STS-60 Cosmonauts in Weightless Environment Training Facility (WETF) training
1993-01-07
Russian Cosmonaut Vladimir Titov maneuvers a small life raft during bailout training at JSC's Weightless Environment Training Facility (WETF). Two SCUBA-equipped divers assisted Titov in the STS-60 training exercise.
Weightless Environment Training Facility (WETF) materials coating evaluation, volume 2
NASA Technical Reports Server (NTRS)
1995-01-01
This volume consists of Appendices A and B to the report on the Weightless Environment Training Facility Materials Coating Evaluation project. The project selected 10 coating systems to be evaluated in six separate exposure environments, and subject to three tests for physical properties. Appendix A holds the coating system, surface preparation, and application data. Appendix B holds the coating material infrared spectra.
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Parker, D. E.; Arrott, A. P.
1986-01-01
Report discusses physiological and physical concepts of proposed training system to precondition astronauts to weightless environment. System prevents motion sickness, often experienced during early part of orbital flight. Also helps prevent seasickness and other forms of terrestrial motion sickness, often experienced during early part of orbital flight. Training affects subject's perception of inner-ear signals, visual signals, and kinesthetic motion perception. Changed perception resembles that of astronauts who spent many days in space and adapted to weightlessness.
Weightless Environment Training Facility (WETF) materials coating evaluation, volume 3
NASA Technical Reports Server (NTRS)
1995-01-01
This volume consists of Appendices C, D, E, and F to the report on the Weightless Environment Training Facility Materials Coating Evaluation project. The project selected 10 coating systems to be evaluated in six separate exposure environments, and subject to three tests for physical properties. Appendix C is the photographic appendix of the test panels. Appendix D details methods and procedures. Appendix E lists application equipment costs. Appendix F is a compilation of the solicitation of the candidate coating systems.
NASA Technical Reports Server (NTRS)
Parker, D. E.; Reschke, M. F.
1988-01-01
An effort to develop preflight adaptation training (PAT) apparatus and procedures to adapt astronauts to the stimulus rearrangement of weightless spaceflight is being pursued. Based on the otolith tilt-translation reinterpretation model of sensory adaptation to weightlessness, two prototype preflight adaptation trainers (PAT) have been developed. These trainers couple pitch movement of the subject with translation of the visual surround. Subjects were exposed to this stimulus rearrangement for periods of 30 m. The hypothesis is that exposure to the rearrangement would attenuate vertical eye movements was supported by two experiments using the Miami University Seesaw (MUS) PAT prototype. The Dynamic Environment Simulator (DES) prototype failed to support this hypothesis; this result is attributed to a pecularity of the DES apparatus. A final experiment demonstrated that changes in vertical eye movements were not a consequence of fixation on an external target during exposure to a control condition. Together these experiments support the view that preflight adaptation training can alter eye movements in a manner consistent with adaptation to weightlessness. Following these initial studies, concepts for development of operational preflight trainers were proposed. The trainers are intended to: demonstrate the stimulus rearrangement of weightlessness; allow astronauts to train in altered sensory environment; modify sensory motor reflexes; and reduce/eliminate space motion sickness symptoms.
STS-60 Cosmonauts in Weightless Environment Training Facility (WETF) training
1993-01-07
S93-26022 (Feb 1993) --- Russian cosmonaut Sergei Krikalev maneuvers a small life raft during bailout training at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Shuttle crew members frequently utilize the 25-ft. deep pool to learn proper procedures to follow in the event of emergency egress from their Space Shuttle via the escape pole system. Krikalev is one of two cosmonauts in training for the STS-60 mission. One of the two will serve as primary payload specialist with the other filling an alternate's role. This pool and the facility in which it is housed are titled the WET-F because they are also used by astronauts rehearsing both mission-specific and contingency extravehicular activities (EVA).
Weightless Environment Training Facility (WETF) Materials Coating Evaluation, Volume 1
NASA Technical Reports Server (NTRS)
1995-01-01
The Weightless Environment Training Facility Material Coating Evaluation project has included preparing, coating, testing, and evaluating 800 test panels of three differing substrates. Ten selected coating systems were evaluated in six separate exposure environments and subject to three tests for physical properties. Substrate materials were identified, the manner of surface preparation described, and exposure environments defined. Exposure environments included immersion exposure, cyclic exposure, and field exposure. Cyclic exposures, specifically QUV-Weatherometer and the KTA Envirotest were found to be the most agressive of the environments included in the study when all three evaluation criteria are considered. This was found to result primarily from chalking of the coatings under ultraviolet (UV) light exposure. Volumes 2 and 3 hold the 5 appendices to this report.
STS-60 Cosmonauts in Weightless Environment Training Facility (WETF) training
1993-01-07
S93-26021 (Feb 1993) --- Russian cosmonaut Sergei Krikalev maneuvers a small life raft during bailout training at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Two SCUBA-equipped divers assisted Krikalev in the STS-60 training exercise. Shuttle crew members frequently utilize the 25-ft. deep pool to learn proper procedures to follow in the event of emergency egress from their Space Shuttle via the escape pole system. Krikalev is one of two cosmonauts in training for the STS-60 mission. One of the two will serve as primary payload specialist with the other filling an alternate's role. This pool and the facility in which it is housed are titled the WET-F, because they are also used by astronauts rehearsing both mission-specific and contingency extravehicular activities (EVA).
'Weightless' acrylic painting by Jack Kroehnke
NASA Technical Reports Server (NTRS)
1987-01-01
'Weightless' acrylic painting by Jack Kroehnke depicts STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) David C. Hilmers participating in extravehicular activity (EVA) simulation in JSC Weightless Environment Training Facility (WETF) Bldg 29. In the payload bay (PLB) mockup, Hilmers, wearing extravehicular mobility unit (EMU), holds onto the mission-peculiar equipment support structure in foreground while SCUBA-equipped diver monitors activity overhead and camera operator records EVA procedures. Copyrighted art work for use by NASA.
2004-04-15
The Reduced-Gravity Program provides the unique weightless or zero-g environment of space flight for testing and training of human and hardware reactions. The reduced-gravity environment is obtained with a specially modified KC-135A turbojet transport which flies parabolic arcs to produce weightless periods of 20 to 25 seconds. KC-135A cargo bay test area is approximately 60 feet long, 10 feet wide, and 7 feet high. The image shows KC-135A in flight.
Cosmonaut Vladimir Titov participates in bail-out training for STS-60
NASA Technical Reports Server (NTRS)
1993-01-01
Cosmanaut Vladimir Titov, an alternate mission specialist for STS-60, simulates a parachute glide into water during a bailout training exercise at JSC. This phase of emergency egress training took place in JSC's Weightless Environment Training Facility (WETF).
Cosmonaut Vladimir Titov participates in bail-out training for STS-60
1993-07-16
Cosmanaut Vladimir Titov, an alternate mission specialist for STS-60, simulates a parachute glide into water during a bailout training exercise at JSC. This phase of emergency egress training took place in JSC's Weightless Environment Training Facility (WETF).
Astronaut Donald McMonagle checks drainage hose on his life raft in training
NASA Technical Reports Server (NTRS)
1994-01-01
Astronaut Donald R. McMonagle, STS-66 mission commander, checks the drainage hose on his rapidly fashioned life raft during an emergency bailout training exercise in JSC's Weightless Environment Training Facility (WETF).
Astronaut Michael Clifford takes a break during bailout training
NASA Technical Reports Server (NTRS)
1993-01-01
Astronaut Michael R.U. (Rich) Clifford takes a break while video taping crew mates in training in the JSC Weightless Environment Training Facility (WETF). He is pictured with Trent G. Keeple, a member of the training staff assigned to STS-59.
Astronauts and cosmonauts during emergency bailout training session
NASA Technical Reports Server (NTRS)
1994-01-01
Using small life rafts, several cosmonauts and astronauts participating in joint Russia - United States space missions take part in an emergency bailout training session in the JSC Weightless Environment Training Facility (WETF) 25-feet-deep pool. In the
Astronaut Robert L. Crippen prepares for underwater training session
NASA Technical Reports Server (NTRS)
1983-01-01
Astronaut Robert L. Crippen, STS-7 crew commander, adjusts his extravehicular mobility unit's (EMU) gloves prior to donning his helmet for a training session in the weightless environment test facility (WETF).
Astronaut Bobko assists Astronaut Peterson prior to underwater training
NASA Technical Reports Server (NTRS)
1982-01-01
Astronaut Karol J. Bobko, left, STS-6 pilot, assists Astronaut Donald H. Peterson, STS-6 mission specialist, prior to underwater training session in the weightless environment training facility. Peterson is wearing the extravehicular mobility unit minus the helmet and gloves.
Astronaut Mary Ellen Weber during training session in WETF
1994-05-01
Attired in a training version of the Extravehicular Mobility Unit (EMU), astronaut Mary Ellen Weber gets help with the final touches of suit donning during a training session at JSC's Weightless Environment Training Facility (WETF). Training as a mission specialist for the STS-70 mission, Weber was about to rehearse a contingency space walk.
Underwater EVA training in the WETF with astronaut Robert L. Stewart
NASA Technical Reports Server (NTRS)
1983-01-01
Underwater extravehicular activity (EVA) training in the weightless environment training facility (WETF) with astronaut Robert L. Stewart. Stewart is simulating a planned EVA using the mobile foot restraint device and a one-G version of the Canadian-built remote manipulator system.
Astronauts McMonagle and Brown float in one-man life rafts during training
NASA Technical Reports Server (NTRS)
1994-01-01
In separate life rafts, astronauts Donald R. McMonagle (right), STS-66 mission commander, and Curtis L. Brown, STS-66 pilot, are assisted by several SCUBA-equipped divers during an emergency bailout training exercise in JSC's Weightless Environment Training Facility (WETF).
STS-59 crewmembers during bailout training in WETF
1993-12-22
S93-50710 (22 Dec 1993) --- Astronaut Sidney M. Gutierrez, commander, takes a break during emergency bailout training at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Gutierrez and five other NASA astronauts are scheduled to fly aboard the Space Shuttle Endeavour next year.
