On the Stable Limit Cycle of a Weight-Driven Pendulum Clock
ERIC Educational Resources Information Center
Llibre, J; Teixeira, M. A.
2010-01-01
In a recent paper (Denny 2002 Eur. J. Phys. 23 449-58), entitled "The pendulum clock: a venerable dynamical system", Denny showed that in a first approximation the steady-state motion of a weight-driven pendulum clock is shown to be a stable limit cycle. He placed the problem in a historical context and obtained an approximate solution using the…
Verge and Foliot Clock Escapement: A Simple Dynamical System
NASA Astrophysics Data System (ADS)
Denny, Mark
2010-09-01
The earliest mechanical clocks appeared in Europe in the 13th century. From about 1250 CE to 1670 CE, these simple clocks consisted of a weight suspended from a rope or chain that was wrapped around a horizontal axle. To tell time, the weight must fall with a slow uniform speed, but, under the action of gravity alone, such a suspended weight would accelerate. To prevent this acceleration, an escapement mechanism was required. The best such escapement mechanism was called the verge and foliot escapement, and it was so successful that it lasted until about 1800 CE. These simple weight-driven clocks with verge and foliot escapements were accurate enough to mark the hours but not minutes or seconds. From 1670, significant improvements were made (principally by introducing pendulums and the newly invented anchor escapement) that justified the introduction of hands to mark minutes, and then seconds. By the end of the era of mechanical clocks, in the first half of the 20th century, these much-studied and much-refined machines were accurate to a millisecond a day.
The sympathy of two pendulum clocks: beyond Huygens' observations.
Peña Ramirez, Jonatan; Olvera, Luis Alberto; Nijmeijer, Henk; Alvarez, Joaquin
2016-03-29
This paper introduces a modern version of the classical Huygens' experiment on synchronization of pendulum clocks. The version presented here consists of two monumental pendulum clocks--ad hoc designed and fabricated--which are coupled through a wooden structure. It is demonstrated that the coupled clocks exhibit 'sympathetic' motion, i.e. the pendula of the clocks oscillate in consonance and in the same direction. Interestingly, when the clocks are synchronized, the common oscillation frequency decreases, i.e. the clocks become slow and inaccurate. In order to rigorously explain these findings, a mathematical model for the coupled clocks is obtained by using well-established physical and mechanical laws and likewise, a theoretical analysis is conducted. Ultimately, the sympathy of two monumental pendulum clocks, interacting via a flexible coupling structure, is experimentally, numerically, and analytically demonstrated.
The sympathy of two pendulum clocks: beyond Huygens’ observations
Peña Ramirez, Jonatan; Olvera, Luis Alberto; Nijmeijer, Henk; Alvarez, Joaquin
2016-01-01
This paper introduces a modern version of the classical Huygens’ experiment on synchronization of pendulum clocks. The version presented here consists of two monumental pendulum clocks—ad hoc designed and fabricated—which are coupled through a wooden structure. It is demonstrated that the coupled clocks exhibit ‘sympathetic’ motion, i.e. the pendula of the clocks oscillate in consonance and in the same direction. Interestingly, when the clocks are synchronized, the common oscillation frequency decreases, i.e. the clocks become slow and inaccurate. In order to rigorously explain these findings, a mathematical model for the coupled clocks is obtained by using well-established physical and mechanical laws and likewise, a theoretical analysis is conducted. Ultimately, the sympathy of two monumental pendulum clocks, interacting via a flexible coupling structure, is experimentally, numerically, and analytically demonstrated. PMID:27020903
Measure synchronization in a Huygens's non-dissipative two-pendulum clocks system
NASA Astrophysics Data System (ADS)
Tian, Jing; Chen, ZiChen; Qiu, HaiBo; Xi, XiaoQiang
2018-01-01
In this paper, we characterize measure synchronization (MS) in a four-degrees-of-freedom Huygens's two-pendulum clocks system. The two-pendulum clocks are connected by a massless spring with stiffness constant k. We find that with the stiffness constant k increasing, the coupled pendulums system achieves MS above a threshold value of k c . The energy characteristics of measure synchronization have been discussed, it is found that averaged energy of each pendulum system provide us an easy way to characterize MS transition. Furthermore, we discuss the dependence of the critical value for MS transition on initial conditions and the characteristic parameters of the system.
ERIC Educational Resources Information Center
Scherer, Marge
2015-01-01
After watching a shirt being wafted into the air as it dries over a hearth, the tinkerer Joseph Montgolfier decides to try lighting a fire under a balloon--and creates the first flying machine. After observing an art object swinging from a cathedral's ceiling, Galileo mulls over the mechanisms of a pendulum-driven clock--and produces one 50…
25. LOBBY FIREPLACE. NOTE THE GEYSER DECORATING THE FIREPLACE SCREEN ...
25. LOBBY FIREPLACE. NOTE THE GEYSER DECORATING THE FIREPLACE SCREEN AND THE WEIGHTS AND PENDULUM HANGING FROM THE CLOCK DESIGNED BY ARCHITECT ROBERT C. REAMER. - Old Faithful Inn, 900' northeast of Snowlodge & 1050' west of Old Faithful Lodge, Lake, Teton County, WY
Einstein versus the Simple Pendulum Formula: Does Gravity Slow All Clocks?
ERIC Educational Resources Information Center
Puri, Avinash
2015-01-01
According to the Newtonian formula for a simple pendulum, the period of a pendulum is inversely proportional to the square root of "g", the gravitational field strength. Einstein's theory of general relativity leads to the result that time slows down where gravity is intense. The two claims look contradictory and can muddle student and…
Chip Scale Ultra-Stable Clocks: Miniaturized Phonon Trap Timing Units for PNT of CubeSats
NASA Technical Reports Server (NTRS)
Rais-Zadeh, Mina; Altunc, Serhat; Hunter, Roger C.; Petro, Andrew
2016-01-01
The Chip Scale Ultra-Stable Clocks (CSUSC) project aims to provide a superior alternative to current solutions for low size, weight, and power timing devices. Currently available quartz-based clocks have problems adjusting to the high temperature and extreme acceleration found in space applications, especially when scaled down to match small spacecraft size, weight, and power requirements. The CSUSC project aims to utilize dual-mode resonators on an ovenized platform to achieve the exceptional temperature stability required for these systems. The dual-mode architecture utilizes a temperature sensitive and temperature stable mode simultaneously driven on the same device volume to eliminate ovenization error while maintaining extremely high performance. Using this technology it is possible to achieve parts-per-billion (ppb) levels of temperature stability with multiple orders of magnitude smaller size, weight, and power.
On the efficiency of the golf swing
NASA Astrophysics Data System (ADS)
White, Rod
2006-12-01
A non-driven double pendulum model is used to explain the principle underlying the surprising efficiency of the golf swing. The principle can be described as a parametric energy transfer between the arms and the club head due to the changing moment of inertia of the club. The transfer is a consequence of conservation of energy and angular momentum. Because the pendulum is not driven by an external force, it shows that the golfer need do little more than accelerate the arms with the wrists cocked and let the double pendulum transfer kinetic energy to the club head. A driven double pendulum model is used to study factors affecting the efficiency of a real golf swing. It is concluded that the wrist-cock angle is the most significant efficiency-determining parameter under the golfer's control and that improvements in golf technology have had a significant impact on driving distance.
Analysis of the Pendular and Pitch Motions of a Driven Three-Dimensional Pendulum
ERIC Educational Resources Information Center
Findley, T.; Yoshida, S.; Norwood, D. P.
2007-01-01
A three-dimensional pendulum, modelled after the Laser Interferometer Gravitational-Wave Observatory's suspended optics, was constructed to investigate the pendulum's dynamics due to suspension point motion. In particular, we were interested in studying the pendular-pitch energy coupling. Determination of the pendular's Q value (the quality factor…
Professional Development and National Science Week.
ERIC Educational Resources Information Center
Jones, Alison
1999-01-01
Summarizes the events that took place at the Primary Science Seminar held by the Science Teachers' Association of Western Australia (STAWA). Features instructions for seven time-related activities taught at the seminar including Sundials, Water Clock, Sand Timer, Pendulum, Tornado Timer, Marble Timer, and A Matter of Timing. (WRM)
Rates of Charged Clocks in an Electric Field.
NASA Astrophysics Data System (ADS)
Ozer, Murat
2008-04-01
The gravitational arguments leading to time dilation, redshift, and spacetime curvature are adapted to electric fields. The energy levels of two identical positively charged atoms at different potentials in a static electric field are shown to undergo blueshift. Secondly, the period of a charged simple pendulum (clock) in the electric field of a metallic sphere is shown to vary with the electric potential. The spacetime diagram for the world lines of two photons emitted and absorbed by two pendulums at different potentials at different times and the world lines of the pendulums, as in Schild's argument, is shown to be not a parallelogram in Minkowski spacetime, concluding that spacetime must be curved. A Pound-Rebka-Snider experiment in an electric field is proposed to confirm that photons undergo a frequency shift in an electric field and hence the spacetime manifold is curved. Next, Torretti's gravitational argument that spacetime around a mass distribution concentrated at a point is curved is extended to electric charge distributions to conclude that the nonuniform electric fields of such charge distributions too curve spacetime. Finally, the local equivalence of a uniform electric field times the charge to mass ratio to a uniform acceleration is shown through spacetime transformations and the electrical redshift is obtained in a uniformly accelerated frame by using this principle. These arguments lead to the conclusion that special relativistic electromagnetism is an approximation to a general relativistic multi-metric theory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... accomplished by using a 4,410-lb (2,000-kg) weight acting as a pendulum. The impact face of the weight shall be... of the pendulum will swing, or alternatively, two sets of symmetrically located cables may be used at... from the rear, followed by a load to the side on the same enclosure structure. The pendulum swinging...
Code of Federal Regulations, 2010 CFR
2010-07-01
... accomplished by using a 4,410-lb (2,000-kg) weight acting as a pendulum. The impact face of the weight shall be... of the pendulum will swing, or alternatively, two sets of symmetrically located cables may be used at... from the rear, followed by a load to the side on the same enclosure structure. The pendulum swinging...
Code of Federal Regulations, 2014 CFR
2014-07-01
...,000-kg) weight acting as a pendulum. The impact face of the weight shall be 27 ±1 in. by 27 ±1 in... restraining cables shall be located in the plane in which the center of gravity of the pendulum will swing, or... side on the same enclosure structure. The pendulum swinging from the height determined by paragraph (d...
Code of Federal Regulations, 2012 CFR
2012-07-01
... accomplished by using a 4,410-lb (2,000-kg) weight acting as a pendulum. The impact face of the weight shall be... of the pendulum will swing, or alternatively, two sets of symmetrically located cables may be used at... from the rear, followed by a load to the side on the same enclosure structure. The pendulum swinging...
Code of Federal Regulations, 2011 CFR
2011-07-01
... accomplished by using a 4,410-lb (2,000-kg) weight acting as a pendulum. The impact face of the weight shall be... of the pendulum will swing, or alternatively, two sets of symmetrically located cables may be used at... from the rear, followed by a load to the side on the same enclosure structure. The pendulum swinging...
Farooqui, Javed Hussain; Koul, Archana; Dutta, Ranjan; Shroff, Noshir Minoo
2016-01-01
To compare the accuracy of two different methods of preoperative marking for toric intraocular lens (IOL) implantation, bubble marker versus pendulum marker, as a means of establishing the reference point for the final alignment of the toric IOL to achieve an outcome as close as possible to emmetropia. Toric IOLs were implanted in 180 eyes of 110 patients. One group (55 patients) had preoperative marking of both eyes done with bubble marker (ASICO AE-2791TBL) and the other group (55 patients) with pendulum marker (Rumex(®)3-193). Reference marks were placed at 3-, 6-, and 9-o'clock positions on the limbus. Slit-lamp photographs were analyzed using Adobe Photoshop (version 7.0). Amount of alignment error (in degrees) induced in each group was measured. Mean absolute rotation error in the preoperative marking in the horizontal axis was 2.42±1.71 in the bubble marker group and 2.83±2.31in the pendulum marker group (P=0.501). Sixty percent of the pendulum group and 70% of the bubble group had rotation error ≤3 (P=0.589), and 90% eyes of the pendulum group and 96.7% of the bubble group had rotation error ≤5 (P=0.612). Both preoperative marking techniques result in approximately 3 of alignment error. Both marking techniques are simple, predictable, reproducible and easy to perform.
Interpreting lateral dynamic weight shifts using a simple inverted pendulum model.
Kennedy, Michael W; Bretl, Timothy; Schmiedeler, James P
2014-01-01
Seventy-five young, healthy adults completed a lateral weight-shifting activity in which each shifted his/her center of pressure (CoP) to visually displayed target locations with the aid of visual CoP feedback. Each subject's CoP data were modeled using a single-link inverted pendulum system with a spring-damper at the joint. This extends the simple inverted pendulum model of static balance in the sagittal plane to lateral weight-shifting balance. The model controlled pendulum angle using PD control and a ramp setpoint trajectory, and weight-shifting was characterized by both shift speed and a non-minimum phase (NMP) behavior metric. This NMP behavior metric examines the force magnitude at shift initiation and provides weight-shifting balance performance information that parallels the examination of peak ground reaction forces in gait analysis. Control parameters were optimized on a subject-by-subject basis to match balance metrics for modeled results to metric values calculated from experimental data. Overall, the model matches experimental data well (average percent error of 0.35% for shifting speed and 0.05% for NMP behavior). These results suggest that the single-link inverted pendulum model can be used effectively to capture lateral weight-shifting balance, as it has been shown to model static balance. Copyright © 2014 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2014 CFR
2014-07-01
... a 4,410-lb (2,000-kg) weight acting as a pendulum. The impact face of the weight shall be 27 ±1 in... restraining cables shall be located in the plane in which the center of gravity of the pendulum will swing, or... pendulum swinging from the height determined by paragraph (d)(3)(ii) of this section shall be used to...
Code of Federal Regulations, 2012 CFR
2012-07-01
... produced by using a 4,410-lb (2,000-kg) weight acting as a pendulum. The impact face of the weight shall be... the center of gravity of the pendulum will swing, or more than one restraining cable shall give a... to the side on the same frame. The pendulum dropped from the height (see the definition of “H” in...
Code of Federal Regulations, 2011 CFR
2011-07-01
... produced by using a 4,410-lb (2,000-kg) weight acting as a pendulum. The impact face of the weight shall be... the center of gravity of the pendulum will swing, or more than one restraining cable shall give a... to the side on the same frame. The pendulum dropped from the height (see the definition of “H” in...
Code of Federal Regulations, 2010 CFR
2010-07-01
... produced by using a 4,410-lb (2,000-kg) weight acting as a pendulum. The impact face of the weight shall be... the center of gravity of the pendulum will swing, or more than one restraining cable shall give a... to the side on the same frame. The pendulum dropped from the height (see the definition of “H” in...
Code of Federal Regulations, 2013 CFR
2013-07-01
... produced by using a 4,410-lb (2,000-kg) weight acting as a pendulum. The impact face of the weight shall be... the center of gravity of the pendulum will swing, or more than one restraining cable shall give a... to the side on the same frame. The pendulum dropped from the height (see the definition of “H” in...
Code of Federal Regulations, 2014 CFR
2014-07-01
... produced by using a 4,410-lb (2,000-kg) weight acting as a pendulum. The impact face of the weight shall be... the center of gravity of the pendulum will swing, or more than one restraining cable shall give a... to the side on the same frame. The pendulum dropped from the height (see the definition of “H” in...
Motion on Cycloid Paths: A Project
ERIC Educational Resources Information Center
Gluck, P.
2010-01-01
This article reports a high school laboratory project whose theme is the motion of a small ball on cycloidal tracks. Models were built both of a brachistochrone and of a Huygens pendulum clock whose bob is constrained to move on a cycloidal path. Photogates and a data acquisition system were employed in order to investigate experimentally the…
NASA Astrophysics Data System (ADS)
Jones, Philip H.; Smart, Thomas J.; Richards, Christopher J.; Cubero, David
2016-09-01
The Kapitza pendulum is the paradigm for the phenomenon of dynamical stabilization, whereby an otherwise unstable system achieves a stability that is induced by fast modulation of a control parameter. In the classic, macroscopic Kapitza pendulum, a rigid pendulum is stabilized in the upright, inverted pendulum using a particle confined in a ring-shaped optical trap, subject to a drag force via fluid flow and driven via oscillating the potential in a direction parallel to the fluid flow. In the regime of vanishing Reynold's number with high-frequency driving the inverted pendulum is no longer stable, but new equilibrium positions appear that depend on the amplitude of driving. As the driving frequency is decreased a yet different behavior emerges where stability of the pendulum depends also on the details of the pendulum hydrodynamics. We present a theory for the observed induced stability of the overdamped pendulum based on the separation of timescales in the pendulum motion as formulated by Kapitza, but with the addition of a viscous drag. Excellent agreement is found between the predicted behavior from the analytical theory and the experimental results across the range of pendulum driving frequencies. We complement these results with Brownian motion simulations, and we characterize the stabilized pendulum by both time- and frequency-domain analyses of the pendulum Brownian motion.
NASA Technical Reports Server (NTRS)
Hayashi, Isao; Nomura, Hiroyoshi; Wakami, Noboru
1991-01-01
Whereas conventional fuzzy reasonings are associated with tuning problems, which are lack of membership functions and inference rule designs, a neural network driven fuzzy reasoning (NDF) capable of determining membership functions by neural network is formulated. In the antecedent parts of the neural network driven fuzzy reasoning, the optimum membership function is determined by a neural network, while in the consequent parts, an amount of control for each rule is determined by other plural neural networks. By introducing an algorithm of neural network driven fuzzy reasoning, inference rules for making a pendulum stand up from its lowest suspended point are determined for verifying the usefulness of the algorithm.
Farooqui, Javed Hussain; Koul, Archana; Dutta, Ranjan; Shroff, Noshir Minoo
2016-01-01
AIM To compare the accuracy of two different methods of preoperative marking for toric intraocular lens (IOL) implantation, bubble marker versus pendulum marker, as a means of establishing the reference point for the final alignment of the toric IOL to achieve an outcome as close as possible to emmetropia. METHODS Toric IOLs were implanted in 180 eyes of 110 patients. One group (55 patients) had preoperative marking of both eyes done with bubble marker (ASICO AE-2791TBL) and the other group (55 patients) with pendulum marker (Rumex®3-193). Reference marks were placed at 3-, 6-, and 9-o'clock positions on the limbus. Slit-lamp photographs were analyzed using Adobe Photoshop (version 7.0). Amount of alignment error (in degrees) induced in each group was measured. RESULTS Mean absolute rotation error in the preoperative marking in the horizontal axis was 2.42±1.71 in the bubble marker group and 2.83±2.31in the pendulum marker group (P=0.501). Sixty percent of the pendulum group and 70% of the bubble group had rotation error ≤3 (P=0.589), and 90% eyes of the pendulum group and 96.7% of the bubble group had rotation error ≤5 (P=0.612). CONCLUSION Both preoperative marking techniques result in approximately 3 of alignment error. Both marking techniques are simple, predictable, reproducible and easy to perform. PMID:27275425
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Clockmaker, born in Foulby, West Yorkshire, England. In 1713 the British Government offered a valuable prize for the invention of a method to determine longitude accurately. Harrison developed a series of clocks through wooden models, and in 1726 invented the bimetallic pendulum that compensated for thermal expansion due to the variations of climate expected on long sea voyages, as well as seve...
Charge management for gravitational-wave observatories using UV LEDs
NASA Astrophysics Data System (ADS)
Pollack, S. E.; Turner, M. D.; Schlamminger, S.; Hagedorn, C. A.; Gundlach, J. H.
2010-01-01
Accumulation of electrical charge on the end mirrors of gravitational-wave observatories can become a source of noise limiting the sensitivity of such detectors through electronic couplings to nearby surfaces. Torsion balances provide an ideal means for testing gravitational-wave technologies due to their high sensitivity to small forces. Our torsion pendulum apparatus consists of a movable plate brought near a plate pendulum suspended from a nonconducting quartz fiber. A UV LED located near the pendulum photoejects electrons from the surface, and a UV LED driven electron gun directs photoelectrons towards the pendulum surface. We have demonstrated both charging and discharging of the pendulum with equivalent charging rates of ˜105e/s, as well as spectral measurements of the pendulum charge resulting in a white noise level equivalent to 3×105e/Hz.
Extraordinary Oscillations of an Ordinary Forced Pendulum
ERIC Educational Resources Information Center
Butikov, Eugene I.
2008-01-01
Several well-known and newly discovered counterintuitive regular and chaotic modes of the sinusoidally driven rigid planar pendulum are discussed and illustrated by computer simulations. The software supporting the investigation offers many interesting predefined examples that demonstrate various peculiarities of this famous physical model.…
Akkaya, Nuray; Akkaya, Semih; Gungor, Harun R; Yaşar, Gokce; Atalay, Nilgun Simsir; Sahin, Fusun
2017-01-01
Although functional results of combined rehabilitation programs are reported, there have been no reports studying the effects of solo pendulum exercises on ultrasonographic measurements of acromiohumeral distance (AHD). To investigate the effects of weighted and un-weighted pendulum exercises on ultrasonographic AHD and clinical symptoms in patients with subacromial impingement syndrome. Patients with subacromial impingement syndrome were randomized to performing weighted (1.5 kilograms hand held dumbbell, N= 18) or un-weighted (free of weight, N= 16) pendulum exercises for 4 weeks, 3 sessions/day. Exercises were repeated for each direction of shoulder motion in each session (ten minutes). Clinical situation was evaluated by Constant score and Shoulder Pain Disability Index (SPADI). Ultrasonographic measurements of AHD at 0°, 30° and 60° shoulder abduction were performed. All clinical and ultrasonographic evaluations were performed at the beginning of the exercise program and at end of 4 weeks of exercise program. Thirty-four patients (23 females, 11 males; mean age 41.7 ± 8.9 years) were evaluated. Significant clinical improvements were detected in both exercise groups between pre and post-treatment evaluations (p < 0.05). There was no significant difference for pre and post-treatment AHD measurements at 0°, 30°, and 60° shoulder abduction between groups (p > 0.05). There was no significant difference for pre and post-treatment narrowing of AHD (narrowing of 0°-30°, and 0°-60°) between groups (p > 0.05). While significant clinical improvements were achieved with both weighted and un-weighted solo pendulum exercises, no significant difference was detected for ultrasonographic AHD measurements between exercise groups.
A swing driven by liquid crystals
NASA Astrophysics Data System (ADS)
Cheng, Cheng
Angular momentum in liquid crystals exists as flow, director reorientation, etc. However, it is hard to observe and measure angular momentum in liquid crystals by a direct mechanical approach. Torsion pendulum is a general tool to measure angular momentum by torque balance. Our torsion pendulum can harvest the angular momentum in liquid crystals to make it observable. The oscillation of the pendulum keeps increasing by constructively adding a small angular momentum of liquid crystals each period at the resonant frequency of the pendulum. Its similar to a swing driven by a force at its resonant frequency. For the torsion pendulum, a cage made of two aluminum discs, in which a liquid crystal cell is placed, is suspended between two thin tungsten wires. A gold mirror, which is a part of the optical lever system, is attached on one tungsten wire. As first demonstration, we fabricate a circular hybrid liquid crystal cell, which can induce concentric backflows to generate angular momentum. The alignment on the planar substrate is concentric and tangential. Due to the coupling between director rotation and flow, the induced backflow goes around the cell when we add electrical pulses between top and bottom substrates. The oscillation is observed by a position sensitive detector and analyzed on the basis of Eriksen-Leslie theory. With vacuum condition and synchronous driving system, the oscillation signal is improved. We demonstrate that this torsion pendulum can sensitively detect the angular momentum in liquid crystals.
Radial forcing and Edgar Allan Poe's lengthening pendulum
NASA Astrophysics Data System (ADS)
McMillan, Matthew; Blasing, David; Whitney, Heather M.
2013-09-01
Inspired by Edgar Allan Poe's The Pit and the Pendulum, we investigate a radially driven, lengthening pendulum. We first show that increasing the length of an undriven pendulum at a uniform rate does not amplify the oscillations in a manner consistent with the behavior of the scythe in Poe's story. We discuss parametric amplification and the transfer of energy (through the parameter of the pendulum's length) to the oscillating part of the system. In this manner, radial driving can easily and intuitively be understood, and the fundamental concept applied in many other areas. We propose and show by a numerical model that appropriately timed radial forcing can increase the oscillation amplitude in a manner consistent with Poe's story. Our analysis contributes a computational exploration of the complex harmonic motion that can result from radially driving a pendulum and sheds light on a mechanism by which oscillations can be amplified parametrically. These insights should prove especially valuable in the undergraduate physics classroom, where investigations into pendulums and oscillations are commonplace.
Magnetically driven oscillator and resonance: a teaching tool
NASA Astrophysics Data System (ADS)
Erol, M.; Çolak, İ. Ö.
2018-05-01
This paper reports a simple magnetically driven oscillator, designed and resolved in order to achieve a better student understanding and to overcome certain instructional difficulties. The apparatus is mainly comprised of an ordinary spring pendulum with a neodymium magnet attached to the bottom, a coil placed in the same vertical direction, an ordinary function generator, an oscilloscope and a smartphone. Driven oscillation and resonance is basically managed by applying a sinusoidal voltage to the coil and tuning the driving frequency to the natural frequency of the pendulum. The resultant oscillation is recorded by a smartphone video application and analyzed via a video analysis programme. The designed apparatus can easily be employed in basic physics laboratories to achieve an enhanced and deeper understanding of driven oscillation and resonance.
Charge management for gravitational-wave observatories using UV LEDs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollack, S. E.; Turner, M. D.; Schlamminger, S.
Accumulation of electrical charge on the end mirrors of gravitational-wave observatories can become a source of noise limiting the sensitivity of such detectors through electronic couplings to nearby surfaces. Torsion balances provide an ideal means for testing gravitational-wave technologies due to their high sensitivity to small forces. Our torsion pendulum apparatus consists of a movable plate brought near a plate pendulum suspended from a nonconducting quartz fiber. A UV LED located near the pendulum photoejects electrons from the surface, and a UV LED driven electron gun directs photoelectrons towards the pendulum surface. We have demonstrated both charging and discharging ofmore » the pendulum with equivalent charging rates of {approx}10{sup 5}e/s, as well as spectral measurements of the pendulum charge resulting in a white noise level equivalent to 3x10{sup 5}e/{radical}(Hz).« less
Cost and Precision of Brownian Clocks
NASA Astrophysics Data System (ADS)
Barato, Andre C.; Seifert, Udo
2016-10-01
Brownian clocks are biomolecular networks that can count time. A paradigmatic example are proteins that go through a cycle, thus regulating some oscillatory behavior in a living system. Typically, such a cycle requires free energy often provided by ATP hydrolysis. We investigate the relation between the precision of such a clock and its thermodynamic costs. For clocks driven by a constant thermodynamic force, a given precision requires a minimal cost that diverges as the uncertainty of the clock vanishes. In marked contrast, we show that a clock driven by a periodic variation of an external protocol can achieve arbitrary precision at arbitrarily low cost. This result constitutes a fundamental difference between processes driven by a fixed thermodynamic force and those driven periodically. As a main technical tool, we map a periodically driven system with a deterministic protocol to one subject to an external protocol that changes in stochastic time intervals, which simplifies calculations significantly. In the nonequilibrium steady state of the resulting bipartite Markov process, the uncertainty of the clock can be deduced from the calculable dispersion of a corresponding current.
Reconsidering Simulations in Science Education at a Distance: Features of Effective Use
ERIC Educational Resources Information Center
Blake, C.; Scanlon, E.
2007-01-01
This paper proposes a reconsideration of use of computer simulations in science education. We discuss three studies of the use of science simulations for undergraduate distance learning students. The first one, "The Driven Pendulum" simulation is a computer-based experiment on the behaviour of a pendulum. The second simulation, "Evolve" is…
Ultra-Stable Beacon Source for Laboratory Testing of Optical Tracking
NASA Technical Reports Server (NTRS)
Aso, Yoichi; Marka, Szabolcs; Kovalik, Joseph
2008-01-01
The ultra-stable beacon source (USBS) provides a laser-beam output with a very low angular jitter and can be used as an absolute angular reference to simulate a beacon in the laboratory. The laser is mounted on the top of a very short (approximately equal to 1 m) inverted pendulum (IP) with its optical axis parallel to the carbon fiber pendulum leg. The 85-cm, carbon fiber rods making up the leg are very lightweight and rigid, and are supported by a flex-joint at the bottom (see figure). The gimbal-mounted laser is a weight-adjustable load of about 1.5 kg with its center of rotation co-located with the center of percussion of the inverted pendulum. This reduces the coupling of transverse motion at the base of the pendulum to angular motion of the laser at the top. The inverted pendulum is mounted on a gimbal with its center of rotation coinciding with the pivot position of the inverted pendulum flexure joint. This reduces coupling of ground tilt at the inverted pendulum base to motion of the laser mounted at the top. The mass of the top gimbal is adjusted to give the pendulum a very low resonant frequency (approximately equal to 10 mHz) that filters transverse seismic disturbances from the ground where the base is attached. The motion of the IP is monitored by an optical-lever sensor. The laser light is reflected by the mirror on the IP, and then is detected by a quadrant photo-detector (QPD). The position of the beam spot on the QPD corresponds to the tilt of the IP. Damping of this motion is provided by two coil and magnet pairs. The bottom gimbal mount consists of two plates. The IP is mounted on the second plate. The first plate is supported by two posts through needles and can be rotated about the axis connecting the tips of the needles. The second plate hangs from the first plate and can be rotated about the axis perpendicular to the first plate. As a result, the second plate acts as a two-axis rotation stage. Its center of rotation is located at the effective bending point of the flex-joint. The second plate is pressed against two screw actuators by the weight of the IP. The screw actuators are orthogonal to each other and are used to adjust the inclination of the second plate. The actuators are driven by stepper motors. The whole IP system is housed in a box made of Lexan plastic plates to provide isolation from air currents and temperature variations. The signals from the sensors are processed and recorded with a PC using the xPC Target realtime environment of Math- Works. The control algorithms are written using the Simulink package from The MathWorks.
Merle G. Lloyd
1963-01-01
The instrument developed by Intermountain Forest and Range Experiment Station to record duration and amount of dew (fig. 1) consists of an expanded polystyrene block mounted on a balance, a clock-driven drum, and a pen geared from the balance to the drum. Changes in weight of the expanded polystyrene block as dew or rain is deposited are recorded on a chart mounted on...
Instability dynamics and breather formation in a horizontally shaken pendulum chain.
Xu, Y; Alexander, T J; Sidhu, H; Kevrekidis, P G
2014-10-01
Inspired by the experimental results of Cuevas et al. [Phys. Rev. Lett. 102, 224101 (2009)], we consider theoretically the behavior of a chain of planar rigid pendulums suspended in a uniform gravitational field and subjected to a horizontal periodic driving force applied to the pendulum pivots. We characterize the motion of a single pendulum, finding bistability near the fundamental resonance and near the period-3 subharmonic resonance. We examine the development of modulational instability in a driven pendulum chain and find both a critical chain length and a critical frequency for the appearance of the instability. We study the breather solutions and show their connection to the single-pendulum dynamics and extend our analysis to consider multifrequency breathers connected to the period-3 periodic solution, showing also the possibility of stability in these breather states. Finally we examine the problem of breather generation and demonstrate a robust scheme for generation of on-site and off-site breathers.
Inverted Spring Pendulum Driven by a Periodic Force: Linear versus Nonlinear Analysis
ERIC Educational Resources Information Center
Arinstein, A.; Gitterman, M.
2008-01-01
We analyse the stability of the spring inverted pendulum with the vertical oscillations of the suspension point. An important factor in the stability analysis is the interaction between radial and oscillating modes. In addition to the small oscillations near the upper position, the nonlinearity of the problem leads to the appearance of limit-cycle…
NASA Astrophysics Data System (ADS)
Akpojotor, Godfrey; Ehwerhemuepha, Louis; Amromanoh, Ogheneriobororue
2013-03-01
The presence of physical systems whose characteristics change in a seemingly erratic manner gives rise to the study of chaotic systems. The characteristics of these systems are due to their hypersensitivity to changes in initial conditions. In order to understand chaotic systems, some sort of simulation and visualization is pertinent. Consequently, in this work, we have simulated and graphically visualized chaos in a driven nonlinear pendulum as a means of introducing chaotic systems. The results obtained which highlight the hypersensitivity of the pendulum are used to discuss the effectiveness of teaching and learning the physics of chaotic system using Python. This study is one of the many studies under the African Computational Science and Engineering Tour Project (PASET) which is using Python to model, simulate and visualize concepts, laws and phenomena in Science and Engineering to compliment the teaching/learning of theory and experiment.
Dim Light at Night Disrupts Molecular Circadian Rhythms and Affects Metabolism
Fonken, Laura K.; Aubrecht, Taryn G.; Meléndez-Fernández, O. Hecmarie; Weil, Zachary M.; Nelson, Randy J.
2014-01-01
With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms which are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electrical lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to nighttime light and investigated changes in the circadian system and body weight. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night attenuate core circadian clock rhythms in the SCN at both the gene and protein level. Moreover, circadian clock rhythms were perturbed in the liver by nighttime light exposure. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide mechanistic evidence for how mild changes in environmental lighting can alter circadian and metabolic function. PMID:23929553
Nature's Autonomous Oscillators
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.
2012-01-01
Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.
NASA Astrophysics Data System (ADS)
Barone, F.; Giordano, G.
2018-03-01
The UNISA Folded Pendulum technological platform is very promising for the implementation of high sensitive, large band miniaturized mechanical seismometers and accelerometers in different materials. In fact, the symmetry of its mechanical architecture allows to take full advantage of one of the most relevant properties of the folded pendulum, that is the scalability. This property is very useful for the design of folded pendulums of small size and weight, provided with a suitable combination of physical and geometrical parameters. Using a lagrangian simplified model of folded pendulum, we present and discuss this idea, showing different possible approaches that may lead to the miniaturization of a folded pendulum. Finally we present a first prototype of miniaturized folded pendulum, discussing its characteristics and limitations, in connection with scientific ground, marine and space applications.
The influences of load mass changing on inverted pendulum stability based on simulation study
NASA Astrophysics Data System (ADS)
Pangaribuan, Timbang; Nasruddin, M. N.; Marlianto, Eddy; Sigiro, Mula
2017-09-01
An inverted pendulum has nonlinear dynamic, so it is not easy to do in analysis to see its behavior. From many observations which have been made, there are two things that need to be added on the perfection of inverted pendulum. Firstly, when the pendulum has a large mass, and the second when the pendulum is given a load mass much larger than mass of the inverted pendulum. There are some question, first, how big the load mass can be given so that the movement of the inverted pendulum stay stable is. Second, how weight the changes and moves of load mass which can be given. For all the changes, it hopes the inverted pendulum is stay stable. Finally, the final result is still expected to be as stable, it must need conclude what kind of controller is capable of carrying such a mass burden, and how large the mass load limit can be given.
Misura di g con pendolo non in regime caotico
NASA Astrophysics Data System (ADS)
Sigismondi, Costantino
2017-02-01
The measurement of the gravity acceleration with pendulum is a basic experiment in Newtonian physics, but the correct choice of wire and weight to suspend can avoid to have a cahotic instead of simple pendulum.
Proposal of a new electromechanical total artificial heart: the TAH Serpentina.
Sauer, I M; Frank, J; Bücherl, E S
1999-03-01
A new type of energy converter for an electro-mechanical total artificial heart (TAH) based on the principle of a unidirectional moving motor is described. Named the TAH Serpentina, the concept consists of 2 major parts, a pendulum shaped movable element fixed on one side using a joint bearing and a special shaped drum cam. Pusher plates are mounted flexibly to the crossbar of the pendulum. A motor drives the special shaped drum cam linked to the pendulum through a ball bearing. The circular motion of the unidirectional moving brushless DC motor is transferred into the linear motion of the pendulum to drive the pusher plates. Using a crossbar with a variable length, the stroke of the pendulum and therefore the displaced blood volume is alterable. To achieve a variable length, an electric driven screw thread or a hydraulic system is possible. Comparable to the natural heart, cardiac output would be determined by frequency and stroke volume.
The Reproduction of Scientific Understanding about Pendulum Motion in the Public
NASA Astrophysics Data System (ADS)
Manabu, Sumida
This paper describes life-span development of understanding about pendulum motion and effects of school science. The subjects were 2,766 people ranging from kindergartners up to 88 years senior citizens. The conflict and consensus between children and their parent's understanding of pendulum motion were also analyzed. The kindergartner's understanding, mostly non-scientific, made a marked developmental change to another type of non-scientific understanding by the time they reach G 4. Parents with scientific understanding do not presumably nurture scientifically minded children,even though about half of them can apply scientific conceptions that shorter pendulums swing faster, and the amplitude and speed of pendulum motion do not depend on its weight. There seems to be another type of developmental change from scientific understanding to non-scientific understanding around their fifties. Itis suggested that the scientific understanding in the public about pendulum motion become predominant due to the educational intervention through school science.
Probing Many-Body Interactions in an Optical Lattice Clock (Preprint)
2013-10-23
impressive potential gain over their microwave counterparts. Optical frequencies on the other hand are very difficult to measure, as the oscillations ...source can be compared. Here, the laboratory radiation source is an ultra-stable continuous-wave laser. It acts as the local oscillator (or pendulum...where φ Z 0 is the ground longitudinal mode in a lattice site and φn are transverse harmonic oscillator eigenmodes. ĉ†αn creates a fermion in mode n
Seismometer using a vertical long natural-period rotational pendulum with magnetic levitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otake, Yuji; Araya, Akito; Hidano, Kazuo
We have demonstrated a highly sensitive/wideband vertical-component seismometer using an astatic rotational pendulum to obtain a long natural period. This seismometer employs magnetic levitation for removing any parasitic resonances of a spring to support a weight due to gravity and the thermal dependence of the spring constant. The pendulum has a cylindrical plunger-type permanent magnet that has a weight at one side of its end edge. The plunger magnet is inserted into a uniform magnetic field generated by a window-frame-type permanent magnet, and attached to two crossed-leaf spring hinges as a rotational axis outside of the bore of the magnet.more » Magnetic forces applied to the plunger magnet counterbalance the gravitational force at the weight. To realize stable operation of the rotational pendulum without any unnecessary movements of the plunger magnet, a tilt of lines of the magnetic force in the bore of the window-frame magnet was compensated by a tilted magnetic-pole surface near to its opening. The field uniformity reached 10{sup -4} owing to this compensation. The thermal dependence of a magnetic field strength of about 10{sup -3}/K was also compensated by as much as 9x10{sup -5}/K by Ni-Fe metal having a negative permeability coefficient. The metal was attached along the sidewalls of the window-frame magnet. To determine the feedback control parameters for a feedback control seismometer, the natural period of a prototype rotational pendulum was measured. It was more than 8 s, and was able to be changed from 5 to 8 s by using an additional magnetic spring, similar to the voice coil actuator of a speaker. This change was in accordance with theoretical calculations, and showed that the pendulum movement did not include a big nonlinearity caused by the tilt of the lines of the magnetic force. No parasitic resonances were found during experiments. A velocity feedback-control circuit and a capacitance position detector to measure the weight position were applied to the rotational pendulum for building a feedback control seismometer. Observations showed that the noise level of the seismometer was less than about 10{sup -8} m/s at 1 Hz. This fruitful value is close to the specifications of the most sensitive seismometer, such as STS-I. However, low-frequency noise of about 10{sup -7} m/s, caused by a buoyancy change at the pendulum weight arising from atmospheric pressure variation, could be recognized. To decrease the noise, a vacuum chamber to isolate the atmospheric pressure variation should be employed in the next step of the study.« less
Room 103, transom woodwork and original clock. All clocks are ...
Room 103, transom woodwork and original clock. All clocks are driven by a common signal. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA
The circadian clock in cancer development and therapy
USDA-ARS?s Scientific Manuscript database
Most aspects of mammalian function display circadian rhythms driven by an endogenous clock. The circadian clock is operated by genes and comprises a central clock in the brain that responds to environmental cues and controls subordinate clocks in peripheral tissues via circadian output pathways. The...
Kitanov, Petko M.; Langford, William F.
2017-01-01
In 1665, Huygens observed that two identical pendulum clocks, weakly coupled through a heavy beam, soon synchronized with the same period and amplitude but with the two pendula swinging in opposite directions. This behaviour is now called anti-phase synchronization. This paper presents an analysis of the behaviour of a large class of coupled identical oscillators, including Huygens' clocks, using methods of equivariant bifurcation theory. The equivariant normal form for such systems is developed and the possible solutions are characterized. The transformation of the physical system parameters to the normal form parameters is given explicitly and applied to the physical values appropriate for Huygens' clocks, and to those of more recent studies. It is shown that Huygens' physical system could only exhibit anti-phase motion, explaining why Huygens observed exclusively this. By contrast, some more recent researchers have observed in-phase or other more complicated motion in their own experimental systems. Here, it is explained which physical characteristics of these systems allow for the existence of these other types of stable solutions. The present analysis not only accounts for these previously observed solutions in a unified framework, but also introduces behaviour not classified by other authors, such as a synchronized toroidal breather and a chaotic toroidal breather. PMID:28989780
Development of a two-dimensional dual pendulum thrust stand for Hall thrusters.
Nagao, N; Yokota, S; Komurasaki, K; Arakawa, Y
2007-11-01
A two-dimensional dual pendulum thrust stand was developed to measure thrust vectors [axial and horizontal (transverse) direction thrusts] of a Hall thruster. A thruster with a steering mechanism is mounted on the inner pendulum, and thrust is measured from the displacement between inner and outer pendulums, by which a thermal drift effect is canceled out. Two crossover knife-edges support each pendulum arm: one is set on the other at a right angle. They enable the pendulums to swing in two directions. Thrust calibration using a pulley and weight system showed that the measurement errors were less than 0.25 mN (1.4%) in the main thrust direction and 0.09 mN (1.4%) in its transverse direction. The thrust angle of the thrust vector was measured with the stand using the thruster. Consequently, a vector deviation from the main thrust direction of +/-2.3 degrees was measured with the error of +/-0.2 degrees under the typical operating conditions for the thruster.
The parametric resonance—from LEGO Mindstorms to cold atoms
NASA Astrophysics Data System (ADS)
Kawalec, Tomasz; Sierant, Aleksandra
2017-07-01
We show an experimental setup based on a popular LEGO Mindstorms set, allowing us to both observe and investigate the parametric resonance phenomenon. The presented method is simple but covers a variety of student activities like embedded software development, conducting measurements, data collection and analysis. It may be used during science shows, as part of student projects and to illustrate the parametric resonance in mechanics or even quantum physics, during lectures or classes. The parametrically driven LEGO pendulum gains energy in a spectacular way, increasing its amplitude from 10° to about 100° within a few tens of seconds. We provide also a short description of a wireless absolute orientation sensor that may be used in quantitative analysis of driven or free pendulum movement.
Gravity in the Brain as a Reference for Space and Time Perception.
Lacquaniti, Francesco; Bosco, Gianfranco; Gravano, Silvio; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Zago, Myrka
2015-01-01
Moving and interacting with the environment require a reference for orientation and a scale for calibration in space and time. There is a wide variety of environmental clues and calibrated frames at different locales, but the reference of gravity is ubiquitous on Earth. The pull of gravity on static objects provides a plummet which, together with the horizontal plane, defines a three-dimensional Cartesian frame for visual images. On the other hand, the gravitational acceleration of falling objects can provide a time-stamp on events, because the motion duration of an object accelerated by gravity over a given path is fixed. Indeed, since ancient times, man has been using plumb bobs for spatial surveying, and water clocks or pendulum clocks for time keeping. Here we review behavioral evidence in favor of the hypothesis that the brain is endowed with mechanisms that exploit the presence of gravity to estimate the spatial orientation and the passage of time. Several visual and non-visual (vestibular, haptic, visceral) cues are merged to estimate the orientation of the visual vertical. However, the relative weight of each cue is not fixed, but depends on the specific task. Next, we show that an internal model of the effects of gravity is combined with multisensory signals to time the interception of falling objects, to time the passage through spatial landmarks during virtual navigation, to assess the duration of a gravitational motion, and to judge the naturalness of periodic motion under gravity.
Development of a two-dimensional dual pendulum thrust stand for Hall thrusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagao, N.; Yokota, S.; Komurasaki, K.
A two-dimensional dual pendulum thrust stand was developed to measure thrust vectors (axial and horizontal (transverse) direction thrusts) of a Hall thruster. A thruster with a steering mechanism is mounted on the inner pendulum, and thrust is measured from the displacement between inner and outer pendulums, by which a thermal drift effect is canceled out. Two crossover knife-edges support each pendulum arm: one is set on the other at a right angle. They enable the pendulums to swing in two directions. Thrust calibration using a pulley and weight system showed that the measurement errors were less than 0.25 mN (1.4%)more » in the main thrust direction and 0.09 mN (1.4%) in its transverse direction. The thrust angle of the thrust vector was measured with the stand using the thruster. Consequently, a vector deviation from the main thrust direction of {+-}2.3 deg. was measured with the error of {+-}0.2 deg. under the typical operating conditions for the thruster.« less
Magnetically Driven Oscillator and Resonance: A Teaching Tool
ERIC Educational Resources Information Center
Erol, M.; Çolak, I. Ö.
2018-01-01
This paper reports a simple magnetically driven oscillator, designed and resolved in order to achieve a better student understanding and to overcome certain instructional difficulties. The apparatus is mainly comprised of an ordinary spring pendulum with a neodymium magnet attached to the bottom, a coil placed in the same vertical direction, an…
Dynamical stability of a many-body Kapitza pendulum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Citro, Roberta, E-mail: citro@sa.infn.it; Dalla Torre, Emanuele G., E-mail: emanuele.dalla-torre@biu.ac.il; Department of Physics, Harvard University, Cambridge, MA 02138
We consider a many-body generalization of the Kapitza pendulum: the periodically-driven sine–Gordon model. We show that this interacting system is dynamically stable to periodic drives with finite frequency and amplitude. This finding is in contrast to the common belief that periodically-driven unbounded interacting systems should always tend to an absorbing infinite-temperature state. The transition to an unstable absorbing state is described by a change in the sign of the kinetic term in the Floquet Hamiltonian and controlled by the short-wavelength degrees of freedom. We investigate the stability phase diagram through an analytic high-frequency expansion, a self-consistent variational approach, and amore » numeric semiclassical calculation. Classical and quantum experiments are proposed to verify the validity of our results.« less
NASA Astrophysics Data System (ADS)
Zhu, W. C.; Niu, L. L.; Li, S. H.; Xu, Z. H.
2015-09-01
The tensile strength of rock subjected to dynamic loading constitutes many engineering applications such as rock drilling and blasting. The dynamic Brazilian test of rock specimens was conducted with the split Hopkinson pressure bar (SHPB) driven by pendulum hammer, in order to determine the indirect tensile strength of rock under an intermediate strain rate ranging from 5.2 to 12.9 s-1, which is achieved when the incident bar is impacted by pendulum hammer with different velocities. The incident wave excited by pendulum hammer is triangular in shape, featuring a long rising time, and it is considered to be helpful for achieving a constant strain rate in the rock specimen. The dynamic indirect tensile strength of rock increases with strain rate. Then, the numerical simulator RFPA-Dynamics, a well-recognized software for simulating the rock failure under dynamic loading, is validated by reproducing the Brazilian test of rock when the incident stress wave retrieved at the incident bar is input as the boundary condition, and then it is employed to study the Brazilian test of rock under the higher strain rate. Based on the numerical simulation, the strain-rate dependency of tensile strength and failure pattern of the Brazilian disc specimen under the intermediate strain rate are numerically simulated, and the associated failure mechanism is clarified. It is deemed that the material heterogeneity should be a reason for the strain-rate dependency of rock.
Pendulum Mass Affects the Measurement of Articular Friction Coefficient
Akelman, Matthew R.; Teeple, Erin; Machan, Jason T.; Crisco, Joseph J.; Jay, Gregory D.; Fleming, Braden C.
2012-01-01
Friction measurements of articular cartilage are important to determine the relative tribologic contributions made by synovial fluid or cartilage, and to assess the efficacy of therapies for preventing the development of post-traumatic osteoarthritis. Stanton’s equation is the most frequently used formula for estimating the whole joint friction coefficient (μ) of an articular pendulum, and assumes pendulum energy loss through a mass-independent mechanism. This study examines if articular pendulum energy loss is indeed mass independent, and compares Stanton’s model to an alternative model, which incorporates viscous damping, for calculating μ. Ten loads (25-100% body weight) were applied in a random order to an articular pendulum using the knees of adult male Hartley guinea pigs (n = 4) as the fulcrum. Motion of the decaying pendulum was recorded and μ was estimated using two models: Stanton’s equation, and an exponential decay function incorporating a viscous damping coefficient. μ estimates decreased as mass increased for both models. Exponential decay model fit error values were 82% less than the Stanton model. These results indicate that μ decreases with increasing mass, and that an exponential decay model provides a better fit for articular pendulum data at all mass values. In conclusion, inter-study comparisons of articular pendulum μ values should not be made without recognizing the loads used, as μ values are mass dependent. PMID:23122223
Pendulum mass affects the measurement of articular friction coefficient.
Akelman, Matthew R; Teeple, Erin; Machan, Jason T; Crisco, Joseph J; Jay, Gregory D; Fleming, Braden C
2013-02-01
Friction measurements of articular cartilage are important to determine the relative tribologic contributions made by synovial fluid or cartilage, and to assess the efficacy of therapies for preventing the development of post-traumatic osteoarthritis. Stanton's equation is the most frequently used formula for estimating the whole joint friction coefficient (μ) of an articular pendulum, and assumes pendulum energy loss through a mass-independent mechanism. This study examines if articular pendulum energy loss is indeed mass independent, and compares Stanton's model to an alternative model, which incorporates viscous damping, for calculating μ. Ten loads (25-100% body weight) were applied in a random order to an articular pendulum using the knees of adult male Hartley guinea pigs (n=4) as the fulcrum. Motion of the decaying pendulum was recorded and μ was estimated using two models: Stanton's equation, and an exponential decay function incorporating a viscous damping coefficient. μ estimates decreased as mass increased for both models. Exponential decay model fit error values were 82% less than the Stanton model. These results indicate that μ decreases with increasing mass, and that an exponential decay model provides a better fit for articular pendulum data at all mass values. In conclusion, inter-study comparisons of articular pendulum μ values should not be made without recognizing the loads used, as μ values are mass dependent. Copyright © 2012 Elsevier Ltd. All rights reserved.
