 1 h, compared with 4 h for EnM commercial formulation. These results confirm that EnM ODTs could find application in the management of hypertension in the elderly or other patients having dysphagia.
Meier, Robin; Moll, Klaus-Peter; Krumme, Markus; Kleinebudde, Peter
2017-01-01
This study addresses the quantitative influence of 12 different materials (active pharmaceutical ingredients and excipients as surrogate active pharmaceutical ingredients) on the critical quality attributes of twin screw granulated products and subsequently produced tablets. Prestudies demonstrated the significant influence of the chosen model materials (in combination with crospovidone) on the disintegration behavior of the resulting tablets, despite comparable tablet porosities. This study elucidates possible reasons for the varying disintegration behavior by investigating raw material, granule, and tablet properties. An answer could be found in the mechanical properties of the raw materials and the produced granules. Through compressibility studies, the materials could be classified into materials with high compressibility, which deform rather plastically under compression stress, and low compressibility, which display breakages under compression stress. In general, and apart from (pseudo)-polymorphic transformations, brittle materials featured excellent disintegration performance, even at low resulting tablet porosities <8%, whereas plastically deformable materials mostly did not reveal any disintegration. These findings must be considered in the development of simplified formulations with high drug loads, in which the active pharmaceutical ingredient predominantly defines the deformation behavior of the granule. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Risperidone oral disintegrating mini-tablets: A robust-product for pediatrics.
El-Say, Khalid M; Ahmed, Tarek A; Abdelbary, Maged F; Ali, Bahaa E; Aljaeid, Bader M; Zidan, Ahmed S
2015-12-01
This study was aimed at developing risperidone oral disintegrating mini-tablets (OD-mini-tablets) as age-appropriate formulations and to assess their suitability for infants and pediatric use. An experimental Box-Behnken design was applied to assure high quality of the OD-mini-tablets and reduce product variability. The design was employed to understand the influence of the critical excipient combinations on the production of OD-mini-tablets and thus guarantee the feasibility of obtaining products with dosage form uniformity. The variables selected were mannitol percent in Avicel (X1), swelling pressure of the superdisintegrant (X2), and the surface area of Aerosil as a glidant (X3). Risperidone-excipient compatibilities were investigated using FTIR and the spectra did not display any interaction. Fifteen formulations were prepared and evaluated for pre- and post-compression characteristics. The prepared OD-mini-tablet batches were also assessed for disintegration in simulated salivary fluid (SSF, pH 6.2) and in reconstituted skimmed milk. The optimized formula fulfilled the requirements for crushing strength of 5 kN with minimal friability, disintegration times of 8.4 and 53.7 s in SSF and skimmed milk, respectively. This study therefore proposes the risperidone OD-mini-tablet formula having robust mechanical properties, uniform and precise dosing of medication with short disintegration time suitable for pediatric use.
Bjarnason, Ingvar; Sancak, Ozgur; Crossley, Anne; Penrose, Andrew; Lanas, Angel
2018-02-01
Formulations of over the counter (OTC) NSAIDs differ substantially, but information is lacking on whether this alters their gastrointestinal profiles. To assess disintegration and dissolution rates and pharmacokinetics of four preparations of OTC ibuprofen and relate these with spontaneously reported gastrointestinal adverse events. Disintegration and dissolution rates of ibuprofen tablets as (a) acid, (b) sodium salt, (c) lysine salt, and (d) as a liquid gelatine capsule were assessed. Pharmacokinetic data gastrointestinal and spontaneously reported adverse events arising from global sales were obtained from files from Reckitt Benckiser. Disintegration at low pH was progressively shorter for the preparations from a-to-d with formation of correspondingly smaller ibuprofen crystals, while dissolution was consistently poor. Dissolution at a neutral pH was least rapid for the liquid gelatine capsule. Pharmacokinetic data showed a shorter t max and a higher C max for preparations b-d as compared with ibuprofen acid. Spontaneously reported abdominal symptoms were rare with the liquid gelatine preparation. The formulations of OTC ibuprofen differ in their disintegration and dissolution properties, pharmacokinetic profiles and apparent gastrointestinal tolerability. Spontaneously reported abdominal symptoms were five times lower with the liquid gelatine capsule as compared with ibuprofen acid despite a 30% increase in C max . © 2017 Royal Pharmaceutical Society.
Vidarsdottir, Solrun; Vlug, Pauline; Roelfsema, Ferdinand; Frölich, Marijke; Pijl, Hanno
2010-09-01
Treatment with olanzapine is associated with obesity, diabetes mellitus, and dyslipidemia. Reports have indicated that orally disintegrating tablets (ODT) cause less weight gain than oral standard tablets (OST). The aim of this study was to compare the effect of short-term treatment with these 2 distinct olanzapine formulations on glucose and lipid metabolism in healthy men. Twelve healthy men (mean ± SEM age: 25.1 ± 5.5 years) received olanzapine ODT (10 mg od, 8 days), olanzapine OST (10 mg od, 8 days), or no intervention in a randomized crossover design. At breakfast and dinner, glucose, insulin, free fatty acids (FFA), and triglyceride concentrations were measured at 10-minute intervals from 30 minutes prior to 2 hours after ingestion of standard meals. Leptin and adiponectin concentrations were measured at 20- and 30-minute intervals, respectively, between 0000h-1200h. Physical activity was assessed with an accelerometer. Fuel oxidation was measured in fasting condition by indirect calorimetry. The study was conducted from April 2006 through September 2006. Treatment with olanzapine ODT and OST equally elevated the homeostasis model assessment of insulin resistance (HOMA-IR) (P = .005). At breakfast, both formulations equally increased fasting and postprandial triglyceride concentrations (P = .013 and P = .005, respectively) while decreasing fasting and postprandial FFA concentrations (P = .004 and P = .009, respectively). Body weight, body composition, physical activity, or fuel oxidation did not differ between treatment modalities. Eight days of treatment with both olanzapine formulations similarly increased HOMA-IR and triglyceride concentrations and decreased FFA concentrations in response to standard meals without affecting anthropometrics or physical activity. These data suggest that olanzapine hampers insulin action via mechanistic routes other than body adiposity or physical inactivity. controlled-trials.com. Identifier: ISRCTN17632637. © Copyright 2010 Physicians Postgraduate Press, Inc.
Mihalik, Ágoston; Csermely, Peter
2011-01-01
Network analysis became a powerful tool giving new insights to the understanding of cellular behavior. Heat shock, the archetype of stress responses, is a well-characterized and simple model of cellular dynamics. S. cerevisiae is an appropriate model organism, since both its protein-protein interaction network (interactome) and stress response at the gene expression level have been well characterized. However, the analysis of the reorganization of the yeast interactome during stress has not been investigated yet. We calculated the changes of the interaction-weights of the yeast interactome from the changes of mRNA expression levels upon heat shock. The major finding of our study is that heat shock induced a significant decrease in both the overlaps and connections of yeast interactome modules. In agreement with this the weighted diameter of the yeast interactome had a 4.9-fold increase in heat shock. Several key proteins of the heat shock response became centers of heat shock-induced local communities, as well as bridges providing a residual connection of modules after heat shock. The observed changes resemble to a ‘stratus-cumulus’ type transition of the interactome structure, since the unstressed yeast interactome had a globally connected organization, similar to that of stratus clouds, whereas the heat shocked interactome had a multifocal organization, similar to that of cumulus clouds. Our results showed that heat shock induces a partial disintegration of the global organization of the yeast interactome. This change may be rather general occurring in many types of stresses. Moreover, other complex systems, such as single proteins, social networks and ecosystems may also decrease their inter-modular links, thus develop more compact modules, and display a partial disintegration of their global structure in the initial phase of crisis. Thus, our work may provide a model of a general, system-level adaptation mechanism to environmental changes. PMID:22022244
Childhood Disintegrative Disorder.
ERIC Educational Resources Information Center
Malhotra, Savita; Gupta, Nitin
1999-01-01
This article reviews what is known about childhood distintegrative disorder (CDD), a clinical syndrome characterized by disintegration of mental functions and regression of acquired language and intellectual functions after a period (usually 3-4 years) of normal development. It reviews the condition's epidemiology, onset and progression,…
Isotope-abundance variations of selected elements (IUPAC technical report)
Coplen, T.B.; Böhlke, J.K.; De Bievre, P.; Ding, T.; Holden, N.E.; Hopple, J.A.; Krouse, H.R.; Lamberty, A.; Peiser, H.S.; Revesz, K.; Rieder, S.E.; Rosman, K.J.R.; Roth, E.; Taylor, P.D.P.; Vocke, R.D.; Xiao, Y.K.
2002-01-01
Documented variations in the isotopic compositions of some chemical elements are responsible for expanded uncertainties in the standard atomic weights published by the Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry. This report summarizes reported variations in the isotopic compositions of 20 elements that are due to physical and chemical fractionation processes (not due to radioactive decay) and their effects on the standard atomic-weight uncertainties. For 11 of those elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon, sulfur, chlorine, copper, and selenium), standard atomic-weight uncertainties have been assigned values that are substantially larger than analytical uncertainties because of common isotope-abundance variations in materials of natural terrestrial origin. For 2 elements (chromium and thallium), recently reported isotope-abundance variations potentially are large enough to result in future expansion of their atomic-weight uncertainties. For 7 elements (magnesium, calcium, iron, zinc, molybdenum, palladium, and tellurium), documented isotope variations in materials of natural terrestrial origin are too small to have a significant effect on their standard atomic-weight uncertainties. This compilation indicates the extent to which the atomic weight of an element in a given material may differ from the standard atomic weight of the element. For most elements given above, data are graphically illustrated by a diagram in which the materials are specified in the ordinate and the compositional ranges are plotted along the abscissa in scales of (1) atomic weight, (2) mole fraction of a selected isotope, and (3) delta value of a selected isotope ratio.
Agrawal, Anjali; Dudhedia, Mayur; Deng, Weibin; Shepard, Kevin; Zhong, Li; Povilaitis, Edward; Zimny, Ewa
2016-02-01
The objective of the study was to identify the extragranular component requirements (level and type of excipients) to develop an immediate release tablet of solid dispersions prepared by hot melt extrusion (HME) process using commonly used HME polymers. Solid dispersions of compound X were prepared using polyvinyl pyrrolidone co-vinyl acetate 64 (PVP VA64), Soluplus, and hypromellose acetate succinate (HPMCAS-LF) polymers in 1:2 ratio by HME through 18 mm extruder. A mixture design was employed to study effect of type of polymer, filler (microcrystalline cellulose (MCC), lactose, and dicalcium phosphate anhydrous (DCPA)), and disintegrant (Crospovidone, croscarmellose sodium, and sodium starch glycolate (SSG)) as well as level of extrudates, filler, and disintegrant on tablet properties such as disintegration time (DT), tensile strength (TS), compactibility, and dissolution. Higher extrudate level resulted in longer DT and lower TS so 60-70% was the maximum amount of acceptable extrudate level in tablets. Fast disintegration was achieved with HPMCAS-containing tablets, whereas Soluplus- and PVP VA64-containing tablets had higher TS. Crospovidone and croscarmellose sodium were more suitable disintegrant than SSG to achieve short DT, and MCC was a suitable filler to prepare tablets with acceptable TS for each studied HME polymer. The influence of extragranular components on dissolution from tablets should be carefully evaluated while finalizing tablet composition, as it varies for each HME polymer. The developed statistical models identified suitable level of fillers and disintegrants for each studied HME polymer to achieve tablets with rapid DT (<15 min) and acceptable TS (≥1 MPa at 10-15% tablet porosity), and their predictivity was confirmed by conducting internal and external validation studies.
Nalamachu, Srinivas
2013-12-01
Breakthrough pain is common among patients with cancer and presents challenges to effective pain management. Breakthrough pain is characterized by rapid onset, severe intensity, and duration typically lasting <1 h. Thus, optimal relief from breakthrough pain is best attained by administering analgesics with dissolution times and bioavailabilities that closely match the onset and duration of breakthrough pain. The objective of this study was to assess complete disintegration time of three different doses of sublingual fentanyl tablets in opioid-tolerant patients. This was a single-center, non-randomized, open-label study. Opioid-tolerant adult patients (N = 30) with chronic pain were assigned to one of three dose groups and self-administered a single 100, 200, or 300 μg sublingual fentanyl tablet (Abstral(®), Galena Biopharma, Portland, OR, USA). Time to complete disintegration was measured by each patient with a stopwatch and independently verified by study personnel. Disintegration time (mean ± SD) for sublingual fentanyl tablets (all doses) was 88.2 ± 55.1 s. Mean disintegration times tended to be slightly longer for the 200 μg (96.7 ± 57.9 s) and 300 μg doses (98.6 ± 64.8 s) compared to the 100 μg dose (69.5 ± 40.5 s). Differences were not statistically significant. Disintegration time was not significantly different between men and women and was not affected by age. Sublingual fentanyl tablets dissolved rapidly (average time <2 min) in all patients, with the higher doses taking slightly more time to dissolve.
Patadia, Jalashri; Tripathi, Rahul; Joshi, Amita
2016-08-01
Generally, pellets obtained from extrusion/spheronization, containing microcrystalline cellulose (MCC), do not disintegrate. An attempt has been made to develop melt-in-mouth pellets of taste-masked atomoxetine hydrochloride, using extrusion-spheronization, for pediatric patients. Melt-in-mouth pellets were prepared using extrusion-spheronization method and optimized using 3(3) FFD. MCC (X1, %), mannitol (X2, %) and Indion 414: Pharmaburst 500 ratio (X3, ratio) were the factors (independent variables) studied, whereas responses studied (dependent variables) were friability (Y1, %), yield (Y2, %) shape (Y3, roundness) in vitro disintegration time (Y4, seconds). The optimized formulation obtained from FFD was characterized for friability, shape and morphology, in vitro disintegration time, porosity, moisture uptake, in vitro release study and in vivo taste and disintegration time in healthy human volunteers. Randomized, two-treatment, two-sequence, two-period, single dose, crossover sensory evaluation study of taste-masked melt-in-mouth pellet was carried out in 10 healthy human subjects. A statistically significant polynomial mathematical relationship was generated between the factors and responses to obtain an optimized formulation. The optimized formulation was characterized (in vitro and in vivo) and exhibited a rapid drug release in vitro attributed to fast disintegration of pellets and high solubility of drug in 0.1 N HCl and buffer (pH 6.8). In vivo, 40% of volunteers ranked taste-masked optimized formulation as slightly bitter while 60% ranked it as no taste. The optimized pellets were conveniently administered in volunteers and exhibited rapid in-vivo disintegration in the oral cavity. Melt-in-mouth pellets can be a used as a platform technology for administering drugs to paediatric patients accurately and conveniently resulting in patient compliance.
Shimizu, Youské; Shimizu, Takashi; Nara, Masayuki; Kikumoto, Mahito; Kojima, Hiroaki; Morii, Hisayuki
2013-04-01
Members of the kinesin-13 sub-family, including KIF2C, depolymerize microtubules. The positive charge-rich 'neck' region extending from the N-terminus of the catalytic head is considered to be important in the depolymerization activity. Chemically synthesized peptides, covering the basic region (A182-E200), induced a sigmoidal increase in the turbidity of a microtubule suspension. The increase was suppressed by salt addition or by reduction of basicity by amino acid substitutions. Electron microscopic observations revealed ring structures surrounding the microtubules at high peptide concentrations. Using the peptide A182-D218, we also detected free thin straight filaments, probably protofilaments disintegrated from microtubules. Therefore, the neck region, even without the catalytic head domain, may induce lateral disintegration of microtubules. With microtubules lacking anion-rich C-termini as a result of subtilisin treatment, addition of the peptide induced only a moderate increase in turbidity, and rings and protofilaments were rarely detected, while aggregations, also thought to be caused by lateral disintegration, were often observed in electron micrographs. Thus, the C-termini are not crucial for the action of the peptides in lateral disintegration but contribute to structural stabilization of the protofilaments. Previous structural studies indicated that the neck region of KIF2C is flexible, but our IR analysis suggests that the cation-rich region (K190-A204) forms β-structure in the presence of microtubules, which may be of significance with regard to the action of the neck region. Therefore, the neck region of KIF2C is sufficient to cause disintegration of microtubules into protofilaments, and this may contribute to the ability of KIF2C to cause depolymerization of microtubules. © 2013 The Authors Journal compilation © 2013 FEBS.
Pissinati, Rafael; Oliveira, Wanderley Pereira
2003-05-01
The present study was conducted in order to analyze the viability of the spouted bed process for application of a gastric-resistant coating to soft gelatin capsules. The variables investigated were: included angle of conical base, (gamma), the relation between the feed mass flow rate of the coating suspension and the feed mass flow rate of spouting gas (W(s)/W(g)); the ratio between the flow rate of the spouting gas and the flow rate at minimum spouting condition (Q/Q(ms)); the mass of capsules in the bed (M(0)), and the capsule's size. The product quality was measured by disintegration tests, traction x deformation tests, image analysis and by the evaluation of the coating mass distribution and shape factor variation during the coating operation. The experiments were performed in a spouted bed with a column diameter of 200 mm and included a conical base angle of 40 degrees. The best coating efficiency values were obtained for M(0)=300 g. Coating efficiency tended to increase with increasing W(s)/W(g) ratio. Disintegration tests showed that the gastric-resistant effect was obtained with a coating mass of 3.86 mg/cm(2). The shape factor increase during the coating operation. The capsule's coating mass distribution tended to maintain the original distribution.
Disintegration of fluids under supercritical conditions from mixing layer studies
NASA Technical Reports Server (NTRS)
Okong'o, N.; Bellan, J.
2003-01-01
Databases of transitional states obtained from Direct Numerical simulations (DNS) of temporal, supercritical mixing layers for two species systems, O2/H2 and C7H16/N2, are analyzed to elucidate species-specific turbulence aspects and features of fluid disintegration.
High Functioning Autism and Childhood Disintegrative Disorder in Half Brothers.
ERIC Educational Resources Information Center
Zwaigenbaum, L.; Szatmari, P.; Mahoney, W.; Bryson, S.; Bartolucci, G.; MacLean, J.
2000-01-01
This case report describes the presence of autism and Childhood Disintegrative Disorder (CDD) cosegregating within a sibship of half-brothers with the same mother. The report suggests that the rarity of the two conditions suggests a shared transmissible mechanism. (Contains references.) (Author/DB)
NASA Technical Reports Server (NTRS)
Schaefer, H. J.
1974-01-01
The complexity of direct reading and passive dosimeters for monitoring radiation is studied to strike the right balance of compromise to simplify the monitoring procedure. Trapped protons, tissue disintegration stars, and neutrons are analyzed.
Corá, Luciana A; Romeiro, Fernando G; Américo, Madileine F; Oliveira, Ricardo Brandt; Baffa, Oswaldo; Stelzer, Murilo; Miranda, José Ricardo de Arruda
2006-01-01
The oral administration is a common route in the drug therapy and the solid pharmaceutical forms are widely used. Although much about the performance of these formulations can be learned from in vitro studies using conventional methods, evaluation in vivo is essential in product development. The knowledge of the gastrointestinal transit and how the physiological variables can interfere with the disintegration and drug absorption is a prerequisite for development of dosage forms. The aim of this work was to employing the ac biosusceptometry (ACB) to monitoring magnetic tablets in the human gastrointestinal tract and to obtain the magnetic images of the disintegration process in the colonic region. The ac biosusceptometry showed accuracy in the quantification of the gastric residence time, the intestinal transit time and the disintegration time (DT) of the magnetic formulations in the human gastrointestinal tract. Moreover, ac biosusceptometry is a non-invasive technique, radiation-free and harmless to the volunteers, as well as an important research tool in the pharmaceutical, pharmacological and physiological investigations.
Postma, P R; Suarez-Garcia, E; Safi, C; Yonathan, K; Olivieri, G; Barbosa, M J; Wijffels, R H; Eppink, M H M
2017-01-01
The disintegration of three industry relevant algae (Chlorella vulgaris, Neochloris oleoabundans and Tetraselmis suecica) was studied in a lab scale bead mill at different bead sizes (0.3-1mm). Cell disintegration, proteins and carbohydrates released into the water phase followed a first order kinetics. The process is selective towards proteins over carbohydrates during early stages of milling. In general, smaller beads led to higher kinetic rates, with a minimum specific energy consumption of ⩽0.47kWhkg DW -1 for 0.3mm beads. After analysis of the stress parameters (stress number and stress intensity), it appears that optimal disintegration and energy usage for all strains occurs in the 0.3-0.4mm range. During the course of bead milling, the native structure of the marker protein Rubisco was retained, confirming the mildness of the disruption process. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Eswari, A Parvathy; Kavitha, S; Banu, J Rajesh; Karthikeyan, O Parthiba; Yeom, Ick-Tae
2017-11-01
This study aimed to improve the biomethane potential of dairy waste activated sludge (WAS) by H 2 O 2 -acidic pH induced microwave disintegration (HAMW-D) pretreatment approach. The results of HAMW-D compared with the microwave disintegration (MW-D) alone for energy and economic factors. In the two phase disintegration process, the H 2 O 2 concentration of about 0.5mg/g SS under acid pH of 5 was found to be optimum for effective dissociation of Extracellular Polymeric Substances (EPS) matrix. A higher liquefaction of about 46.6% was achieved in HAMW-D when compared to that of MW-D (30%). It subsequently improved the methane yield of about 250mL/g VS in HAMW-D, which was 9.6% higher than MW-D. A net profit of about 49€/ton was achieved for HAMW-D, therefore it is highly recommended for WAS pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Potential of activated sludge disintegration.
Boehler, M; Siegrist, H
2006-01-01
The disposal of sewage sludge and the agricultural use of stabilised sludge are decreasing due to more stringent regulations in Europe. An increasing fraction of sewage sludge must therefore be dewatered, dried, incinerated and the ashes disposed of in landfills. These processes are cost-intensive and also lead to the loss of valuable phosphate resources incorporated in the sludge ash. The implementation of processes that could reduce excess sludge production and recycle phosphate is therefore recommended. Disintegration of biological sludge by mechanical, thermal and physical methods could significantly reduce excess sludge production, improve the settling properties of the sludge and reduce bulking and scumming. The solubilised COD could also improve denitrification if the treated sludge is recycled to the anoxic zone. However, disintegration partly inhibits and kills nitrifiers and could therefore shorten their effective solid retention time, thus reducing the safety of the nitrification. This paper discusses the potential of disintegration on sludge reduction, the operating stability of nitrification, the improvement of denitrification and also presents an energy and cost evaluation.
Comparing alkaline and thermal disintegration characteristics for mechanically dewatered sludge.
Tunçal, Tolga
2011-10-01
Thermal drying is one of the advanced technologies ultimately providing an alternative method of sludge disposal. In this study, the drying kinetics of mechanically dewatered sludge (MDS) after alkaline and thermal disintegration have been studied. In addition, the effect of total organic carbon (TOC) on specific resistance to filtration and sludge bound water content were also investigated on freshly collected sludge samples. The combined effect of pH and TOC on the thermal sludge drying rate for MDS was modelled using the two-factorial experimental design method. Statistical assessment of the obtained results proposed that sludge drying potential has increased exponentially for both increasing temperature and lime dosage. Execution of curve fitting algorithms also implied that drying profiles for raw and alkaline-disintegrated sludge were well fitted to the Henderson and Pabis model. The activation energy of MDS decreased from 28.716 to 11.390 kJ mol(-1) after disintegration. Consequently, the unit power requirement for thermal drying decreased remarkably from 706 to 281 W g(-1) H2O.
Saito, Tsuguyuki; Nishiyama, Yoshiharu; Putaux, Jean-Luc; Vignon, Michel; Isogai, Akira
2006-06-01
Never-dried native celluloses (bleached sulfite wood pulp, cotton, tunicin, and bacterial cellulose) were disintegrated into individual microfibrils after oxidation mediated by the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radical followed by a homogenizing mechanical treatment. When oxidized with 3.6 mmol of NaClO per gram of cellulose, almost the totality of sulfite wood pulp and cotton were readily disintegrated into long individual microfibrils by a treatment with a Waring Blendor, yielding transparent and highly viscous suspensions. When observed by transmission electron microscopy, the wood pulp and cotton microfibrils exhibited a regular width of 3-5 nm. Tunicin and bacterial cellulose could be disintegrated by sonication. A bulk degree of oxidation of about 0.2 per one anhydroglucose unit of cellulose was necessary for a smooth disintegration of sulfite wood pulp, whereas only small amounts of independent microfibrils were obtained at lower oxidation levels. This limiting degree of oxidation decreased in the following order: sulfite wood pulp > cotton > bacterial cellulose, tunicin.
Hwang, M-S; Schwall, C T; Pazarentzos, E; Datler, C; Alder, N N; Grimm, S
2014-01-01
Massive Ca2+ influx into mitochondria is critically involved in cell death induction but it is unknown how this activates the organelle for cell destruction. Using multiple approaches including subcellular fractionation, FRET in intact cells, and in vitro reconstitutions, we show that mitochondrial Ca2+ influx prompts complex II of the respiratory chain to disintegrate, thereby releasing an enzymatically competent sub-complex that generates excessive reactive oxygen species (ROS) for cell death induction. This Ca2+-dependent dissociation of complex II is also observed in model membrane systems, but not when cardiolipin is replaced with a lipid devoid of Ca2+ binding. Cardiolipin is known to associate with complex II and upon Ca2+ binding coalesces into separate homotypic clusters. When complex II is deprived of this lipid, it disintegrates for ROS formation and cell death. Our results reveal Ca2+ binding to cardiolipin for complex II disintegration as a pivotal step for oxidative stress and cell death induction. PMID:24948011
Kavitha, S; Rajesh Banu, J; Kumar, Gopalakrishnan; Kaliappan, S; Yeom, Ick Tae
2018-04-01
In this study, microwave irradiation has been employed to disintegrate the sludge biomass profitably by deagglomerating the sludge using a mechanical device, ultrasonicator. The outcomes of the study revealed that a specific energy input of 3.5 kJ/kg TS was found to be optimum for deagglomeration with limited cell lysis. A higher suspended solids (SS) reduction and biomass lysis efficiency of about 22.5% and 33.2% was achieved through ultrasonic assisted microwave disintegration (UMWD) when compared to microwave disintegration - MWD (15% and 20.9%). The results of biochemical methane potential (BMP) test were used to estimate biodegradability of samples. Among the samples subjected to BMP, UMWD showed better amenability towards anaerobic digestion with higher methane production potential of 0.3 L/g COD representing enhanced liquefaction potential of disaggregated sludge biomass. Economic analysis of the proposed method of sludge biomass pretreatment showed a net profit of 2.67 USD/Ton respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Influence of the temperature on the cement disintegration in cement-retained implant restorations.