STS-81 crewmembers participate in bailout training in Bldg 29 WETF
1996-09-26
S96-15393 (26 Sept. 1996) --- In the Johnson Space Center's weightless environment training facility, astronaut Brent W. Jett Jr., STS-81 mission specialist, deploys his "Mae West" device to stay afloat during water bailout survival training. Five STS-81 crewmates, out of frame, joined him for the bailout training exercises.
Astronaut Kevin Chilton takes a break during bailout training
1993-12-22
S93-50720 (22 Dec 1993) --- Astronaut Kevin P. Chilton, pilot, takes a break during emergency bailout training at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Chilton and five other NASA astronauts are scheduled to fly aboard the Space Shuttle Endeavour next year.
Astronaut Sidney Gutierrez suspended by parachute during bailout training
1993-12-22
S93-50718 (22 Dec 1993) --- Astronaut Sidney M. Gutierrez, commander, is suspended by his parachute gear during emergency bailout training at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Gutierrez and five other NASA astronauts are scheduled to fly aboard the Space Shuttle Endeavour next year.
Astronaut Thomas Jones during emergency bailout training in WETF
1993-06-02
S93-43108 (2 June 1993) --- Astronaut Thomas D. Jones, mission specialist, takes a break during emergency bailout training at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Jones and five other NASA astronauts are scheduled to fly aboard the Space Shuttle Endeavour next year.
STS-81 crewmembers participate in bailout training in Bldg 29 WETF
1996-09-26
S96-15407 (26 Sept. 1996) --- In the Johnson Space Center's weightless environment training facility, astronaut Peter J.K. (Jeff) Wisoff, STS-81 mission specialist, simulates a parachute drop into water. Five STS-81 crewmates, out of frame, joined him for the bailout training exercises.
STS-81 crewmembers participate in bailout training in Bldg 29 WETF
1996-09-26
S96-15402 (26 Sept. 1996) --- In the Johnson Space Center's weightless environment training facility, astronaut John M. Grunsfeld, STS-81 mission specialist, prepares to simulate a parachute drop into water. Five STS-81 crewmates, out of frame, joined him for the bailout training exercises.
Astronaut Bonnie Dunbar watches crewmates during training
NASA Technical Reports Server (NTRS)
1994-01-01
Astronaut Bonnie J. Dunbar, STS-71 mission specialist, smiles as she watches a crew mate (out of frame) make a simulated parachute landing in nearby water. The action came as part of an emergency bailout training session in the JSC Weightless Environment
Astronaut Tamara Jernigan deploys life raft during WETF training
NASA Technical Reports Server (NTRS)
1994-01-01
Astronaut Tamara E. Jernigan, STS-67 payload commander, deploys a life raft during a session of emergency bailout training. The training took place in the 25-feet deep pool at JSC's Weightless Environment Training Facility (WETF). Jernigan was joined by her crew mates for the training session. Several SCUBA-equipped divers who assisted in the training can be seen in this photograph.
Astronaut Stephen Oswald during emergency bailout training
NASA Technical Reports Server (NTRS)
1994-01-01
Suited in a training version of the Shuttle partial-pressure launch and entry garment, astronaut Stephen S. Oswald, STS-67 commander, gets help with a piece of gear from Boeing's David Brandt. The scene was photographed prior to a session of emergency bailout training in the 25-feet deep pool at JSC's Weightless Environment Training Facility (WETF).
Astronaut Mary Ellen Weber deploys life raft during bailout training
1995-02-16
S95-03501 (16 FEB 1995) --- Astronaut Mary Ellen Weber prepares to deploy a life raft during a training session at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Training as a mission specialist for the STS-70 mission, Weber was joined by four crew mates in the emergency bailout rehearsal.
Astronaut Curtis L. Brown, Jr., pilot, works with his life raft during emergency bailout training
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 TRAINING VIEW --- Astronaut Curtis L. Brown, Jr., pilot, works with his life raft during emergency bailout training for crew members in the Johnson Space Centers (JSC) Weightless Environment Training Facility (WET-F). Brown will join five other astronauts for nine days aboard the Space Shuttle Endeavour next month.
Astronaut Mary Ellen Weber during training session in WETF
1994-05-01
Attired in a training version of the Extravehicular Mobility Unit (EMU), Astronaut Mary Ellen Weber participates in a training session at JSC's Weightless Environment Training Facility (WETF). Training as a mission specialist for the STS-70 mission, Weber was about to rehearse a contingency space walk. One of several SCUBA-equipped divers waits to assist in the rehearsal in the water.
Astronaut William Fisher preparing to train in the WETF
NASA Technical Reports Server (NTRS)
1985-01-01
Astronaut William Fisher is shown in his extravehicular mobility unit (EMU) preparing to train in the Weightless Environment Training Facility (WETF). He is wearing the communications carrier assembly but not the full helmet (32102); Reflections of the WETF can be seen on the closed visor of the EMU helmet Fiser is wearing (32103).
1996-03-14
S96-08073 (April 1996) --- Astronaut Daniel W. Bursch, mission specialist, uses his helmet to bail out water from his life raft during emergency bailout training for crewmembers in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Bursch will join five other astronauts for nine days aboard the Space Shuttle Endeavour next month.
Underwater views of STS-11 crewman Robert L. Stewart during EVA training
NASA Technical Reports Server (NTRS)
1983-01-01
Underwater views of STS-11 crewman Robert L. Stewart during extravehicular activity (EVA) training in the cargo bay in the weightless environment training facility (WETF) in bldg 27. Stewart busies himself with donning and doffing of the manned maneuvering unit (MMU) in a mockup of the Shuttle's cargo bay.
1968-10-01
Dr. von Braun inside the KC-135 in flight. The KC-135 provide NASA's Reduced-Gravity Program the unique weightlessness or zero-g environment of space flight for testing and training of human and hardware reactions. The recent version, KC-135A, is a specially modified turbojet transport which flies parabolic arcs to produce weightlessness periods of 20 to 25 seconds and its cargo bay test area is approximately 60 feet long, 10 feet wide, and 7 feet high.
Astronaut Kevin P. Chilton uses helmet to bail water during bailout training
1993-12-22
S93-50705 (22 Dec 1993) --- Astronaut Kevin P. Chilton, pilot, uses his helmet to bail water from his life raft during emergency bailout training at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Chilton and five other NASA astronauts are scheduled to fly aboard the Space Shuttle Endeavour next year.
Astronaut Bonnie Dunbar watches crewmates during training
1994-10-13
S94-47256 (13 Oct 1994) --- Astronaut Bonnie J. Dunbar, STS-71 mission specialist, smiles as she watches a crew mate (out of frame) make a simulated parachute landing in nearby water. The action came as part of an emergency bailout training session in the Johnson Space Center's (JSC) Weightless Environment Training Facility's (WET-F) 25-feet-deep pool.
Astronaut William S. McArthur in training for contingency EVA in WETF
NASA Technical Reports Server (NTRS)
1993-01-01
Astronaut William S. McArthur, mission specialist, participates in training for contingency extravehicular activity (EVA) for the STS-58 mission. He is wearing the extravehicular mobility unit (EMU) minus his helmet. For simulation purposes, McArthur was about to be submerged to a point of neutral buoyancy in the JSC Weightless Environment Training Facility (WETF).
STS-35 Commander Brand listens to trainer during water egress exercises
NASA Technical Reports Server (NTRS)
1990-01-01
STS-35 Commander Vance D. Brand listens to training personnel during launch emergency egress procedures conducted in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Brand, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), is seated on the pool side while reviewing instructions.
STS-35 MS Hoffman watches water egress exercises at JSC's WETF Bldg 29 pool
NASA Technical Reports Server (NTRS)
1990-01-01
STS-35 Mission Specialist (MS) Jeffrey A. Hoffman, wearing launch and entry suit (LES), comments on launch emergency egress procedures from the poolside of JSC's Weightless Environment Training Facility (WETF) Bldg 29. Hoffman awaits his turn to participate in the training activities.
1995-02-22
S95-04319 (22 Feb 1995) --- The neutral buoyancy facility at the Gagarin Cosmonaut Training Center in Star City, Russia, is used for underwater training for missions aboard the Russian Mir Space Station. The facility is similar to NASA's Weightless Environment Training Facility (WET-F) at the Johnson Space Center (JSC) in Houston, Texas, and the Neutral Buoyancy Simulator (NBS) at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama.
Astronaut Andrew S. W. Thomas, mission specialist, is helped with the final touches of suit donning
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 TRAINING VIEW --- Astronaut Andrew S. W. Thomas, mission specialist, is helped with the final touches of suit donning during emergency bailout training for crew members in the Johnson Space Centers (JSC) Weightless Environment Training Facility (WET-F). Thomas will join five other astronauts for nine days aboard the Space Shuttle Endeavour next month.
Astronaut David Wolf participates in training for contingency EVA in WETF
NASA Technical Reports Server (NTRS)
1993-01-01
Astronaut David A. Wolf participates in training for contingency extravehicular activity (EVA) for the STS-58 mission. The mission specialist was about to be submerged to a point of neutral buoyancy in the JSC Weightless Environment Training Facility (WETF). In this view, Wolf is aided by technicians in donning the gloves for his extravehicular mobility unit (EMU).
Astronaut Linda Godwin during contingency EVA training in WETF
NASA Technical Reports Server (NTRS)
1993-01-01
Astronaut Linda M. Godwin, payload commander, prepares to donn her helmet before being submerged in a 25-feet deep pool at JSC's Weightless Environment Training Facility (WETF). STS-59 crewmembers are using the WETF to train for contingency space walks for the shuttle Endeavour mission. Godwin is wearing the extravehicular mobility unit (EMU), communication carrier assembly (CCA) but no helmet.
Astronauts Parise and Jernigan check helmets prior to training session
NASA Technical Reports Server (NTRS)
1994-01-01
Attired in training versions of the Shuttle partial-pressure launch and entry suits, payload specialist Dr. Ronald A Parise (left) and astronaut Tamara E. Jernigan, payload commander, check over their helmets prior to a training session. Holding the helmets is suit expert Alan M. Rochford, of NASA. The two were about to join their crew mates in a session of emergency bailout training at JSC's Weightless Environment Training Facility (WETF).