Investigation of UH-60A Rotor Structural Loads from Flight and Wind Tunnel Tests
2016-05-19
and main rotor blades. A bifilar pendulum -type vibration absorber system was mounted on top of the hub to reduce 3/rev rotating in-plane loads. Main... pendulum weights were not attached (no 3/rev in-plane load absorption). The rotor assembly was mounted on a large test stand with its own fixed system
Changes in stature following plyometric drop-jump and pendulum exercises.
Fowler, N E; Lees, A; Reilly, T
1997-12-01
The aim of this study was to compare the changes in stature following the performance of plyometric exercises using drop-jumps and a pendulum swing. Eight male participants aged 21.7 +/- 1.8 years with experience of plyometric training gave their informed consent to act as participants. Participants undertook two exercise regimens and a 15-min standing test in a random order. The exercises entailed the performance of 50 drop-jumps from a height of 0.28 m or 50 pendulum rebounds. Participants were instructed to perform maximal jumps or rebounds using a 'bounce' style. Measurements of stature were performed after a 20-min period of standing (pre-exercise), 2-min after exercise (post-exercise) and after a 20-min standing recovery (recovery). Back pain and muscle soreness were assessed using an analogue-visual scale, at each of the above times and also 24 and 36 h after the test. Peak torque during isokinetic knee extension at 1.04 rads-1 was measured immediately before and after the exercise bouts, to assess the degree of muscular fatigue. Ground/wall reaction force data were recorded using a Kistler force platform mounted in the floor for drop-jumps and vertically on the rebound wall for pendulum exercises. Drop-jumps resulted in the greatest (p < 0.05) change in stature (-2.71 +/- 0.8 mm), compared to pendulum exercises (-1.77 +/- 0.7 mm) and standing (-0.39 +/- 0.2 mm). Both exercise regimens resulted in a significant (p < 0.01) decrease in stature when compared to the standing condition. Drop-jumps resulted in significantly greater peak impact forces (p < 0.05) than pendulum exercises (drop-jumps = 3.2 +/- 0.5 x body weight, pendulum = 2.6 +/- 0.5 x body weight). The two exercise conditions both invoked a small degree of muscle soreness but there were no significant differences between conditions. Both exercise regimens resulted in a non-significant decrease in peak torque indicating a similar degree of muscular fatigue. Based on the lower shrinkage resulted and lower peak forces, it can be concluded that pendulum exercises pose a lower injury potential to the lower back than drop-jumps performed from a height of 28 cm.
Upper Limit of Weights in TAI Computation
NASA Technical Reports Server (NTRS)
Thomas, Claudine; Azoubib, Jacques
1996-01-01
The international reference time scale International Atomic Time (TAI) computed by the Bureau International des Poids et Mesures (BIPM) relies on a weighted average of data from a large number of atomic clocks. In it, the weight attributed to a given clock depends on its long-term stability. In this paper the TAI algorithm is used as the basis for a discussion of how to implement an upper limit of weight for clocks contributing to the ensemble time. This problem is approached through the comparison of two different techniques. In one case, a maximum relative weight is fixed: no individual clock can contribute more than a given fraction to the resulting time scale. The weight of each clock is then adjusted according to the qualities of the whole set of contributing elements. In the other case, a parameter characteristic of frequency stability is chosen: no individual clock can appear more stable than the stated limit. This is equivalent to choosing an absolute limit of weight and attributing this to to the most stable clocks independently of the other elements of the ensemble. The first technique is more robust than the second and automatically optimizes the stability of the resulting time scale, but leads to a more complicated computatio. The second technique has been used in the TAI algorithm since the very beginning. Careful analysis of tests on real clock data shows that improvement of the stability of the time scale requires revision from time to time of the fixed value chosen for the upper limit of absolute weight. In particular, we present results which confirm the decision of the CCDS Working Group on TAI to increase the absolute upper limit by a factor of 2.5. We also show that the use of an upper relative contribution further helps to improve the stability and may be a useful step towards better use of the massive ensemble of HP 507IA clocks now contributing to TAI.
Regulation of the clock gene expression in human adipose tissue by weight loss.
Pivovarova, O; Gögebakan, Ö; Sucher, S; Groth, J; Murahovschi, V; Kessler, K; Osterhoff, M; Rudovich, N; Kramer, A; Pfeiffer, A F H
2016-06-01
The circadian clock coordinates numerous metabolic processes to adapt physiological responses to light-dark and feeding regimens and is itself regulated by metabolic cues. The implication of the circadian clock in the regulation of energy balance and body weight is widely studied in rodents but not in humans. Here we investigated (1) whether the expression of clock genes in human adipose tissue is changed by weight loss and (2) whether these alterations are associated with metabolic parameters. Subcutaneous adipose tissue (SAT) samples were collected before and after 8 weeks of weight loss on an 800 kcal per day hypocaloric diet (plus 200 g per day vegetables) at the same time of the day. Fifty overweight subjects who lost at least 8% weight after 8 weeks were selected for the study. The expression of 10 clock genes and key metabolic and inflammatory genes in adipose tissue was determined by quantitative real-time PCR. The expression of core clock genes PER2 and NR1D1 was increased after the weight loss. Correlations of PERIOD expression with body mass index (BMI) and serum total, high-density lipoprotein and low-density lipoprotein (LDL) cholesterol levels and of NR1D1 expression with total and LDL cholesterol were found that became non-significant after correction for multiple testing. Clock gene expression levels and their weight loss-induced changes tightly correlated with each other and with genes involved in fat metabolism (FASN, CPT1A, LPL, PPARG, PGC1A, ADIPOQ), energy metabolism (SIRT1), autophagy (LC3A, LC3B) and inflammatory response (NFKB1, NFKBIA, NLRP3, EMR1). Clock gene expression in human SAT is regulated by body weight changes and associated with BMI, serum cholesterol levels and the expression of metabolic and inflammatory genes. Our data confirm the tight crosstalk between molecular clock and metabolic and inflammatory pathways involved in adapting adipose tissue metabolism to changes of the energy intake in humans.
2012-04-01
Comparison of Management Practices in the Army, Navy, and Air Force 142Defense ARJ, April 2012, Vol. 19 No. 2 : 133–160 It appears the pendulum may be...the cost risk for requiring greater innovation. However, this natural flattening trend also leads to a potential drawback of the risk-driven
Murakami, Mari; Tognini, Paola; Liu, Yu; Eckel-Mahan, Kristin L; Baldi, Pierre; Sassone-Corsi, Paolo
2016-09-01
The liver circadian clock is reprogrammed by nutritional challenge through the rewiring of specific transcriptional pathways. As the gut microbiota is tightly connected to host metabolism, whose coordination is governed by the circadian clock, we explored whether gut microbes influence circadian homeostasis and how they distally control the peripheral clock in the liver. Using fecal transplant procedures we reveal that, in response to high-fat diet, the gut microbiota drives PPARγ-mediated activation of newly oscillatory transcriptional programs in the liver. Moreover, antibiotics treatment prevents PPARγ-driven transcription in the liver, underscoring the essential role of gut microbes in clock reprogramming and hepatic circadian homeostasis. Thus, a specific molecular signature characterizes the influence of the gut microbiome in the liver, leading to the transcriptional rewiring of hepatic metabolism. © 2016 The Authors.
Verge and Foliot Clock Escapement: A Simple Dynamical System
ERIC Educational Resources Information Center
Denny, Mark
2010-01-01
The earliest mechanical clocks appeared in Europe in the 13th century. From about 1250 CE to 1670 CE, these simple clocks consisted of a weight suspended from a rope or chain that was wrapped around a horizontal axle. To tell time, the weight must fall with a slow uniform speed, but, under the action of gravity alone, such a suspended weight would…
The cyanobacterial circadian clock follows midday in vivo and in vitro
Leypunskiy, Eugene; Lin, Jenny; Yoo, Haneul; Lee, UnJin; Dinner, Aaron R; Rust, Michael J
2017-01-01
Circadian rhythms are biological oscillations that schedule daily changes in physiology. Outside the laboratory, circadian clocks do not generally free-run but are driven by daily cues whose timing varies with the seasons. The principles that determine how circadian clocks align to these external cycles are not well understood. Here, we report experimental platforms for driving the cyanobacterial circadian clock both in vivo and in vitro. We find that the phase of the circadian rhythm follows a simple scaling law in light-dark cycles, tracking midday across conditions with variable day length. The core biochemical oscillator comprised of the Kai proteins behaves similarly when driven by metabolic pulses in vitro, indicating that such dynamics are intrinsic to these proteins. We develop a general mathematical framework based on instantaneous transformation of the clock cycle by external cues, which successfully predicts clock behavior under many cycling environments. DOI: http://dx.doi.org/10.7554/eLife.23539.001 PMID:28686160
Circumnutation as a visible plant action and reaction
2009-01-01
Circumnutation is a helical organ movement widespread among plants. It is variable due to a different magnitude of trajectory (amplitude) outlined by the organ tip, duration of one cycle (period), circular, elliptical, pendulum-like or irregular shape and clock- and counterclockwise direction of rotation. Some of those movement parameters are regulated by circadian clock and show daily and infradian rhythms. Circumnutation is influenced by light, temperature, chemicals and can depend on organ morphology. The diversity of this phenomenon is easier to see now that the digital time-lapse video method is developing fast. Whether circumnutation is an endogenous action, a reaction to exogenous stimuli or has a combined character has been discussed for a long time. Similarly, the relationship between growth and circumnutation is still unclear. In the mechanism of circumnutation, epidermal and endodermal cells as well as plasmodesmata, plasma membrane, ions (Ca2+, K+ and Cl−), ion channels and the proton pump (H+ATPase) are engaged. Based on these data, the hypothetical electrophysiological model of the circumnutation mechanism has been proposed here. In the recent circumnutation studies, gravitropic, auxin, clock and phytochrome mutants are used and new functions of circumnutation in plants' life have been investigated and described. PMID:19816110
Dim light at night disrupts molecular circadian rhythms and increases body weight.
Fonken, Laura K; Aubrecht, Taryn G; Meléndez-Fernández, O Hecmarie; Weil, Zachary M; Nelson, Randy J
2013-08-01
With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms that are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electric lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however, the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to dim light at night and investigated changes in the circadian system and metabolism. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night altered core circadian clock rhythms in the hypothalamus at both the gene and protein level. Circadian rhythms in clock expression persisted during light at night; however, the amplitude of Per1 and Per2 rhythms was attenuated in the hypothalamus. Circadian oscillations were also altered in peripheral tissues critical for metabolic regulation. Exposure to dimly illuminated, as compared to dark, nights decreased the rhythmic expression in all but one of the core circadian clock genes assessed in the liver. Additionally, mice exposed to dim light at night attenuated Rev-Erb expression in the liver and adipose tissue. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide evidence that mild changes in environmental lighting can alter circadian and metabolic function. Detailed analysis of temporal changes induced by nighttime light exposure may provide insight into the onset and progression of obesity and metabolic syndrome, as well as other disorders involving sleep and circadian rhythm disruption.
Light directs zebrafish period2 expression via conserved D and E boxes.
Vatine, Gad; Vallone, Daniela; Appelbaum, Lior; Mracek, Philipp; Ben-Moshe, Zohar; Lahiri, Kajori; Gothilf, Yoav; Foulkes, Nicholas S
2009-10-01
For most species, light represents the principal environmental signal for entraining the endogenous circadian clock. The zebrafish is a fascinating vertebrate model for studying this process since unlike mammals, direct exposure of most of its tissues to light leads to local clock entrainment. Importantly, light induces the expression of a set of genes including certain clock genes in most zebrafish cell types in vivo and in vitro. However, the mechanism linking light to gene expression remains poorly understood. To elucidate this key mechanism, here we focus on how light regulates transcription of the zebrafish period2 (per2) gene. Using transgenic fish and stably transfected cell line-based assays, we define a Light Responsive Module (LRM) within the per2 promoter. The LRM lies proximal to the transcription start site and is both necessary and sufficient for light-driven gene expression and also for a light-dependent circadian clock regulation. Curiously, the LRM sequence is strongly conserved in other vertebrate per2 genes, even in species lacking directly light-sensitive peripheral clocks. Furthermore, we reveal that the human LRM can substitute for the zebrafish LRM to confer light-regulated transcription in zebrafish cells. The LRM contains E- and D-box elements that are critical for its function. While the E-box directs circadian clock regulation by mediating BMAL/CLOCK activity, the D-box confers light-driven expression. The zebrafish homolog of the thyrotroph embryonic factor binds efficiently to the LRM D-box and transactivates expression. We demonstrate that tef mRNA levels are light inducible and that knock-down of tef expression attenuates light-driven transcription from the per2 promoter in vivo. Together, our results support a model where a light-dependent crosstalk between E- and D-box binding factors is a central determinant of per2 expression. These findings extend the general understanding of the mechanism whereby the clock is entrained by light and how the regulation of clock gene expression by light has evolved in vertebrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xin, E-mail: xinshih86029@gmail.com; Zhao, Xiangmo, E-mail: xinshih86029@gmail.com; Hui, Fei, E-mail: xinshih86029@gmail.com
Clock synchronization in wireless sensor networks (WSNs) has been studied extensively in recent years and many protocols are put forward based on the point of statistical signal processing, which is an effective way to optimize accuracy. However, the accuracy derived from the statistical data can be improved mainly by sufficient packets exchange, which will consume the limited power resources greatly. In this paper, a reliable clock estimation using linear weighted fusion based on pairwise broadcast synchronization is proposed to optimize sync accuracy without expending additional sync packets. As a contribution, a linear weighted fusion scheme for multiple clock deviations ismore » constructed with the collaborative sensing of clock timestamp. And the fusion weight is defined by the covariance of sync errors for different clock deviations. Extensive simulation results show that the proposed approach can achieve better performance in terms of sync overhead and sync accuracy.« less
METAS New Time Scale Generation System - A Progress Report
2007-01-01
and a TWSTFT station are used for remote T&F comparisons. The GPS TAI link is driven by one of the atomic clocks defined as the REF clock...UTC(CH.P) paper clock TA(CH.P) paper clock TWSTFT link GPS link CH00 WAB1 H-maser 1-PPS H-maser 1-PPS REF 1-PPS 5-MHz from all clocks UTC(CH.R) 1-PPS...lost, the only consequence would be a transient of UTC (CH.P), which can be corrected by a subsequent steering. The GPS and TWSTFT links can be
Bohannon, Richard W; Harrison, Steven; Kinsella-Shaw, Jeffrey
2009-01-01
Background Spasticity is a common impairment accompanying stroke. Spasticity of the quadriceps femoris muscle can be quantified using the pendulum test. The measurement properties of pendular kinematics captured using a magnetic tracking system has not been studied among patients who have experienced a stroke. Therefore, this study describes the test-retest reliability and known groups and convergent validity of the pendulum test measures obtained with the Polhemus tracking system. Methods Eight patients with chronic stroke underwent pendulum tests with their affected and unaffected lower limbs, with and without the addition of a 2.2 kg cuff weight at the ankle, using the Polhemus magnetic tracking system. Also measured bilaterally were knee resting angles, Ashworth scores (grades 0–4) of quadriceps femoris muscles, patellar tendon (knee jerk) reflexes (grades 0–4), and isometric knee extension force. Results Three measures obtained from pendular traces of the affected side were reliable (intraclass correlation coefficient ≥ .844). Known groups validity was confirmed by demonstration of a significant difference in the measurements between sides. Convergent validity was supported by correlations ≥ .57 between pendulum test measures and other measures reflective of spasticity. Conclusion Pendulum test measures obtained with the Polhemus tracking system from the affected side of patients with stroke have good test-retest reliability and both known groups and convergent validity. PMID:19642989
Bohannon, Richard W; Harrison, Steven; Kinsella-Shaw, Jeffrey
2009-07-30
Spasticity is a common impairment accompanying stroke. Spasticity of the quadriceps femoris muscle can be quantified using the pendulum test. The measurement properties of pendular kinematics captured using a magnetic tracking system has not been studied among patients who have experienced a stroke. Therefore, this study describes the test-retest reliability and known groups and convergent validity of the pendulum test measures obtained with the Polhemus tracking system. Eight patients with chronic stroke underwent pendulum tests with their affected and unaffected lower limbs, with and without the addition of a 2.2 kg cuff weight at the ankle, using the Polhemus magnetic tracking system. Also measured bilaterally were knee resting angles, Ashworth scores (grades 0-4) of quadriceps femoris muscles, patellar tendon (knee jerk) reflexes (grades 0-4), and isometric knee extension force. Three measures obtained from pendular traces of the affected side were reliable (intraclass correlation coefficient > or = .844). Known groups validity was confirmed by demonstration of a significant difference in the measurements between sides. Convergent validity was supported by correlations > or = .57 between pendulum test measures and other measures reflective of spasticity. Pendulum test measures obtained with the Polhemus tracking system from the affected side of patients with stroke have good test-retest reliability and both known groups and convergent validity.
NASA Astrophysics Data System (ADS)
Jewess, Mike
2009-05-01
Your news article "New probe plots Earth's gravity field" (March p11) reports on the European Space Agency's Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) - a satellite that will measure the Earth's gravitational field. It describes the way that g, the acceleration of free fall at the Earth's surface, varies with latitude; this variation is great enough to require adjustment of pendulum clocks between latitudes and also the recalibration of all balances that do not directly compare one mass with a reference mass. The article also notes that the spin of the (effectively fluid) Earth causes it to bulge at the equator, a realization that goes back to Newton's Principia.
Adaptive Neural Network Control for the Trajectory Tracking of the Furuta Pendulum.
Moreno-Valenzuela, Javier; Aguilar-Avelar, Carlos; Puga-Guzman, Sergio A; Santibanez, Victor
2016-12-01
The purpose of this paper is to introduce a novel adaptive neural network-based control scheme for the Furuta pendulum, which is a two degree-of-freedom underactuated system. Adaptation laws for the input and output weights are also provided. The proposed controller is able to guarantee tracking of a reference signal for the arm while the pendulum remains in the upright position. The key aspect of the derivation of the controller is the definition of an output function that depends on the position and velocity errors. The internal and external dynamics are rigorously analyzed, thereby proving the uniform ultimate boundedness of the error trajectories. By using real-time experiments, the new scheme is compared with other control methodologies, therein demonstrating the improved performance of the proposed adaptive algorithm.
Novel transcriptional networks regulated by CLOCK in human neurons.
Fontenot, Miles R; Berto, Stefano; Liu, Yuxiang; Werthmann, Gordon; Douglas, Connor; Usui, Noriyoshi; Gleason, Kelly; Tamminga, Carol A; Takahashi, Joseph S; Konopka, Genevieve
2017-11-01
The molecular mechanisms underlying human brain evolution are not fully understood; however, previous work suggested that expression of the transcription factor CLOCK in the human cortex might be relevant to human cognition and disease. In this study, we investigated this novel transcriptional role for CLOCK in human neurons by performing chromatin immunoprecipitation sequencing for endogenous CLOCK in adult neocortices and RNA sequencing following CLOCK knockdown in differentiated human neurons in vitro. These data suggested that CLOCK regulates the expression of genes involved in neuronal migration, and a functional assay showed that CLOCK knockdown increased neuronal migratory distance. Furthermore, dysregulation of CLOCK disrupts coexpressed networks of genes implicated in neuropsychiatric disorders, and the expression of these networks is driven by hub genes with human-specific patterns of expression. These data support a role for CLOCK-regulated transcriptional cascades involved in human brain evolution and function. © 2017 Fontenot et al.; Published by Cold Spring Harbor Laboratory Press.
Ghrelin, Sleep Reduction and Evening Preference: Relationships to CLOCK 3111 T/C SNP and Weight Loss
Garaulet, Marta; Sánchez-Moreno, Carmen; Smith, Caren E.; Lee, Yu-Chi; Nicolás, Francisco; Ordovás, Jose M.
2011-01-01
Background Circadian Locomotor Output Cycles Kaput (CLOCK), an essential element of the positive regulatory arm in the human biological clock, is involved in metabolic regulation. The aim was to investigate the behavioral (sleep duration, eating patterns and chronobiological characteristics) and hormonal (plasma ghrelin and leptin concentrations) factors which could explain the previously reported association between the CLOCK 3111T/C SNP and weight loss. Methodology/Principal Findings We recruited 1495 overweight/obese subjects (BMI: 25–40 kg/m2) of 20–65 y. who attended outpatient obesity clinics in Murcia, in southeastern Spain. We detected an association between the CLOCK 3111T/C SNP and weight loss, which was particularly evident after 12–14 weeks of treatment (P = 0.038). Specifically, carriers of the minor C allele were more resistant to weight loss than TT individuals (Mean±SEM) (8.71±0.59 kg vs 10.4±0.57 kg) C and TT respectively. In addition, our data show that minor C allele carriers had: 1. shorter sleep duration Mean ± SEM (7.0±0.05 vs 7.3±0.05) C and TT respectively (P = 0.039), 2. higher plasma ghrelin concentrations Mean ± SEM (pg/ml) (1108±49 vs 976±47)(P = 0.034); 3. delayed breakfast time; 4. evening preference and 5. less compliance with a Mediterranean Diet pattern, as compared with TT homozygotes. Conclusions/Significance Sleep reduction, changes in ghrelin values, alterations of eating behaviors and evening preference that characterized CLOCK 3111C carriers could be affecting weight loss. Our results support the hypothesis that the influence of the CLOCK gene may extend to a broad range of variables linked with human behaviors. PMID:21386998
Garaulet, Marta; Sánchez-Moreno, Carmen; Smith, Caren E; Lee, Yu-Chi; Nicolás, Francisco; Ordovás, Jose M
2011-02-28
Circadian Locomotor Output Cycles Kaput (CLOCK), an essential element of the positive regulatory arm in the human biological clock, is involved in metabolic regulation. The aim was to investigate the behavioral (sleep duration, eating patterns and chronobiological characteristics) and hormonal (plasma ghrelin and leptin concentrations) factors which could explain the previously reported association between the CLOCK 3111T/C SNP and weight loss. We recruited 1495 overweight/obese subjects (BMI: 25-40 kg/m(2)) of 20-65 y. who attended outpatient obesity clinics in Murcia, in southeastern Spain. We detected an association between the CLOCK 3111T/C SNP and weight loss, which was particularly evident after 12-14 weeks of treatment (P = 0.038). Specifically, carriers of the minor C allele were more resistant to weight loss than TT individuals (Mean±SEM) (8.71±0.59 kg vs 10.4±0.57 kg) C and TT respectively. In addition, our data show that minor C allele carriers had: 1. shorter sleep duration Mean ± SEM (7.0±0.05 vs 7.3±0.05) C and TT respectively (P = 0.039), 2. higher plasma ghrelin concentrations Mean ± SEM (pg/ml) (1108±49 vs 976±47)(P = 0.034); 3. delayed breakfast time; 4. evening preference and 5. less compliance with a Mediterranean Diet pattern, as compared with TT homozygotes. Sleep reduction, changes in ghrelin values, alterations of eating behaviors and evening preference that characterized CLOCK 3111C carriers could be affecting weight loss. Our results support the hypothesis that the influence of the CLOCK gene may extend to a broad range of variables linked with human behaviors.
A method for the determination of the coefficient of rolling friction using cycloidal pendulum
NASA Astrophysics Data System (ADS)
Ciornei, M. C.; Alaci, S.; Ciornei, F. C.; Romanu, I. C.
2017-08-01
The paper presents a method for experimental finding of coefficient of rolling friction appropriate for biomedical applications based on the theory of cycloidal pendulum. When a mobile circle rolls over a fixed straight line, the points from the circle describe trajectories called normal cycloids. To materialize this model, it is sufficient that a small region from boundary surfaces of a moving rigid body is spherical. Assuming pure rolling motion, the equation of motion of the cycloidal pendulum is obtained - an ordinary nonlinear differential equation. The experimental device is composed by two interconnected balls rolling over the material to be studied. The inertial characteristics of the pendulum can be adjusted via weights placed on a rod. A laser spot oscillates together to the pendulum and provides the amplitude of oscillations. After finding the experimental parameters necessary in differential equation of motion, it can be integrated using the Runge-Kutta of fourth order method. The equation was integrated for several materials and found values of rolling friction coefficients. Two main conclusions are drawn: the coefficient of rolling friction influenced significantly the amplitude of oscillation but the effect upon the period of oscillation is practically imperceptible. A methodology is proposed for finding the rolling friction coefficient and the pure rolling condition is verified.
A Conserved Bicycle Model for Circadian Clock Control of Membrane Excitability
Flourakis, Matthieu; Kula-Eversole, Elzbieta; Hutchison, Alan L.; Han, Tae Hee; Aranda, Kimberly; Moose, Devon L.; White, Kevin P.; Dinner, Aaron R.; Lear, Bridget C.; Ren, Dejian; Diekman, Casey O.; Raman, Indira M.; Allada, Ravi
2015-01-01
Summary Circadian clocks regulate membrane excitability in master pacemaker neurons to control daily rhythms of sleep and wake. Here we find that two distinctly timed electrical drives collaborate to impose rhythmicity on Drosophila clock neurons. In the morning, a voltage-independent sodium conductance via the NA/NALCN ion channel depolarizes these neurons. This current is driven by the rhythmic expression of NCA localization factor-1, linking the molecular clock to ion channel function. In the evening, basal potassium currents peak to silence clock neurons. Remarkably, daily antiphase cycles of sodium and potassium currents also drive mouse clock neuron rhythms. Thus, we reveal an evolutionarily ancient strategy for the neural mechanisms that govern daily sleep and wake. PMID:26276633
Data-Driven Belief Revision in Children and Adults
ERIC Educational Resources Information Center
Masnick, Amy M.; Klahr, David; Knowles, Erica R.
2017-01-01
The ability to use numerical evidence to revise beliefs about the physical world is an essential component of scientific reasoning that begins to develop in middle childhood. In 2 studies, we explored how data variability and consistency with participants' initial beliefs about causal factors associated with pendulums affected their ability to…
Body weight, metabolism and clock genes
2010-01-01
Biological rhythms are present in the lives of almost all organisms ranging from plants to more evolved creatures. These oscillations allow the anticipation of many physiological and behavioral mechanisms thus enabling coordination of rhythms in a timely manner, adaption to environmental changes and more efficient organization of the cellular processes responsible for survival of both the individual and the species. Many components of energy homeostasis exhibit circadian rhythms, which are regulated by central (suprachiasmatic nucleus) and peripheral (located in other tissues) circadian clocks. Adipocyte plays an important role in the regulation of energy homeostasis, the signaling of satiety and cellular differentiation and proliferation. Also, the adipocyte circadian clock is probably involved in the control of many of these functions. Thus, circadian clocks are implicated in the control of energy balance, feeding behavior and consequently in the regulation of body weight. In this regard, alterations in clock genes and rhythms can interfere with the complex mechanism of metabolic and hormonal anticipation, contributing to multifactorial diseases such as obesity and diabetes. The aim of this review was to define circadian clocks by describing their functioning and role in the whole body and in adipocyte metabolism, as well as their influence on body weight control and the development of obesity. PMID:20712885
USDA-ARS?s Scientific Manuscript database
The goals of this research was (1) to analyze the role of emotional eating behavior on weight-loss progression during a 30-week weight-loss program in 1,272 individuals from a large Mediterranean population and (2) to test for interaction between CLOCK 3111 T/C SNP and emotional eating behavior on t...
Oxyntomodulin regulates resetting of the liver circadian clock by food
Landgraf, Dominic; Tsang, Anthony H; Leliavski, Alexei; Koch, Christiane E; Barclay, Johanna L; Drucker, Daniel J; Oster, Henrik
2015-01-01
Circadian clocks coordinate 24-hr rhythms of behavior and physiology. In mammals, a master clock residing in the suprachiasmatic nucleus (SCN) is reset by the light–dark cycle, while timed food intake is a potent synchronizer of peripheral clocks such as the liver. Alterations in food intake rhythms can uncouple peripheral clocks from the SCN, resulting in internal desynchrony, which promotes obesity and metabolic disorders. Pancreas-derived hormones such as insulin and glucagon have been implicated in signaling mealtime to peripheral clocks. In this study, we identify a novel, more direct pathway of food-driven liver clock resetting involving oxyntomodulin (OXM). In mice, food intake stimulates OXM secretion from the gut, which resets liver transcription rhythms via induction of the core clock genes Per1 and 2. Inhibition of OXM signaling blocks food-mediated resetting of hepatocyte clocks. These data reveal a direct link between gastric filling with food and circadian rhythm phasing in metabolic tissues. DOI: http://dx.doi.org/10.7554/eLife.06253.001 PMID:25821984
Dynamics of bow-tie shaped bursting: Forced pendulum with dynamic feedback.
Hongray, Thotreithem; Balakrishnan, Janaki
2016-12-01
A detailed study is performed on the parameter space of the mechanical system of a driven pendulum with damping and constant torque under feedback control. We report an interesting bow-tie shaped bursting oscillatory behaviour, which is exhibited for small driving frequencies, in a certain parameter regime, which has not been reported earlier in this forced system with dynamic feedback. We show that the bursting oscillations are caused because of a transition of the quiescent state to the spiking state by a saddle-focus bifurcation, and because of another saddle-focus bifurcation, which leads to cessation of spiking, bringing the system back to the quiescent state. The resting period between two successive bursts (T rest ) is estimated analytically.
Robust Control Algorithm for a Two Cart System and an Inverted Pendulum
NASA Technical Reports Server (NTRS)
Wilson, Chris L.; Capo-Lugo, Pedro
2011-01-01
The Rectilinear Control System can be used to simulate a launch vehicle during liftoff. Several control schemes have been developed that can control different dynamic models of the rectilinear plant. A robust control algorithm was developed that can control a pendulum to maintain an inverted position. A fluid slosh tank will be attached to the pendulum in order to test robustness in the presence of unknown slosh characteristics. The rectilinear plant consists of a DC motor and three carts mounted in series. Each cart s weight can be adjusted with brass masses and the carts can be coupled with springs. The pendulum is mounted on the first cart and an adjustable air damper can be attached to the third cart if desired. Each cart and the pendulum have a quadrature encoder to determine position. Full state feedback was implemented in order to develop the control algorithm along with a state estimator to determine the velocity states of the system. A MATLAB program was used to convert the state space matrices from continuous time to discrete time. This program also used a desired phase margin and damping ratio to determine the feedback gain matrix that would be used in the LabVIEW program. This experiment will allow engineers to gain a better understanding of liquid propellant slosh dynamics, therefore enabling them to develop more robust control algorithms for launch vehicle systems
Defense Acquisition Research Journal. Volume 19, Number 2, Issue 62, April 2012
2012-01-01
142Defense ARJ, April 2012, Vol. 19 No. 2 : 133–160 It appears the pendulum may be swinging back to fixed-price con- tracts with recent directives...natural flattening trend also leads to a potential drawback of the risk-driven contract. As the cost uncertainty increases, the government is forced
A Parametric Oscillator Experiment for Undergraduates
NASA Astrophysics Data System (ADS)
Huff, Alison; Thompson, Johnathon; Pate, Jacob; Kim, Hannah; Chiao, Raymond; Sharping, Jay
We describe an upper-division undergraduate-level analytic mechanics experiment or classroom demonstration of a weakly-damped pendulum driven into parametric resonance. Students can derive the equations of motion from first principles and extract key oscillator features, such as quality factor and parametric gain, from experimental data. The apparatus is compact, portable and easily constructed from inexpensive components. Motion control and data acquisition are accomplished using an Arduino micro-controller incorporating a servo motor, laser sensor, and data logger. We record the passage time of the pendulum through its equilibrium position and obtain the maximum speed per oscillation as a function of time. As examples of the interesting physics which the experiment reveals, we present contour plots depicting the energy of the system as functions of driven frequency and modulation depth. We observe the transition to steady state oscillation and compare the experimental oscillation threshold with theoretical expectations. A thorough understanding of this hands-on laboratory exercise provides a foundation for current research in quantum information and opto-mechanics, where damped harmonic motion, quality factor, and parametric amplification are central.
Next Generation JPL Ultra-Stable Trapped Ion Atomic Clocks
NASA Technical Reports Server (NTRS)
Burt, Eric; Tucker, Blake; Larsen, Kameron; Hamell, Robert; Tjoelker, Robert
2013-01-01
Over the past decade, trapped ion atomic clock development at the Jet Propulsion Laboratory (JPL) has focused on two directions: 1) new atomic clock technology for space flight applications that require strict adherence to size, weight, and power requirements, and 2) ultra-stable atomic clocks, usually for terrestrial applications emphasizing ultimate performance. In this paper we present a new ultra-stable trapped ion clock designed, built, and tested in the second category. The first new standard, L10, will be delivered to the Naval Research Laboratory for use in characterizing DoD space clocks.
PID Controller Design for FES Applied to Ankle Muscles in Neuroprosthesis for Standing Balance
Rouhani, Hossein; Same, Michael; Masani, Kei; Li, Ya Qi; Popovic, Milos R.
2017-01-01
Closed-loop controlled functional electrical stimulation (FES) applied to the lower limb muscles can be used as a neuroprosthesis for standing balance in neurologically impaired individuals. The objective of this study was to propose a methodology for designing a proportional-integral-derivative (PID) controller for FES applied to the ankle muscles toward maintaining standing balance for several minutes and in the presence of perturbations. First, a model of the physiological control strategy for standing balance was developed. Second, the parameters of a PID controller that mimicked the physiological balance control strategy were determined to stabilize the human body when modeled as an inverted pendulum. Third, this PID controller was implemented using a custom-made Inverted Pendulum Standing Apparatus that eliminated the effect of visual and vestibular sensory information on voluntary balance control. Using this setup, the individual-specific FES controllers were tested in able-bodied individuals and compared with disrupted voluntary control conditions in four experimental paradigms: (i) quiet-standing; (ii) sudden change of targeted pendulum angle (step response); (iii) balance perturbations that simulate arm movements; and (iv) sudden change of targeted angle of a pendulum with individual-specific body-weight (step response). In paradigms (i) to (iii), a standard 39.5-kg pendulum was used, and 12 subjects were involved. In paradigm (iv) 9 subjects were involved. Across the different experimental paradigms and subjects, the FES-controlled and disrupted voluntarily-controlled pendulum angle showed root mean square errors of <1.2 and 2.3 deg, respectively. The root mean square error (all paradigms), rise time, settle time, and overshoot [paradigms (ii) and (iv)] in FES-controlled balance were significantly smaller or tended to be smaller than those observed with voluntarily-controlled balance, implying improved steady-state and transient responses of FES-controlled balance. At the same time, the FES-controlled balance required similar torque levels (no significant difference) as voluntarily-controlled balance. The implemented PID parameters were to some extent consistent among subjects for standard weight conditions and did not require prolonged individual-specific tuning. The proposed methodology can be used to design FES controllers for closed-loop controlled neuroprostheses for standing balance. Further investigation of the clinical implementation of this approach for neurologically impaired individuals is needed. PMID:28676739
Ribas-Latre, A; Baselga-Escudero, L; Casanova, E; Arola-Arnal, A; Salvadó, M J; Arola, L; Bladé, C
2015-02-01
Circadian rhythm plays an important role in maintaining homeostasis, and its disruption increases the risk of developing metabolic syndrome. Circadian rhythm is maintained by a central clock in the hypothalamus that is entrained by light, but circadian clocks are also present in peripheral tissues. These peripheral clocks are trained by other cues, such as diet. The aim of this study was to determine whether proanthocyanidins, the most abundant polyphenols in the human diet, modulate the expression of clock and clock-controlled genes in the liver, gut and mesenteric white adipose tissue (mWAT) in healthy and obese rats. Grape seed proanthocyanidin extracts (GSPEs) were administered for 21 days at 5, 25 or 50 mg GSPE/kg body weight in healthy rats and 25 mg GSPE/kg body weight in rats with diet-induced obesity. In healthy animals, GSPE administration led to the overexpression of core clock genes in a positive dose-dependent manner. Moreover, the acetylated BMAL1 protein ratio increased with the same pattern in the liver and mWAT. With regards to clock-controlled genes, Per2 was also overexpressed, whereas Rev-erbα and RORα were repressed in a negative dose-dependent manner. Diet-induced obesity always resulted in the overexpression of some core clock and clock-related genes, although the particular gene affected was tissue specific. GSPE administration counteracted disturbances in the clock genes in the liver and gut but was less effective in normalizing the clock gene disruption in WAT. In conclusion, proanthocyanidins have the capacity to modulate peripheral molecular clocks in both healthy and obese states. Copyright © 2015 Elsevier Inc. All rights reserved.
Mercury Atomic Frequency Standards for Space Based Navigation and Timekeeping
NASA Technical Reports Server (NTRS)
Tjoelker, R. L.; Burt, E. A.; Chung, S.; Hamell, R. L.; Prestage, J. D.; Tucker, B.; Cash, P.; Lutwak, R.
2012-01-01
A low power Mercury Atomic Frequency Standard (MAFS) has been developed and demonstrated on the path towards future space clock applications. A self contained mercury ion breadboard clock: emulating flight clock interfaces, steering a USO local oscillator, and consuming approx 40 Watts has been operating at JPL for more than a year. This complete, modular ion clock instrument demonstrates that key GNSS size, weight, and power (SWaP) requirements can be achieved while still maintaining short and long term performance demonstrated in previous ground ion clocks. The MAFS breadboard serves as a flexible platform for optimizing further space clock development and guides engineering model design trades towards fabrication of an ion clock for space flight.
Compensation for intracellular environment in expression levels of mammalian circadian clock genes
Matsumura, Ritsuko; Okamoto, Akihiko; Node, Koichi; Akashi, Makoto
2014-01-01
The circadian clock is driven by transcriptional oscillation of clock genes in almost all body cells. To investigate the effect of cell type-specific intracellular environment on the circadian machinery, we examined gene expression profiles in five peripheral tissues. As expected, the phase relationship between expression rhythms of nine clock genes was similar in all tissues examined. We also compared relative expression levels of clock genes among tissues, and unexpectedly found that quantitative variation remained within an approximately three-fold range, which was substantially smaller than that of metabolic housekeeping genes. Interestingly, circadian gene expression was little affected even when fibroblasts were cultured with different concentrations of serum. Together, these findings support a hypothesis that expression levels of clock genes are quantitatively compensated for the intracellular environment, such as redox potential and metabolite composition. However, more comprehensive studies are required to reach definitive conclusions. PMID:24504324
USDA-ARS?s Scientific Manuscript database
Introduction: The success of obesity therapy is dependent on the genetic background of the patient. Circadian Locomotor Output Cycles Kaput (CLOCK), one of the transcription factors from the positive limb of the molecular clock, is involved in metabolic alterations. Objective: To investigate whethe...
Inexpensive Clock for Displaying Planetary or Sidereal Time
NASA Technical Reports Server (NTRS)
Lux, James
2007-01-01
An inexpensive wall clock has been devised for displaying solar time or sidereal time as it would be perceived on a planet other than the Earth, or for displaying sidereal time on the Earth. The concept of a wall clock synchronized to a period other than the terrestrial mean solar day is not new in itself. What is new here is that the clock is realized through a relatively simple electronic modification of a common battery-powered, quartz-crystal-oscillator-driven wall clock. The essence of the modification is to shut off the internal oscillator of the clock and replace the internal-oscillator output signal with a signal of the required frequency generated by an external oscillator. The unmodified clock electronic circuitry includes a quartz crystal connected to an integrated circuit (IC) that includes, among other parts, a buffer amplifier that conditions the oscillator output. The modification is effected by removing the quartz crystal and connecting the output terminal of the external oscillator, via a capacitor, to the input terminal of the buffer amplifier
NASA Astrophysics Data System (ADS)
Lee, Yong Sam; Kim, Sang Hyuk; Park, Je Hoon
2013-09-01
Honsangui (celestial globe) which is a water-hammering method astronomical clock is recorded in "Juhaesuyong" which is Volume VI of supplement from "Damheonseo", written by Hong Dae-Yong (1731~1783). We made out the conceptual design of Hong Dae-Yong's Honsangui through the study on its structure and working mechanism. Honsangui consist of three rings and two layers, the structure of rings which correspond to outer layer is similar to his own Tongcheonui (armillary sphere) which is a kind of armillary sphere. Honsang sphere which correspond to inner layer depicts constellations and milky way and two beads hang on it as Sun and Moon respectively for realize the celestial motion. Tongcheonui is operated by the pendulum power but Honsangui is operated by water-hammering method mechanism. This Honsangui's working mechanism is the traditional way of Joseon and it was simplified the working mechanism of Shui y'n i hsiang t'ai which is a representative astronomical clock of China. This record of Honsangui is the only historical record about the water-hammering method working mechanism of Joseon Era and it provide the study of water-hammering method mechanism with a vital clue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael, Alicia K.; Fribourgh, Jennifer L.; Chelliah, Yogarany
The basic helix-loop-helix PAS domain (bHLH-PAS) transcription factor CLOCK:BMAL1 (brain and muscle Arnt-like protein 1) sits at the core of the mammalian circadian transcription/translation feedback loop. Precise control of CLOCK:BMAL1 activity by coactivators and repressors establishes the ~24-h periodicity of gene expression. Formation of a repressive complex, defined by the core clock proteins cryptochrome 1 (CRY1):CLOCK:BMAL1, plays an important role controlling the switch from repression to activation each day. Here in this paper, we show that CRY1 binds directly to the PAS domain core of CLOCK: BMAL1, driven primarily by interaction with the CLOCK PAS-B domain. Integrative modeling and solutionmore » X-ray scattering studies unambiguously position a key loop of the CLOCK PAS-B domain in the secondary pocket of CRY1, analogous to the antenna chromophore-binding pocket of photolyase. CRY1 docks onto the transcription factor alongside the PAS domains, extending above the DNA-binding bHLH domain. Single point mutations at the interface on either CRY1 or CLOCK disrupt formation of the ternary complex, highlighting the importance of this interface for direct regulation of CLOCK:BMAL1 activity by CRY1.« less
Projectiles, pendula, and special relativity
NASA Astrophysics Data System (ADS)
Price, Richard H.
2005-05-01
The kind of flat-earth gravity used in introductory physics appears in an accelerated reference system in special relativity. From this viewpoint, we work out the special relativistic description of a ballistic projectile and a simple pendulum, two examples of simple motion driven by earth-surface gravity. The analysis uses only the basic mathematical tools of special relativity typical of a first-year university course.
Cuesta, Ines H; Lahiri, Kajori; Lopez-Olmeda, Jose Fernando; Loosli, Felix; Foulkes, Nicholas S; Vallone, Daniela
2014-05-01
One key challenge for the field of chronobiology is to identify how circadian clock function emerges during early embryonic development. Teleosts such as the zebrafish are ideal models for studying circadian clock ontogeny since the entire process of development occurs ex utero in an optically transparent chorion. Medaka (Oryzias latipes) represents another powerful fish model for exploring early clock function with, like the zebrafish, many tools available for detailed genetic analysis. However, to date there have been no reports documenting circadian clock gene expression during medaka development. Here we have characterized the expression of key clock genes in various developmental stages and in adult tissues of medaka. As previously reported for other fish, light dark cycles are required for the emergence of clock gene expression rhythms in this species. While rhythmic expression of per and cry genes is detected very early during development and seems to be light driven, rhythmic clock and bmal expression appears much later around hatching time. Furthermore, the maturation of clock function seems to correlate with the appearance of rhythmic expression of these positive elements of the clock feedback loop. By accelerating development through elevated temperatures or by artificially removing the chorion, we show an earlier onset of rhythmicity in clock and bmal expression. Thus, differential maturation of key elements of the medaka clock mechanism depends on the developmental stage and the presence of the chorion.
Michael, Alicia K.; Fribourgh, Jennifer L.; Chelliah, Yogarany; ...
2017-01-31
The basic helix-loop-helix PAS domain (bHLH-PAS) transcription factor CLOCK:BMAL1 (brain and muscle Arnt-like protein 1) sits at the core of the mammalian circadian transcription/translation feedback loop. Precise control of CLOCK:BMAL1 activity by coactivators and repressors establishes the ~24-h periodicity of gene expression. Formation of a repressive complex, defined by the core clock proteins cryptochrome 1 (CRY1):CLOCK:BMAL1, plays an important role controlling the switch from repression to activation each day. Here in this paper, we show that CRY1 binds directly to the PAS domain core of CLOCK: BMAL1, driven primarily by interaction with the CLOCK PAS-B domain. Integrative modeling and solutionmore » X-ray scattering studies unambiguously position a key loop of the CLOCK PAS-B domain in the secondary pocket of CRY1, analogous to the antenna chromophore-binding pocket of photolyase. CRY1 docks onto the transcription factor alongside the PAS domains, extending above the DNA-binding bHLH domain. Single point mutations at the interface on either CRY1 or CLOCK disrupt formation of the ternary complex, highlighting the importance of this interface for direct regulation of CLOCK:BMAL1 activity by CRY1.« less
USDA-ARS?s Scientific Manuscript database
Genetics is behind our circadian machinery. CLOCK (Circadian Locomotor Output Cycles Kaput) 3111T/C single-nucleotide polymorphism (SNP) has been previously related to obesity and weight loss. However, phenotypic association and functionality of CLOCK 3111 locus is still unknown. The aim of this stu...
Abruzzi, Katharine C; Zadina, Abigail; Luo, Weifei; Wiyanto, Evelyn; Rahman, Reazur; Guo, Fang; Shafer, Orie; Rosbash, Michael
2017-02-01
Locomotor activity rhythms are controlled by a network of ~150 circadian neurons within the adult Drosophila brain. They are subdivided based on their anatomical locations and properties. We profiled transcripts "around the clock" from three key groups of circadian neurons with different functions. We also profiled a non-circadian outgroup, dopaminergic (TH) neurons. They have cycling transcripts but fewer than clock neurons as well as low expression and poor cycling of clock gene transcripts. This suggests that TH neurons do not have a canonical circadian clock and that their gene expression cycling is driven by brain systemic cues. The three circadian groups are surprisingly diverse in their cycling transcripts and overall gene expression patterns, which include known and putative novel neuropeptides. Even the overall phase distributions of cycling transcripts are distinct, indicating that different regulatory principles govern transcript oscillations. This surprising cell-type diversity parallels the functional heterogeneity of the different neurons.
Wind turbine with automatic pitch and yaw control
Cheney, Jr., Marvin Chapin; Spierings, Petrus A. M.
1978-01-01
A wind turbine having a flexible central beam member supporting aerodynamic blades at opposite ends thereof and fabricated of uni-directional high tensile strength material bonded together into beam form so that the beam is lightweight, and has high tensile strength to carry the blade centrifugal loads, low shear modulus to permit torsional twisting thereof for turbine speed control purposes, and adequate bending stiffness to permit out-of-plane deflection thereof for turbine yard control purposes. A selectively off-set weighted pendulum member is pivotally connected to the turbine and connected to the beam or blade so as to cause torsional twisting thereof in response to centrifugal loading of the pendulum member for turbine speed control purposes.
NASA Astrophysics Data System (ADS)
Barone, F.; Giordano, G.
2017-04-01
In this paper we present monolithic implementations of tunable mechanical seismometers and accelerometers (horizontal, vertical and angular) based on the UNISA Folded Pendulum configuration, protected by three international patents and commercially available. Typical characteristics are measurement band 10-7 / 1kHz, sensitivity down to ≍ 10-15 m/ √ Hz, directivity > 104, weight < 1.5 kg, dimensions < 10 cm, coupled to a large insensitivity to environmental noises and capability of operating in ultra high vacuum and cryogenic environments. Typical applications of this class of sensors are in the field of earthquake engineering, seismology, geophysics, civil engineering (buildings, bridges, dams, etc.), space (inertial guide).
Redox rhythm reinforces the circadian clock to gate immune response.
Zhou, Mian; Wang, Wei; Karapetyan, Sargis; Mwimba, Musoki; Marqués, Jorge; Buchler, Nicolas E; Dong, Xinnian
2015-07-23
Recent studies have shown that in addition to the transcriptional circadian clock, many organisms, including Arabidopsis, have a circadian redox rhythm driven by the organism's metabolic activities. It has been hypothesized that the redox rhythm is linked to the circadian clock, but the mechanism and the biological significance of this link have only begun to be investigated. Here we report that the master immune regulator NPR1 (non-expressor of pathogenesis-related gene 1) of Arabidopsis is a sensor of the plant's redox state and regulates transcription of core circadian clock genes even in the absence of pathogen challenge. Surprisingly, acute perturbation in the redox status triggered by the immune signal salicylic acid does not compromise the circadian clock but rather leads to its reinforcement. Mathematical modelling and subsequent experiments show that NPR1 reinforces the circadian clock without changing the period by regulating both the morning and the evening clock genes. This balanced network architecture helps plants gate their immune responses towards the morning and minimize costs on growth at night. Our study demonstrates how a sensitive redox rhythm interacts with a robust circadian clock to ensure proper responsiveness to environmental stimuli without compromising fitness of the organism.
High speed imager test station
Yates, George J.; Albright, Kevin L.; Turko, Bojan T.
1995-01-01
A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment.
High speed imager test station
Yates, G.J.; Albright, K.L.; Turko, B.T.
1995-11-14
A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment. 12 figs.