Linkevicius, Tomas; Vindasiute, Egle; Puisys, Algirdas; Linkeviciene, Laura; Svediene, Olga
2012-01-01
The aim of this study was to estimate the average disintegration temperature of three dental cements used for the cementation of the implant-supported prostheses. One hundred and twenty metal frameworks were fabricated and cemented on the prosthetic abutments with different dental cements. After heat treatment in the dental furnace, the samples were set for the separation to test the integration of the cement. Results have shown that resin-modified glass-ionomer cement (RGIC) exhibited the lowest disintegration temperature (p<0.05), but there was no difference between zinc phosphate cement (ZPC) and dual cure resin cement (RC) (p>0.05). Average separation temperatures: RGIC - 306 ± 23 °C, RC - 363 ± 71 °C, it could not be calculated for the ZPC due to the eight unseparated specimens. Within the limitations of the study, it could be concluded that RGIC cement disintegrates at the lowest temperature and ZPC is not prone to break down after exposure to temperature.
Electromagnetically induced disintegration and polarization plane rotation of laser pulses
NASA Astrophysics Data System (ADS)
Parshkov, Oleg M.; Budyak, Victoria V.; Kochetkova, Anastasia E.
2017-04-01
The numerical simulation results of disintegration effect of linear polarized shot probe pulses of electromagnetically induced transparency in the counterintuitive superposed linear polarized control field are presented. It is shown, that this disintegration occurs, if linear polarizations of interacting pulses are not parallel or mutually perpendicular. In case of weak input probe field the polarization of one probe pulse in the medium is parallel, whereas the polarization of another probe pulse is perpendicular to polarization direction of input control radiation. The concerned effect is analogous to the effect, which must to take place when short laser pulse propagates along main axes of biaxial crystal because of group velocity of normal mod difference. The essential difference of probe pulse disintegration and linear process in biaxial crystal is that probe pulse preserves linear polarization in all stages of propagation. The numerical simulation is performed for scheme of degenerated quantum transitions between 3P0 , 3P01 and 3P2 energy levels of 208Pb isotope.
Stabilization Mechanism of Roxithromycin Tablets under Gastric pH Conditions.
Inukai, Koki; Noguchi, Shuji; Kimura, Shin-Ichiro; Itai, Shigeru; Iwao, Yasunori
2018-05-31
Macrolide antibiotics are widely used at clinical sites. Clarithromycin (CAM), a 14-membered macrolide antibiotic, was reported to gelate under acidic conditions. Gelation allows oral administration of acid-sensitive CAM without enteric coating by hindering the penetration of gastric fluid into CAM tablets. However, it is unknown whether this phenomenon occurs in other macrolide antibiotics. In this study, we examined the gelation ability of three widely used macrolide antibiotics, roxithromycin (RXM), erythromycin A (EM), and azithromycin (AZM). The results indicated that not only CAM but also RXM gelated under acidic conditions. EM and AZM did not gelate under the same conditions. Gelation of RXM delayed the disintegration of the tablet and release of RXM from the tablet. Disintegration and release were also delayed in commercial RXM tablets containing disintegrants. This study showed that two of the four macrolides gelated, which affects tablet disintegration and dissolution and suggests that this phenomenon might also occur in other macrolides. Copyright © 2018. Published by Elsevier Inc.
EVIDENCE FOR GAS FROM A DISINTEGRATING EXTRASOLAR ASTEROID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, S.; Jura, M.; Zuckerman, B.
We report high-resolution spectroscopic observations of WD 1145+017—a white dwarf that was recently found to be transitted by multiple asteroid-sized objects within its tidal radius. We discovered numerous circumstellar absorption lines with linewidths of ∼300 km s{sup −1} from Mg, Ca, Ti, Cr, Mn, Fe, and Ni, possibly from several gas streams produced by collisions among the actively disintegrating objects. The atmosphere of WD 1145+017 is polluted with 11 heavy elements, including O, Mg, Al, Si, Ca, Ti, V:, Cr, Mn, Fe, and Ni. Evidently, we are witnessing the active disintegration and subsequent accretion of an extrasolar asteroid.
Disintegration of comet nuclei
NASA Astrophysics Data System (ADS)
Ksanfomality, Leonid V.
2012-02-01
The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies.
Weight and volume variation in truckloads of logs hauled in the central Appalachians
Floyd G. Timson
1974-01-01
Variation in volume and weight was found among loaded log trucks even when such factors as truck type, logging job, and driver influence were eliminated. A load range of 10,000 pounds or 1,000 board feet was commonplace for the same truck, driver, and cutting site. Differences in log size, shape, weight, and species caused a major share of this variation. Yet,...
Seasonal carcass composition and energy balance of female black ducks in Maine
Kenneth J. Reinecke; Timothy L. Stone; Ray B., Jr. Owen
1982-01-01
Female Black Ducks (Anas rubripes) collected in Maine during the summer, fall, and winter of 1974-1976 showed significant seasonal variation in body weight, nonfat dry weight, gizzard and pectoral muscle weight, and fat, moisture, and protein content. Variation of body weight within and among seasons was correlated more strongly with carcass protein...
Kondrichin, Sergei V; Lester, David
2002-01-01
The suicide rates of the 24 provinces (oblasts) of the Ukraine were found to be strongly associated with indices of social disintegration (such as divorce and illegitimacy rates), with the Western provinces incorporated in the USSR later than other Ukrainian territories having lower suicide rates and lower levels of social disintegration.
Case Study of Childhood Disintegrative Disorder--Heller's Syndrome.
ERIC Educational Resources Information Center
Bray, Melissa A.; Kehle, Thomas J.; Theodore, Lea A.; Broudy, Matthew S.
2002-01-01
Discusses the case of a 25-year-old male with childhood disintegrative disorder (CDD), or Heller's syndrome, in terms of differential diagnosis, progression of the disorder, and suggestions for home- and school-based interventions. Documents the progressive deterioration of cognitive and social competencies. (Contains 23 references.) (GCP)
[Evoked potentials in the human visual cortex when observing whole figures and their elements].
Slavutskaia, A V; Mikhaĭlova, E S
2010-01-01
Evoked potentials changes were analyzed in 32 subjects in a task of observing whole and disintegrated images. In the occipital and parietal regions, reactions to a disintegrated image appeared early (within the period of P1 development), and their characteristics were determined by the magnitude of the response to the whole image. In the occipital cortex, a low-amplitude P1 (the 1st group of subjects) increased in response to image disintegration, whereas in cases of a high P1 amplitude (the 2nd group), the tendency to its reduction was observed. In the parietal regions, the effects were distinct only in the 1st group of subjects and different in the right and left hemispheres: in the left hemisphere, the P1 amplitude increased when simpler elements appeared in the image, in the right hemisphere, a change in the spatial disposition of details was more significant. In the inferior temporal cortex, the amplitude of the later wave N1 decreased in response to disintegration, the effect being significant only in the 2nd group of subjects. The appearance of simpler elements in the image resulted in a P3 wave increase in both groups. The results point to topographic and temporal specificity of the reactions of the visual cortex to image disintegration and suggest the existence of various strategies of the visual image analysis at the early stages.
NASA Astrophysics Data System (ADS)
Sarif, S. F. Z. Mohd; Alias, S. S.; Ridwan, F. Muhammad; Salim, K. S. Ku; Abidin, C. Z. A.; Ali, U. F. Md.
2018-03-01
Ozonation of activated sludge in the present of titanium dioxide (TiO2) as catalyst to enhance the production of hydroxyl radical was evaluated in comparison to the sole ozonation process. In this process, the catalytic ozontion showed improvement in increasing ozone consumption and improving activated sludge disintegration and solubilisation. The reduction of total suspended solid (TSS), volatile suspended solid (VSS) and soluble chemical oxygen demand (SCOD) solubilisation was better in the catalytic ozonation system. Initial pH 7 of activated sludge was found best to disintegrate and solubilise the sludge flocs. However upon additional of sodium hydroxide (NaOH) in pH adjustment enhanced the solubilisation of organic matter from the flocs and cells, making the initial pH 9 is the best condition for activated sludge solubilisation. Yet the initial pH 7 of activated sludge supernatant was the best condition to achieve SCOD solubilisation due to sludge floc disintegration, when it had stronger correlation between TSS reduction and SCOD solubilisation (R2=0.961). Lower amount of catalyst of 100 mgTiO2/gTSS was found to disintegrate and solubilise the activated sludge better with 30.4% TSS reduction and 25.2% SCOD solubilisation efficiency, compared to 200 mgTiO2/gTSS with 21.9% and 17.1% TSS reduction and SCOD solubilisation, respectively.
Kindgen, Sarah; Wachtel, Herbert; Abrahamsson, Bertil; Langguth, Peter
2015-09-01
Disintegration of oral solid dosage forms is a prerequisite for drug dissolution and absorption and is to a large extent dependent on the pressures and hydrodynamic conditions in the solution that the dosage form is exposed to. In this work, the hydrodynamics in the PhEur/USP disintegration tester were investigated using computational fluid dynamics (CFD). Particle image velocimetry was used to validate the CFD predictions. The CFD simulations were performed with different Newtonian and non-Newtonian fluids, representing fasted and fed states. The results indicate that the current design and operating conditions of the disintegration test device, given by the pharmacopoeias, are not reproducing the in vivo situation. This holds true for the hydrodynamics in the disintegration tester that generates Reynolds numbers dissimilar to the reported in vivo situation. Also, when using homogenized US FDA meal, representing the fed state, too high viscosities and relative pressures are generated. The forces acting on the dosage form are too small for all fluids compared to the in vivo situation. The lack of peristaltic contractions, which generate hydrodynamics and shear stress in vivo, might be the major drawback of the compendial device resulting in the observed differences between predicted and in vivo measured hydrodynamics. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Multivariate analysis of sludge disintegration by microwave-hydrogen peroxide pretreatment process.
Ya-Wei, Wang; Cheng-Min, Gui; Xiao-Tang, Ni; Mei-Xue, Chen; Yuan-Song, Wei
2015-01-01
Microwave irradiation (with H2O2) has been shown to offer considerable advantages owing to its flexible control, low overall cost, and resulting higher soluble chemical oxygen demand (SCOD); accordingly, the method has been proposed recently as a means of improving sludge disintegration. However, the key factor controlling this sludge pretreatment process, pH, has received insufficient attention to date. To address this, the response surface approach (central composite design) was applied to evaluate the effects of total suspended solids (TSS, 2-20 g/L), pH (4-10), and H2O2 dosage (0-2 w/w) and their interactions on 16 response variables (e.g., SCODreleased, pH, H2O2remaining). The results demonstrated that all three factors affect sludge disintegration significantly, and no pronounced interactions between response variables were observed during disintegration, except for three variables (TCOD, TSSremaining, and H2O2 remaining). Quadratic predictive models were constructed for all 16 response variables (R(2): 0.871-0.991). Taking soluble chemical oxygen demand (SCOD) as an example, the model and coefficients derived above were able to predict the performance of microwave pretreatment (enhanced by H2O2 and pH adjustment) from previously published studies. The predictive models developed were able to optimize the treatment process for multiple disintegration objectives. Copyright © 2014 Elsevier B.V. All rights reserved.
Jaziri, Kais; Casellas, Magali; Dagot, Christophe
2012-06-01
The objectives of this work were to compare and investigate the effect of three activated sludge disintegration processes before aerobic sludge digestion on 1) aerobic biodegradability enhancement and 2) microbial community evolution using the polymerase chain reaction-denaturant gel gradient electrophoresis (PCR-DGGE) technique. The comparison of three disintegration processes: thermal treatment (95 degrees C, 2h), sonication (100,000 kJ/kgTS) and ozonation (0.108 g O3/gTS) showed that the disintegration processes acted differently according to the composition of the soluble phase and to the DNA damage. Thermal treatment led to significant protein solubilization and to DNA modification. Sonication and ozonation resulted in similar soluble phase compositions and did not lead to any DNA modifications. During activated sludge aerobic digestion, intrinsic biodegradability enhancement was observed for thermal and ozone activated sludge pre-treatments. The analysis of the DGGE patterns at the end of aerobic digestion showed that population diversity was affected by both the aerobic digestion and the pre-treatment. The dissimilarity percentages measured at the end of aerobic digestion in the control sample and in the treated sludge were equal to 22, 25 and 20% for thermal treatment, sonication and ozonation respectively. This study indicated that PCR-DGGE could be a useful tool for the comparison of disintegration processes before and after aerobic digestion.
Alkaline treatment of high-solids sludge and its application to anaerobic digestion.
Li, Chenchen; Li, Huan; Zhang, Yuyao
2015-01-01
High-solids anaerobic digestion is a promising new process for sludge reduction and bioenergy recovery, requiring smaller digestion tanks and less energy for heating, but a longer digestion time, than traditional low-solids anaerobic digestion. To accelerate this process, alkaline sludge disintegration was tested as a pretreatment method for anaerobic digestion of high-solids sludge. The results showed that alkaline treatment effectively disintegrated both low-solids sludge and high-solids sludge, and treatment duration of 30 min was the most efficient. The relation between sludge disintegration degree and NaOH dose can be described by a transmutative power function model. At NaOH dose lower than 0.2 mol/L, sludge disintegration degree remained virtually unchanged when sludge total solids (TS) content increased from 2.0 to 11.0%, and decreased only slightly when sludge TS increased to 14.2%. Although high-solids sludge required a slightly higher molarity of NaOH to reach the same disintegration level of low-solids sludge, the required mass of NaOH actually decreased due to sludge thickening. From the view of NaOH consumption, sludge TS of 8-12% and a NaOH dose of 0.05 mol/L were optimum conditions for alkaline pretreatment, which resulted in a slight increase in accumulative biogas yield, but a decrease by 24-29% in digestion time during the subsequent anaerobic digestion.
Jones, Rhys J.; Rajabi-Siahboomi, Ali; Levina, Marina; Perrie, Yvonne; Mohammed, Afzal R.
2011-01-01
Gelatin is a principal excipient used as a binder in the formulation of lyophilized orally disintegrating tablets. The current study focuses on exploiting the physicochemical properties of gelatin by varying formulation parameters to determine their influence on orally disintegrating tablet (ODT) characteristics. Process parameters, namely pH and ionic strength of the formulations, and ball milling were investigated to observe their effects on excipient characteristics and tablet formation. The properties and characteristics of the formulations and tablets which were investigated included: glass transition temperature, wettability, porosity, mechanical properties, disintegration time, morphology of the internal structure of the freeze-dried tablets, and drug dissolution. The results from the pH study revealed that adjusting the pH of the formulation away from the isoelectric point of gelatin, resulted in an improvement in tablet disintegration time possibly due to increase in gelatin swelling resulting in greater tablet porosity. The results from the ionic strength study revealed that the inclusion of sodium chloride influenced tablet porosity, tablet morphology and the glass transition temperature of the formulations. Data from the milling study showed that milling the excipients influenced formulation characteristics, namely wettability and powder porosity. The study concludes that alterations of simple parameters such as pH and salt concentration have a significant influence on formulation of ODT. PMID:24310589
Yasuda, Akihito; Onuki, Yoshinori; Obata, Yasuko; Yamamoto, Rie; Takayama, Kozo
2013-01-01
The "quality by design" concept in pharmaceutical formulation development requires the establishment of a science-based rationale and a design space. We integrated thin-plate spline (TPS) interpolation and Kohonen's self-organizing map (SOM) to visualize the latent structure underlying causal factors and pharmaceutical responses. As a model pharmaceutical product, theophylline tablets were prepared based on a standard formulation. The tensile strength, disintegration time, and stability of these variables were measured as response variables. These responses were predicted quantitatively based on nonlinear TPS. A large amount of data on these tablets was generated and classified into several clusters using an SOM. The experimental values of the responses were predicted with high accuracy, and the data generated for the tablets were classified into several distinct clusters. The SOM feature map allowed us to analyze the global and local correlations between causal factors and tablet characteristics. The results of this study suggest that increasing the proportion of microcrystalline cellulose (MCC) improved the tensile strength and the stability of tensile strength of these theophylline tablets. In addition, the proportion of MCC has an optimum value for disintegration time and stability of disintegration. Increasing the proportion of magnesium stearate extended disintegration time. Increasing the compression force improved tensile strength, but degraded the stability of disintegration. This technique provides a better understanding of the relationships between causal factors and pharmaceutical responses in theophylline tablet formulations.
Arafa, Mona F; El-Gizawy, Sanaa A; Osman, Mohamed A; El Maghraby, Gamal M
2016-08-01
Development of oral disintegrating tablets requires enhancement of drug dissolution and selection of sweetener. Co-crystallization of drugs with inert co-former is an emerging technique for enhancing dissolution rate. The benefit of this technique will become even greater if one of the sweeteners can act as co-crystal co-former to enhance dissolution and mask the taste. Accordingly, the objective of this work was to investigate the efficacy of sucralose as a potential co-crystal co-former for enhancing the dissolution rate of hydrochlorothiazide. This was extended to prepare oral disintegrating tablets. Co-crystallization was achieved after dissolving hydrochlorothiazide with increasing molar ratios of sucralose in the least amount of acetone. The co-crystallization products were characterized using Fourier transform infrared spectroscopy, differential thermal analysis and powder X-ray diffraction. These measurements indicated that co-crystallization process started at a drug sucralose molar ratio of 1:1 and completed at 1:2. The developed co-crystals exhibited faster drug dissolution compared with the control, with co-crystal containing the drug with sucralose at 1:2 molar ratio being optimum. The later was used to prepare fast disintegrating tablets. These tablets had acceptable physical characteristics and showed fast disintegration with subsequent rapid dissolution. The study introduced sucralose as co-crystal co-former for enhanced dissolution and masking the taste.
Malik, Karan; Arora, Gurpreet; Singh, Inderbir; Arora, Sandeep
2011-01-01
Aim: Orodispersible tablets also known as fast dissolving tablets disintegrate instantaneously within the mouth and thus can be consumed without water. The present study was aimed to formulate orodispersible tablets of nimesulide by using Lallemantia reylenne seeds as natural superdisintegrant. Materials and Methods: Powdered lallemantia seeds were characterized for powder flow properties (bulk density, tapped density, carr's consolidation index, hausner ratio, angle of repose), swelling index, viscosity, pH, and loss on drying. The prepared tablets were evaluated for different tablet parametric tests, wetting time, water absorption ratio, effective pore radius, porosity, packing fraction, in vitro and in vivo disintegration time, in vitro dissolution and stability studies. Results and Discussion: Increase in Lallementia reylenne concentration had an appreciable effect on tablet hardness and friability which clearly indicated binding potential of the seeds. Water absorption ratio increased with increase in Lallemantia reylenne concentration from batch A1 to A4. Water uptake coupled natural polymer swelling could be the most probable mechanism for concentration dependent reduction in disintegration time by the Lallemantia reylenne seeds. Porosity of the formulated tablets was found to increase from batch A1-A4. The in vitro disintegration results were in line with in vivo disintegration results. Conclusion: It could be concluded that Lallemantia reylenne seeds could be used as natural superdisintegrant in the formulation of orodispersible tablets. PMID:23071942
Lin, Liangxu; Zhang, Shaowei
2012-10-21
We have developed an effective method to exfoliate and disintegrate multi-walled carbon nanotubes and graphite flakes. With this technique, high yield production of luminescent graphene quantum dots with high quantum yield and low oxidization can be achieved.
The Disintegration of Teacher Preparation
ERIC Educational Resources Information Center
Baines, Lawrence A.
2010-01-01
The disintegration of teacher certification programs in the united States holds an eerie similarity to the recent meltdown of American financial institutions. Similarly, the No Child Left Behind Act of 2001, whose purported purpose was to ensure that all students get highly qualified teachers (HQT), has had an unintentionally devastating effect on…
48 CFR 245.7309-8 - Variations in quantity or weight.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Inventory 245.7309-8 Variations in quantity or weight. When property is sold on a “unit price” basis, the Contractor reserves the right to vary by up to 15 percent the quantity or weight listed in the Invitation and... price shall be adjusted in accordance with the unit price and on the basis of the quantity or weight...
Within-litter variation in birth weight: impact of nutritional status in the sow.
Yuan, Tao-lin; Zhu, Yu-hua; Shi, Meng; Li, Tian-tian; Li, Na; Wu, Guo-yao; Bazer, Fuller W; Zang, Jian-jun; Wang, Feng-lai; Wang, Jun-jun
2015-06-01
Accompanying the beneficial improvement in litter size from genetic selection for high-prolificacy sows, within-litter variation in birth weight has increased with detrimental effects on post-natal growth and survival due to an increase in the proportion of piglets with low birth-weight. Causes of within-litter variation in birth weight include breed characteristics that affect uterine space, ovulation rate, degree of maturation of oocytes, duration of time required for ovulation, interval between ovulation and fertilization, uterine capacity for implantation and placentation, size and efficiency of placental transport of nutrients, communication between conceptus/fetus and maternal systems, as well as nutritional status and environmental influences during gestation. Because these factors contribute to within-litter variation in birth weight, nutritional status of the sow to improve fetal-placental development must focus on the following three important stages in the reproductive cycle: pre-mating or weaning to estrus, early gestation and late gestation. The goal is to increase the homogeneity of development of oocytes and conceptuses, decrease variations in conceptus development during implantation and placentation, and improve birth weights of newborn piglets. Though some progress has been made in nutritional regulation of within-litter variation in the birth weight of piglets, additional studies, with a focus on and insights into molecular mechanisms of reproductive physiology from the aspects of maternal growth and offspring development, as well as their regulation by nutrients provided to the sow, are urgently needed.
Weedon, Michael N; Clark, Vanessa J; Qian, Yudong; Ben-Shlomo, Yoav; Timpson, Nicholas; Ebrahim, Shah; Lawlor, Debbie A; Pembrey, Marcus E; Ring, Susan; Wilkin, Terry J; Voss, Linda D; Jeffery, Alison N; Metcalf, Brad; Ferrucci, Luigi; Corsi, Anna Maria; Murray, Anna; Melzer, David; Knight, Bridget; Shields, Bev; Smith, George Davey; Hattersley, Andrew T; Di Rienzo, Anna; Frayling, Tim M
2006-12-01
Fasting glucose is associated with future risk of type 2 diabetes and ischemic heart disease and is tightly regulated despite considerable variation in quantity, type, and timing of food intake. In pregnancy, maternal fasting glucose concentration is an important determinant of offspring birth weight. The key determinant of fasting glucose is the enzyme glucokinase (GCK). Rare mutations of GCK cause fasting hyperglycemia and alter birth weight. The extent to which common variation of GCK explains normal variation of fasting glucose and birth weight is not known. We aimed to comprehensively define the role of variation of GCK in determination of fasting glucose and birth weight, using a tagging SNP (tSNP) approach and studying 19,806 subjects from six population-based studies. Using 22 tSNPs, we showed that the variant rs1799884 is associated with fasting glucose at all ages in the normal population and exceeded genomewide levels of significance (P=10-9). rs3757840 was also highly significantly associated with fasting glucose (P=8x10-7), but haplotype analysis revealed that this is explained by linkage disequilibrium (r2=0.2) with rs1799884. A maternal A allele at rs1799884 was associated with a 32-g (95% confidence interval 11-53 g) increase in offspring birth weight (P=.002). Genetic variation influencing birth weight may have conferred a selective advantage in human populations. We performed extensive population-genetics analyses to look for evidence of recent positive natural selection on patterns of GCK variation. However, we found no strong signature of positive selection. In conclusion, a comprehensive analysis of common variation of the glucokinase gene shows that this is the first gene to be reproducibly associated with fasting glucose and fetal growth.
Talbot, V
1986-12-01
The intertidal rock oyster Saccostrea cuccullata, sampled at eight sites on eight occasions over a 1-year period, contained mean Cu and Zn concentrations ranging between 34 and 267 and 206 and 4078 mg kg-1 dry weight, respectively. In the study area, Cu and Zn emanate from sewage and boat slips (antifouling paints), while Zn probably also originates from coolant water from an electricity power generating station and iron ore exporting facilities. Highest oyster wet weight, Cu and Zn concentrations and loads occurred in January (spawning period), indicating that metal variation was not reciprocating wet weight. Lowest metal concentrations and loads occurred in October (period of onset of gametogenesis), while lowest wet weight occurred in April (post-spawning period). No significant (P less than 0.001) variation in the wet to dry weight ratio was noted temporally. However, significant, though slight, variation was noted between polluted and unpolluted oysters. Results of this study indicate that pollution control monitoring programs should consider: seasonal variation of metal concentrations; portion of the year during which standards are exceeded; oyster size and availability for human consumption; suitability of standards where shellfish are not consumed as a staple diet; appropriate size indicies which can be used for selecting specimens for intersite comparisons; wet to dry weight calculations: techniques, spatial and temporal variations; and the physical dynamics of sites used.
Dabrowski's Theory of Positive Disintegration and Giftedness: Overexcitability Research Findings
ERIC Educational Resources Information Center
Mendaglio, Sal; Tillier, William
2006-01-01
During the past 20 years, a significant body of literature has emerged focusing on the application of Dabrowski's theory of positive disintegration (TPD) to the study of gifted individuals. Although much of this literature is prescriptive, some research reports spanning this time period are available. A perusal of research on TPD's applicability…
Unintegration, Disintegration and Deintegration
ERIC Educational Resources Information Center
Urban, Elizabeth
2006-01-01
This paper is a response to a review of the conference titled, "Unintegration, Disintegration and Integration", written by Cathy Urwin and Maria Rhode in the ACP Bulletin. The review mentioned Michael Fordham, noting that he referred to a "good" kind of unintegration. In this paper, I point out that this is a somewhat misleading reference to what…
Cultural Disintegration Perpetuated through Substance Abuse among American Indians.