STS-81 crewmembers participate in bailout training in Bldg 29 WETF
1996-09-26
S96-15405 (26 Sept. 1996) --- In the Johnson Space Center's weightless environment training facility, astronaut Marsha S. Ivins, STS-81 mission specialist, bails water from her life raft during water bailout survival training. Astronaut Peter J.K. (Jeff) Wisoff (pictured in right raft) and four other STS-81 crewmates (out of frame) joined Ivins for the bailout training exercises. Several SCUBA-equipped divers assist in the training exercise.
Astronaut John Grunsfeld during EVA training in the WETF
NASA Technical Reports Server (NTRS)
1995-01-01
Astronaut John M. Grunsfeld, STS-67 mission specialist, gives a salute as he is about to be submerged in a 25-feet deep pool in JSC's Weightless Environment Training Facility (WETF). Wearing a special training version of the Extravehicular Mobility Unit (EMU) space suit and assisted by several JSC SCUBA-equipped divers, Grunsfeld was later using the pool to rehearse contingency space walk chores.
STS-39 MS Harbaugh is suspended over JSC's WETF Bldg 29 pool via harness
1990-12-07
S90-54763 (7 Dec 1990) --- Astronaut Gregory J. Harbaugh. Mission specialist, participates in emergency egress training. Harbaugh and some of his fellow STS 39 astronauts were in JSC's weightless environment training facility (WET-F). Harbaugh is actually suspended over water. This type training uses the WET-F's 25 ft. deep pool to simulate an ocean parachute landing.
Astronaut Daniel W. Bursch, mission specialist, uses his helmet to bail out water from his life raft
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 TRAINING VIEW --- Astronaut Daniel W. Bursch, mission specialist, uses his helmet to bail out water from his life raft during emergency bailout training for crew members in the Johnson Space Centers (JSC) Weightless Environment Training Facility (WET-F). Bursch will join five other astronauts for nine days aboard the Space Shuttle Endeavour next month.
STS-47 Astronaut Crew Training Clip
NASA Technical Reports Server (NTRS)
1992-01-01
The crew of STS-47, Commander Robert L. Gibson, Pilot Curtis L. Brown, Payload Commander Mark C. Lee, Mission Specialists N. Jan Davis, Jay Apt, and Mae C. Jemison, and Payload Specialist Mamoru Mohri, is seen during various parts of their training, including SAREX training in the Full Fuselage Trainer (FFT), firefighting training. A familiarization flight in the KC-135, a food tasting, photo training in the Crew Compartment Trainer, and bailout training in the Weightless Environment Training Facility (WETF) are also shown.
STS-59 crewmembers during WETF bailouts
1993-12-02
S93-50711 (22 Dec 1993) --- Astronauts Kevin P. Chilton (right), pilot, and Linda M. Godwin, payload commander, are assisted by SCUBA-equipped divers during emergency bailout training at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Godwin, Chilton and four other NASA astronauts are scheduled to fly aboard the Space Shuttle Endeavour next year.
The flights before the flight - An overview of shuttle astronaut training
NASA Technical Reports Server (NTRS)
Sims, John T.; Sterling, Michael R.
1989-01-01
Space shuttle astronaut training is centered at NASA's Johnson Space Center in Houston, Texas. Each astronaut receives many different types of training from many sources. This training includes simulator training in the Shuttle Mission Simulator, in-flight simulator training in the Shuttle Training Aircraft, Extravehicular Activity training in the Weightless Environment Training Facility and a variety of lectures and briefings. Once the training program is completed each shuttle flight crew is well-prepared to perform the normal operations required for their flight and deal with any shuttle system malfunctions that might occur.
STS-45 backup Payload Specialist Chappell during water egress training at JSC
NASA Technical Reports Server (NTRS)
1991-01-01
STS-45 Atlantis, Orbiter Vehicle (OV) 104, backup Payload Specialist Charles R. Chappell, wearing launch and entry suit (LES), is suspended via his parachute harness above JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Chappell will be dropped into the pool during the exercise which simulates a parachute landing into a body of water. SCUBA-equipped divers swimming in the pool will assist during the training.
Astronaut John H. Casper, mission commander, has finished the final touches of suit donning and
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 TRAINING VIEW --- Astronaut John H. Casper, mission commander, has finished the final touches of suit donning and awaits the beginning of a training session for emergency bailout. All six crew members participated in the session, held in the Johnson Space Centers (JSC) Weightless Environment Training Facility (WET-F). The six astronauts will spend nine days aboard the Space Shuttle Endeavour next month.
Astronauts Thomas D. Akers and Kathryn C. Thornton during WETF training
1993-03-05
S93-30238 (5 Mar 1993) --- Wearing training versions of Space Shuttle Extravehicular Mobility Units (EMU), astronauts Thomas D. Akers (red stripe) and Kathryn C. Thornton use the spacious pool of the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F) to rehearse for the Hubble Space Telescope (HST) repair mission. They are working with a full scale mockup of a solar array fixture.
Astronauts and cosmonauts during emergency bailout training session
1994-10-13
S94-47226 (13 Oct 1994) --- Using small life rafts, several cosmonauts and astronauts participating in joint Russia - United States space missions take part in an emergency bailout training session in the Johnson Space Center's (JSC) Weightless Environment Training Facility's (WET-F) 25-feet-deep pool. In the foreground is cosmonaut Alexsandr F. Poleshchuk, a member of the Mir reserve crew. A number of SCUBA-equipped divers assist the trainees.
Cosmonaut Sergei Krikalev receives assistance from suit technician
NASA Technical Reports Server (NTRS)
1994-01-01
Sergei Krikalev, alternative mission specialist for STS-63, gets help from Dawn Mays, a Boeing suit technician. The cosmonaut was about to participate in a training session at JSC's Weightless Environment Training Facility (WETF). Wearing the training version of the extravehicular mobility unit (EMU) space suit, weighted to allow neutral buoyancy in the 25 feet deep WETF pool, Krikalev minutes later was underwater simulating a contingency spacewalk, or extravehicular activity (EVA).
Astronaut Catherine G. Coleman during WETF training
1994-01-12
S94-25956 (April 1994) --- Astronaut Catherine G. Coleman, mission specialist, wearing a high-fidelity training version of an Extravehicular Mobility Unit (EMU), trains for a contingency space walk at the Johnson Space Center?s (JSC) Weightless Environment Training Facility (WET-F). Coleman has recently been named as one of seven crew members for the U.S. Microgravity Laboratory (USML-2) mission. The 25-feet deep pool is used to train astronauts for mission specific space walk chores as well as for contingency Extravehicular Activity (EVA) tasks.
Astronaut Kevin Kregel during bailout training in WETF
1995-02-16
S95-03480 (16 FEB 1995) --- Attired in a training version of the Shuttle launch and entry garment, astronaut Kevin R. Kregel, pilot, gets help from SCUBA-equipped divers during a training session at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). As part of the emergency bailout phase of their training agenda, the STS-70 crew members made use of this 25-feet deep pool to practice parachute landings in water and subsequent deployment of life rafts.
STS-45 backup Payload Specialist Chappell during water egress training at JSC
1991-11-26
S91-52074 (26 Nov 1991) --- Charles R. (Rick) Chappell, alternate payload specialist, equipped with simulated parachute gear, descends into the water during bail-out training exercises in the Johnson Space Center's weightless environment training facility (WET-F). In this phase of the training program, Shuttle crewmembers learn the proper measures to take in the event of ejection and subsequent parachute landing into a body of water. A number of SCUBA-equipped swimmers who assisted in the training are pictured.
Astronaut Curtis L. Brown, Jr., pilot, gets helped with the final touches of suit donning during
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 TRAINING VIEW --- Astronaut Curtis L. Brown, Jr., pilot, gets helped with the final touches of suit donning during emergency bailout training for crew members in the Johnson Space Centers (JSC) Weightless Environment Training Facility (WET-F). Astronaut John H. Casper (in background), mission commander, awaits the actual training to begin. Brown and Casper will join four other astronauts for nine days aboard the Space Shuttle Endeavour next month.
STS-52 Commander Wetherbee, in LES/LEH, during JSC WETF bailout exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-52 Columbia, Orbiter Vehicle (OV) 102, Commander James D. Wetherbee, fully outfitted in a launch and entry suit (LES) and launch and entry helmet (LEH), prepares for emergency egress (bailout) training exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The WETF's 25-ft deep pool will be used to simulate a water landing.
STS-64 extravehicular activity training view
NASA Technical Reports Server (NTRS)
1993-01-01
Astronaut Jerry M. Linenger, STS-64 mission specialist, is assisted by Steve Voyles and Kari Rueter of Boeing Aerospace prior to participating in a rehearsal for a contingency space walk. Voyles and Rueter help Linenger attache the gloves to his extravehicular mobility unit (EMU). Minutes later, Linenger was submerged in the 25-feet deep pool in the JSC Weightless Environment Training Facility (WETF).
STS-46 ESA MS Nicollier in life raft during water egress training at JSC WETF
NASA Technical Reports Server (NTRS)
1992-01-01
STS-46 Atlantis, Orbiter Vehicle (OV) 104, European Space Agency (ESA) Mission Specialist (MS) Claude Nicollier, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in a one-person life raft during a launch emergency egress (bailout) simulation conducted in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool.
STS-46 MS Chang-Diaz floats in life raft during water egress training at JSC
NASA Technical Reports Server (NTRS)
1992-01-01
STS-46 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) Franklin R. Chang-Diaz, wearing launch and entry suit (LES) and launch and entry helmet (LEH), relies on a one-person life raft to get him to 'safety' during a launch emergency egress (bailout) simulation conducted in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool.
Astronaut Bonnie Dunbar wearing extravehicular mobility unit
NASA Technical Reports Server (NTRS)
1985-01-01
Astronaut Bonnie J. Dunbar, wearing an extravehicular mobility unit (EMU), is about to be submerged in the weightless environment training facility (WETF) to simulate a contingency extravehicular activity (EVA) for STS 61-A. In this portrait view, Dunbar is not wearing a helmet.