Zilberman-Peled, B; Appelbaum, L; Vallone, D; Foulkes, N S; Anava, S; Anzulovich, A; Coon, S L; Klein, D C; Falcón, J; Ron, B; Gothilf, Y
2007-01-01
Pineal serotonin-N-acetyltransferase (arylalkylamine-N-acetyltransferase; AANAT) is considered the key enzyme in the generation of circulating melatonin rhythms; the rate of melatonin production is determined by AANAT activity. In all the examined species, AANAT activity is regulated at the post-translational level and, to a variable degree, also at the transcriptional level. Here, the transcriptional regulation of pineal aanat (aanat2) of the gilthead seabream (Sparus aurata) was investigated. Real-time polymerase chain reaction quantification of aanat2 mRNA levels in the pineal gland collected throughout the 24-h cycle revealed a rhythmic expression pattern. In cultured pineal glands, the amplitude was reduced, but the daily rhythmic expression pattern was maintained under constant illumination, indicating a circadian clock-controlled regulation of seabream aanat2. DNA constructs were prepared in which green fluorescent protein was driven by the aanat2 promoters of seabream and Northern pike. In vivo transient expression analyses in zebrafish embryos indicated that these promoters contain the necessary elements to drive enhanced expression in the pineal gland. In the light-entrainable clock-containing PAC-2 zebrafish cell line, a stably transfected seabream aanat2 promoter-luciferase DNA construct exhibited a clock-controlled circadian rhythm of luciferase activity, characteristic for an E-box-driven expression. In NIH-3T3 cells, the seabream aanat2 promoter was activated by a synergistic action of BMAL/CLOCK and orthodenticle homeobox 5 (OTX5). Promoter sequence analyses revealed the presence of the photoreceptor conserved element and an extended E-box (i.e. the binding sites for BMAL/CLOCK and OTX5 that have been previously associated with pineal-specific and rhythmic gene expression). These results suggest that seabream aanat2 is a clock-controlled gene that is regulated by conserved mechanisms.
Temperature-dependent resetting of the molecular circadian oscillator in Drosophila
Goda, Tadahiro; Sharp, Brandi; Wijnen, Herman
2014-01-01
Circadian clocks responsible for daily time keeping in a wide range of organisms synchronize to daily temperature cycles via pathways that remain poorly understood. To address this problem from the perspective of the molecular oscillator, we monitored temperature-dependent resetting of four of its core components in the fruitfly Drosophila melanogaster: the transcripts and proteins for the clock genes period (per) and timeless (tim). The molecular circadian cycle in adult heads exhibited parallel responses to temperature-mediated resetting at the levels of per transcript, tim transcript and TIM protein. Early phase adjustment specific to per transcript rhythms was explained by clock-independent temperature-driven transcription of per. The cold-induced expression of Drosophila per contrasts with the previously reported heat-induced regulation of mammalian Period 2. An altered and more readily re-entrainable temperature-synchronized circadian oscillator that featured temperature-driven per transcript rhythms and phase-shifted TIM and PER protein rhythms was found for flies of the ‘Tim 4’ genotype, which lacked daily tim transcript oscillations but maintained post-transcriptional temperature entrainment of tim expression. The accelerated molecular and behavioural temperature entrainment observed for Tim 4 flies indicates that clock-controlled tim expression constrains the rate of temperature cycle-mediated circadian resetting. PMID:25165772
Polymorphism in the CLOCK gene may influence the effect of fat intake reduction on weight loss.
Loria-Kohen, Viviana; Espinosa-Salinas, Isabel; Marcos-Pasero, Helena; Lourenço-Nogueira, Thais; Herranz, Jesús; Molina, Susana; Reglero, Guillermo; Ramirez de Molina, Ana
2016-04-01
The aim of this study was to assess the effect of a weight loss treatment on obesity- associated variables with respect to the CLOCK and FTO genotypes. In all, 179 volunteers (78% female) participated in a 12-week calorie-restriction program; hypocaloric diets of between 5442 and 10048 kJ/d were individually prescribed to all participants. Dietetic, anthropometric, and biochemical data were collected at baseline and at the end of the intervention. When treatment was over, five single nucleotide polymorphisms (SNPs) were sought in CLOCK and FTO in all participants who provided consent. Bonferroni-corrected linear regression models were used to examine the influence of interactions of the type genotype × dietetic change on obesity-associated variables. Variation in the CLOCK and FTO genotypes had no significant influence on the change in obesity-associated variables. The interaction genotype × percentage intake of dietary fat had a significant influence on body mass index (BMI; adjusted P = 0.03). Participants carrying CLOCK rs3749474 (TT + CT) showed a positive association between the change in percentage intake of dietary fat and change in BMI (β = 0.044; 95% confidence interval [CI], 0.0119-0.0769; P = 0.008), whereas participants homozygous for the wild-type allele (CC) showed a negative, although nonsignificant association (β = -0.032; 95% CI, -0.0694 to 0.036; P = 0.077). The possession of CLOCK rs3749474 may influence the effect of reducing the percentage intake of dietary fat on obesity-associated variables. Participants carrying this SNP might benefit more than others from weight loss treatment involving dietary fat restriction. The treatment of obesity might therefore be customized, depending on the alleles carried. Copyright © 2016 Elsevier Inc. All rights reserved.
The Big Breakfast Study: Chrono-nutrition influence on energy expenditure and bodyweight.
Ruddick-Collins, L C; Johnston, J D; Morgan, P J; Johnstone, A M
2018-06-01
A growing body of evidence highlights the importance of the biological clock as a modulator of energy balance and metabolism. Recent studies in humans have shown that ingested calories are apparently utilised more efficiently in the morning than in the evening and this is manifest through improved weight loss, even under iso-energetic calorie intake. The mechanisms behind this enhanced morning energy metabolism are not yet clear, although it may result from behavioural adaptations or circadian driven variations in physiology and energy metabolism. A major objective of the newly funded Big Breakfast Study therefore is to investigate the mechanistic basis of this amplified morning thermogenesis leading to enhanced weight loss, by exploring behavioural and physiological adaptations in energy expenditure alongside the underlying circadian biology. This report briefly discusses the current research linking meal timing, circadian rhythms and metabolism; highlights the research gaps; and provides an overview of the studies being undertaken as part of the Medical Research Council-funded Big Breakfast Study .
Dynamic Data Driven Applications Systems (DDDAS)
2013-03-06
INS • Chip-scale atomic clocks • Ad hoc networks • Polymorphic networks • Agile networks • Laser communications • Frequency-agile RF...atomi clocks • Ad hoc networks • Polymorphic networks • Agile networks • Laser co munications • Frequency-agile RF systems...Real-Time Doppler Wind Wind field Sensor observations Energy Estimation Atmospheric Models for On-line Planning Planning and Control
NASA Astrophysics Data System (ADS)
van Emmerik, T. H. M.; Li, Z.; Sivapalan, M.; Pande, S.; Kandasamy, J.; Savenije, H. H. G.; Chanan, A.; Vigneswaran, S.
2014-03-01
Competition for water between humans and ecosystems is set to become a flash point in the coming decades in many parts of the world. An entirely new and comprehensive quantitative framework is needed to establish a holistic understanding of that competition, thereby enabling the development of effective mediation strategies. This paper presents a modeling study centered on the Murrumbidgee River Basin (MRB). The MRB has witnessed a unique system dynamics over the last 100 years as a result of interactions between patterns of water management and climate driven hydrological variability. Data analysis has revealed a pendulum swing between agricultural development and restoration of environmental health and ecosystem services over different stages of basin scale water resource development. A parsimonious, stylized, quasi-distributed coupled socio-hydrologic system model that simulates the two-way coupling between human and hydrological systems of the MRB is used to mimic dominant features of the pendulum swing. The model consists of coupled nonlinear ordinary differential equations that describe the interaction between five state variables that govern the co-evolution: reservoir storage, irrigated area, human population, ecosystem health, and a measure of environmental awareness. The model simulations track the propagation of the external climatic and socio-economic drivers through this coupled, complex system to the emergence of the pendulum swing. The model results point to a competition between human "productive" and environmental "restorative" forces that underpin the pendulum swing. Both the forces are endogenous, i.e., generated by the system dynamics in response to external drivers and mediated by humans through technology change and environmental awareness, respectively. We propose this as a generalizable modeling framework for coupled human hydrological systems that is potentially transferable to systems in different climatic and socio-economic settings.
Design of a delay-locked-loop-based time-to-digital converter
NASA Astrophysics Data System (ADS)
Zhaoxin, Ma; Xuefei, Bai; Lu, Huang
2013-09-01
A time-to-digital converter (TDC) based on a reset-free and anti-harmonic delay-locked loop (DLL) circuit for wireless positioning systems is discussed and described. The DLL that generates 32-phase clocks and a cycle period detector is employed to avoid “false locking". Driven by multiphase clocks, an encoder detects pulses and outputs the phase of the clock when the pulse arrives. The proposed TDC was implemented in SMIC 0.18 μm CMOS technology, and its core area occupies 0.7 × 0.55 mm2. The reference frequency ranges from 20 to 150 MHz. An LSB resolution of 521 ps can be achieved by using a reference clock of 60 MHz and the DNL is less than ±0.75 LSB. It dissipates 31.5 mW at 1.8 V supply voltage.
Helicopter vibration suppression using simple pendulum absorbers on the rotor blade
NASA Technical Reports Server (NTRS)
Pierce, G. A.; Hanouva, M. N. H.
1982-01-01
A comprehensive anaytical design procedure for the installation of simple pendulums on the blades of a helicopter rotor to suppress the root reactions is presented. A frequency response anaysis is conducted of typical rotor blades excited by a harmonic variation of spanwise airload distributions as well as a concentrated load at the tip. The results presented included the effect of pendulum tuning on the minimization of the hub reactions. It is found that a properly designed flapping pendulum attenuates the root out-of-plane force and moment whereas the optimum designed lead-lag pendulum attenuates the root in-plane reactions. For optimum pendulum tuning the parameters to be determined are the pendulum uncoupled natural frequency, the pendulum spanwise location and its mass. It is found that the optimum pendulum frequency is in the vicinity of the excitation frequency. For the optimum pendulum a parametric study is conducted. The parameters varied include prepitch, pretwist, precone and pendulum hinge offset.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jing; Yun, Peter; Tian, Yuan
2014-03-07
A scheme for a Ramsey-coherent population trapping (CPT) atomic clock that eliminates the acousto-optic modulator (AOM) is proposed and experimentally studied. Driven by a periodically microwave modulated current, the vertical-cavity surface-emitting laser emits a continuous beam that switches between monochromatic and multichromatic modes. Ramsey-CPT interference has been studied with this mode-switching beam. In eliminating the AOM, which is used to generate pulsed laser in conventional Ramsey-CPT atomic clock, the physics package of the proposed scheme is virtually the same as that of a conventional compact CPT atomic clock, although the resource budget for the electronics will slightly increase as amore » microwave switch should be added. By evaluating and comparing experimentally recorded signals from the two Ramsey-CPT schemes, the short-term frequency stability of the proposed scheme was found to be 46% better than the scheme with AOM. The experimental results suggest that the implementation of a compact Ramsey-CPT atomic clock promises better frequency stability.« less
Redox and the circadian clock in plant immunity: A balancing act.
Karapetyan, Sargis; Dong, Xinnian
2018-05-01
Plants' reliance on sunlight for energy makes their light-driven circadian clock a critical regulator in balancing the energy needs for vital activities such as growth and defense. Recent studies show that the circadian clock acts as a strategic planner to prime active defense responses towards the morning or daytime when conditions, such as the opening of stomata required for photosynthesis, are favorable for attackers. Execution of the defense response, on the other hand, is determined according to the cellular redox state and is regulated in part by the production of reactive oxygen and nitrogen species upon pathogen challenge. The interplay between redox and the circadian clock further gates the onset of defense response to a specific time of the day to avoid conflict with growth-related activities. In this review, we focus on discussing the roles of the circadian clock as a robust overseer and the cellular redox as a dynamic executor of plant defense. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Clock-driven vasopressin neurotransmission mediates anticipatory thirst prior to sleep.
Gizowski, C; Zaelzer, C; Bourque, C W
2016-09-29
Circadian rhythms have evolved to anticipate and adapt animals to the constraints of the earth's 24-hour light cycle. Although the molecular processes that establish periodicity in clock neurons of the suprachiasmatic nucleus (SCN) are well understood, the mechanisms by which axonal projections from the central clock drive behavioural rhythms are unknown. Here we show that the sleep period in mice (Zeitgeber time, ZT0-12) is preceded by an increase in water intake promoted entirely by the central clock, and not motivated by physiological need. Mice denied this surge experienced significant dehydration near the end of the sleep period, indicating that this water intake contributes to the maintenance of overnight hydromineral balance. Furthermore, this effect relies specifically on the activity of SCN vasopressin (VP) neurons that project to thirst neurons in the OVLT (organum vasculosum lamina terminalis), where VP is released as a neurotransmitter. SCN VP neurons become electrically active during the anticipatory period (ZT21.5-23.5), and depolarize and excite OVLT neurons through the activation of postsynaptic VP V1a receptors and downstream non-selective cation channels. Optogenetic induction of VP release before the anticipatory period (basal period; ZT19.5-21.5) excited OVLT neurons and prompted a surge in water intake. Conversely, optogenetic inhibition of VP release during the anticipatory period inhibited the firing of OVLT neurons and prevented the corresponding increase in water intake. Our findings reveal the existence of anticipatory thirst, and demonstrate this behaviour to be driven by excitatory peptidergic neurotransmission mediated by VP release from central clock neurons.
Sun, Linjie; Wang, Yan; Song, Yu; Cheng, Xiang-Rong; Xia, Shufang; Rahman, Md Ramim Tanver; Shi, Yonghui; Le, Guowei
2015-02-27
Circadian rhythmic disorders induced by high-fat diet are associated with metabolic diseases. Resveratrol could improve metabolic disorder, but few reports focused on its effects on circadian rhythm disorders in a variety of studies. The aim of the present study was to analyze the potential effects of resveratrol on high-fat diet-induced disorders about the rhythmic expression of clock genes and clock-controlled lipid metabolism. Male C57BL/6 mice were divided into three groups: a standard diet control group (CON), a high-fat diet (HFD) group and HFD supplemented with 0.1% (w/w) resveratrol (RES). The body weight, fasting blood glucose and insulin, plasma lipids and leptin, whole body metabolic status and the expression of clock genes and clock-controlled lipogenic genes were analyzed at four different time points throughout a 24-h cycle (8:00, 14:00, 20:00, 2:00). Resveratrol, being associated with rhythmic restoration of fasting blood glucose and plasma insulin, significantly decreased the body weight in HFD mice after 11 weeks of feeding, as well as ameliorated the rhythmities of plasma leptin, lipid profiles and whole body metabolic status (respiratory exchange ratio, locomotor activity, and heat production). Meanwhile, resveratrol modified the rhythmic expression of clock genes (Clock, Bmal1 and Per2) and clock-controlled lipid metabolism related genes (Sirt1, Pparα, Srebp-1c, Acc1 and Fas). The response pattern of mRNA expression for Acc1 was similar to the plasma triglyceride. All these results indicated that resveratrol reduced lipogenesis and ultimately normalized rhythmic expression of plasma lipids, possibly via its action on clock machinery. Copyright © 2015 Elsevier Inc. All rights reserved.
Relationship between clock and star drawing and the degree of hepatic encephalopathy.
Edwin, Natasha; Peter, John Victor; John, George; Eapen, C E; Graham, Petra L
2011-09-01
PURPOSE OF THE STUDY Current hepatic encephalopathy grading tools are limited because of complexity or subjectivity. The degree of constructional apraxia could serve as a simple, objective and reproducible tool to grade encephalopathy. STUDY DESIGN In this cross-sectional study of patients with chronic liver disease, the degree of constructional apraxia was judged by their ability to copy a star and clock face and compared with conventional encephalopathy grading by the West Haven Criteria (WHC) and the Porto Systemic Encephalopathy Index (PSEI). Three blinded observers independently graded the figures. Sensitivity, specificity and positive predictive value (PPV) of clock and star scores (score 0 implying no encephalopathy and >0 hepatic encephalopathy) were assessed against conventional scoring systems (WHC grade >0 or PSEI ≥0.33 indicating encephalopathy). Mosaic and box plots were generated to assess if the degree of constructional apraxia correlated with the severity of encephalopathy. RESULTS 71 patients were studied between October 2008 and July 2009; 11 (15.4%) had WHC grade 0, 32 (45%) grade 1, and 28 (39.4%) grades 2 and 3 encephalopathy. The sensitivity, specificity and PPV of the clock drawing for the diagnosis of encephalopathy was 85%, 80%, and 96%, respectively, and 77%, 70%, and 94%, respectively, for the star drawing. Box plots and intervals on mean PSEI showed an increasing relationship between clock/star scores and PSEI. There was substantial agreement between WHC and clock (weighted κ 0.61) and star scores (weighted κ 0.71). Inter-observer reliability was at least 0.70 for star and at least 0.79 for the clock score. CONCLUSION Clock and star drawing may serve as reproducible, inexpensive bedside tools for diagnosing and grading the severity of hepatic encephalopathy.
Durgan, David J.; Tsai, Ju-Yun; Grenett, Maximiliano H.; Pat, Betty M.; Ratcliffe, William F.; Villegas-Montoya, Carolina; Garvey, Merissa E.; Nagendran, Jeevan; Dyck, Jason R.B.; Bray, Molly S.; Gamble, Karen L.; Gimble, Jeffrey M.; Young, Martin E.
2011-01-01
Circadian dyssynchrony of an organism (at the whole body level) with its environment, either through light/dark cycle or genetic manipulation of clock genes, augments various cardiometabolic diseases. The cardiomyocyte circadian clock has recently been shown to influence multiple myocardial processes, ranging from transcriptional regulation and energy metabolism, to contractile function. We therefore reasoned that chronic dyssychrony of the cardiomyocyte circadian clock with its environment would precipitate myocardial maladaptation to a circadian challenge (simulated shift work; SSW). To test this hypothesis, 2 and 20 month old wild-type and CCM (Cardiomyocyte Clock Mutant; a model with genetic temporal suspension of the cardiomyocyte circadian clock at the active-to-sleep phase transition) mice were subjected to chronic (16-wks) bi-weekly 12-hr phase shifts in the light/dark cycle (i.e., SSW). Assessment of adaptation/maladaptation at whole body homeostatic, gravimetric, humoral, histological, transcriptional, and cardiac contractile function levels revealed essentially identical responses between wild-type and CCM littermates. However, CCM hearts exhibit increased bi-ventricular weight, cardiomyocyte size, and molecular markers of hypertrophy (anf, mcip1) independent of aging and/or SSW. Similarly, a second genetic model of selective temporal suspension of the cardiomyocyte circadian clock (Cardiomyocyte-specific BMAL1 Knockout [CBK] mice) exhibits increased bi-ventricular weight and mcip1 expression. Wild-type mice exhibit 5-fold greater cardiac hypertrophic growth (and 6-fold greater anf mRNA induction) when challenged with the hypertrophic agonist isoproterenol at the active-to-sleep phase transition, relative to isoproterenol administration at the sleep-to-active phase transition. This diurnal variation was absent in CCM mice. Collectively, these data suggest that the cardiomyocyte circadian clock likely influences responsiveness of the heart to hypertrophic stimuli. PMID:21452915
A Personal Navigation System Based on Inertial and Magnetic Field Measurements
2010-09-01
MATLAB IMPLEMENTATION.................................................................74 G. A MODEL FOR PENDULUM MOTION SENSOR DATA...76 1. Pendulum Model for MATLAB Simulation....................................76 2. Sensor Data Generated with the Pendulum Model... PENDULUM ..................................................................................................88 I. FILTER PERFORMANCE WITH REAL PENDULUM DATA
Broadband pendulum energy harvester
NASA Astrophysics Data System (ADS)
Liang, Changwei; Wu, You; Zuo, Lei
2016-09-01
A novel electromagnetic pendulum energy harvester with mechanical motion rectifier (MMR) is proposed and investigated in this paper. MMR is a mechanism which rectifies the bidirectional swing motion of the pendulum into unidirectional rotation of the generator by using two one-way clutches in the gear system. In this paper, two prototypes of pendulum energy harvester with MMR and without MMR are designed and fabricated. The dynamic model of the proposed MMR pendulum energy harvester is established by considering the engagement and disengagement of the one way clutches. The simulation results show that the proposed MMR pendulum energy harvester has a larger output power at high frequencies comparing with non-MMR pendulum energy harvester which benefits from the disengagement of one-way clutch during pendulum vibration. Moreover, the proposed MMR pendulum energy harvester is broadband compare with non-MMR pendulum energy harvester, especially when the equivalent inertia is large. An experiment is also conducted to compare the energy harvesting performance of these two prototypes. A flywheel is attached at the end of the generator to make the disengagement more significant. The experiment results also verify that MMR pendulum energy harvester is broadband and has a larger output power at high frequency over the non-MMR pendulum energy harvester.
A circannual clock drives expression of genes central for seasonal reproduction.
Sáenz de Miera, Cristina; Monecke, Stefanie; Bartzen-Sprauer, Julien; Laran-Chich, Marie-Pierre; Pévet, Paul; Hazlerigg, David G; Simonneaux, Valérie
2014-07-07
Animals living in temperate zones anticipate seasonal environmental changes to adapt their biological functions, especially reproduction and metabolism. Two main physiological mechanisms have evolved for this adaptation: intrinsic long-term timing mechanisms with an oscillating period of approximately 1 year, driven by a circannual clock [1], and synchronization of biological rhythms to the sidereal year using day length (photoperiod) [2]. In mammals, the pineal hormone melatonin relays photoperiodic information to the hypothalamus to control seasonal physiology through well-defined mechanisms [3-6]. In contrast, little is known about how the circannual clock drives endogenous changes in seasonal functions. The aim of this study was to determine whether genes involved in photoperiodic time measurement (TSHβ and Dio2) and central control of reproduction (Rfrp and Kiss1) display circannual rhythms in expression under constant conditions. Male European hamsters, deprived of seasonal time cues by pinealectomy and maintenance in constant photoperiod, were selected when expressing a subjective summer or subjective winter state in their circannual cycle of body weight, temperature, and testicular size. TSHβ expression in the pars tuberalis (PT) displayed a robust circannual variation with highest level in the subjective summer state, which was positively correlated with hypothalamic Dio2 and Rfrp expression. The negative sex steroid feedback was found to act specifically on arcuate Kiss1 expression. Our findings reveal TSH as a circannual output of the PT, which in turn regulates hypothalamic neurons controlling reproductive activity. Therefore, both the circannual and the melatonin signals converge on PT TSHβ expression to synchronize seasonal biological activity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dynamic characteristics of rotor blades with pendulum absorbers
NASA Technical Reports Server (NTRS)
Murthy, V. R.; Goglia, G. L.
1977-01-01
The point transmission matrix for a vertical plane pendulum on a rotating blade undergoing combined flapwise bending, and chordwise bending and torsion is derived. The equilibrium equation of the pendulum is linearized for small oscillations about the steady state. A FORTRAN program was written for the case of a vertical plane pendulum attached to a uniform blade with flapwise bending degree of freedom for cantilever boundary conditions. The frequency has a singular value right at the uncoupled pendulum natural frequency and thus introduces two frequencies corresponding to the nearest natural frequency of the blade without pendulum. In both of these modes it was observed that the pendulum deflection is large. One frequency can be thought of as a coupled pendulum frequency and the other as a coupled bending and pendulum frequency.
Patterns of activity expressed by juvenile horseshoe crabs.
Dubofsky, E A; Simpson, S D; Chabot, Christopher C; Watson, Winsor H
2013-09-01
Adult American horseshoe crabs, Limulus polyphemus, possess endogenous circadian and circatidal clocks controlling visual sensitivity and locomotion, respectively. The goal of this study was to determine the types of activity rhythms expressed by juvenile horseshoe crabs (n = 24) when exposed to a 14:10 light/dark cycle (LD) for 10 days, followed by 10 days of constant darkness (DD). Horseshoe crab activity was recorded with a digital time-lapse video system that used an infrared-sensitive camera so animals could be monitored at night. In LD, 15 animals expressed daily patterns of activity, 6 displayed a circatidal pattern, and the remaining 3 were arrhythmic. Of the 15 animals with daily patterns of locomotion, 7 had a significant preference (P < 0.05) for diurnal activity and 3 for nocturnal activity; the remainder did not express a significant preference for day or night activity. In DD, 13 horseshoe crabs expressed circatidal rhythms and 8 maintained a pattern of about 24 h. Although these results suggest the presence of a circadian clock influencing circatidal patterns of locomotion, these apparent circadian rhythms may actually represent the expression of just one of the two bouts of activity driven by the putative circalunidian clocks that control their tidal rhythms. Overall, these results indicate that, like adults, juvenile horseshoe crabs express both daily and tidal patterns of activity and that at least one, and maybe both, of these patterns is driven by endogenous clocks.
The Circadian Clock in Cancer Development and Therapy
Fu, Loning; Kettner, Nicole M.
2014-01-01
Most aspects of mammalian function display circadian rhythms driven by an endogenous clock. The circadian clock is operated by genes and comprises a central clock in the brain that responds to environmental cues and controls subordinate clocks in peripheral tissues via circadian output pathways. The central and peripheral clocks coordinately generate rhythmic gene expression in a tissue-specific manner in vivo to couple diverse physiological and behavioral processes to periodic changes in the environment. However, as the world industrialized, activities that disrupt endogenous homeostasis with external circadian cues have increased. This change in lifestyle has been linked to increased risk of diseases in all aspects of human health, including cancer. Studies in humans and animal models have revealed that cancer development in vivo is closely associated with the loss of circadian homeostasis in energy balance, immune function and aging that are supported by cellular functions important for tumor suppression including cell proliferation, senescence, metabolism and DNA damage response. The clock controls these cellular functions both locally in cells of peripheral tissues and at the organismal level via extracellular signaling. Thus, the hierarchical mammalian circadian clock provides a unique system to study carcinogenesis as a deregulated physiological process in vivo. The asynchrony between host and malignant tissues in cell proliferation and metabolism also provides new and exciting options for novel anti-cancer therapies. PMID:23899600
Kruppel-like factor KLF10 is a link between the circadian clock and metabolism in liver.
Guillaumond, Fabienne; Gréchez-Cassiau, Aline; Subramaniam, Malayannan; Brangolo, Sophie; Peteri-Brünback, Brigitta; Staels, Bart; Fiévet, Catherine; Spelsberg, Thomas C; Delaunay, Franck; Teboul, Michèle
2010-06-01
The circadian timing system coordinates many aspects of mammalian physiology and behavior in synchrony with the external light/dark cycle. These rhythms are driven by endogenous molecular clocks present in most body cells. Many clock outputs are transcriptional regulators, suggesting that clock genes primarily control physiology through indirect pathways. Here, we show that Krüppel-like factor 10 (KLF10) displays a robust circadian expression pattern in wild-type mouse liver but not in clock-deficient Bmal1 knockout mice. Consistently, the Klf10 promoter recruited the BMAL1 core clock protein and was transactivated by the CLOCK-BMAL1 heterodimer through a conserved E-box response element. Profiling the liver transcriptome from Klf10(-/-) mice identified 158 regulated genes with significant enrichment for transcripts involved in lipid and carbohydrate metabolism. Importantly, approximately 56% of these metabolic genes are clock controlled. Male Klf10(-/-) mice displayed postprandial and fasting hyperglycemia, a phenotype accompanied by a significant time-of-day-dependent upregulation of the gluconeogenic gene Pepck and increased hepatic glucose production. Consistently, functional data showed that the proximal Pepck promoter is repressed directly by KLF10. Klf10(-/-) females were normoglycemic but displayed higher plasma triglycerides. Correspondingly, rhythmic gene expression of components of the lipogenic pathway, including Srebp1c, Fas, and Elovl6, was altered in females. Collectively, these data establish KLF10 as a required circadian transcriptional regulator that links the molecular clock to energy metabolism in the liver.
Attempts by Descartes and Roberval to evaluate the centre of oscillation of compound pendulums.
Capecchi, Danilo
2014-01-01
This paper re-examines the first documented attempts to establish the quantitative law of motion for a body oscillating about a fixed axis (a compound pendulum). This is quite a complex problem as weight and motion are not concentrated in a point, but are spread over a volume. Original documents by René Descartes and Gilles Personne de Roberval, who made the first contributions to solving the problem, are discussed. The two scientists had important insights into the problem which, although they were incomplete, nevertheless somehow complemented each other - at least when seen from the viewpoint of modern mechanics. Descartes was right in considering only the absolute value of the inertia forces, Roberval was right in assuming that the force of gravity should also be taken into account.
Guillaumond, F; Giraudet, F; Becquet, D; Sage, D; Laforge-Anglade, G; Bosler, O; François-Bellan, A M
2005-02-01
The circadian clock in the suprachiasmatic nucleus (SCN) controls day-to-day physiology and behavior by sending timing messages to multiple peripheral oscillators. In the pineal gland, a major SCN target, circadian events are believed to be driven exclusively by the rhythmic release of norepinephrine from superior cervical ganglia (SCG) neurons relaying clock messages through a polysynaptic pathway. Here we show in rat an SCN-driven daily rhythm of pineal MAPK activation that is not dependent on the SCG and whose maintenance requires vitamin A as a blood-borne factor. This finding challenges the dogma that SCG-released norepinephrine is an exclusive mediator of SCN-pineal communication and allows the assumption that humoral mechanisms are involved in pineal integration of temporal messages.
Circadian Rhythms in Diet-Induced Obesity.
Engin, Atilla
2017-01-01
The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronizes these with daily cycles, feeding patterns also regulates circadian clocks. The clock genes and adipocytokines show circadian rhythmicity. Dysfunction of these genes are involved in the alteration of these adipokines during the development of obesity. Food availability promotes the stimuli associated with food intake which is a circadian oscillator outside of the suprachiasmatic nucleus (SCN). Its circadian rhythm is arranged with the predictable daily mealtimes. Food anticipatory activity is mediated by a self-sustained circadian timing and its principal component is food entrained oscillator. However, the hypothalamus has a crucial role in the regulation of energy balance rather than food intake. Fatty acids or their metabolites can modulate neuronal activity by brain nutrient-sensing neurons involved in the regulation of energy and glucose homeostasis. The timing of three-meal schedules indicates close association with the plasma levels of insulin and preceding food availability. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition can lead to uncoupling of peripheral clocks from the central pacemaker and to the development of metabolic disorders. Metabolic dysfunction is associated with circadian disturbances at both central and peripheral levels and, eventual disruption of circadian clock functioning can lead to obesity. While CLOCK expression levels are increased with high fat diet-induced obesity, peroxisome proliferator-activated receptor (PPAR) alpha increases the transcriptional level of brain and muscle ARNT-like 1 (BMAL1) in obese subjects. Consequently, disruption of clock genes results in dyslipidemia, insulin resistance and obesity. Modifying the time of feeding alone can greatly affect body weight. Changes in the circadian clock are associated with temporal alterations in feeding behavior and increased weight gain. Thus, shift work is associated with increased risk for obesity, diabetes and cardio-vascular diseases as a result of unusual eating time and disruption of circadian rhythm.
Metabolism as an Integral Cog in the Mammalian Circadian Clockwork
Gamble, Karen L.; Young, Martin E.
2013-01-01
Circadian rhythms are an integral part of life. These rhythms are apparent in virtually all biological processes studies to date, ranging from the individual cell (e.g., DNA synthesis) to the whole organism (e.g., behaviors such as physical activity). Oscillations in metabolism have been characterized extensively in various organisms, including mammals. These metabolic rhythms often parallel behaviors such as sleep/wake and fasting/feeding cycles that occur on a daily basis. What has become increasingly clear over the past several decades is that many metabolic oscillations are driven by cell autonomous circadian clocks, which orchestrate metabolic processes in a temporally appropriate manner. During the process of identifying the mechanisms by which clocks influence metabolism, molecular-based studies have revealed that metabolism should be considered an integral circadian clock component. The implications of such an interrelationship include the establishment of a vicious cycle during cardiometabolic disease states, wherein metabolism-induced perturbations in the circadian clock exacerbate metabolic dysfunction. The purpose of this review is therefore to highlight recent insights gained regarding links between cell autonomous circadian clocks and metabolism, and the implications of clock dysfunction in the pathogenesis of cardiometabolic diseases. PMID:23594144
Real-time physics-based 3D biped character animation using an inverted pendulum model.
Tsai, Yao-Yang; Lin, Wen-Chieh; Cheng, Kuangyou B; Lee, Jehee; Lee, Tong-Yee
2010-01-01
We present a physics-based approach to generate 3D biped character animation that can react to dynamical environments in real time. Our approach utilizes an inverted pendulum model to online adjust the desired motion trajectory from the input motion capture data. This online adjustment produces a physically plausible motion trajectory adapted to dynamic environments, which is then used as the desired motion for the motion controllers to track in dynamics simulation. Rather than using Proportional-Derivative controllers whose parameters usually cannot be easily set, our motion tracking adopts a velocity-driven method which computes joint torques based on the desired joint angular velocities. Physically correct full-body motion of the 3D character is computed in dynamics simulation using the computed torques and dynamical model of the character. Our experiments demonstrate that tracking motion capture data with real-time response animation can be achieved easily. In addition, physically plausible motion style editing, automatic motion transition, and motion adaptation to different limb sizes can also be generated without difficulty.
O’Grady, Joseph F.; Hoelters, Laura S.; Swain, Martin T.
2016-01-01
Background Talitrus saltator is an amphipod crustacean that inhabits the supralittoral zone on sandy beaches in the Northeast Atlantic and Mediterranean. T. saltator exhibits endogenous locomotor activity rhythms and time-compensated sun and moon orientation, both of which necessitate at least one chronometric mechanism. Whilst their behaviour is well studied, currently there are no descriptions of the underlying molecular components of a biological clock in this animal, and very few in other crustacean species. Methods We harvested brain tissue from animals expressing robust circadian activity rhythms and used homology cloning and Illumina RNAseq approaches to sequence and identify the core circadian clock and clock-related genes in these samples. We assessed the temporal expression of these genes in time-course samples from rhythmic animals using RNAseq. Results We identified a comprehensive suite of circadian clock gene homologues in T. saltator including the ‘core’ clock genes period (Talper), cryptochrome 2 (Talcry2), timeless (Taltim), clock (Talclk), and bmal1 (Talbmal1). In addition we describe the sequence and putative structures of 23 clock-associated genes including two unusual, extended isoforms of pigment dispersing hormone (Talpdh). We examined time-course RNAseq expression data, derived from tissues harvested from behaviourally rhythmic animals, to reveal rhythmic expression of these genes with approximately circadian period in Talper and Talbmal1. Of the clock-related genes, casein kinase IIβ (TalckIIβ), ebony (Talebony), jetlag (Taljetlag), pigment dispensing hormone (Talpdh), protein phosphatase 1 (Talpp1), shaggy (Talshaggy), sirt1 (Talsirt1), sirt7 (Talsirt7) and supernumerary limbs (Talslimb) show temporal changes in expression. Discussion We report the sequences of principle genes that comprise the circadian clock of T. saltator and highlight the conserved structural and functional domains of their deduced cognate proteins. Our sequencing data contribute to the growing inventory of described comparative clocks. Expression profiling of the identified clock genes illuminates tantalising targets for experimental manipulation to elucidate the molecular and cellular control of clock-driven phenotypes in this crustacean. PMID:27761341
Measuring g with a classroom pendulum using changes in the pendulum string length
NASA Astrophysics Data System (ADS)
Oliveira, V.
2016-11-01
This frontline presents a simple apparatus for measuring the acceleration of gravity using a classroom pendulum. Instead of the traditional method where the pendulum period is measured as a function of its length, here the period is measured as a function of changes in the pendulum string length. The major advantage of this method is that students can measure these changes with a greater accuracy than measuring the total pendulum length.
Dissecting Daily and Circadian Expression Rhythms of Clock-Controlled Genes in Human Blood.
Lech, Karolina; Ackermann, Katrin; Revell, Victoria L; Lao, Oscar; Skene, Debra J; Kayser, Manfred
2016-02-01
The identification and investigation of novel clock-controlled genes (CCGs) has been conducted thus far mainly in model organisms such as nocturnal rodents, with limited information in humans. Here, we aimed to characterize daily and circadian expression rhythms of CCGs in human peripheral blood during a sleep/sleep deprivation (S/SD) study and a constant routine (CR) study. Blood expression levels of 9 candidate CCGs (SREBF1, TRIB1, USF1, THRA1, SIRT1, STAT3, CAPRIN1, MKNK2, and ROCK2), were measured across 48 h in 12 participants in the S/SD study and across 33 h in 12 participants in the CR study. Statistically significant rhythms in expression were observed for STAT3, SREBF1, TRIB1, and THRA1 in samples from both the S/SD and the CR studies, indicating that their rhythmicity is driven by the endogenous clock. The MKNK2 gene was significantly rhythmic in the S/SD but not the CR study, which implies its exogenously driven rhythmic expression. In addition, we confirmed the circadian expression of PER1, PER3, and REV-ERBα in the CR study samples, while BMAL1 and HSPA1B were not significantly rhythmic in the CR samples; all 5 genes previously showed significant expression in the S/SD study samples. Overall, our results demonstrate that rhythmic expression patterns of clock and selected clock-controlled genes in human blood cells are in part determined by exogenous factors (sleep and fasting state) and in part by the endogenous circadian timing system. Knowledge of the exogenous and endogenous regulation of gene expression rhythms is needed prior to the selection of potential candidate marker genes for future applications in medical and forensic settings. © 2015 The Author(s).
NASA Astrophysics Data System (ADS)
van den Heuvel, Ed
2006-04-01
Dutch astronomy and physics experienced two "golden ages". The firstone covered the 17th century, culminating with Christiaan Huygens,inventor of the pendulum clock and the wave theory of light, anddiscoverer of Saturn's rings and largest satellite Titan. The secondone, which lasts till the present, started around 1880 withphysicists Lorentz, van der Waals, Zeeman and Kamerlingh Onnes andastronomer Kapteijn and his pupils De Sitter, van Rhijn, Oort andSchilt. Kapteijn, through his friendship with George Ellery Hale,initiated the strong connection between American and Dutch astronomy,which led to the rise of many Dutch-born astronomers to prominentpositions in the US, from Luyten, Bok, Brouwer, Schilt and Kuiperto Woltjer, Gehrels, and Beckers. The rise of the second "goldenage" appears to be closely related to drastic reforms in the Dutchhigh school and university systems in the last decades of the 19thcentury.
The Thesis, the Pendulum and the Battlefield
ERIC Educational Resources Information Center
Ameri, Amir
2015-01-01
The debate over the design thesis is often entangled in the dialectics of the practical and the theoretical. Whether the argument is waged and weighted in favour of a practical emphasis or a theoretical emphasis, or more insidious, a judicious balance between the two, what is inevitably assumed in the debate is the possibility of drawing and/or…
NASA Astrophysics Data System (ADS)
Barone, Fabrizio; Giordano, Gerardo
2018-02-01
We present the Extended Folded Pendulum Model (EFPM), a model developed for a quantitative description of the dynamical behavior of a folded pendulum generically oriented in space. This model, based on the Tait-Bryan angular reference system, highlights the relationship between the folded pendulum orientation in the gravitational field and its natural resonance frequency. Tis model validated by tests performed with a monolithic UNISA Folded Pendulum, highlights a new technique of implementation of folded pendulum based tiltmeters.
Can hip arthroscopy be performed with conventional knee-length instrumentation?
Pascual-Garrido, Cecilia; McConkey, Mark O; Young, David A; Bravman, Jonathan T; Mei-Dan, Omer
2014-12-01
The purpose of this study was to determine whether hip arthroscopy can be performed using conventional knee-length arthroscopy instrumentation. We included 116 consecutive hip arthroscopies (104 patients) in this study. Age, side of surgery, height (in inches), weight (in pounds), body mass index (BMI), and a subjective assessment of body type (1, muscular; 2, somewhat overweight; 3, overweight; 4, thin; and 5, normal weight) were recorded. The depth from the skin at 2 portal sites to 3 commonly accessed positions (12 o'clock, 3 o'clock, and acetabular fossa) was assessed using a guide with marked notches (in millimeters). Subgroup analysis was performed according to BMI and subjective biotype for each patient. We included 104 patients with a mean age of 35 years (range, 14 to 55 years). As categorized by BMI, 60% of patients were normal weight, 22% were overweight, 16% were obese, and 2% were underweight. All but 8 procedures were performed with conventional knee-length arthroscopic shavers and burrs. The 8 procedures that needed additional hip instrumentation were performed in patients who required ligamentum teres debridement or those with iliopsoas tenotomy. Overall, the distance from skin to socket was less than 11 cm at the 12-o'clock and 3-o'clock positions from both the anterolateral and anterior portals. Obese and overweight patients had statistically longer distances from skin to socket at all 3 measurement points compared with underweight and normal-weight patients. Considering biotype, the distances from skin to socket in underweight, normal-weight, and muscular patients were all equal to or less than 10 cm. The distance from skin to socket at the 12- and 3-o'clock positions is less than 11 cm, suggesting that hip arthroscopy can be performed with conventional knee-length instrumentation devices. In obese and overweight patients and patients requiring ligamentum teres debridement or iliopsoas tendon release, specific hip arthroscopic tools should be available. Level IV, therapeutic case series. Copyright © 2014 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Roles of PACAP-containing retinal ganglion cells in circadian timing.
Hannibal, Jens
2006-01-01
The brain's biological clock located in the suprachiasmatic nucleus (SCN) generates circadian rhythms in physiology and behavior. The clock-driven rhythms need daily adjustment (entrainment) to be synchronized with the astronomical day of 24 h. The most important stimulus for entrainment of the clock is the light-dark (LD) cycle. In this review functional elements of the light entrainment pathway will be considered with special focus on the neurotransmitter pituitary adenylate cyclase-activating polypeptide (PACAP), which is found exclusively in the monosynaptic neuronal pathway mediating light information to the SCN, the retinohypothalamic tract (RHT). The retinal ganglion cells of the RHT are intrinsically photosensitive due to the expression of melanopsin and seem to constitute a non-image forming photosensitive system in the mammalian eye regulating circadian timing, masking behavior, light-regulated melatonin secretion, and the pupillary light reflex. Evidence from in vitro and in vivo studies and studies of mice lacking PACAP and the specific PACAP receptor (PAC1) indicate that PACAP and glutamate are neurotransmitters in the RHT which in a clock and concentration-dependent manner interact during light entrainment of the clock.
MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale
Du, Ngoc-Hien; Arpat, Alaaddin Bulak; De Matos, Mara; Gatfield, David
2014-01-01
A considerable proportion of mammalian gene expression undergoes circadian oscillations. Post-transcriptional mechanisms likely make important contributions to mRNA abundance rhythms. We have investigated how microRNAs (miRNAs) contribute to core clock and clock-controlled gene expression using mice in which miRNA biogenesis can be inactivated in the liver. While the hepatic core clock was surprisingly resilient to miRNA loss, whole transcriptome sequencing uncovered widespread effects on clock output gene expression. Cyclic transcription paired with miRNA-mediated regulation was thus identified as a frequent phenomenon that affected up to 30% of the rhythmic transcriptome and served to post-transcriptionally adjust the phases and amplitudes of rhythmic mRNA accumulation. However, only few mRNA rhythms were actually generated by miRNAs. Overall, our study suggests that miRNAs function to adapt clock-driven gene expression to tissue-specific requirements. Finally, we pinpoint several miRNAs predicted to act as modulators of rhythmic transcripts, and identify rhythmic pathways particularly prone to miRNA regulation. DOI: http://dx.doi.org/10.7554/eLife.02510.001 PMID:24867642
The NIST 27 Al+ quantum-logic clock
NASA Astrophysics Data System (ADS)
Leibrandt, David; Brewer, Samuel; Chen, Jwo-Sy; Hume, David; Hankin, Aaron; Huang, Yao; Chou, Chin-Wen; Rosenband, Till; Wineland, David
2016-05-01
Optical atomic clocks based on quantum-logic spectroscopy of the 1 S0 <--> 3 P0 transition in 27 Al+ have reached a systematic fractional frequency uncertainty of 8 . 0 ×10-18 , enabling table-top tests of fundamental physics as well as measurements of gravitational potential differences. Currently, the largest limitations to the accuracy are second order time dilation shifts due to the driven motion (i.e., micromotion) and thermal motion of the trapped ions. In order to suppress these shifts, we have designed and built new ion traps based on gold-plated, laser-machined diamond wafers with differential RF drive, and we have operated one of our clocks with the ions laser cooled to near the six mode motional ground state. We present a characterization of the time dilation shifts in the new traps with uncertainties near 1 ×10-18 . Furthermore, we describe a new protocol for clock comparison measurements based on synchronous probing of the two clocks using phase-locked local oscillators, which allows for probe times longer than the laser coherence time and avoids the Dick effect. This work is supported by ARO, DARPA, and ONR.
The mammalian retina as a clock
NASA Technical Reports Server (NTRS)
Tosini, Gianluca; Fukuhara, Chiaki
2002-01-01
Many physiological, cellular, and biochemical parameters in the retina of vertebrates show daily rhythms that, in many cases, also persist under constant conditions. This demonstrates that they are driven by a circadian pacemaker. The presence of an autonomous circadian clock in the retina of vertebrates was first demonstrated in Xenopus laevis and then, several years later, in mammals. In X. laevis and in chicken, the retinal circadian pacemaker has been localized in the photoreceptor layer, whereas in mammals, such information is not yet available. Recent advances in molecular techniques have led to the identification of a group of genes that are believed to constitute the molecular core of the circadian clock. These genes are expressed in the retina, although with a slightly different 24-h profile from that observed in the central circadian pacemaker. This result suggests that some difference (at the molecular level) may exist between the retinal clock and the clock located in the suprachiasmatic nuclei of hypothalamus. The present review will focus on the current knowledge of the retinal rhythmicity and the mechanisms responsible for its control.
Bouchard-Cannon, Pascale; Mendoza-Viveros, Lucia; Yuen, Andrew; Kærn, Mads; Cheng, Hai-Ying M
2013-11-27
The subgranular zone (SGZ) of the adult hippocampus contains a pool of quiescent neural progenitor cells (QNPs) that are capable of entering the cell cycle and producing newborn neurons. The mechanisms that control the timing and extent of adult neurogenesis are not well understood. Here, we show that QNPs of the adult SGZ express molecular-clock components and proliferate in a rhythmic fashion. The clock proteins PERIOD2 and BMAL1 are critical for proper control of neurogenesis. The absence of PERIOD2 abolishes the gating of cell-cycle entrance of QNPs, whereas genetic ablation of bmal1 results in constitutively high levels of proliferation and delayed cell-cycle exit. We use mathematical model simulations to show that these observations may arise from clock-driven expression of a cell-cycle inhibitor that targets the cyclin D/Cdk4-6 complex. Our findings may have broad implications for the circadian clock in timing cell-cycle events of other stem cell populations throughout the body. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Experiment with Conical Pendulum
ERIC Educational Resources Information Center
Tongaonkar, S. S.; Khadse, V. R.
2011-01-01
Conical pendulum is similar to simple pendulum with the difference that the bob, instead of moving back and forth, swings around in a horizontal circle. Thus, in a conical pendulum the bob moves at a constant speed in a circle with the string tracing out a cone. This paper describes an experiment with conical pendulum, with determination of g from…
Mongrain, Valérie; La Spada, Francesco; Curie, Thomas; Franken, Paul
2011-01-01
We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP), we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset), -6, -12, and -18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and -6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven.
Curie, Thomas; Franken, Paul
2011-01-01
We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP), we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset), −6, −12, and −18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and −6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven. PMID:22039518
Response of Pendulums to Translational and Rotational Components of Ground Motion
NASA Astrophysics Data System (ADS)
Graizer, V.; Kalkan, E.
2008-12-01
Dynamic response of most seismological instruments and many engineering structures to ground shaking can be represented via response of a pendulum (single-degree-of-freedom oscillator). Pendulum response is usually simplified by considering the input from uni-axial translational motion only. Complete ground motion however, includes not only translational components but also rotations (tilt and torsion). We consider complete equations of motion for three following types of pendulum: (i) conventional mass-on-rod, (ii) mass- on-spring type, and (iii) inverted (astatic), then their response sensitivities to each component of complex ground motion are examined. Inverted pendulums are used in seismology for more than 100 years, for example, classical Wiechert's horizontal seismograph built around 1905 and still used at some seismological observatories, and recent Guralp's horizontal seismometers CMG-40T and CMG-3T. Inverted pendulums also have significant importance for engineering applications where they are often used to simulate the dynamic response of various structural systems. The results of this study show that a horizontal pendulum similar to a modern accelerometer used in strong motion measurements is practically sensitive to translational motion and tilt only, while inverted pendulum is sensitive not only to translational components, but also to angular accelerations and tilt. For better understanding of the inverted pendulum's dynamic behavior under complex ground excitation, relative contribution of each component of motion on response variants is carefully isolated. The responses of pendulums are calculated in time-domain using close-form solution Duhamel's integral with complex input forcing functions. As compared to a common horizontal pendulum, response of an inverted pendulum is sensitive to acceleration of gravity and vertical acceleration when it reaches the level close to 1.0 g. Gravity effect introduces nonlinearity into the differential equation of motion, and results in shift of the frequency response to lower frequencies. The equations of inverted pendulum represent elastic response of pendulums (as material behavior), with nonlinearity created by time and amplitude dependence of equation coefficients. Sensitivity of inverted pendulum to angular acceleration of tilt is proportional to the length of a pendulum, and should be taken into consideration since it can produce significant effect especially for long pendulums, idealizing for instance, bridge piers, bents, elevated water tanks, telecommunication towers, etc.
Association between genetic variants of the clock gene and obesity and sleep duration.
Valladares, Macarena; Obregón, Ana María; Chaput, Jean-Philippe
2015-12-01
Obesity is a multifactorial disease caused by the interaction of genetic and environmental factors related to lifestyle aspects. It has been shown that reduced sleep is associated with increased body mass index (BMI). Circadian Locomotor Output Cycles Kaput (CLOCK) gene variants have also been associated with obesity. The objective of this mini-review was to discuss the available literature related to CLOCK gene variants associated with adiposity and sleep duration in humans. In total, 16 articles complied with the terms of the search that reported CLOCK variants associated with sleep duration, energy intake, and BMI. Overall, six CLOCK single nucleotide polymorphisms (SNPs) have been associated with sleep duration, and three variants have been associated with energy intake variables. Overall, the most studied area has been the association of CLOCK gene with obesity; close to eight common variants have been associated with obesity. The most studied CLOCK SNP in different populations is rs1801260, and most of these populations correspond to European populations. Collectively, identifying at risk CLOCK genotypes is a new area of research that may help identify individuals who are more susceptible to overeating and gaining weight when exposed to short sleep durations.