ERIC Educational Resources Information Center
French, Laurence Armand
Alcohol, perhaps more than any other factor, symbolizes the degree of cultural disintegration experienced by American Indians today. It has been recognized as a symptom of the numerous cultural adjustments forced upon American Indians since white contact. Indeed, alcohol among Indian groups was prohibited for a far longer period than the…
Prevalence of Childhood Disintegrative Disorder.
ERIC Educational Resources Information Center
Fombonne, Eric
2002-01-01
A review of 32 epidemiological surveys of autism and pervasive developmental disorders found four surveys yielded estimates for childhood disintegrative disorder (CDD) ranging from 1.1 to 6.4 per 100,000. It is concluded that CDD is very rare and its prevalence is 60 times less than that of autistic disorder. (Contains references.) (Author/CR)
When Autism Strikes: Families Cope with Childhood Disintegrative Disorder.
ERIC Educational Resources Information Center
Catalano, Robert A.
This book examines childhood disintegrative disorder, which is seen to be a disorder apart from autism although it has sometimes been called "late onset autism". The condition is characterized by sudden onset and severe developmental regression between 3 and 5 years of age after previously normal development. The long-term outcome is…
Brief Report: Childhood Disintegrative Disorder--A Brief Examination of Eight Case Studies
ERIC Educational Resources Information Center
Homan, Kendra J.; Mellon, Michael W.; Houlihan, Daniel; Katusic, Maja Z.
2011-01-01
Childhood disintegrative disorder (CDD) is a rare condition characterized by distinct regression of developmental and behavioral functioning following a period of apparently normal development for at least 2 years. The purpose of this article is to present the developmental, behavioral, psychosocial, and medical histories of eight children who…
Plenary Speeches: Is the Second Language Acquisition Discipline Disintegrating?
ERIC Educational Resources Information Center
Hulstijn, Jan H.
2013-01-01
After characterizing the study of second language acquisition (SLA) from three viewpoints, I try to answer the question, raised by DeKeyser (2010), of whether the SLA field is disintegrating. In answering this question, I first propose a distinction between SLA as the relatively fundamental academic discipline and SLA as the relatively applied…
Tamilarasan, K; Arulazhagan, P; Rani, R Uma; Kaliappan, S; Banu, J Rajesh
2018-04-01
An exploration into the symbiotic impact of sonic-tenside (SDBS - sodium dodecyl benzene sulfonate) on biomass disintegration potential and to reduce the energy consumption was studied. At optimized condition (specific energy input 9600 kJ/kg TS; SDBS dosage 0.07 g/g SS), higher percentage of biomass lysis and solids reduction (23.9% and 19.8%) was obtained in blended sonic-tenside disintegration (STD), than sonic disintegration (SD) (17.6% and 9.8%). The bioacidogenic potential (BAP) assay in terms of volatile fatty acids (VFA) production (722 mg/L) was found to be higher for STD, in comparison to SD (350 mg/L). The impact of STD on anaerobic digestion was evident from its methane yield (0.239 g/g COD), higher than SD (0.182 g/g COD). A monetary evaluation of the present study provides a net gain of 2 USD/ton for STD, indicating the profitability of the technique. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Chenguang; Hu, Shenye; Sun, Changquan Calvin
2017-10-02
A palatable direct compression (DC) orally disintegrating tablet (ODT) product of a bitter drug, diphenhydramine (DPH), was developed using an integrated crystal and particle engineering approach. A DPH salt with a sweetener, acesulfame (Acs), DPH-Acs, was synthesized and its solid state properties were comprehensively characterized. Tablet formulation composition and compaction parameters were optimized by employing material sparing techniques. In vivo disintegration time, bitterness, and grittiness of the final ODT product, were evaluated by a taste panel. Physical stability of the ODT tablets was assessed to identify appropriate storage conditions. Phase-pure DPH-Acs exhibited significantly better tabletability and palatability than DPH-HCl. A DC formulation was designed and optimized to obtain a new ODT product with good manufacturability and excellent product characteristics, including fast in vivo disintegration, and acceptable bitterness and grittiness. A new ODT product of DPH with excellent pharmaceutical properties was successfully developed using 15 g of DPH and in two months. This example shows that integrated crystal and particle engineering is an effective approach for developing high quality ODT products using the DC process.
Ushani, U; Kavitha, S; Yukesh Kannah, R; Gunasekaran, M; Kumar, Gopalakrishnan; Nguyen, Dinh Duc; Chang, Soon Woong; Rajesh Banu, J
2018-07-01
The present study aimed to gain better insights into profitable biomethanation through sodium thiosulphate induced immobilized protease secreting bacterial disintegration (STS-IPBD) of sludge. STS disperse the flocs at 0.08 g/g SS of dosage and assists the subsequent bacterial disintegration. Immobilization of bacteria increases the hydrolytic activity of cells towards effective liquefaction of sludge. A higher liquefaction of 22% was accomplished for STS-IPBD when compared to immobilized protease secreting bacterial disintegration (IPBD alone). The kinetic parameters of Line Weaver Burk plot analysis revealed a maximal specific growth rate (µmax) of 0.320 h -1 for immobilized cells when compared to suspended free cells showing the benefit of immobilization. Floc dispersion and immobilization of bacteria imparts a major role in biomethanation as the methane generation (0.32 gCOD/g COD) was higher in STS-IPBD sample. The cost analysis showed that STS - IPBD was a feasible process with net profit of 2.6 USD/Ton of sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nguyen, K. L.; Gabov, V. V.; Zadkov, D. A.; Le, T. B.
2018-03-01
This paper analyzes the processes of removing coal from the area of its dislodging and loading the disintegrated mass onto face conveyors by auger heads of shearer-loader machines. The loading process is assumed to consist of four subprocesses: dislodging coal, removal of the disintegrated mass by auger blades from the crushing area, passive transportation of the disintegrated mass, and forming the load flow on the bearing surface of a face conveyor. Each of the considered subprocesses is different in its physical nature, the number of factors influencing it, and can be complex or multifactor. Possibilities of improving the efficiency of loading coal onto a face conveyor are addressed. The selected criteria of loading efficiency are load rate, specific energy consumption, and coal size reduction. Efficiency is improved by reducing the resistance to movement of the disintegrated mass during loading by increasing the area of the loading window section and the volume of the loading area on the conveyor, as well as by coordination of intensity of flows related to the considered processes in local areas.
A novel rotation generator of hydrodynamic cavitation for waste-activated sludge disintegration.
Petkovšek, Martin; Mlakar, Matej; Levstek, Marjetka; Stražar, Marjeta; Širok, Brane; Dular, Matevž
2015-09-01
The disintegration of raw sludge is very important for enhancement of the biogas production in anaerobic digestion process as it provides easily degradable substrate for microorganisms to perform maximum sludge treatment efficiency and stable digestion of sludge at lower costs. In the present study the disintegration was studied by using a novel rotation generator of hydrodynamic cavitation (RGHC). At the first stage the analysis of hydrodynamics of the RGHC were made with tap water, where the cavitation extent and aggressiveness was evaluated. At the second stage RGHC was used as a tool for pretreatment of a waste-activated sludge (WAS), collected from wastewater treatment plant (WWTP). In case of WAS the disintegration rate was measured, where the soluble chemical oxygen demand (SCOD) and soluble Kjeldahl nitrogen were monitored and microbiological pictures were taken. The SCOD increased from initial 45 mg/L up to 602 mg/L and 12.7% more biogas has been produced by 20 passes through RGHC. The results were obtained on a pilot bioreactor plant, volume of 400 L. Copyright © 2015. Published by Elsevier B.V.
Kotsuchibashi, Yohei; Ebara, Mitsuhiro; Sato, Takeshi; Wang, Yinan; Rajender, Rajender; Hall, Dennis G; Narain, Ravin; Aoyagi, Takao
2015-02-12
We demonstrate here a local- and remote-control of gel disintegration by using photoinduced proton transfer chemistry of photoacid generator (PAG). The gels were prepared by simply mixing two polymers, poly(N-isopropylacrylamide-co-5-methacrylamido-1,2-benzoxaborole) (P(NIPAAm-co-MAAmBO)) and poly(3-gluconamidopropyl methacrylamide) (PGAPMA) via the synergistic interaction of benzoxaborole and diol groups. The o-nitrobenzaldehyde (o-NBA) was then loaded into the gel as a PAG. The benzoxaborole-diol interaction was successfully disintegrated upon UV irradiation due to the local pH decrease inside the gel. When the gel was irradiated to a specific gel region, the synergistic interactions were disintegrated only at the exposed region. Of special interest is that the whole material eventually transitioned from gel to sol state, as the generated protons diffused gradually toward the nonilluminated region. The ability of the proposed gel-sol transition system via photoinduced proton diffusion may be beneficial for not only prompt pH changes within the gel but also the design of predictive and programmable devices for drug delivery.
Neem gum as a binder in a formulated paracetamol tablet with reference to Acacia gum BP.
Ogunjimi, Abayomi Tolulope; Alebiowu, Gbenga
2014-04-01
This study determined the physical, compressional, and binding properties of neem gum (NMG) obtained from the trunk of Azadirachta indica (A Juss) in a paracetamol tablet formulation in comparison with official Acacia gum BP (ACA). The physical and flow properties were evaluated using density parameters: porosity, Carr's index, Hausner's ratio, and flow rate. Compressional properties were analyzed using Heckel and Kawakita equations. The tensile strength, brittle fracture index, and crushing strength-friability/disintegration time ratio were used to evaluate the mechanical properties of paracetamol tablets while the drug release properties of the tablets were assessed using disintegration time and dissolution times. Tablet formulations containing NMG exhibited faster onset and higher amount of plastic deformation during compression than those containing ACA. Neem gum produced paracetamol tablets with lower mechanical strength; however, the tendency of the tablets to cap or laminate was lower when compared to those containing ACA. Inclusion of NMG improved the balance between binding and disintegration properties of paracetamol tablets produced than those containing ACA. Neem gum produced paracetamol tablets with lower disintegration and dissolution times than those containing ACA.
Engelhart, M; Krüger, M; Kopp, J; Dichtl, N
2000-01-01
The effects of mechanical disintegration on anaerobic digestibility of sewage excess sludge in downflow stationary fixed film (DSFF) digesters were investigated on laboratory scale. Mechanical pretreatment using a high pressure homogenizer led to significantly enhanced concentrations of soluble proteins and carbohydrates in the feed sludge. Using DSFF digesters with two different tubular plastic media as support material it was shown that a stable digestion process could be achieved at hydraulic retention times (HRT) down to 5 days. Compared to conventional digesters at 10 d and 15 d HRT respectively, the degradation of volatile solids was enhanced up to 25%, also resulting in a higher specific biogas production. Further investigations on degradation of soluble proteins and carbohydrates showed that a slowly degradable fraction of carbohydrates was released via disintegration. Using the distribution of chain length and the concentrations of volatile fatty acids as process parameters, the dependability on the HRT and the degree of disintegration (the release of soluble COD) predominated the effects of specific surface area of the support media.
Ozone disintegration of excess biomass and application to nitrogen removal.
Park, Ki Young; Lee, Jae Woo; Ahn, Kyu-Hong; Maeng, Sung Kyu; Hwang, Jong Hyuk; Song, Kyung-Guen
2004-01-01
A pilot-scale facility integrated with an ozonation unit was built to investigate the feasibility of using ozone-disintegration byproducts of wasted biomass as a carbon source for denitrification. Ozonation of biomass resulted in mass reduction by mineralization as well as by ozone-disintegrated biosolids recycling. Approximately 50% of wasted solids were recovered as available organic matter (ozonolysate), which included nonsettleable microparticles and soluble fractions. Microparticles were observed in abundance at relatively low levels of ozone doses, while soluble fractions became dominant at higher levels of ozone doses in ozone-disintegrated organics. Batch denitrification experiments showed that the ozonolysate could be used as a carbon source with a maximum denitrification rate of 3.66 mg nitrogen (N)/g volatile suspended solids (VSS) x h. Ozonolysate was also proven to enhance total nitrogen removal efficiency in the pilot-scale treatment facility. An optimal chemical oxygen demand (COD)-to-nitrogen ratio for complete denitrification was estimated as 5.13 g COD/g N. The nitrogen-removal performance of the modified intermittently decanted extended aeration process dependent on an external carbon supply could be described as a function of solids retention time.
Li, Wei; Yu, Najiaowa; Liu, Qian; Li, Yiran; Ren, Nanqi; Xing, Defeng
2018-09-01
Sludge disintegration by ultrasound is a promising sludge treatment method. In order to enhance the efficiency of the sludge reduction and hydrolysis, potassium ferrate (K 2 FeO 4 ) (PF) was used. A novel method was developed to improve the sludge disintegration-sludge pretreatment by using PF in combination with an ultrasonic treatment (PF + ULT). After a short-term PF + ULT treatment, 17.23% of the volatile suspended solids (VSS) were reduced after a 900-min reaction time, which is 61.3% higher than the VSS reduction for the raw sludge. The supernatant soluble chemical oxygen demand (SCOD), total nitrogen (TN), volatile fatty acids (VFAs), soluble protein and polysaccharides increased by 522.5%, 1029.4%, 878.4%, 2996.6% and 801.9%, respectively. The constituent parts of the dissolved organic matter of the sludge products were released efficiently, which demonstrated the positive effect caused by the PF + ULT. The enhanced sludge disintegration process further alleviates environmental risk and offers a more efficient and convenient method for utilizing sludge. Copyright © 2018 Elsevier B.V. All rights reserved.
Brouwers, Joachim; Anneveld, Bart; Goudappel, Gert-Jan; Duchateau, Guus; Annaert, Pieter; Augustijns, Patrick; Zeijdner, Evelijn
2011-02-01
In the present study, we demonstrated the value of two advanced tools, the TNO gastric and small Intestinal Model (TIM-1) and magnetic resonance imaging (MRI), for the in vitro evaluation of food-dependent disintegration of immediate release fosamprenavir tablets. Upon introduction of a tablet with the nutritional drink Scandishake Mix® in the stomach compartment of TIM-1, simulating the fed state, disintegration and fosamprenavir dissolution were significantly postponed compared to the fasted state (lag time 80 ± 23 min). This resulted in a lag in the appearance of bioaccessible fosamprenavir (<5% during the first 2h), even though the nutritional state did not significantly alter the cumulative bioaccessibility after 5h. These results were in agreement with the previously observed postprandial delay in gastric fosamprenavir tablet disintegration and subsequent amprenavir absorption in healthy volunteers. Therefore, TIM-1 can be used in tablet development to identify food-induced disintegration issues causing unexpected clinical behavior. From a mechanistic perspective, we applied MRI to illustrate impaired water ingress in fosamprenavir tablets immersed in the nutritional drink compared to simulated gastric fluid. This effect may be attributed to both competition between nutritional components and the tablet for the available water (indicated by reduced rotational and translational diffusion) as well as the possible formation of a food-dependent precipitation layer on the HPMC-coated tablet. Copyright © 2010 Elsevier B.V. All rights reserved.
Iwao, Yasunori
2015-01-01
With the aim of directly predicting the functionality and mechanism of pharmaceutical excipients, we investigated an analysis method based on available surface area (S(t)), which is the surface area of a drug in direct contact with the external solvent during dissolution. First, to study the effect of lubricant concentration on the dissolution rate of acetaminophen (APAP), the dissolution behaviors as well as the change over time in S(t) of APAP tablets were examined. In the dissolution tests, a retarded dissolution of APAP was not observed with new lubricant triglycerin full behenate (TR-FB), whereas magnesium stearate (Mg-St) retarded the dissolution. The S(t) profiles for APAP with Mg-St at>0.5% showed downward curvature indicating a gradual decrease in surface area over time. Conversely, with TR-FB, even when its concentration was increased, the S(t) profile for APAP had a maximum value. The differences between Mg-St and TR-FB could be explained by the differences in extensibility deriving from their morphology. Next, we evaluated the effect of disintegtant concentration using five disintegrants. When disintegrant was added to ethenzamide tablet formulation, an increase in the dissolution rate and S(t) dependent on disintegrant concentration was observed, according to the type of disintegrant. It was found that the water absorption ability of disintegrants had strong correlations with the parameters of S(t). Taken together, this study demonstrates that analysis of S(t) can directly provide useful information, especially about the functionality of pharmaceutical excipients.
Fabricating 3D printed orally disintegrating printlets using selective laser sintering.
Fina, Fabrizio; Madla, Christine M; Goyanes, Alvaro; Zhang, Jiaxin; Gaisford, Simon; Basit, Abdul W
2018-04-25
Selective laser sintering (SLS) is a three-dimensional printing (3DP) technology employed to manufacture plastic, metallic or ceramic objects. The aim of this study was to demonstrate the feasibility of using SLS to fabricate novel solid dosage forms with accelerated drug release properties, and with a view to create orally disintegrating formulations. Two polymers (hydroxypropyl methylcellulose (HPMC E5) and vinylpyrrolidone-vinyl acetate copolymer (Kollidon ® VA 64)) were separately mixed with 5% paracetamol (used as a model drug) and 3% Candurin ® Gold Sheen colorant; the powder mixes were subjected to SLS printing, resulting in the manufacture of printlets (3DP tablets). Modulating the SLS printing parameters altered the release characteristics of the printlets, with faster laser scanning speeds accelerating drug release from the HPMC formulations. The same trend was observed for the Kollidon ® based printlets. At a laser scanning speed of 300 mm/s, the Kollidon ® printlets exhibited orally disintegrating characteristics by completely dispersing in <4 s in a small volume of water. X-ray micro-CT analysis of these printlets indicated a reduction in their density and an increase in open porosity, therefore, confirming the unique disintegration behaviour of these formulations. The work reported here is the first to demonstrate the feasibility of SLS 3DP to fabricate printlets with accelerated drug release and orally disintegrating properties. This investigation has confirmed that SLS is amenable to the pharmaceutical research of modern medicine manufacture. Copyright © 2018 Elsevier B.V. All rights reserved.
Shi, Li-Li; Xu, Wei-Juan; Cao, Qing-Ri; Yang, Mingshi; Cui, Jing-Hao
2014-05-01
In this work, we developed a sildenafil citrate (SC)-loaded polyvinyl alcohol (PVA)/sodium alginate (ALG-Na) based orodispersible film (ODF) using a solvent casting method. Formulation factors such as the type and amount of plasticizers and disintegrants were optimized on the basis of characteristics of blank ODF, including the disintegration time, elastic modulus (EM) and percentage of elongation (E%). SC-loaded ODF with a loading capacity up to 25 mg in an area of 6 cm2 was prepared and evaluated in terms of mechanical properties, disintegration time and dissolution rate. The surface morphology of ODF was visualized under a scanning electron microscope (SEM). The physicochemical properties of ODF were investigated using X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR). The blank ODF composed of PVA, polyethylene glycol 400 (PEG 400) and ALG-Na (20:5:2, w/w) had a remarkably short disintegration time of about 20 s. However, the loading of drug extended the disintegration time (100 s) of ODF, while it still maintained satisfactory mechanical properties. SC was homogenously dispersed throughout the films and the crystalline form of drug changed, with strong hydrogen bonding between the drug and carriers. The PVA/ALG-Na based ODF containing SC prepared by the simple solvent casting method might be an alternative to conventional SC tablets for the treatment of male erectile dysfunction.
Desai, Divyakant; Wong, Benjamin; Huang, Yande; Tang, Dan; Hemenway, Jeffrey; Paruchuri, Srinivasa; Guo, Hang; Hsieh, Daniel; Timmins, Peter
2015-01-01
To investigate the influence of the pH of the dissolution medium on immediate release 850 mg metformin hydrochloride tablets. A traditional wet granulation method was used to manufacture metformin hydrochloride tablets with or without a disintegrant. Tablet dissolution was conducted using the USP apparatus I at 100 rpm. In spite of its pH-independent high solubility, metformin hydrochloride tablets dissolved significantly slower in 0.1 N HCl (pH 1.2) and 50 mM pH 4.5 acetate buffer compared with 50 mM pH 6.8 phosphate buffer, the dissolution medium in the USP. Metformin hydrochloride API compressed into a round 1200 mg disk showed a similar trend. When basket rotation speed was increased from 100 to 250 rpm, the dissolution of metformin hydrochloride tablets was similar in all three media. Incorporation of 2% w/w crospovidone in the tablet formulation improved the dissolution although the pH-dependent trend was still evident, but incorporation of 2% w/w croscarmellose sodium resulted in rapid pH-independent tablet dissolution. In absence of a disintegrant in the tablet formulation, the dissolution was governed by the erosion-diffusion process. Even for a highly soluble drug, a super-disintegrant was needed in the formulation to overcome the diffusion layer limitation and change the dissolution mechanism from erosion-diffusion to disintegration.
Kong, F; Singh, R P
2008-06-01
Knowledge of the disintegration kinetics of food particulates in the human stomach is essential for assessing the bioaccessibility of nutrients in solid foods and understanding stomach emptying. The objective of this study was to develop a model stomach system and to investigate the kinetics of food disintegration. Our system consisted mainly of a turntable and a jacketed glass chamber containing simulated gastric juice in which plastic beads were added to simulate food particulates as well as provide a suitable mechanical destructive force on food samples. The mechanical force on the samples was simultaneously measured using the load cell of a TA-XT2 texture analyzer. Cylindrical carrots and ham samples were used as representative foods. The system is capable of simulating the in vivo stomach in terms of providing a wide range of continuous and periodic forces comparable to those measured in vivo. The modified power exponential function of the form y(t)= 1 - (1 -e(-kt))(beta), where y(t) is the mass retention ratio at time t, provided a reasonable description for the disintegration performance of tested foods. The mass retention curve can be either a sigmoidal decay with an initial delay or an exponential decay, which are decided largely by the hardness of the foods during digestion and the extent of physical force acting on the foods. A good match was observed between the kinetics of food disintegration and in vivo stomach emptying.
Jin, Lingyun; Zhang, Guangming; Zheng, Xiang
2015-02-01
A key step in sludge treatment is sludge dewatering. However, activated sludge is generally very difficult to be dewatered. Sludge dewatering performance is largely affected by the sludge moisture distribution. Sludge disintegration can destroy the sludge structure and cell wall, so as change the sludge floc structure and moisture distribution, thus affecting the dewatering performance of sludge. In this article, the disintegration methods were ultrasound treatment, K2FeO4 oxidation and KMnO4 oxidation. The degree of disintegration (DDCOD), sludge moisture distribution and the final water content of sludge cake after centrifuging were measured. Results showed that three disintegration methods were all effective, and K2FeO4 oxidation was more efficient than KMnO4 oxidation. The content of free water increased obviously with K2FeO4 and KMnO4 oxidations, while it decreased with ultrasound treatment. The changes of free water and interstitial water were in the opposite trend. The content of bounding water decreased with K2FeO4 oxidation, and increased slightly with KMnO4 oxidation, while it increased obviously with ultrasound treatment. The water content of sludge cake after centrifuging decreased with K2FeO4 oxidation, and did not changed with KMnO4 oxidation, but increased obviously with ultrasound treatment. In summary, ultrasound treatment deteriorated the sludge dewaterability, while K2FeO4 and KMnO4 oxidation improved the sludge dewaterability. Copyright © 2014. Published by Elsevier B.V.
Dry, portable calorimeter for nondestructive measurement of the activity of nuclear fuel
Beyer, Norman S.; Lewis, Robert N.; Perry, Ronald B.
1976-01-01
The activity of a quantity of heat-producing nuclear fuel is measured rapidly, accurately and nondestructively by a portable dry calorimeter comprising a preheater, an array of temperature-controlled structures comprising a thermally guarded temperature-controlled oven, and a calculation and control unit. The difference between the amounts of electric power required to maintain the oven temperature with and without nuclear fuel in the oven is measured to determine the power produced by radioactive disintegration and hence the activity of the fuel. A portion of the electronic control system is designed to terminate a continuing sequence of measurements when the standard deviation of the variations of the amount of electric power required to maintain oven temperature is within a predetermined value.
Model calibration and validation for OFMSW and sewage sludge co-digestion reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esposito, G., E-mail: giovanni.esposito@unicas.it; Frunzo, L., E-mail: luigi.frunzo@unina.it; Panico, A., E-mail: anpanico@unina.it
2011-12-15
Highlights: > Disintegration is the limiting step of the anaerobic co-digestion process. > Disintegration kinetic constant does not depend on the waste particle size. > Disintegration kinetic constant depends only on the waste nature and composition. > The model calibration can be performed on organic waste of any particle size. - Abstract: A mathematical model has recently been proposed by the authors to simulate the biochemical processes that prevail in a co-digestion reactor fed with sewage sludge and the organic fraction of municipal solid waste. This model is based on the Anaerobic Digestion Model no. 1 of the International Watermore » Association, which has been extended to include the co-digestion processes, using surface-based kinetics to model the organic waste disintegration and conversion to carbohydrates, proteins and lipids. When organic waste solids are present in the reactor influent, the disintegration process is the rate-limiting step of the overall co-digestion process. The main advantage of the proposed modeling approach is that the kinetic constant of such a process does not depend on the waste particle size distribution (PSD) and rather depends only on the nature and composition of the waste particles. The model calibration aimed to assess the kinetic constant of the disintegration process can therefore be conducted using organic waste samples of any PSD, and the resulting value will be suitable for all the organic wastes of the same nature as the investigated samples, independently of their PSD. This assumption was proven in this study by biomethane potential experiments that were conducted on organic waste samples with different particle sizes. The results of these experiments were used to calibrate and validate the mathematical model, resulting in a good agreement between the simulated and observed data for any investigated particle size of the solid waste. This study confirms the strength of the proposed model and calibration procedure, which can thus be used to assess the treatment efficiency and predict the methane production of full-scale digesters.« less
Akin-Ajani, Olufunke D; Itiola, Oludele A; Odeku, Oluwatoyin A
2005-10-22
The effects of plantain starch obtained from the unripe fruit of the plant Musa paradisiaca L. (Musaceae) on the mechanical and disintegration properties of paracetamol tablets have been investigated in comparison with the effects of corn starch BP using a 2(3) factorial experimental design. The individual and combined effects of nature of starch binder (N), concentration of starch binder (C), and the relative density of tablet (RD) on the tensile strength (TS), brittle fracture index (BFI), and disintegration time (DT) of the tablets were investigated. The ranking of the individual effects on TS was RD > C > N, on BFI was C > RD > N and on DT was N > C > RD. The ranking for the interaction effects on TS and DT was N-C > N-RD > C-RD, while that on BFI was N-C > C-RD > N-RD. Changing nature of starch from a "low" (plantain starch) to a "high" (corn starch) level, increasing the concentration of starch binding agent from 2.5% to 10.0% wt/wt, and increasing relative density of the tablet from 0.80 to 0.90, led to increase in the values of TS and DT, but a decrease in BFI. Thus, tablets containing plantain starch had lower tensile strength and disintegration time values than those containing corn starch, but showed better ability to reduce the lamination and capping tendency in paracetamol tablet formulation. The interaction between N and C was significantly (P < .001) higher than those between N and RD and between C and RD. There is therefore the need to carefully choose the nature (N) and concentration (C) of starch used as binding agent in tablet formulations to obtain tablets of desired bond strength and disintegration properties. Furthermore, plantain starch could be useful as an alternative binding agent to cornstarch, especially where faster disintegration is required and the problems of lamination and capping are of particular concern.