Left to right, astronauts John H. Casper, mission commander, and Curtis L. Brown, Jr., pilot, get
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 TRAINING VIEW --- Left to right, astronauts John H. Casper, mission commander, and Curtis L. Brown, Jr., pilot, get help with the final touches of suit donning during emergency bailout training for STS-77 crew members in the Johnson Space Centers (JSC) Weightless Environment Training Facility (WET-F). Casper and Brown will join four other astronauts for nine days aboard the Space Shuttle Endeavour next month.
Astronaut Linda Godwin during contingency EVA training in WETF
1993-08-17
S93-41572 (17 Aug 1993) --- Astronaut Linda M. Godwin, payload commander, prepares to donn her helmet before being submerged in a 25-feet deep pool at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Astronauts Godwin and Thomas D. Jones, mission specialist, are using the WET-F to train for contingency space walks for their Space Shuttle Endeavour mission next year. No space walks are planned for the flight.
STS-52 Pilot Baker, in LES, dons parachute during JSC WETF bailout exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-52 Columbia, Orbiter Vehicle (OV) 102, Pilot Michael A. Baker is assisted with a training version of his Shuttle partial-pressure launch and entry suit (LES). A technician adjusts his parachute harness prior to the emergency egress (bailout) training exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The WETF's 25-ft deep pool will be used in this simulation of a water landing.
NASA's Zero-g aircraft operations
NASA Technical Reports Server (NTRS)
Williams, R. K.
1988-01-01
NASA's Zero-g aircraft, operated by the Johnson Space Center, provides the unique weightless or zero-g environment of space flight for hardware development and test and astronaut training purposes. The program, which began in 1959, uses a slightly modified Boeing KC-135A aircraft, flying a parabolic trajectory, to produce weightless periods of 20 to 25 seconds. The program has supported the Mercury, Gemini, Apollo, Skylab, Apollo-Soyuz and Shuttle programs as well as a number of unmanned space operations. Typical experiments for flight in the aircraft have included materials processing experiments, welding, fluid manipulation, cryogenics, propellant tankage, satellite deployment dynamics, planetary sciences research, crew training with weightless indoctrination, space suits, tethers, etc., and medical studies including vestibular research. The facility is available to microgravity research organizations on a cost-reimbursable basis, providing a large, hands-on test area for diagnostic and support equipment for the Principal Investigators and providing an iterative-type design approach to microgravity experiment development. The facility allows concepts to be proven and baseline experimentation to be accomplished relatively inexpensively prior to committing to the large expense of a space flight.
Astronaut James Buchli wearing extravehicular mobility unit
NASA Technical Reports Server (NTRS)
1985-01-01
Astronaut James F. Buchli, wearing an extravehicular mobility unit (EMU), is about to be submerged in the weightless environment training facility (WETF) to simulate a contingency extravehicular activity (EVA) for STS 61-A. In this portrait view, Buchli is wearing a communications carrier assembly (CCA).
Wearing a training version of the Extravehicular Mobility Unit (EMU) space suit, astronaut Mario
NASA Technical Reports Server (NTRS)
1995-01-01
STS-77 TRAINING VIEW --- Wearing a training version of the Extravehicular Mobility Unit (EMU) space suit, astronaut Mario Runco, mission specialist, prepares to participate in an underwater rehearsal of a contingency Extravehicular Activity (EVA). This type of training routinely takes place in the 25-feet deep pool of the Johnson Space Centers (JSC) Weightless Environment Training Center (WET-F). The training prepares at least two crew members on each flight for procedures to follow outside the spacecraft in event of failure of remote methods to perform various chores.
Astronaut Sam Gemar, wearing EMU, prepares for training in WETF
1987-03-01
S87-26630 (March 1987) --- Astronaut Charles D. (Sam) Gemar, wearing a training version of the Extravehicular Mobility Unit (EMU) space suit, prepares to be emersed in the 25-ft. deep waters of the Weightless Environment Training Facility (WET-F) at the Johnson Space Center (JSC). Once underwater, Gemar was able to achieve a neutrally buoyant state and to simulate the floating type activities of an astronaut in microgravity. Gemar began training as an astronaut candidate in the summer of 1985.
Astronaut Tamara Jernigan during WETF training
NASA Technical Reports Server (NTRS)
1993-01-01
Astronaut Tamara E. Jernigan, STS-52 mission specialist, waves to her training staff prior to being submerged in a 25-feet deep pool in the JSC Weightless Environment Training Facility (WETF). Wearing a training version of the Extravehicular Mobility Unit (EMU) space suit and assisted by several JSC SCUBA-equipped divers, Jernigan joined another STS-52 crew member in using the pool to rehearse contingency space walk chores. She was later named payload commander for the STS-67 mission aboard the Space Shuttle Endeavour.
Astronaut Kevin Kregel during training session at WETF
1995-02-16
S95-03465 (16 Feb 1995) --- Attired in a training version of the Shuttle launch and entry garment, astronaut Kevin R. Kregel gets help with the final touches of suit donning during a training session at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Assigned as pilot for the STS-70 mission, Kregel was about to rehearse emergency bailout. The crew members made use of a nearby 25-feet deep pool to practice parachute landings in water and subsequent deployment of life rafts.
Astronaut David Wolf participates in training for contingency EVA in WETF
NASA Technical Reports Server (NTRS)
1993-01-01
Astronaut David A. Wolf participates in training for contingency extravehicular activity (EVA) for the STS-58 mission. The mission specialist was about to be submerged ito a point of neutral buoyancy in the JSC Weightless Environment Training Facility (WETF). In this view, Wolf is displaying the flexibility of his training version of the Shuttle extravehicular mobility unit (EMU) by lifting his arms above his head (31701); Wolf waves to the camera before he is submerged in the WETF (31702).
STS-46 crewmembers during water egress training in JSC's WETF Bldg 29
NASA Technical Reports Server (NTRS)
1992-01-01
STS-46 Atlantis, Orbiter Vehicle (OV) 104, European Space Agency (ESA) Mission Specialist (MS) Claude Nicollier (left) and backup Italian Payload Specialist Umberto Guidoni, seated at the pool's side, relax before participating in a launch emergency egress (bailout) simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29. The two participants are wearing launch and entry suits (LESs) during the pretest briefing.
STS-47 backup payload specialists participate in JSC WETF bailout exercise
NASA Technical Reports Server (NTRS)
1992-01-01
STS-47 Endeavour, Orbiter Vehicle (OV) 105, backup payload specialists (left to right) Chiaki Naito-Mukai, Takao Doi, and Stan Koszelak, wearing launch and entry suits, sit on the poolside in JSC's Weightless Environment Training Facility (WETF) Bldg 29. These alternates are waiting to participate launch emergency egress (bailout) exercises. The training is conducted in the WETF pool to simulate a water landing.
STS-46 Payload Specialist Malerba in JSC's WETF pool during egress training
NASA Technical Reports Server (NTRS)
1992-01-01
STS-46 Atlantis, Orbiter Vehicle (OV) 104, Italian Payload Specialist Franco Malerba, wearing launch and entry suit (LES) and clamshell helmet, laughes as he floats in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Malerba's flotation vest (life jacket) and two SCUBA-equipped divers keep him afloat after he was dropped into the pool during a launch emergency egress simulation.
STS-52 Commander Wetherbee floats in life raft during JSC bailout exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-52 Columbia, Orbiter Vehicle (OV) 102, Commander James D. Wetherbee, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in single person life raft during emergency egress (bailout) training exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The bailout exercises utilize the WETF's 25-foot deep pool as the ocean for this water landing simulation.
Astronaut Linda Godwin during contingency EVA training in WETF
1993-08-17
S93-41574 (17 Aug 1993) --- Astronaut Linda M. Godwin, payload commander, prepares to be submerged in a 25-feet deep pool at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Astronauts Godwin and Thomas D. Jones (out of frame at left), mission specialist, are using the WET-F to train for contingency space walks for their STS-59 Space Shuttle Endeavour mission next year. No space walks are planned for the flight.
STS-51 astronauts participate in emergency bailout training in WETF
1993-03-24
S93-31929 (24 March 1993) --- The three mission specialists for NASA's STS-51 mission watch as a crewmate (out of frame) simulates a parachute jump into water during emergency bailout training exercises at the Johnson Space Center's Weightless Environment Training Facility (WET-F). Left to right are astronauts Daniel W. Bursch, Carl E. Walz and James H. Newman. Out of frame are astronauts Frank L. Culbertson and William F. Readdy, commander and pilot, respectively.
Nakajima, Isao; Tachibana, Masakazu; Ohashi, Noriyoshi; Imai, Hiroshi; Asari, Yasushi; Matsuyama, Shigenori
2011-12-01
The Japan Aerospace Exploration Agency (JAXA) provides extravehicular activity (EVA) training to astronauts in a weightless environment test building (WETS) located in Tsukuba City. For EVA training, Tsukuba Medial Center Hospital (TMCH) has established an emergency medical support system, serving as operations coordinator. Taking the perspective of emergency physicians, this paper provides an overview of the medical support system and examines its activities over the past decade as well as future issues. Fortunately, no major accident has occurred during the past 10 years of NBS. Minor complaints (external otitis, acute otitis media, transient dizziness, conjunctival inflammation, upper respiratory inflammation, dermatitis, abraded wounds, etc.) among the support divers have been addressed onsite by attending emergency physicians. Operations related to the medical support system at the WETS have proceeded smoothly for the former NASDA and continue to proceed without event for JAXA, providing safe, high-quality emergency medical services. If an accident occurs at the WETS, transporting the patient by helicopter following initial treatment by emergency physicians can actually exacerbate symptoms, since the procedure exposes a patient who was recently within a hyperbaric environment to the low-pressure environment involved in air transportation. If a helicopter is used, the flight altitude should be kept as low as possible by taking routes over the river.
Astronaut Mario Runco in EMU during training in WETF
1995-07-26
S95-15847 (26 July 1995) --- Wearing a training version of the Extravehicular Mobility Unit (EMU) space suit, astronaut Mario Runco Jr., mission specialist, prepares to participate in an underwater rehearsal of a contingency Extravehicular Activity (EVA). This type of training routinely takes place in the 25-feet deep pool of the Johnson Space Center's (JSC) Weightless Environment Training Center (WET-F). The training prepares at least two crew members on each flight for procedures to follow outside the spacecraft in event of failure of remote methods to perform various chores.