Dynamical stability of slip-stacking particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, Jeffrey; Zwaska, Robert
2014-09-01
We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.
Swinging into Pendulums with a Background.
ERIC Educational Resources Information Center
Barrow, Lloyd H.; Cook, Julie
1993-01-01
Explains reasons why students have misconceptions concerning pendulum swings. Presents a series of 10 pendulum task cards to provide middle-school students with a solid mental scaffolding upon which to build their knowledge of kinetic energy and pendulums. (PR)
How Short and Light Can a Simple Pendulum Be for Classroom Use?
ERIC Educational Resources Information Center
Oliveira, V.
2014-01-01
We compare the period of oscillation of an ideal simple pendulum with the period of a more "real" pendulum constituted of a rigid sphere and a rigid slender rod. We determine the relative error in the calculation of the local acceleration of gravity if the period of the ideal pendulum is used instead of the period of this real pendulum.
How short and light can a simple pendulum be for classroom use?
NASA Astrophysics Data System (ADS)
Oliveira, V.
2014-07-01
We compare the period of oscillation of an ideal simple pendulum with the period of a more ‘real’ pendulum constituted of a rigid sphere and a rigid slender rod. We determine the relative error in the calculation of the local acceleration of gravity if the period of the ideal pendulum is used instead of the period of this real pendulum.
A contribution to calculation of the mathematical pendulum
NASA Astrophysics Data System (ADS)
Anakhaev, K. N.
2014-11-01
In this work, as a continuation of rigorous solutions of the mathematical pendulum theory, calculated dependences were obtained in elementary functions (with construction of plots) for a complete description of the oscillatory motion of the pendulum with determination of its parameters, such as the oscillation period, deviation angles, time of motion, angular velocity and acceleration, and strains in the pendulum rod (maximum, minimum, zero, and gravitational). The results of calculations according to the proposed dependences closely (≪1%) coincide with the exact tabulated data for individual points. The conditions of ascending at which the angular velocity, angular acceleration, and strains in the pendulum rod reach their limiting values equal to and 5 m 1 g, respectively, are shown. It was revealed that the angular acceleration does not depend on the pendulum oscillation amplitude; the pendulum rod strain equal to the gravitation force of the pendulum R s = m 1 g at the time instant is also independent on the amplitude. The dependences presented in this work can also be invoked for describing oscillations of a physical pendulum, mass on a spring, electric circuit, etc.
NASA Astrophysics Data System (ADS)
Sterling, Enrique; Lin, Jun; Sinko, John; Kodgis, Lisa; Porter, Simon; Pakhomov, Andrew V.; Larson, C. William; Mead, Franklin B.
2006-05-01
Laser-driven mini-thrusters were studied using Delrin® and PVC (Delrin® is a registered trademark of DuPont) as propellants. TEA CO2 laser (λ = 10.6 μm) was used as a driving laser. Coupling coefficients were deduced from two independent techniques: force-time curves measured with a piezoelectric sensor and ballistic pendulum. Time-resolved ICCD images of the expanding plasma and combustion products were analyzed in order to determine the main process that generates the thrust. The measurements were also performed in a nitrogen atmosphere in order to test the combustion effects on thrust. A pinhole transmission experiment was performed for the study of the cut-off time when the ablation/air breakdown plasma becomes opaque to the incoming laser pulse.
NASA Astrophysics Data System (ADS)
Jayarajan, Jayesh; Kumar, Nishant; Verma, Amarnath; Thaker, Ramkrishna
2016-05-01
Drive electronics for generating fast, bipolar clocks, which can drive capacitive loads of the order of 5-10nF are indispensable for present day Charge Coupled Devices (CCDs). Design of these high speed bipolar clocks is challenging because of the capacitive loads that have to be driven and a strict constraint on the rise and fall times. Designing drive electronics circuits for space applications becomes even more challenging due to limited number of available discrete devices, which can survive in the harsh radiation prone space environment. This paper presents the design, simulations and test results of a set of such high speed, bipolar clock drivers. The design has been tested under a thermal cycle of -15 deg C to +55 deg C under vacuum conditions and has been designed using radiation hardened components. The test results show that the design meets the stringent rise/fall time requirements of 50+/-10ns for Multiple Vertical CCD (VCCD) clocks and 20+/-5ns for Horizontal CCD (HCCD) clocks with sufficient design margins across full temperature range, with a pixel readout rate of 6.6MHz. The full design has been realized in flexi-rigid PCB with package volume of 140x160x50 mm3.
ERIC Educational Resources Information Center
Bourbeau-Walker, Micheline
1984-01-01
It is proposed that while the sciences have progressed steadily, language teaching methods have swung like a pendulum between two broad approaches: formal and functional. The history of this pattern is outlined, current practices are discussed, and the possibility of escaping from this polarizing cycle is examined. (MSE)
Complex pendulum biomass sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoskinson, Reed L.; Kenney, Kevin L.; Perrenoud, Ben C.
A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In anmore » alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.« less
Discordant timing between antennae disrupts sun compass orientation in migratory monarch butterflies
Guerra, Patrick A; Merlin, Christine; Gegear, Robert J; Reppert, Steven M
2014-01-01
To navigate during their long-distance migration, monarch butterflies (Danaus plexippus) use a time-compensated sun compass. The sun compass timing elements reside in light-entrained circadian clocks in the antennae. Here we show that either antenna is sufficient for proper time compensation. However, migrants with either antenna painted black (to block light entrainment) and the other painted clear (to permit light entrainment) display disoriented group flight. Remarkably, when the black-painted antenna is removed, re-flown migrants with a single, clear-painted antenna exhibit proper orientation behaviour. Molecular correlates of clock function reveal that period and timeless expression is highly rhythmic in brains and clear-painted antennae, while rhythmic clock gene expression is disrupted in black-painted antennae. Our work shows that clock outputs from each antenna are processed and integrated together in the monarch time-compensated sun compass circuit. This dual timing system is a novel example of the regulation of a brain-driven behaviour by paired organs. PMID:22805565
NASA Astrophysics Data System (ADS)
Salafian, Iman; Stewart, Blake; Newman, Matthew; Zygielbaum, Arthur I.; Terry, Benjamin
2017-04-01
A four cable-driven parallel manipulator (CDPM), consisting of sophisticated spectrometers and imagers, is under development for use in acquiring phenotypic and environmental data over an acre-sized crop field. To obtain accurate and high quality data from the instruments, the end effector must be stable during sensing. One of the factors that reduces stability is the center of mass offset of the end effector, which can cause a pendulum effect or undesired tilt angle. The purpose of this work is to develop a system and method for balancing the center of mass of a 12th-scale CDPM to minimize vibration that can cause error in the acquired data. A simple method for balancing the end effector is needed to enable end users of the CDPM to arbitrarily add and remove sensors and imagers from the end effector as their experiments may require. A Center of Mass Balancing System (CMBS) is developed in this study which consists of an adjustable system of weights and a gimbal for tilt mitigation. An electronic circuit board including an orientation sensor, wireless data communication, and load cells was designed to validate the CMBS. To measure improvements gained by the CMBS, several static and dynamic experiments are carried out. In the experiments, the dynamic vibrations due to the translational motion and static orientation were measured with and without CMBS use. The results show that the CMBS system improves the stability of the end-effector by decreasing vibration and static tilt angle.
Entrainment to feeding but not to light: circadian phenotype of VPAC2 receptor-null mice.
Sheward, W John; Maywood, Elizabeth S; French, Karen L; Horn, Jacqueline M; Hastings, Michael H; Seckl, Jonathan R; Holmes, Megan C; Harmar, Anthony J
2007-04-18
The master clock driving mammalian circadian rhythms is located in the suprachiasmatic nuclei (SCN) of the hypothalamus and entrained by daily light/dark cycles. SCN lesions abolish circadian rhythms of behavior and result in a loss of synchronized circadian rhythms of clock gene expression in peripheral organs (e.g., the liver) and of hormone secretion (e.g., corticosterone). We examined rhythms of behavior, hepatic clock gene expression, and corticosterone secretion in VPAC2 receptor-null (Vipr2-/-) mice, which lack a functional SCN clock. Unexpectedly, although Vipr2-/- mice lacked robust circadian rhythms of wheel-running activity and corticosterone secretion, hepatic clock gene expression was strongly rhythmic, but advanced in phase compared with that in wild-type mice. The timing of food availability is thought to be an important entrainment signal for circadian clocks outside the SCN. Vipr2-/- mice consumed food significantly earlier in the 24 h cycle than wild-type mice, consistent with the observed timing of peripheral rhythms of circadian gene expression. When restricted to feeding only during the daytime (RF), mice develop rhythms of activity and of corticosterone secretion in anticipation of feeding time, thought to be driven by a food-entrainable circadian oscillator, located outside the SCN. Under RF, mice of both genotypes developed food-anticipatory rhythms of activity and corticosterone secretion, and hepatic gene expression rhythms also became synchronized to the RF stimulus. Thus, food intake is an effective zeitgeber capable of coordinating circadian rhythms of behavior, peripheral clock gene expression, and hormone secretion, even in the absence of a functional SCN clock.
Impaired Visual Motor Coordination in Obese Adults.
Gaul, David; Mat, Arimin; O'Shea, Donal; Issartel, Johann
2016-01-01
Objective. To investigate whether obesity alters the sensory motor integration process and movement outcome during a visual rhythmic coordination task. Methods. 88 participants (44 obese and 44 matched control) sat on a chair equipped with a wrist pendulum oscillating in the sagittal plane. The task was to swing the pendulum in synchrony with a moving visual stimulus displayed on a screen. Results. Obese participants demonstrated significantly ( p < 0.01) higher values for continuous relative phase (CRP) indicating poorer level of coordination, increased movement variability ( p < 0.05), and a larger amplitude ( p < 0.05) than their healthy weight counterparts. Conclusion. These results highlight the existence of visual sensory integration deficiencies for obese participants. The obese group have greater difficulty in synchronizing their movement with a visual stimulus. Considering that visual motor coordination is an essential component of many activities of daily living, any impairment could significantly affect quality of life.
Dakup, Panshak P.; Porter, Kenneth I.; Little, Alexander A.; Gajula, Rajendra P.; Zhang, Hui; Skornyakov, Elena; Kemp, Michael G.; Van Dongen, Hans P.A; Gaddameedhi, Shobhan
2018-01-01
Cisplatin is one of the most commonly used chemotherapeutic drugs; however, toxicity and tumor resistance limit its use. Studies using murine models and human subjects have shown that the time of day of cisplatin treatment influences renal and blood toxicities. We hypothesized that the mechanisms responsible for these outcomes are driven by the circadian clock. We conducted experiments using wild-type and circadian disrupted Per1/2−/− mice treated with cisplatin at selected morning (AM) and evening (PM) times. Wild-type mice treated in the evening showed an enhanced rate of removal of cisplatin-DNA adducts and less toxicity than the morning-treated mice. This temporal variation in toxicity was lost in the Per1/2−/− clock-disrupted mice, suggesting that the time-of-day effect is linked to the circadian clock. Observations in blood cells from humans subjected to simulated day and night shift schedules corroborated this view. Per1/2−/− mice also exhibited a more robust immune response and slower tumor growth rate, indicating that the circadian clock also influences the immune response to melanoma tumors. Our findings indicate that cisplatin chronopharmacology involves the circadian clock control of DNA repair as well as immune responses, and thus affects both cisplatin toxicity and tumor growth. This has important implications for chronochemotherapy in cancer patients, and also suggests that influencing the circadian clock (e.g., through bright light treatment) may be explored as a tool to improve patient outcomes. PMID:29581861
An algorithm for the Italian atomic time scale
NASA Technical Reports Server (NTRS)
Cordara, F.; Vizio, G.; Tavella, P.; Pettiti, V.
1994-01-01
During the past twenty years, the time scale at the IEN has been realized by a commercial cesium clock, selected from an ensemble of five, whose rate has been continuously steered towards UTC to maintain a long term agreement within 3 x 10(exp -13). A time scale algorithm, suitable for a small clock ensemble and capable of improving the medium and long term stability of the IEN time scale, has been recently designed taking care of reducing the effects of the seasonal variations and the sudden frequency anomalies of the single cesium clocks. The new time scale, TA(IEN), is obtained as a weighted average of the clock ensemble computed once a day from the time comparisons between the local reference UTC(IEN) and the single clocks. It is foreseen to include in the computation also ten cesium clocks maintained in other Italian laboratories to further improve its reliability and its long term stability. To implement this algorithm, a personal computer program in Quick Basic has been prepared and it has been tested at the IEN time and frequency laboratory. Results obtained using this algorithm on the real clocks data relative to a period of about two years are presented.
Vibration analysis of rotor blades with pendulum absorbers
NASA Technical Reports Server (NTRS)
Murthy, V. R.; Hammond, C. E.
1979-01-01
A comprehensive vibration analysis of rotor blades with spherical pendulum absorbers is presented. Linearized equations of motion for small oscillations about the steady-state deflection of a spherical pendulum on elastic rotor blades undergoing coupled flapwise bending, chordwise bending, and torsional vibrations are obtained. A transmission matrix formulation is given to determine the natural vibrational characteristics of rotor blades with spherical or simple flapping pendulum absorbers. The natural frequencies and mode shapes of a hingeless rotor blade with a spherical pendulum are computed.
Lyapunov stability analysis for the generalized Kapitza pendulum
NASA Astrophysics Data System (ADS)
Druzhinina, O. V.; Sevastianov, L. A.; Vasilyev, S. A.; Vasilyeva, D. G.
2017-12-01
In this work generalization of Kapitza pendulum whose suspension point moves in the vertical and horizontal planes is made. Lyapunov stability analysis of the motion for this pendulum subjected to excitation of periodic driving forces and stochastic driving forces that act in the vertical and horizontal planes has been studied. The numerical study of the random motion for generalized Kapitza pendulum under stochastic driving forces has made. It is shown the existence of stable quasi-periodic motion for this pendulum.
Electronic structure studies of adsorbate-induced surface reconstructions: oxygen on Rh(1 0 0)
NASA Astrophysics Data System (ADS)
Kirsch, Janet E.; Harris, Suzanne
2004-03-01
Solid-state Fenske-Hall band structure calculations have been used to study the electronic structure and bonding that occur on an "asymmetric" clock reconstructed Rh(1 0 0) surface with a half-monolayer of O atom adsorbates. The displacement of the top-layer Rh atoms on reconstructed O/Rh(1 0 0) is similar to that observed when a half-monolayer of C or N atoms adsorb onto clean Ni(1 0 0). Unlike the five-coordinate C or N adsorbates that adsorb into effectively coplanar sites on the Ni(1 0 0) surface, however, O atoms sit well above the Rh surface plane and occupy three-coordinate adsorption sites. The results of these calculations show that the asymmetric clock reconstruction of O/Rh(1 0 0) increases the negative charge localized on the highly electronegative O atoms and strengthens the O-Rh bonding relative to an unreconstructed surface. This suggests that, in contrast to the C(N)/Ni(1 0 0) clock, which appears to be driven primarily by the restoration of metal-metal bonding, the asymmetric O/Rh(1 0 0) clock reconstruction is driven by the optimization of the O atom bonding environment. Comparisons of the O/Rh(1 0 0) and C(N, O)/Ni(1 0 0) surfaces further indicate that the electronegativity and electron count of the adsorbed species, as well as the electron count and physical size of the metal, all play a role in determining the preferred atomic geometries of these adsorbate-covered transition metal surfaces.
Zannas, Anthony S; Arloth, Janine; Carrillo-Roa, Tania; Iurato, Stella; Röh, Simone; Ressler, Kerry J; Nemeroff, Charles B; Smith, Alicia K; Bradley, Bekh; Heim, Christine; Menke, Andreas; Lange, Jennifer F; Brückl, Tanja; Ising, Marcus; Wray, Naomi R; Erhardt, Angelika; Binder, Elisabeth B; Mehta, Divya
2015-12-17
Chronic psychological stress is associated with accelerated aging and increased risk for aging-related diseases, but the underlying molecular mechanisms are unclear. We examined the effect of lifetime stressors on a DNA methylation-based age predictor, epigenetic clock. After controlling for blood cell-type composition and lifestyle parameters, cumulative lifetime stress, but not childhood maltreatment or current stress alone, predicted accelerated epigenetic aging in an urban, African American cohort (n = 392). This effect was primarily driven by personal life stressors, was more pronounced with advancing age, and was blunted in individuals with higher childhood abuse exposure. Hypothesizing that these epigenetic effects could be mediated by glucocorticoid signaling, we found that a high number (n = 85) of epigenetic clock CpG sites were located within glucocorticoid response elements. We further examined the functional effects of glucocorticoids on epigenetic clock CpGs in an independent sample with genome-wide DNA methylation (n = 124) and gene expression data (n = 297) before and after exposure to the glucocorticoid receptor agonist dexamethasone. Dexamethasone induced dynamic changes in methylation in 31.2 % (110/353) of these CpGs and transcription in 81.7 % (139/170) of genes neighboring epigenetic clock CpGs. Disease enrichment analysis of these dexamethasone-regulated genes showed enriched association for aging-related diseases, including coronary artery disease, arteriosclerosis, and leukemias. Cumulative lifetime stress may accelerate epigenetic aging, an effect that could be driven by glucocorticoid-induced epigenetic changes. These findings contribute to our understanding of mechanisms linking chronic stress with accelerated aging and heightened disease risk.
Samblas, Mirian; Milagro, Fermin I; Gómez-Abellán, Purificación; Martínez, J Alfredo; Garaulet, Marta
2016-06-01
The circadian clock system has been linked to the onset and development of obesity and some accompanying comorbidities. Epigenetic mechanisms, such as DNA methylation, are putatively involved in the regulation of the circadian clock system. The aim of this study was to investigate the influence of a weight loss intervention based on an energy-controlled Mediterranean dietary pattern in the methylation levels of 3 clock genes, BMAL1, CLOCK, and NR1D1, and the association between the methylation levels and changes induced in the serum lipid profile with the weight loss treatment. The study sample enrolled 61 women (body mass index = 28.6 ± 3.4 kg/m(2); age: 42.2 ± 11.4 years), who followed a nutritional program based on a Mediterranean dietary pattern. DNA was isolated from whole blood obtained at the beginning and end point. Methylation levels at different CpG sites of BMAL1, CLOCK, and NR1D1 were analyzed by Sequenom's MassArray. The energy-restricted intervention modified the methylation levels of different CpG sites in BMAL1 (CpGs 5, 6, 7, 9, 11, and 18) and NR1D1 (CpGs 1, 10, 17, 18, 19, and 22). Changes in cytosine methylation in the CpG 5 to 9 region of BMAL1 with the intervention positively correlated with the eveningness profile (p = 0.019). The baseline methylation of the CpG 5 to 9 region in BMAL1 positively correlated with energy (p = 0.047) and carbohydrate (p = 0.017) intake and negatively correlated with the effect of the weight loss intervention on total cholesterol (p = 0.032) and low-density lipoprotein cholesterol (p = 0.005). Similar significant and positive correlations were found between changes in methylation levels in the CpG 5 to 9 region of BMAL1 due to the intervention and changes in serum lipids (p < 0.05). This research describes apparently for the first time an association between changes in the methylation of the BMAL1 gene with the intervention and the effects of a weight loss intervention on blood lipids levels. © 2016 The Author(s).
Stabilization and tracking control of X-Z inverted pendulum with sliding-mode control.
Wang, Jia-Jun
2012-11-01
X-Z inverted pendulum is a new kind of inverted pendulum which can move with the combination of the vertical and horizontal forces. Through a new transformation, the X-Z inverted pendulum is decomposed into three simple models. Based on the simple models, sliding-mode control is applied to stabilization and tracking control of the inverted pendulum. The performance of the sliding mode control is compared with that of the PID control. Simulation results show that the design scheme of sliding-mode control is effective for the stabilization and tracking control of the X-Z inverted pendulum. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Thrust Measurements in Ballistic Pendulum Ablative Laser Propulsion Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brazolin, H.; Rodrigues, N. A. S.; Minucci, M. A. S.
This paper describes a setup for thrust measurement in ablative laser propulsion experiments, based on a simple ballistic pendulum associated to an imaging system, which is being assembled at IEAv. A light aluminium pendulum holding samples is placed inside a 100 liters vacuum chamber with two optical windows: the first (in ZnSe) for the laser beam and the second (in fused quartz) for the pendulum visualization. A TEA-CO{sub 2} laser beam is focused to the samples providing ablation and transferring linear moment to the pendulum as a whole. A CCD video camera captures the oscillatory movement of the pendulum andmore » the its trajectory is obtained by image processing. By fitting the trajectory of the pendulum to a dumped sinusoidal curve is possible to obtain the amplitude of the movement which is directly related to the momentum transfered to the sample.« less
Pendulums in the Physics Education Literature: A Bibliography
ERIC Educational Resources Information Center
Gauld, Colin
2004-01-01
Articles about the pendulum in four journals devoted to the teaching of physics and one general science teaching journal (along with other miscellaneous articles from other journals) are listed in three broad categories--types of pendulums, the contexts in which these pendulums are used in physics teaching at secondary or tertiary levels and a…
Introduction to the Treatment of Non-Linear Effects Using a Gravitational Pendulum
ERIC Educational Resources Information Center
Weltner, Klaus; Esperidiao, Antonio Sergio C.; Miranda, Paulo
2004-01-01
We show that the treatment of pendulum movement, other than the linear approximation,may be an instructive experimentally based introduction to the physics of non-linear effects. Firstly the natural frequency of a gravitational pendulum is measured as function of its amplitude. Secondly forced oscillations of a gravitational pendulum are…
Experimental Apparatus to Observe Dynamical Manifestations of Hamiltonian Monodromy
NASA Astrophysics Data System (ADS)
Nerem, M. Perry; Salmon, Danial; Delos, John; Aubin, Seth
An experiment to observe a topological change in a classical system with nontrivial monodromy is presented. Monodromy is the study of the topological behavior of a system as it evolves along a closed path. If the system does not return to the initial topological state at the end of the circuit, that system exhibits nontrivial monodromy. Such a topological change has been predicted in certain mechanical systems, but has not yet been observed experimentally. One such system is a family of paths in a cylindrically symmetric champagne-bottle potential, with a classically forbidden region centered at the origin. We constructed this system with a long spherically symmetric pendulum and a permanent magnet attached at the end. Magnetic fields from coils are used to create the potential barrier and the external forces to drive the pendulum about a monodromy circuit. A loop of initial conditions, that is initially on one side of the forbidden region, is driven smoothly about this circuit such that it continuously evolves into a loop that surrounds the forbidden region. We will display this phenomena through numerical simulations and hopefully experimental measurement.
Al-Thomali, Yousef; Basha, Sakeenabi; Mohamed, Roshan Noor
2017-08-01
The main purpose of the present systematic review was to evaluate the quantitative effects of the pendulum appliance and modified pendulum appliances for maxillary molar distalization in Class II malocclusion. Our systematic search included MEDLINE, EMBASE, CINAHL, PsychINFO, Scopus and key journals and review articles; the date of the last search was 30 January 2017. We graded the methodological quality of the studies by means of the Quality Assessment Tool for Quantitative Studies, developed for the Effective Public Health Practice Project (EPHPP). In total, 203 studies were identified for screening, and 25 studies were eligible. The quality assessment rated four (16%) of the study as being of strong quality and 21 (84%) of these studies as being of moderate quality. The pendulum appliances showed mean molar distalization of 2-6.4 mm, distal tipping of molars from 6.67° to 14.50° and anchorage loss with mean premolar and incisor mesial movement of 1.63-3.6 mm and 0.9-6.5 mm, respectively. The bone anchored pendulum appliances (BAPAs) showed mean molar distalization of 4.8-6.4 mm, distal tipping of molars from 9° to 11.3° and mean premolar distalization of 2.7-5.4 mm. Pendulum and modified pendulum appliances are effective in molar distalization. Pendulum appliance with K-loop modification, implant supported pendulum appliance and BAPA significantly reduced anchorage loss of the anterior teeth and distal tipping of the molar teeth.
Spin switches for compact implementation of neuron and synapse
NASA Astrophysics Data System (ADS)
Quang Diep, Vinh; Sutton, Brian; Behin-Aein, Behtash; Datta, Supriyo
2014-06-01
Nanomagnets driven by spin currents provide a natural implementation for a neuron and a synapse: currents allow convenient summation of multiple inputs, while the magnet provides the threshold function. The objective of this paper is to explore the possibility of a hardware neural network implementation using a spin switch (SS) as its basic building block. SS is a recently proposed device based on established technology with a transistor-like gain and input-output isolation. This allows neural networks to be constructed with purely passive interconnections without intervening clocks or amplifiers. The weights for the neural network are conveniently adjusted through analog voltages that can be stored in a non-volatile manner in an underlying CMOS layer using a floating gate low dropout voltage regulator. The operation of a multi-layer SS neural network designed for character recognition is demonstrated using a standard simulation model based on coupled Landau-Lifshitz-Gilbert equations, one for each magnet in the network.
NASA Astrophysics Data System (ADS)
Thongtan, Thayathip; Tirawanichakul, Pawit; Satirapod, Chalermchon
2017-12-01
Each GNSS constellation operates its own system times; namely, GPS system time (GPST), GLONASS system time (GLONASST), BeiDou system time (BDT) and Galileo system time (GST). They could be traced back to Coordinated Universal Time (UTC) scale and are aligned to GPST. This paper estimates the receiver clock offsets to three timescales: GPST, GLONASST and BDT. The two measurement scenarios use two identical multi-GNSS geodetic receivers connected to the same geodetic antenna through a splitter. One receiver is driven by its internal oscillators and another receiver is connected to the external frequency oscillators, caesium frequency standard, kept as the Thailand standard time scale at the National Institute of Metrology (Thailand) called UTC(NIMT). The three weeks data are observed at 30 seconds sample rate. The receiver clock offsets with respected to the three system time are estimated and analysed through the geodetic technique of static Precise Point Positioning (PPP) using a data processing software developed by Wuhan University - Positioning And Navigation Data Analyst (PANDA) software. The estimated receiver clock offsets are around 32, 33 and 18 nanoseconds from GPST, GLONASST and BDT respectively. This experiment is initially stated that each timescale is inter-operated with GPST and further measurements on receiver internal delay has to be determined for clock comparisons especially the high accuracy clock at timing laboratories.
Suppressing Loss of Ions in an Atomic Clock
NASA Technical Reports Server (NTRS)
Prestage, John; Chung, Sang
2010-01-01
An improvement has been made in the design of a compact, highly stable mercury- ion clock to suppress a loss of ions as they are transferred between the quadrupole and higher multipole ion traps. Such clocks are being developed for use aboard spacecraft for navigation and planetary radio science. The modification is also applicable to ion clocks operating on Earth: indeed, the success of the modification has been demonstrated in construction and operation of a terrestrial breadboard prototype of the compact, highly stable mercury-ion clock. Selected aspects of the breadboard prototype at different stages of development were described in previous NASA Tech Briefs articles. The following background information is reviewed from previous articles: In this clock as in some prior ion clocks, mercury ions are shuttled between two ion traps, one a 16- pole linear radio-frequency trap, while the other is a quadrupole radio-frequency trap. In the quadrupole trap, ions are tightly confined and optical state selection from a 202Hg lamp is carried out. In the 16-pole trap, the ions are more loosely confined and atomic transitions are interrogated by use of a microwave beam at approximately 40.507 GHz. The trapping of ions effectively eliminates the frequency pulling that would otherwise be caused by collisions between clock atoms and the wall of a gas cell. The shuttling of the ions between the two traps enables separation of the state-selection process from the clock microwave-resonance process, so that each of these processes can be optimized independently of the other. This is similar to the operation of an atomic beam clock, except that with ions the beam can be halted and reversed as ions are shuttled back and forth between the two traps. When the two traps are driven at the same radio frequency, the strength of confinement can be reduced near the junction between the two traps, depending upon the relative phase of the RF voltage used to operate each of the two traps, and can cause loss of ions during each transit between the traps and thereby cause loss of the 40.507-GHz ion-clock resonance signal. The essence of the modification is to drive the two traps at different frequencies typically between 1.5 and 2 MHz for the quadrupole trap and a frequency a few hundred kHz higher for the 16- pole trap. A frequency difference of a few hundred kHz ensures that the ion motion caused by the trapping electric fields is small relative to the diameter of the traps. Unlike in the case in which both traps are driven at the same frequency, the trapping electric fields near the junction are not zero at all times; instead, the regions of low electric field near the junction open and close at the difference frequency. An additional benefit of making the 16-pole trap operate at higher frequency is that the strength or depth of the multipole trap can be increased independent of the quadrupole ion trap.
49 CFR 572.193 - Neck assembly.
Code of Federal Regulations, 2014 CFR
2014-10-01
... or V2-B in appendix A to this subpart, to the 49 CFR Part 572 pendulum test fixture (Figure 22, 49... motion of the pendulum longitudinal centerline; (3) Release the pendulum from a height sufficient to achieve a velocity of 5.57 ±0.06 m/s measured at the center of the pendulum accelerometer, as shown in 49...
49 CFR 572.73 - Neck assembly and test procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... rotate, while translating in the direction of the pendulum preimpact flight, in reference to the pendulum... displacement at time “T” is defined as the straight line distance between the position relative to the pendulum arm of the head's center of gravity at time “zero;” and the position relative to the pendulum arm of...
49 CFR 572.193 - Neck assembly.
Code of Federal Regulations, 2012 CFR
2012-10-01
... or V2-B in appendix A to this subpart, to the 49 CFR Part 572 pendulum test fixture (Figure 22, 49... motion of the pendulum longitudinal centerline; (3) Release the pendulum from a height sufficient to achieve a velocity of 5.57 ±0.06 m/s measured at the center of the pendulum accelerometer, as shown in 49...
49 CFR 572.73 - Neck assembly and test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... rotate, while translating in the direction of the pendulum preimpact flight, in reference to the pendulum... displacement at time “T” is defined as the straight line distance between the position relative to the pendulum arm of the head's center of gravity at time “zero;” and the position relative to the pendulum arm of...
A Simple Method to Measure the Trajectory of a Spherical Pendulum
ERIC Educational Resources Information Center
Yang, Hujiang; Xiao, Jinghua; Yang, Tianyu; Qiu, Chen
2011-01-01
Compared with a single gravity pendulum, the spherical pendulum behaves more complicatedly in experiments, which makes it difficult to measure. In this paper, we present a method to visualize the trajectories of a spherical pendulum by employing a gravity ball with a lit LED and a digital camera. This new measurement is inexpensive and easy to…
49 CFR 572.193 - Neck assembly.
Code of Federal Regulations, 2013 CFR
2013-10-01
... or V2-B in appendix A to this subpart, to the 49 CFR Part 572 pendulum test fixture (Figure 22, 49... motion of the pendulum longitudinal centerline; (3) Release the pendulum from a height sufficient to achieve a velocity of 5.57 ±0.06 m/s measured at the center of the pendulum accelerometer, as shown in 49...
49 CFR 572.193 - Neck assembly.
Code of Federal Regulations, 2011 CFR
2011-10-01
... or V2-B in appendix A to this subpart, to the 49 CFR Part 572 pendulum test fixture (Figure 22, 49... of motion of the pendulum longitudinal centerline; (3) Release the pendulum from a height sufficient to achieve a velocity of 5.57 ± 0.06 m/s measured at the center of the pendulum accelerometer, as...
49 CFR 572.73 - Neck assembly and test procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... rotate, while translating in the direction of the pendulum preimpact flight, in reference to the pendulum... displacement at time “T” is defined as the straight line distance between the position relative to the pendulum arm of the head's center of gravity at time “zero;” and the position relative to the pendulum arm of...
Turning Points of the Spherical Pendulum and the Golden Ratio
ERIC Educational Resources Information Center
Essen, Hanno; Apazidis, Nicholas
2009-01-01
We study the turning point problem of a spherical pendulum. The special cases of the simple pendulum and the conical pendulum are noted. For simple initial conditions the solution to this problem involves the golden ratio, also called the golden section, or the golden number. This number often appears in mathematics where you least expect it. To…
49 CFR 572.73 - Neck assembly and test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... rotate, while translating in the direction of the pendulum preimpact flight, in reference to the pendulum... displacement at time “T” is defined as the straight line distance between the position relative to the pendulum arm of the head's center of gravity at time “zero;” and the position relative to the pendulum arm of...
49 CFR 572.193 - Neck assembly.
Code of Federal Regulations, 2010 CFR
2010-10-01
... or V2-B in appendix A to this subpart, to the 49 CFR Part 572 pendulum test fixture (Figure 22, 49... of motion of the pendulum longitudinal centerline; (3) Release the pendulum from a height sufficient to achieve a velocity of 5.57 ± 0.06 m/s measured at the center of the pendulum accelerometer, as...
49 CFR 572.73 - Neck assembly and test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... rotate, while translating in the direction of the pendulum preimpact flight, in reference to the pendulum... displacement at time “T” is defined as the straight line distance between the position relative to the pendulum arm of the head's center of gravity at time “zero;” and the position relative to the pendulum arm of...
Inverting the Pendulum Using Fuzzy Control (Center Director's Discretionary Fund (Project 93-02)
NASA Technical Reports Server (NTRS)
Kissel, R. R.; Sutherland, W. T.
1997-01-01
A single pendulum was simulated in software and then built on a rotary base. A fuzzy controller was used to show its advantages as a nonlinear controller since bringing the pendulum inverted is extremely nonlinear. The controller was implemented in a Motorola 6811 microcontroller. A double pendulum was simulated and fuzzy control was used to hold it in a vertical position. The double pendulum was not built into hardware for lack of time. This project was for training and to show advantages of fuzzy control.
Qian, Jingyi; Thomas, Anthony P; Schroeder, Analyne M; Rakshit, Kuntol; Colwell, Christopher S; Matveyenko, Aleksey V
2017-08-01
Metabolic state and circadian clock function exhibit a complex bidirectional relationship. Circadian disruption increases propensity for metabolic dysfunction, whereas common metabolic disorders such as obesity and type 2 diabetes (T2DM) are associated with impaired circadian rhythms. Specifically, alterations in glucose availability and glucose metabolism have been shown to modulate clock gene expression and function in vitro; however, to date, it is unknown whether development of diabetes imparts deleterious effects on the suprachiasmatic nucleus (SCN) circadian clock and SCN-driven outputs in vivo. To address this question, we undertook studies in aged diabetic rats transgenic for human islet amyloid polypeptide, an established nonobese model of T2DM (HIP rat), which develops metabolic defects closely recapitulating those present in patients with T2DM. HIP rats were also cross-bred with a clock gene reporter rat model (Per1:luciferase transgenic rat) to permit assessment of the SCN and the peripheral molecular clock function ex vivo. Utilizing these animal models, we examined effects of diabetes on 1 ) behavioral circadian rhythms, 2 ) photic entrainment of circadian activity, 3 ) SCN and peripheral tissue molecular clock function, and 4 ) melatonin secretion. We report that circadian activity, light-induced entrainment, molecular clockwork, as well as melatonin secretion are preserved in the HIP rat model of T2DM. These results suggest that despite the well-characterized ability of glucose to modulate circadian clock gene expression acutely in vitro, SCN clock function and key behavioral and physiological outputs appear to be preserved under chronic diabetic conditions characteristic of nonobese T2DM. Copyright © 2017 the American Physiological Society.
Calibration of Multiple Poliovirus Molecular Clocks Covering an Extended Evolutionary Range▿ †
Jorba, Jaume; Campagnoli, Ray; De, Lina; Kew, Olen
2008-01-01
We have calibrated five different molecular clocks for circulating poliovirus based upon the rates of fixation of total substitutions (Kt), synonymous substitutions (Ks), synonymous transitions (As), synonymous transversions (Bs), and nonsynonymous substitutions (Ka) into the P1/capsid region (2,643 nucleotides). Rates were determined over a 10-year period by analysis of sequences of 31 wild poliovirus type 1 isolates representing a well-defined phylogeny derived from a common imported ancestor. Similar rates were obtained by linear regression, the maximum likelihood/single-rate dated-tip method, and Bayesian inference. The very rapid Kt [(1.03 ± 0.10) × 10−2 substitutions/site/year] and Ks [(1.00 ± 0.08) × 10−2] clocks were driven primarily by the As clock [(0.96 ± 0.09) × 10−2], the Bs clock was ∼10-fold slower [(0.10 ± 0.03) × 10−2], and the more stochastic Ka clock was ∼30-fold slower [(0.03 ± 0.01) × 10−2]. Nonsynonymous substitutions at all P1/capsid sites, including the neutralizing antigenic sites, appeared to be constrained by purifying selection. Simulation of the evolution of third-codon positions suggested that saturation of synonymous transitions would be evident at 10 years and complete at ∼65 years of independent transmission. Saturation of synonymous transversions was predicted to be minimal at 20 years and incomplete at 100 years. The rapid evolution of the Kt, Ks, and As clocks can be used to estimate the dates of divergence of closely related viruses, whereas the slower Bs and Ka clocks may be used to explore deeper evolutionary relationships within and across poliovirus genotypes. PMID:18287242
1994-08-01
Momentum and Its Derivatives in Various Coordinate Systems 47 CONTENTS (cont) Page C Absolute Acceleration of Geometric Center C of the S & A Plane 55 D...Dynamics of Rotor-Driven S & A Mechanism with a Two-Pass Clock 59 Gear Train and A Verge Runaway Escapement Operating in an Aeroballistic Environment E...System Fixed to 295 Underside of Mechanism Plane (Applicable to M577 S & A ) H Program Aercloc 301 Distribution List 365 Accesion For NTIS CRA&M DTIC TAB 0
Développement mathématique appliqué à une future échelle de temps.
NASA Astrophysics Data System (ADS)
Andreucci, C.
The LPTF time section is in charge of the generation and dissemination of the French time scale (TA(F)). With the use of GPS time transfer and the replacement of the old generation of commercial caesium clocks, the quality of the timing data has changed rapidly. Consequently, the current time scale algorithm is not adapted to award a weight to the new clocks in relation with there quality. So a new algorithm has been built, with a more sensitive statistics processing. Tests carried out on real clock data covering the last few years, show improvement of the stability of the time scale.
NASA Astrophysics Data System (ADS)
Jalba, C. K.; Diekmann, R.; Epple, S.
2017-01-01
A pendulum impact tester is a technical device which is used to perform plasticity characterizations of metallic materials. Results are calculated based on fracture behavior under pendulum impact loadings according to DIN 50115, DIN 51222/EN 10045. The material is held at the two ends and gets struck in the middle. A mechanical Problem occurs when testing materials with a very high impact toughness. These specimen often do not break when hit by the pendulum. To return the pendulum to its initial position, the operator presses a service button. After a delay of approximately 2 seconds a clutch is activated which connects the arm of the pendulum with an electric motor to return it back upright in start position. At the moment of clutch activation, the pendulum can still swing or bounce with any speed in any direction at any different position. Due to the lack of synchronization between pendulum speed and constant engine speed, the clutch suffers heavy wear of friction. This disadvantage results in considerable service and repair costs for the customer. As a solution to this problem this article presents a customized technical device to significantly increase the lifetime of the clutch. It was accomplished by a precisely controlled activation of the clutch at a point of time when pendulum and motor are at synchronized speed and direction using incremental encoders.
ERIC Educational Resources Information Center
Kwon, Yong-Ju; Jeong, Jin-Su; Park, Yun-Bok
2006-01-01
The purpose of the present study was to test the hypothesis that student's abductive reasoning skills play an important role in the generation of hypotheses on pendulum motion tasks. To test the hypothesis, a hypothesis-generating test on pendulum motion, and a prior-belief test about pendulum motion were developed and administered to a sample of…
Foot trajectory approximation using the pendulum model of walking.
Fang, Juan; Vuckovic, Aleksandra; Galen, Sujay; Conway, Bernard A; Hunt, Kenneth J
2014-01-01
Generating a natural foot trajectory is an important objective in robotic systems for rehabilitation of walking. Human walking has pendular properties, so the pendulum model of walking has been used in bipedal robots which produce rhythmic gait patterns. Whether natural foot trajectories can be produced by the pendulum model needs to be addressed as a first step towards applying the pendulum concept in gait orthosis design. This study investigated circle approximation of the foot trajectories, with focus on the geometry of the pendulum model of walking. Three able-bodied subjects walked overground at various speeds, and foot trajectories relative to the hip were analysed. Four circle approximation approaches were developed, and best-fit circle algorithms were derived to fit the trajectories of the ankle, heel and toe. The study confirmed that the ankle and heel trajectories during stance and the toe trajectory in both the stance and the swing phases during walking at various speeds could be well modelled by a rigid pendulum. All the pendulum models were centred around the hip with pendular lengths approximately equal to the segment distances from the hip. This observation provides a new approach for using the pendulum model of walking in gait orthosis design.
Proposals for Updating Tai Algorithm
1997-12-01
1997 meeting, the Comiti International des Poids et Mesures (CIPM) decided to change the name of the Comiti Consultatif pour la Difinition de la ...Report of the BIPM Time Section, 1988,1, D1-D22. [2] P. Tavella, C. Thomas, Comparative study of time scale algorithms, Metrologia , 1991, 28, 57...alternative choice for implementing an upper limit of clock weights, Metrologia , 1996, 33, 227-240. [5] C. Thomas, Impact of New Clock Technologies
Tiltmeter studies in earthquake prediction
Johnston, M.
1978-01-01
tilt measurements give us a means of monitoring vertical displacements or local uplift of the crust. The simplest type of tiltmeter is a stationary pendulum (fig. 1). As the Earth's surface distorts locally, the pendulum housing is tilted while, of course, the pendulum continues to hang vertically (that is, in the direction of the gravity vector). The tilt angle is the angle through which the pendulum housing is tilted. The pendulum is the inertial reference (the force of gravity remains unchanged at the site), and tilting of the instrument housing represents the moving reference frame. We note in passing that the tiltmeter could also be used to measure the force of gravity by using the pendulum in the same way as Henry Kater did in his celebrated measurement of g in 1817.
Desktop chaotic systems: Intuition and visualization
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Melcher, Kevin J.; Qammar, Helen K.; Hartley, Tom T.
1993-01-01
This paper presents a dynamic study of the Wildwood Pendulum, a commercially available desktop system which exhibits a strange attractor. The purpose of studying this chaotic pendulum is twofold: to gain insight in the paradigmatic approach of modeling, simulating, and determining chaos in nonlinear systems; and to provide a desktop model of chaos as a visual tool. For this study, the nonlinear behavior of this chaotic pendulum is modeled, a computer simulation is performed, and an experimental performance is measured. An assessment of the pendulum in the phase plane shows the strange attractor. Through the use of a box-assisted correlation dimension methodology, the attractor dimension is determined for both the model and the experimental pendulum systems. Correlation dimension results indicate that the pendulum and the model are chaotic and their fractal dimensions are similar.
Sample-Clock Phase-Control Feedback
NASA Technical Reports Server (NTRS)
Quirk, Kevin J.; Gin, Jonathan W.; Nguyen, Danh H.; Nguyen, Huy
2012-01-01
To demodulate a communication signal, a receiver must recover and synchronize to the symbol timing of a received waveform. In a system that utilizes digital sampling, the fidelity of synchronization is limited by the time between the symbol boundary and closest sample time location. To reduce this error, one typically uses a sample clock in excess of the symbol rate in order to provide multiple samples per symbol, thereby lowering the error limit to a fraction of a symbol time. For systems with a large modulation bandwidth, the required sample clock rate is prohibitive due to current technological barriers and processing complexity. With precise control of the phase of the sample clock, one can sample the received signal at times arbitrarily close to the symbol boundary, thus obviating the need, from a synchronization perspective, for multiple samples per symbol. Sample-clock phase-control feedback was developed for use in the demodulation of an optical communication signal, where multi-GHz modulation bandwidths would require prohibitively large sample clock frequencies for rates in excess of the symbol rate. A custom mixedsignal (RF/digital) offset phase-locked loop circuit was developed to control the phase of the 6.4-GHz clock that samples the photon-counting detector output. The offset phase-locked loop is driven by a feedback mechanism that continuously corrects for variation in the symbol time due to motion between the transmitter and receiver as well as oscillator instability. This innovation will allow significant improvements in receiver throughput; for example, the throughput of a pulse-position modulation (PPM) with 16 slots can increase from 188 Mb/s to 1.5 Gb/s.
Characterisation of circadian rhythms of various duckweeds.
Muranaka, T; Okada, M; Yomo, J; Kubota, S; Oyama, T
2015-01-01
The plant circadian clock controls various physiological phenomena that are important for adaptation to natural day-night cycles. Many components of the circadian clock have been identified in Arabidopsis thaliana, the model plant for molecular genetic studies. Recent studies revealed evolutionary conservation of clock components in green plants. Homologues of clock-related genes have been isolated from Lemna gibba and Lemna aequinoctialis, and it has been demonstrated that these homologues function in the clock system in a manner similar to their functioning in Arabidopsis. While clock components are widely conserved, circadian phenomena display diversity even within the Lemna genus. In order to survey the full extent of diversity in circadian rhythms among duckweed plants, we characterised the circadian rhythms of duckweed by employing a semi-transient bioluminescent reporter system. Using a particle bombardment method, circadian bioluminescent reporters were introduced into nine strains representing five duckweed species: Spirodela polyrhiza, Landoltia punctata, Lemna gibba, L. aequinoctialis and Wolffia columbiana. We then monitored luciferase (luc+) reporter activities driven by AtCCA1, ZmUBQ1 or CaMV35S promoters under entrainment and free-running conditions. Under entrainment, AtCCA1::luc+ showed similar diurnal rhythms in all strains. This suggests that the mechanism of biological timing under day-night cycles is conserved throughout the evolution of duckweeds. Under free-running conditions, we observed circadian rhythms of AtCCA1::luc+, ZmUBQ1::luc+ and CaMV35S::luc+. These circadian rhythms showed diversity in period length and sustainability, suggesting that circadian clock mechanisms are somewhat diversified among duckweeds. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
A simple pendulum laser interferometer for determining the gravitational constant
Parks, Harold V.; Faller, James E.
2014-01-01
We present a detailed account of our 2004 experiment to measure the Newtonian constant of gravitation with a suspended laser interferometer. The apparatus consists of two simple pendulums hanging from a common support. Each pendulum has a length of 72 cm and their separation is 34 cm. A mirror is embedded in each pendulum bob, which then in combination form a Fabry–Perot cavity. A laser locked to the cavity measures the change in pendulum separation as the gravitational field is modulated due to the displacement of four 120 kg tungsten masses. PMID:25201994
Moments of inertia of several airplanes
NASA Technical Reports Server (NTRS)
Miller, Marvel P; Soule, Hartley A
1931-01-01
This paper, which is the first of a series presenting the results of such measurements, gives the momental ellipsoids of ten army and naval biplanes and one commercial monoplane. The data were obtained by the use of a pendulum method, previously described. The moments of inertia are expressed in coefficient as well as in dimensional form, so that those for airplanes of widely different weights and dimensions can be compared.
Periodic spring-mass running over uneven terrain through feedforward control of landing conditions.
Palmer, Luther R; Eaton, Caitrin E
2014-09-01
This work pursues a feedforward control algorithm for high-speed legged locomotion over uneven terrain. Being able to rapidly negotiate uneven terrain without visual or a priori information about the terrain will allow legged systems to be used in time-critical applications and alongside fast-moving humans or vehicles. The algorithm is shown here implemented on a spring-loaded inverted pendulum model in simulation, and can be configured to approach fixed running height over uneven terrain or self-stable terrain following. Offline search identifies unique landing conditions that achieve a desired apex height with a constant stride period over varying ground levels. Because the time between the apex and touchdown events is directly related to ground height, the landing conditions can be computed in real time as continuous functions of this falling time. Enforcing a constant stride period reduces the need for inertial sensing of the apex event, which is nontrivial for physical systems, and allows for clocked feedfoward control of the swing leg.
Time and Time Again; Determination of longitude at sea in the 17th Century
NASA Astrophysics Data System (ADS)
de Grijs, Richard
2017-11-01
Determination of one's longitude at sea has perplexed sailors for many centuries. The significant uptake of world trade in the 17th and 18th Centuries rendered the increasingly urgent need to solve the 'longitude problem', an issue of strategic national importance. Historical accounts of these efforts often focus almost exclusively on John Harrison's role in 18th-Century Britain. This book starts instead from Galileo Galilei's late-16th-Century development of an accurate pendulum clock, which was first achieved in practice in the mid-17th-Century by Christiaan Huygens in the Dutch Republic. It is primarily based on collections of letters that have not been combined into a single volume before. Extensive introductory chapters on the history of map making, the establishment of the world's reference meridian at Greenwich Observatory, and the rise of the scientific enterprise provide the appropriate context for non-expert readers to fully engage with the book's main subject matter.
Trapped strontium ion optical clock
NASA Astrophysics Data System (ADS)
Barwood, G. P.; Gill, P.; Klein, H. A.; Hosaka, K.; Huang, G.; Lea, S. N.; Margolis, H. S.; Szymaniec, K.; Walton, B. R.
2017-11-01
Increasingly stringent demands on atomic timekeeping, driven by applications such as global navigation satellite systems (GNSS), communications, and very-long baseline interferometry (VBLI) radio astronomy, have motivated the development of improved time and frequency standards. There are many scientific applications of such devices in space.