Alqurshi, Abdulmalik; Kumar, Zahrae; McDonald, Rebecca; Strang, John; Buanz, Asma; Ahmed, Shagufta; Allen, Elizabeth; Cameron, Peter; Rickard, James A; Sandhu, Verity; Holt, Chris; Stansfield, Rebecca; Taylor, David; Forbes, Ben; Royall, Paul G
2016-05-02
The aim of this study was to develop a freeze-dried buccal tablet for the rapid delivery of naloxone in opioid overdose. The tablet composition was optimized to produce an amorphous matrix, which was confirmed by the absence of peaks associated with crystallinity observed by differential scanning calorimetry and powder X-ray diffraction. Tablets with high gelatin content lacked adequate porosity. Mannitol was added to the formulation to bridge and intercalate gelatin's tight polymer aggregates, however sodium bicarbonate was also required to prevent crystallization within the tablets. A linear reduction in mannitol's recrystallization enthalpy was observed with increasing sodium bicarbonate concentration (ΔrecryH = -20.3[NaHCO3] + 220.9; r(2) = 0.9, n = 18). The minimum sodium bicarbonate concentration for full inhibition of mannitol crystallization was 10.9% w/w. Freeze-dried tablets with lower amounts of sodium bicarbonate possessed a crystalline fraction that PXRD identified as mannitol hemihydrate from the unique peak at 9.7° 2θ. Mannitol's greater affinity for both ions and residual water rather than its affinity for self-association was the mechanism for the inhibition of crystallization observed here. The optimized tablet (composition mannitol 24% w/w (4.26 mg), gelatin 65% w/w (11.7 mg), sodium bicarbonate 11% w/w (1.98 mg), and naloxone 800 μg) formed predominantly amorphous tablets that disintegrated in less than 10 s. Optimized tablets were chemically and physically stable over 9 months storage at 25 °C. As speed of drug liberation is the critical performance attribute for a solid dosage form designed to deliver drug in an emergency, a novel imaging based in vitro disintegration assay for buccal tablets was developed. The assay was optimized with regard to conditions in the buccal cavity: i.e., temperature 33-37 °C, volume of medium (0.1-0.7 mL), and use of mucin-containing biorelevant medium. The disintegration assay was sensitive to temperature, medium volume, and medium composition; naloxone tablet disintegration was extremely rapid, with full disintegration ranging from 5 to 20 s. In conclusion, rapidly disintegrating tablets have been developed which are suitable for proof-of-concept clinical trial in humans to determine the pharmacokinetics of naloxone delivered via the buccal route.
Martins, André Luiz Lopes; de Oliveira, Aline Carlos; do Nascimento, Carolina Machado Ozório Lopes; Silva, Luís Antônio Dantas; Gaeti, Marilisa Pedroso Nogueira; Lima, Eliana Martins; Taveira, Stephânia Fleury; Fernandes, Kátia Flávia; Marreto, Ricardo Neves
2017-05-01
The aim of this study was to develop mucoadhesive pellets on a thiolated pectin base using the extrusion-spheronization technique. Thiolation of pectin was performed by esterification with thioglycolic acid. The molecular weight and thiol group content of the pectins were determined. Pellets containing pectin, microcrystalline cellulose, and ketoprofen were prepared and their mucoadhesive properties were evaluated through a wash-off test using porcine intestinal mucosa. The in vitro ketoprofen release was also evaluated. Thiolated pectin presented a thiol group content of 0.69 mmol/g. Thiolation caused a 13% increase in polymer molecular weight. Pellets containing thiolated pectin were still adhering to the intestinal mucosa after 480 min and showed a more gradual release of ketoprofen. Conversely, pellets prepared with nonthiolated pectin showed rapid disintegration and detached after only 15 min. It can be concluded that thiolated pectin-based pellets can be considered a potential platform for the development of mucoadhesive drug delivery systems for the oral route. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Novel mesalamine-loaded beads in tablets for delayed release of drug to the colon.
Nguyen, Chien; Christensen, J Mark; Ayres, James W
2012-01-01
Novel 'beads-in-a-tablet' formulations (total weight ∼740-780 mg) have been prepared that meet USP 31 requirements for Delayed Release of mesalamine. Several methods are presented that overcome breakage of beads during tablet compaction were explored. Bead formulations comprise a combination of extrusion and spheronization to produce a relatively high drug load (80%), followed by coating (25%) with a colonic-targeted drug release polymer (polymethacrylates, Eudragit(®) S100), overcoated (3%) with hydroxypropyl methylcellulose (Opadry(®)) to improve bead binding and compactability, and using 20% coat of lactose/sodium starch glycolate (Explotab(®)) as binder/disintegrant/cushioning agent, thus allowing a sufficiently thick coating to be uniform and without being broken during tablet compaction. Then, the aforementioned beads were compressed into tablets at 1500 pounds of pressure containing 400 mg of mesalamine, and finally coating the compressed tablets with Surelease(®) (ethylcellulose):Opadry(®) = 1:0.5 ranging from 1.5-2.5% weight gain; the resulting tablets met USP 31 dissolution requirements for delayed release tablets.
[Percutaneous nephrolithotomy by electrohydraulic shock wave].
Hamao, T; Kuroko, K; Inoue, T; Ashida, H; Ishikawa, T
1986-02-01
Twelve patients underwent percutaneous nephrolithotomy in our hospital. Six of these patients had stone disintegration by electrohydraulic shock wave. The procedure was safe and effective for achieving rapid stone disintegration. Translocation of the stone fragments and central metal core of the probe left in the ureter were clinical problems. However, they passed spontaneously. Usefulness and problems of electrohydraulic lithotripsy were discussed.
ERIC Educational Resources Information Center
Alvarez, Anne
2006-01-01
The paper attempts some clarifications and differentiations concerning (1) Bick's classic distinction between states of helpless unintegration and states of defensive disintegration; (2) the difference between a state and a phase, and Bick's apparent challenge to some aspects of object relations thinking. The paper then lists some types of early…
ERIC Educational Resources Information Center
Carter, Stacy L.; Wheeler, John J.
2007-01-01
The effects of multiple instructional conditions on self-injury/aggression and on-task behaviours were assessed with a 9-year-old boy diagnosed with childhood disintegrative disorder. Behavioural responses were assessed as part of an educational evaluation to determine the occurrence of target behaviours in relation to varying degrees of…
External Validity of Childhood Disintegrative Disorder in Comparison with Autistic Disorder
ERIC Educational Resources Information Center
Kurita, Hiroshi; Osada, Hirokazu; Miyake, Yuko
2004-01-01
To examine the external validity of DSM-IV childhood disintegrative disorder (CDD), 10 children (M = 8.2 yrs) with CDD and 152 gender- and age-matched children with autistic disorder (AD) were compared on 24 variables. The CDD children had a significantly higher rate of epilepsy, significantly less uneven intellectual functioning, and a tendency…
A Case Study of Childhood Disintegrative Disorder Using Systematic Analysis of Family Home Movies
ERIC Educational Resources Information Center
Palomo, Ruben; Thompson, Meagan; Colombi, Costanza; Cook, Ian; Goldring, Stacy; Young, Gregory S.; Ozonoff, Sally
2008-01-01
Childhood disintegrative disorder (CDD) is a rare pervasive developmental disorder that involves regression after a period of at least 2 years of typical development. This case study presents data from family home movies, coded by reliable raters using an objective coding system, to examine the trajectory of development in one child with a…
Psychiatrist Availability, Social Disintegration, and Suicide Deaths in U.S. Counties, 1990-1995
ERIC Educational Resources Information Center
Kposowa, Augustine J.
2009-01-01
Previous studies have found that primary care resources are associated with various health outcomes. The primary purpose of the study was to test for associations between psychiatrist availability, social disintegration and suicide rates. Data utilized were from the 2002 Area Resource File on U.S. counties (N=3080). Suicide rates were averaged…
Through the Dabrowski Lens: A Fresh Examination of the Theory of Positive Disintegration
ERIC Educational Resources Information Center
Harper, Amanda; Cornish, Linley; Smith, Susen; Merrotsy, Peter
2017-01-01
Dabrowski's theory of positive disintegration is an emotion-centered, nonontogenetic, five-level theory of personality development where the experience of all emotions is essential for the process of growth. In this article, we examine the complexities of the three factors of development, which are essential to the notion of development within the…
Radhakrishnan, Krishna; Tripathy, Jasaswini; Raichur, Ashok M
2013-06-14
Hollow microcapsules capable of disintegrating in response to dual biological stimuli have been synthesized from two FDA approved drug molecules. The capsules fabricated from protamine and chondroitin sulphate disintegrate in the presence of either trypsin or hyaluronidase enzymes, which are documented to be simultaneously over-expressed under some pathological conditions.
Disintegration of porous polyethylene prostheses.
Kerr, A G; Riley, D N
1999-06-01
A Plastipore (porous polyethylene) Total Ossicular Replacement Prosthesis gave an excellent initial hearing result which was maintained for 14 years. Hearing then began to deteriorate and revision surgery showed disintegration of the prosthesis and a defect in the stapes footplate. Histological examination confirmed previous findings in porous polyethylene with multinucleated foreign body giant cells and breakdown of the material.
Sub- and supercritical jet disintegration
NASA Astrophysics Data System (ADS)
DeSouza, Shaun; Segal, Corin
2017-04-01
Shadowgraph visualization and Planar Laser Induced Fluorescence (PLIF) are applied to single orifice injection in the same facility and same fluid conditions to analyze sub- to supercritical jet disintegration and mixing. The comparison includes jet disintegration and lateral spreading angle. The results indicate that the shadowgraph data are in agreement with previous visualization studies but differ from the PLIF results that provided quantitative measurement of central jet plane density and density gradients. The study further evaluated the effect of thermodynamic conditions on droplet production and quantified droplet size and distribution. The results indicate an increase in the normalized drop diameter and a decrease in the droplet population with increasing chamber temperatures. Droplet size and distribution were found to be independent of chamber pressure.
Actively Disintegrating Astroids around a White Dwarf
NASA Astrophysics Data System (ADS)
Xu, Siyi
2017-08-01
Recent studies show that planetary systems can be widespread around white dwarfs. It has been proposed that planetary systems are responsible for the pollution observed in a white dwarf's atmosphere and the excess infrared radiation. This scenario is greatly strengthened by the recent discovery of actively disintegrating bodies orbiting around the white dwarf WD 1145+017. In addition, this system has a heavily polluted atmosphere, a dust disk, and circumstellar gas. Our team has been monitoring this system since its discovery and our recent COS data have revealed many new surprises. We propose to continue studying this system for the next two cycles and further constrain the evolution of the disintegrating bodies: what are the main mechanisms responsible for its destruction? How is circumstellar gas produced and maintained?
Use of pressure manifestations following the water plasma expansion for phytomass disintegration.
Maroušek, Josef; Kwan, Jason Tai Hong
2013-01-01
A prototype capable of generating underwater high-voltage discharges (3.5 kV) coupled with water plasma expansion was constructed. The level of phytomass disintegration caused by transmission of the pressure shockwaves (50-60 MPa) followed by this expansion was analyzed using gas adsorption techniques. The dynamics of the external surface area and the micropore volume on multiple pretreatment stages of maize silage and sunflower seeds was approximated with robust analytical techniques. The multiple increases on the reaction surface were manifest in up to a 15% increase in cumulative methane production, which was itself manifest in the overall acceleration of the anaerobic fermentation process. Disintegration of the sunflower seeds allowed up to 45% higher oil yields using the same operating pressure.
Sousa-Neto, M D; Guimarães, L F; Saquy, P C; Pécora, J D
1999-07-01
In the present study, we investigated the effect of the addition of different grades of gum rosins and hydrogenated resins to Grossman cement on dimensional stability, solubility and disintegration. pH and conductivity, which may affect these properties, were also determined. The experiments were performed according to Specification 57 of the American Dental Association for root canal cements using Grossman cements containing three gum rosins (grades X, WW, and WG) and two hydrogenated resins (Staybelite and Staybelite ester 10). The results showed that the solubility, disintegration, and dimensional stability of Grossman cement containing Staybelite and Staybelite ester 10 were inferior to the values considered acceptable by the American Dental Association Specification 57.
NASA Astrophysics Data System (ADS)
Haoxiang, Chen; Qi, Chengzhi; Peng, Liu; Kairui, Li; Aifantis, Elias C.
2015-12-01
The occurrence of alternating damage zones surrounding underground openings (commonly known as zonal disintegration) is treated as a "far from thermodynamic equilibrium" dynamical process or a nonlinear continuous phase transition phenomenon. The approach of internal variable gradient theory with diffusive transport, which may be viewed as a subclass of Landau's phase transition theory, is adopted. The order parameter is identified with an irreversible strain quantity, the gradient of which enters into the expression for the free energy of the rock system. The gradient term stabilizes the material behavior in the post-softening regime, where zonal disintegration occurs. The results of a simplified linearized analysis are confirmed by the numerical solution of the nonlinear problem.
Incubator weaning in preterm infants and associated practice variation.
Schneiderman, R; Kirkby, S; Turenne, W; Greenspan, J
2009-08-01
To evaluate the relationship of weight of preterm infants when first placed into an open crib with days to full oral feedings, growth velocity and length of stay (LOS), and to identify unwarranted variation in incubator weaning after adjusting for severity indices. A retrospective study using the ParadigmHealth neonatal database from 2003 to 2006 reviewed incubator weaning to an open crib in appropriate-for-gestational-age (AGA) infants from 22 to weeks gestation. Primary outcome measurements included days to full oral (PO) feeding, weight gain from open crib to discharge and length of stay. Models were severity adjusted. To understand hospital practice variation, we also used a regression model to estimate the weight at open crib for the top 10 volume hospitals. In all 2908 infants met the inclusion criteria for the study. Their mean weight at open crib was 1850 g. On average every additional 100 g an infant weighed at the open crib was associated with increased time to full PO feeding by 0.8 days, decreased weight gained per day by 1 gram and increased LOS by 0.9 days. For the top 10 volume hospitals, severity variables alone accounted for 9% of the variation in weight at open crib, whereas the hospital in which the baby was treated accounted for an additional 19% of the variation. Even after controlling for severity, significant practice variation exists in weaning to an open crib, leading to potential delays in achieving full-volume oral feeds, decreased growth velocity and prolonged LOS.
Linde, Jennifer A.; Jeffery, Robert W.; Crow, Scott J.; Brelje, Kerrin L.; Pacanowski, Carly R.; Gavin, Kara L.; Smolenski, Derek J.
2014-01-01
Observational evidence from behavioral weight control trials and community studies suggests that greater frequency of weighing oneself, or tracking weight, is associated with better weight outcomes. Conversely, it has also been suggested that frequent weight tracking may have a negative impact on mental health and outcomes during weight loss, but there are minimal experimental data that address this concern in the context of an active weight loss program. To achieve the long-term goal of strengthening behavioral weight loss programs, the purpose of this randomized controlled trial (the Tracking Study) is to test variations on frequency of self-weighing during a behavioral weight loss program, and to examine psychosocial and mental health correlates of weight tracking and weight loss outcomes. Three hundred thirty-nine overweight and obese adults were recruited and randomized to one of three variations on weight tracking frequency during a 12-month weight loss program with a 12-month follow-up: daily weight tracking, weekly weight tracking, or no weight tracking. The primary outcome is weight in kilograms at 24 months. The weight loss program integrates each weight tracking instruction with standard behavioral weight loss techniques (goal setting, self-monitoring, stimulus control, dietary and physical activity enhancements, lifestyle modifications); participants in weight tracking conditions were provided with wireless Internet technology (Wi-Fi-enabled digital scales and touchscreen personal devices) to facilitate weight tracking during the study. This paper describes the study design, intervention features, recruitment, and baseline characteristics of participants enrolled in the Tracking Study. PMID:25533727
Marjanovic, Jovana; Mulder, Han A; Khaw, Hooi L; Bijma, Piter
2016-06-10
Animal breeding programs have been very successful in improving the mean levels of traits through selection. However, in recent decades, reducing the variability of trait levels between individuals has become a highly desirable objective. Reaching this objective through genetic selection requires that there is genetic variation in the variability of trait levels, a phenomenon known as genetic heterogeneity of environmental (residual) variance. The aim of our study was to investigate the potential for genetic improvement of uniformity of harvest weight and body size traits (length, depth, and width) in the genetically improved farmed tilapia (GIFT) strain. In order to quantify the genetic variation in uniformity of traits and estimate the genetic correlations between level and variance of the traits, double hierarchical generalized linear models were applied to individual trait values. Our results showed substantial genetic variation in uniformity of all analyzed traits, with genetic coefficients of variation for residual variance ranging from 39 to 58 %. Genetic correlation between trait level and variance was strongly positive for harvest weight (0.60 ± 0.09), moderate and positive for body depth (0.37 ± 0.13), but not significantly different from 0 for body length and width. Our results on the genetic variation in uniformity of harvest weight and body size traits show good prospects for the genetic improvement of uniformity in the GIFT strain. A high and positive genetic correlation was estimated between level and variance of harvest weight, which suggests that selection for heavier fish will also result in more variation in harvest weight. Simultaneous improvement of harvest weight and its uniformity will thus require index selection.
[Comparison in dissolution behavior of ethical and over-the counter scopolamine butylbromide].
Suzuki, Ichie; Miyazaki, Yasunori; Uchino, Tomonobu; Kagawa, Yoshiyuki
2011-01-01
Marketing authorization holders do not disclose any information on the pharmaceutical properties of over-the-counter drugs (OTC). When a drug is switched from a prescription drug to OTC, pharmacists can acquire that information from the corresponding ethical drug (ED) through the package insert, interview form, and so on. However, the pharmaceutical equivalence between ED and OTC is unclear. In this study, we examined the drug dissolution behavior of both ED and OTCs containing scopolamine butylbromide. Dissolution tests were performed by the paddle method using Japanese Pharmacopeia (JP) XV test fluids at pH 1.2, 4.0 and 6.8 and water based on the guidelines for bioequivalence studies of generic products. The dissolution profiles of OTCs differed significantly from ED showing a similarity factor (f2) value ranging from 8.9 to 42.9. Time until 85% dissolution ranged from 23 to 95 min and from 17 to 174 min at pH 1.2 and pH 6.8, respectively. Then JP XV disintegration tests were conducted to investigate differences in the disintegration process. The disintegration time of preparations showing delayed dissolution was prolonged compared to that of others, suggesting that the disintegration of the tablet or capsule is one of the important factors affecting the drug dissolution. These differences in the disintegration and drug dissolution might cause differences in the bioavailability of the drug. For patient safety, more detailed product information of OTCs should be supplied by the manufacturer, and not be assumed from that of corresponding ED.
Kovács, Petra Veszelovszki; Lemmer, Balázs; Keszthelyi-Szabó, Gábor; Hodúr, Cecilia; Beszédes, Sándor
2018-05-01
It has been numerously verified that microwave radiation could be advantageous as a pre-treatment for enhanced disintegration of sludge. Very few data related to the dielectric parameters of wastewater of different origins are available; therefore, the objective of our work was to measure the dielectric constant of municipal and meat industrial wastewater during a continuous flow operating microwave process. Determination of the dielectric constant and its change during wastewater and sludge processing make it possible to decide on the applicability of dielectric measurements for detecting the organic matter removal efficiency of wastewater purification process or disintegration degree of sludge. With the measurement of dielectric constant as a function of temperature, total solids (TS) content and microwave specific process parameters regression models were developed. Our results verified that in the case of municipal wastewater sludge, the TS content has a significant effect on the dielectric constant and disintegration degree (DD), as does the temperature. The dielectric constant has a decreasing tendency with increasing temperature for wastewater sludge of low TS content, but an adverse effect was found for samples with high TS and organic matter contents. DD of meat processing wastewater sludge was influenced significantly by the volumetric flow rate and power level, as process parameters of continuously flow microwave pre-treatments. It can be concluded that the disintegration process of food industry sludge can be detected by dielectric constant measurements. From technical purposes the applicability of dielectric measurements was tested in the purification process of municipal wastewater, as well. Determination of dielectric behaviour was a sensitive method to detect the purification degree of municipal wastewater.
Zubrowska-Sudol, Monika; Walczak, Justyna
2014-09-15
The purpose of the study was to analyse the impact of hydrodynamic disintegration of thickened excess activated sludge, performed at different levels of energy density (70, 140 and 210 kJ/L), on the activity of microorganisms involved in nutrient removal from wastewater, i.e. nitrifiers, denitrifiers and phosphorus accumulating organisms (PAOs). Ammonium and nitrogen utilisation rates and phosphorus release rates for raw and disintegrated sludge were determined using batch tests. The experiment also included: 1) analysis of organic and nutrient compound release from activated sludge flocs, 2) determination of the sludge disintegration degree (DD), and 3) evaluation of respiratory activity of the biomass by using the oxygen uptake rate (OUR) batch test. It was shown that the activity degree of the examined groups of microorganisms depended on energy density and related sludge disintegration degree, and that inactivation of individual groups of microorganisms occurred at different values of DD. Least resistant to the destruction of activated sludge flocs turned out to be phosphorus accumulating organisms, while the most resistant were denitrifiers. A decrease of 20-40% in PAO activity was noted already at DD equal to 3-5%. The threshold values of DD, after crossing which the inactivation of nitrifiers and denitrifiers occurred, were equal to 8% and 10%, respectively. At lesser DD values an increase in the activity of these groups of microorganisms was observed, averaging 20.2-41.7% for nitrifiers and 9.98-36.3% for denitrifiers. Copyright © 2014 Elsevier Ltd. All rights reserved.
Soares, Ana; Kampas, Pantelis; Maillard, Sarah; Wood, Elizabeth; Brigg, Jon; Tillotson, Martin; Parsons, Simon A; Cartmell, Elise
2010-03-15
There is a need to investigate processes that enable sludge re-use while enhancing sewage treatment efficiency. Mechanically disintegrated thickened surplus activated sludge (SAS) and fermented primary sludge were compared for their capacity to produce a carbon source suitable for BNR by completing nutrient removal predictive tests. Mechanically disintegration of SAS using a deflaker enhanced volatile fatty acids (VFAs) content from 92 to 374 mg l(-1) (4.1-fold increase). In comparison, primary sludge fermentation increased the VFAs content from 3.5 g l(-1) to a final concentration of 8.7 g l(-1) (2.5-fold increase). The carbon source obtained from disintegration and fermentation treatments improved phosphate (PO(4)-P) release and denitrification by up to 0.04 mg NO(3)-Ng(-1)VSS min(-1) and 0.031 mg PO(4)-Pg(-1)VSS min(-1), respectively, in comparison to acetate (0.023 mg NO(3)-Ng(-1)VSS min(-1)and 0.010 mg PO(4)-Pg(-1)VSS min(-1)). Overall, both types of sludge were suitable for BNR but disintegrated SAS displayed lower carbon to nutrient ratios of 8 for SCOD:PO(4)-P and 9 for SCOD:NO(3)-N. On the other hand, SAS increased the concentration of PO(4)-P in the settled sewage by a further 0.97 g PO(4)-P kg(-1)SCOD indicating its potential negative impact towards nutrient recycling in the BNR process. (c) 2009 Elsevier B.V. All rights reserved.
Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch.
Kwak, Hyoung S; Uhm, Han S; Hong, Yong C; Choi, Eun H
2015-12-17
A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10(-3), nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10(-7), nO2/nN = 5.39 × 10(-5), where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch.
Citric Acid Suppresses the Bitter Taste of Olopatadine Hydrochloride Orally Disintegrating Tablets.
Sotoyama, Mai; Uchida, Shinya; Tanaka, Shimako; Hakamata, Akio; Odagiri, Keiichi; Inui, Naoki; Watanabe, Hiroshi; Namiki, Noriyuki
2017-01-01
Orally disintegrating tablets (ODTs) are formulated to disintegrate upon contact with saliva, allowing administration without water. Olopatadine hydrochloride, a second-generation antihistamine, is widely used for treating allergic rhinitis. However, it has a bitter taste; therefore, the development of taste-masked olopatadine ODTs is essential. Some studies have suggested that citric acid could suppress the bitterness of drugs. However, these experiments were performed using solutions, and the taste-masking effect of citric acid on ODTs has not been evaluated using human gustatory sensation tests. Thus, this study evaluated citric acid's taste-masking effect on olopatadine ODTs. Six types of olopatadine ODTs containing 0-10% citric acid were prepared and subjected to gustatory sensation tests that were scored using the visual analog scale. The bitterness and overall palatability of olopatadine ODTs during disintegration in the mouth and after spitting out were evaluated in 11 healthy volunteers (age: 22.8±2.2 years). The hardness of the ODTs was >50 N. Disintegration time and dissolution did not differ among the different ODTs. The results of the gustatory sensation tests suggest that citric acid could suppress the bitterness of olopatadine ODTs in a dose-dependent manner. Olopatadine ODTs with a high content of citric acid (5-10%) showed poorer overall palatability than that of those without citric acid despite the bitterness suppression. ODTs containing 2.5% citric acid, yogurt flavoring, and aspartame were the most suitable formulations since they showed low bitterness and good overall palatability. Thus, citric acid is an effective bitterness-masking option for ODTs.