Astronaut Bruce McCandless during an underwater test MMU/FSS in bldg 29 WETF
1981-08-04
Astronaut Bruce McCandless during an underwater test of the Manned Maneuvering Unit (MMU) Flight Support Station (FSS) donning and doffing in the Bldg 29 Weightless Environment Training Facility (WETF). View is of McCandless wearing the extravehicular mobility unit (EMU), stepping into the MMU.
Jernigan and Wolf in Neutral Buoyancy Simulator (NBS)
NASA Technical Reports Server (NTRS)
1995-01-01
Astronauts Tamara Jernigan (#1) and David Wolf (#2) are training in the Neutral Buoyancy Simulator (NBS) at Marshall Space Flight center with an exercise for International Space Station Alpha. The NBS provided the weightless environment encountered in space needed for testing and the practices of Extravehicular Activities (EVA).
Astronaut Judith Resnik participates in WETF training
1984-05-14
S84-33898 (21 May 1984) --- Astronaut Jon A. McBride, 41-G pilot, assists his crewmate, Astronaut Kathryn D. Sullivan with the glove portion of her extravehicular mobility unit (EMU) prior to Dr. Sullivan's underwater session in the Johnson Space Center's weightless environment training facility (WET-F). Mission specialists Sullivan and David C. Leestma are scheduled for extravehicular activity (EVA) on the Columbia for NASA's 17th scheduled flight.
STS-35 MS Hoffman drains LES after water egress exercises in JSC's WETF
NASA Technical Reports Server (NTRS)
1990-01-01
STS-35 Mission Specialist (MS) Jeffrey A. Hoffman drains his launch and entry suit (LES) by propping himself upside down against a chair. Training personnel (left) and Pilot Guy S. Gardner watch as Hoffman's head stand forces water from his suit. Crewmembers were participating in launch emergency egress procedures in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Various WETF mockups are visible in the background.
STS-52 backup Payload Specialist Tryggvason during JSC bailout exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-52 Columbia, Orbiter Vehicle (OV) 102, backup Payload Specialist Bjarni V. Tryggvason, wearing launch and entry suit (LES), checks his launch and entry helmet (LEH) fitting prior to participating in emergency egress (bailout) training exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. The WETF's 25-ft deep pool will serve as the ocean during this water landing simulation. Tryggvason represents the Canadian Space Agency (CSA).
STS-45 Payload Specialist Frimout prepares for water egress training at JSC
NASA Technical Reports Server (NTRS)
1991-01-01
STS-45 Atlantis, Orbiter Vehicle (OV) 104, Payload Specialist Dirk D. Frimout, a European Space Agency (ESA) crewmember from Belgium, smiles while taking a break from water egress exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Frimout along with other STS-45 is participating a launch emergency egress simulation during which the crewmembers will be dropped from their parachute harnesses into the pool.
STS-32 Commander Brandenstein in LES prepares for WETF water egress training
NASA Technical Reports Server (NTRS)
1989-01-01
STS-32 Commander Daniel C. Brandenstein, wearing a launch and entry suit (LES), orange parachute harness and life vest, is briefed on emergency egress procedures in JSC's Weightless Environment Training Facility Bldg 29. The crew used the WETF's nearby 25 ft deep pool for the exercises, which familiarize assigned space shuttle crewmembers with procedures associated with the post-Challenger pole system of emergency egress.
STS-46 Pilot Allen and Payload Specialist Malerba in life rafts at JSC's WEFT
NASA Technical Reports Server (NTRS)
1992-01-01
STS-46 Atlantis, Orbiter Vehicle (OV) 104, Pilot Andrew M. Allen (foreground) and Italian Payload Specialist Franco Malerba, wearing launch and entry suits (LESs) and launch and entry helmets (LEHs), float in one-person life rafts during a launch emergency egress (bailout) simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. A SCUBA-equipped diver assists in the training activity.
Astronaut Joseph Tanner is assisted into his EMU during training
NASA Technical Reports Server (NTRS)
1994-01-01
Astronaut Joseph R. Tanner, STS-66 mission specialist, is assisted by Boeing suit expert Steve Voyles in donning the gloves for his extravehicular mobility unit (EMU) as he prepares to be submerged in a 25-feet deep pool at JSC's Weightless Environment Training Facility (WETF). Though no extravehicular activity (EVA) is planned for the mission, at least two astronauts are trained to perform tasks that would require a space walk in the event of failure of remote systems.
Astronaut Curtis Brown suspended by simulated parachute gear during training
1994-06-28
S94-37516 (28 June 1994) --- Astronaut Curtis L. Brown is suspended by a simulated parachute gear during an emergency bailout training exercise in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Making his second flight in space, Brown will join four other NASA astronauts and a European mission specialist for a week and a half in space aboard the Space Shuttle Atlantis in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3) mission.
Astronaut Catherine G. Coleman during WETF training
1993-08-05
S93-42464 (September 1993) --- Astronaut Catherine G. Coleman, mission specialist for STS-73, dons a high-fidelity training version of an Extravehicular Mobility Unit (EMU) spacesuit at the Johnson Space Center?s (JSC) Weightless Environment Training Facility (WET-F). Coleman, who has recently been named as one of seven crew members for the U.S. Microgravity Laboratory (USML-2) mission, was about to go underwater in a 25-feet deep pool. The pool is used to train astronauts for mission specific space walk chores as well as for contingency extravehicular activity (EVA) tasks.
Astronauts Henricks and Kregel take a break during training at WETF
1995-02-16
S95-03470 (16 FEB 1995) --- Attired in blue training versions of the orange Shuttle launch and entry garments, astronauts Terence T. (Tom) Henricks, right, and Kevin R. Kregel take a break during a bailout training session at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Assigned as commander and pilot, respectively, for the STS-70 mission, the two later joined their crew mates in making use of a nearby 25-feet deep pool to practice parachute landings in water and subsequent deployment of life rafts.
Canadian astronaut Marc Garneau during emergency bailout training
1993-10-07
S93-45723 (7 October 1993) --- Canadian astronaut candidate Marc Garneau, later named as a mission specialist for NASA's STS-77 mission-representing the Canadian Space Agency (CSA), participates in emergency bailout training at the Johnson Space Center (JSC). Garneau was in the 1992 class of Astronaut Candidates (ASCAN). Wearing full parachute gear, Garneau is suspended above a 25-feet deep pool in JSC's Weightless Environment Training Facility (WET-F). This portion of an astronaut's training is to prepare them for proper measures to take in the event of bailout over water.
NASA Technical Reports Server (NTRS)
Simanonok, K.; Mosely, E.; Charles, J.
1992-01-01
Nine preflight variables related to fluid, electrolyte, and cardiovascular status from 64 first-time Shuttle crewmembers were differentially weighted by discrimination analysis to predict the incidence and severity of each crewmember's space sickness as rated by NASA flight surgeons. The nine variables are serum uric acid, red cell count, environmental temperature at the launch site, serum phosphate, urine osmolality, serum thyroxine, sitting systolic blood pressure, calculated blood volume, and serum chloride. Using two methods of cross-validation on the original samples (jackknife and a stratefied random subsample), these variables enable the prediction of space sickness incidence (NONE or SICK) with 80 percent sickness and space severity (NONE, MILD, MODERATE, of SEVERE) with 59 percent success by one method of cross-validation and 67 percent by another method. Addition of a tenth variable, hours spent in the Weightlessness Environment Training Facility (WETF) did not improve the prediction of space sickness incidences but did improve the prediction of space sickness severity to 66 percent success by the first method of cross-validation of original samples and to 71 percent by the second method. Results to date suggest the presence of predisposing physiologic factors to space sickness that implicate fluid shift etiology. The data also suggest that prior exposure to fluid shift during WETF training may produce some circulatory pre-adaption to fluid shifts in weightlessness that results in a reduction of space sickness severity.
European Space Agency (ESA) Mission Specialist Nicollier trains in JSC's WETF
NASA Technical Reports Server (NTRS)
1987-01-01
European Space Agency (ESA) Mission Specialist (MS) Claude Nicollier (left) is briefed by Randall S. McDaniel on Space Shuttle extravehicular activity (EVA) tools and equipment prior to donning an extravehicular mobility unit and participating in an underwater EVA simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Nicollier is holding the EMU mini workstation. Other equipment on the table includes EVA tool caddies and EVA crewmember safety tethers.
STS-52 Mission Specialist Veach, in LES/LEH, during JSC WETF bailout exercise
NASA Technical Reports Server (NTRS)
1992-01-01
STS-52 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist (MS) Charles Lacy Veach, wearing launch and entry suit (LES) and launch and entry helmet (LEH), smiles as he observes emergency egress (bailout) training exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Veach waits his turn to be dropped into the WETF's 25-ft deep pool which will simulate the ocean during of his water landing.
STS-52 Mission Specialist Veach in life raft during JSC bailout exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-52 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist (MS) Charles Lacy Veach, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in a single person life raft during emergency egress (bailout) training exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. SCUBA-equipped divers look on. The bailout exercises utilize the WETF's 25-foot deep pool as the ocean for this water landing simulation.
Astronaut Mary Ellen Weber during emergency bailout training at WETF
1995-02-16
S95-03469 (16 FEB 1995) --- Attired in a training version of the Shuttle launch and entry garment, astronaut Mary Ellen Weber gets help with the final touches of suit donning during a training session at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Helping out is Rockwell's William L. Todd (right), while Staffon Isaacs looks on. Training as a mission specialist for the STS-70 mission, Weber was about to rehearse emergency bailout. The crew members made use of a nearby 25-feet deep pool to practice parachute landings in water and subsequent deployment of life rafts.