ERIC Educational Resources Information Center
Barnes, Marianne B.; Garner, James; Reid, David
2004-01-01
In this article we use the pendulum as the vehicle for discussing the transition from classical to quantum physics. Since student knowledge of the classical pendulum can be generalized to all harmonic oscillators, we propose that a quantum analysis of the pendulum can lead students into the unanticipated consequences of quantum phenomena at the…
Segmented Hoop as a Physical Pendulum
ERIC Educational Resources Information Center
Layton, William; Rodriguez, Nuria
2013-01-01
An interesting demonstration with a surprising result is to suspend a hoop from a point near its edge and set it swinging in a vertical plane as a pendulum. If a simple pendulum of length equal to the diameter of the hoop is set oscillating at the same time, the two will have nearly the same period. However, the real surprise is if the pendulum is…
ERIC Educational Resources Information Center
Adhitama, Egy; Fauzi, Ahmad
2018-01-01
In this study, a pendulum experimental tool with a light-based timer has been developed to measure the period of a simple pendulum. The obtained data was automatically recorded in an Excel spreadsheet. The intensity of monochromatic light, sensed by a 3DU5C phototransistor, dynamically changes as the pendulum swings. The changed intensity varies…
Dynamic stabilization of an optomechanical oscillator
2014-10-20
respectively. The proper frequency of the pendulum is ω0 = √ g/, where g is the gravitational acceleration and is the length of the pendulum . The...controlled experiments. In this paper we discuss one such situation, the dynamic stabilization of a mechanical system such as an inverted pendulum . The...quantumoptomechanics, macroscopic quantum system, dynamic stabilization, Kapitza pendulum REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S
Entrainment of spontaneously hypertensive rat fibroblasts by temperature cycles.
Sládek, Martin; Sumová, Alena
2013-01-01
The functional state of the circadian system of spontaneously hypertensive rats (SHR) differs in several characteristics from the functional state of normotensive Wistar rats. Some of these changes might be due to the compromised ability of the central pacemaker to entrain the peripheral clocks. Daily body temperature cycles represent one of the important cues responsible for the integrity of the circadian system, because these cycles are driven by the central pacemaker and are able to entrain the peripheral clocks. This study tested the hypothesis that the aberrant peripheral clock entrainment of SHR results from a compromised peripheral clock sensitivity to the daily temperature cycle resetting. Using cultured Wistar rat and SHR fibroblasts transfected with the circadian luminescence reporter Bmal1-dLuc, we demonstrated that two consecutive square-wave temperature cycles with amplitudes of 2.5 °C are necessary and sufficient to restart the dampened oscillations and entrain the circadian clocks in both Wistar rat and SHR fibroblasts. We also generated a phase response curve to temperature cycles for fibroblasts of both rat strains. Although some of the data suggested a slight resistance of SHR fibroblasts to temperature entrainment, we concluded that the overall effect it too weak to be responsible for the differences between the SHR and Wistar in vivo circadian phenotype.
Lombardi, Laura; Schneider, Kevin; Tsukamoto, Michelle; Brody, Stuart
2007-01-01
In Neurospora, the circadian rhythm is expressed as rhythmic conidiation driven by a feedback loop involving the protein products of frq (frequency), wc-1 (white collar-1), and wc-2, known as the frq/wc (FWC) oscillator. Although strains carrying null mutations such as frq10 or wc-2Δ lack a functional FWC oscillator and do not show a rhythm under most conditions, a rhythm can be observed in them by the addition of geraniol or farnesol to the media. Employing this altered media as an assay, the effect of other clock mutations in a frq10- or wc-2Δ-null background can be measured. It was found that the existing clock mutations fall into three classes: (1) those, such as prd-3 or prd-4 or frq1, that showed no effect in a clock null background; (2) those, such as prd-1 or prd-2 or prd-6, that did have a measurable effect in the frq10 background; and (3) those, such as the new mutation ult, that suppressed the frq10 or wc-2Δ effect, i.e., geraniol/farnesol was not required for a visible rhythm. This classification suggests that some of the known clock mutations are part of a broader multioscillator system. PMID:17237512
Entrainment of Spontaneously Hypertensive Rat Fibroblasts by Temperature Cycles
Sládek, Martin; Sumová, Alena
2013-01-01
The functional state of the circadian system of spontaneously hypertensive rats (SHR) differs in several characteristics from the functional state of normotensive Wistar rats. Some of these changes might be due to the compromised ability of the central pacemaker to entrain the peripheral clocks. Daily body temperature cycles represent one of the important cues responsible for the integrity of the circadian system, because these cycles are driven by the central pacemaker and are able to entrain the peripheral clocks. This study tested the hypothesis that the aberrant peripheral clock entrainment of SHR results from a compromised peripheral clock sensitivity to the daily temperature cycle resetting. Using cultured Wistar rat and SHR fibroblasts transfected with the circadian luminescence reporter Bmal1-dLuc, we demonstrated that two consecutive square-wave temperature cycles with amplitudes of 2.5°C are necessary and sufficient to restart the dampened oscillations and entrain the circadian clocks in both Wistar rat and SHR fibroblasts. We also generated a phase response curve to temperature cycles for fibroblasts of both rat strains. Although some of the data suggested a slight resistance of SHR fibroblasts to temperature entrainment, we concluded that the overall effect it too weak to be responsible for the differences between the SHR and Wistar in vivo circadian phenotype. PMID:24116198
Ask the pendulum: personality predictors of ideomotor performance.
Olson, Jay A; Jeyanesan, Ewalina; Raz, Amir
2017-01-01
For centuries, people have asked questions to hand-held pendulums and interpreted their movements as responses from the divine. These movements occur due to the ideomotor effect, wherein priming or thinking of a motion causes muscle movements that end up swinging the pendulum. By associating particular swinging movements with "yes" and "no" responses, we investigated whether pendulums can aid decision-making and which personality traits correlate with this performance. Participants ( N = 80 ) completed a visual detection task in which they searched for a target letter among rapidly presented characters. In the verbal condition, participants stated whether they saw the target in each trial. In the pendulum condition, participants instead mentally "asked" a hand-held pendulum whether the target was present; particular motions signified "yes" and "no". We measured the accuracy of their responses as well as their sensitivity and bias using signal detection theory. We also assessed four personality measures: locus of control (feelings of control over one's life), transliminality (sensitivity to subtle stimuli), need for cognition (preference for analytical thinking), and faith in intuition (preference for intuitive thinking). Overall, locus of control predicted verbal performance and transliminality predicted pendulum performance. Accuracy was low in both conditions (verbal: 57%, pendulum: 53%), but bias was higher in the verbal condition ( d = 1.10 ). We confirmed this bias difference in a second study ( d = 0.47 , N = 40 ). Our results suggest that people have different decision strategies when using a pendulum compared to conscious guessing. These findings may help explain why some people can answer questions more accurately with pendulums and Ouija boards. More broadly, identifying the differences between ideomotor and verbal responses could lead to practical ways to improve decision-making.
Ask the pendulum: personality predictors of ideomotor performance
Olson, Jay A; Jeyanesan, Ewalina; Raz, Amir
2017-01-01
Abstract For centuries, people have asked questions to hand-held pendulums and interpreted their movements as responses from the divine. These movements occur due to the ideomotor effect, wherein priming or thinking of a motion causes muscle movements that end up swinging the pendulum. By associating particular swinging movements with “yes” and “no” responses, we investigated whether pendulums can aid decision-making and which personality traits correlate with this performance. Participants (N=80) completed a visual detection task in which they searched for a target letter among rapidly presented characters. In the verbal condition, participants stated whether they saw the target in each trial. In the pendulum condition, participants instead mentally “asked” a hand-held pendulum whether the target was present; particular motions signified “yes” and “no”. We measured the accuracy of their responses as well as their sensitivity and bias using signal detection theory. We also assessed four personality measures: locus of control (feelings of control over one’s life), transliminality (sensitivity to subtle stimuli), need for cognition (preference for analytical thinking), and faith in intuition (preference for intuitive thinking). Overall, locus of control predicted verbal performance and transliminality predicted pendulum performance. Accuracy was low in both conditions (verbal: 57%, pendulum: 53%), but bias was higher in the verbal condition (d=1.10). We confirmed this bias difference in a second study (d=0.47, N=40). Our results suggest that people have different decision strategies when using a pendulum compared to conscious guessing. These findings may help explain why some people can answer questions more accurately with pendulums and Ouija boards. More broadly, identifying the differences between ideomotor and verbal responses could lead to practical ways to improve decision-making. PMID:29877514
Gillies, G T; Broaddus, W C; Stenger, J M; Taylor, A G
1998-01-01
The head and neck constitute an inverted pendulum that is stabilized during consciousness by neuromuscular restoring forces. An analysis of the dynamics of this inverted pendulum suggests that the mechanics of the mandible and temporomandibular joint might couple into those of the pendulum's stabilization process. In this article, physical principles of the inverted pendulum model as these apply to the head and neck are explored, and the authors describe implications of mandibular mechanics for the forces acting on the head and neck at equilibrium. This novel application of the inverted pendulum model predicts that alteration or pathology of temporomandibular mechanics would lead to perturbations of the normal forces acting in the head and neck. Under certain circumstances, these perturbations could be expected to contribute to symptoms and result in additional or accelerated degenerative effects.
Energy behavior of an electromechanical system with internal impacts and uncertainties
NASA Astrophysics Data System (ADS)
Lima, Roberta; Sampaio, Rubens
2016-07-01
This paper analyzes the maximal energy stored in an elastic barrier due to the impacts of a pendulum fitted within a vibro-impact electromechanical system considering the existence of epistemic uncertainties in the system parameters. The vibro-impact electromechanical system is composed of two subsystems. The first subsystem is the electromechanical system composed by a motor, cart and pendulum, and the second is an elastic barrier. The first will be called striker system. The pendulum is fitted within the cart. Its suspension point is fixed in the cart, so that it may exist a relative motion between cart and pendulum. The influence of the DC motor in the dynamic behavior of the pendulum is considered. The coupling between the motor and the cart is made by a scotch yoke mechanism, so that the motor rotational motion is transformed in horizontal cart motion over a rail. The pendulum is modeled as a mathematical pendulum (bar without mass and particle of mass mp at the end). A flexible barrier, placed inside the cart, constrains the pendulum motion. Due to the relative motion between the cart and the pendulum, impacts may occur between these two elements. The objective of the paper is to analyze the energy stored in the barrier due to impacts as a function of some parameters of the electromechanical system from a deterministic and from a stochastic viewpoint. The system is designed as an aid in drilling. The impacts damage or fracture the rock and facilitate the conventional drilling.
Brain clock driven by neuropeptides and second messengers
NASA Astrophysics Data System (ADS)
Miro-Bueno, Jesus; Sosík, Petr
2014-09-01
The master circadian pacemaker in mammals is localized in a small portion of the brain called the suprachiasmatic nucleus (SCN). It is unclear how the SCN produces circadian rhythms. A common interpretation is that the SCN produces oscillations through the coupling of genetic oscillators in the neurons. The coupling is effected by a network of neuropeptides and second messengers. This network is crucial for the correct function of the SCN. However, models that study a possible oscillatory behavior of the network itself have received little attention. Here we propose and analyze a model to examine this oscillatory potential. We show that an intercellular oscillator emerges in the SCN as a result of the neuropeptide and second messenger dynamics. We find that this intercellular clock can produce circadian rhythms by itself with and without genetic clocks. We also found that the model is robust to perturbation of parameters and can be entrained by light-dark cycles.
Brain clock driven by neuropeptides and second messengers.
Miro-Bueno, Jesus; Sosík, Petr
2014-09-01
The master circadian pacemaker in mammals is localized in a small portion of the brain called the suprachiasmatic nucleus (SCN). It is unclear how the SCN produces circadian rhythms. A common interpretation is that the SCN produces oscillations through the coupling of genetic oscillators in the neurons. The coupling is effected by a network of neuropeptides and second messengers. This network is crucial for the correct function of the SCN. However, models that study a possible oscillatory behavior of the network itself have received little attention. Here we propose and analyze a model to examine this oscillatory potential. We show that an intercellular oscillator emerges in the SCN as a result of the neuropeptide and second messenger dynamics. We find that this intercellular clock can produce circadian rhythms by itself with and without genetic clocks. We also found that the model is robust to perturbation of parameters and can be entrained by light-dark cycles.
Transcriptomic analyses reveal rhythmic and CLOCK-driven pathways in human skeletal muscle
Perrin, Laurent; Hulo, Nicolas; Isenegger, Laura; Weger, Benjamin D; Migliavacca, Eugenia; Charpagne, Aline; Betts, James A; Walhin, Jean-Philippe; Templeman, Iain; Stokes, Keith; Thompson, Dylan; Tsintzas, Kostas; Robert, Maud; Howald, Cedric; Riezman, Howard; Feige, Jerome N; Karagounis, Leonidas G; Johnston, Jonathan D; Dermitzakis, Emmanouil T
2018-01-01
Circadian regulation of transcriptional processes has a broad impact on cell metabolism. Here, we compared the diurnal transcriptome of human skeletal muscle conducted on serial muscle biopsies in vivo with profiles of human skeletal myotubes synchronized in vitro. More extensive rhythmic transcription was observed in human skeletal muscle compared to in vitro cell culture as a large part of the in vivo mRNA rhythmicity was lost in vitro. siRNA-mediated clock disruption in primary myotubes significantly affected the expression of ~8% of all genes, with impact on glucose homeostasis and lipid metabolism. Genes involved in GLUT4 expression, translocation and recycling were negatively affected, whereas lipid metabolic genes were altered to promote activation of lipid utilization. Moreover, basal and insulin-stimulated glucose uptake were significantly reduced upon CLOCK depletion. Our findings suggest an essential role for the circadian coordination of skeletal muscle glucose homeostasis and lipid metabolism in humans. PMID:29658882
Chronobiology in mammalian health.
Liu, Zhihua; Chu, Guiyan
2013-03-01
Circadian rhythms are daily cycles of physiology and behavior that are driven by an endogenous oscillator with a period of approximately one day. In mammals, the hypothalamic suprachiasmatic nuclei are our principal circadian oscillators which influences peripheral tissue clocks via endocrine, autonomic and behavioral cues, and other brain regions and most peripheral tissues contain circadian clocks as well. The circadian molecular machinery comprises a group of circadian genes, namely Clock, Bmal1, Per1, Per2, Per3, Cry1 and Cry2. These circadian genes drive endogenous oscillations which promote rhythmically expression of downstream genes and thereby physiological and behavioral processes. Disruptions in circadian homeostasis have pronounced impact on physiological functioning, overall health and disease susceptibility. This review introduces the general profile of circadian gene expression and tissue-specific circadian regulation, highlights the connection between the circadian rhythms and physiological processes, and discusses the role of circadian rhythms in human disease.
Response of pendulums to complex input ground motion
Graizer, V.; Kalkan, E.
2008-01-01
Dynamic response of most seismological instruments and many engineering structures to ground shaking can be represented via response of a pendulum (single-degree-of-freedom oscillator). In most studies, pendulum response is simplified by considering the input from uni-axial translational motion alone. Complete ground motion however, includes not only translational components but also rotations (tilt and torsion). In this paper, complete equations of motion for three following types of pendulum are described: (i) conventional (mass-on-rod), (ii) mass-on-spring type, and (iii) inverted (astatic), then their response sensitivities to each component of complex ground motion are examined. The results of this study show that a horizontal pendulum similar to an accelerometer used in strong motion measurements is practically sensitive to translational motion and tilt only, while inverted pendulum commonly utilized to idealize multi-degree-of-freedom systems is sensitive not only to translational components, but also to angular accelerations and tilt. For better understanding of the inverted pendulum's dynamic behavior under complex ground excitation, relative contribution of each component of motion on response variants is carefully isolated. The systematically applied loading protocols indicate that vertical component of motion may create time-dependent variations on pendulum's oscillation period; yet most dramatic impact on response is produced by the tilting (rocking) component. ?? 2007 Elsevier Ltd. All rights reserved.
Assessment of energy harvesting and vibration mitigation of a pendulum dynamic absorber
NASA Astrophysics Data System (ADS)
Kecik, Krzysztof
2018-06-01
The paper presents a novel system for simultaneous energy harvesting and vibration mitigation. The system consists of two main parts: an autoparametric pendulum vibration absorber and an energy harvester device. The recovered energy is from oscillation of a levitating magnet in a coil. The energy harvesting system is mounted in a pendulum structure. The system allows energy recovery from a semi-trivial solution (pendulum in rest) or/and swinging of a pendulum. The influence of harvester parameters on the system response and energy harvesting in a parametric resonance is studied in detail. The harvester device does not decrease vibration reduction effectiveness.
A simple pendulum laser interferometer for determining the gravitational constant.
Parks, Harold V; Faller, James E
2014-10-13
We present a detailed account of our 2004 experiment to measure the Newtonian constant of gravitation with a suspended laser interferometer. The apparatus consists of two simple pendulums hanging from a common support. Each pendulum has a length of 72 cm and their separation is 34 cm. A mirror is embedded in each pendulum bob, which then in combination form a Fabry-Perot cavity. A laser locked to the cavity measures the change in pendulum separation as the gravitational field is modulated due to the displacement of four 120 kg tungsten masses. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Gibberllin driven growth in elf3 mutants requires PIF4 and PIF5
USDA-ARS?s Scientific Manuscript database
The regulatory connections between the circadian clock and hormone signaling are essential to understand, as these two regulatory processes work together to time growth processes relative to predictable environmental events. Gibberellins (GAs) are phytohormones that control many growth processes thr...
Coupled Leidenfrost states as a monodisperse granular clock
NASA Astrophysics Data System (ADS)
Liu, Rui; Yang, Mingcheng; Chen, Ke; Hou, Meiying; To, Kiwing
2016-08-01
Using an event-driven molecular dynamics simulation, we show that simple monodisperse granular beads confined in coupled columns may oscillate as a different type of granular clock. To trigger this oscillation, the system needs to be driven against gravity into a density-inverted state, with a high-density clustering phase supported from below by a gaslike low-density phase (Leidenfrost effect) in each column. Our analysis reveals that the density-inverted structure and the relaxation dynamics between the phases can amplify any small asymmetry between the columns, and lead to a giant oscillation. The oscillation occurs only for an intermediate range of the coupling strength, and the corresponding phase diagram can be universally described with a characteristic height of the density-inverted structure. A minimal two-phase model is proposed and a linear stability analysis shows that the triggering mechanism of the oscillation can be explained as a switchable two-parameter Andronov-Hopf bifurcation. Numerical solutions of the model also reproduce similar oscillatory dynamics to the simulation results.
NASA Astrophysics Data System (ADS)
Li, Xinying; Xiao, Jiangnan
2015-06-01
We propose a novel scheme for optical frequency-locked multi-carrier generation based on one electro-absorption modulated laser (EML) and one phase modulator (PM) in cascade driven by different sinusoidal radio-frequency (RF) clocks. The optimal operating zone for the cascaded EML and PM is found out based on theoretical analysis and numerical simulation. We experimentally demonstrate 25 optical subcarriers with frequency spacing of 12.5 GHz and power difference less than 5 dB can be generated based on the cascaded EML and PM operating in the optimal zone, which agrees well with the numerical simulation. We also experimentally demonstrate 28-Gbaud polarization division multiplexing quadrature phase shift keying (PDM-QPSK) modulated coherent optical transmission based on the cascaded EML and PM. The bit error ratio (BER) can be below the pre-forward-error-correction (pre-FEC) threshold of 3.8 × 10-3 after 80-km single-mode fiber-28 (SMF-28) transmission.
Shoulder Injuries and Disorders - Multiple Languages
... Af-Soomaali (Somali) Bilingual PDF Health Information Translations Pendulum Exercises for Shoulder - Af-Soomaali (Somali) Bilingual PDF ... Exercises - español (Spanish) Bilingual PDF Health Information Translations Pendulum Exercises for Shoulder - English PDF Pendulum Exercises for ...
Plume Characterization of Busek 600W Hall Thruster
2012-03-09
probe was used to examine the thruster plume current density while the ion species fractions were determined by the ExB probe. The inverted pendulum ...25 A. Inverted Pendulum ...Diagnostic Equipment .....................................................................................45 A. Inverted Pendulum
Precessional Periods of Long and Short Foucault Pendulums
ERIC Educational Resources Information Center
Soga, Michitoshi
1978-01-01
Derives the precessional period of a Foucault pendulum without using small oscillation amplitudes. Shows that if the path of the pendulum passes through the origin, the periods for differing amplitudes are essentially the same. (GA)
Ma, Xue-Qin; Li, Guo-Shan; Fu, Xue-Yan; Ma, Jing-Zu
2011-03-01
To investigate CD molecular recognition technology applied in active constituents extracted and isolated from traditional Chinese medicine--Aconitum pendulum. The inclusion constant and form probability of the inclusion complex of Aconitum pendulum with p-CD was calculated by UV spectra method. The active constituents of Aconitum pendulum were extracted and isolated by molecular recognition technology. The inclusion complex was identified by UV. The chemical constituents of Aconitum pendulum and inclusion complex was determined by HPLC. The analgesic effects of inclusion complex was investigated by experiment of intraperitoneal injection of acetic acid in rats. The inclusion complex was identified and confirmed by UV spectra method, the chemical components of inclusion complex were simple, and the content of active constituents increased significantly, the analgesic effects of inclusion complex was well. The molecular recognition technology can be used for extracting and isolating active constituents of Aconitum pendulum, and the effects are obvious.
NASA Astrophysics Data System (ADS)
van Emmerik, T. H. M.; Li, Z.; Sivapalan, M.; Pande, S.; Kandasamy, J.; Savenije, H. H. G.; Chanan, A.; Vigneswaran, S.
2014-10-01
Competition for water between humans and ecosystems is set to become a flash point in the coming decades in many parts of the world. An entirely new and comprehensive quantitative framework is needed to establish a holistic understanding of that competition, thereby enabling the development of effective mediation strategies. This paper presents a modeling study centered on the Murrumbidgee River basin (MRB). The MRB has witnessed a unique system dynamics over the last 100 years as a result of interactions between patterns of water management and climate driven hydrological variability. Data analysis has revealed a pendulum swing between agricultural development and restoration of environmental health and ecosystem services over different stages of basin-scale water resource development. A parsimonious, stylized, quasi-distributed coupled socio-hydrologic system model that simulates the two-way coupling between human and hydrological systems of the MRB is used to mimic and explain dominant features of the pendulum swing. The model consists of coupled nonlinear ordinary differential equations that describe the interaction between five state variables that govern the co-evolution: reservoir storage, irrigated area, human population, ecosystem health, and environmental awareness. The model simulations track the propagation of the external climatic and socio-economic drivers through this coupled, complex system to the emergence of the pendulum swing. The model results point to a competition between human "productive" and environmental "restorative" forces that underpin the pendulum swing. Both the forces are endogenous, i.e., generated by the system dynamics in response to external drivers and mediated by humans through technology change and environmental awareness, respectively. Sensitivity analysis carried out with the model further reveals that socio-hydrologic modeling can be used as a tool to explain or gain insight into observed co-evolutionary dynamics of diverse human-water coupled systems. This paper therefore contributes to the ultimate development of a generic modeling framework that can be applied to human-water coupled systems in different climatic and socio-economic settings.
Design and Experimental Implementation of Optimal Spacecraft Antenna Slews
2013-12-01
LINK PENDULUM MODEL ............................................................58 C. AZIMUTH-ELEVATION SYSTEM...BOUNDARY VALUE PROBLEM ......................77 B. DOUBLE PENDULUM EXAMPLE............................................................82 C. SOLVING THE...Figure 15. Two-link Pendulum .........................................................................................58 Figure 16. Double
Fiber release from impacted graphite reinforced epoxy composites
NASA Technical Reports Server (NTRS)
Babinsky, T. C.
1980-01-01
Carbon fibers released from composites by aircraft fires and crashes can cause electrical shorts and consequent equipment damage. This report investigates less vigorous release mechanisms than that previously simulated by explosive burn/blast tests. When AS/3501-6 composites are impacted by various head and weight configurations of a pendulum impactor, less than 0.2 percent by weight of the original sample is released as single fibers. Other fiber release mechanisms studied were air blasts, constant airflow, torsion, flexural, and vibration of composite samples. The full significance of the low single fiber release rates found here is to be evaluated by NASA in their aircraft vulnerability studies.
NASA Astrophysics Data System (ADS)
Demidov, Ivan; Sorokin, Vladislav
2018-05-01
Motion of a pendulum with damping and vibrating axis of suspension is considered at unconventional values of parameters. Case when the frequency of external loading and the natural frequency of the pendulum in the absence of this loading are of the same order is studied. Vibration intensity is assumed to be relatively low. In this case, the corresponding equation of the pendulum's motions doesn't involve an explicit small parameter. To solve the equation a new modification of the method of direct separation of motions is used. As the result, stability conditions of the pendulum inverted position are determined. Effects of damping on these conditions are discussed.
NASA Astrophysics Data System (ADS)
Adhitama, Egy; Fauzi, Ahmad
2018-05-01
In this study, a pendulum experimental tool with a light-based timer has been developed to measure the period of a simple pendulum. The obtained data was automatically recorded in an Excel spreadsheet. The intensity of monochromatic light, sensed by a 3DU5C phototransistor, dynamically changes as the pendulum swings. The changed intensity varies the resistance value and was processed by the microcontroller, ATMega328, to obtain a signal period as a function of time and brightness when the pendulum crosses the light. Through the experiment, using calculated average periods, the gravitational acceleration value has been accurately and precisely determined.
Caprioglio, Alberto; Beretta, Matteo; Lanteri, Claudio
2011-01-01
To compare the dento-alveolar and skeletal effects produced by two different molar intraoral distalization appliances, Pendulum and Fast-Back, both followed by fixed appliances, in the treatment of Class II malocclusion. 41 patients for Pendulum (18 males and 23 females) and 35 for Fast-Back (14 males and 21 females) were selected, with a mean age at the start of treatment of 12.11 years in the Pendulum group and 13.3 for in the Fast-Back group. The durations of the distalization phase were 8 months in the Pendulum group and 9 months in the Fast-Back group, and the durations of the second phase of treatment with fixed appliances were 19 months in the Pendulum group and 20 months in the Fast-Back group. Lateral cephalograms were analyzed at 3 observation times: before treatment, after distalization and after comprehensive orthodontic treatment. During molar distalization the Pendulum subjects showed greater distal molar movement and less anchorage loss at both the premolars and maxillary incisors than the Fast-Back subjects. Pendulum and Fast-Back produced similar amounts of distal molar movement and overcorrection of molar relationship at the end of distalization though the Fast-Back induced a more bodily movement. Very little change occurred in the inclination of the mandibular plane at the end of the 2-phase treatment in both groups. At the end of treatment the maxillary first molars were on average 1mm more distal in the Pendulum group compared to the Fast-Back group, while the total molar correction was 3.2mm with 3.9° of distal inclination for the Pendulum and 2mm with 1.1° of mesial inclination for the Fast-Back. Both appliance were equally effective in inducing a satisfactory Class I relationship in 97.2% of the cases. The Pendulum and the Fast-Back induce similar dentoskeletal effects. The use of the two distalization devices, therefore, can be considered clinically equivalent. Copyright © 2011 Società Italiana di Ortodonzia SIDO. Published by Elsevier Srl. All rights reserved.
Square-Wave Model for a Pendulum with Oscillating Suspension
ERIC Educational Resources Information Center
Yorke, Ellen D.
1978-01-01
Demonstrates that if a sinusoidal oscillation of the point of support of a pendulum is approximated by a square wave, a matrix method may be used to discuss parametric resonance and the stability of the inverted pendulum. (Author/SL)
Examining Functions in Mathematics and Science Using Computer Interfacing.
ERIC Educational Resources Information Center
Walton, Karen Doyle
1988-01-01
Introduces microcomputer interfacing as a method for explaining and demonstrating various aspects of the concept of function. Provides three experiments with illustrations and typical computer graphic displays: pendulum motion, pendulum study using two pendulums, and heat absorption and radiation. (YP)
Chacón, Ricardo
2008-12-01
Optimal energy amplification via autoresonance in dissipative systems subjected to separatrix crossings is discussed through the universal model of a damped driven pendulum. Analytical expressions of the autoresonance responses and forces as well as the associated adiabatic invariants for the phase space regions separated by the underlying separatrix are derived from the energy-based theory of autoresonance. Additionally, applications to a single Josephson junction, topological solitons in Frenkel-Kontorova chains, as well as to the three-wave problem in dissipative media are discussed in detail from the autoresonance analysis.
Kim, Tae Heon; Grünberg, Peter; Han, Song Hee; Cho, Beongki
2016-01-01
The spin-torque driven dynamics of antiferromagnets with Dzyaloshinskii-Moriya interaction (DMI) were investigated based on the Landau-Lifshitz-Gilbert-Slonczewski equation with antiferromagnetic and ferromagnetic order parameters (l and m, respectively). We demonstrate that antiferromagnets including DMI can be described by a 2-dimensional pendulum model of l. Because m is coupled with l, together with DMI and exchange energy, close examination of m provides fundamental understanding of its dynamics in linear and nonlinear regimes. Furthermore, we discuss magnetization reversal as a function of DMI and anisotropy energy induced by a spin current pulse. PMID:27713522
Harvesting wind energy to detect weak signals using mechanical stochastic resonance.
Breen, Barbara J; Rix, Jillian G; Ross, Samuel J; Yu, Yue; Lindner, John F; Mathewson, Nathan; Wainwright, Elliot R; Wilson, Ian
2016-12-01
Wind is free and ubiquitous and can be harnessed in multiple ways. We demonstrate mechanical stochastic resonance in a tabletop experiment in which wind energy is harvested to amplify weak periodic signals detected via the movement of an inverted pendulum. Unlike earlier mechanical stochastic resonance experiments, where noise was added via electrically driven vibrations, our broad-spectrum noise source is a single flapping flag. The regime of the experiment is readily accessible, with wind speeds ∼20 m/s and signal frequencies ∼1 Hz. We readily obtain signal-to-noise ratios on the order of 10 dB.
NASA Astrophysics Data System (ADS)
Gintautas, Vadas; Hubler, Alfred
2006-03-01
As worldwide computer resources increase in power and decrease in cost, real-time simulations of physical systems are becoming increasingly prevalent, from laboratory models to stock market projections and entire ``virtual worlds'' in computer games. Often, these systems are meticulously designed to match real-world systems as closely as possible. We study the limiting behavior of a virtual horizontally driven pendulum coupled to its real-world counterpart, where the interaction occurs on a time scale that is much shorter than the time scale of the dynamical system. We find that if the physical parameters of the virtual system match those of the real system within a certain tolerance, there is a qualitative change in the behavior of the two-pendulum system as the strength of the coupling is increased. Applications include a new method to measure the physical parameters of a real system and the use of resonance spectroscopy to refine a computer model. As virtual systems better approximate real ones, even very weak interactions may produce unexpected and dramatic behavior. The research is supported by the National Science Foundation Grant No. NSF PHY 01-40179, NSF DMS 03-25939 ITR, and NSF DGE 03-38215.
Values in conflict: neurology before and after the advent of managed care.
McQuillen, M P
1997-01-01
The transformation of American medicine now taking place is fundamentally driven by money. As the pendulum swings from the excesses of fee-for-service medicine (under which system the physician was paid more for doing more), to the equally egregious excesses of managed care (according to which the physician is paid more for doing less), it is the patient--especially the vulnerable patient with a debilitating neurological disease--who stands to lose the most. A survey of the historical roots of this transformation highlights the ethical dilemmas under the course of the pendulum. The ethical principles that should guide both the profession and the business of medicine are explored in search of a common ground on which both physicians and managers can work in concert for the benefit of the patients as well as the society whom both serve. The perils that beset that search must be recognized and avoided if the commons are to be preserved. This is especially true for neurology, where care must be patient, not profit, oriented; must have quality, not cost, as its primary aim; and must not be rationed until there is a floor of universal coverage, with participation by all in allocation decisions.
Control of Torsional Vibrations by Pendulum Masses
NASA Technical Reports Server (NTRS)
Stieglitz, Albert
1942-01-01
Various versions of pendulum masses have been developed abroad within the past few years by means of which resonant vibrations of rotating shafts can be eliminated at a given tuning. They are already successfully employed on radial engines in the form of pendulous counterweights. Compared with the commonly known torsional vibration dampers, the pendulum masses have the advantage of being structurally very simple, requiring no internal damping and being capable of completely eliminating certain vibrations. Unexplained, so far, remains the problem of behavior of pendulum masses in other critical zones to which they are not tuned, their dynamic behavior at some tuning other than in resonance, and their effect within a compound vibration system and at simultaneous application of several differently tuned pendulous masses. These problems are analyzed in the present report. The results constitute an enlargement of the scope of application of pendulum masses, especially for in-line engines. Among other things it is found that the natural frequency of a system can be raised by means of a correspondingly tuned pendulum mass. The formulas necessary for the design of any practical version are developed, and a pendulum mass having two different natural frequencies simultaneously is described.
A novel pendulum test for measuring roller chain efficiency
NASA Astrophysics Data System (ADS)
Wragge-Morley, R.; Yon, J.; Lock, R.; Alexander, B.; Burgess, S.
2018-07-01
This paper describes a novel pendulum decay test for determining the transmission efficiency of chain drives. The test involves releasing a pendulum with an initial potential energy and measuring its decaying oscillations: under controlled conditions the decay reveals the losses in the transmission to a high degree of accuracy. The main advantage over motorised rigs is that there are significantly fewer sources of friction and inertia and hence measurement error. The pendulum rigs have an accuracy around 0.6% for the measurement of the coefficient of friction, giving an accuracy of transmission efficiency measurement around 0.012%. A theoretical model of chain friction combined with the equations of motion enables the coefficient of friction to be determined from the decay rate of pendulum velocity. The pendulum rigs operate at relatively low speeds. However, they allow an accurate determination of the coefficient of friction to estimate transmission efficiency at higher speeds. The pendulum rig revealed a previously undetected rocking behaviour in the chain links at very small articulation angles. In this regime, the link interfaces were observed to roll against one another rather than slide. This observation indicates that a very high-efficiency transmission can be achieved if the articulation angle is very low.
Szopa, Andrzej; Domagalska-Szopa, Małgorzata; Kidoń, Zenon; Syczewska, Małgorzata
2014-12-16
Development of a reliable and objective test of spasticity is important for assessment and treatment of children with cerebral palsy. The pendulum test has been reported to yield reliable measurements of spasticity and to be sensitive to variations in spasticity in these children. However, the relationship between the pendulum test scores and other objective measures of spasticity has not been studied. The present study aimed to assess the effectiveness of an accelerometer-based pendulum test as a measurement of spasticity in CP, and to explore the correlation between the measurements of this test and the global index of deviation from normal gait in in children with cerebral palsy. We studied thirty-six children with cerebral palsy, including 18 with spastic hemiplegia and 18 with spastic diplegia, and a group of 18 typically-developing children. Knee extensor spasticity was assessed bilaterally using the accelerometer-based pendulum test and three-dimensional gait analysis. The Gillette Gait Index was calculated from the results of the gait analysis. The data from the accelerometer-based pendulum test could be used to distinguish between able-bodied children and children with cerebral palsy. Additionally, two of the measurements, first swing excursion and relaxation index, could be used to differentiate the degree of knee extensor spasticity in the children with cerebral palsy. Only a few moderate correlations were found between the Gillette Gait Index and the pendulum test data. This study demonstrates that the pendulum test can be used to discriminate between typically developing children and children with CP, as well as between various degrees of spasticity, such as spastic hemiplegia and spastic diplegia, in the knee extensor muscle of children with CP. Deviations from normal gait in children with CP were not correlated with the results of the pendulum test.
Angelieri, Fernanda; de Almeida, Renato Rodrigues; Janson, Guilherme; Castanha Henriques, José Fernando; Pinzan, Arnaldo
2008-12-01
This study compared the effects produced by two different molar distalizers, namely cervical headgear (CHG) and the intraoral pendulum appliance, associated with fixed orthodontic appliances. The headgear group comprised 30 patients (19 females, 11 males), with an initial age of 13.07 years [standard deviation (SD) = 1.3], treated with CHG and fixed orthodontic appliances for a mean period of 3.28 years, and the pendulum group 22 patients (15 females, 7 males), with initial age of 13.75 years (SD = 1.86), treated with the pendulum appliance followed by fixed orthodontic appliances for a mean period of 4.12 years. Lateral cephalograms were taken at the start (T1) and on completion (T2) of orthodontic treatment. The pendulum and CHG groups were similar as to initial age, severity of the Class II malocclusion, gender distribution, initial cephalometric characteristics, and initial and final treatment priority index (TPI). Only treatment time was not similar between the groups, with a need for annualization for data for the pendulum group. The data were compared with independent t-tests. There was significantly greater restriction of maxillary forward growth and improvement of the skeletal maxillomandibular relationship in the CHG group (P < 0.05). The maxillary molars were more mesially tipped and extruded and the mandibular molars more uprighted in the CHG group compared with the pendulum group (P < 0.05). There was more labial tipping of the mandibular incisors and greater overbite reduction in the pendulum group. The pendulum appliance produced only dentoalveolar effects, different from the CHG appliance, which restricted maxillary forward displacement, thus improving the skeletal maxillomandibular relationship.
Naldi, Aurélien; Baruchet, Michaël; Canella, Donatella; Le Martelot, Gwendal; Guex, Nicolas; Desvergne, Béatrice; Delorenzi, Mauro; Deplancke, Bart; Desvergne, Béatrice; Guex, Nicolas; Herr, Winship; Naef, Felix; Rougemont, Jacques; Schibler, Ueli; Deplancke, Bart; Guex, Nicolas; Herr, Winship; Guex, Nicolas; Andersin, Teemu; Cousin, Pascal; Gilardi, Federica; Gos, Pascal; Martelot, Gwendal Le; Lammers, Fabienne; Canella, Donatella; Gilardi, Federica; Raghav, Sunil; Fabbretti, Roberto; Fortier, Arnaud; Long, Li; Vlegel, Volker; Xenarios, Ioannis; Migliavacca, Eugenia; Praz, Viviane; Guex, Nicolas; Naef, Felix; Rougemont, Jacques; David, Fabrice; Jarosz, Yohan; Kuznetsov, Dmitry; Liechti, Robin; Martin, Olivier; Delafontaine, Julien; Sinclair, Lucas; Cajan, Julia; Krier, Irina; Leleu, Marion; Migliavacca, Eugenia; Molina, Nacho; Naldi, Aurélien; Rey, Guillaume; Symul, Laura; Guex, Nicolas; Naef, Felix; Rougemont, Jacques; Bernasconi, David; Delorenzi, Mauro; Andersin, Teemu; Canella, Donatella; Gilardi, Federica; Martelot, Gwendal Le; Lammers, Fabienne; Baruchet, Michaël; Raghav, Sunil
2014-01-01
In mammals, the circadian clock allows them to anticipate and adapt physiology around the 24 hours. Conversely, metabolism and food consumption regulate the internal clock, pointing the existence of an intricate relationship between nutrient state and circadian homeostasis that is far from being understood. The Sterol Regulatory Element Binding Protein 1 (SREBP1) is a key regulator of lipid homeostasis. Hepatic SREBP1 function is influenced by the nutrient-response cycle, but also by the circadian machinery. To systematically understand how the interplay of circadian clock and nutrient-driven rhythm regulates SREBP1 activity, we evaluated the genome-wide binding of SREBP1 to its targets throughout the day in C57BL/6 mice. The recruitment of SREBP1 to the DNA showed a highly circadian behaviour, with a maximum during the fed status. However, the temporal expression of SREBP1 targets was not always synchronized with its binding pattern. In particular, different expression phases were observed for SREBP1 target genes depending on their function, suggesting the involvement of other transcription factors in their regulation. Binding sites for Hepatocyte Nuclear Factor 4 (HNF4) were specifically enriched in the close proximity of SREBP1 peaks of genes, whose expression was shifted by about 8 hours with respect to SREBP1 binding. Thus, the cross-talk between hepatic HNF4 and SREBP1 may underlie the expression timing of this subgroup of SREBP1 targets. Interestingly, the proper temporal expression profile of these genes was dramatically changed in Bmal1 −/− mice upon time-restricted feeding, for which a rhythmic, but slightly delayed, binding of SREBP1 was maintained. Collectively, our results show that besides the nutrient-driven regulation of SREBP1 nuclear translocation, a second layer of modulation of SREBP1 transcriptional activity, strongly dependent from the circadian clock, exists. This system allows us to fine tune the expression timing of SREBP1 target genes, thus helping to temporally separate the different physiological processes in which these genes are involved. PMID:24603613
Analyzing spring pendulum phenomena with a smart-phone acceleration sensor
NASA Astrophysics Data System (ADS)
Kuhn, Jochen; Vogt, Patrik
2012-11-01
This paper describes two further pendulum experiments using the acceleration sensor of a smartphone in this column (for earlier contributions concerning this topic, including the description of the operation and use of the acceleration sensor, see Refs. 1 and 2). In this paper we focus on analyzing spring pendulum phenomena. Therefore two spring pendulum experiments will be described in which a smartphone is used as a pendulum body and SPARKvue3 software is used in conjunction with an iPhone or an iPod touch, or the Accelogger4 app for an Android device.1,2 As described in Ref. 1, the values measured by the smartphone are subsequently exported to a spreadsheet application (e.g., MS Excel) for analysis.
Riestra, Pia; Gebreab, Samson Y; Xu, Ruihua; Khan, Rumana J; Gaye, Amadou; Correa, Adolfo; Min, Nancy; Sims, Mario; Davis, Sharon K
2017-06-23
Circadian rhythms regulate key biological processes and the dysregulation of the intrinsic clock mechanism affects sleep patterns and obesity onset. The CLOCK (circadian locomotor output cycles protein kaput) gene encodes a core transcription factor of the molecular circadian clock influencing diverse metabolic pathways, including glucose and lipid homeostasis. The primary objective of this study was to evaluate the associations between CLOCK single nucleotide polymorphisms (SNPs) and body mass index (BMI). We also evaluated the association of SNPs with BMI related factors such as sleep duration and quality, adiponectin and leptin, in 2962 participants (1116 men and 1810 women) from the Jackson Heart Study. Genotype data for the selected 23 CLOCK gene SNPS was obtained by imputation with IMPUTE2 software and reference phase data from the 1000 genome project. Genetic analyses were conducted with PLINK RESULTS: We found a significant association between the CLOCK SNP rs2070062 and sleep duration, participants carriers of the T allele showed significantly shorter sleep duration compared to non-carriers after the adjustment for individual proportions of European ancestry (PEA), socio economic status (SES), body mass index (BMI), alcohol consumption and smoking status that reach the significance threshold after multiple testing correction. In addition, we found nominal associations of the CLOCK SNP rs6853192 with longer sleep duration and the rs6820823, rs3792603 and rs11726609 with BMI. However, these associations did not reach the significance threshold after correction for multiple testing. In this work, CLOCK gene variants were associated with sleep duration and BMI suggesting that the effects of these polymorphisms on circadian rhythmicity may affect sleep duration and body weight regulation in Africans Americans.
Cockrell, Allison L.; Pirlo, Russell K.; Babson, David M.; Cusick, Kathleen D.; Soto, Carissa M.; Petersen, Emily R.; Davis, Miah J.; Hong, Christian I.; Lee, Kwangwon; Fitzgerald, Lisa A.; Biffinger, Justin C.
2015-01-01
Neurospora crassa has been utilized as a model organism for studying biological, regulatory, and circadian rhythms for over 50 years. These circadian cycles are driven at the molecular level by gene transcription events to prepare for environmental changes. N. crassa is typically found on woody biomass and is commonly studied on agar-containing medium which mimics its natural environment. We report a novel method for disrupting circadian gene transcription while maintaining light responsiveness in N. crassa when held in a steady metabolic state using bioreactors. The arrhythmic transcription of core circadian genes and downstream clock-controlled genes was observed in constant darkness (DD) as determined by reverse transcription-quantitative PCR (RT-qPCR). Nearly all core circadian clock genes were up-regulated upon exposure to light during 11hr light/dark cycle experiments under identical conditions. Our results demonstrate that the natural timing of the robust circadian clock in N. crassa can be disrupted in the dark when maintained in a consistent metabolic state. Thus, these data lead to a path for the production of industrial scale enzymes in the model system, N. crassa, by removing the endogenous negative feedback regulation by the circadian oscillator. PMID:26031221
Magnetic effect in the test of the weak equivalence principle using a rotating torsion pendulum
NASA Astrophysics Data System (ADS)
Zhu, Lin; Liu, Qi; Zhao, Hui-Hui; Yang, Shan-Qing; Luo, Pengshun; Shao, Cheng-Gang; Luo, Jun
2018-04-01
The high precision test of the weak equivalence principle (WEP) using a rotating torsion pendulum requires thorough analysis of systematic effects. Here we investigate one of the main systematic effects, the coupling of the ambient magnetic field to the pendulum. It is shown that the dominant term, the interaction between the average magnetic field and the magnetic dipole of the pendulum, is decreased by a factor of 1.1 × 104 with multi-layer magnetic shield shells. The shield shells reduce the magnetic field to 1.9 × 10-9 T in the transverse direction so that the dipole-interaction limited WEP test is expected at η ≲ 10-14 for a pendulum dipole less than 10-9 A m2. The high-order effect, the coupling of the magnetic field gradient to the magnetic quadrupole of the pendulum, would also contribute to the systematic errors for a test precision down to η ˜ 10-14.
Magnetic effect in the test of the weak equivalence principle using a rotating torsion pendulum.
Zhu, Lin; Liu, Qi; Zhao, Hui-Hui; Yang, Shan-Qing; Luo, Pengshun; Shao, Cheng-Gang; Luo, Jun
2018-04-01
The high precision test of the weak equivalence principle (WEP) using a rotating torsion pendulum requires thorough analysis of systematic effects. Here we investigate one of the main systematic effects, the coupling of the ambient magnetic field to the pendulum. It is shown that the dominant term, the interaction between the average magnetic field and the magnetic dipole of the pendulum, is decreased by a factor of 1.1 × 10 4 with multi-layer magnetic shield shells. The shield shells reduce the magnetic field to 1.9 × 10 -9 T in the transverse direction so that the dipole-interaction limited WEP test is expected at η ≲ 10 -14 for a pendulum dipole less than 10 -9 A m 2 . The high-order effect, the coupling of the magnetic field gradient to the magnetic quadrupole of the pendulum, would also contribute to the systematic errors for a test precision down to η ∼ 10 -14 .
NASA Astrophysics Data System (ADS)
Yulkifli; Afandi, Zurian; Yohandri
2018-04-01
Development of gravitation acceleration measurement using simple harmonic motion pendulum method, digital technology and photogate sensor has been done. Digital technology is more practical and optimizes the time of experimentation. The pendulum method is a method of calculating the acceleration of gravity using a solid ball that connected to a rope attached to a stative pole. The pendulum is swung at a small angle resulted a simple harmonic motion. The measurement system consists of a power supply, Photogate sensors, Arduino pro mini and seven segments. The Arduino pro mini receives digital data from the photogate sensor and processes the digital data into the timing data of the pendulum oscillation. The calculation result of the pendulum oscillation time is displayed on seven segments. Based on measured data, the accuracy and precision of the experiment system are 98.76% and 99.81%, respectively. Based on experiment data, the system can be operated in physics experiment especially in determination of the gravity acceleration.
Mathematic study of the rotor motion with a pendulum selfbalancing device
NASA Astrophysics Data System (ADS)
Ivkina, O. P.; Ziyakaev, G. R.; Pashkov, E. N.
2016-09-01
The rotary machines used in manufacturing may become unbalanced leading to vibration. In some cases, the problem may be solved by installing self-balancing devices (SBDs). Certain factors, however, exhibit a pronounced effect on the efficiency of these devices. The objective of the research comprised of establishing the most beneficial spatial position of pendulums to minimize the necessary time to repair the rotor unbalance. The mathematical research of the motion of a rotor with pendulum SBDs in the situation of their misalignment was undertaken. This objective was achieved by using the Lagrange equations of the second type. The analysis identified limiting cases of location of the rotor unbalance vector and the vector of housing's unbalance relative to each other, as well as the minimum capacity of the pendulum. When determining pendulums ’ parameters during the SBD design process, it is necessary to take into account the rotor unbalance and the unbalance of the machine body, which is caused by the misalignment of rotor axis and pendulum's axis of rotation.
NASA Astrophysics Data System (ADS)
Borisov, A. P.
2018-01-01
The article is devoted to the development of a software and hardware complex for investigating the grinding process on a pendulum deformer. The hardware part of this complex is the Raspberry Pi model 2B platform, to which a contactless angle sensor is connected, which allows to obtain data on the angle of deviation of the pendulum surface, usb-cameras, which allow to obtain grain images before and after grinding, and stepping motors allowing lifting of the pendulum surface and adjust the clearance between the pendulum and the supporting surfaces. The program part of the complex is written in C # and allows receiving data from the sensor and usb-cameras, processing the received data, and also controlling the synchronous-step motors in manual and automatic mode. The conducted studies show that the rational mode is the deviation of the pendulum surface by an angle of 400, and the location of the grain in the central zone of the support surface, regardless of the orientation of the grain in space. Also, due to the non-contact angle sensor, energy consumption for grinding, speed and acceleration of the pendulum surface, as well as vitreousness of grain and the energy consumption are calculated. With the help of photographs obtained from usb cameras, the work of a pendulum deformer based on the Rebinder formula and calculation of the grain area before and after grinding is determined.
Reconfiguration of a Multi-oscillator Network by Light in the Drosophila Circadian Clock.
Chatterjee, Abhishek; Lamaze, Angélique; De, Joydeep; Mena, Wilson; Chélot, Elisabeth; Martin, Béatrice; Hardin, Paul; Kadener, Sebastian; Emery, Patrick; Rouyer, François
2018-06-07
The brain clock that drives circadian rhythms of locomotor activity relies on a multi-oscillator neuronal network. In addition to synchronizing the clock with day-night cycles, light also reformats the clock-driven daily activity pattern. How changes in lighting conditions modify the contribution of the different oscillators to remodel the daily activity pattern remains largely unknown. Our data in Drosophila indicate that light readjusts the interactions between oscillators through two different modes. We show that a morning s-LNv > DN1p circuit works in series, whereas two parallel evening circuits are contributed by LNds and other DN1ps. Based on the photic context, the master pacemaker in the s-LNv neurons swaps its enslaved partner-oscillator-LNd in the presence of light or DN1p in the absence of light-to always link up with the most influential phase-determining oscillator. When exposure to light further increases, the light-activated LNd pacemaker becomes independent by decoupling from the s-LNvs. The calibration of coupling by light is layered on a clock-independent network interaction wherein light upregulates the expression of the PDF neuropeptide in the s-LNvs, which inhibits the behavioral output of the DN1p evening oscillator. Thus, light modifies inter-oscillator coupling and clock-independent output-gating to achieve flexibility in the network. It is likely that the light-induced changes in the Drosophila brain circadian network could reveal general principles of adapting to varying environmental cues in any neuronal multi-oscillator system. Copyright © 2018 Elsevier Ltd. All rights reserved.