Malik, Karan; Arora, Gurpreet; Singh, Inderbir
2012-01-01
Fast melt tablets, also known as fast dissolving tablets, disintegrate instantaneously within the mouth and thus can be consumed without water. The present study was aimed to formulate fast melt tablets of nimesulide by using Ocimum Sanctum seeds as a natural tablet superdisintegrant. Powdered Ocimum seeds were characterized for powder flow properties (bulk density, tapped density, Carr's consolidation index, Hausner ratio, angle of repose), swelling index, viscosity, pH, loss on drying and microbial load. The prepared tablets were evaluated for different tablet parametric tests, wetting time, water absorption ratio, effective pore radius, porosity, packing fraction, in vitro and in vivo disintegration time, in-vitro dissolution and stability studies. The swelling index was evaluated to be 1600. An appreciable effect of the natural material was seen on tablet hardness and friability. The water absorption ratio increased from 56.15 +/- 0.85 to 80.76 +/- 0.70 (A1-A4). Water uptake coupled natural polymer swelling could be the most probable mechanism for concentration dependent reduction in disintegration time by the Ocimum Sanctum seeds. Porosity of the formulated tablets was found to increase from batch A1-A4. The in vitro disintegration results were in line with in vivo disintegration results. The f2 values (in comparison with Nimulid MD) of 95.90 and 93.65 were obtained with A3 and A4 batches respectively. It could be concluded that Ocimum Sanctum seeds could be used as a natural superdisintegrant in the formulation of fast melt tablets.
Fast releasing oral electrospun PVP/CD nanofiber mats of taste-masked meloxicam.
Samprasit, Wipada; Akkaramongkolporn, Prasert; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Kaomongkolgit, Ruchadaporn; Opanasopit, Praneet
2015-06-20
Fast release and taste masking of meloxicam (MX)-loaded polyvinylpyrrolidone (PVP)/cyclodextrin (CD) nanofiber mats were developed using an electrospinning process. CDs were blended to improve the stability of the mats. The morphology and diameter of the mats were determined using scanning electron microscopy (SEM); physical and mechanical properties were also studied. The MX content, disintegration time, MX release and cytotoxicity of the mats were investigated. In vivo studies were also performed in healthy human volunteers. The results indicated that the mats were successfully prepared with fiber in the nanometer range. MX was well incorporated into the mats, with an amorphous form. The mats showed suitable tensile strength. CDs improved the physical stability by their cage-like supramolecular structure to protect from humidity and moisture, and create bead free nanofiber mats. The nanofiber mats with CDs were physically stable without any hygroscopicity and fusion. A fast disintegration and release of MX was achieved. Moreover, this mat released MX faster than the MX powder and commercial tablets. The cytotoxicity test revealed that mats were safe for a 5-min incubation. The disintegration studies indicated that in vivo disintegration agreed with the in vitro studies; the mat rapidly disintegrated in the mouth. The less bitter of MX was occurred in the mats that incorporated CD, menthol and aspartame. In addition, this mat was physical stable for 6 months. The results suggest that these mats may be a good candidate for fast dissolving drug delivery systems of bitter drugs to increase the palatability of dosage forms. Copyright © 2015 Elsevier B.V. All rights reserved.
Nesbitt, T Clint; Tanksley, Steven D
2002-01-01
Sequence variation was sampled in cultivated and related wild forms of tomato at fw2.2--a fruit weight QTL key to the evolution of domesticated tomatoes. Variation at fw2.2 was contrasted with variation at four other loci not involved in fruit weight determination. Several conclusions could be reached: (1) Fruit weight variation attributable to fw2.2 is not caused by variation in the FW2.2 protein sequence; more likely, it is due to transcriptional variation associated with one or more of eight nucleotide changes unique to the promoter of large-fruit alleles; (2) fw2.2 and loci not involved in fruit weight have not evolved at distinguishably different rates in cultivated and wild tomatoes, despite the fact that fw2.2 was likely a target of selection during domestication; (3) molecular-clock-based estimates suggest that the large-fruit allele of fw2.2, now fixed in most cultivated tomatoes, arose in tomato germplasm long before domestication; (4) extant accessions of L. esculentum var. cerasiforme, the subspecies thought to be the most likely wild ancestor of domesticated tomatoes, appear to be an admixture of wild and cultivated tomatoes rather than a transitional step from wild to domesticated tomatoes; and (5) despite the fact that cerasiforme accessions are polymorphic for large- and small-fruit alleles at fw2.2, no significant association was detected between fruit size and fw2.2 genotypes in the subspecies--as tested by association genetic studies in the relatively small sample studied--suggesting the role of other fruit weight QTL in fruit weight variation in cerasiforme. PMID:12242247
Seasonal variations in composite riverbank stability in the Lower Jingjiang Reach, China
NASA Astrophysics Data System (ADS)
Xia, Junqiang; Zong, Quanli; Deng, Shanshan; Xu, Quanxi; Lu, Jinyou
2014-11-01
Bank erosion is a key process in a fluvial system in the context of river dynamics and geomorphology. Since the operation of the Three Gorges Project (TGP), the Lower Jingjiang Reach (LJR) below the dam has experienced continuous channel degradation, with the phenomenon of bank erosion occurring frequently in local reaches. Therefore it is necessary to quantitatively investigate seasonal variations in the stability of composite riverbanks along the reach in order to better understand the fluvial processes in the reach. Laboratory tests were conducted for the sampled soils at six riverbanks during a field survey, with various bank soil properties being presented for the first time. These test results show that: the cohesive bank soils are relatively loose due to the high water contents of 28.5-40.0% and the low dry densities of 1.31-1.47 tonnes/m3; and the cohesion or angle of internal friction generally decreases with an increase in water content of the cohesive soil. Based on the measured cross-sectional profiles and interpolated hydrological data, the near-bank hydrodynamic conditions and soil parameters of two typical composite riverbanks were then determined during the 2007 hydrological year. An improved method was proposed for calculating the stability at the mode of cantilever failure for the overhanging block of a composite riverbank, and the stability degrees of these two riverbanks were calculated at different stages. These results reveal that: (i) the incipient velocity of the non-cohesive lower bank had a magnitude of 0.4 m/s, less than the mean near-bank velocity of about 1.0 m/s, which led to intensive basal erosion especially during the flood season; (ii) the cohesive upper bank before failure had sufficient strength to resist direct fluvial erosion, but the failed soil mass deposited in the near-bank zone was disintegrated easily with the submerged immersion and was then transported downstream by fluvial entrainment; (iii) the degree of bank stability was relatively lower during the flood season, caused by the integrated effects of a process of severe basal erosion and a lower unit weight of 8.6 kN/m3 for the submerged soil; and (iv) the degree of bank stability was lowest at the recession stage, which was caused by the vanishing of the hydrostatic confining pressure and the larger unit weight of 18.0 kN/m3 for the saturated cohesive soil, because of a rapid drawdown in the in-channel water levels with the TGP operation.
The Essential Elements of Dabrowski's Theory of Positive Disintegration and How They Are Connected
ERIC Educational Resources Information Center
Ackerman, Cheryl M.
2009-01-01
The purpose of this article is to present Dabrowski's theory of positive disintegration (TPD; Dabrowski, 1964) in a thorough and accessible manner so that those in the gifted community can better understand it and its usefulness to the field of gifted studies. The article goes beyond what has typically been presented in recent research literature…
Dabrowski without the Theory of Positive Disintegration Just Isn't Dabrowski
ERIC Educational Resources Information Center
Tillier, William
2009-01-01
Dabrowski's theory of positive disintegration (K. Dabrowski, 1964, 1967, 1970, 1972, 1973) has been the subject of a number of research projects in the gifted field over the past 20 or so years. Most of this research has focused on Dabrowski's idea of overexcitability and has not discussed the broader context or implications of his theory or…
Cutting head for ultrasonic lithotripsy
NASA Technical Reports Server (NTRS)
Anguluo, E. D.; Goodfriend, R. (Inventor)
1985-01-01
A cutting head for attachment to the end of the wire probe of an ultrasonic kidney stone disintegration instrument is described. The cutting head has a plurality of circumferentially arranged teeth formed at one end thereof to provide a cup shaped receptacle for kidney stones encountered during the disintegration procedure. An integral reduced diameter collar diminishes stress points in the wire and reduce breakage thereof.
Cutting Head for Ultrasonic Lithotripsy
NASA Technical Reports Server (NTRS)
Angulo, Earl D. (Inventor); Goodfriend, Roger (Inventor)
1989-01-01
A cutting head for attachment to the end of the wire probe of an ultrasonic kidney stone disintegration instrument. The cutting head has a plurality of circumferentially arranged teeth formed at one end thereof to provide a cup-shaped receptacle for kidney stones encountered during the disintegration procedure. An integral reduced diameter collar diminishes stress points in the wire and reduces breakage thereof.
Efficient network disintegration under incomplete information: the comic effect of link prediction
NASA Astrophysics Data System (ADS)
Tan, Suo-Yi; Wu, Jun; Lü, Linyuan; Li, Meng-Jun; Lu, Xin
2016-03-01
The study of network disintegration has attracted much attention due to its wide applications, including suppressing the epidemic spreading, destabilizing terrorist network, preventing financial contagion, controlling the rumor diffusion and perturbing cancer networks. The crux of this matter is to find the critical nodes whose removal will lead to network collapse. This paper studies the disintegration of networks with incomplete link information. An effective method is proposed to find the critical nodes by the assistance of link prediction techniques. Extensive experiments in both synthetic and real networks suggest that, by using link prediction method to recover partial missing links in advance, the method can largely improve the network disintegration performance. Besides, to our surprise, we find that when the size of missing information is relatively small, our method even outperforms than the results based on complete information. We refer to this phenomenon as the “comic effect” of link prediction, which means that the network is reshaped through the addition of some links that identified by link prediction algorithms, and the reshaped network is like an exaggerated but characteristic comic of the original one, where the important parts are emphasized.
Bhat, Waseem Feeroze; Bhat, Imtiyaz Ahmad; Bhat, Sheraz Ahmad; Bano, Bilqees
2016-12-01
Many protein misfolding diseases in mammalian system are characterised by the accumulation of protein aggregates in amyloid fibrillar forms. Several therapeutic approaches include reduction in the production of the amyloidogenic form of proteins, increase in the clearance rate of misfolded or aggregated proteins, and direct inhibition of the self-assembly process have been explained. One of the possible remedial treatments for such disorders may be to identify molecules which are capable of either preventing formation of fibrils or disintegrating the formed fibrils. In this work, we have studied the effect of conventional surfactants; sodium dodecylsulphate (SDS), cetyl trimethylammonium bromide (CTAB) and dicationic gemini (16-4-16) surfactant on the disintegration of the goat brain cystatin (GBC) fibrils above their critical micelle concentrations (CMC) using ThT fluorescence, CD, TEM, Congo red and turbidity approaches. The results obtained are significant and showing the best disintegrating potency on GBC fibrils with gemini surfactant. The outcome from this work will aid in the development and/or design of potential inhibitory agents against amyloid deposits associated with amyloid diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
Kinetics of laser irradiated nanoparticles cloud
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Upadhyay Kahaly, M.; Misra, Shikha
2018-02-01
A comprehensive kinetic model describing the complex kinetics of a laser irradiated nanoparticle ensemble has been developed. The absorbed laser radiation here serves dual purpose, viz., photoenhanced thermionic emission via rise in its temperature and direct photoemission of electrons. On the basis of mean charge theory along with the equations for particle (electron) and energy flux balance over the nanoparticles, the transient processes of charge/temperature evolution over its surface and mass diminution on account of the sublimation (phase change) process have been elucidated. Using this formulation phenomenon of nanoparticle charging, its temperature rise to the sublimation point, mass ablation, and cloud disintegration have been investigated; afterwards, typical timescales of disintegration, sublimation and complete evaporation in reference to a graphite nanoparticle cloud (as an illustrative case) have been parametrically investigated. Based on a numerical analysis, an adequate parameter space describing the nanoparticle operation below the sublimation temperature, in terms of laser intensity, wavelength and nanoparticle material work function, has been identified. The cloud disintegration is found to be sensitive to the nanoparticle charging through photoemission; as a consequence, it illustrates that radiation operating below the photoemission threshold causes disintegration in the phase change state, while above the threshold, it occurs with the onset of surface heating.
O'Reilly, Jessica; Oreskes, Naomi; Oppenheimer, Michael
2012-10-01
How and why did the scientific consensus about sea level rise due to the disintegration of the West Antarctic Ice Sheet (WAIS), expressed in the third Intergovernmental Panel on Climate Change (IPCC) assessment, disintegrate on the road to the fourth? Using ethnographic interviews and analysis of IPCC documents, we trace the abrupt disintegration of the WAIS consensus. First, we provide a brief historical overview of scientific assessments of the WAIS. Second, we provide a detailed case study of the decision not to provide a WAIS prediction in the Fourth Assessment Report. Third, we discuss the implications of this outcome for the general issue of scientists and policymakers working in assessment organizations to make projections. IPCC authors were less certain about potential WAIS futures than in previous assessment reports in part because of new information, but also because of the outcome of cultural processes within the IPCC, including how people were selected for and worked together within their writing groups. It became too difficult for IPCC assessors to project the range of possible futures for WAIS due to shifts in scientific knowledge as well as in the institutions that facilitated the interpretations of this knowledge.
[Ultrasonic sludge treatment and its application on aerobic digestion].
Li, Huan; Jin, Yi-ying; Nie, Yong-feng; Li, Lei; Yang, Hai-ying
2007-07-01
In order to enhance the degradation efficiency of waste activated sludge (WAS) in conventional aerobic digestion, various ultrasonic assisted treatment methods were investigated including ultrasonic disintegration of influent sludge, ultrasonic improvement of influent sludge activity and ultrasonic disintegration of return sludge. Firstly the effects of ultrasonic sludge treatment were studied to choose appropriate ultrasonic parameters, and then the experiments of aerobic digestion with different ultrasonic treatments were carried out. The results show that 1.0 W/mL, 10 minutes ultrasonic treatment can increase soluble chemical oxygen demand (SCOD) in the supernatant phase of sludge sample by 5.4 times and decrease total suspended solid (TSS) by 16%; 0.05 W/mL, 10 min ultrasonic treatment can increase the specific oxygen uptake rate (SOUR) of sludge sample by 29%. The two kinds of ultrasonic influent sludge pretreatment can't improve aerobic digestion effectively. Ultrasonic return sludge disintegration can enhance the volatile suspended solid (VSS) degradation ratio by 15%. Furthermore, the settlement performance of digested sludge is still good and the pollutant concentrations of supernatant phase increase slightly. So ultrasonic return sludge disintegration is considered as the most appropriate assisted treatment mode for aerobic digestion.
Efficient network disintegration under incomplete information: the comic effect of link prediction.
Tan, Suo-Yi; Wu, Jun; Lü, Linyuan; Li, Meng-Jun; Lu, Xin
2016-03-10
The study of network disintegration has attracted much attention due to its wide applications, including suppressing the epidemic spreading, destabilizing terrorist network, preventing financial contagion, controlling the rumor diffusion and perturbing cancer networks. The crux of this matter is to find the critical nodes whose removal will lead to network collapse. This paper studies the disintegration of networks with incomplete link information. An effective method is proposed to find the critical nodes by the assistance of link prediction techniques. Extensive experiments in both synthetic and real networks suggest that, by using link prediction method to recover partial missing links in advance, the method can largely improve the network disintegration performance. Besides, to our surprise, we find that when the size of missing information is relatively small, our method even outperforms than the results based on complete information. We refer to this phenomenon as the "comic effect" of link prediction, which means that the network is reshaped through the addition of some links that identified by link prediction algorithms, and the reshaped network is like an exaggerated but characteristic comic of the original one, where the important parts are emphasized.
Efficient network disintegration under incomplete information: the comic effect of link prediction
Tan, Suo-Yi; Wu, Jun; Lü, Linyuan; Li, Meng-Jun; Lu, Xin
2016-01-01
The study of network disintegration has attracted much attention due to its wide applications, including suppressing the epidemic spreading, destabilizing terrorist network, preventing financial contagion, controlling the rumor diffusion and perturbing cancer networks. The crux of this matter is to find the critical nodes whose removal will lead to network collapse. This paper studies the disintegration of networks with incomplete link information. An effective method is proposed to find the critical nodes by the assistance of link prediction techniques. Extensive experiments in both synthetic and real networks suggest that, by using link prediction method to recover partial missing links in advance, the method can largely improve the network disintegration performance. Besides, to our surprise, we find that when the size of missing information is relatively small, our method even outperforms than the results based on complete information. We refer to this phenomenon as the “comic effect” of link prediction, which means that the network is reshaped through the addition of some links that identified by link prediction algorithms, and the reshaped network is like an exaggerated but characteristic comic of the original one, where the important parts are emphasized. PMID:26960247
Effect of potassium ferrate on disintegration of waste activated sludge (WAS).
Ye, Fenxia; Ji, Haizhuang; Ye, Yangfang
2012-06-15
The activated sludge process of wastewater treatment results in the generation of a considerable amount of excess activated sludge. Increased attention has been given to minimization of waste activated sludge recently. This paper investigated the effect of potassium ferrate oxidation pretreatment on the disintegration of the waste activated sludge at various dosages of potassium ferrate. The results show that potassium ferrate pretreatment disintegrated the sludge particle, resulting in the reduction of total solid content by 31%. The solubility (SCOD/TCOD) of the sludge increased with the increase of potassium ferrate dosage. Under 0.81 g/g SS dosage of potassium ferrate, SCOD/TCOD reached 0.32. Total nitrogen (TN) and total phosphorous (TP) concentrations in the solution all increased significantly after potassium ferrate pretreatment. The sludge particles reduced from 116 to 87 μm. The settleability of the sludge (SVI) was enhanced by 17%, which was due to the re-flocculation by the by-product, Fe(III), during potassium ferrate oxidation and the decrease of the viscosity. From the result of the present investigations, it can be concluded that potassium ferrate oxidation is a feasible method for disintegration of excess activated sludge. Copyright © 2012 Elsevier B.V. All rights reserved.
The Making and Breaking of Yugoslavia and Its Impact on Health
Kunitz, Stephen J.
2004-01-01
The creation of nation-states in Europe has generally been assumed to be intrinsic to modernization and to be irreversible. The disintegration of Czechoslovakia, the Soviet Union, and Yugoslavia demonstrates that the process is not irreversible. I argue that in the case of Yugoslavia, (1) disintegration was caused by the interaction between domestic policies with regard to nationalities and integration into the global economy and (2) the impact of the disintegration of the federation on health care and public health systems has been profound. Improving and converging measures of mortality before the collapse gave way to increasing disparities afterward. The lesson is that processes of individual and social modernization do not result in improvements in health and well-being that are necessarily irreversible or shared equally. PMID:15514224
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krastelev, E. G., E-mail: ekrastelev@yandex.ru; Sedin, A. A.; Tugushev, V. I.
2015-12-15
A generator of high-power high-voltage nanosecond pulses is intended for electrical discharge disintegration of mineral quartz and other nonconducting minerals. It includes a 320 kV Marx pulsed voltage generator, a high-voltage glycerin-insulated coaxial peaking capacitor, and an output gas spark switch followed by a load, an electric discharge disintegration chamber. The main parameters of the generator are as follows: a voltage pulse amplitude of up to 300 kV, an output impedance of ≈10 Ω, a discharge current amplitude of up to 25 kA for a half-period of 80–90 ns, and a pulse repetition rate of up to 16 Hz.
Mu, Bin; Lu, Chunyin; Liu, Peng
2011-02-01
The disintegration-controllable stimuli-responsive polyelectrolyte multilayer microcapsules have been fabricated via the covalent layer-by-layer assembly between the amino groups of chitosan (CS) and the aldehyde groups of the oxidized sodium alginate (OSA) onto the sacrificial templates (polystyrene sulfonate, PSS) which was removed by dialysis subsequently. The covalent crosslinking bonds of the multilayer microcapsules were confirmed by FTIR analysis. The TEM analysis showed that the diameter of the multilayer microcapsules was <200nm. The diameter of the multilayer microcapsules decreased with the increasing of the pH values or the ionic strength. The pH and ionic strength dual-responsive multilayer microcapsules were stable in acidic and neutral media while they could disintegrate only at strong basic media. Copyright © 2010 Elsevier B.V. All rights reserved.
Accelerated lamellar disintegration in eutectoid steel
NASA Astrophysics Data System (ADS)
Mishra, Shakti; Mishra, Alok; Show, Bijay Kumar; Maity, Joydeep
2017-04-01
The fastest kinetics of lamellar disintegration (predicted duration of 44 min) in AISI 1080 steel is obtained with a novel approach of incomplete austenitisation-based cyclic heat treatment involving forced air cooling with an air flow rate of 8.7 m3 h-1. A physical model for process kinetics is proposed that involves lamellar fragmentation, lamellar thickening, divorced eutectoid growth and generation of new lamellar faults in remaining cementite lamellae in each cycle. Lamellar fragmentation is accentuated with faster rate of cooling through generation of more intense lamellar faults; but divorced eutectoid growth is ceased. Accordingly, as compared to still air cooling, much faster kinetics of lamellar disintegration is obtained by forced air cooling together with the generation of much smaller submicroscopic cementite particles (containing more proportion of plate-shaped non-spheroids) in divorced eutectoid region.
Small-scale dust structures in Halley's coma. II. Disintegration of large dust bodies
NASA Astrophysics Data System (ADS)
Oberc, P.
2004-10-01
Small-scale dust structures, SDSs, altogether ˜35 events with extent ˜30-220 km, have been recognized owing to electric field records, mostly near the closest approach of Vega-2 to Halley's nucleus. Several (8-9) morphological forms of SDS have been identified, and all they make one family. Among the family members, the key form (with respect to which, all other forms can be regarded as degenerate) is a sequence of 3-5 dust clouds. The morphological forms represent various Vega-2 passes through SDSs at different stages of development. SDSs observable as the key form consisted of several fairly regularly spaced dust subpopulations, whose plane of symmetry was parallel to the comet orbit plane. That regularity together with specific features of morphological forms strongly constrain disintegration scenarios and dynamics of fragments, and allow to draw a number of conclusions, the main of which are: SDS parent bodies were ice-free dust aggregates lifted from the nucleus near the comet perihelion, whose masses were in the range ˜0.1-1 of the biggest emitted mass (mass of a body accelerated to the escape velocity, i.e., ˜300-1500 kg); the disintegration scenario comprised a few steps, and the first-step disintegration consisted mainly in consecutive detachments of biggest first-step fragments (BF-SFs) from the parent body; a SDS observable as the key form included the dust minitail of parent body and a few BF-SF minitails, the former one being longer than the latter ones; SDS parent bodies had a fractal-like internal structure, and the BF-SF mass was a few percent of the parent body mass; the thermal conductivity of SDS parent body was less than ˜0.4 W m -1 K -1 or so, while the latent heat of gluing organics was roughly 80 kJ mol -1; the disintegration mechanism was a combination of sintering and sublimation of organics. The multistep disintegration of SDS parent bodies can be reconciled with the basically one-step disintegration of aggregates responsible for the dust boundary (Oberc, P., Icarus 1996, 124, 195-208). The fractal-like structure and the relation between BF-SF mass and parent body mass are in agreement with predictions from the Weidenschilling model of comet formation. Large ice-free dust bodies, in particular SDS parent bodies, can be identified with refractory boulders postulated by some comet nucleus models.
Evans, Kory M; Waltz, Brandon; Tagliacollo, Victor; Chakrabarty, Prosanta; Albert, James S
2017-03-01
Convergent evolution is widely viewed as strong evidence for the influence of natural selection on the origin of phenotypic design. However, the emerging evo-devo synthesis has highlighted other processes that may bias and direct phenotypic evolution in the presence of environmental and genetic variation. Developmental biases on the production of phenotypic variation may channel the evolution of convergent forms by limiting the range of phenotypes produced during ontogeny. Here, we study the evolution and convergence of brachycephalic and dolichocephalic skull shapes among 133 species of Neotropical electric fishes (Gymnotiformes: Teleostei) and identify potential developmental biases on phenotypic evolution. We plot the ontogenetic trajectories of neurocranial phenotypes in 17 species and document developmental modularity between the face and braincase regions of the skull. We recover a significant relationship between developmental covariation and relative skull length and a significant relationship between developmental covariation and ontogenetic disparity. We demonstrate that modularity and integration bias the production of phenotypes along the brachycephalic and dolichocephalic skull axis and contribute to multiple, independent evolutionary transformations to highly brachycephalic and dolichocephalic skull morphologies.
Shafrir, E
2000-01-01
The investigation of diabetes propensity in spiny mice, performed in Geneva and Jerusalem colonies, is reviewed. Spiny mice live in semi-desert regions of the eastern Mediterranean countries. Those transferred to Geneva in the 1950s were maintained on a rodent diet supplemented by fat-rich seeds. They became obese, exhibited pancreatic islet hyperplasia and hypertrophy. Low insulin secretion response was characteristic of this species, despite ample pancreatic content of insulin. After a few months, diabetes with ketosis occurred, often suddenly, in association with islet cell disintegration. In Jerusalem the spiny mice were collected from their native habitat and placed on diets containing 50% sucrose or fat-rich seed diets. On a sucrose-rich diet, spiny mice developed hepatomegaly, lipogenic enzyme hyperactivity, and elevation in very low density lipoproteins as a result of metabolism of the fructose component mainly in the liver. No overt diabetes or pancreatic islet disintegration were observed, although insulin content and beta-cell hypertrophy and hyperplasia were apparent. On a fat-rich diet, spiny mice exhibited marked weight gain, adipose tissue growth and low hepatic lipogenesis. The obesity was accompanied by mild hyperglycemia and hyperinsulinemia with glucose intolerance leading to an occasional glucosuria after several months on the diet. The sucrose diet induced an extrathyroidal elevation of triiodothyronine (T(3)). Serum T(3) level and hepatic T(4)-T(3) conversion were increased, while serum T(4) levels tended to decrease. The activity of the T(3)-inducible hepatic mitochondrial FAD-glycerophosphate oxidase and K(+)/Na(+)-ATPase, as well as body temperature were increased, indicating that the sucrose diet was associated with enhanced thermogenesis and energy-wasting metabolic cycling. The sucrose-rich diet might exert an adaptive thermogenesis-mediated defense mechanism, protecting against excessive weight gain and disruptive pancreatic islet lesion. After 18 months maintenance on sucrose-rich versus fat-rich diets the number of animals surviving was significantly higher on the sucrose diet whereas on the fat diet a significant number of animals succumbed to expansive islet cell disruption and diabetes.