GEMINI-TITAN (GT)-8 - TRAINING - PILOT IN WEIGHTLESSNESS USING EXPERIMENT TOOL - FL
1966-02-18
S66-24410 (18 Feb. 1966) --- Astronaut David R. Scott performs a maintenance and repair experiment with a battery-powered tool during a state of weightlessness while in extravehicular activity (EVA) training on a KC-135. Photo credit: NASA
STS-52 MS Jemison, in LES/LEH, during JSC WETF bailout exercise
NASA Technical Reports Server (NTRS)
1992-01-01
STS-52 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist (MS) Tamara E. Jernigan, wearing launch and entry suit (LES) and launch and entry helmet (LEH), listens to a briefing about water landings during an emergency egress (bailout) training exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Jernigan waits her turn to be dropped into the WETF's 25-ft deep pool which will simulate the ocean during of her water landing.
STS-52 Payload Specialist MacLean floats in pool during JSC bailout exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-52 Columbia, Orbiter Vehicle (OV) 102, Payload Specialist Steven G. MacLean, wearing launch and entry suit (LES) and clamshell helmet, is assisted by SCUBA-equipped divers as he floats in pool during emergency egress (bailout) training exercises in JSC's Weightless Environment Training Facility Bldg 29. Bailout exercises utilize the WETF's 25-foot deep pool as the ocean during this water landing simulation. MacLean represents the Canadian Space Agency (CSA).
STS-48 MS Gemar dons EMU with technicians' assistance prior to JSC WETF dive
NASA Technical Reports Server (NTRS)
1991-01-01
STS-48 Mission Specialist (MS) Charles D. Gemar, wearing an extravehicular mobility unit (EMU) and communications carrier assembly (CCA), smiles as he watches technicians adjust his sleeves prior to donning his EMU gloves. Gemar is preparing for an underwater extravehicular activity (EVA) training session in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Once underwater, Gemar will practice contingency EVA operations for his upcoming mission aboard Discovery, Orbiter Vehicle (OV) 103.
STS-37 Mission Specialist (MS) Godwin floating in life raft in JSC WETF pool
NASA Technical Reports Server (NTRS)
1990-01-01
STS-37 Mission Specialist (MS) Linda M. Godwin, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in a one-person life raft during a training session in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. She was simulating steps involved in emergency egress from a Space Shuttle. The WETF's 25-ft deep pool served as a simulated ocean into which a parachute landing might be made.
Cosmonaut Yuriy Onufriyenko simulates parachute drop into water
1994-10-13
S94-47232 (13 Oct 1994) --- Cosmonaut Yuriy I. Onufriyenko (right), in the United States to participate in training for joint Russia-United States space missions, simulates a parachute drop into water. The training took place in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F) because it contains a 25-feet-deep pool. Onufriyenko, a Mir reserve team member, and a number of other cosmonauts and astronauts participating in the joint program were in Houston, Texas to prepare for upcoming missions which involve crewmembers from the two nations.
STS-53 MS Clifford, in EMU, dons gloves with technicians' assistance at JSC
NASA Technical Reports Server (NTRS)
1992-01-01
STS-53 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) Michael R.U. Clifford, wearing extravehicular mobility unit (EMU) and communications carrier assembly (CCA), dons gloves with assistance from two technicians. Clifford is preparing for an underwater contingency extravehicular activity (EVA) simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool.
STS-53 MS Voss,in EMU, dons gloves with technicians' assistance at JSC's WETF
NASA Technical Reports Server (NTRS)
1992-01-01
STS-53 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) James S. Voss, wearing extravehicular mobility unit (EMU) and communications carrier assembly (CCA), dons his gloves with assistance from two technicians. Voss is preparing for an underwater contingency extravehicular activity (EVA) simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool.
Astronauts Greg Harbaugh and Joe Tanner suit up for training in WETF
1996-06-11
S96-12829 (10 June 1996) --- Awaiting his helmet, astronaut Joseph R. Tanner, STS-82 mission specialist assigned to extravehicular activity (EVA) involved with the servicing of the Hubble Space Telescope (HST), is about to be submerged in a 25-ft. deep pool at the Johnson Space Center's weightless environment training facility (WET-F). Obscured in this frame, astronaut Gregory J. Harbaugh was on the other side of the platform, waiting to join Tanner in the spacewalk rehearsal.
STS-37 MS Linda M. Godwin during water egress exercise in JSC's WETF Bldg 29
1990-06-25
S90-45238 (25 June 1990) ---- Astronaut Linda M. Godwin, STS 37 mission specialist, simulates emergency egress from a Space Shuttle. The training session was held in the Johnson Space Center's (JSC) weightless environment training facility (WET-F). The 25-ft. pool in the facility served as a simulated ocean into which a parachute landing might be made. Early next year, Godwin, along with four other astronauts, will fly onboard Atlantis for a five-day mission.
STS-52 Pilot Baker, in LES/LEH, during JSC WETF bailout exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-52 Columbia, Orbiter Vehicle (OV) 102, Pilot Michael A. Baker smiles from under his launch and entry helmet (LEH) and from behind the communications carrier assembly (CCA) microphones as he adjusts his parachute harness. Baker, fully outfitted in a launch and entry suit (LES), prepares for emergency egress (bailout) training exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The WETF's 25-ft deep pool will be used in this simulation of a water landing.
STS-32 MS Dunbar wearing LES prepares for WETF water egress training
NASA Technical Reports Server (NTRS)
1989-01-01
STS-32 Mission Specialist (MS) Bonnie J. Dunbar, wearing a launch and entry suit (LES), orange parachute harness and life vest, is briefed on emergency egress procedures in JSC's Weightless Environment Training Facility (WETF) Bldg 29. During the exercises the crew practiced the procedures to follow in the event of an emergency aboard the Space Shuttle and familiarized themselves with post-Challenger pole system of emergency egress. The crewmembers will simulate parachuting into water by using the WETF's nearby 25 ft deep pool.
STS-55 MS3 Harris in life raft during emergency egress exercises at JSC WETF
NASA Technical Reports Server (NTRS)
1992-01-01
Using a small single person life raft, STS-55 Mission Specialist 3 (MS3) Bernard A. Harris, Jr floats in the pool located in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Harris, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), prepares to send a flare during this launch emergency egress (bailout) training session. STS-55 with the Spacelab Deutsche 2 (SL-D2) payload will fly aboard Columbia, Orbiter Vehicle (OV) 102, in 1993.
STS-65 Commander Cabana floats in life raft during WETF bailout exercise
NASA Technical Reports Server (NTRS)
1994-01-01
STS-65 Commander Robert D. Cabana, suited in his launch and entry suit (LES) and launch and entry helmet, deploys a single person life raft during launch emergency egress (bailout) training at the Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) Bldg 29. Cabana will be joined by five other NASA astronauts and a Japanese payload specialist for the International Microgravity Laboratory 2 (IML-2) mission aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.
CREW TRAINING (EXTRAVEHICULAR ACTIVITY [EVA]) - STS-41G - JSC
1984-07-06
S84-36956 (1 July 1984) --- Astronaut Robert L. Crippen, 41-G crew commander, prepares his SCUBA mask prior to submerging into the weightless environment training facility's 25 ft. deep pool to observe a simulation exercise for two fellow 41-G crewmembers assigned to an extravehicular activity (EVA) in space. Not pictured are Astronauts Kathryn D. Sullivan and David C. Leestma, mission specialists who will perform the EVA during the eight-day mission scheduled for October of this year.
STS-39 MS Hieb floats in single person life raft in JSC's WETF Bldg 29 pool
NASA Technical Reports Server (NTRS)
1990-01-01
STS-39 Mission Specialist (MS) Richard J. Hieb, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in single person life raft after landing in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. During emergency egress bailout procedures, Hieb practiced procedures necessary for a water landing. Divers monitor Hieb's activity.
STS-26 Pilot Covey floats in life raft during JSC WETF exercises
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.
Canadian astronaut Marc Garneau during emergency bailout training
1993-10-07
S93-45726 (7 Oct. 1993) --- Canadian astronaut candidate Marc Garneau, later named as a mission specialist for NASA's STS-77 mission, participates in emergency bailout training at the Johnson Space Center (JSC). Garneau was in the 1992 class of Astronaut Candidates (ASCAN). Wearing full parachute gear following a simulated parachute drop, Garneau has deployed a small life raft in a 25-feet deep pool in JSC's Weightless Environment Training Facility (WET-F). This portion of an astronaut's training is to prepare him or her for proper measures to take in the event of bailout over water. Garneau is assisted here by one of several SCUBA-equipped divers in the pool.
Preparations for Underwater EVA training for the STS 41-G crew
1984-07-05
S84-36900 (29 June 1984) ---Astronauts Robert L. Crippen (right) and Jon A. McBride, crew commander and pilot, respectively, for NASA's 41-G Space Shuttle mission, don self contained underwater breathing apparatus (SCUBA) gear prior to their underwater to observe a simulation of an extravehicular activity (EVA) to be performed on their mission. Astronauts Kathryn D. Sullivan and David C. Leestma, two of three mission specialists on the seven-member crew, are scheduled for the EVA. The underwater training took place in the Johnson Space Center's weightless environment training facility (WET-F).
STS-64 Extravehicular activity (EVA) training view in WETF
1994-08-10
S94-39775 (August 1994) --- Astronaut Carl J. Meade, STS-64 mission specialist, listens to ground monitors during a simulation of a spacewalk scheduled for his September mission. Meade, who shared the rehearsal in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F) pool with crewmate astronaut Mark C. Lee, is equipped with a training version of new extravehicular activity (EVA) hardware called the Simplified Aid for EVA Rescue (SAFER) system. The hardware includes a mobility-aiding back harness and a chest-mounted hand control module. Photo credit: NASA or National Aeronautics and Space Administration
STS-64 Extravehicular activity (EVA) training view in WETF
1994-08-10
S94-39762 (August 1994) --- Astronaut Carl J. Meade, STS-64 mission specialist, listens to ground monitors prior to a simulation of a spacewalk scheduled for his September mission. Meade, who shared the rehearsal in Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F) pool with crewmate astronaut Mark C. Lee (out of frame), is equipped with a training version of new extravehicular activity (EVA) hardware called the Simplified Aid for EVA Rescue (SAFER) system. The hardware includes a mobility-aiding back harness and a chest-mounted hand control module. Photo credit: NASA or National Aeronautics and Space Administration
Astronaut Donald McMonagle checks drainage hose on his life raft in training
1994-06-28
S94-37521 (28 June 1994) --- Astronaut Donald R. McMonagle, mission commander, checks the drainage hose on his rapidly fashioned life raft during an emergency bailout training exercise in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Making his third flight in space covering 343 hours, McMonagle will be joined by four other NASA astronauts and a European mission specialist for a week and a half in space aboard the Space Shuttle Atlantis. The flight will support the Atmospheric Laboratory for Applications and Science (ATLAS-3) mission.