A Prototype Cesium Clock Ensemble for The Loran-C Radionavigation System
2008-12-01
ability to discipline using all-in-view GNSS and Two-Way Satellite Time and Frequency Transfer ( TWSTFT ). I. INTRODUCTION In the mid-1990s, the Coast...the clock weighting to favor the “best” oscillator(s) or switch the AOG discipline source to use an external source of timing such as GPS or TWSTFT ...cesium trio ensemble; however, it may also use external sources such as GPS or TWSTFT . Control: The field in the lower right corner of the GUI
49 CFR 572.123 - Neck assembly and test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... with respect to the pendulum's longitudinal centerline between 74 degrees and 92 degrees. Within this... direction of preimpact flight with respect to the pendulum's longitudinal centerline between 85 degrees and... contact between the pendulum striker plate and the honeycomb material. (c) Test procedure. The test...
49 CFR 572.123 - Neck assembly and test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... with respect to the pendulum's longitudinal centerline between 74 degrees and 92 degrees. Within this... direction of preimpact flight with respect to the pendulum's longitudinal centerline between 85 degrees and... contact between the pendulum striker plate and the honeycomb material. (c) Test procedure. The test...
49 CFR 572.123 - Neck assembly and test procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... with respect to the pendulum's longitudinal centerline between 74 degrees and 92 degrees. Within this... direction of preimpact flight with respect to the pendulum's longitudinal centerline between 85 degrees and... contact between the pendulum striker plate and the honeycomb material. (c) Test procedure. The test...
49 CFR 572.123 - Neck assembly and test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... with respect to the pendulum's longitudinal centerline between 74 degrees and 92 degrees. Within this... direction of preimpact flight with respect to the pendulum's longitudinal centerline between 85 degrees and... contact between the pendulum striker plate and the honeycomb material. (c) Test procedure. The test...
49 CFR 572.123 - Neck assembly and test procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... with respect to the pendulum's longitudinal centerline between 74 degrees and 92 degrees. Within this... direction of preimpact flight with respect to the pendulum's longitudinal centerline between 85 degrees and... contact between the pendulum striker plate and the honeycomb material. (c) Test procedure. The test...
Pendulum Phenomena and the Assessment of Scientific Inquiry Capabilities
ERIC Educational Resources Information Center
Zachos, Paul
2004-01-01
Phenomena associated with the "pendulum" present numerous opportunities for assessing higher order human capabilities related to "scientific inquiry" and the "discovery" of natural law. This paper illustrates how systematic "assessment of scientific inquiry capabilities", using "pendulum" phenomena, can provide a useful tool for classroom teachers…
ERIC Educational Resources Information Center
Fay, Temple H.
2002-01-01
We investigate the pendulum equation [theta] + [lambda][squared] sin [theta] = 0 and two approximations for it. On the one hand, we suggest that the third and fifth-order Taylor series approximations for sin [theta] do not yield very good differential equations to approximate the solution of the pendulum equation unless the initial conditions are…
Equilibrium and Stability of a Pendulum in an Orbiting Spaceship.
ERIC Educational Resources Information Center
Blitzer, Leon
1979-01-01
Investigates the behavior of a simple pendulum attached to a fixed point inside a satellite moving in a circular orbit about the earth. It is found that the number of equilibrium positions depends on the length of the pendulum and the location of the point of attachment. (HM)
Code of Federal Regulations, 2011 CFR
2011-10-01
... the vehicle if they are optional equipment. (b) Pendulum test conditions. The following conditions apply to the pendulum test procedures of § 581.7 (a) and (b). (1) The test device consists of a block... 1963. From the point of release of the device until the onset of rebound, the pendulum suspension...
Code of Federal Regulations, 2012 CFR
2012-10-01
... (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline a... distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at time T as...
49 CFR 572.113 - Neck assembly.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Using neck brackets 78051-303 and -307, mount the head/neck assembly to the part 572 pendulum test... to the plane of motion of the pendulum's longitudinal centerline (see § 572.33, Figure 20, except... (horizontal surface at the base of the skull) rotation with respect to the pendulum's longitudinal centerline...
Code of Federal Regulations, 2014 CFR
2014-10-01
... paragraph (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline... the straight line distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at...
Code of Federal Regulations, 2013 CFR
2013-10-01
... the vehicle if they are optional equipment. (b) Pendulum test conditions. The following conditions apply to the pendulum test procedures of § 581.7 (a) and (b). (1) The test device consists of a block... 1963. From the point of release of the device until the onset of rebound, the pendulum suspension...
49 CFR 572.143 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... subpart, shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal... rotation data channels are defined to be zero when the longitudinal centerline of the neck and pendulum are... of preimpact flight with respect to the pendulum's longitudinal centerline between 83 degrees and 93...
49 CFR 572.36 - Test conditions and instrumentation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... be mounted with its sensitive axis colinear with the pendulum's longitudinal centerline. (h) The... acceleration—Class 1000 (2) Neck forces—Class 1000 (3) Neck moments—Class 600 (4) Neck pendulum acceleration—Class 60 (5) Thorax and thorax pendulum acceleration—Class 180 (6) Thorax deflection—Class 180 (7) Knee...
Code of Federal Regulations, 2014 CFR
2014-10-01
... (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline a... distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at time T as...
49 CFR 572.133 - Neck assembly and test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... pendulum's longitudinal centerline between 77 degrees and 91 degrees. During the time interval while the... respect to the pendulum's longitudinal centerline between 99 degrees and 114 degrees. During the time... force to occipital condyle. (3) Time-zero is defined as the time of initial contact between the pendulum...
Code of Federal Regulations, 2013 CFR
2013-10-01
... (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline a... distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at time T as...
49 CFR 572.113 - Neck assembly.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Using neck brackets 78051-303 and -307, mount the head/neck assembly to the part 572 pendulum test... to the plane of motion of the pendulum's longitudinal centerline (see § 572.33, Figure 20, except... (horizontal surface at the base of the skull) rotation with respect to the pendulum's longitudinal centerline...
Code of Federal Regulations, 2010 CFR
2010-10-01
... (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline a... distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at time T as...
49 CFR 572.133 - Neck assembly and test procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... pendulum's longitudinal centerline between 77 degrees and 91 degrees. During the time interval while the... respect to the pendulum's longitudinal centerline between 99 degrees and 114 degrees. During the time... force to occipital condyle. (3) Time-zero is defined as the time of initial contact between the pendulum...
Code of Federal Regulations, 2012 CFR
2012-10-01
... the vehicle if they are optional equipment. (b) Pendulum test conditions. The following conditions apply to the pendulum test procedures of § 581.7 (a) and (b). (1) The test device consists of a block... 1963. From the point of release of the device until the onset of rebound, the pendulum suspension...
49 CFR 572.153 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... subpart shall rotate in the direction of pre-impact flight with respect to the pendulum's longitudinal... shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal centerline... section, on the pendulum so the midsagittal plane of the headform is vertical and coincides with the plane...
49 CFR 572.143 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... subpart, shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal... rotation data channels are defined to be zero when the longitudinal centerline of the neck and pendulum are... of preimpact flight with respect to the pendulum's longitudinal centerline between 83 degrees and 93...
49 CFR 572.133 - Neck assembly and test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... pendulum's longitudinal centerline between 77 degrees and 91 degrees. During the time interval while the... respect to the pendulum's longitudinal centerline between 99 degrees and 114 degrees. During the time... force to occipital condyle. (3) Time-zero is defined as the time of initial contact between the pendulum...
49 CFR 572.173 - Neck assembly and test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... respect to the pendulum's longitudinal centerline between 76 degrees and 90 degrees. During the time..., referenced in Figure T3, shall rotate in the direction of preimpact flight with respect to the pendulum's... occipital condyle. (3) Time zero is defined as the time of initial contact between the pendulum striker...
Code of Federal Regulations, 2010 CFR
2010-10-01
... the vehicle if they are optional equipment. (b) Pendulum test conditions. The following conditions apply to the pendulum test procedures of § 581.7 (a) and (b). (1) The test device consists of a block... 1963. From the point of release of the device until the onset of rebound, the pendulum suspension...
Code of Federal Regulations, 2014 CFR
2014-10-01
... the vehicle if they are optional equipment. (b) Pendulum test conditions. The following conditions apply to the pendulum test procedures of § 581.7 (a) and (b). (1) The test device consists of a block... 1963. From the point of release of the device until the onset of rebound, the pendulum suspension...
49 CFR 572.173 - Neck assembly and test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... respect to the pendulum's longitudinal centerline between 76 degrees and 90 degrees. During the time..., referenced in Figure T3, shall rotate in the direction of preimpact flight with respect to the pendulum's... occipital condyle. (3) Time zero is defined as the time of initial contact between the pendulum striker...
49 CFR 572.153 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... subpart shall rotate in the direction of pre-impact flight with respect to the pendulum's longitudinal... shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal centerline... section, on the pendulum so the midsagittal plane of the headform is vertical and coincides with the plane...
Conical Pendulum--Linearization Analyses
ERIC Educational Resources Information Center
Dean, Kevin; Mathew, Jyothi
2016-01-01
A theoretical analysis is presented, showing the derivations of seven different linearization equations for the conical pendulum period "T", as a function of radial and angular parameters. Experimental data obtained over a large range of fixed conical pendulum lengths (0.435 m-2.130 m) are plotted with the theoretical lines and…
Code of Federal Regulations, 2011 CFR
2011-10-01
... (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline a... distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at time T as...
49 CFR 572.113 - Neck assembly.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Using neck brackets 78051-303 and -307, mount the head/neck assembly to the part 572 pendulum test... to the plane of motion of the pendulum's longitudinal centerline (see § 572.33, Figure 20, except... (horizontal surface at the base of the skull) rotation with respect to the pendulum's longitudinal centerline...
Code of Federal Regulations, 2012 CFR
2012-10-01
... paragraph (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline... the straight line distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at...
49 CFR 572.143 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... subpart, shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal... rotation data channels are defined to be zero when the longitudinal centerline of the neck and pendulum are... of preimpact flight with respect to the pendulum's longitudinal centerline between 83 degrees and 93...
49 CFR 572.173 - Neck assembly and test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... respect to the pendulum's longitudinal centerline between 76 degrees and 90 degrees. During the time..., referenced in Figure T3, shall rotate in the direction of preimpact flight with respect to the pendulum's... occipital condyle. (3) Time zero is defined as the time of initial contact between the pendulum striker...
49 CFR 572.133 - Neck assembly and test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... pendulum's longitudinal centerline between 77 degrees and 91 degrees. During the time interval while the... respect to the pendulum's longitudinal centerline between 99 degrees and 114 degrees. During the time... force to occipital condyle. (3) Time-zero is defined as the time of initial contact between the pendulum...
49 CFR 572.153 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... subpart shall rotate in the direction of pre-impact flight with respect to the pendulum's longitudinal... shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal centerline... section, on the pendulum so the midsagittal plane of the headform is vertical and coincides with the plane...
49 CFR 572.133 - Neck assembly and test procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... pendulum's longitudinal centerline between 77 degrees and 91 degrees. During the time interval while the... respect to the pendulum's longitudinal centerline between 99 degrees and 114 degrees. During the time... force to occipital condyle. (3) Time-zero is defined as the time of initial contact between the pendulum...
49 CFR 572.113 - Neck assembly.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Using neck brackets 78051-303 and -307, mount the head/neck assembly to the part 572 pendulum test... to the plane of motion of the pendulum's longitudinal centerline (see § 572.33, Figure 20, except... (horizontal surface at the base of the skull) rotation with respect to the pendulum's longitudinal centerline...
Code of Federal Regulations, 2013 CFR
2013-10-01
... paragraph (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline... the straight line distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at...
49 CFR 572.153 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... subpart shall rotate in the direction of pre-impact flight with respect to the pendulum's longitudinal... shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal centerline... section, on the pendulum so the midsagittal plane of the headform is vertical and coincides with the plane...
49 CFR 572.36 - Test conditions and instrumentation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... be mounted with its sensitive axis colinear with the pendulum's longitudinal centerline. (h) The... acceleration—Class 1000 (2) Neck forces—Class 1000 (3) Neck moments—Class 600 (4) Neck pendulum acceleration—Class 60 (5) Thorax and thorax pendulum acceleration—Class 180 (6) Thorax deflection—Class 180 (7) Knee...
Experiments with a Magnetically Controlled Pendulum
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2007-01-01
A magnetically controlled pendulum is used for observing free and forced oscillations, including nonlinear oscillations and chaotic motion. A data-acquisition system stores the data and displays time series of the oscillations and related phase plane plots, Poincare maps, Fourier spectra and histograms. The decay constant of the pendulum can be…
Code of Federal Regulations, 2010 CFR
2010-10-01
... paragraph (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline... the straight line distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at...
49 CFR 572.153 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... subpart shall rotate in the direction of pre-impact flight with respect to the pendulum's longitudinal... shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal centerline... section, on the pendulum so the midsagittal plane of the headform is vertical and coincides with the plane...
49 CFR 572.113 - Neck assembly.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Using neck brackets 78051-303 and -307, mount the head/neck assembly to the part 572 pendulum test... to the plane of motion of the pendulum's longitudinal centerline (see § 572.33, Figure 20, except... (horizontal surface at the base of the skull) rotation with respect to the pendulum's longitudinal centerline...
Code of Federal Regulations, 2011 CFR
2011-10-01
... paragraph (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline... the straight line distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at...
49 CFR 572.36 - Test conditions and instrumentation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... be mounted with its sensitive axis colinear with the pendulum's longitudinal centerline. (h) The... acceleration—Class 1000 (2) Neck forces—Class 1000 (3) Neck moments—Class 600 (4) Neck pendulum acceleration—Class 60 (5) Thorax and thorax pendulum acceleration—Class 180 (6) Thorax deflection—Class 180 (7) Knee...
49 CFR 572.36 - Test conditions and instrumentation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... be mounted with its sensitive axis colinear with the pendulum's longitudinal centerline. (h) The... acceleration—Class 1000 (2) Neck forces—Class 1000 (3) Neck moments—Class 600 (4) Neck pendulum acceleration—Class 60 (5) Thorax and thorax pendulum acceleration—Class 180 (6) Thorax deflection—Class 180 (7) Knee...
49 CFR 572.143 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... subpart, shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal... rotation data channels are defined to be zero when the longitudinal centerline of the neck and pendulum are... of preimpact flight with respect to the pendulum's longitudinal centerline between 83 degrees and 93...
49 CFR 572.36 - Test conditions and instrumentation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... be mounted with its sensitive axis colinear with the pendulum's longitudinal centerline. (h) The... acceleration—Class 1000 (2) Neck forces—Class 1000 (3) Neck moments—Class 600 (4) Neck pendulum acceleration—Class 60 (5) Thorax and thorax pendulum acceleration—Class 180 (6) Thorax deflection—Class 180 (7) Knee...
49 CFR 572.143 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... subpart, shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal... rotation data channels are defined to be zero when the longitudinal centerline of the neck and pendulum are... of preimpact flight with respect to the pendulum's longitudinal centerline between 83 degrees and 93...
"Time: What Is It that It Can Be Measured?"
ERIC Educational Resources Information Center
Raju, C. K.
2006-01-01
Experiments with the simple pendulum are easy, but its motion is nevertheless confounded with simple harmonic motion. However, refined theoretical models of the pendulum can, today, be easily taught using software like CALCODE. Similarly, the cycloidal pendulum is isochronous only in simplified theory. But what "are" theoretically equal intervals…
NASA Astrophysics Data System (ADS)
Rubio, Rafael M.; Salamanca, Juan J.
2018-07-01
The dynamics of external force free motion of pendulums on surfaces of constant Gaussian curvature is addressed when the pivot moves along a geodesic obtaining the Lagrangian of the system. As an application it is possible the study of elastic and quantum pendulums.
The Pendulum and the Calculus.
ERIC Educational Resources Information Center
Sworder, Steven C.
A pair of experiments, appropriate for the lower division fourth semester calculus or differential equations course, are presented. The second order differential equation representing the equation of motion of a simple pendulum is derived. The period of oscillation for a particular pendulum can be predicted from the solution to this equation. As a…
Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, J.; Tang, J., E-mail: jtang@engr.uconn.edu
This letter reports a piezoelectric cantilever-pendulum design for multi-directional energy harvesting. A pendulum is attached to the tip of a piezoelectric cantilever-type energy harvester. This design aims at taking advantage of the nonlinear coupling between the pendulum motion in 3-dimensional space and the beam bending vibration at resonances. Experimental studies indicate that, under properly chosen parameters, 1:2 internal resonance can be induced, which enables the multi-directional energy harvesting with a single cantilever. The advantages of the design with respect to traditional piezoelectric cantilever are examined.
2014-04-01
improve the damping of the load pendulum motions, but the load feedback generally had the effect of making the load feel heavier to the pilot [28...0.25 2 1000lbs 16,000lbs 0.06 Another important parameter is the slung load pendulum frequency. Using a simple pendulum model, this natural...the expected yaw and heave modes. The presence of the load adds oscillatory pendulum modes in the pitch and roll axes, as expected. Table 2-3
A simple, low-cost, data logging pendulum built from a computer mouse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gintautas, Vadas; Hubler, Alfred
Lessons and homework problems involving a pendulum are often a big part of introductory physics classes and laboratory courses from high school to undergraduate levels. Although laboratory equipment for pendulum experiments is commercially available, it is often expensive and may not be affordable for teachers on fixed budgets, particularly in developing countries. We present a low-cost, easy-to-build rotary sensor pendulum using the existing hardware in a ball-type computer mouse. We demonstrate how this apparatus may be used to measure both the frequency and coefficient of damping of a simple physical pendulum. This easily constructed laboratory equipment makes it possible formore » all students to have hands-on experience with one of the most important simple physical systems.« less
NASA Astrophysics Data System (ADS)
Reiser, Andreas; Schubert, Klaus R.; Stiewe, Jürgen
2012-08-01
Weak interactions break time-reversal (T) symmetry in the two-state system of neutral K-mesons. We present and discuss a two-state mechanical system, i.e. a Foucault-type pendulum on a rotating table, for a full representation of {K^0}{{\\overlineK}{}^0} transitions by the pendulum motions including T violation. The pendulum moves with two different oscillation frequencies and two different magnetic dampings. Its equation of motion is identical to the differential equation for the real part of the CPT-symmetric K-meson wavefunction. The pendulum is able to represent microscopic CP and T violation with CPT symmetry owing to the macroscopic Coriolis force, which breaks the symmetry under reversal-of-motion. Video clips of the pendulum motions are given as supplementary material.
Spin switches for compact implementation of neuron and synapse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quang Diep, Vinh, E-mail: vdiep@purdue.edu; Sutton, Brian; Datta, Supriyo
2014-06-02
Nanomagnets driven by spin currents provide a natural implementation for a neuron and a synapse: currents allow convenient summation of multiple inputs, while the magnet provides the threshold function. The objective of this paper is to explore the possibility of a hardware neural network implementation using a spin switch (SS) as its basic building block. SS is a recently proposed device based on established technology with a transistor-like gain and input-output isolation. This allows neural networks to be constructed with purely passive interconnections without intervening clocks or amplifiers. The weights for the neural network are conveniently adjusted through analog voltagesmore » that can be stored in a non-volatile manner in an underlying CMOS layer using a floating gate low dropout voltage regulator. The operation of a multi-layer SS neural network designed for character recognition is demonstrated using a standard simulation model based on coupled Landau-Lifshitz-Gilbert equations, one for each magnet in the network.« less
On TTEthernet for Integrated Fault-Tolerant Spacecraft Networks
NASA Technical Reports Server (NTRS)
Loveless, Andrew
2015-01-01
There has recently been a push for adopting integrated modular avionics (IMA) principles in designing spacecraft architectures. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and de- sign complexity. Ethernet technology is attractive for inclusion in more integrated avionic systems due to its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components. Furthermore, Ethernet can be augmented with a variety of quality of service (QoS) enhancements that enable its use for transmitting critical data. TTEthernet introduces a decentralized clock synchronization paradigm enabling the use of time-triggered Ethernet messaging appropriate for hard real-time applications. TTEthernet can also provide two forms of event-driven communication, therefore accommodating the full spectrum of traffic criticality levels required in IMA architectures. This paper explores the application of TTEthernet technology to future IMA spacecraft architectures as part of the Avionics and Software (A&S) project chartered by NASA's Advanced Exploration Systems (AES) program.
Are circadian rhythms new pathways to understand Autism Spectrum Disorder?
Geoffray, M-M; Nicolas, A; Speranza, M; Georgieff, N
2016-11-01
Autism Spectrum Disorder (ASD) is a frequent neurodevelopmental disorder. ASD is probably the result of intricate interactions between genes and environment altering progressively the development of brain structures and functions. Circadian rhythms are a complex intrinsic timing system composed of almost as many clocks as there are body cells. They regulate a variety of physiological and behavioral processes such as the sleep-wake rhythm. ASD is often associated with sleep disorders and low levels of melatonin. This first point raises the hypothesis that circadian rhythms could have an implication in ASD etiology. Moreover, circadian rhythms are generated by auto-regulatory genetic feedback loops, driven by transcription factors CLOCK and BMAL1, who drive transcription daily patterns of a wide number of clock-controlled genes (CCGs) in different cellular contexts across tissues. Among these, are some CCGs coding for synapses molecules associated to ASD susceptibility. Furthermore, evidence emerges about circadian rhythms control of time brain development processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Allen, Victoria W; Shirasu-Hiza, Mimi
2018-01-01
Despite being pervasive, the control of programmed grooming is poorly understood. We addressed this gap by developing a high-throughput platform that allows long-term detection of grooming in Drosophila melanogaster. In our method, a k-nearest neighbors algorithm automatically classifies fly behavior and finds grooming events with over 90% accuracy in diverse genotypes. Our data show that flies spend ~13% of their waking time grooming, driven largely by two major internal programs. One of these programs regulates the timing of grooming and involves the core circadian clock components cycle, clock, and period. The second program regulates the duration of grooming and, while dependent on cycle and clock, appears to be independent of period. This emerging dual control model in which one program controls timing and another controls duration, resembles the two-process regulatory model of sleep. Together, our quantitative approach presents the opportunity for further dissection of mechanisms controlling long-term grooming in Drosophila. PMID:29485401
What Makes the Foucault Pendulum Move among the Stars?
ERIC Educational Resources Information Center
Phillips, Norman
2004-01-01
Foucault's pendulum exhibition in 1851 occurred in an era now known by development of the theorems of Coriolis and the formulation of dynamical meteorology by Ferrel. Yet today the behavior of the pendulum is often misunderstood. The existence of a horizontal component of Newtonian gravitation is essential for understanding the behavior with…
49 CFR 572.189 - Instrumentation and test conditions.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... The sum mass of the attachments and 1/3 cable mass must not exceed 5 percent of the total pendulum... filtered CFC 180; (3)Neck and lumbar spine pendulum accelerations—Digitally filtered CFC 60; (4) Pelvis... 180. (j)(1) Filter the pendulum acceleration data using a SAE J211 CFC 60 filter. (2) Determine the...
49 CFR 572.189 - Instrumentation and test conditions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... mass of the attachments and 1/3 cable mass must not exceed 5 percent of the total pendulum mass. No... lumbar spine pendulum accelerations—Digitally filtered CFC 60; (4) Pelvis, shoulder, thorax without arm...—Digitally filtered at CFC 600; (6) Thorax deflection—Digitally filtered CFC 180. (j)(1) Filter the pendulum...
Code of Federal Regulations, 2013 CFR
2013-10-01
... (b) of this section, on a rigid pendulum as shown in Figure 22 so that the head's midsagittal plane is vertical and coincides with the plane of motion of the pendulum's longitudinal axis. ER02JN11.011 (4) Release the pendulum and allow it to fall freely from a height such that the tangential velocity...
49 CFR 572.189 - Instrumentation and test conditions.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... The sum mass of the attachments and 1/3 cable mass must not exceed 5 percent of the total pendulum... filtered CFC 180; (3)Neck and lumbar spine pendulum accelerations—Digitally filtered CFC 60; (4) Pelvis... 180. (j)(1) Filter the pendulum acceleration data using a SAE J211 CFC 60 filter. (2) Determine the...
Code of Federal Regulations, 2014 CFR
2014-10-01
... in accordance with paragraph (b)(2) of this section, at 6.9 ft/sec ±0.10 ft/sec by the pendulum defined in § 572.36(b), the peak knee impact force, which is a product of pendulum mass and acceleration... the femur load cell simulator. (v) Guide the pendulum so that there is no significant lateral...
Code of Federal Regulations, 2011 CFR
2011-10-01
... (b) of this section, on a rigid pendulum as shown in Figure 22 so that the head's midsagittal plane is vertical and coincides with the plane of motion of the pendulum's longitudinal axis. EC01AU91.165 (4) Release the pendulum and allow it to fall freely from a height such that the tangential velocity...
Code of Federal Regulations, 2013 CFR
2013-10-01
... in accordance with paragraph (b)(2) of this section, at 6.9 ft/sec ±0.10 ft/sec by the pendulum defined in § 572.36(b), the peak knee impact force, which is a product of pendulum mass and acceleration... the femur load cell simulator. (v) Guide the pendulum so that there is no significant lateral...
49 CFR 572.189 - Instrumentation and test conditions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... mass of the attachments and 1/3 cable mass must not exceed 5 percent of the total pendulum mass. No... lumbar spine pendulum accelerations—Digitally filtered CFC 60; (4) Pelvis, shoulder, thorax without arm...—Digitally filtered at CFC 600; (6) Thorax deflection—Digitally filtered CFC 180. (j)(1) Filter the pendulum...
Code of Federal Regulations, 2012 CFR
2012-10-01
... (b) of this section, on a rigid pendulum as shown in Figure 22 so that the head's midsagittal plane is vertical and coincides with the plane of motion of the pendulum's longitudinal axis. ER02JN11.011 (4) Release the pendulum and allow it to fall freely from a height such that the tangential velocity...
Code of Federal Regulations, 2012 CFR
2012-10-01
... in accordance with paragraph (b)(2) of this section, at 6.9 ft/sec ±0.10 ft/sec by the pendulum defined in § 572.36(b), the peak knee impact force, which is a product of pendulum mass and acceleration... the femur load cell simulator. (v) Guide the pendulum so that there is no significant lateral...
Code of Federal Regulations, 2010 CFR
2010-10-01
... (b) of this section, on a rigid pendulum as shown in Figure 22 so that the head's midsagittal plane is vertical and coincides with the plane of motion of the pendulum's longitudinal axis. EC01AU91.165 (4) Release the pendulum and allow it to fall freely from a height such that the tangential velocity...
49 CFR 572.183 - Neck assembly.
Code of Federal Regulations, 2013 CFR
2013-10-01
... subpart E pendulum test fixture as shown in Figure U2-A in appendix A to this subpart, so that the... pendulum longitudinal centerline shown in Figure U2-A. Torque the half-spherical screws (175-2004) located... equivalent; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact...
49 CFR 572.183 - Neck assembly.
Code of Federal Regulations, 2012 CFR
2012-10-01
... subpart E pendulum test fixture as shown in Figure U2-A in appendix A to this subpart, so that the... pendulum longitudinal centerline shown in Figure U2-A. Torque the half-spherical screws (175-2004) located... equivalent; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact...
49 CFR 572.189 - Instrumentation and test conditions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... mass of the attachments and 1/3 cable mass must not exceed 5 percent of the total pendulum mass. No... lumbar spine pendulum accelerations—Digitally filtered CFC 60; (4) Pelvis, shoulder, thorax without arm...—Digitally filtered at CFC 600; (6) Thorax deflection—Digitally filtered CFC 180. (j)(1) Filter the pendulum...
Explicit Analytical Solution of a Pendulum with Periodically Varying Length
ERIC Educational Resources Information Center
Yang, Tianzhi; Fang, Bo; Li, Song; Huang, Wenhu
2010-01-01
A pendulum with periodically varying length is an interesting physical system. It has been studied by some researchers using traditional perturbation methods (for example, the averaging method). But due to the limitation of the conventional perturbation methods, the solutions are not valid for long-term prediction of the pendulum. In this paper,…
49 CFR 572.183 - Neck assembly.
Code of Federal Regulations, 2010 CFR
2010-10-01
... subpart E pendulum test fixture as shown in Figure U2-A in appendix A to this subpart, so that the... pendulum longitudinal centerline shown in Figure U2-A. Torque the half-spherical screws (175-2004) located... equivalent; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact...
Code of Federal Regulations, 2011 CFR
2011-10-01
... in accordance with paragraph (b)(2) of this section, at 6.9 ft/sec ±0.10 ft/sec by the pendulum defined in § 572.36(b), the peak knee impact force, which is a product of pendulum mass and acceleration... the femur load cell simulator. (v) Guide the pendulum so that there is no significant lateral...
The Doppler Pendulum Experiment
ERIC Educational Resources Information Center
Lee, C. K.; Wong, H. K.
2011-01-01
An experiment to verify the Doppler effect of sound waves is described. An ultrasonic source is mounted at the end of a simple pendulum. As the pendulum swings, the rapid change of frequency can be recorded by a stationary receiver using a simple frequency-to-voltage converter. The experimental results are in close agreement with the Doppler…
49 CFR 572.183 - Neck assembly.
Code of Federal Regulations, 2011 CFR
2011-10-01
... subpart E pendulum test fixture as shown in Figure U2-A in appendix A to this subpart, so that the... pendulum longitudinal centerline shown in Figure U2-A. Torque the half-spherical screws (175-2004) located... equivalent; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact...
Steady States of the Parametric Rotator and Pendulum
ERIC Educational Resources Information Center
Bouzas, Antonio O.
2010-01-01
We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the…
Code of Federal Regulations, 2010 CFR
2010-10-01
... in accordance with paragraph (b)(2) of this section, at 6.9 ft/sec ±0.10 ft/sec by the pendulum defined in § 572.36(b), the peak knee impact force, which is a product of pendulum mass and acceleration... the femur load cell simulator. (v) Guide the pendulum so that there is no significant lateral...
Code of Federal Regulations, 2014 CFR
2014-10-01
... (b) of this section, on a rigid pendulum as shown in Figure 22 so that the head's midsagittal plane is vertical and coincides with the plane of motion of the pendulum's longitudinal axis. ER02JN11.011 (4) Release the pendulum and allow it to fall freely from a height such that the tangential velocity...
49 CFR 572.183 - Neck assembly.
Code of Federal Regulations, 2014 CFR
2014-10-01
... subpart E pendulum test fixture as shown in Figure U2-A in appendix A to this subpart, so that the... pendulum longitudinal centerline shown in Figure U2-A. Torque the half-spherical screws (175-2004) located... equivalent; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact...
A Simple, Low-Cost, Data-Logging Pendulum Built from a Computer Mouse
ERIC Educational Resources Information Center
Gintautas, Vadas; Hubler, Alfred
2009-01-01
Lessons and homework problems involving a pendulum are often a big part of introductory physics classes and laboratory courses from high school to undergraduate levels. Although laboratory equipment for pendulum experiments is commercially available, it is often expensive and may not be affordable for teachers on fixed budgets, particularly in…
The Reproduction of Scientific Understanding about Pendulum Motion in the Public
ERIC Educational Resources Information Center
Manabu, Sumida
2004-01-01
This paper describes life-span development of understanding about pendulum motion and effects of school science. The subjects were 2,766 people ranging from kindergartners up to 88 years senior citizens. The conflict and consensus between children and their parent's understanding of pendulum motion were also analyzed. The kindergartner's…
The Multiple Pendulum Problem via Maple[R
ERIC Educational Resources Information Center
Salisbury, K. L.; Knight, D. G.
2002-01-01
The way in which computer algebra systems, such as Maple, have made the study of physical problems of some considerable complexity accessible to mathematicians and scientists with modest computational skills is illustrated by solving the multiple pendulum problem. A solution is obtained for four pendulums with no restriction on the size of the…
ERIC Educational Resources Information Center
Matthews, Michael R.
2004-01-01
Galileo's discovery of the properties of pendulum motion depended on his adoption of the novel methodology of idealisation. Galileo's laws of pendulum motion could not be accepted until the empiricist methodological constraints placed on science by Aristotle, and by common sense, were overturned. As long as scientific claims were judged by how the…
Hammerschlag, Richard; Linda Baldwin, Ann; Schwartz, Gary E
When a human subject sits beneath a wire mesh, hemispheric torsion pendulum (TP) a rapid-onset series of oscillations at frequencies both higher and lower than the fundamental frequency of the TP have been consistently observed. This study was designed to replicate and extend prior findings that suggest the human subject effect on TP behavior is due to subject-generated, heat-induced convection currents. Effects on pendulum behavior were tested after draping an aluminized "space blanket" over the subject and by replacing the subject with a thermal mattress pad shaped to approximate the human form. Experiments were performed in a basic science university research laboratory. Real-time recordings and Fast Fourier Transform frequency spectra of pendulum oscillatory movement. The space blanket blocked, while the mattress pad mimicked, the human subject induced complex array of pendulum oscillations. Our findings support and strengthen previous results that suggest the effects of human subjects on behavior of a torsion pendulum are mediated by body-heat-induced air convection rather than an unknown type of biofield. Copyright © 2016 Elsevier Inc. All rights reserved.
Analytical study of the critical behavior of the nonlinear pendulum
NASA Astrophysics Data System (ADS)
Lima, F. M. S.
2010-11-01
The dynamics of a simple pendulum consisting of a small bob and a massless rigid rod has three possible regimes depending on its total energy E: Oscillatory (when E is not enough for the pendulum to reach the top position), "perpetual ascent" when E is exactly the energy needed to reach the top, and nonoscillatory for greater energies. In the latter regime, the pendulum rotates periodically without velocity inversions. In contrast to the oscillatory regime, for which an exact analytic solution is known, the other two regimes are usually studied by solving the equation of motion numerically. By applying conservation of energy, I derive exact analytical solutions to both the perpetual ascent and nonoscillatory regimes and an exact expression for the pendulum period in the nonoscillatory regime. Based on Cromer's approximation for the large-angle pendulum period, I find a simple approximate expression for the decrease of the period with the initial velocity in the nonoscillatory regime, valid near the critical velocity. This expression is used to study the critical slowing down, which is observed near the transition between the oscillatory and nonoscillatory regimes.
Note: A 1-m Foucault pendulum rolling on a ball.
Salva, H R; Benavides, R E; Venturino, J A; Cuscueta, D J; Ghilarducci, A A
2013-10-01
We have built a short Foucault pendulum of 1-m length. The aim of this work was to increase the sensitivity to elliptical trajectories from other longer pendula. The design was a semi-rigid pendulum that rolls over a small ball. The measurements of the movements (azimuth and elliptical trajectory) were done by an optical method. The resulting pendulum works in a medium satisfactory way due to problems of the correct choice of the mass of the bob together with the diameter of the supporting ball. It is also important to keep the rolling surface very clean.
Comparison of strain rates of dart impacted plaques and pendulum impacted bumpers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scammell, K.L.
1987-01-01
The difference in strain rates prevailing during pendulum impact of bumpers versus high speed dart impact of plaques was investigated. Uni-axial strain gages were applied to the tension side of the plaques and bumpers directly opposite the point of impact. The plaques were impacted with an instrumented high rate dart impact tester and the bumpers impacted with a full scale bumper pendulum impact tester. Theoretical calculations and actual strain rate data support the conclusion that the strain rate of a plaque during dart impact significantly exceeds that of bumper strain rate during pendulum impact.
1992-12-03
and thereby eliminating some of the poaching pressures on the animal populations. This could impact significantly on their survival and possibly remove...purposes, might help alleviate the pressure on the rhino population due to poaching . We are investigating this possibility. The structure of the rhino ...skate boards! Sdrnples cut from the coconut shell were tested in impact using a weight swinging on a pendulum and at low loading rates in three-point
Effect of weight, height and BMI on injury outcome in side impact crashes without airbag deployment.
Pal, Chinmoy; Tomosaburo, Okabe; Vimalathithan, K; Jeyabharath, M; Muthukumar, M; Satheesh, N; Narahari, S
2014-11-01
A comprehensive analysis is performed to evaluate the effect of weight, height and body mass index (BMI) of occupants on side impact injuries at different body regions. The accident dataset for this study is based on the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) for accident year 2000-08. The mean BMI values for driver and front passenger are estimated from all types of crashes using NASS database, which clearly indicates that mean BMI has been increasing over the years in the USA. To study the effect of BMI in side impact injuries, BMI was split into three groups namely (1) thin (BMI<21), (2) normal (BMI 24-27), (3) obese (BMI>30). For more clear identification of the effect of BMI in side impact injuries, a minimum gap of three BMI is set in between each adjacent BMI groups. Car model years from MY1995-1999 to MY2000-2008 are chosen in order to identify the degree of influence of older and newer generation of cars in side impact injuries. Impact locations particularly side-front (F), side-center (P) and side-distributed (Y) are chosen for this analysis. Direction of force (DOF) considered for both near side and far side occupants are 8 o'clock, 9 o'clock, 10 o'clock and 2 o'clock, 3 o'clock and 4 o'clock respectively. Age <60 years is also one of the constraints imposed on data selection to minimize the effect of bone strength on the occurrence of occupant injuries. AIS2+ and AIS3+ injury risk in all body regions have been plotted for the selected three BMI groups of occupant, delta-V 0-60kmph, two sets (old and new) of car model years. The analysis is carried with three approaches: (a) injury risk percentage based on simple graphical method with respect to a single variable, (b) injury distribution method where the injuries are marked on the respective anatomical locations and (c) logistic regression, a statistical method, considers all the related variables together. Lower extremity injury risk appears to be high for thin BMI group. It is found that BMI does not have much influence on head injuries but it is influenced more by the height of the occupant. Results of logistic analysis suggest that BMI, height and weight may have significant contribution towards side impact injuries across different body regions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Li, Stanley Ka-Lok; Banerjee, Juni; Jang, Christopher; Sehgal, Amita; Stone, Richard A; Civan, Mortimer M
2015-02-05
Aqueous humor inflow falls 50% during sleeping hours without proportional fall in IOP, partly reflecting reduced outflow facility. The mechanisms underlying outflow facility cycling are unknown. One outflow facility regulator is matrix metalloproteinase (MMP) release from trabecular meshwork (TM) cells. Because anterior segment temperature must oscillate due to core temperature cycling and eyelid closure during sleep, we tested whether physiologically relevant temperature oscillations drive cycles in the activity of secreted MMP. Temperature of transformed normal human TM cells (hTM5 line) was fixed or alternated 12 hours/12 hours between 33°C and 37°C. Activity of secreted MMP-2 and MMP-9 was measured by zymography, and gene expression by RT-PCR and quantitative PCR. Raising temperature to 37°C increased, and lowering to 33°C reduced, activity of secreted MMP. Switching between 37°C and 33°C altered MMP-9 by 40% ± 3% and MMP-2 by 22% ± 2%. Peripheral circadian clocks did not mediate temperature-driven cycling of MMP secretion because MMP-release oscillations did not persist at constant temperature after 3 to 6 days of alternating temperatures, and temperature cycles did not entrain clock-gene expression in these cells. Furthermore, inhibiting heat shock transcription factor 1, which links temperature and peripheral clock-gene oscillations, inhibited MMP-9 but not MMP-2 temperature-driven MMP cycling. Inhibition of heat-sensitive TRPV1 channels altered total MMP secretion but not temperature-induced modulations. Inhibiting cold-sensitive TRPM-8 channels had no effect. Physiologically relevant temperature oscillations drive fluctuations of secreted MMP-2 and MMP-9 activity in hTM5 cells independent of peripheral clock genes and temperature-sensitive TRP channels. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.
A Role for Memory in Prospective Timing informs Timing in Prospective Memory
Waldum, Emily R; Sahakyan, Lili
2014-01-01
Time-based prospective memory (TBPM) tasks require the estimation of time in passing – known as prospective timing. Prospective timing is said to depend on an attentionally-driven internal clock mechanism, and is thought to be unaffected by memory for interval information (for reviews see, Block, Hancock, & Zakay, 2010; Block & Zakay, 1997). A prospective timing task that required a verbal estimate following the entire interval (Experiment 1) and a TBPM task that required production of a target response during the interval (Experiment 2) were used to test an alternative view that episodic memory does influence prospective timing. In both experiments, participants performed an ongoing lexical decision task of fixed duration while a varying number of songs were played in the background. Experiment 1 results revealed that verbal time estimates became longer the more songs participants remembered from the interval, suggesting that memory for interval information influences prospective time estimates. In Experiment 2, participants who were asked to perform the TBPM task without the aid of an external clock made their target responses earlier as the number of songs increased, indicating that prospective estimates of elapsed time increased as more songs were experienced. For participants who had access to a clock, changes in clock-checking coincided with the occurrence of song boundaries, indicating that participants used both song information and clock information to estimate time. Finally, ongoing task performance and verbal reports in both experiments further substantiate a role for episodic memory in prospective timing. PMID:22984950
The Biological Clock: A Pivotal Hub in Non-alcoholic Fatty Liver Disease Pathogenesis
Mazzoccoli, Gianluigi; De Cosmo, Salvatore; Mazza, Tommaso
2018-01-01
Non-alcoholic fatty liver disease (NAFLD) is the most frequent hepatic pathology in the Western world and may evolve into steatohepatitis (NASH), increasing the risk of cirrhosis, portal hypertension and hepatocellular carcinoma. NAFLD derives from the accumulation of hepatic fat due to discrepant free fatty acid metabolism. Other factors contributing to this are deranged nutrients and bile acids fluxes as well as alterations in nuclear receptors, hormones, and intermediary metabolites, which impact on signaling pathways involved in metabolism and inflammation. Autophagy and host gut-microbiota interplay are also relevant to NAFLD pathogenesis. Notably, liver metabolic pathways and bile acid synthesis as well as autophagic and immune/inflammatory processes all show circadian patterns driven by the biological clock. Gut microbiota impacts on the biological clock, at the same time as the appropriate timing of metabolic fluxes, hormone secretion, bile acid turnover, autophagy and inflammation with behavioural cycles of fasting/feeding and sleeping/waking is required to circumvent hepatosteatosis, indicating significant interactions of the gut and circadian processes in NAFLD pathophysiology. Several time-related factors and processes interplay in NAFLD development, with the biological clock proposed to act as a network level hub. Deranged physiological rhythms (chronodisruption) may also play a role in liver steatosis pathogenesis. The current article reviews how the circadian clock circuitry intimately interacts with several mechanisms involved in the onset of hepatosteatosis and its progression to NASH, thereby contributing to the global NAFLD epidemic. PMID:29662454
A Comprehensive Analytical Solution of the Nonlinear Pendulum
ERIC Educational Resources Information Center
Ochs, Karlheinz
2011-01-01
In this paper, an analytical solution for the differential equation of the simple but nonlinear pendulum is derived. This solution is valid for any time and is not limited to any special initial instance or initial values. Moreover, this solution holds if the pendulum swings over or not. The method of approach is based on Jacobi elliptic functions…
Code of Federal Regulations, 2014 CFR
2014-10-01
... the damage criteria of §§ 581.5(c)(1) through 581.5(c)(9) when impacted by a pendulum-type test device... of 1.5 m.p.h., and when impacted by a pendulum-type test device in accordance with the procedures of... original contours 30 minutes after completion of each pendulum and barrier impact, except where such damage...
Code of Federal Regulations, 2011 CFR
2011-10-01
... the damage criteria of §§ 581.5(c)(1) through 581.5(c)(9) when impacted by a pendulum-type test device... of 1.5 m.p.h., and when impacted by a pendulum-type test device in accordance with the procedures of... original contours 30 minutes after completion of each pendulum and barrier impact, except where such damage...
Oscillations of a Simple Pendulum with Extremely Large Amplitudes
ERIC Educational Resources Information Center
Butikov, Eugene I.
2012-01-01
Large oscillations of a simple rigid pendulum with amplitudes close to 180[degrees] are treated on the basis of a physically justified approach in which the cycle of oscillation is divided into several stages. The major part of the almost closed circular path of the pendulum is approximated by the limiting motion, while the motion in the vicinity…
Code of Federal Regulations, 2012 CFR
2012-10-01
... the damage criteria of §§ 581.5(c)(1) through 581.5(c)(9) when impacted by a pendulum-type test device... of 1.5 m.p.h., and when impacted by a pendulum-type test device in accordance with the procedures of... original contours 30 minutes after completion of each pendulum and barrier impact, except where such damage...
Measurement of Gravitational Acceleration Using a Computer Microphone Port
ERIC Educational Resources Information Center
Khairurrijal; Eko Widiatmoko; Srigutomo, Wahyu; Kurniasih, Neny
2012-01-01
A method has been developed to measure the swing period of a simple pendulum automatically. The pendulum position is converted into a signal frequency by employing a simple electronic circuit that detects the intensity of infrared light reflected by the pendulum. The signal produced by the electronic circuit is sent to the microphone port and…
Maple[R] Version of the "Indian Rope Trick". Classroom Notes
ERIC Educational Resources Information Center
Knight, D. G.
2004-01-01
If the point of suspension of a multiple pendulum is suitably oscillated then the pendulum can remain in motion in an upside-down position. Since such pendulums can model flexible materials, this inverted motion is sometimes referred to as an 'Indian rope trick'. Despite the complexity of the governing differential equations, this rope trick can…
A Laboratory Experiment on Coupled Non-Identical Pendulums
ERIC Educational Resources Information Center
Li, Ang; Zeng, Jingyi; Yang, Hujiang; Xiao, Jinghua
2011-01-01
In this paper, coupled pendulums with different lengths are studied. Through steel magnets, each pendulum is coupled with others, and a stepping motor is used to drive the whole system. To record the data automatically, we designed a data acquisition system with a CCD camera connected to a computer. The coupled system shows in-phase, locked-phase…
Code of Federal Regulations, 2010 CFR
2010-10-01
... the damage criteria of §§ 581.5(c)(1) through 581.5(c)(9) when impacted by a pendulum-type test device... of 1.5 m.p.h., and when impacted by a pendulum-type test device in accordance with the procedures of... original contours 30 minutes after completion of each pendulum and barrier impact, except where such damage...
Code of Federal Regulations, 2013 CFR
2013-10-01
... the damage criteria of §§ 581.5(c)(1) through 581.5(c)(9) when impacted by a pendulum-type test device... of 1.5 m.p.h., and when impacted by a pendulum-type test device in accordance with the procedures of... original contours 30 minutes after completion of each pendulum and barrier impact, except where such damage...
An Apparatus to Demonstrate Linear and Nonlinear Oscillations of a Pendulum
ERIC Educational Resources Information Center
Mayer, V. V.; Varaksina, E. I.
2016-01-01
A physical pendulum with a magnetic load is proposed for comparison of linear and nonlinear oscillations. The magnetic load is repelled by permanent magnets which are disposed symmetrically relative to the load. It is established that positions of the pendulum and the magnets determine the dependence of restoring force on displacement of the load.…
Chemistry and the Pendulum--What Have They to Do with Each Other?
ERIC Educational Resources Information Center
De Berg, K. C.
2006-01-01
Physicists have known for some time that pendulum motion is a useful analogy for other physical processes. Chemists have played with the idea from time to time but the strength of the analogy between pendulum motion and chemical processes has only received prominent published recognition since about 1980, although there are details of the analogy…
Zhang, Luoying; Chung, Brian Y; Lear, Bridget C; Kilman, Valerie L; Liu, Yixiao; Mahesh, Guruswamy; Meissner, Rose-Anne; Hardin, Paul E; Allada, Ravi
2010-04-13
Daily behaviors in animals are determined by the interplay between internal timing signals from circadian clocks and environmental stimuli such as light. How these signals are integrated to produce timely and adaptive behavior is unclear. The fruit fly Drosophila exhibits clock-driven activity increases that anticipate dawn and dusk and free-running rhythms under constant conditions. Flies also respond to the onset of light and dark with acute increases in activity. Mutants of a novel ion channel, narrow abdomen (na), lack a robust increase in activity in response to light and show reduced anticipatory behavior and free-running rhythms, providing a genetic link between photic responses and circadian clock function. We used tissue-specific rescue of na to demonstrate a role for approximately 16-20 circadian pacemaker neurons, a subset of the posterior dorsal neurons 1 (DN1(p)s), in mediating the acute response to the onset of light as well as morning anticipatory behavior. Circadian pacemaker neurons expressing the neuropeptide PIGMENT-DISPERSING FACTOR (PDF) are especially important for morning anticipation and free-running rhythms and send projections to the DN1(p)s. We also demonstrate that DN1(p)Pdfr expression is sufficient to rescue, at least partially, Pdfr morning anticipation defects as well as defects in free-running rhythms, including those in DN1 molecular clocks. Additionally, these DN1 clocks in wild-type flies are more strongly reset to timing changes in PDF clocks than other pacemaker neurons, suggesting that they are direct targets. Taking these results together, we demonstrate that the DN1(p)s lie at the nexus of PDF and photic signaling to produce appropriate daily behavior.
True Shear Parallel Plate Viscometer
NASA Technical Reports Server (NTRS)
Ethridge, Edwin; Kaukler, William
2010-01-01
This viscometer (which can also be used as a rheometer) is designed for use with liquids over a large temperature range. The device consists of horizontally disposed, similarly sized, parallel plates with a precisely known gap. The lower plate is driven laterally with a motor to apply shear to the liquid in the gap. The upper plate is freely suspended from a double-arm pendulum with a sufficiently long radius to reduce height variations during the swing to negligible levels. A sensitive load cell measures the shear force applied by the liquid to the upper plate. Viscosity is measured by taking the ratio of shear stress to shear rate.