ERIC Educational Resources Information Center
Zibberman, Victor; Andersen, Donald R.
1994-01-01
Two articles examine athletics in the Commonwealth of Independent States (CIS). The first discusses the disintegration of the Soviet sport system following the Soviet Union's breakup. The second examines the future of CIS athletics which, it is claimed, may never again reach the stature achieved by the Soviet Union. (SM)
Formation of disintegration particles in spacecraft recorders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnosova, L.V.; Fradkin, M.I.; Razorenov, L.A.
1986-11-01
Experiments performed on the spacecraft Salyut 1, Kosmos 410, and Kosmos 443 enable us to record the disintegration products of particles which are formed in the material of the detectors on board the spacecraft. The observations were made by means of a delayed coincidence method. We have detected a meson component and also a component which is apparently associated with the generation of radioactive isotopes in the detectors.
Markl, Daniel; Sauerwein, Johanna; Goodwin, Daniel J; van den Ban, Sander; Zeitler, J Axel
2017-05-01
The aim of this study was to establish the suitability of terahertz (THz) transmission measurements to accurately measure and predict the critical quality attributes of disintegration time and the amount of active pharmaceutical ingredient (API) dissolved after 15, 20 and 25 min for commercial tablets processed at production scale. Samples of 18 batches of biconvex tablets from a production-scale design of experiments study into exploring the design space of a commercial tablet manufacturing process were used. The tablet production involved the process steps of high-shear wet granulation, fluid-bed drying and subsequent compaction. The 18 batches were produced using a 4 factor split plot design to study the effects of process changes on the disintegration time. Non-destructive and contactless terahertz transmission measurements of the whole tablets without prior sample preparation were performed to measure the effective refractive index and absorption coefficient of 6 tablets per batch. The disintegration time (R 2 = 0.86) and API dissolved after 15 min (R 2 = 0.96) linearly correlates with the effective refractive index, n eff , measured at terahertz frequencies. In contrast, no such correlation could be established from conventional hardness measurements. The magnitude of n eff represents the optical density of the sample and thus it reflects both changes in tablet porosity as well as granule density. For the absorption coefficient, α eff , we observed a better correlation with dissolution after 20 min (R 2 = 0.96) and a weaker correlation with disintegration (R 2 = 0.83) compared to n eff . The measurements of n eff and α eff provide promising predictors for the disintegration and dissolution time of tablets. The high penetration power of terahertz radiation makes it possible to sample a significant volume proportion of a tablet without any prior sample preparation. Together with the short measurement time (seconds), the potential to measure content uniformity and the fact that the method requires no chemometric models this technology shows clear promise to be established as a process analyser to non-destructively predict critical quality attributes of tablets.
Silva, S R; Afonso, J; Monteiro, A; Morais, R; Cabo, A; Batista, A C; Guedes, C M; Teixeira, A
2018-06-01
Carcass data were collected from 24 kids (average live weight of 12.5±5.5 kg; range 4.5 to 22.4 kg) of Jarmelista Portuguese native breed, to evaluate bioelectrical impedance analysis (BIA) as a technique for prediction of light kid carcass and muscle chemical composition. Resistance (Rs, Ω) and reactance (Xc, Ω), were measured in the cold carcasses with a single frequency bioelectrical impedance analyzer and, together with impedance (Z, Ω), two electrical volume measurements (VolA and VolB, cm2/Ω), carcass cold weight (CCW), carcass compactness and several carcass linear measurements were fitted as independent variables to predict carcass composition by stepwise regression analysis. The amount of variation explained by VolA and VolB only reached a significant level (P<0.01 and P<0.05, respectively) for muscle weight, moisture, protein and fat-free soft tissue content, even so with low accuracy, with VolA providing the best results (0.326⩽R 2⩽0.366). Quite differently, individual BIA parameters (Rs, Xc and Z) explained a very large amount of variation in dissectible carcass fat weight (0.814⩽R 2⩽0.862; P<0.01). These individual BIA parameters also explained a large amount of variation in subcutaneous and intermuscular fat weights (respectively 0.749⩽R 2⩽0.793 and 0.718⩽R 2⩽0.760; P<0.01), and in muscle chemical fat weight (0.663⩽R 2⩽0.684; P<0.01). Still significant but much lower was the variation in muscle, moisture, protein and fat-free soft tissue weights (0.344⩽R 2⩽0.393; P<0.01) explained by BIA parameters. Still, the best models for estimation of muscle, moisture, protein and fat-free soft tissue weights included Rs in addition to CCW, and accounted for 97.1% to 99.8% (P<0.01) of the variation observed, with CCW by itself accounting for 97.0% to 99.6% (P<0.01) of that variation. Resistance was the only independent variable selected for the best model predicting subcutaneous fat weight. It was also selected for the best models predicting carcass fat weight (combined with carcass length, CL; R 2=0.943; P<0.01) and intermuscular fat weight (combined with CCW; R 2=0.945; P<0.01). The best model predicting muscle chemical fat weight combined CCW and Z, explaining 85.6% (P<0.01) of the variation observed. These results indicate BIA as a useful tool for prediction of light kids' carcass composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodbiba, Gjergj, E-mail: dodbiba@sys.t.u-tokyo.ac.jp; Nagai, Hiroki; Wang Lipang
2012-10-15
Highlights: Black-Right-Pointing-Pointer Two pre-treatment methods, prior to leaching of indium from obsolete LCD modules, were described. Black-Right-Pointing-Pointer Conventional grinding and electrical disintegration have been evaluated and compared in the context of LCA. Black-Right-Pointing-Pointer Experimental data on the leaching capacity for indium and the electricity consumption of equipment were inputted into the LCA model in order to compare the environmental performance of each method. Black-Right-Pointing-Pointer An estimate for the environmental performance was calculated as the sum of six impact categories. Black-Right-Pointing-Pointer Electrical disintegration method outperforms conventional grinding in all impact categories. - Abstract: In order to develop an effective recycling systemmore » for obsolete Liquid Crystal Displays (LCDs), which would enable both the leaching of indium (In) and the recovery of a pure glass fraction for recycling, an effective liberation or size-reduction method would be an important pre-treatment step. Therefore, in this study, two different types of liberation methods: (1) conventional grinding, and (2) electrical disintegration have been tested and evaluated in the context of Life Cycle Assessment (LCA). In other words, the above-mentioned methods were compared in order to find out the one that ensures the highest leaching capacity for indium, as well as the lowest environmental burden. One of the main findings of this study was that the electrical disintegration was the most effective liberation method, since it fully liberated the indium containing-layer, ensuring a leaching capacity of 968.5 mg-In/kg-LCD. In turn, the estimate for the environmental burden was approximately five times smaller when compared with the conventional grinding.« less
Guan, Su; Deng, Feng; Huang, Si-Qi; Liu, Shu-Yang; Ai, Le-Xian; She, Pu-Ying
2017-09-01
This study investigated for the first time the feasibility of using a magnetic field for sludge disintegration. Approximately 41.01% disintegration degree (DD) was reached after 30min at 180mT magnetic field intensity upon separate magnetic field treatment. Protein and polysaccharide contents significantly increased. This test was optimized using a Box-Behnken design (BBD) with response surface methodology (RSM) to fit the multiple equation of the DD. The maximum DD was 43.75% and the protein and polysaccharide contents increased to 56.71 and 119.44mg/L, respectively, when the magnetic field strength was 119.69mT, reaction time was 30.49min, and pH was 9.82 in the optimization experiment. We then analyzed the effects of ultrasound alone. We are the first to combine magnetic field with ultrasound to disintegrate waste-activated sludge (WAS). The optimum effect was obtained with the application of ultrasound alone at 45kHz frequency, with a DD of about 58.09%. By contrast, 62.62% DD was reached in combined magnetic field and ultrasound treatment. This combined test was also optimized using BBD with RSM to fit the multiple equation of DD. The maximum DD of 64.59% was achieved when the magnetic field intensity was 197.87mT, ultrasonic frequency was 42.28kHz, reaction time was 33.96min, and pH was 8.90. These results were consistent with those of particle size and electron microscopy analyses. This research proved that a magnetic field can effectively disintegrate WAS and can be combined with other physical techniques such as ultrasound for optimal results. Copyright © 2017 Elsevier B.V. All rights reserved.
Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch
Kwak, Hyoung S.; Uhm, Han S.; Hong, Yong C.; Choi, Eun H.
2015-01-01
A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10−3, nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10−7, nO2/nN = 5.39 × 10−5, where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. PMID:26674957
Alyami, Hamad; Koner, Jasdip; Terry, David; Mohammed, Afzal R.
2018-01-01
The appropriate prescribing of paediatric dosage forms is paramount in providing the desired therapeutic effect alongside successful medication adherence with the paediatric population. Often it is the opinion of the healthcare practitioner that dictates which type of dosage form would be most appropriate for the paediatric patient, with liquids being both the most commonly available and most commonly used. Orally disintegrating tablets (ODTs) are an emerging dosage form which provide many benefits over traditional dosage forms for paediatric patients, such as rapid disintegration within the oral cavity, and the reduction in the risk of choking. However the opinion and professional use of healthcare practitioners regarding ODT’s is not known. This study was designed to assess the opinions of several types of healthcare professionals (n = 41) regarding ODTs, using a survey across two hospital sites. Results reaffirmed the popularity of liquids for prescribing in paediatrics, with 58.0% of participants preferring this dosage form. ODTs emerged as the second most popular dosage form (30.0%), with healthcare practitioners indicating an increasing popularity amongst patients in the hospital setting, belief with 63.0% of practitioners agreeing that many liquid formulations could be substituted with a suitable ODT. The desired properties of an ideal ODT were also identified by healthcare practitioners preferring a small, fast disintegrating tablet (90.2% and 95.1% respectively), with the taste, disintegration time and flavour being the three most important attributes identified (29.5%, 28.7% and 21.7% respectively). This study provided a pragmatic approach in assessing healthcare professional’s opinions on ODTs, highlighting the ideas and thoughts of practitioners who are on the frontline of paediatric prescribing and treatment and gave an indication to their preference for ODT properties. PMID:29489871
3D-micro-patterned fibrous dosage forms for immediate drug release.
Blaesi, Aron H; Saka, Nannaji
2018-03-01
At present, the most prevalent pharmaceutical dosage forms, the orally-delivered immediate-release tablets and capsules, are porous, granular solids. They disintegrate into their constituent particulates upon ingestion to release drug rapidly. The design, development, and manufacture of such granular solids, however, is inefficient due to difficulties associated with the unpredictable inter-particle interactions. Therefore, to achieve more predictable dosage form properties and processing, we have recently introduced melt-processed polymeric cellular dosage forms. The cellular forms disintegrated and released drug rapidly if the cells were predominantly interconnected. Preparation of interconnected cells, however, relies on the coalescence of gas bubbles in the melt, which is unpredictable. In the present work, therefore, new melt-processed fibrous dosage forms with contiguous void space are presented. The dosage forms are prepared by melt extrusion of the drug-excipient mixture followed by patterning the fibrous extrudate on a moving surface. It is demonstrated that the resulting fibrous structures are fully predictable by the extruder nozzle diameter and the motion of the surface. Furthermore, drug release experiments show that the disintegration time of the fibrous forms prepared in this work is of the order of that of the corresponding single fibers. The thin fibers of polyethylene glycol (excipient) and acetaminophen (drug) in turn disintegrate in a time proportional to the fiber radius and well within immediate-release specification. Finally, models of dosage form disintegration and drug release by single fibers and fibrous dosage forms are developed. It is found that drug release from fibrous forms is predictable by the physico-chemical properties of the excipient and such microstructural parameters as the fiber radius, the inter-fiber spacing, and the volume fraction of water-soluble excipient in the fibers. Copyright © 2017 Elsevier B.V. All rights reserved.
Ruparelia, Avnika A; Oorschot, Viola; Vaz, Raquel; Ramm, Georg; Bryson-Richardson, Robert J
2014-12-01
Mutations in the co-chaperone Bcl2-associated athanogene 3 (BAG3) can cause myofibrillar myopathy (MFM), a childhood-onset progressive muscle disease, characterized by the formation of protein aggregates and myofibrillar disintegration. In contrast to other MFM-causing proteins, BAG3 has no direct structural role, but regulates autophagy and the degradation of misfolded proteins. To investigate the mechanism of disease in BAG3-related MFM, we expressed wild-type BAG3 or the dominant MFM-causing BAG3 (BAG3(P209L)) in zebrafish. Expression of the mutant protein results in the formation of aggregates that contain wild-type BAG3. Through the stimulation and inhibition of autophagy, we tested the prevailing hypothesis that impaired autophagic function is responsible for the formation of protein aggregates. Contrary to the existing theory, our studies reveal that inhibition of autophagy is not sufficient to induce protein aggregation. Expression of the mutant protein, however, did not induce myofibrillar disintegration and we therefore examined the effect of knocking down Bag3 function. Loss of Bag3 resulted in myofibrillar disintegration, but not in the formation of protein aggregates. Remarkably, BAG3(P209L) is able to rescue the myofibrillar disintegration phenotype, further demonstrating that its function is not impaired. Together, our knockdown and overexpression experiments identify a mechanism whereby BAG3(P209L) aggregates form, gradually reducing the pool of available BAG3, which eventually results in BAG3 insufficiency and myofibrillar disintegration. This mechanism is consistent with the childhood onset and progressive nature of MFM and suggests that reducing aggregation through enhanced degradation or inhibition of nucleation would be an effective therapy for this disease.
Academic disintegrity among medical students: a randomised response technique study.
Mortaz Hejri, Sameh; Zendehdel, Kazem; Asghari, Fariba; Fotouhi, Akbar; Rashidian, Arash
2013-02-01
Medical students, as tomorrow's doctors, are responsible for their patients' health; cheating may affect their academic knowledge and clinical skills. The main purpose of this study was to investigate the frequency of and attitudes towards academic disintegrity among medical students at Tehran University of Medical Sciences (TUMS). Anonymous questionnaires including questions about various types of academic disintegrity were distributed among medical students during the clerkship and internship phases of the curriculum. Randomised response technique (RRT) was used to maintain the responders' privacy. Because the study design guaranteed the confidentiality of respondents, the TUMS Institutional Review Board declared that formal ethical approval was not required. A total of 124 students were enrolled in this study, of whom 63 were in the clerkship phase and 61 were in the internship phase. Of these respondents, 29% (n = 36) were male. The most frequently reported type of academic disintegrity was found to be 'impersonating an absent student in a class' (93%) and the least frequent to be 'legitimising absences by using bribes' (5%). Only a small number of interns considered 'buying hospital shifts', 'selling hospital shifts', 'impersonating an absent student' and 'helping others to cheat in examinations' as representing academic disintegrity. Approximately one third of participants stated that the RRT increased their confidence in anonymity and 90% of students found the use of RRT not difficult. Academic integrity is widely disrespected in different ways among medical students. Effective policies and interventions are required to control these misbehaviours in future doctors in order to optimise medical practice. Almost all respondents found it not difficult to use the RRT; the technique proved to be an effective and easily applied method of eliciting truthful responses to sensitive questions and represents an alternative to conventional anonymising techniques. © Blackwell Publishing Ltd 2013.
Schade, George R.; Styn, Nicholas R.; Hall, Timothy L.
2012-01-01
Abstract Background and Purpose Histotripsy is a nonthermal focused ultrasound technology that uses acoustic cavitation to homogenize tissue. Previous research has demonstrated that the prostatic urethra is more resistant to histotripsy effects than prostate parenchyma, a finding that may complicate the creation of transurethral resection of the prostate-like treatment cavities. The purpose of this study was to characterize the endoscopic appearance of the prostatic urethra during and after histotripsy treatment and to identify features that are predictive of urethral disintegration. Materials and Methods Thirty-five histotripsy treatments were delivered in a transverse plane traversing the prostatic urethra in 17 canine subjects (1–3/prostate ≥1 cm apart). Real-time endoscopy was performed in the first four subjects to characterize development of acute urethral treatment effect (UTE). Serial postprocedure endoscopy was performed in all subjects to assess subsequent evolution of UTE. Results Endoscopy during histotripsy was feasible with observation of intraurethral cavitation, allowing characterization of the real-time progression of UTE from normal to frank urethral disintegration. While acute urethral fragmentation occurred in 3/35 (8.6%) treatments, frank urethral disintegration developed in 24/35 (68.5%) within 14 days of treatment. Treating until the appearance of hemostatic pale gray shaggy urothelium was the best predictor of achieving urethral fragmentation within 14 days of treatment with positive and negative predictive values of 0.91 and 0.89, respectively. Conclusion Endoscopic assessment of the urethra may be a useful adjunct to prostatic histotripsy to help guide therapy to ensure urethral disintegration, allowing drainage of the homogenized adenoma and effective tissue debulking. PMID:22050511
Tanaka, Hironori; Iwao, Yasunori; Izumikawa, Masahiro; Sano, Syusuke; Ishida, Hitoshi; Noguchi, Shuji; Itai, Shigeru
2016-01-01
In the present study, a microwave treatment process has been applied to prepare orally disintegrating tablets (ODTs) containing powdered tea leaves with enriched levels of the anti-inflammatory compounds such as chafuroside A (CFA) and chafuroside B (CFB). The use of distilled water as the adsorbed and granulation solvents in this preparation process afforded tablets with a long disintegration time (more than 120 s). The CFA and CFB contents of these tablets did not also change after 4 min of microwave irradiation due to the tablet temperature, which only increased to 100°C. In contrast, the tablet temperature increased up to 140°C after 3 min of microwave irradiation when a 1.68 M Na2HPO4 solution instead of distilled water. Notably, the disintegration time of these tablets was considerably improved (less than 20 s) compared with the microwave-untreated tablets, and there were 7- and 11-fold increases in their CFA and CFB contents. In addition, the operational conditions for the preparation of the tablets were optimized by face-centered composite design based on the following criteria: tablet hardness greater than 13 N, disintegration time less than 30 s and friability less than 0.5%. The requirements translated into X1 (the amount of granulation solvent), X2 (tableting pressure) and X3 (content of the powdered tea leaves) values of 45%, 0.43 kN and 32%, respectively, and the ODTs containing powdered tea leaves prepared under these optimized conditions were found to show excellent tablet properties and contain enriched levels of CFA and CFB.
Zas, R; Sampedro, L
2015-01-01
Quantitative seed provisioning is an important life-history trait with strong effects on offspring phenotype and fitness. As for any other trait, heritability estimates are vital for understanding its evolutionary dynamics. However, being a trait in between two generations, estimating additive genetic variation of seed provisioning requires complex quantitative genetic approaches for distinguishing between true genetic and environmental maternal effects. Here, using Maritime pine as a long-lived plant model, we quantified additive genetic variation of cone and seed weight (SW) mean and SW within-individual variation. We used a powerful approach combining both half-sib analysis and parent–offspring regression using several common garden tests established in contrasting environments to separate G, E and G × E effects. Both cone weight and SW mean showed significant genetic variation but were also influenced by the maternal environment. Most of the large variation in SW mean was attributable to additive genetic effects (h2=0.55–0.74). SW showed no apparent G × E interaction, particularly when accounting for cone weight covariation, suggesting that the maternal genotypes actively control the SW mean irrespective of the amount of resources allocated to cones. Within-individual variation in SW was low (12%) relative to between-individual variation (88%), and showed no genetic variation but was largely affected by the maternal environment, with greater variation in the less favourable sites for pine growth. In summary, results were very consistent between the parental and the offspring common garden tests, and clearly indicated heritable genetic variation for SW mean but not for within-individual variation in SW. PMID:25160045
Understanding Heterogeneity in the Effects of Birth Weight on Adult Cognition and Wages
Cook, C. Justin; Fletcher, Jason M.
2015-01-01
A large economics literature has shown long term impacts of birth weight on adult outcomes, including IQ and earnings that are often robust to sibling or twin fixed effects. We examine potential mechanisms underlying these effects by incorporating findings from the genetics and neuroscience literatures. We use a sample of siblings combined with an “orchids and dandelions hypothesis”, where the IQ of genetic dandelions is not affected by in utero nutrition variation but genetic orchids thrive under advantageous conditions and wilt in poor conditions. Indeed, using variation in three candidate genes related to neuroplasticity (APOE, BDNF, and COMT), we find substantial heterogeneity in the associations between birth weight and adult outcomes, where part of the population (i.e., “dandelions”) is not affected by birth weight variation. Our results help uncover why birth weight affects adult outcomes. PMID:25770970
Understanding heterogeneity in the effects of birth weight on adult cognition and wages.
Justin Cook, C; Fletcher, Jason M
2015-05-01
A large economics literature has shown long term impacts of birth weight on adult outcomes, including IQ and earnings that are often robust to sibling or twin fixed effects. We examine potential mechanisms underlying these effects by incorporating findings from the genetics and neuroscience literatures. We use a sample of siblings combined with an "orchids and dandelions hypothesis", where the IQ of genetic dandelions is not affected by in utero nutrition variation but genetic orchids thrive under advantageous conditions and wilt in poor conditions. Indeed, using variation in three candidate genes related to neuroplasticity (APOE, BDNF, and COMT), we find substantial heterogeneity in the associations between birth weight and adult outcomes, where part of the population (i.e., "dandelions") is not affected by birth weight variation. Our results help uncover why birth weight affects adult outcomes. Copyright © 2015 Elsevier B.V. All rights reserved.
Disintegration of 12C nuclei by 700-1500 MeV photons
NASA Astrophysics Data System (ADS)
Nedorezov, V.; D'Angelo, A.; Bartalini, O.; Bellini, V.; Capogni, M.; Casano, L. E.; Castoldi, M.; Curciarello, F.; De Leo, V.; Didelez, J.-P.; Di Salvo, R.; Fantini, A.; Franco, D.; Gervino, G.; Ghio, F.; Giardina, G.; Girolami, B.; Giusa, A.; Lapik, A.; Levi Sandri, P.; Mammoliti, F.; Mandaglio, G.; Manganaro, M.; Moricciani, D.; Mushkarenkov, A.; Pshenichnov, I.; Randieri, C.; Rudnev, N.; Russo, G.; Schaerf, C.; Sperduto, M.-L.; Sutera, M.-C.; Turinge, A.; Vegna, V.; Zonta, I.
2015-08-01
Disintegration of 12C nuclei by tagged photons of 700-1500 MeV energy at the GRAAL facility has been studied by means of the LAGRANγE detector with a wide angular acceptance. The energy and momentum distributions of produced neutrons and protons as well as their multiplicity distributions were measured and compared with corresponding distributions calculated with the RELDIS model based on the intranuclear cascade and Fermi break-up models. It was found that eight fragments are created on average once per about 100 disintegration events, while a complete fragmentation of 12C into 12 nucleons is observed typically only once per 2000 events. Measured multiplicity distributions of produced fragments are well described by the model. The measured total photoabsorption cross section on 12C in the same energy range is also reported.
NASA Astrophysics Data System (ADS)
Jewitt, David
2017-08-01
Disintegration may be the leading cause of the demise of cometary nuclei yet is rarely observed and not well understood. We propose to use an amazing but largely unpublished archival dataset on comet 73P/Schwassmann-Wachmann 3 from HST in order to characterize the breakup of this body, focussing on components 73-B, 73-C and 73-G from GO 8699, 10625 and 10992. We will measure the number, sizes, velocities and (short-term) photometric variability of the fragments in 73-B and 73-G and derive the ejection speeds and times. A nucleus/coma convolution model will be used to extract the best estimates of fragment and nucleus size. The size distributions and integral masses will be compared to the parent body masses to estimate lifetimes. Lightcurves will be determined to the test the possibility that disintegration is due to rotational instability.
Microorganism mediated liquid fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troiano, Richard
Herein disclosed is a method for producing liquid hydrocarbon product, the method comprising disintegrating a hydrocarbon source; pretreating the disintegrated hydrocarbon source; solubilizing the disintegrated hydrocarbon source to form a slurry comprising a reactant molecule of the hydrocarbon source; admixing a biochemical liquor into the slurry, wherein the biochemical liquor comprises at least one conversion enzyme configured to facilitate bond selective photo-fragmentation of said reactant molecule of the hydrocarbon source, to form liquid hydrocarbons via enzyme assisted bond selective photo-fragmentation, wherein said conversion enzyme comprises reactive sites configured to restrict said reactant molecule such that photo-fragmentation favorably targets a preselectedmore » internal bond of said reactant molecule; separating the liquid hydrocarbons from the slurry, wherein contaminants remain in the slurry; and enriching the liquid hydrocarbons to form a liquid hydrocarbon product. Various aspects of such method/process are also discussed.« less
Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration.
Croft, Daniel R; Coleman, Mathew L; Li, Shuixing; Robertson, David; Sullivan, Teresa; Stewart, Colin L; Olson, Michael F
2005-01-17
Membrane blebbing during the apoptotic execution phase results from caspase-mediated cleavage and activation of ROCK I. Here, we show that ROCK activity, myosin light chain (MLC) phosphorylation, MLC ATPase activity, and an intact actin cytoskeleton, but not microtubular cytoskeleton, are required for disruption of nuclear integrity during apoptosis. Inhibition of ROCK or MLC ATPase activity, which protect apoptotic nuclear integrity, does not affect caspase-mediated degradation of nuclear proteins such as lamins A, B1, or C. The conditional activation of ROCK I was sufficient to tear apart nuclei in lamin A/C null fibroblasts, but not in wild-type fibroblasts. Thus, apoptotic nuclear disintegration requires actin-myosin contractile force and lamin proteolysis, making apoptosis analogous to, but distinct from, mitosis where nuclear disintegration results from microtubule-based forces and from lamin phosphorylation and depolymerization.
Actin-myosin–based contraction is responsible for apoptotic nuclear disintegration
Croft, Daniel R.; Coleman, Mathew L.; Li, Shuixing; Robertson, David; Sullivan, Teresa; Stewart, Colin L.; Olson, Michael F.