Astronaut William S. McArthur in training for contingency EVA in WETF
1993-09-10
S93-43840 (6 Sept 1993) --- Astronaut William S. McArthur, mission specialist, participates in training for contingency Extravehicular Activity (EVA) for the STS-58 mission. For simulation purposes, McArthur was about to be submerged to a point of neutral buoyancy in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Though the Spacelab Life Sciences (SLS-2) mission does not include a planned EVA, all crews designate members to learn proper procedures to perform outside the spacecraft in the event of failure of remote means to accomplish those tasks.
Astronaut Ellen Ochoa in small life raft during training
1994-06-28
S94-37520 (28 June 1994) --- Astronaut Ellen Ochoa, STS-66 payload commander, secures herself in a small life raft during an emergency bailout training exercise in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Making her second flight in space, Ochoa will join four other NASA astronauts and a European mission specialist for a week and a half in space aboard the Space Shuttle Atlantis in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3) mission. Ochoa was a mission specialist on the ATLAS-2 mission in April of 1993.
STS-26 Pilot Covey floats in life raft during JSC WETF exercises
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing newly designed launch and entry suit (LES), floats in single-occupant life raft during simulations in the JSC Weightless Environment Training Facility Bldg 29 pool. During the simulation of escape and rescue operations, the crew escape system (CES) pole mode of egress from the Space Shuttle was utilized.
STS-55 MS3 Bernard A. Harris, Jr in EMU at JSC's WETF for EVA simulation
1991-11-08
S91-51058 (Dec 1991) --- Partially attired in a special training version of the Extravehicular Mobility Unit (EMU) space suit, astronaut Bernard A. Harris Jr. is pictured before a training session at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Minutes later the STS-55 mission specialist was in a 25-feet deep pool simulating a contingency extravehicular activity (EVA). The platform on which he is standing was used to lower him into the water where, with the aid of weights on his environmentally-controlled pressurized suit, he was able to achieve neutral buoyancy. There is no scheduled EVA for the 1993 flight but each space flight crew includes astronauts trained for a variety of contingency tasks that could require exiting the shirt-sleeve environment of a Shuttle's cabin.
STS-39 MS Bluford dons EMU lower torso in preparation for dive in JSC's WETF
1990-07-19
S90-44106 (August 1990) --- Astronaut Guion S. Bluford, mission specialist for STS-39, wearing part of an extravehicular mobility unit (EMU) spacesuit, prepares to participate in a training session for the scheduled March 1991 spaceflight. Soon after this picture was taken, Bluford was lowered into water by a hoist device for the underwater rehearsal of a contingency EVA. The scene is in the Johnson Space Center's weightless environment training facility (WET-F) which houses a 25-ft. deep pool (visible in right background).
CREW TRAINING (EXTRAVEHICULAR ACTIVITY [EVA]) - STS-13 - JSC
1983-11-01
S83-42893 (19 Oct 1983) ---- Astronauts George D. Nelson and James D. van Hoften, two of three STS-41C mission specialists, share an extravehicular activity (EVA) task in this simulation of a Solar Maximum Satellite (SMS) repair visit. The two are making use of the Johnson Space Center's (JSC) weightless environment training facility (WET-F). Dr. Nelson is equipped with the manned maneuvering unit (MMU) trainer and he handles the trunion pin attachment device (TPAD), a major tool to be used on the mission. The photograph was taken by Otis Imboden.
STS-32 MS Dunbar wearing LES floats in life raft during water egress training
1989-11-15
STS-32 Mission Specialist (MS) Bonnie J. Dunbar, wearing a launch and entry suit (LES) and lauch and entry helmet (LEH), in a single-occupant (one man) lift raft enlists the aid of two SCUBA-equipped divers as she floats in 25 ft deep pool located in JSC's Weightless Environment Training Facility (WETF) Bldg 29. During the exercises the crew practiced the procedures to follow in the event of an emergency aboard the Space Shuttle and familiarized themselves with post-Challenger pole system of emergency egress.
STS-32 MS Dunbar wearing LES floats in life raft during water egress training
NASA Technical Reports Server (NTRS)
1989-01-01
STS-32 Mission Specialist (MS) Bonnie J. Dunbar, wearing a launch and entry suit (LES) and lauch and entry helmet (LEH), in a single-occupant (one man) lift raft enlists the aid of two SCUBA-equipped divers as she floats in 25 ft deep pool located in JSC's Weightless Environment Training Facility (WETF) Bldg 29. During the exercises the crew practiced the procedures to follow in the event of an emergency aboard the Space Shuttle and familiarized themselves with post-Challenger pole system of emergency egress.
STS-55 MS2 Precourt in life raft during egress exercises at JSC's WETF
NASA Technical Reports Server (NTRS)
1992-01-01
STS-55 Mission Specialist 2 (MS2) Charles J. Precourt drains his single person life raft (using hose) as he floats in the pool located in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Precourt, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), is participating in launch emergency egress (bailout) training. A SCUBA-equipped diver monitors Precourt's actions. STS-55 with the Spacelab Deutsche 2 (SL-D2) payload will fly aboard Columbia, Orbiter Vehicle (OV) 102, in 1993.
Astronaut David Wolf participates in training for contingency EVA in WETF
1993-04-03
S93-31706 (3 April 1993) --- With the aid of technicians and training staffers astronaut David A. Wolf prepares to participate in training for contingency Extravehicular Activity (EVA) for the STS-58 mission. Sharing a moveable platform with Wolf was astronaut Shannon W. Lucid (out of frame). For simulation purposes, the two mission specialists were about to be submerged to a point of neutral buoyancy in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Though the Spacelab Life Sciences (SLS-2) mission does not include a planned EVA, all crews designate members to learn proper procedures to perform outside the spacecraft in the event of failure of remote means to accomplish those tasks.
Astronauts McMonagle and Brown float in one-man life rafts during training
1994-06-28
S94-37526 (28 June 1994) --- In separate life rafts, astronauts Donald R. McMonagle (right), mission commander, and Curtis L. Brown, pilot, are assisted by several SCUBA-equipped divers during an emergency bailout training exercise in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Making their third and second flights in space, respectively, McMonagle and Brown will be joined by three other NASA astronauts and a European mission specialist for a week and a half in space aboard the Space Shuttle Atlantis. The flight will support the Atmospheric Laboratory for Applications and Science (ATLAS-3) mission.
STS-26 Pilot Covey floats in life raft during JSC WETF exercises
1988-07-08
S88-42425 (20 July 1988) --- STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.
STS-26 Pilot Covey floats in life raft during JSC WETF exercises
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Covey has paddle-like gloves on his hands. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.
Hydrogen and hydrocarbon diffusion flames in a weightless environment
NASA Technical Reports Server (NTRS)
Haggard, J. B., Jr.; Cochran, T. H.
1973-01-01
An experimental investigation was performed on laminar hydrogen-, ethylene-, and propylene-air diffusion burning in a weightless environment. The flames burned on nozzles with radii ranging from 0.051 to 0.186 cm with fuel Reynolds numbers at the nozzle exit from 9 to 410. Steady-state diffusion flames existed in a weightless environment for all the fuels tested. A correlation was obtained for their axial length as a function of Schmidt number, Reynolds numbers, and stoichiometric mole fraction. The maximum flame radii were correlated with the ratio of nozzle radius to average fuel velocity. The flames of ethylene and propylene on nozzles with radii 0.113 or larger appeared to be constantly changing color and/or length throughout the test. No extinguishment was observed for any of the gases tested within the 2.2 seconds of weightlessness.
STS-55 MS3 Harris, wearing EMU and CCA, prepares for EVA simulation at JSC WETF
NASA Technical Reports Server (NTRS)
1991-01-01
STS-55 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist 3 (MS3) Bernard A. Harris, Jr, suited in the extravehicular mobility unit (EMU) upper torso and communications carrier assembly (CCA), smiles as he prepares for an underwater simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. This portrait-like view captures Harris as he checks out his communications equipment. Once fully suited, Harris will be lowered into the WETF's 25-foot deep pool for an underwater contingency extravehicular activity (EVA) simulation. There is no scheduled EVA for the 1993 flight but each spaceflight crew includes astronauts trained for a variety of contingency tasks that could require exiting the shirt-sleeve environment of a Shuttle's cabin.
Astronauts Greg Harbaugh and Joe Tanner suit up for training in WETF
1996-06-11
S96-12830 (10 June 1996) --- Astronaut Joseph R. Tanner, STS-82 mission specialist assigned to extravehicular activity (EVA) involved with the servicing of the Hubble Space Telescope (HST), dons the gloves for his extravehicular mobility unit (EMU) space suit. He is about to be submerged in a 25-ft. deep pool at the Johnson Space Center's weightless environment training facility (WET-F) to participate in simulations for some of the EVA work. Out of frame, astronaut Gregory J. Harbaugh was on the other side of the platform, waiting to join Tanner in the spacewalk rehearsal.
STS-52 MS Veach and Payload Specialist MacLean during JSC bailout exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-52 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist (MS) Charles Lacy Veach (left) and Canadian Payload Specialist Steven G. MacLean listen to a briefing during emergency egress (bailout) training exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Veach and MacLean are fully outfitted in launch and entry suits (LESs), launch and entry helmets (LEHs), parachutes, and water survival equipment including a life jacket. The WETF's 25-ft deep pool will simulate the ocean as the crewmember's prepare for the event of a water landing. MacLean represents the Canadian Space Agency (CSA).