NACA Flight-Path Angle and Air-Speed Recorder
NASA Technical Reports Server (NTRS)
Coleman, Donald G
1926-01-01
A new trailing bomb-type instrument for photographically recording the flight-path angle and air speed of aircraft in unaccelerated flight is described. The instrument consists essentially of an inclinometer, air-speed meter and a film-drum case. The inclinometer carries an oil-damped pendulum which records optically the flight-path angle upon a rotating motor-driven film drum. The air-speed meter consists of a taut metal diaphragm of high natural frequency which is acted upon by the pressure difference of a Prandtl type Pitot-static tube. The inclinometer record and air-speed record are made optically on the same sensitive film. Two records taken by this instrument are shown.
Model based manipulator control
NASA Technical Reports Server (NTRS)
Petrosky, Lyman J.; Oppenheim, Irving J.
1989-01-01
The feasibility of using model based control (MBC) for robotic manipulators was investigated. A double inverted pendulum system was constructed as the experimental system for a general study of dynamically stable manipulation. The original interest in dynamically stable systems was driven by the objective of high vertical reach (balancing), and the planning of inertially favorable trajectories for force and payload demands. The model-based control approach is described and the results of experimental tests are summarized. Results directly demonstrate that MBC can provide stable control at all speeds of operation and support operations requiring dynamic stability such as balancing. The application of MBC to systems with flexible links is also discussed.
Extending the Range for Force Calibration in Magnetic Tweezers
Daldrop, Peter; Brutzer, Hergen; Huhle, Alexander; Kauert, Dominik J.; Seidel, Ralf
2015-01-01
Magnetic tweezers are a wide-spread tool used to study the mechanics and the function of a large variety of biomolecules and biomolecular machines. This tool uses a magnetic particle and a strong magnetic field gradient to apply defined forces to the molecule of interest. Forces are typically quantified by analyzing the lateral fluctuations of the biomolecule-tethered particle in the direction perpendicular to the applied force. Since the magnetic field pins the anisotropy axis of the particle, the lateral fluctuations follow the geometry of a pendulum with a short pendulum length along and a long pendulum length perpendicular to the field lines. Typically, the short pendulum geometry is used for force calibration by power-spectral-density (PSD) analysis, because the movement of the bead in this direction can be approximated by a simple translational motion. Here, we provide a detailed analysis of the fluctuations according to the long pendulum geometry and show that for this direction, both the translational and the rotational motions of the particle have to be considered. We provide analytical formulas for the PSD of this coupled system that agree well with PSDs obtained in experiments and simulations and that finally allow a faithful quantification of the magnetic force for the long pendulum geometry. We furthermore demonstrate that this methodology allows the calibration of much larger forces than the short pendulum geometry in a tether-length-dependent manner. In addition, the accuracy of determination of the absolute force is improved. Our force calibration based on the long pendulum geometry will facilitate high-resolution magnetic-tweezers experiments that rely on short molecules and large forces, as well as highly parallelized measurements that use low frame rates. PMID:25992733
Oscillators: Old and new perspectives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, Jayanta K.; Roy, Jyotirmoy
We consider some of the well known oscillators in literature which are known to exhibit interesting effects of nonlinearity. We review the Lindstedt-Poincare technique for dealing with with the nonlinear effects and then go on to introduce the relevance of the renormalization group for the oscillator following the pioneering work of Chen et al. It is pointed out that the traditional Lindstedt-Poincare and the renormalization group techniques have operational connections. We use this to find an unexpected mode softening in the double pendulum. This mode softening prompted us to look for chaos in the double pendulum at low energies-energies thatmore » are just sufficient to allow the outer pendulum to rotate (the double pendulum is known to be chaotic at high energies-energies that are greater than that needed to make both pendulums to rotate). The emergence of the chaos is strongly dependent on initial conditions.« less
NASA Technical Reports Server (NTRS)
Golbabaei-Asl, M.; Knight, D.; Wilkinson, S.
2013-01-01
The thermal efficiency of a SparkJet is evaluated by measuring the impulse response of a pendulum subject to a single spark discharge. The SparkJet is attached to the end of a pendulum. A laser displacement sensor is used to measure the displacement of the pendulum upon discharge. The pendulum motion is a function of the fraction of the discharge energy that is channeled into the heating of the gas (i.e., increasing the translational-rotational temperature). A theoretical perfect gas model is used to estimate the portion of the energy from the heated gas that results in equivalent pendulum displacement as in the experiment. The earlier results from multiple runs for different capacitances of C = 3, 5, 10, 20, and 40(micro)F demonstrate that the thermal efficiency decreases with higher capacitive discharges.1 In the current paper, results from additional run cases have been included and confirm the previous results
A method of measuring micro-impulse with torsion pendulum based on multi-beam laser heterodyne
NASA Astrophysics Data System (ADS)
Li, Yan-Chao; Wang, Chun-Hui
2012-02-01
In this paper, we propose a novel method of multi-beam laser heterodyne measurement for micro-impulse. The measurement of the micro-impulse, which is converted into the measurement of the small tuning angle of the torsion pendulum, is realized by considering the interaction between pulse laser and working medium. Based on Doppler effect and heterodyne technology, the information regarding the small tuning angle is loaded to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, thereby obtaining many values of the small tuning angle after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, the small tuning angle can be obtained accurately and the value of the micro-impulse can eventually be calculated. Using Polyvinylchlorid+2%C as a working medium, this novel method is used to simulate the value of the micro-impulse by MATLAB which is generated by considering the interaction between the pulse laser and the working medium, the obtained result shows that the relative error of this method is just 0.5%.
NASA Technical Reports Server (NTRS)
Wolf, S. A.; Gubser, D. U.; Cox, J. E.
1978-01-01
A general formula is given for the longitudinal shielding effectiveness of N closed concentric cylinders. The use of these equations is demonstrated by application to the design of magnetic shields for hydrogen maser atomic clocks. Examples of design tradeoffs such as size, weight, and material thickness are discussed. Experimental results on three sets of shields fabricated by three manufacturers are presented. Two of the sets were designed employing the techniques described. Agreement between the experimental results and the design calculations is then demonstrated.
Multiple speed expandable bit synchronizer
NASA Technical Reports Server (NTRS)
Bundinger, J. M.
1979-01-01
A multiple speed bit synchronizer was designed for installation in an inertial navigation system data decoder to extract non-return-to-zero level data and clock signal from biphase level data. The circuit automatically senses one of four pre-determined biphase data rates and synchronizes the proper clock rate to the data. Through a simple expansion of the basic design, synchronization of more than four binarily related data rates can be accomplished. The design provides an easily adaptable, low cost, low power alternative to external bit synchronizers with additional savings in size and weight.
Misalignment with the external light environment drives metabolic and cardiac dysfunction.
West, Alexander C; Smith, Laura; Ray, David W; Loudon, Andrew S I; Brown, Timothy M; Bechtold, David A
2017-09-12
Most organisms use internal biological clocks to match behavioural and physiological processes to specific phases of the day-night cycle. Central to this is the synchronisation of internal processes across multiple organ systems. Environmental desynchrony (e.g. shift work) profoundly impacts human health, increasing cardiovascular disease and diabetes risk, yet the underlying mechanisms remain unclear. Here, we characterise the impact of desynchrony between the internal clock and the external light-dark (LD) cycle on mammalian physiology. We reveal that even under stable LD environments, phase misalignment has a profound effect, with decreased metabolic efficiency and disrupted cardiac function including prolonged QT interval duration. Importantly, physiological dysfunction is not driven by disrupted core clock function, nor by an internal desynchrony between organs, but rather the altered phase relationship between the internal clockwork and the external environment. We suggest phase misalignment as a major driver of pathologies associated with shift work, chronotype and social jetlag.The misalignment between internal circadian rhythm and the day-night cycle can be caused by genetic, behavioural and environmental factors, and may have a profound impact on human physiology. Here West et al. show that desynchrony between the internal clock and the external environment alter metabolic parameters and cardiac function in mice.
The Pendulum in the 21st Century-Relic or Trendsetter
ERIC Educational Resources Information Center
Peters, Randall D.
2004-01-01
When identifying instruments that have had great influence on the history of physics, none comes to mind more quickly than the pendulum. Though first treated scientifically by Galileo in the 16th century, and in some respects nearly "dead" by the middle of the 20th century; the pendulum experienced "rebirth" by becoming an archetype of chaos. With…
Analysis of Pendulum Period with an iPod Touch/iPhone
ERIC Educational Resources Information Center
Briggle, Justin
2013-01-01
We describe the use of Apple's iPod touch/iPhone, acting as the pendulum bob, as a means of measuring pendulum period, making use of the device's three-axis digital accelerometer and the freely available SPARKvue app from PASCO scientific. The method can be readily incorporated into an introductory physics laboratory experiment.…
49 CFR 572.187 - Lumbar spine.
Code of Federal Regulations, 2013 CFR
2013-10-01
...-headform assembly to the Part 572 pendulum test fixture per procedure in § 572.183(b)(2) and as shown in... assembly (175-5506) to 50 ±5 in-lb; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact velocity of 6.05 ±0.1 m/s measured at the center of the pendulum...
49 CFR 572.187 - Lumbar spine.
Code of Federal Regulations, 2012 CFR
2012-10-01
...-headform assembly to the Part 572 pendulum test fixture per procedure in § 572.183(b)(2) and as shown in... assembly (175-5506) to 50 ±5 in-lb; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact velocity of 6.05 ±0.1 m/s measured at the center of the pendulum...
49 CFR 572.187 - Lumbar spine.
Code of Federal Regulations, 2011 CFR
2011-10-01
...-headform assembly to the Part 572 pendulum test fixture per procedure in § 572.183(b)(2) and as shown in... assembly (175-5506) to 50 ± 5 in-lb; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact velocity of 6.05 ±0.1 m/s measured at the center of the pendulum...
The Bravais Pendulum: The Distinct Charm of an Almost Forgotten Experiment
ERIC Educational Resources Information Center
Babovic, V. M.; Mekic, S.
2011-01-01
In the year 1851 in Paris, the apparent change of the plane of oscillation of a linear pendulum was observed by Leon Foucault. In the same year, at the same place, the unequal duration of the oscillations of a right- and left-handed conical pendulum was observed by Bravais. Today, the Foucault pendula are common at universities, the Bravais…
49 CFR 572.187 - Lumbar spine.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-headform assembly to the Part 572 pendulum test fixture per procedure in § 572.183(b)(2) and as shown in... assembly (175-5506) to 50 ± 5 in-lb; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact velocity of 6.05 ±0.1 m/s measured at the center of the pendulum...
Approximate Expressions for the Period of a Simple Pendulum Using a Taylor Series Expansion
ERIC Educational Resources Information Center
Belendez, Augusto; Arribas, Enrique; Marquez, Andres; Ortuno, Manuel; Gallego, Sergi
2011-01-01
An approximate scheme for obtaining the period of a simple pendulum for large-amplitude oscillations is analysed and discussed. When students express the exact frequency or the period of a simple pendulum as a function of the oscillation amplitude, and they are told to expand this function in a Taylor series, they always do so using the…
49 CFR 572.187 - Lumbar spine.
Code of Federal Regulations, 2014 CFR
2014-10-01
...-headform assembly to the Part 572 pendulum test fixture per procedure in § 572.183(b)(2) and as shown in... assembly (175-5506) to 50 ±5 in-lb; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact velocity of 6.05 ±0.1 m/s measured at the center of the pendulum...
Experimental Uncertainty Associated with Traveling Wave Excitation
2014-09-15
20 2.9 Schematic of the Lumped Model [6] . . . . . . . . . . . . . . . . . . . . . . . 21 2.10 Multiple Coupled Pendulum [7...model to describe the physical system, the authors chose to employ a coupled pendulum model to represent a rotor. This system is shown in Figure 2.10...System mistuning is introduced by altering pendulum lengths. All other system parameters are equal. A linear viscous proportional damping force is
Working Model of a Foucault Pendulum at Intermediate Latitudes
ERIC Educational Resources Information Center
Sears, Francis W.
1969-01-01
Describes a working model of a Foucault pendulum at intermediate latitudes constructed of a steel drill rod with a steel ball attached at one end. The rod makes an angle of 45 degrees with the rotation axis of a horizontal turntable. The vibrating system is the same as that which led Foucault to construct his first gravity pendulum. (LC)
Propagation-invariant beams with quantum pendulum spectra: from Bessel beams to Gaussian beam-beams.
Dennis, Mark R; Ring, James D
2013-09-01
We describe a new class of propagation-invariant light beams with Fourier transform given by an eigenfunction of the quantum mechanical pendulum. These beams, whose spectra (restricted to a circle) are doubly periodic Mathieu functions in azimuth, depend on a field strength parameter. When the parameter is zero, pendulum beams are Bessel beams, and as the parameter approaches infinity, they resemble transversely propagating one-dimensional Gaussian wave packets (Gaussian beam-beams). Pendulum beams are the eigenfunctions of an operator that interpolates between the squared angular momentum operator and the linear momentum operator. The analysis reveals connections with Mathieu beams, and insight into the paraxial approximation.
Analysis of the linearity of half periods of the Lorentz pendulum
NASA Astrophysics Data System (ADS)
Wickramasinghe, T.; Ochoa, R.
2005-05-01
We analyze the motion of the Lorentz pendulum, a simple pendulum whose length is changed at a constant rate k. We show both analytically and numerically that the half period Tn, the time between half oscillations as measured from midpoint to midpoint, increases linearly with the oscillation number n such that Tn+1-Tn≈kπ2/2g, where g is the acceleration due to gravity. A video camera is used to record the motion of the oscillating bob of the pendulum and verify the linearity of Tn with oscillation number. The theory and the experiment are suitable for an advanced undergraduate laboratory.
An inexpensive, multipurpose physical pendulum
NASA Astrophysics Data System (ADS)
Schultz, David
2012-10-01
The pendulum is a highly versatile tool for teaching physics. Many special purpose pendula for student experiments have been described.1-4 In this paper, I describe an inexpensive, multipurpose physical pendulum that can function as both a variable gravity and ballistic pendulum. I designed the apparatus for use in a rotational dynamics unit of the AP Physics C mechanics course. The use of a bike wheel hub pivot allows for low-friction, rugged operation that yields results commensurate with those obtained with much more expensive pendula available on the market (typically 500 per unit5), placing these types of experiments within reach of the teacher on a restricted budget.
Orion GN&C Detection and Mitigation of Parachute Pendulosity
NASA Technical Reports Server (NTRS)
Kane, Mark A.; Wacker, Roger
2016-01-01
New techniques being employed by Orion guidance, navigation, and control (GN&C) using a reaction control system (RCS) under parachutes are described. Pendulosity refers to a pendulum-oscillatory mode that can occur during descent under main parachutes and that has been observed during Orion parachute drop tests. The pendulum mode reduces the ability of GN&C to maneuver the suspended vehicle resulting in undesirable increases to structural loads at touchdown. Parachute redesign efforts have been unsuccessful in reducing the pendulous behavior necessitating GN&C mitigation options. An observer has been developed to estimate the pendulum motion as well as the underlying wind velocity vector. Using this knowledge, the control system maneuvers the vehicle using two separate strategies determined by wind velocity magnitude and pendulum energy thresholds; at high wind velocities the vehicle is aligned with the wind direction and for cases with lower wind velocities and large pendulum amplitudes the vehicle is aligned such that it is perpendicular to the swing plane. Pendulum damping techniques using RCS thrusters are discussed but have not been selected for use onboard the Orion spacecraft. The techniques discussed in this paper will be flown on Exploration Mission 1 (EM-1).
Pendulum Motion in Main Parachute Clusters
NASA Technical Reports Server (NTRS)
Ray, Eric S.; Machin, Ricardo A.
2015-01-01
The coupled dynamics of a cluster of parachutes to a payload are notoriously difficult to predict. Often the payload is designed to be insensitive to the range of attitude and rates that might occur, but spacecraft generally do not have the mass and volume budgeted for this robust of a design. The National Aeronautics and Space Administration (NASA) Orion Capsule Parachute Assembly System (CPAS) implements a cluster of three mains for landing. During testing of the Engineering Development Unit (EDU) design, it was discovered that with a cluster of two mains (a fault tolerance required for human rating) the capsule coupled to the parachute cluster could get into a limit cycle pendulum motion which would exceed the spacecraft landing capability. This pendulum phenomenon could not be predicted with the existing models and simulations. A three phased effort has been undertaken to understand the consequence of the pendulum motion observed, and explore potential design changes that would mitigate this phenomenon. This paper will review the early analysis that was performed of the pendulum motion observed during EDU testing, summarize the analysis ongoing to understand the root cause of the pendulum phenomenon, and discuss the modeling and testing that is being pursued to identify design changes that would mitigate the risk.
NASA Astrophysics Data System (ADS)
Gröber, S.; Vetter, M.; Eckert, B.; Jodl, H.-J.
2007-05-01
We suggest that different string pendulums are positioned at different locations on Earth and measure at each place the gravitational acceleration (accuracy Δg ~ 0.01 m s-2). Each pendulum can be remotely controlled via the internet by a computer located somewhere on Earth. The theoretical part describes the physical origin of this phenomenon g(phiv), that the Earth's effective gravitational acceleration g depends on the angle of latitude phiv. Then, we present all necessary formula to deduce g(phiv) from oscillations of a string pendulum. The technical part explains tips and tricks to realize such an apparatus to measure all necessary values with sufficient accuracy. In addition, we justify the precise dimensions of a physical pendulum such that the formula for a mathematical pendulum is applicable to determine g(phiv) without introducing errors. To conclude, we describe the internet version—the string pendulum as a remotely controlled laboratory. The teaching relevance and educational value will be discussed in detail at the end of this paper including global experimenting, using the internet and communication techniques in teaching and new ways of teaching and learning methods.
Demonstrating the Principle of an rf Paul Ion Trap
NASA Astrophysics Data System (ADS)
Johnson, Andrew; Rabchuk, James
2008-03-01
An rf ion trap uses a time-varying electric field to trap charged ions. This is useful in applications related to quantum computing and mass spectroscopy. There are several mechanical devices described in the literature which have attempted to provide illustrative demonstrations of the principle of rf ion traps, including a mechanically-rotating ``saddle trap'' and the vertically-driven, inverted pendulum^1,2. Neither demonstration, however, successfully demonstrates BOTH the sinusoidal variation in the electric potential of the rf trap AND the parametric stability of the ions in the trap described by Mathieu's equation. We have modified a design of a one-dimensional ponderomotive trap^3 so that it satisfies both criteria for demonstrating the principle of an rf Paul trap. Our studies indicate that trapping stability is highly sensitive to fluxuations in the driving frequency. Results from the demonstration apparatus constructed by the authors will be presented. ^1 Rueckner, W., et al., ``Rotating saddle Paul trap,'' Am. J. Phys., 63 (2), February 1995. ^2 Friedman, M.H., et al., ``The inverted pendulum: A mechanical analogue of a quadrupole mass filter,'' Am. J. Phys., 50 (10), October 1982. ^3 Johnson, A.K. and Rabchuk, J.A., ``A One-Dimensional Ponderomotive Trap,'' ISAAPT 2007 spring meeting, WIU, March 30, 2007.
Learning Dynamic Control of Body Roll Orientation
Vimal, Vivekanand Pandey; Lackner, James R.; DiZio, Paul
2016-01-01
Our objective was to examine how the control of orientation is learned in a task involving dynamically balancing about an unstable equilibrium point, the gravitational vertical, in the absence of leg reflexes and muscle stiffness. Subjects (n=10) used a joystick to set themselves to the gravitational vertical while seated in a multi-axis rotation system device (MARS) programmed with inverted pendulum dynamics. The MARS is driven by powerful servomotors and can faithfully follow joystick commands up to 2.5 Hz with a 30 ms latency. To make the task extremely difficult, the pendulum constant was set to 600°/sec2. Each subject participated in 5 blocks of 4 trials, with a trial ending after a cumulative 100 s of balancing, excluding reset times when a subject lost control. To characterize performance and learning, we used metrics derived from joystick movements, phase portraits (joystick deflections vs MARS position and MARS velocity vs angular position), and stabilogram diffusion functions. We found that as subjects improved their balancing performance they did so by making fewer destabilizing joystick movements and reducing the number and duration of joystick commands. The control strategy they acquired involved making more persistent short-term joystick movements, waiting longer before making changes to ongoing motion, and only intervening intermittently. PMID:26525709
Experimental Results of Schlicher's Thrusting Antenna
NASA Technical Reports Server (NTRS)
Fralick, Gustave C.; Niedra, Janis M.
2001-01-01
Experiments were conducted to test the claims by Rex L. Schlicher, et al., (Patent 5,142,86 1) that a certain antenna geometry produces thrust greatly exceeding radiation reaction, when driven by repetitive, fast rise, and relatively slower decay current pulses. In order to test this hypothesis, the antenna was suspended by strings as a 3 in pendulum. Current pulses were fed to the antenna along the suspension path by a very flexible coaxial line constructed from loudspeaker cable and copper braid sheath. When driving the antenna via this cabling, our pulser was capable of sustaining 1200 A pulses at a rate of 30 per second up to a minute. In this way, bursts of pulses could be delivered in synch with the pendulum period in order to build up any motion. However, when using a laser beam passing through a lens attached to the antenna to amplify linear displacement by a factor of at least 25, no correlated motion of the beam spot could be detected on a distant wall. We conclude, in agreement with the momentum theorem of classical electromagnetic theory, that any thrust produced is far below practically useful levels. Hence, within classical electrodynamics, there is little hope of detecting any low level motion that cannot be explained by interactions with surrounding structural steel and the Earth's magnetic field.
Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator
Rust, Michael J.; Golden, Susan S.; O'Shea, Erin K.
2012-01-01
Circadian clocks are self-sustained biological oscillators that can be entrained by environmental cues. Though this phenomenon has been studied in many organisms, the molecular mechanisms of entrainment remain unclear. Three cyanobacterial proteins and ATP are sufficient to generate oscillations in phosphorylation in vitro. We show that changes in illumination that induce a phase shift in cultured cyanobacteria also cause changes in the ATP/ADP ratio. When these nucleotide changes are simulated in the in vitro oscillator, they cause phase shifts similar to those observed in vivo. Physiological concentrations of ADP inhibit kinase activity in the oscillator and a mathematical model constrained by data shows that this effect is sufficient to quantitatively explain entrainment of the cyanobacterial circadian clock. PMID:21233390
NASA Technical Reports Server (NTRS)
Hanna, M. F. (Inventor)
1973-01-01
An event sequence detector is described with input units, each associated with a row of bistable elements arranged in an array of rows and columns. The detector also includes a shift register which is responsive to clock pulses from any of the units to sequentially provide signals on its output lines each of which is connected to the bistable elements in a corresponding column. When the event-indicating signal is received by an input unit it provides a clock pulse to the shift register to provide the signal on one of its output lines. The input unit also enables all its bistable elements so that the particular element in the column supplied with the signal from the register is driven to an event-indicating state.
Circadian processes in the RNA life cycle.
Torres, Manon; Becquet, Denis; Franc, Jean-Louis; François-Bellan, Anne-Marie
2018-05-01
The circadian clock drives daily rhythms of multiple physiological processes, allowing organisms to anticipate and adjust to periodic changes in environmental conditions. These physiological rhythms are associated with robust oscillations in the expression of at least 30% of expressed genes. While the ability for the endogenous timekeeping system to generate a 24-hr cycle is a cell-autonomous mechanism based on negative autoregulatory feedback loops of transcription and translation involving core-clock genes and their protein products, it is now increasingly evident that additional mechanisms also govern the circadian oscillations of clock-controlled genes. Such mechanisms can take place post-transcriptionally during the course of the RNA life cycle. It has been shown that many steps during RNA processing are regulated in a circadian manner, thus contributing to circadian gene expression. These steps include mRNA capping, alternative splicing, changes in splicing efficiency, and changes in RNA stability controlled by the tail length of polyadenylation or the use of alternative polyadenylation sites. RNA transport can also follow a circadian pattern, with a circadian nuclear retention driven by rhythmic expression within the nucleus of particular bodies (the paraspeckles) and circadian export to the cytoplasm driven by rhythmic proteins acting like cargo. Finally, RNA degradation may also follow a circadian pattern through the rhythmic involvement of miRNAs. In this review, we summarize the current knowledge of the post-transcriptional circadian mechanisms known to play a prominent role in shaping circadian gene expression in mammals. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > RNA Editing and Modification RNA Export and Localization > Nuclear Export/Import. © 2018 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Johannessen, Kim
2010-01-01
An analytic approximation of the solution to the differential equation describing the oscillations of a simple pendulum at large angles and with initial velocity is discussed. In the derivation, a sinusoidal approximation has been applied, and an analytic formula for the large-angle period of the simple pendulum is obtained, which also includes…
Fluid-Structure Interaction in a Fluid-Filled Composite Structure Subjected to Low Velocity Impact
2016-06-01
for creating an E-glass composite cubic structure and a pendulum was designed and built to provide a repeatable low velocity impact. The behavior of...structure and a pendulum was designed and built to provide a repeatable low velocity impact. The behavior of the composite structure was studied at various...SET-UP .......................................................31 1. Impact Pendulum
ERIC Educational Resources Information Center
Grober, S.; Vetter, M.; Eckert, B.; Jodl, H.-J.
2007-01-01
We suggest that different string pendulums are positioned at different locations on Earth and measure at each place the gravitational acceleration (accuracy [delta]g is approximately equal to 0.01 m s[superscript -2]). Each pendulum can be remotely controlled via the internet by a computer located somewhere on Earth. The theoretical part describes…
Chronobiology and obesity: Interactions between circadian rhythms and energy regulation.
Summa, Keith C; Turek, Fred W
2014-05-01
Recent advances in the understanding of the molecular, genetic, neural, and physiologic basis for the generation and organization of circadian clocks in mammals have revealed profound bidirectional interactions between the circadian clock system and pathways critical for the regulation of metabolism and energy balance. The discovery that mice harboring a mutation in the core circadian gene circadian locomotor output cycles kaput (Clock) develop obesity and evidence of the metabolic syndrome represented a seminal moment for the field, clearly establishing a link between circadian rhythms, energy balance, and metabolism at the genetic level. Subsequent studies have characterized in great detail the depth and magnitude of the circadian clock's crucial role in regulating body weight and other metabolic processes. Dietary nutrients have been shown to influence circadian rhythms at both molecular and behavioral levels; and many nuclear hormone receptors, which bind nutrients as well as other circulating ligands, have been observed to exhibit robust circadian rhythms of expression in peripheral metabolic tissues. Furthermore, the daily timing of food intake has itself been shown to affect body weight regulation in mammals, likely through, at least in part, regulation of the temporal expression patterns of metabolic genes. Taken together, these and other related findings have transformed our understanding of the important role of time, on a 24-h scale, in the complex physiologic processes of energy balance and coordinated regulation of metabolism. This research has implications for human metabolic disease and may provide unique and novel insights into the development of new therapeutic strategies to control and combat the epidemic of obesity. © 2014 American Society for Nutrition.
RH1020 Single Event Clock Upset Summary Report
NASA Technical Reports Server (NTRS)
Katz, Richard B.; Wang, J. J.
1998-01-01
This report summarizes the testing and analysis of "single event clock upset' in the RH1020. Also included are SEU-rate predictions and design recommendations for risk analysis and reduction. The subject of "upsets" in the RH1020 is best understood by using a model consisting of a global clock buffer and a D-type flip-flop as the basic memory unit. The RH1020 is built on the ACT 1 family architecture. As such, it has one low-skew global clock buffer with a TTL-level input threshold that is accessed via a single dedicated pin. The clock signal is driven to full CMOS levels, buffered, and sent to individual row buffers with one buffer per channel. For low-skew performance, the outputs of all of the RH1020 row buffers are shorted together via metal lines, as is done in the A1020B. All storage in the RH1020 consists of routed flip-flops, constructed with multiplexors and feedback through the routing segments. A simple latch can be constructed from a single (combinatorial or C) module; an edge-triggered flip-flop is constructed using two concatenated latches. There is no storage in the I/O modules. The front end of the clock buffering circuitry, at a common point relative to the row buffer, is a sub-circuit that was determined to be the most susceptible to heavy ions. This is due, in part, to its smaller transistors compared to the rest of the circuitry. This conclusion is also supported by SPICE simulations and an analysis of the heavy ion data, described in this report. The edge triggered D flip-flop has two single-event-upset modes. Mode one, called C-module upset, is caused by a heavy ion striking the C-module's sensitive area on the silicon and produces a soft single bit error at the output of the flip-flop. Mode two, called clock upset, is caused by a heavy ion strike on the clock buffer, generating a runt pulse interpreted as a false clock signal and consequently producing errors at the flip-flop outputs. C-module upset sensitivity in the RH1020 is essentially the same as that of its ACT 1 siblings (A1020, A1020A and A1020B), which were well tested, analyzed, and documented in the literature.
Obesity in mice with adipocyte-specific deletion of clock component Arntl
Paschos, Georgios K; Ibrahim, Salam; Song, Wen-Liang; Kunieda, Takeshige; Grant, Gregory; Reyes, Teresa M; Bradfield, Christopher A; Vaughan, Cheryl H; Eiden, Michael; Masoodi, Mojgan; Griffin, Julian L; Wang, Fenfen; Lawson, John A; FitzGerald, Garret A
2013-01-01
Adipocytes store excess energy in the form of triglycerides and signal the levels of stored energy to the brain. Here we show that adipocyte-specific deletion of Arntl (also known as Bmal1), a gene encoding a core molecular clock component, results in obesity in mice with a shift in the diurnal rhythm of food intake, a result that is not seen when the gene is disrupted in hepatocytes or pancreatic islets. Changes in the expression of hypothalamic neuropeptides that regulate appetite are consistent with feedback from the adipocyte to the central nervous system to time feeding behavior. Ablation of the adipocyte clock is associated with a reduced number of polyunsaturated fatty acids in adipocyte triglycerides. This difference between mutant and wild-type mice is reflected in the circulating concentrations of polyunsaturated fatty acids and nonesterified polyunsaturated fatty acids in hypothalamic neurons that regulate food intake. Thus, this study reveals a role for the adipocyte clock in the temporal organization of energy regulation, highlights timing as a modulator of the adipocyte-hypothalamic axis and shows the impact of timing of food intake on body weight. PMID:23142819
Ellingsen, Sidsel; Roxberg, Åsa; Kristoffersen, Kjell; Rosland, Jan Henrik; Alvsvåg, Herdis
2015-05-01
The aim of this study was to gain a deeper understanding of the experience of time when living with severe incurable disease. A phenomenological and philosophical approach of description and deciphering were used. In our modern health care system there is an on-going focus on utilizing and recording the use of time, but less focus on the patient's experience of time, which highlights the need to explore the patients' experiences, particularly when life is vulnerable and time is limited. The empirical data consisted of 26 open-ended interviews with 23 participants receiving palliative care at home, in hospital or in a nursing home in Norway. The theoretical frameworks used are mainly based upon K. Martinsens philosophy of care, K. E. Løgstrup phenomenological philosophy, in addition to C. Saunders' hospice philosophy, L. Feigenberg's thanatology and U. Qvarnström's research exploring patient's reactions to impending death. Experience of time is described as being a movement that moves the individual towards death in the field of opposites, and deciphered to be a universal, but a typical and unique experience emerging through three integrated levels: Sense of time; where time is described as a movement that is proceeding at varying speeds. Relate to time; where the awareness of limited life changes the understanding of time to be more existential. Being in time; where limited time seems to clarify the basic living conditions and phenomena of life. The existence of life when the prospect of death is present is characterized by emotional swings that move within polarizing dimensions which is reflected in the experience of time illustrated as the moves of the pendulum in a grandfather clock. The diversity of the experience of time is oscillating between going fast or slow, being busy or calm, being unpredictable but predictable, safe or unsafe and between being good or bad, depending on the embodied situation of the individual.
NASA Astrophysics Data System (ADS)
Sun, Ning; Wu, Yiming; Chen, He; Fang, Yongchun
2018-03-01
Underactuated cranes play an important role in modern industry. Specifically, in most situations of practical applications, crane systems exhibit significant double pendulum characteristics, which makes the control problem quite challenging. Moreover, most existing planners/controllers obtained with standard methods/techniques for double pendulum cranes cannot minimize the energy consumption when fulfilling the transportation tasks. Therefore, from a practical perspective, this paper proposes an energy-optimal solution for transportation control of double pendulum cranes. By applying the presented approach, the transportation objective, including fast trolley positioning and swing elimination, is achieved with minimized energy consumption, and the residual oscillations are suppressed effectively with all the state constrains being satisfied during the entire transportation process. As far as we know, this is the first energy-optimal solution for transportation control of underactuated double pendulum cranes with various state and control constraints. Hardware experimental results are included to verify the effectiveness of the proposed approach, whose superior performance is reflected by being experimentally compared with some comparative controllers.
Measurement of Motion Transfer Functions for Mirror Suspensions
NASA Astrophysics Data System (ADS)
Stuver, Amber; Beilby, Mark; Glancy, Aran; Gonzalez, Gabriela
2001-04-01
Interferometric gravitational wave detectors, such as LIGO, use mirrors suspended in pendulums. The current LIGO dectors use simple pendulums, but advanced LIGO detectors will use multiple pendulums with some stages on soft vertical springs. A drawback of the a multiple pendulum design is that it is difficult to model and predict cross couplings from one vibrational mode to another due to slight unavoidable asymmetries in the real system. Of most concern are the couplings to motion along the optical axis and into angular motions, which have the most potential to contaminate data. Our research focuses on the experimental testing of the pendulum designs for cross couplings with a special dedicated shaking stage. The cross couplings in each degree of freedom, their isolation and damping are investigated in this research though the measurement of transfer functions as filtered though the suspension system. This research is supported by The Pennsylvania State University, the NSF Grant no. PHY-9870032, and the REU program at The Pennsylvania State University.
NASA Astrophysics Data System (ADS)
Matthews, Michael R.
2004-11-01
Galileo's discovery of the properties of pendulum motion depended on his adoption of the novel methodology of idealisation. Galileo's laws of pendulum motion could not be accepted until the empiricist methodological constraints placed on science by Aristotle, and by common sense, were overturned. As long as scientific claims were judged by how the world was immediately seen to behave, and as long as mathematics and physics were kept separate, then Galileo's pendulum claims could not be substantiated; the evidence was against them. Proof of the laws required not just a new science, but a new way of doing science, a new way of handling evidence, a new methodology of science. This was Galileo's method of idealisatioin. It was the foundation of the Galilean-Newtonian Paradigm which characterised the Scientific Revolution of the 17th century, and the subsequent centuries of modern science. As the pendulum was central to Galileo's and Newton's physics, appreciating the role of idealisation in their work is an instructive way to learn about the nature of science.
Modeling and Model Identification of Autonomous Underwater Vehicles
2015-06-01
setup, based on a quadrifilar pendulum , is developed to measure the moments of inertia of the vehicle. System identification techniques, based on...parametric models of the platforms: an individual channel excitation approach and a free decay pendulum test. The former is applied to THAUS, which can...excite the system in individual channels in four degrees of freedom. These results are verified in the free decay pendulum setup, which has the
NASA Technical Reports Server (NTRS)
Gracey, William
1948-01-01
A simplified compound-pendulum method for the experimental determination of the moments of inertia of airplanes about the x and y axes is described. The method is developed as a modification of the standard pendulum method reported previously in NACA report, NACA-467. A brief review of the older method is included to form a basis for discussion of the simplified method. (author)
NASA Technical Reports Server (NTRS)
Dunning, R. S.
1973-01-01
Equations are developed which give the pressure profile, the forces and torques on a disk pendulum by means of point source wave theory from acoustics. The pressure, force and torque equations for an unbaffled disk are developed. These equations are then used to calculate the apparent mass and apparent inertia for the pendulum.
A Clinically Realistic Large Animal Model of Intra-Articular Fracture
2014-12-01
pendulum system for measuring energy absorption during fracture insult to large animal joints in vivo. J Biomech Eng. 2014 Jun;136(6):064502. PMID:24760051...Model 4. Yucatan Minipig 5. Impact 6. Pendulum 7. Mankin Scoring 8. Inflammatory Cytokines 9. Gait Analysis 10. Incongruity 3. OVERALL...primarily hardware upgrades and ex-vivo experimentation of the pendulum . 3.2.a Device Upgrades The primary hardware upgrade was to instrument the
Novel Out-Coupling Techniques for Terahertz Free Electron Lasers
2012-06-01
4 1. FEL “ Pendulum ” Equation and Electron Dynamics .......................4 2. FEL...4 B. FEL THEORY 1. FEL “ Pendulum ” Equation and Electron Dynamics The dynamics of electron motion as it passes through the undulator are governed...I.5, then the FEL “ pendulum equation” is derived , (I.7) where is the dimensionless laser field amplitude[1]. From this, it is shown that changes
Nguyen, Huong Ngoc; Hardesty, Melissa; Hong, Khuat Thu
2011-11-01
Having emerged only recently due to fast urbanisation and globalisation, pendulum migrant labourers in Vietnam are economically, culturally and socially difficult to locate - though they are estimated to number in their millions. Defined by their frequent migration between village and city, pendulum migrant labourers occupy an extended period of liminality. Are they traditional villagers or liberal city people when it comes to sex? Does city life radically change their views on sexuality? Starting with the premise that living environments play a key role in structuring the practical and symbolic realities of sex, this paper explores how extended periods of circular migration between the village and city - living environments that differ markedly in terms of socioeconomic and cultural conditions - affect the sexual views and perspectives of Vietnamese pendulum migrant labourers. Analysis from in-depth interviews with 23 married pendulum migrant labourers revealed that even though they had been living the pendulum life for several years, they continued to identify themselves, sexually, as traditional villagers. Among labourers the link between sexuality and living environment was a matter of pragmatism - matching 'suitable' sexual behaviour to social, even if imagined, location - and of privilege or 'leagues' - matching behaviour and comportment to social pedigree.
Kim, Yong-Wook
2013-01-01
. [Purpose] The purpose of the present study was to investigate the clinical usefulness (reliability and validity) of the pendulum test using a Noland-Kuckhoff (NK) table with an attached electrogoniometer to measure the spasticity of patients with brain lesions. [Subjects] The subjects were 31 patients with stroke or traumatic brain injury. [Methods] The intraclass correlation coefficient (ICC) was used to verify the test–retest reliability of spasticity measures obtained using the pendulum test. Pearson's product correlation coefficient was used to examine the validity of the pendulum test using the amplitude of the patellar tendon reflex (PTR) test, an objective and quantitative measure of spasticity. [Results] The test–retest reliability was high, reflecting a significant correlation between the test and the retest (ICCs = 0.95–0.97). A significant negative correlation was found between the amplitude of the PTR test and the four variables measured in the pendulum test (r = −0.77– −0.85). [Conclusion] The pendulum test using a NK table is an objective measure of spasticity and can be used in the clinical setting in place of more expensive and complicated equipment. Further studies are needed to investigate the therapeutic effect of this method on spasticity. PMID:24259775
Kim, Yong-Wook
2013-10-01
. [Purpose] The purpose of the present study was to investigate the clinical usefulness (reliability and validity) of the pendulum test using a Noland-Kuckhoff (NK) table with an attached electrogoniometer to measure the spasticity of patients with brain lesions. [Subjects] The subjects were 31 patients with stroke or traumatic brain injury. [Methods] The intraclass correlation coefficient (ICC) was used to verify the test-retest reliability of spasticity measures obtained using the pendulum test. Pearson's product correlation coefficient was used to examine the validity of the pendulum test using the amplitude of the patellar tendon reflex (PTR) test, an objective and quantitative measure of spasticity. [Results] The test-retest reliability was high, reflecting a significant correlation between the test and the retest (ICCs = 0.95-0.97). A significant negative correlation was found between the amplitude of the PTR test and the four variables measured in the pendulum test (r = -0.77- -0.85). [Conclusion] The pendulum test using a NK table is an objective measure of spasticity and can be used in the clinical setting in place of more expensive and complicated equipment. Further studies are needed to investigate the therapeutic effect of this method on spasticity.
Foucault pendulum with eddy-current damping of the elliptical motion
NASA Astrophysics Data System (ADS)
Mastner, G.; Vokurka, V.; Maschek, M.; Vogt, E.; Kaufmann, H. P.
1984-10-01
A newly designed Foucault pendulum is described in which the mechanical Charron ring, used throughout in previous designs for damping of the elliptical motion of the pendulum, is replaced by an electromagnetic eddy-current brake, consisting of a permanent magnet attached to the bottom of the bob and a metallic ring. This damping device is very efficient, as it is self-aligning, symmetrical in the damping effect, and never wears out. The permanent magnet is also used, together with a coil assembly and an electronic circuitry, for the dipole-torque drive of the pendulum as well as for accurate stabilization of the amplitude of the swing. A latched time display, controlled by Hall probes activated by the magnet, is used to visualize the Foucault rotation. The pendulum system and its associated electronic circuitry are described in detail. The optimizing of the drive mode is discussed. Measurements of deviations from theoretical value of the Foucault rotation velocity made automatically in a continuous run show a reproducible accuracy of ±1% or better in individual 360° rotations during the summer months. The quality factor of the pendulum as mechanical resonator was measured as a function of the amplitude in the presence of the eddy-current damping ring.
Loram, Ian D; Lakie, Martin
2002-01-01
In standing, there are small sways of the body. Our interest is to use an artificial task to illuminate the mechanisms underlying the sways and to account for changes in their size. Using the ankle musculature, subjects balanced a large inverted pendulum. The equilibrium of the pendulum is unstable and quasi-regular sway was observed like that in quiet standing. By giving full attention to minimising sway subjects could systematically reduce pendulum movement. The pendulum position, the torque generated at each ankle and the soleus and tibialis anterior EMGs were recorded. Explanations about how the human inverted pendulum is balanced usually ignore the fact that balance is maintained over a range of angles and not just at one angle. Any resting equilibrium position of the pendulum is unstable and in practice temporary; movement to a different resting equilibrium position can only be accomplished by a biphasic ‘throw and catch’ pattern of torque and not by an elastic mechanism. Results showed that balance was achieved by the constant repetition of a neurally generated ballistic-like biphasic pattern of torque which can control both position and sway size. A decomposition technique revealed that there was a substantial contribution to changes in torque from intrinsic mechanical ankle stiffness; however, by itself this was insufficient to maintain balance or to control position. Minimisation of sway size was caused by improvement in the accuracy of the anticipatory torque impulses. We hypothesise that examination of centre of mass and centre of pressure data for quiet standing will duplicate these results. PMID:11986396
University of Florida Torsion Pendulum for Testing Key LISA Technology
NASA Astrophysics Data System (ADS)
Apple, Stephen; Chilton, Andrew; Olatunde, Taiwo Janet; Hillsberry, Daniel; Parry, Samantha; Ciani, Giacomo; Wass, Peter; Mueller, Guido; Conklin, John
2018-01-01
This presentation will describe the design and performance of a new torsion pendulum at the University of Florida used for testing inertial sensors and associated technologies for use in space – based gravitational wave observatories and geodesy missions. In particular this new torsion pendulum facility is testing inertial sensors and associated technology for the upcoming LISA (laser interferometer space antenna) space-based gravitational wave observatory mission. The torsion pendulum apparatus is comprised of a suspended cross bar assembly that has LISA test mass mockups at each of its ends. Two of the test mass mockups are enclosed by capacitive sensors which provide actuation and position sensing. The entire assembly is housed in a vacuum chamber. The pendulum cross-bar converts rotational motion of the test masses about the suspension fiber axis into translational motion. The 22 cm cross bar arm length along with the extremely small torsional spring constant of the suspension fiber results in a near free fall condition in the translational degree-of-freedom orthogonal to both the member and the suspension fiber. The test masses are electrically isolated from the pendulum assembly and their charge is controlled via photoemission using fiber coupled UV LEDS. Position of the test masses is measured using both capacitive and interferometric readout. The broadband sensitivity of the capacitive readout and laser interferometer readout is 30 nm/√Hz and 0.5 nm/√Hz respectively. The performance of the pendulum measured in equivalent acceleration noise acting on a LISA test mass is approximately 3 × 10-13 ms-2/√Hz at 2 mHz. This presentation will also discuss the design and fabrication of a flight-like gravitational reference sensor that will soon be integrated into the torsion pendulum facility. This flight-like GRS will allow for noise performance measurements in a more LISA-like configuration.
Morphological evolution of spiders predicted by pendulum mechanics.
Moya-Laraño, Jordi; Vinković, Dejan; De Mas, Eva; Corcobado, Guadalupe; Moreno, Eulalia
2008-03-26
Animals have been hypothesized to benefit from pendulum mechanics during suspensory locomotion, in which the potential energy of gravity is converted into kinetic energy according to the energy-conservation principle. However, no convincing evidence has been found so far. Demonstrating that morphological evolution follows pendulum mechanics is important from a biomechanical point of view because during suspensory locomotion some morphological traits could be decoupled from gravity, thus allowing independent adaptive morphological evolution of these two traits when compared to animals that move standing on their legs; i.e., as inverted pendulums. If the evolution of body shape matches simple pendulum mechanics, animals that move suspending their bodies should evolve relatively longer legs which must confer high moving capabilities. We tested this hypothesis in spiders, a group of diverse terrestrial generalist predators in which suspensory locomotion has been lost and gained a few times independently during their evolutionary history. In spiders that hang upside-down from their webs, their legs have evolved disproportionately longer relative to their body sizes when compared to spiders that move standing on their legs. In addition, we show how disproportionately longer legs allow spiders to run faster during suspensory locomotion and how these same spiders run at a slower speed on the ground (i.e., as inverted pendulums). Finally, when suspensory spiders are induced to run on the ground, there is a clear trend in which larger suspensory spiders tend to run much more slowly than similar-size spiders that normally move as inverted pendulums (i.e., wandering spiders). Several lines of evidence support the hypothesis that spiders have evolved according to the predictions of pendulum mechanics. These findings have potentially important ecological and evolutionary implications since they could partially explain the occurrence of foraging plasticity and dispersal constraints as well as the evolution of sexual size dimorphism and sociality.
Evaluation of dynamic electromagnetic tracking deviation
NASA Astrophysics Data System (ADS)
Hummel, Johann; Figl, Michael; Bax, Michael; Shahidi, Ramin; Bergmann, Helmar; Birkfellner, Wolfgang
2009-02-01
Electromagnetic tracking systems (EMTS's) are widely used in clinical applications. Many reports have evaluated their static behavior and errors caused by metallic objects were examined. Although there exist some publications concerning the dynamic behavior of EMTS's the measurement protocols are either difficult to reproduce with respect of the movement path or only accomplished at high technical effort. Because dynamic behavior is of major interest with respect to clinical applications we established a simple but effective modal measurement easy to repeat at other laboratories. We built a simple pendulum where the sensor of our EMTS (Aurora, NDI, CA) could be mounted. The pendulum was mounted on a special bearing to guarantee that the pendulum path is planar. This assumption was tested before starting the measurements. All relevant parameters defining the pendulum motion such as rotation center and length are determined by static measurement at satisfactory accuracy. Then position and orientation data were gathered over a time period of 8 seconds and timestamps were recorded. Data analysis provided a positioning error and an overall error combining both position and orientation. All errors were calculated by means of the well know equations concerning pendulum movement. Additionally, latency - the elapsed time from input motion until the immediate consequences of that input are available - was calculated using well-known equations for mechanical pendulums for different velocities. We repeated the measurements with different metal objects (rods made of stainless steel type 303 and 416) between field generator and pendulum. We found a root mean square error (eRMS) of 1.02mm with respect to the distance of the sensor position to the fit plane (maximum error emax = 2.31mm, minimum error emin = -2.36mm). The eRMS for positional error amounted to 1.32mm while the overall error was 3.24 mm. The latency at a pendulum angle of 0° (vertical) was 7.8ms.
Liu, Zhenjiang; Gan, Lu; Luo, Dan; Sun, Chao
2017-05-01
Melatonin is synthesized in the pineal gland and controls circadian rhythm of peripheral adipose tissue, resulting in changes in body weight. Although core regulatory components of clock rhythmicity have been defined, insight into the mechanisms of circadian rhythm-mediated proliferation in adipose tissue is still limited. Here, we showed that melatonin (20 mg/kg/d) promoted circadian and proliferation processes in white adipose tissue. The circadian amplitudes of brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (Bmal1, P<.05) and circadian locomotor output cycles kaput (Clock, P<.05), period 2 (Per2, P<.05), cyclin E (P<.05), and c-Myc (P<.05) were directly increased by melatonin in adipose tissue. Melatonin also promoted cell cycle and increased cell numbers (P<.05), which was correlated with the Clock expression (P<.05). Further analysis demonstrated that Clock bound to the E-box elements in the promoter region of c-Myc and then directly stimulated c-Myc transcription. Moreover, Clock physically interacted with histone deacetylase 3 (HDAC3) and formed a complex with c-Myc to promote adipocyte proliferation. Melatonin also attenuated circadian disruption and promoted adipocyte proliferation in chronic jet-lagged mice and obese mice. Thus, our study found that melatonin promoted adipocyte proliferation by forming a Clock/HDAC3/c-Myc complex and subsequently driving the circadian amplitudes of proliferation genes. Our data reveal a novel mechanism that links circadian rhythm to cell proliferation in adipose tissue. These findings also identify a new potential means for melatonin to prevent and treat sleep deprivation-caused obesity. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Cardiovascular tissues contain independent circadian clocks
NASA Technical Reports Server (NTRS)
Davidson, A. J.; London, B.; Block, G. D.; Menaker, M.
2005-01-01
Acute cardiovascular events exhibit a circadian rhythm in the frequency of occurrence. The mechanisms underlying these phenomena are not yet fully understood, but they may be due to rhythmicity inherent in the cardiovascular system. We have begun to characterize rhythmicity of the clock gene mPer1 in the rat cardiovascular system. Luciferase activity driven by the mPer1 gene promoter is rhythmic in vitro in heart tissue explants and a wide variety of veins and arteries cultured from the transgenic Per1-luc rat. The tissues showed between 3 and 12 circadian cycles of gene expression in vitro before damping. Whereas peak per1-driven bioluminescence consistently occurred during the late night in the heart and all arteries sampled, the phases of the rhythms in veins varied significantly by anatomical location. Varying the time of the culture procedure relative to the donor animal's light:dark cycle revealed that, unlike some other rat tissues such as liver, the phases of in vitro rhythms of arteries, veins, and heart explants were affected by culture time. However, phase relationships among tissues were consistent across culture times; this suggests diversity in circadian regulation among components of the cardiovascular system.