2005-01-01
Membrane blebbing during the apoptotic execution phase results from caspase-mediated cleavage and activation of ROCK I. Here, we show that ROCK activity, myosin light chain (MLC) phosphorylation, MLC ATPase activity, and an intact actin cytoskeleton, but not microtubular cytoskeleton, are required for disruption of nuclear integrity during apoptosis. Inhibition of ROCK or MLC ATPase activity, which protect apoptotic nuclear integrity, does not affect caspase-mediated degradation of nuclear proteins such as lamins A, B1, or C. The conditional activation of ROCK I was sufficient to tear apart nuclei in lamin A/C null fibroblasts, but not in wild-type fibroblasts. Thus, apoptotic nuclear disintegration requires actin-myosin contractile force and lamin proteolysis, making apoptosis analogous to, but distinct from, mitosis where nuclear disintegration results from microtubule-based forces and from lamin phosphorylation and depolymerization. PMID:15657395
The relationship between nephron number, kidney size and body weight in two inbred mouse strains.
Murawski, Inga J; Maina, Rita W; Gupta, Indra R
2010-01-01
While some reports in humans have shown that nephron number is positively correlated with height, body weight or kidney weight, other studies have not reproduced these findings. To understand the impact of genetic and environmental variation on these relationships, we examined whether nephron number correlates with body weight, kidney planar surface area, or kidney weight in two inbred mouse strains with contrasting kidney sizes but no overt renal pathology: C3H/HeJ and C57BL/6J. C3H/HeJ mice had smaller kidneys at birth and larger kidneys by adulthood, however there was no significant difference in nephron number between the two strains. We did observe a correlation between kidney size and body weight at birth and at adulthood for both strains. However, there was no relationship between nephron number and body weight or between nephron number and kidney size. From other studies, it appears that a greater than two-fold variation is required in each of these parameters in order to demonstrate these relationships, suggesting they are highly dependent on scale. Our results are therefore not surprising since there was a less than two-fold variation in each of the parameters examined. In summary, the relationship between nephron number and body or kidney size is most likely to be demonstrated when there is greater phenotypic variation either from genetic and/or environmental factors.
NASA Astrophysics Data System (ADS)
Chanyshev, AI; Belousova, OE
2018-03-01
The authors determine stress and deformation in a heterogeneous rock mass at the preset displacement and Cauchy stress vector at the boundary of an underground excavation. The influence of coordinates on Young’s modulus, shear modulus and ultimate strength is shown. It is found that regions of tension and compression alternate at the excavation boundary—i.e. zonal rock disintegration phenomenon is observed.
ERIC Educational Resources Information Center
Hougaard, Anders, Ed.; Lund, Steffen Nordahl, Ed.
2002-01-01
These 2 volumes include papers and abstracts of papers presented at the August 2002 "The Way We Think" conference in Denmark. Papers and abstracts of papers in the two volumes include: "Blending and Conceptual Disintegration" (Anders Hougaard); "Levels of Blending, Disintegration, and Language Evolution" (Carl Bache); "Conceptual Integration,…
Chen, Yong; Feng, Tingting; Li, Yong; Du, Bin; Weng, Weiyu
2017-03-01
A major challenge of orally disintegrating tablet (ODT) development is predicting its bioequivalence to its corresponding marketed product. Therefore, comparing ODT dissolution profiles to those of the corresponding marketed product is very important. The objective of this study was to develop a 5.2-mg montelukast sodium (MS) ODT with a similar dissolution profile to that of the marketed chewable tablet. Dissolution profiles were examined in different media to screen each formulation. We found that MS dissolution from ODTs in acidic medium heavily depended on manufacturing methods. All MS ODTs prepared using direct compression rapidly disintegrated in acidic medium. However, dispersed MS powders aggregated into sticky masses, resulting in slow dissolution. In contrast, MS ODTs prepared using wet granulation had much faster dissolution rates in acidic medium with no obvious aggregation. Additionally, the optimized formulation, prepared using wet granulation, displayed similar dissolution profiles to the marketed reference in all four types of media examined (f 2 > 50). The in vitro disintegration time of the optimized ODT was 9.5 ± 2.4 s, which meets FDA requirements. In conclusion, the wet granulation preparation method of MS ODTs resulted in a product with equivalent dissolution profiles as those of the marketed product.
Şahinkaya, S; Sevimli, M F; Aygün, A
2012-01-01
One of the most serious problems encountered in biological wastewater treatment processes is the production of waste activated sludge (WAS). Sonication, which is an energy-intensive process, is the most powerful sludge pre-treatment method. Due to lack of information about the combined pre-treatment methods of sonication, the combined pre-treatment methods were investigated and it was aimed to improve the disintegration efficiency of sonication by combining sonication with alkalization and thermal pre-treatment methods in this study. The process performances were evaluated based on the quantities of increases in soluble chemical oxygen demand (COD), protein and carbohydrate. The releases of soluble COD, carbohydrate and protein by the combined methods were higher than those by sonication, alkalization and thermal pre-treatment alone. Degrees of sludge disintegration in various options of sonication were in the following descending order: sono-alkalization > sono-thermal pre-treatment > sonication. Therefore, it was determined that combining sonication with alkalization significantly improved the sludge disintegration and decreased the required energy to reach the same yield by sonication. In addition, effects on sludge settleability and dewaterability and kinetic mathematical modelling of pre-treatment performances of these methods were investigated. It was proven that the proposed model accurately predicted the efficiencies of ultrasonic pre-treatment methods.
Disintegration of the agricultural by-product wheat bran under subcritical conditions.
Reisinger, Michael; Tirpanalan, Özge; Pruksasri, Suwattana; Kneifel, Wolfgang; Novalin, Senad
2018-02-10
The disintegration of destarched wheat bran in water and sulfuric acid (pH 3) under subcritical conditions (275-300 °C) and at short reaction times (1-4 min) was investigated. A cascade process comprising a stepwise separation of the liquid was applied to reduce the formation of undesired degradation products. The highest degree of biomass disintegration (67% dry mass solubilization) was achieved by application of a cascade process at 275 °C (pH 3). Regarding the dissolution of carbohydrates (monomeric and oligomeric form), the total glucose yields remained below 60%, while the total xylose and arabinose yields were about 76% and 67%. Approximately 74% of the protein and 95% of the mineral fraction could be extracted. The application of the cascade process enabled a substantially reduced formation of degradation products. When operating hydrothermally and subcritically in order to avoid some problematic aspects of a biorefinery, an extensive disintegration and monomerization of wheat bran and its constituents remains difficult even under the tested conditions (300 °C, pH 3). However, the applied cascade process proved to be useful to increase the yields and to substantially reduce the formation of undesired degradation products. Despite this fact, increased water consumption has to be conceded. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Glube, Natalie; Moos, Lea von; Duchateau, Guus
2013-01-01
Purpose In vitro disintegration and dissolution are routine methods used to assess the performance and quality of oral dosage forms. The purpose of the current work was to determine the potential for interaction between capsule shell material and a green tea extract and the impact it can have on the release. Methods A green tea extract was formulated into simple powder-in-capsule formulations of which the capsule shell material was either of gelatin or HPMC origin. The disintegration times were determined together with the dissolution profiles in compendial and biorelevant media. Results All formulations disintegrated within 30 min, meeting the USP criteria for botanical formulations. An immediate release dissolution profile was achieved for gelatin capsules in all media but not for the specified HPMC formulations. Dissolution release was especially impaired for HPMCgell at pH 1.2 and for both HPMC formulations in FeSSIF media suggesting the potential for food interactions. Conclusions The delayed release from studied HPMC capsule materials is likely attributed to an interaction between the catechins, the major constituents of the green tea extract, and the capsule shell material. An assessment of in vitro dissolution is recommended prior to the release of a dietary supplement or clinical trial investigational product to ensure efficacy. PMID:25755998
Glube, Natalie; Moos, Lea von; Duchateau, Guus
2013-01-01
In vitro disintegration and dissolution are routine methods used to assess the performance and quality of oral dosage forms. The purpose of the current work was to determine the potential for interaction between capsule shell material and a green tea extract and the impact it can have on the release. A green tea extract was formulated into simple powder-in-capsule formulations of which the capsule shell material was either of gelatin or HPMC origin. The disintegration times were determined together with the dissolution profiles in compendial and biorelevant media. All formulations disintegrated within 30 min, meeting the USP criteria for botanical formulations. An immediate release dissolution profile was achieved for gelatin capsules in all media but not for the specified HPMC formulations. Dissolution release was especially impaired for HPMCgell at pH 1.2 and for both HPMC formulations in FeSSIF media suggesting the potential for food interactions. The delayed release from studied HPMC capsule materials is likely attributed to an interaction between the catechins, the major constituents of the green tea extract, and the capsule shell material. An assessment of in vitro dissolution is recommended prior to the release of a dietary supplement or clinical trial investigational product to ensure efficacy.
Solný, Tomaš
2018-01-01
As coprocessed excipients (CPE) gain a lot of focus recently, this article compares three commercially available CPE of Avicel brand, namely, CE 15, DG, and HFE 102. Comparison is based on measured physical properties of coprocessed mixtures, respectively, flow properties, pycnometric density, mean particle size, specific surface area, moisture content, hygroscopicity, solubility, pH leaching, electrostatic charge, SEM images, and DSC. Tablets were made employing three pressure sets. Viscoelastic properties and ejection force were assessed during compression, as well as pycnometric density, mass uniformity, height, tensile strength, friability, disintegration, and wetting times. Avicel CE 15 is of mid-range flow properties, contains mid-size and nonspherical particles, and has high hygroscopicity, growing negative charge, best lubricity, lowest tensile strength, and mid-long disintegration times. Avicel DG possesses the worst flow properties, small asymmetrical particles, lowest hygroscopicity, stable charge, intermediate lubricity, and tensile strength and exhibits fast disintegration of tablets. Finally, Avicel HFE 102 has the best flow properties, large symmetrical particles, and middle hygroscopicity and its charge fluctuates throughout blending. It also exhibits inferior lubricity, the highest tensile strength, and slow disintegration of tablets. Generally, it is impossible to select the best CPE, as their different properties fit versatile needs of countless manufacturers and final products. PMID:29850496
A study of the properties of compacts from silicified microcrystalline celluloses.
Muzíková, Jitka; Nováková, Petra
2007-07-01
The paper deals with a study of tensile strength and disintegration time of compacts made from silicified microcrystalline celluloses, Prosolv SMCC 90, and Prosolv HD 90, in dependence on compression force, addition of two types of lubricants, and two active ingredients. The lubricants were magnesium stearate and sodium stearyl fumarate in a concentration of 0.5%, the active ingredients being ascorbic acid and acetylsalicylic acid in a concentration of 50%. Prosolv SMCC 90 proved to be better compatible than Prosolv HD 90; the compacts were of higher strength, which was markedly increased with increasing compression force. Prosolv HD 90 was more sensitive to additions of lubricants, and a greater decrease in strength was recorded due to the influence of sodium stearyl fumarate. The effect of lubricants on the strength of compacts in the presence of active ingredients was not identical. The disintegration time of compacts from Prosolv HD 90 without as well as with lubricants was shorter than from Prosolv SMCC 90 and was increasing with increasing compression force. Disintegration time was increased with added lubricants, and it was markedly shortened by addition of active ingredients. Compacts containing ascorbic acid possessed a shorter disintegration time than those containing acetylsalicylic acid, and it was not markedly influenced by the presence of lubricants.
Effect of moisture sorption on the performance of crospovidone.
Hiew, Tze Ning; Johan, Nur Atiqah Binte; Desai, Parind Mahendrakumar; Chua, Siang Meng; Loh, Zhi Hui; Heng, Paul Wan Sia
2016-11-30
Crospovidone is a commonly used tablet disintegrant. However, the synthetic disintegrant has been known to be hygroscopic and high moisture content in crospovidone used could exert deleterious effects on tablets formulated with it. The objective of this study was to elicit a better understanding between crospovidone-water interaction and its effect on disintegrant performance. Moisture sorption and desorption isotherms were obtained together with the enthalpy of immersion. Crospovidone samples stored at four relative humidities were used to formulate tablets and the resultant tablets were evaluated for their mechanical, dimensional and disintegratability attributes. Analyses of the moisture sorption isotherms indicated that externally adsorbed moisture accounted for the bulk of the total moisture content in crospovidone, with minimal amount of moisture absorbed intramolecularly. Enthalpy of immersion became less exothermic with crospovidone samples stored at increasing storage humidity. Correspondingly, improvement in disintegration time became less pronounced. This was postulated to be a consequence of premature wetting of the particle surfaces by externally adsorbed moisture. High humidity was also detrimental to tablet hardness and thickness. In conclusion, the impact of moisture sorption during storage by excipients such as crospovidone could be better understood by the appreciation of crospovidone-water interaction and its consequence on tablet quality. Copyright © 2016 Elsevier B.V. All rights reserved.
El-Malah, Yasser; Nazzal, Sami
2013-01-01
The objective of this work was to study the dissolution and mechanical properties of fast-dissolving films prepared from a tertiary mixture of pullulan, polyvinylpyrrolidone and hypromellose. Disintegration studies were performed in real-time by probe spectroscopy to detect the onset of film disintegration. Tensile strength and elastic modulus of the films were measured by texture analysis. Disintegration time of the films ranged from 21 to 105 seconds whereas their mechanical properties ranged from approximately 2 to 49 MPa for tensile strength and 1 to 21 MPa% for young's modulus. After generating polynomial models correlating the variables using a D-Optimal mixture design, an optimal formulation with desired responses was proposed by the statistical package. For validation, a new film formulation loaded with diclofenac sodium based on the optimized composition was prepared and tested for dissolution and tensile strength. Dissolution of the optimized film was found to commence almost immediately with 50% of the drug released within one minute. Tensile strength and young's modulus of the film were 11.21 MPa and 6, 78 MPa%, respectively. Real-time spectroscopy in conjunction with statistical design were shown to be very efficient for the optimization and development of non-conventional intraoral delivery system such as fast dissolving films.
Investigation into stability of poly(vinyl alcohol)-based Opadry® II films.
Koo, Otilia M Y; Fiske, John D; Yang, Haitao; Nikfar, Faranak; Thakur, Ajit; Scheer, Barry; Adams, Monica L
2011-06-01
Poly(vinyl alcohol) (PVA)-based formulations are used for pharmaceutical tablet coating with numerous advantages. Our objective is to study the stability of PVA-based coating films in the presence of acidic additives, alkaline additives, and various common impurities typically found in tablet formulations. Opadry® II 85F was used as the model PVA-based coating formulation. The additives and impurities were incorporated into the polymer suspension prior to film casting. Control and test films were analyzed before and after exposure to 40°C/75% relative humidity. Tests included film disintegration, size-exclusion chromatography, thermal analysis, and microscopy. Under stressed conditions, acidic additives (hydrochloric acid (HCl) and ammonium bisulfate (NH(4)HSO(4))) negatively impacted Opadry® II 85F film disintegration while NaOH, formaldehyde, and peroxide did not. Absence of PVA species from the disintegration media corresponded to an increase in crystallinity of PVA for reacted films containing HCl. Films with NH(4)HSO(4) exhibited slower rate of reactivity and less elevation in melting temperature with no clear change in melting enthalpy. Acidic additives posed greater risk of compromise in disintegration of PVA-based coatings than alkaline or common impurities. The mechanism of acid-induced reactivity due to the presence of acidic salts (HCl vs. NH(4)HSO(4)) may be different.
Bendas, Ehab Rasmy; Basalious, Emad B
2016-01-01
Our objective was to develop novel vagina retentive cream suppositories (VRCS) of progesterone having rapid disintegration and good vaginal retention. VRCS of progesterone were prepared using oil in water (o/w) emulsion of mineral oil or theobroma oil in hard fat and compared with conventional vaginal suppositories (CVS) prepared by hard fat. VRCS formulations were tested for content uniformity, disintegration, melting range, in vitro release and stability studies. The most stable formulation (VRCS I) was subjected to scaling-up manufacturing and patients' satisfaction test. The rapid disintegration, good retentive properties are applicable through the inclusion of emulsified theobroma oil rather than hydrophilic surfactant into the hard fat bases. The release profile of progesterone from VRCS I showed a biphasic pattern due to the formation of progesterone reservoir in the emulsified theobroma oil. All volunteers involved in patients' satisfaction test showed high satisfactory response to the tested formulation (VRCS). The in vivo pharmacokinetic study suggests that VRCS of progesterone provided higher rate and extent of absorption compared to hard fat based suppositories. Our results proposed that emulsified theobroma oil could be promising to solve the problems of poor patients' satisfaction and variability of drug absorption associated with hard fat suppositories.
Last Glacial-Interglacial Transition ice dynamics in the Wicklow Mountains, Ireland
NASA Astrophysics Data System (ADS)
Knight, Lauren; Boston, Clare; Lovell, Harold; Pepin, Nick
2017-04-01
Understanding of the extent and dynamics of former ice masses in the Wicklow Mountains, Ireland, during the Last Glacial-Interglacial Transition (LGIT; 15-10 ka BP) is currently unresolved. Whilst it is acknowledged that the region hosted a local ice cap within the larger British-Irish Ice Sheet at the Last Glacial Maximum (LGM; 27 ka BP), there has been little consideration of ice cap disintegration to a topographically constrained ice mass during the LGIT. This research has produced the first regional glacial geomorphological map, through remote sensing (aerial photograph and digital terrain model interrogation) and field mapping. This has allowed both the style and extent of mountain glaciation and ice recession dynamics during the LGIT to be established. This geomorphological mapping has highlighted that evidence for local glaciation in the Wicklow Mountains is more extensive than previously recognised, and that small icefields and associated outlet valley glaciers existed during the LGIT following disintegration of the Wicklow Ice Cap. A relative chronology based on morphostratigraphic principles is developed, which indicates complex patterns of ice mass oscillation characterised by periods of both sustained retreat and minor readvance. Variations in the pattern of recession across the Wicklow Mountains are evident and appear to be influenced, in part, by topographic controls (e.g. slope, aspect, glacier hypsometry). In summary, this research establishes a relative chronology of glacial events in the region during the LGIT and presents constraints on ice mass extent, dynamics and retreat patterns, offering an insight into small ice mass behaviour in a warming climate.
Pharmaceutical Cocrystal of Piroxicam: Design, Formulation and Evaluation
Panzade, Prabhakar; Shendarkar, Giridhar; Shaikh, Sarfaraj; Balmukund Rathi, Pavan
2017-01-01
Purpose: Cocrystallisation of drug with coformers is a promising approach to alter the solid sate properties of drug substances like solubility and dissolution. The objective of the present work was to prepare, formulate and evaluate the piroxicam cocrystal by screening various coformers. Methods: Cocrystals of piroxicam were prepared by dry grinding method. The melting point and solubility of crystalline phase was determined. The potential cocrystal was characterized by DSC, IR, XRPD. Other pharmaceutical properties like solubility and dissolution rate were also evaluated. Orodispersible tablets of piroxicam cocrystal were formulated, optimized and evaluated using 32 factorial design. Results: Cocrystals of piroxicam-sodium acetate revealed the variation in melting points and solubility. The cocrystals were obtained in 1:1 ratio with sodium acetate. The analysis of Infrared explicitly indicated the shifting of characteristic bands of piroxicam. The X-Ray Powder Diffraction pattern denoted the crystallinity of cocrystals and noteworthy difference in 2θ value of intense peaks. Differential scanning calorimetry spectra of cocrystals indicated altered endotherms corresponding to melting point. The pH solubility profile of piroxicam showed sigmoidal curve, which authenticated the pKa-dependent solubility. Piroxicam cocrystals also exhibited a similar pH-solubility profile. The cocrystals exhibited faster dissolution rate owing to cocrystallization as evident from 30% increase in the extent of dissolution. The orodispersible tablets of piroxicam cocrystals were successfully prepared by direct compression method using crosscarmelose sodium as superdisintegrant with improved disintegration time (30 sec) and dissolution rate. Conclusion: The piroxicam cocrystal with modified properties was prepared with sodium acetate and formulated as orodispersible tablets having faster disintegration and greater dissolution rate. PMID:29071222
Pharmaceutical Cocrystal of Piroxicam: Design, Formulation and Evaluation.
Panzade, Prabhakar; Shendarkar, Giridhar; Shaikh, Sarfaraj; Balmukund Rathi, Pavan
2017-09-01
Purpose: Cocrystallisation of drug with coformers is a promising approach to alter the solid sate properties of drug substances like solubility and dissolution. The objective of the present work was to prepare, formulate and evaluate the piroxicam cocrystal by screening various coformers. Methods: Cocrystals of piroxicam were prepared by dry grinding method. The melting point and solubility of crystalline phase was determined. The potential cocrystal was characterized by DSC, IR, XRPD. Other pharmaceutical properties like solubility and dissolution rate were also evaluated. Orodispersible tablets of piroxicam cocrystal were formulated, optimized and evaluated using 3 2 factorial design. Results: Cocrystals of piroxicam-sodium acetate revealed the variation in melting points and solubility. The cocrystals were obtained in 1:1 ratio with sodium acetate. The analysis of Infrared explicitly indicated the shifting of characteristic bands of piroxicam. The X-Ray Powder Diffraction pattern denoted the crystallinity of cocrystals and noteworthy difference in 2θ value of intense peaks. Differential scanning calorimetry spectra of cocrystals indicated altered endotherms corresponding to melting point. The pH solubility profile of piroxicam showed sigmoidal curve, which authenticated the pKa-dependent solubility. Piroxicam cocrystals also exhibited a similar pH-solubility profile. The cocrystals exhibited faster dissolution rate owing to cocrystallization as evident from 30% increase in the extent of dissolution. The orodispersible tablets of piroxicam cocrystals were successfully prepared by direct compression method using crosscarmelose sodium as superdisintegrant with improved disintegration time (30 sec) and dissolution rate. Conclusion: The piroxicam cocrystal with modified properties was prepared with sodium acetate and formulated as orodispersible tablets having faster disintegration and greater dissolution rate.
Lashkarizadeh, Monireh; Yuan, Qiuyan; Oleszkiewicz, Jan A
2015-01-01
The impact of carbon source variation on the physical and chemical characteristics of aerobic granular sludge and its biological nutrient (nitrogen and phosphorus) removal performance was investigated. Two identical sequencing batch reactors, R1 and R2, were set up. Granular biomass was cultivated to maturity using acetate-based synthetic wastewater. After mature granules in both reactors with simultaneous chemical oxygen demand (COD), ammonium and phosphorus removal capability were achieved, the feed of R2 was changed to municipal wastewater and R1 was continued on synthetic feed as control. Biological phosphorus removal was completely inhibited in R2 due to lack of readily biodegradable COD; however, the biomass maintained high ammonium and COD removal efficiencies. The disintegration of the granules in R2 occurred during the first two weeks after the change of feed, but it did not have significant impacts on settling properties of the sludge. Re-granulation of the biomass in R2 was then observed within 30 d after granules' disintegration when the biomass acclimated to the new substrate. The granular biomass in R1 and R2 maintained a Sludge Volume Index close to 60 and 47 mL g(-1), respectively, during the experimental period. It was concluded that changing the carbon source from readily biodegradable acetate to the more complex ones present in municipal wastewater did not have significant impacts on aerobic granular sludge characteristics; it particularly did not affect its settling properties. However, sufficient readily biodegradable carbon would have to be provided to maintain simultaneous biological nitrate and phosphorus removal.
Jagdale, Swati; Chandekar, Apoorva
2016-01-01
Inflammatory bowel disease (IBD) is one of the five most prevalent gastrointestinal disease burdens which commonly require lifetime care. Worldwide incidence rate of ulcerative colitis and Crohn's disease is about 16.8% and 13.4% respectively. Colitis is an inflammation of the colon. Colon targeted drug delivery will direct the drug to the colon. The drug will reach at the site of action and hence its side effects as well as dose can be reduced. Recent patent describes treatment of ulcerative colitis using anti CD3 antibodies, with nicotine and anti-depressant drugs, budesonide foam etc. Present study deals with optimization of site targeted methylprednisolone delivery for treatment of colitis. Chitosan and Eudragit RS 100 were used as coating polymers. Tablets were prepared by press coated technology. The core tablets contain drug, avicel as binder, croscarmellose sodium as super disintegrant and dicalcium phosphate as diluent. Drug excipient compatibility was carried out using FTIR, UV and DSC. Design of experiment was used to optimize the formulation. Tablets were evaluated for thickness, weight variation, hardness, swelling index, in-vitro drug release and release of drug in simulated media. Optimized batch (B2) contained chitosan 40% and eudragit RS 100 17.5%. B2 showed in-vitro drug release 85.65 ± 7.6% in 6.8 pH phosphate buffer and 96.7 ±9.1% in simulated media after 7.5 hours. In-vivo x-ray placebo study for formulation B2 had shown that the tablet reached to the ascending colon after 5 hours. This indicated a potential site targeted delivery of optimized batch B2.
Chronomodulated drug delivery system of urapidil for the treatment of hypertension
Chaudhary, Sona S.; Patel, Hetal K.; Parejiya, Punit B.; Shelat, Pragna K.
2015-01-01
Introduction: Hypertension is a disease which shows circadian rhythm in the pattern of two peaks, one in the evening at about 7pm and other in the early morning between 4 am to 8 am. Conventional therapies are incapable to target those time points when actually the symptoms get worsened. To achieve drug release at two time points, chronomodulated delivery system may offer greater benefits. Materials and methods: The chronomodulated system comprised of dual approach; immediate release granules (IRG) and pulsatile release mini-tablets (PRM) filled in the hard gelatin capsule. The mini-tablets were coated using Eudragit S-100 which provided the lag time. To achieve the desired release, various parameters like coating duration and coat thickness were studied. The immediate release granules were evaluated for micromeritical properties and drug release, while mini-tablets were evaluated for various parameters such as hardness, thickness, friability, weight variation, drug content, and disintegration time and in-vitro drug release. Compatibility of drug-excipient was checked by fourier transform infrared spectroscopy and Differential scanning calorimetry studies and pellets morphology was done by Scanning electron microscopy studies. Results: The in-vitro release profile suggested that immediate release granules gives drug release within 20 min at the time of evening attack while the programmed pulsatile release was achieved from coated mini-tablets after a lag time of 9hrs, which was consistent with the demand of drug during early morning hour attack. Pellets found to be spherical in shape with smooth surface. Moreover compatibility studies illustrated no deleterious reaction between drug and polymers used in the study. Conclusions: The dual approach of developed chronomodulated formulation found to be satisfactory in the treatment of hypertension. PMID:25838996
Enhancement of anaerobic sludge digestion by high-pressure homogenization.