Integrated Data Collection and Analysis Project: Friction Correlation Study
2015-08-01
methods authorized in AOP-7 include Pendulum Friction, Rotary Friction, Sliding Friction (ABL), BAM Friction and Steel/Fiber Shoe Methods. The...sensitivity can be obtained by Pendulum Friction, Rotary Friction, Sliding Friction (such as the ABL), BAM Friction and Steel/Fiber Shoe Methods.3, 4 Within...Figure 4.16 A variable compressive force is applied downward through the wheel hydraulically (50-1995 psi). The 5 kg pendulum impacts (8 ft/sec is the
Quantum Simulation and Quantum Sensing with Ultracold Strontium
2015-09-18
quantum Kapitza pendulum , a novel Floquet system which we are investigating using modulated optical lattices. We have proposed and are developing...another goal of our AFOSR YIP project. To this end, we have developed the first theoretical treatment of a lattice-based quantum Kapitza pendulum . We have...classical single-particle analogue of this phase occurs in a rigid pendulum with an oscillating support (known as a Kapitza pendu- lum [9]). To prepare for
Two-Pendulum Model of Propellant Slosh in Europa Clipper PMD Tank
NASA Technical Reports Server (NTRS)
Ng, Wanyi; Benson, David
2017-01-01
Model propellant slosh for Europa Clipper using two pendulums such that controls engineers can predict slosh behavior during the mission. Importance of predicting propellant slosh; (1) Sloshing changes CM (center of mass) of spacecraft and exerts forces and torques on spacecraft. (2) Avoid natural frequencies of structures. (3) Size ACS (Attitude Control Systems) thrusters to counteract forces and torques. Can model sloshing fluid as two pendulums with specific parameters (mass, length, damping),
2011-03-01
for controlled thruster operation at varying conditions. An inverted pendulum was used to take thrust measurements. Thrust to power ratio, anode...for comparison will include thrust, T. Thrust 21 can be measured by a sensitive inverted pendulum thrust stand. Specific impulse would be...to this pressure. III.4 Diagnostic Equipment The instrument used to take thrust measurements was the Busek T8 inverted pendulum thrust stand [13
An Empirical Model for Mine-Blast Loading
2014-10-17
fledged experimental program. The numerical approach however suffers from several drawbacks in the mine blast simulations. First, it is a very...Suffield consisted in a pendulum type device to measure global impulse of buried mine [15]. One of the main purposes of the ONAGER pendulum was to study...TP-1 Terminal effects, KTA 1-34 report, 2004. [15] Bues, R., Hlady, S.L. and Bergeron, D.M., Pendulum Measurement of Land Mine Blast Output, Volume
Simple pendulum for blind students
NASA Astrophysics Data System (ADS)
Goncalves, A. M. B.; Cena, C. R.; Alves, D. C. B.; Errobidart, N. C. G.; Jardim, M. I. A.; Queiros, W. P.
2017-09-01
Faced with the need to teach physics to the visually impaired, in this paper we propose a way to demonstrate the dependence of distance and time in a pendulum experiment to blind students. The periodic oscillation of the pendulum is translated, by an Arduino and an ultrasonic sensor, in a periodic variation of frequency in a speaker. The main advantage of this proposal is the possibility that a blind student understands the movement without necessity of touching it.
Precision Measurement of Distribution of Film Thickness on Pendulum for Experiment of G
NASA Astrophysics Data System (ADS)
Liu, Lin-Xia; Guan, Sheng-Guo; Liu, Qi; Zhang, Ya-Ting; Shao, Cheng-Gang; Luo, Jun
2009-09-01
Distribution of film thickness coated on the pendulum of measuring the Newton gravitational constant G is determined with a weighing method by means of a precision mass comparator. The experimental result shows that the gold film on the pendulum will contribute a correction of -24.3 ppm to our G measurement with an uncertainty of 4.3 ppm, which is significant for improving the G value with high precision.
Electronic system for the complex measurement of a Wilberforce pendulum
NASA Astrophysics Data System (ADS)
Kos, B.; Grodzicki, M.; Wasielewski, R.
2018-05-01
The authors present a novel application of a micro-electro-mechanical measurement system to the description of basic physical phenomena in a model Wilberforce pendulum. The composition of the kit includes a tripod with a mounted spring with freely hanging bob, a module GY-521 on the MPU 6050 coupled with an Arduino Uno, which in conjunction with a PC acts as measuring set. The system allows one to observe the swing of the pendulum in real time. Obtained data stays in good agreement with both theoretical predictions and previous works. The aim of this article is to introduce the study of a Wilberforce pendulum to the canon of physical laboratory exercises due to its interesting properties and multifaceted method of measurement.
Circadian Enhancers Coordinate Multiple Phases of Rhythmic Gene Transcription In Vivo
Fang, Bin; Everett, Logan J.; Jager, Jennifer; Briggs, Erika; Armour, Sean M.; Feng, Dan; Roy, Ankur; Gerhart-Hines, Zachary; Sun, Zheng; Lazar, Mitchell A.
2014-01-01
SUMMARY Mammalian transcriptomes display complex circadian rhythms with multiple phases of gene expression that cannot be accounted for by current models of the molecular clock. We have determined the underlying mechanisms by measuring nascent RNA transcription around the clock in mouse liver. Unbiased examination of eRNAs that cluster in specific circadian phases identified functional enhancers driven by distinct transcription factors (TFs). We further identify on a global scale the components of the TF cistromes that function to orchestrate circadian gene expression. Integrated genomic analyses also revealed novel mechanisms by which a single circadian factor controls opposing transcriptional phases. These findings shed new light on the diversity and specificity of TF function in the generation of multiple phases of circadian gene transcription in a mammalian organ. PMID:25416951
Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo.
Fang, Bin; Everett, Logan J; Jager, Jennifer; Briggs, Erika; Armour, Sean M; Feng, Dan; Roy, Ankur; Gerhart-Hines, Zachary; Sun, Zheng; Lazar, Mitchell A
2014-11-20
Mammalian transcriptomes display complex circadian rhythms with multiple phases of gene expression that cannot be accounted for by current models of the molecular clock. We have determined the underlying mechanisms by measuring nascent RNA transcription around the clock in mouse liver. Unbiased examination of enhancer RNAs (eRNAs) that cluster in specific circadian phases identified functional enhancers driven by distinct transcription factors (TFs). We further identify on a global scale the components of the TF cistromes that function to orchestrate circadian gene expression. Integrated genomic analyses also revealed mechanisms by which a single circadian factor controls opposing transcriptional phases. These findings shed light on the diversity and specificity of TF function in the generation of multiple phases of circadian gene transcription in a mammalian organ.
Validation of the Inverted Pendulum Model in standing for transtibial prosthesis users.
Rusaw, David F; Ramstrand, Simon
2016-01-01
Often in balance assessment variables associated with the center of pressure are used to draw conclusions about an individual's balance. Validity of these conclusions rests upon assumptions that movement of the center of pressure is inter-dependent on movement of the center of mass. This dependency is mechanical and is referred to as the Inverted Pendulum Model. The following study aimed to validate this model both kinematically and kinetically, in transtibial prosthesis users and a control group. Prosthesis users (n=6) and matched control participants (n=6) stood quietly while force and motion data were collected under three conditions (eyes-open, eyes-closed, and weight-bearing feedback). Correlation coefficients were used to investigate the relationships between height and excursion of markers and center of masses in mediolateral/anteroposterior-directions, difference between center of pressure and center of mass and the center of mass acceleration in mediolateral/anteroposterior directions, magnitude of mediolateral/anteroposterior-component forces and center of mass acceleration, angular position of ankle and excursion in mediolateral/anteroposterior-directions, and integrated force signals. Results indicate kinematic validity of similar magnitudes (mean (SD) marker-displacement) between prosthesis users and control group for mediolateral- (r=0.77 (0.17); 0.74 (0.19)) and anteroposterior-directions (r=0.88 (0.18); 0.88 (0.19)). Correlation between difference of center of pressure and center of mass and the center of mass acceleration was negligible on the prosthetic side (r = 0.08 (0.06)) vs. control group (r=-0.51(0.13)). Results indicate kinematic validity of the Inverted Pendulum Model in transtibial prosthesis users but kinetic validity is questionable, particularly on the side with a prosthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Non-ferromagnetic retinal tacks are a tolerable risk in magnetic resonance imaging.
Kuethe, D O; Small, K W; Blinder, R A
1991-01-01
Should patients with cobalt alloy (ASTM F563) retinal tacks (Grieshaber cat. #611.95) in their eyes be subjected to the magnetic fields used in magnetic resonance imaging? Although the tacks are not ferromagnetic, they will experience a retarding torque when they are moved at the high angular velocities of human eye motion. Because retinal tacks are small (2.85 mm x 0.9 mm), the torque is difficult to measure. Rather, we measured the torque on a model 25.4 times larger and used a scaling law derived from Maxwell's equations to calculate the force on the tack. The scaling law states that the torque varies with the cube of the object's length. To mimic the motion, models of retinal tacks were attached to Plexiglas rods and the assemblies were swung as pendulums. The pendulums were oriented in the magnetic field of a 1.5 T imager to experience the greatest retardation. Retarding torques were estimated from the rate of decrease of the pendulum amplitude, both inside and outside the magnet. Even if the retinal tacks were as conductive as 6061T6 aluminum alloy (25 MS/m) and the velocity of the surface of the eye were 24 cm/s (angular vel. of 1130 deg/s), the retarding torque would be only 1.6 times the weight of the tack acting with a lever arm as long as the distance from its tip to its center of gravity. The maximum retarding torque on an implanted retinal tack in a 1.5 T magnet is similar to the torque produced by gravity alone acting on the tack and is a tolerable risk.(ABSTRACT TRUNCATED AT 250 WORDS)
Bloch, Guy; Bar-Shai, Noam; Cytter, Yotam; Green, Rachel
2017-11-19
The interactions between flowering plants and insect pollinators shape ecological communities and provide one of the best examples of coevolution. Although these interactions have received much attention in both ecology and evolution, their temporal aspects are little explored. Here we review studies on the circadian organization of pollination-related traits in bees and flowers. Research, mostly with the honeybee, Apis mellifera , has implicated the circadian clock in key aspects of their foraging for flower rewards. These include anticipation, timing of visits to flowers at specified locations and time-compensated sun-compass orientation. Floral rhythms in traits such as petal opening, scent release and reward availability also show robust daily rhythms. However, in only few studies was it possible to adequately determine whether these oscillations are driven by external time givers such as light and temperature cycles, or endogenous circadian clocks. The interplay between the timing of flower and pollinator rhythms may be ecologically significant. Circadian regulation of pollination-related traits in only few species may influence the entire pollination network and thus affect community structure and local biodiversity. We speculate that these intricate chronobiological interactions may be vulnerable to anthropogenic effects such as the introduction of alien invasive species, pesticides or environmental pollutants.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'. © 2017 The Author(s).
Zhang, Lixia; Kendrick, Christina; Jülich, Dörthe; Holley, Scott A.
2010-01-01
Summary Cell division, differentiation and morphogenesis are coordinated during embryonic development and frequently in disarray in pathologies such as cancer. Here, we present a zebrafish mutant that ceases mitosis at the beginning of gastrulation, but undergoes axis elongation and develops blood, muscle and a beating heart. We identify the mutation as being in early mitotic inhibitor 1 (emi1), a negative regulator of the Anaphase Promoting Complex, and utilize the mutant to examine the role of the cell cycle in somitogenesis. The mutant phenotype indicates that axis elongation during the segmentation period is substantially driven by cell migration. We find that the segmentation clock, which regulates somitogenesis, functions normally in the absence of cell cycle progression and observe that mitosis is a modest source of noise for the clock. Somite morphogenesis involves the epithelialization of the somite border cells around a core of mesenchyme. As in wild-type embryos, somite boundary cells are polarized along a Fibronectin matrix in emi1−/−. The mutants also display evidence of segment polarity. However, in the absence of a normal cell cycle, somites appear to hyper-epithelialize as the internal mesenchymal cells exit the core of the somite after initial boundary formation. Thus, cell cycle progression is not required during the segmentation period for segmentation clock function but is necessary for normal segmental arrangement of epithelial borders and internal mesenchymal cells. PMID:18480162
Pendulum motions of extended lunar space elevator
NASA Astrophysics Data System (ADS)
Burov, A. A.; Kosenko, I. I.
2014-09-01
In the usual everyday life, it is well known that the inverted pendulum is unstable and is ready to fall to "all four sides," to the left and to the right, forward and backward. The theoretical studies and the lunar experience of moon robots and astronauts also confirms this property. The question arises: Is this property preserved if the pendulum is "very, very long"? It turns out that the answer is negative; namely, if the pendulum length significantly exceeds the Moon radius, then the radial equilibria at which the pendulum is located along the straight line connecting the Earth and Moon centers are Lyapunov stable and the pendulum does not fall in any direction at all. Moreover, if the pendulum goes beyond the collinear libration points, then it can be extended and manufactured from cables. This property was noted by F. A. Tsander and underlies the so-called lunar space elevator (e.g., see [1]). In the plane of the Earth and Moon orbits, there are some other equilibria which turn out to be unstable. The question is, Are there equilibria at which the pendulum is located outside the orbital plane? In this paper, we show that the answer is positive, but such equilibria are unstable in the secular sense. We also study necessary conditions for the stability of lunar pendulum oscillations in the plane of the lunar orbit. It was numerically discovered that stable and unstable equilibria alternate depending on the oscillation amplitude and the angular velocity of rotation. The study of the lunar elevator dynamics originates in [2]. The concept of lunar elevator was developed in detail in [3, 4]. Several classes of equilibria with the finiteness of the Moon size taken into account were studied in [5]. The possibility of location of an orbital station fixed to the Moon surface by a pair of tethers was investigated in [6]. The problem of orientation of the terminal station of the lunar space elevator was studied in [7]. The influence of the tether length variations on the motion of the lunar tether system was considered in [8]. The alternation of stable and unstable flat oscillations is well known in the problem of satellite oscillations in a circular orbit [9, 10].
Light rays and the tidal gravitational pendulum
NASA Astrophysics Data System (ADS)
Farley, A. N. St J.
2018-05-01
Null geodesic deviation in classical general relativity is expressed in terms of a scalar function, defined as the invariant magnitude of the connecting vector between neighbouring light rays in a null geodesic congruence projected onto a two-dimensional screen space orthogonal to the rays, where λ is an affine parameter along the rays. We demonstrate that η satisfies a harmonic oscillator-like equation with a λ-dependent frequency, which comprises terms accounting for local matter affecting the congruence and tidal gravitational effects from distant matter or gravitational waves passing through the congruence, represented by the amplitude, of a complex Weyl driving term. Oscillating solutions for η imply the presence of conjugate or focal points along the rays. A polarisation angle, is introduced comprising the orientation of the connecting vector on the screen space and the phase, of the Weyl driving term. Interpreting β as the polarisation of a gravitational wave encountering the light rays, we consider linearly polarised waves in the first instance. A highly non-linear, second-order ordinary differential equation, (the tidal pendulum equation), is then derived, so-called due to its analogy with the equation describing a non-linear, variable-length pendulum oscillating under gravity. The variable pendulum length is represented by the connecting vector magnitude, whilst the acceleration due to gravity in the familiar pendulum formulation is effectively replaced by . A tidal torque interpretation is also developed, where the torque is expressed as a coupling between the moment of inertia of the pendulum and the tidal gravitational field. Precessional effects are briefly discussed. A solution to the tidal pendulum equation in terms of familiar gravitational lensing variables is presented. The potential emergence of chaos in general relativity is discussed in the context of circularly, elliptically or randomly polarised gravitational waves encountering the null congruence.
Two-Pendulum Model of Propellant Slosh in Europa Clipper PMD Tank
NASA Technical Reports Server (NTRS)
Ng, Wanyi; Benson, David
2017-01-01
The objective of this fluids analysis is to model propellant slosh for the Europa Clipper mission using a two-pendulum model, such that controls engineers can predict slosh behavior during the mission. Propellant slosh causes shifts in center of mass and exerts forces and torques on the spacecraft which, if not adequately controlled, can lead to mission failure. The two-pendulum model provides a computationally simple model that can be used to predict slosh for the Europa Clipper tank geometry. The Europa Clipper tank is cylindrical with a domed top and bottom and includes a propellant management device (PMD). Due to the lack of experimental data in low gravity environments, computational fluid dynamics (CFD) simulation results were used as 'real' slosh behavior for two propellants at three fill fractions. Key pendulum parameters were derived that allow the pendulum model's center of mass, forces, and moments to closely match the CFD data. The parameter trends were examined as a function of tank fill fraction and compared with solutions to analytic equations that describe the frequency of slosh in tanks with simple geometries. The trends were monotonic as expected, and parameters resembled analytical predictions; any differences could be explained by the specific differences in the geometry of the tank. This paper summarizes the new method developed at Goddard Space Flight Center (GSFC) for deriving pendulum parameters for two-pendulum equivalent sloshing models. It presents the results of this method and discusses the validity of the results. This analysis is at a completed stage and will be applied in the immediate future to the evolving tank geometry as Europa Clipper moves past its preliminary design review (PDR) phase.
Reachability and Real-Time Actuation Strategies for the Active SLIP Model
2015-06-01
spring leg, the Spring Loaded Inverted Pendulum (SLIP) is a prevalent model for analyzing running and hopping. In this work we consider an actuated...forced symmetry of the stance phase for the Spring-Loaded Inverted Pendulum , In Proceedings of the 2012 IEEE International Conference on Robotics and...Networks. Automatica, 49(1):206-213, 2013 (v) G. Piovan and K. Byl. Enforced symmetry of the stance phase for the spring-loaded inverted pendulum . In
Lyapunov optimal feedback control of a nonlinear inverted pendulum
NASA Technical Reports Server (NTRS)
Grantham, W. J.; Anderson, M. J.
1989-01-01
Liapunov optimal feedback control is applied to a nonlinear inverted pendulum in which the control torque was constrained to be less than the nonlinear gravity torque in the model. This necessitates a control algorithm which 'rocks' the pendulum out of its potential wells, in order to stabilize it at a unique vertical position. Simulation results indicate that a preliminary Liapunov feedback controller can successfully overcome the nonlinearity and bring almost all trajectories to the target.
UT Austin Villa 2011: 3D Simulation Team Report
2011-01-01
inverted pendulum model omnidirectional walk engine based on one that was originally designed for the real Nao robot [7]. The omnidirectional walk is...using a double linear inverted pendulum , where the center of mass is swinging over the stance foot. In addition, as in Graf et al.’s work [7], we use...between the inverted pendulums formed by the respective stance feet. Notation Description maxStep∗i Maximum step sizes allowed for x, y, and θ y
Using a Modified Simple Pendulum to Find the Variations in the Value of “g”
NASA Astrophysics Data System (ADS)
Arnold, Jonathan P.; Efthimiou, C.
2007-05-01
The simple pendulum is one of the most known and studied system of Newtonian Mechanics. It also provides one of the most elegant and simple devices to measure the acceleration of gravity at any location. In this presentation we will revisit the problem of measuring the acceleration of gravity using a simple pendulum and will present a modification to the standard technique that increases the accuracy of the measurement.
A composite controller for trajectory tracking applied to the Furuta pendulum.
Aguilar-Avelar, Carlos; Moreno-Valenzuela, Javier
2015-07-01
In this paper, a new composite scheme is proposed, where the total control action is composed of the sum of a feedback-linearization-based controller and an energy-based compensation. This new proposition is applied to the rotary inverted pendulum or Furuta pendulum. The Furuta pendulum is a well-known underactuated mechanical system with two degrees of freedom. The control objective in this case is the tracking of a desired periodic trajectory in the actuated joint, while the unactuated link is regulated at the upward position. The closed-loop system is analyzed showing uniformly ultimately boundedness of the error trajectories. The design procedure is shown in a constructive form, such that it may be applied to other underactuated mechanical systems, with the proper definitions of the output function and the energy function. Numerical simulations and real-time experiments show the practical viability of the controller. Finally, the proposed algorithm is compared with a tracking controller previously reported in the literature. The new algorithm shows better performance in both arm trajectory tracking and pendulum regulation. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Seismic cross-coupling noise in torsion pendulums
NASA Astrophysics Data System (ADS)
Shimoda, Tomofumi; Aritomi, Naoki; Shoda, Ayaka; Michimura, Yuta; Ando, Masaki
2018-05-01
Detection of low-frequency gravitational waves around 0.1 Hz is one of the important targets for future gravitational wave observation. One of the main sources of the expected signals is gravitational waves from binary intermediate-mass black hole coalescences which is proposed as one of the formation scenarios of supermassive black holes. By using a torsion pendulum, which can have a resonance frequency of a few millihertz, such signals can be measured on the ground since its rotational motion can act as a free mass down to 0.01 Hz. However, sensitivity of a realistic torsion pendulum will suffer from torsional displacement noise introduced from translational ground motion in the main frequency band of interest. Such noise is called seismic cross-coupling noise, and there has been little research on it. In this paper, systematic investigation is performed to identify routes of cross-coupling transfer for standard torsion pendulums. Based on the results, this paper also proposes reduction schemes of cross-coupling noise, and they were demonstrated experimentally in agreement with theory. This result establishes a basic way to reduce seismic noise in torsion pendulums for the most significant coupling routes.
Neural network-based motion control of an underactuated wheeled inverted pendulum model.
Yang, Chenguang; Li, Zhijun; Cui, Rongxin; Xu, Bugong
2014-11-01
In this paper, automatic motion control is investigated for one of wheeled inverted pendulum (WIP) models, which have been widely applied for modeling of a large range of two wheeled modern vehicles. First, the underactuated WIP model is decomposed into a fully actuated second order subsystem Σa consisting of planar movement of vehicle forward and yaw angular motions, and a nonactuated first order subsystem Σb of pendulum motion. Due to the unknown dynamics of subsystem Σa and the universal approximation ability of neural network (NN), an adaptive NN scheme has been employed for motion control of subsystem Σa . The model reference approach has been used whereas the reference model is optimized by the finite time linear quadratic regulation technique. The pendulum motion in the passive subsystem Σb is indirectly controlled using the dynamic coupling with planar forward motion of subsystem Σa , such that satisfactory tracking of a set pendulum tilt angle can be guaranteed. Rigours theoretic analysis has been established, and simulation studies have been performed to demonstrate the developed method.
Attitude Stability of a Spacecraft with Slosh Mass Subject to Parametric Excitation
NASA Astrophysics Data System (ADS)
Kang, Ja-Young
2003-09-01
The attitude motion of a spin-stabilized, upper-stage spacecraft is investigated based on a two-body model, consisting of a symmetric body, representing the spacecraft, and a spherical pendulum, representing the liquid slag pool entrapped in the aft section of the rocket motor. Exact time-varying nonlinear equations are derived and used to eliminate the drawbacks of conventional linear models. To study the stability of the spacecraft's attitude motion, both the spacecraft and pendulum are assumed to be in states of steady spin about the symmetry axis of the spacecraft and the coupled time-varying nonlinear equation of the pendulum is simplified. A quasi-stationary solution to that equation and approximate resonance conditions are determined in terms of the system parameters. The analysis shows that the pendulum is subject to a combination of parametric and external-type excitation by the main body and that energy from the excited pendulum is fed into the main body to develop the coning instability. In this paper, numerical examples are presented to explain the mechanism of the coning angle growth and how angular momenta and disturbance moments are generated.
NASA Astrophysics Data System (ADS)
Bond, Trevor G.
Piaget's investigations into children's understanding of the laws governing the movement of a simple pendulum were first reported in 1955 as part of a report into how children's knowledge of the physical world changes during development. Chapter 4 of Inhelder & Piaget (1955/1958) entitled `The Oscillation of a Pendulum and the Operations of Exclusion'' demonstrated how adolescents could construct the experimental strategies necessary to isolate each of the variables, exclude the irrelevant factors and conclude concerning the causal role of length. This became one of the most easily replicable tasks from the Genevan school and was used in a number of important investigations to detect the onset of formal operational thinking. While it seems that the pendulum investigation fits nicely into Piaget's sequence of studies of concepts such as time, distance and speed suggested to him by Einstein, more recent research (Bond 2001) shows Inhelder to be directly responsible for the investigations into children's induction of physical laws. The inter-relationship between the pendulum problem, developing thought and scientific method is revealed in a number of Genevan and post-Piagetian investigations.
Ratchet baryogenesis and an analogy with the forced pendulum
NASA Astrophysics Data System (ADS)
Bamba, Kazuharu; Barrie, Neil D.; Sugamoto, Akio; Takeuchi, Tatsu; Yamashita, Kimiko
2018-06-01
A new scenario of baryogenesis via the ratchet mechanism is proposed based on an analogy with the forced pendulum. The oscillation of the inflaton field during the reheating epoch after inflation plays the role of the driving force, while the phase 𝜃 of a scalar baryon field (a complex scalar field with baryon number) plays the role of the angle of the pendulum. When the inflaton is coupled to the scalar baryon, the behavior of the phase 𝜃 can be analogous to that of the angle of the forced pendulum. If the oscillation of the driving force is adjusted to the pendulum’s motion, a directed rotation of the pendulum is obtained with a nonvanishing value of 𝜃˙, which models successful baryogenesis since 𝜃˙ is proportional to the baryon number density. Similar ratchet models which lead to directed motion have been used in the study of molecular motors in biology. There, the driving force is supplied by chemical reactions, while in our scenario this role is played by the inflaton during the reheating epoch.
Dynamic impact testing of hedgehog spines using a dual-arm crash pendulum.
Swift, Nathan B; Hsiung, Bor-Kai; Kennedy, Emily B; Tan, Kwek-Tze
2016-08-01
Hedgehog spines are a potential model for impact resistant structures and material. While previous studies have examined static mechanical properties of individual spines, actual collision tests on spines analogous to those observed in the wild have not previously been investigated. In this study, samples of roughly 130 keratin spines were mounted vertically in thin substrates to mimic the natural spine layout on hedgehogs. A weighted crash pendulum was employed to induce and measure the effects of repeated collisions against samples, with the aim to evaluate the influence of various parameters including humidity effect, impact energy, and substrate hardness. Results reveal that softer samples-due to humidity conditioning and/or substrate material used-exhibit greater durability over multiple impacts, while the more rigid samples exhibit greater energy absorption performance at the expense of durability. This trend is exaggerated during high-energy collisions. Comparison of the results to baseline tests with industry standard impact absorbing foam, wherein the spines exhibit similar energy absorption, verifies the dynamic impact absorption capabilities of hedgehog spines and their candidacy as a structural model for engineered impact technology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Could HPS Improve Problem-Solving?
NASA Astrophysics Data System (ADS)
Coelho, Ricardo Lopes
2013-05-01
It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem solving could be improved by means of HPS. Three typical problems in introductory courses of mechanics—the inclined plane, the simple pendulum and the Atwood machine—are taken as the object of the present study. The solving strategies of these problems in the eighteenth and nineteenth century constitute the historical component of the study. Its philosophical component stems from the foundations of mechanics research literature. The use of HPS leads us to see those problems in a different way. These different ways can be tested, for which experiments are proposed. The traditional solving strategies for the incline and pendulum problems are adequate for some situations but not in general. The recourse to apparent weights in the Atwood machine problem leads us to a new insight and a solving strategy for composed Atwood machines. Educational implications also concern the development of logical thinking by means of the variety of lines of thought provided by HPS.
Parametric pendulum based wave energy converter
NASA Astrophysics Data System (ADS)
Yurchenko, Daniil; Alevras, Panagiotis
2018-01-01
The paper investigates the dynamics of a novel wave energy converter based on the parametrically excited pendulum. The herein developed concept of the parametric pendulum allows reducing the influence of the gravity force thereby significantly improving the device performance at a regular sea state, which could not be achieved in the earlier proposed original point-absorber design. The suggested design of a wave energy converter achieves a dominant rotational motion without any additional mechanisms, like a gearbox, or any active control involvement. Presented numerical results of deterministic and stochastic modeling clearly reflect the advantage of the proposed design. A set of experimental results confirms the numerical findings and validates the new design of a parametric pendulum based wave energy converter. Power harvesting potential of the novel device is also presented.
Filichkin, Sergei A.; Breton, Ghislain; Priest, Henry D.; Dharmawardhana, Palitha; Jaiswal, Pankaj; Fox, Samuel E.; Michael, Todd P.; Chory, Joanne; Kay, Steve A.; Mockler, Todd C.
2011-01-01
Background Circadian clocks provide an adaptive advantage through anticipation of daily and seasonal environmental changes. In plants, the central clock oscillator is regulated by several interlocking feedback loops. It was shown that a substantial proportion of the Arabidopsis genome cycles with phases of peak expression covering the entire day. Synchronized transcriptome cycling is driven through an extensive network of diurnal and clock-regulated transcription factors and their target cis-regulatory elements. Study of the cycling transcriptome in other plant species could thus help elucidate the similarities and differences and identify hubs of regulation common to monocot and dicot plants. Methodology/Principal Findings Using a combination of oligonucleotide microarrays and data mining pipelines, we examined daily rhythms in gene expression in one monocotyledonous and one dicotyledonous plant, rice and poplar, respectively. Cycling transcriptomes were interrogated under different diurnal (driven) and circadian (free running) light and temperature conditions. Collectively, photocycles and thermocycles regulated about 60% of the expressed nuclear genes in rice and poplar. Depending on the condition tested, up to one third of oscillating Arabidopsis-poplar-rice orthologs were phased within three hours of each other suggesting a high degree of conservation in terms of rhythmic gene expression. We identified clusters of rhythmically co-expressed genes and searched their promoter sequences to identify phase-specific cis-elements, including elements that were conserved in the promoters of Arabidopsis, poplar, and rice. Conclusions/Significance Our results show that the cycling patterns of many circadian clock genes are highly conserved across poplar, rice, and Arabidopsis. The expression of many orthologous genes in key metabolic and regulatory pathways is diurnal and/or circadian regulated and phased to similar times of day. Our results confirm previous findings in Arabidopsis of three major classes of cis-regulatory modules within the plant circadian network: the morning (ME, GBOX), evening (EE, GATA), and midnight (PBX/TBX/SBX) modules. Identification of identical overrepresented motifs in the promoters of cycling genes from different species suggests that the core diurnal/circadian cis-regulatory network is deeply conserved between mono- and dicotyledonous species. PMID:21694767
Scientists Weight Facts, Theories on Aging
ERIC Educational Resources Information Center
Chemical and Engineering News, 1974
1974-01-01
Discusses some of the current theories on aging, such as biological time clocks for certain cells and on-off switches for genes, that were offered as explanations at the 140th annual meeting of the American Association for the Advancement of Science (JR)
Takekata, Hiroki; Numata, Hideharu; Shiga, Sakiko
2014-02-01
Whether the circatidal rhythm is generated by a machinery common to the circadian clock is one of the important and interesting questions in chronobiology. The mangrove cricket Apteronemobius asahinai shows a circatidal rhythm generating active and inactive phases and a circadian rhythm modifying the circatidal rhythm by inhibiting activity during the subjective day simultaneously. In the previous study, RNA interference of the circadian clock gene period disrupted the circadian rhythm but not the circatidal rhythm, suggesting a difference in molecular mechanisms between the circatidal and circadian rhythms. In the present study, to compare the neural mechanisms of these 2 rhythms, we observed locomotor activity in the mangrove cricket after surgical removal of the optic lobe, which has been shown to be the locus of the circadian clock in other crickets. We also noted the pigment-dispersing factor immunoreactive neurons (PDF-IRNs) in the optic lobe, because PDF is a key output molecule in the circadian clock system in some insects. The results showed that the circadian modulation was disrupted after the removal of the optic lobes but that the circatidal rhythm was maintained with no remarkable changes in its free-running period. Even in crickets in which some PDF-immunoreactive somata remained after removal of the optic lobe, the circadian rhythm was completely disrupted. The remnants of PDF-IRNs were not correlated to the occurrence and free-running period of the circatidal rhythm. These results indicate that the principal circatidal clock is located in a region(s) different from the optic lobe, whereas the circadian clock is located in the optic lobe, as in other crickets, and PDF-IRNs are not important for circatidal rhythm. Therefore, it is suggested that the circatidal rhythm of A. asahinai is driven by a neural basis different from that driving the circadian rhythm.
Mazzoccoli, G; Sothern, R B; Greco, A; Pazienza, V; Vinciguerra, M; Liu, S; Cai, Y
2011-01-01
Immune parameters show rhythmic changes with a 24-h periodicity driven by an internal circadian timing system that relies on clock genes (CGs). CGs form interlocked transcription-translation feedback loops to generate and maintain 24-h mRNA and protein oscillations. In this study we evaluate and compare the profiles and the dynamics of variation of CG expression in peripheral blood, and two lymphoid tissues of mice. Expression levels of seven recognized key CGs (mBmal1, mClock, mPer1, mPer2, mCry1, mCry2, and Rev-erbalpha) were evaluated by quantitative RT- PCR in spleen, thymus and peripheral blood of C57BL/6 male mice housed on a 12-h light (L)-dark (D) cycle and sacrificed every 4 h for 24 h (3-4 mice/time point). We found a statistically significant time-effect in spleen (S), thymus (T) and blood (B) for the original values of expression level of mBmal1 (S), mClock (T, B), mPer1 (S, B), mPer2 (S), mCry1 (S), mCry2 (B) and mRev-Erbalpha (S, T, B) and for the fractional variation calculated between single time-point expression value of mBmal1 (B), mPer2 (T), mCry2 (B) and mRev-Erbalpha (S). A significant 24-h rhythm was validated for five CGs in blood (mClock, mPer1, mPer2, mCry2, mRev-Erbalpha), for four CGs in the spleen (mBmal1, mPer1, mPer2, mRev-Erbalpha), and for three CGs in the thymus (mClock, mPer2, mRev-Erbalpha). The original values of acrophases for mBmal1, mClock, mPer1, mPer2, mCry1 and mCry2 were very similar for spleen and thymus and advanced by several hours for peripheral blood compared to the lymphoid tissues, whereas the phases of mRev-Erbalpha were coincident for all three tissues. In conclusion, central and peripheral lymphoid tissues in the mouse show different sequences of activation of clock gene expression compared to peripheral blood. These differences may underlie the compartmental pattern of web functioning in the immune system.
A Sensitivity Analysis of an Inverted Pendulum Balance Control Model.
Pasma, Jantsje H; Boonstra, Tjitske A; van Kordelaar, Joost; Spyropoulou, Vasiliki V; Schouten, Alfred C
2017-01-01
Balance control models are used to describe balance behavior in health and disease. We identified the unique contribution and relative importance of each parameter of a commonly used balance control model, the Independent Channel (IC) model, to identify which parameters are crucial to describe balance behavior. The balance behavior was expressed by transfer functions (TFs), representing the relationship between sensory perturbations and body sway as a function of frequency, in terms of amplitude (i.e., magnitude) and timing (i.e., phase). The model included an inverted pendulum controlled by a neuromuscular system, described by several parameters. Local sensitivity of each parameter was determined for both the magnitude and phase using partial derivatives. Both the intrinsic stiffness and proportional gain shape the magnitude at low frequencies (0.1-1 Hz). The derivative gain shapes the peak and slope of the magnitude between 0.5 and 0.9 Hz. The sensory weight influences the overall magnitude, and does not have any effect on the phase. The effect of the time delay becomes apparent in the phase above 0.6 Hz. The force feedback parameters and intrinsic stiffness have a small effect compared with the other parameters. All parameters shape the TF magnitude and phase and therefore play a role in the balance behavior. The sensory weight, time delay, derivative gain, and the proportional gain have a unique effect on the TFs, while the force feedback parameters and intrinsic stiffness contribute less. More insight in the unique contribution and relative importance of all parameters shows which parameters are crucial and critical to identify underlying differences in balance behavior between different patient groups.
... recordings of large earthquakes, scientists built large spring-pendulum seismometers in an attempt to record the long- ... are moving away from one another. The first “pendulum seismoscope” to measure the shaking of the ground ...
NASA Astrophysics Data System (ADS)
Aleksandrov, V. V.; Reyes-Romero, M.; Sidorenko, G. Yu.; Temoltzi-Auila, R.
2010-04-01
We consider the problem of choosing a test perturbation of a movable foundation of a single-link inverted pendulum so as to test a vestibular prosthesis prototype located at the top of this pendulum in an extreme situation. The obtained results permit concluding that the information transmitted from otolithic organs of the human vestibular system to muscles of the locomotor apparatus is very important and improves the quality of stabilization of the human vertical posture preventing the possible fall.
11. BUILDING NO. 620B. INTERIOR VIEW LOOKING NORTH, SHOWING PENDULUM ...
11. BUILDING NO. 620-B. INTERIOR VIEW LOOKING NORTH, SHOWING PENDULUM AND FRAME IN FOREGROUND, SHIELD FOR OPERATORS IN BACKGROUND. FRICTION TEST IS OBSERVED FROM BEHIND BLAST SHIELD BY A SERIES OF MIRRORS. ANVIL IN CENTER OF PENDULUM FRAME HOLDS EXPLOSIVE WHOSE SENSITIVITY TO FRICTION IS TO BE TESTED. PANS ON EITHER SIDE CATCH ANY UNBURNT EXPLOSIVE SLUNG FROM ANVIL DURING TEST TO PREVENT EXPLOSIVE HAZARD. - Picatinny Arsenal, 600 Area, Test Areas District, State Route 15 near I-80, Dover, Morris County, NJ
Dynamic Accuracy of Inertial Magnetic Sensor Modules
2016-12-01
and the cost of the YEI 3-space data-logging sensor was justified. C. PREVIOUS WORK In [7], Jeremy Cookson built a low-cost pendulum with an optical...encoder to test the dynamic accuracy of MARG sensor modules. The pendulum was designed in order to execute dynamic, repeatable tests in a single...3DM-GX1 and 3DM-GX3-25 sensors. In [8], Leslie Landry developed similar repeatable tests and utilized the pendulum to test the dynamic accuracy of
2015-03-26
pendulum [15] to estimate the MOI. The benefit to this methodology is that instead of a direct comparison to Euler’s equations when using an on-board ACS...the equations of motion of pendulum motion are evaluated to estimate the resistance to angular acceleration. Instead of attempting to compare noisy...sensor data instantaneously when using on-board ACS data, the pendulum oscillation frequency is estimated, which can be globally smoothed for highly
Integrated Reconfigurable Intelligent Systems (IRIS) for Complex Naval Systems
2011-02-23
INTRODUCTION 35 2.2 GENERAL MODEL SETUP 36 2.2.1 Co-Simulation Principles 36 2.2.2 Double pendulum : a simple example 38 2.2.3 Description of numerical... pendulum sample problem 45 2.3 DISCUSSION OF APPROACH WITH RESPECT TO PROPOSED SUBTASKS 49 2.4 RESULTS DISCUSSION AND FUTURE WORK 49 TASK 3...Kim and Praehofer 2000]. 2.2.2 Double pendulum : a simple example In order to be able to evaluate co-simulation principles, specifically an
Measuring g Using a Magnetic Pendulum and Telephone Pickup
NASA Astrophysics Data System (ADS)
Sinacore, J.; Takai, H.
2010-10-01
The simple pendulum has long been used to measure g, the acceleration due to gravity, with a precision of a few percent. Achieving agreement with the accepted value of less than 1% is feasible in the high school laboratory, though it requires some care. The precision of the measurement is bound by how accurately the period and the pendulum length are determined. To improve on the period measurement, we have developed a simple and inexpensive method using a magnet and telephone pickup.2
Johnston, Jonathan D; Ebling, Francis J P; Hazlerigg, David G
2005-06-01
Photoperiod regulates the seasonal physiology of many mammals living in temperate latitudes. Photoperiodic information is decoded by the master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus and then transduced via pineal melatonin secretion. This neurochemical signal is interpreted by tissues expressing melatonin receptors (e.g. the pituitary pars tuberalis, PT) to drive physiological changes. In this study we analysed the photoperiodic regulation of the circadian clockwork in the SCN and PT of the Siberian hamster. Female hamsters were exposed to either long or short photoperiod for 8 weeks and sampled at 2-h intervals across the 24-h cycle. In the SCN, rhythmic expression of the clock genes Per1, Per2, Cry1, Rev-erbalpha, and the clock-controlled genes arginine vasopressin (AVP) and d-element binding protein (DBP) was modulated by photoperiod. All of these E-box-containing genes tracked dawn, with earlier peak mRNA expression in long, compared to short, photoperiod. This response occurred irrespective of the presence of additional regulatory cis-elements, suggesting photoperiodic regulation of SCN gene expression through a common E-box-related mechanism. In long photoperiod, expression of Cry1 and Per1 in the PT tracked the onset and offset of melatonin secretion, respectively. However, whereas Cry1 tracked melatonin onset in short period, Per1 expression was not detectably rhythmic. We therefore propose that, in the SCN, photoperiodic regulation of clock gene expression primarily occurs via E-boxes, whereas melatonin-driven signal transduction drives the phasing of a subset of clock genes in the PT, independently of the E-box.
Mieda, Michihiro; Okamoto, Hitoshi; Sakurai, Takeshi
2016-09-26
As the central pacemaker in mammals, the circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus is a heterogeneous structure consisting of multiple types of GABAergic neurons with distinct chemical identities [1, 2]. Although individual cells have a cellular clock driven by autoregulatory transcriptional/translational feedback loops of clock genes, interneuronal communication among SCN clock neurons is likely essential for the SCN to generate a highly robust, coherent circadian rhythm [1]. However, neuronal mechanisms that determine circadian period length remain unclear. The SCN is composed of two subdivisions: a ventral core region containing vasoactive intestinal peptide (VIP)-producing neurons and a dorsal shell region characterized by arginine vasopressin (AVP)-producing neurons. Here we examined whether AVP neurons act as pacemaker cells that regulate the circadian period of behavior rhythm in mice. The deletion of casein kinase 1 delta (CK1δ) specific to AVP neurons, which was expected to lengthen the period of cellular clocks [3-6], lengthened the free-running period of circadian behavior as well. Conversely, the overexpression of CK1δ specific to SCN AVP neurons shortened the free-running period. PER2::LUC imaging in slices confirmed that cellular circadian periods of the SCN shell were lengthened in mice without CK1δ in AVP neurons. Thus, AVP neurons may be an essential component of circadian pacemaker cells in the SCN. Remarkably, the alteration of the shell-core phase relationship in the SCN of these mice did not impair the generation per se of circadian behavior rhythm, thereby underscoring the robustness of the SCN network. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ando, Hironori; Shahjahan, Md; Kitahashi, Takashi
2018-04-03
The seasonal, daily and lunar control of reproduction involves photoperiodic, circadian and lunar changes in the activity of kisspeptin, gonadotropin-inhibitory hormone (GnIH) and gonadotropin-releasing hormone (GnRH) neurons. These changes are brought through complex networks of light-, time- and non-photic signal-dependent control mechanisms, which are mostly unknown at present. The grass puffer, Takifugu alboplumbeus, a semilunar spawner, provides a unique and excellent animal model to assess this question because its spawning is synchronized with seasonal, daily and lunar cycles. In the diencephalon, the genes for kisspeptin, GnIH and their receptors showed similar expression patterns with clear seasonal and daily oscillations, suggesting that they are regulated by common mechanisms involving melatonin, circadian clock and water temperature. For implications in semilunar-synchronized spawning rhythm, melatonin receptor genes showed ultradian oscillations in expression with the period of 14.0-15.4 h in the pineal gland. This unique ultradian rhythm might be driven by circatidal clock. The possible circatidal clock and circadian clock in the pineal gland may cooperate to drive circasemilunar rhythm to regulate the expression of the kisspeptin, GnIH and their receptor genes. On the other hand, high temperature (over 28 °C) conditions, under which the expression of the kisspeptin and its receptor genes is markedly suppressed, may provide an environmental signal that terminates reproduction at the end of breeding period. Taken together, the periodic regulation of the kisspeptin, GnIH and their receptor genes by melatonin, circadian clock and water temperature may be important in the precisely-timed spawning of the grass puffer. Copyright © 2018 Elsevier Inc. All rights reserved.
State Estimation for Humanoid Robots
2015-07-01
21 2.2.1 Linear Inverted Pendulum Model . . . . . . . . . . . . . . . . . . . 21 2.2.2 Planar Five-link Model...Linear Inverted Pendulum Model. LVDT Linear Variable Differential Transformers. MEMS Microelectromechanical Systems. MHE Moving Horizon Estimator. QP...
NASA Astrophysics Data System (ADS)
Cho, Eunjoo; Oh, Ji Hye; Lee, Euna; Do, Young Rag; Kim, Eun Young
2016-11-01
Light at night disrupts the circadian clock and causes serious health problems in the modern world. Here, we show that newly developed four-package light-emitting diodes (LEDs) can provide harmless lighting at night. To quantify the effects of light on the circadian clock, we employed the concept of circadian illuminance (CIL). CIL represents the amount of light weighted toward the wavelengths to which the circadian clock is most sensitive, whereas visual illuminance (VIL) represents the total amount of visible light. Exposure to 12 h:12 h cycles of white LED light with high and low CIL values but a constant VIL value (conditions hereafter referred to as CH/CL) can entrain behavioral and molecular circadian rhythms in flies. Moreover, flies re-entrain to phase shift in the CH/CL cycle. Core-clock proteins are required for the rhythmic behaviors seen with this LED lighting scheme. Taken together, this study provides a guide for designing healthful white LED lights for use at night, and proposes the use of the CIL value for estimating the harmful effects of any light source on organismal health.
Modelling Delta-Notch perturbations during zebrafish somitogenesis.
Murray, Philip J; Maini, Philip K; Baker, Ruth E
2013-01-15
The discovery over the last 15 years of molecular clocks and gradients in the pre-somitic mesoderm of numerous vertebrate species has added significant weight to Cooke and Zeeman's 'clock and wavefront' model of somitogenesis, in which a travelling wavefront determines the spatial position of somite formation and the somitogenesis clock controls periodicity (Cooke and Zeeman, 1976). However, recent high-throughput measurements of spatiotemporal patterns of gene expression in different zebrafish mutant backgrounds allow further quantitative evaluation of the clock and wavefront hypothesis. In this study we describe how our recently proposed model, in which oscillator coupling drives the propagation of an emergent wavefront, can be used to provide mechanistic and testable explanations for the following observed phenomena in zebrafish embryos: (a) the variation in somite measurements across a number of zebrafish mutants; (b) the delayed formation of somites and the formation of 'salt and pepper' patterns of gene expression upon disruption of oscillator coupling; and (c) spatial correlations in the 'salt and pepper' patterns in Delta-Notch mutants. In light of our results, we propose a number of plausible experiments that could be used to further test the model. Copyright © 2012 Elsevier Inc. All rights reserved.
49 CFR 572.127 - Test conditions and instrumentation.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Forces—Class 1000; (ii) Moments—Class 600; (iii) Pendulum acceleration—Class 180; (iv) Rotation—Class 60 (if used). (3) Thorax: (i) Rib acceleration—Class 1000; (ii) Spine and pendulum accelerations—Class...
49 CFR 572.127 - Test conditions and instrumentation.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Forces—Class 1000; (ii) Moments—Class 600; (iii) Pendulum acceleration—Class 180; (iv) Rotation—Class 60 (if used). (3) Thorax: (i) Rib acceleration—Class 1000; (ii) Spine and pendulum accelerations—Class...
49 CFR 572.127 - Test conditions and instrumentation.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Forces—Class 1000; (ii) Moments—Class 600; (iii) Pendulum acceleration—Class 180; (iv) Rotation—Class 60 (if used). (3) Thorax: (i) Rib acceleration—Class 1000; (ii) Spine and pendulum accelerations—Class...
49 CFR 572.127 - Test conditions and instrumentation.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Forces—Class 1000; (ii) Moments—Class 600; (iii) Pendulum acceleration—Class 180; (iv) Rotation—Class 60 (if used). (3) Thorax: (i) Rib acceleration—Class 1000; (ii) Spine and pendulum accelerations—Class...
49 CFR 572.127 - Test conditions and instrumentation.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Forces—Class 1000; (ii) Moments—Class 600; (iii) Pendulum acceleration—Class 180; (iv) Rotation—Class 60 (if used). (3) Thorax: (i) Rib acceleration—Class 1000; (ii) Spine and pendulum accelerations—Class...
New moms need to eat healthy foods to return to a healthy weight, keep up their energy, and adjust to changing sleep habits that come with caring for a baby around the clock. If you’re breastfeeding, it’s even more important to get lots of nutrients.
49 CFR 572.146 - Test conditions and instrumentation.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Head acceleration—Class 1000 (2) Neck (i) Force—Class 1000 (ii) Moments—Class 600 (iii) Pendulum... acceleration—Class 1000 (ii) Spine and pendulum accelerations—Class 180 (iii) Sternum deflection—Class 600 (iv...
49 CFR 572.155 - Test conditions and instrumentation.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Moments—Class 600; (iii) Pendulum acceleration—Class 180; (iv) Rotation potentiometer response (if used)—CFC 60. (3) Thorax: (i) Spine and pendulum accelerations—Class 180; (ii) Shoulder forces—Class 600; (4...
49 CFR 572.155 - Test conditions and instrumentation.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Moments—Class 600; (iii) Pendulum acceleration—Class 180; (iv) Rotation potentiometer response (if used)—CFC 60. (3) Thorax: (i) Spine and pendulum accelerations—Class 180; (ii) Shoulder forces—Class 600; (4...
49 CFR 572.177 - Test conditions and instrumentation.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) except as noted, with channel frequency classes as follows: (1) Pendulum acceleration, CFC 180, (2) Pendulum D-plane rotation (if transducer is used), CFC 60, (3) Torso flexion pulling force (if transducer...