Zhang, Sheng; Zhang, Panyue; Zhang, Guangming; Fan, Jie; Zhang, Yuxuan
2012-08-01
To improve anaerobic sludge digestion efficiency, the effects of high-pressure homogenization (HPH) conditions on the anaerobic sludge digestion were investigated. The VS and TCOD were significantly removed with the anaerobic digestion, and the VS removal and TCOD removal increased with increasing the homogenization pressure and homogenization cycle number; correspondingly, the accumulative biogas production also increased with increasing the homogenization pressure and homogenization cycle number. The optimal homogenization pressure was 50 MPa for one homogenization cycle and 40 MPa for two homogenization cycles. The SCOD of the sludge supernatant significantly increased with increasing the homogenization pressure and homogenization cycle number due to the sludge disintegration. The relationship between the biogas production and the sludge disintegration showed that the accumulative biogas and methane production were mainly enhanced by the sludge disintegration, which accelerated the anaerobic digestion process and improved the methane content in the biogas. Copyright © 2012 Elsevier Ltd. All rights reserved.
Disintegration of an eruptive filament via interactions with quasi-separatrix layers
NASA Astrophysics Data System (ADS)
Liu, Rui; Chen, Jun; Wang, YuMing
2018-06-01
The disintegration of solar filaments via mass drainage is a frequently observed phenomenon during a variety of filament activities. It is generally considered that the draining of dense filament material is directed by both gravity and magnetic field, yet the detailed process remains elusive. Here we report on a partial filament eruption during which filament material drains downward to the surface not only along the filament's legs, but to a remote flare ribbon through a fan-out curtain-like structure. It is found that the magnetic configuration is characterized by two conjoining dome-like quasi-sepratrix layers (QSLs). The filament is located underneath one QSL dome, whose footprint apparently bounds the major flare ribbons resulting from the filament eruption, whereas the remote flare ribbon matches well with the other QSL dome's far-side footprint. We suggest that the interaction of the filament with the overlying QSLs results in the splitting and disintegration of the filament.
Pennings, F H; Kwee, B L S; Vromans, H
2006-01-01
Gelatin exhibits cross-linking upon storage at stress conditions. Capsules stored at these conditions fail to show appropriate in vitro dissolution. The aim of this study is to show the effect of surfactants in the medium on the disintegration of the gelatin capsule. This is demonstrated in the presence and absence of the enzymes pancreatin and pepsin, the function of which is to improve the dissolution. Sodium lauryl sulfate (SLS) and Tween 80 are tested as surfactants. When SLS is used in the medium, dissolution is significantly hampered due to the formation of a less soluble precipitate of gelatin. Compared to SLS, Tween 80 shows far better disintegration and solubility results in dissolution media with neutral or low pH. Therefore, it is concluded in this study that Tween 80 is preferred when a surfactant is necessary to comply with sink condition requirements.
Monitoring aggregate disintegration with laser diffraction: A tool for studying soils as sediments
NASA Astrophysics Data System (ADS)
Mason, Joseph; Kasmerchak, Chase; Liang, Mengyu
2016-04-01
One of the more important characteristics of soil that becomes hillslope, fluvial, or aeolian sediment is the presences of aggregates, which disintegrate at varying rates and to varying degrees during transport. Laser diffraction particle size analyzers allow monitoring of aggregate disintegration as a sample of soil or sediment suspended in water is circulated continuously through the measurement cell (Bieganowski et al., 2010, Clay Minerals 45-23-34; Mason et al., Catena 87:107-118). Mason et al. (2011) applied this approach to aeolian sedimentary aggregates (e.g. clay pellets eroded from dry lakebeds), immersing dry samples in DI water and circulating them through a Malvern Mastersizer 2000 particle size analyzer for three hours while repeated size distribution (SD) measurements were made. A final measurement was made after sonication and treatment with Na-metaphosphate. In that study, most samples approached a steady SD within three hours, which included both primary mineral grains and persistent aggregates. The disintegration process could be modeled with a first-order rate law representing the disintegration of a single population of aggregates. A wide range of model parameters were observed among the samples studied, and it was suggested that they could be useful in predicting the behavior of these aggregates, under rainfall impact and during slopewash or fluvial transport. Addition of Ca++ to the suspension altered aggregate behavior in some but not all cases. We applied the same method to dry, unground material from upper horizons of soils sampled along a bioclimatic gradient in northern Minnesota, USA, all formed in lithologically similar glacigenic sediment. These ranged from Alfisols (Luvisols) formed under forest since the last deglaciation, to Alfisols under forest that more recently replaced grassland, and Mollisols (Chernozems) that formed entirely under grassland vegetation. Few of these soil samples approached a steady SD within three hours, and modeling aggregate disintegration required the assumption of at least two aggregate populations. Upper horizons of soils formed under grassland displayed relatively slow disintegration throughout the procedure, with a large proportion of aggregates remaining after three hours. E horizons from forest soils, with low organic matter (OM) and clay content, displayed rapid early distintegration of a large portion of the aggregates, followed by much slower breakdown of the remainder (i.e. the two populations modeled had very different rate constants). OM content is clearly the overriding control on aggregate behavior, but we are also exploring effects of clay content and mineralogy, cation chemistry, and other factors. The differences in aggregate behavior are likely to be relevant to transport and deposition of sediment eroded from these soils, and possibly to the transport of OM or nutrients with eroded soil. We hope to incorporate this method into ongoing field studies of soil erosion with colleagues at UW-Madison.
Seed weight variation of Wyoming sagebrush in northern Nevada.
Busso, Carlos A; Perryman, Barry L
2005-12-01
Seed size is a crucial plant trait that may potentially affect not only immediate seedling success but also the subsequent generation. We examined variation in seed weight of Wyoming sagebrush (Artemisia tridentata ssp. wyomingensis Beetle and Young), an excellent candidate species for rangeland restoration. The working hypothesis was that a major fraction of spatial and temporal variability in seed size (weight) of Wyoming sagebrush could be explained by variations in mean monthly temperatures and precipitation. Seed collection was conducted at Battle Mountain and Eden Valley sites in northern Nevada, USA, during November of 2002 and 2003. Frequency distributions of seed weight varied from leptokurtic to platykurtic, and from symmetry to skewness to the right for both sites and years. Mean seed weight varied by a factor of 1.4 between locations and years. Mean seed weight was greater (P < 0.05) in 2003 than in 2002 at both sites. This can partially be attributed to 55% greater precipitation in 2003 than 2002, since mean monthly temperatures were similar (P > 0.05) in all study situations. Simple linear regression showed that monthly precipitation (March to November) explained 85% of the total variation in mean seed weight (P = 0.079). Since the relationship between mean monthly temperature (June-November) and mean seed weight was not significant (r2 = 0.00, P = 0.431), this emphasizes the importance of precipitation as an important determinant of mean seed weight. Our results suggest that the precipitation regime to which the mother plant is exposed can have a significant effect on sizes of seeds produced. Hence, seasonal changes in water availability would tend to alter size distributions of produced offspring.
A Weighted Difference of Anisotropic and Isotropic Total Variation Model for Image Processing
2014-09-01
A WEIGHTED DIFFERENCE OF ANISOTROPIC AND ISOTROPIC TOTAL VARIATION MODEL FOR IMAGE PROCESSING YIFEI LOU∗, TIEYONG ZENG† , STANLEY OSHER‡ , AND JACK...grants DMS-0928427 and DMS-1222507. † Department of Mathematics, Hong Kong Baptist University, Kowloon Tong , Hong Kong. Email: zeng@hkbu.edu.hk. TZ is
Variation in the terrestrial isotopic composition and atomic weight of argon
Böhlke, John Karl
2014-01-01
The isotopic composition and atomic weight of argon (Ar) are variable in terrestrial materials. Those variations are a source of uncertainty in the assignment of standard properties for Ar, but they provide useful information in many areas of science. Variations in the stable isotopic composition and atomic weight of Ar are caused by several different processes, including (1) isotope production from other elements by radioactive decay (radiogenic isotopes) or other nuclear transformations (e.g., nucleogenic isotopes), and (2) isotopic fractionation by physical-chemical processes such as diffusion or phase equilibria. Physical-chemical processes cause correlated mass-dependent variations in the Ar isotope-amount ratios (40Ar/36Ar, 38Ar/36Ar), whereas nuclear transformation processes cause non-mass-dependent variations. While atmospheric Ar can serve as an abundant and homogeneous isotopic reference, deviations from the atmospheric isotopic ratios in other Ar occurrences limit the precision with which a standard atomic weight can be given for Ar. Published data indicate variation of Ar atomic weights in normal terrestrial materials between about 39.7931 and 39.9624. The upper bound of this interval is given by the atomic mass of 40Ar, as some samples contain almost pure radiogenic 40Ar. The lower bound is derived from analyses of pitchblende (uranium mineral) containing large amounts of nucleogenic 36Ar and 38Ar. Within this interval, measurements of different isotope ratios (40Ar/36Ar or 38Ar/36Ar) at various levels of precision are widely used for studies in geochronology, water–rock interaction, atmospheric evolution, and other fields.
Combined (alkaline+ultrasonic) pretreatment effect on sewage sludge disintegration.
Kim, Dong-Hoon; Jeong, Emma; Oh, Sae-Eun; Shin, Hang-Sik
2010-05-01
The individual effects of alkaline (pH 8-13) and ultrasonic (3750-45,000kJ/kg TS) pretreatments on the disintegration of sewage sludge were separately tested, and then the effect of combining these two methods at different intensity levels was investigated using response surface methodology (RSM). In the combined pretreatment, ultrasonic treatment was applied to the alkali-pretreated sludge. While the solubilization (SCOD/TCOD) increase was limited to 50% in individual pretreatments, it reached 70% in combined pretreatment, and the results clearly showed that preconditioning of sludge at high pH levels played a crucial role in enhancing the disintegration efficiency of the subsequent ultrasonic pretreatment. By applying regression analysis, the disintegration degree (DD) was fitted based on the actual value to a second order polynomial equation: Y=-172.44+29.82X(1)+5.30x10(-3)X(2)-7.53x10(-5)X(1)X(2)-1.10X(1)(2)-1.043x10(-7)X(2)(2), where X(1), X(2), and Y are pH, specific energy input (kJ/kg TS), and DD, respectively. In a 2D contour plot describing the tendency of DD with respect to pH and specific energy input, it was clear that DD increased as pH increased, but it seemed that DD decreased when the specific energy input exceeded about 20,000kJ/kg TS. This phenomenon tells us that there exists a certain point where additional energy input is ineffective in achieving further disintegration. A synergetic disintegration effect was also found in the combined pretreatment, with lower specific energy input in ultrasonic pretreatment yielding higher synergetic effect. Finally, in order to see the combined pretreatment effect in continuous operation, the sludge pretreated with low intensity alkaline (pH 9)/ultrasonic (7500kJ/kg TS) treatment was fed to a 3 L of anaerobic sequencing batch reactor after 70 days of control operation. CH(4) production yield significantly increased from 81.9+/-4.5mL CH(4)/g COD(added) to 127.3+/-5.0mL CH(4)/g COD(added) by pretreatment, and this enhanced performance was closely related to the solubilization increase of the sludge by pretreatment. However, enhanced anaerobic digestion resulted in 20% higher soluble N concentration in the reactor, which would be an additional burden in the subsequent nitrogen removal system.
Sekigami, Yuka; Kobayashi, Takuya; Omi, Ai; Nishitsuji, Koki; Ikuta, Tetsuro; Fujiyama, Asao; Satoh, Noriyuki; Saiga, Hidetoshi
2017-01-01
Hox gene clusters with at least 13 paralog group (PG) members are common in vertebrate genomes and in that of amphioxus. Ascidians, which belong to the subphylum Tunicata (Urochordata), are phylogenetically positioned between vertebrates and amphioxus, and traditionally divided into two groups: the Pleurogona and the Enterogona. An enterogonan ascidian, Ciona intestinalis ( Ci ), possesses nine Hox genes localized on two chromosomes; thus, the Hox gene cluster is disintegrated. We investigated the Hox gene cluster of a pleurogonan ascidian, Halocynthia roretzi ( Hr ) to investigate whether Hox gene cluster disintegration is common among ascidians, and if so, how such disintegration occurred during ascidian or tunicate evolution. Our phylogenetic analysis reveals that the Hr Hox gene complement comprises nine members, including one with a relatively divergent Hox homeodomain sequence. Eight of nine Hr Hox genes were orthologous to Ci-Hox1 , 2, 3, 4, 5, 10, 12 and 13. Following the phylogenetic classification into 13 PGs, we designated Hr Hox genes as Hox1, 2, 3, 4, 5, 10, 11/12/13.a , 11/12/13.b and HoxX . To address the chromosomal arrangement of the nine Hox genes, we performed two-color chromosomal fluorescent in situ hybridization, which revealed that the nine Hox genes are localized on a single chromosome in Hr , distinct from their arrangement in Ci . We further examined the order of the nine Hox genes on the chromosome by chromosome/scaffold walking. This analysis suggested a gene order of Hox1 , 11/12/13.b, 11/12/13.a, 10, 5, X, followed by either Hox4, 3, 2 or Hox2, 3, 4 on the chromosome. Based on the present results and those previously reported in Ci , we discuss the establishment of the Hox gene complement and disintegration of Hox gene clusters during the course of ascidian or tunicate evolution. The Hox gene cluster and the genome must have experienced extensive reorganization during the course of evolution from the ancestral tunicate to Hr and Ci . Nevertheless, some features are shared in Hox gene components and gene arrangement on the chromosomes, suggesting that Hox gene cluster disintegration in ascidians involved early events common to tunicates as well as later ascidian lineage-specific events.
Lv, Xiao-Mei; Song, Ju-Sheng; Li, Ji; Zhai, Kun
2017-08-01
In the present study, quick-lime-based thermal-alkaline sludge disintegration (SD) under low temperature was combined with cryptic growth to investigate the excess sludge reduction efficiency in the sequencing batch reactor (SBR). The optimized condition of SD was as follows: T = 80℃, pH = 11, t = 180 min, and the SD rate was about 42.1%. With 65.6% of excess sludge disintegrated and returned to the SBR, the system achieved sludge reduction rate of about 40.1%. The lysis-cryptic growth still obtained satisfactory sludge reduction efficiency despite the comparative low SD rate, which suggested that disintegration rate might not be the decisive factor for cryptic-growth-based sludge reduction. Lysis-cryptic growth did not impact the effluent quality, yet the phosphorus removal performance was enhanced, with effluent total phosphorus concentration decreased by 0.3 mg/L (33%). Crystal compounds of calcium phosphate precipitate were detected in the system by Fourier transform infrared spectroscopy and X-ray diffraction, which indicated the phosphorus removal potential of SD using lime. Moreover, endogenous dehydrogenase activity of activated sludge in the lysis-cryptic system was enhanced, which was beneficial for sludge reduction. SD and cryptic growth in the present study demonstrates an economical and effective approach for sludge reduction.
Li, Shanshan; Lin, Xiang; Xu, Kailin; He, Jiawei; Yang, Hongqin; Li, Hui
2017-01-01
This work aimed to investigate the co-grinding effects of β-cyclodextrin (β-CD) and cucurbit[7]uril (CB[7]) on crystalline zaltoprofen (ZPF) in tablet formulation. Crystalline ZPF was prepared through anti-solvent recrystallization and fully analyzed through single-crystal X-ray diffraction. Co-ground dispersions and mono-ground ZPF were prepared using a ball grinding process. Results revealed that mono-ground ZPF slightly affected the solid state, solubility, and dissolution of crystalline ZPF. Co-ground dispersions exhibited completely amorphous states and elicited a significant reinforcing effect on drug solubility. UV-vis spectroscopy, XRPD, FT-IR, DSC, ssNMR, and molecular docking demonstrated the interactions in the amorphous product. Hardness tests on blank tablets with different β-CD and CB[7] contents suggested the addition of β-CD or CB[7] could enhance the compressibility of the powder mixture. Disintegration tests showed that CB[7] could efficiently shorten the disintegrating time. Dissolution tests indicated that β-CD and CB[7] could accelerate the drug dissolution rate via different mechanisms. Specifically, CB[7] could accelerate the dissolution rate by improving disintegration and β-CD showed a distinct advantage in solubility enhancement. Based on the comparative study on β-CD and CB[7] for tablet formulation combined with co-grinding, we found that CB[7] could be considered a promising drug delivery, which acted as a disintegrant. PMID:28368030
Li, Shanshan; Lin, Xiang; Xu, Kailin; He, Jiawei; Yang, Hongqin; Li, Hui
2017-04-03
This work aimed to investigate the co-grinding effects of β-cyclodextrin (β-CD) and cucurbit[7]uril (CB[7]) on crystalline zaltoprofen (ZPF) in tablet formulation. Crystalline ZPF was prepared through anti-solvent recrystallization and fully analyzed through single-crystal X-ray diffraction. Co-ground dispersions and mono-ground ZPF were prepared using a ball grinding process. Results revealed that mono-ground ZPF slightly affected the solid state, solubility, and dissolution of crystalline ZPF. Co-ground dispersions exhibited completely amorphous states and elicited a significant reinforcing effect on drug solubility. UV-vis spectroscopy, XRPD, FT-IR, DSC, ssNMR, and molecular docking demonstrated the interactions in the amorphous product. Hardness tests on blank tablets with different β-CD and CB[7] contents suggested the addition of β-CD or CB[7] could enhance the compressibility of the powder mixture. Disintegration tests showed that CB[7] could efficiently shorten the disintegrating time. Dissolution tests indicated that β-CD and CB[7] could accelerate the drug dissolution rate via different mechanisms. Specifically, CB[7] could accelerate the dissolution rate by improving disintegration and β-CD showed a distinct advantage in solubility enhancement. Based on the comparative study on β-CD and CB[7] for tablet formulation combined with co-grinding, we found that CB[7] could be considered a promising drug delivery, which acted as a disintegrant.
Mishra, Saurabh M; Rohera, Bhagwan D
2017-11-01
The objective of the present study was to design and develop a formulation for orally disintegrating tablets (ODTs) of carbamazepine using quality by design principles. The target product profile (TPP) and quality target product profile (QTPP) of ODTs were identified. Risk assessment was carried out by leveraging prior knowledge and experience to define the criticality of factors based on their impact by Ishikawa fishbone diagram and preliminary hazard analysis tool. Box-Behnken response surface methodology was used to study the effect of critical factors on various attributes of ODTs. The independent factors selected were compression pressure (X 1 ), concentration of sublimating agent (volatile material) (X 2 ), disintegrant concentration (X 3 ) and the responses were tablet crushing strength, tablet porosity, disintegration time, water absorption time, tablet friability and drug dissolution. ANOVA and lack of fit test illustrated that selected independent variables had significant effect on the response variables, and excellent correlation was observed between actual and predicted values. Optimization by desirability function indicated that compression pressure, X 1 (1534 lbs), ammonium bicarbonate concentration, X 2 (7.68%) and Kollidon ® CL-SF concentration, X 3 (6%) were optimum to prepare ODT formulation of carbamazepine of desired attributes complying with QTPP. Thus, in the present study, a high level of assurance was established for ODT product quality and performance.
NASA Astrophysics Data System (ADS)
Li, Shanshan; Lin, Xiang; Xu, Kailin; He, Jiawei; Yang, Hongqin; Li, Hui
2017-04-01
This work aimed to investigate the co-grinding effects of β-cyclodextrin (β-CD) and cucurbit[7]uril (CB[7]) on crystalline zaltoprofen (ZPF) in tablet formulation. Crystalline ZPF was prepared through anti-solvent recrystallization and fully analyzed through single-crystal X-ray diffraction. Co-ground dispersions and mono-ground ZPF were prepared using a ball grinding process. Results revealed that mono-ground ZPF slightly affected the solid state, solubility, and dissolution of crystalline ZPF. Co-ground dispersions exhibited completely amorphous states and elicited a significant reinforcing effect on drug solubility. UV-vis spectroscopy, XRPD, FT-IR, DSC, ssNMR, and molecular docking demonstrated the interactions in the amorphous product. Hardness tests on blank tablets with different β-CD and CB[7] contents suggested the addition of β-CD or CB[7] could enhance the compressibility of the powder mixture. Disintegration tests showed that CB[7] could efficiently shorten the disintegrating time. Dissolution tests indicated that β-CD and CB[7] could accelerate the drug dissolution rate via different mechanisms. Specifically, CB[7] could accelerate the dissolution rate by improving disintegration and β-CD showed a distinct advantage in solubility enhancement. Based on the comparative study on β-CD and CB[7] for tablet formulation combined with co-grinding, we found that CB[7] could be considered a promising drug delivery, which acted as a disintegrant.
Machnicka, Alicja; Grübel, Klaudiusz
2016-12-01
One of the problems in wastewater treatment technologies is the formation of foam/scum. It is thought that filamentous microorganisms are responsible for foam formation and foam elimination/destruction can be carried out by various methods, among which disintegration is included. Hybrid disintegration (chemical decomposition and hydrodynamic cavitation) of foam microorganisms results in the transfer of phosphates, ammonium nitrogen, magnesium and potassium from the foam solids into the liquid phase. Application of both methods as a hybrid pretreatment process caused an increase in the concentration of phosphates of about 650 mg [Formula: see text] L(-1) and ammonium nitrogen of about 30 mg [Formula: see text] L(-1). The concentration of Mg(2+) and K(+) in the solution increased from 6.8 and 26.1 mg Mg(2+) L(-1) to 32.2 and 82.2 mg K(+) L(-1), respectively. The presence of nutrients and metal cations in the solid phase of foam was acknowledged by EDX Quantification. The confirmation of physico-chemical changes and release of cellular matter as a result of cellular lysis (hybrid disintegration) was done by infrared analysis. It was demonstrated that the disintegration of foam permits the removal of a part of nutrients in the form of struvite.
Akseli, Ilgaz; Xie, Jingjin; Schultz, Leon; Ladyzhynsky, Nadia; Bramante, Tommasina; He, Xiaorong; Deanne, Rich; Horspool, Keith R; Schwabe, Robert
2017-01-01
Enabling the paradigm of quality by design requires the ability to quantitatively correlate material properties and process variables to measureable product performance attributes. Conventional, quality-by-test methods for determining tablet breaking force and disintegration time usually involve destructive tests, which consume significant amount of time and labor and provide limited information. Recent advances in material characterization, statistical analysis, and machine learning have provided multiple tools that have the potential to develop nondestructive, fast, and accurate approaches in drug product development. In this work, a methodology to predict the breaking force and disintegration time of tablet formulations using nondestructive ultrasonics and machine learning tools was developed. The input variables to the model include intrinsic properties of formulation and extrinsic process variables influencing the tablet during manufacturing. The model has been applied to predict breaking force and disintegration time using small quantities of active pharmaceutical ingredient and prototype formulation designs. The novel approach presented is a step forward toward rational design of a robust drug product based on insight into the performance of common materials during formulation and process development. It may also help expedite drug product development timeline and reduce active pharmaceutical ingredient usage while improving efficiency of the overall process. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Hayashi, Yoshihiro; Oshima, Etsuko; Maeda, Jin; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo
2012-01-01
A multivariate statistical technique was applied to the design of an orally disintegrating tablet and to clarify the causal correlation among variables of the manufacturing process and pharmaceutical responses. Orally disintegrating tablets (ODTs) composed mainly of mannitol were prepared via the wet-granulation method using crystal transition from the δ to the β form of mannitol. Process parameters (water amounts (X(1)), kneading time (X(2)), compression force (X(3)), and amounts of magnesium stearate (X(4))) were optimized using a nonlinear response surface method (RSM) incorporating a thin plate spline interpolation (RSM-S). The results of a verification study revealed that the experimental responses, such as tensile strength and disintegration time, coincided well with the predictions. A latent structure analysis of the pharmaceutical formulations of the tablet performed using a Bayesian network led to the clear visualization of a causal connection among variables of the manufacturing process and tablet characteristics. The quantity of β-mannitol in the granules (Q(β)) was affected by X(2) and influenced all granule properties. The specific surface area of the granules was affected by X(1) and Q(β) and had an effect on all tablet characteristics. Moreover, the causal relationships among the variables were clarified by inferring conditional probability distributions. These techniques provide a better understanding of the complicated latent structure among variables of the manufacturing process and tablet characteristics.
Xu, Li-Li; Shi, Li-Li; Cao, Qing-Ri; Xu, Wei-Juan; Cao, Yue; Zhu, Xiao-Yin; Cui, Jing-Hao
2014-10-01
This work was aimed to develop novel sildenafil citrate (SC)-loaded polyvinyl alcohol (PVA)-polyethylene glycol (PEG) graft copolymer (Kollicoat(®) IR)-based orally dissolving films (ODFs) using a solvent casting method. Formulation factors such as plasticizers and disintegrants were optimized on the basis of characteristics of blank ODFs. The SC-loaded ODF with a loading capacity up to 6.25mg in an area of 6 cm(2) was prepared and evaluated in terms of mechanical properties, disintegration time and dissolution rate. The physicochemical properties of drug-loaded ODF were also investigated using the scanning electron microscope (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR). The blank ODF composed of Kollicoat(®) IR, sodium alginate (ALG-Na) and glycerol (10:2:1.5, w/w) had a remarkably short disintegration time of about 20s. The SC-loaded ODF showed a delayed disintegration time (about 25s), but exhibited improved mechanical properties when compared to the blank ODF. SC was homogeneously dispersed throughout the ODF and the crystalline form of drug had been partly changed, existing strong hydrogen bonding between the drug and carriers. The Kollicoat(®) IR/ALG-Na based ODFs containing SC might be an alternative to conventional tablet for the treatment of male erectile dysfunction. Copyright © 2014 Elsevier B.V. All rights reserved.
Genome-wide interactions with dairy intake for body mass index in adults of European descent
USDA-ARS?s Scientific Manuscript database
Body weight responds variably to the intake of dairy foods. Genetic variation may contribute to inter-individual variability in associations between body weight and dairy consumption. We conducted a genome-wide interaction study to discover genetic variants that account for variation in BMI in the c...