STS-65 Payload Specialist Mukai dons LES and parachute with technicians' help
NASA Technical Reports Server (NTRS)
1994-01-01
STS-65 Payload Specialist Chiaki Mukai adjusts the neck dam of her launch and entry suit (LES) as Boeing's Sharon Daley and Grady Due help her with the parachute pack prior to a launch emergency egress training (bailout) exercise at the Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) Bldg 29. Mukai will join six NASA astronauts later this year for two weeks aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, in support of the second International Microgravity Laboratory 2 (IML-2) mission. Mukai represents Japan's National Space Development Agency (NASDA).
STS-55 MS3 Harris in life raft during emergency egress exercises at JSC WETF
NASA Technical Reports Server (NTRS)
1992-01-01
Using a small single person life raft, STS-55 Mission Specialist 3 (MS3) Bernard A. Harris, Jr floats in the pool located in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Harris, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), opens a sealed canister containing a flare. Harris, along with other crewmembers, is participating in a launch emergency egress (bailout) training session. STS-55 with the Spacelab Deutsche 2 (SL-D2) payload will fly aboard Columbia, Orbiter Vehicle (OV) 102, in 1993.
STS-35 Commander Brand is suspended over JSC WETF pool during egress exercise
NASA Technical Reports Server (NTRS)
1990-01-01
STS-35 Commander Vance D. Brand is suspended via his parachute harness above the pool in JSC's Weightless Environment Training Facility (WETF) Bldg 29 during launch emergency egress exercises. Divers in the pool hold Brand's feet to steady him. In the background and on the poolside is Pilot Guy S. Gardner. Both Brand and Gardner are wearing launch and entry suits (LESs) and launch and entry helmets (LEHs).
Task and work performance on Skylab missions 2, 3, and 4: Time and motion study: Experiment M151
NASA Technical Reports Server (NTRS)
Kubis, J. F.; Mclaughlin, E. J.; Jackson, J. M.; Rusnak, R.; Mcbride, G. H.; Saxon, S. V.
1977-01-01
Human task performance was evaluated under weightlessness conditions during long duration space flight in order to study the characteristics of the adaptation function. Results show that despite pronounced variability in training schedules and in initial reaction to the Skylab environment, in-flight task performance was relatively equivalent among Skylab crews, and behavioral performance continued to improve from beginning to end of all missions.
STS-50 Payload Specialist Trinh during JSC WETF Bailout Exercises in Bldg 29
NASA Technical Reports Server (NTRS)
1992-01-01
STS-50 Columbia, Orbiter Vehicle (OV) 102, United States Microgravity Laboratory 1 (USML-1) Payload Specialist Eugene H. Trinh, wearing launch and entry suit (LES), listens to instructions prior to participating in launch emergency egress (bailout) exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. The WETF's 25-foot deep pool will simulate the ocean as crewmembers familiarize themselves with procedures associated with a bailout and subsequent water landing.
STS-37 MS Jerome Apt during water egress exercise in JSC's WETF Bldg 29
NASA Technical Reports Server (NTRS)
1990-01-01
STS-37 Mission Specialist (MS) Jerome Apt, wearing launch and entry suit (LES) and launch and entry helmet (LEH), is suspended above pool via a parachute harness during water egress exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Apt simulates emergency egress from a Space Shuttle. The WETF's 25-ft pool served as a simulated ocean into which a parachute landing might be made.
STS-39 MS Hieb prepares for emergency egress exercises in JSC's WETF Bldg 29
NASA Technical Reports Server (NTRS)
1990-01-01
STS-39 Mission Specialist (MS) Richard J. Hieb, wearing launch and entry suit (LES), parachute pack, and communications carrier assembly (CCA), listens to instructions prior to emergency egress bailout exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. The WETF's 25 ft deep pool will simulate the ocean. Crewmembers will practice procedures necessary in the event of an emergency onboard the Space Shuttle requiring a water landing.
STS-37 MS Linda M. Godwin during water egress exercise in JSC's WETF Bldg 29
NASA Technical Reports Server (NTRS)
1990-01-01
STS-37 Mission Specialist (MS) Linda M. Godwin, wearing launch and entry suit (LES) and launch and entry helmet (LEH), is suspended above pool via a parachute harness during water egress exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Godwin simulates emergency egress from a Space Shuttle. The WETF's 25-ft pool served as a simulated ocean into which a parachute landing might be made.
STS-26 Pilot Covey floats in life raft during JSC WETF exercises
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Covey pulls and fastens life raft protective cover over himself. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.
Astronaut David Wolf participates in training for contingency EVA in WETF
1993-04-03
S93-31701 (3 April 1993) --- Displaying the flexibility of his training version of the Shuttle Extravehicular Mobility Unit (EMU) space suit, astronaut David A. Wolf participates in training for contingency Extravehicular Activity (EVA) for the STS-58 mission. Behind Wolf, sharing the platform with him was astronaut Shannon W. Lucid. For simulation purposes, the two mission specialists were about to be submerged to a point of neutral buoyancy in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Though the Spacelab Life Sciences (SLS-2) mission does not include a planned EVA, all crews designate members to learn proper procedures to perform outside the spacecraft in the event of failure of remote means to accomplish those tasks.
Astronaut Shannon Lucid in training for contingency EVA for STS-58 in WETF
1993-04-03
S93-31697 (3 April 1993) --- Astronaut Shannon W. Lucid participates in training for contingency Extravehicular Activity (EVA) for the STS-58 mission. Behind Lucid, sharing a moveable platform with her, is astronaut David A. Wolf (out of frame). For simulation purposes, the two mission specialists were about to be submerged to a point of neutral buoyancy in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Though the Spacelab Life Sciences (SLS-2) mission does not include a planned EVA, all crews designate members to learn proper procedures to perform outside the spacecraft in the event of failure of remote means to accomplish those tasks.
STS-42 Commander Grabe in single person life raft during JSC egress exercises
NASA Technical Reports Server (NTRS)
1991-01-01
STS-42 Discovery, Orbiter Vehicle (OV) 103, Commander Ronald J. Grabe, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in single person life raft during launch emergency egress (bailout) exercises conducted in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The Space Shuttle Search and Rescue Satellite Aided Tracking (SARSAT) portable locating beacon (PLB) antenna is extended through the life raft cover. SCUBA-equipped divers monitor egress exercises.
STS-55 MS3 Harris listens to technician during JSC WETF egress exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-55 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist 3 (MS3) Bernard A. Harris, Jr, wearing launch and entry suit (LES), launch and entry helmet (LEH), and parachute, listens to technician Karen Porter's instructions prior to launch emergency egress (bailout) exercises. The session, held in JSC's Weightless Environment Training Facility (WETF) Bldg 29, used the facility's 25-foot deep pool to simulate the ocean as Harris and other crewmembers practiced water bailout procedures.
STS-55 MS3 Harris dons EMU with technician's assistance in JSC's WETF Bldg 29
NASA Technical Reports Server (NTRS)
1991-01-01
STS-55 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist 3 (MS3) Bernard A. Harris, Jr, partially suited in his extravehicular mobility unit (EMU), and a technician take a break from suiting procedures to watch nearby activity (out of frame) in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Harris has donned the EMU upper and lower torsos which are not yet connected at the waist ring. Once fully suited in the EMU, Harris will be lowered into the WETF's 25-foot pool for an underwater contingency extravehicular activity (EVA) simulation. There is no scheduled EVA for the 1993 flight but each spaceflight crew includes astronauts trained for a variety of contingency tasks that could require exiting the shirt-sleeve environment of a Shuttle's cabin.
STS-45 MS Foale in EMU prepares for underwater exercises in JSC's WETF pool
1991-02-26
S91-30196 (1 March 1991) --- Astronaut C. Michael Foale, mission specialist, and Kathryn D. Sullivan, payload commander (barely visible in background), stand on a platform (out of frame) which is part of a system that will lower them into a 25-ft. deep pool. The payload commander and mission specialist used the pool in the weightless environment training facility (WET-F) to rehearse a contingency extravehicular activity (EVA). Astronauts wear pressurized spacesuits configured for achieving a neutrally buoyant condition in the water to simulate both planned and contingency EVAs. Two SCUBA-equipped swimmers assisting the training are seen in the background.
STS-65 Mission Specialist Chiao in LES at pre-test WETF bailout briefing
NASA Technical Reports Server (NTRS)
1994-01-01
STS-65 Mission Specialist Leroy Chiao, outfitted in a launch and entry suit (LES) and launch and entry helmet (LEH), listens to a briefing on procedures that would become necessary in the event of an emergency egress situation from the Space Shuttle. The astronaut was in the Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) Bldg 29 for the launch emergency egress training (bailout) exercise. Chiao will join five other NASA astronauts and a Japanese payload specialist for the second International Microgravity Laboratory 2 (IML-2) mission aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.
STS-46 MS PLC Hoffman floats in life raft during water egress training at JSC
NASA Technical Reports Server (NTRS)
1992-01-01
STS-46 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) and Payload Commander Jeffrey A. Hoffman floats in a one-person life raft during launch emergency egress (bailout) simulation conducted in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Hoffman, who has just tumbled out a side hatch mockup, waits for his life raft to fully inflate as a SCUBA-equipped diver looks on. The long cylindrical object in the foreground serves as a prop for the crew escape system (CES) pole. In the background MS Franklin R. Chang-Diaz floats in a fully inflated life raft.
Astronaut Sherlock in EMU and CCA during suit qualification at JSC's WETF
1992-02-25
S92-29546 (March 1992) --- Attired in a training version of the Extravehicular Mobility Unit (EMU), astronaut Nancy J. Sherlock checks her communications link during a training session at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Training as a mission specialist for the STS-57 mission, Sherlock was rehearsing a contingency spacewalk. Astronauts scheduled for Extravehicular Activity (EVA) duty and those who might be called upon for unscheduled space walk duty frequently use a nearby 25 feet deep pool to practice various chores. The suits used in the training are equipped with communications gear, pressurized and weighted to create a neutral buoyancy in the water tank. EDITOR'S NOTE: Nancy J. Currie (formerly Sherlock) has been assigned as a mission specialist for the STS-70 mission, scheduled for launch in spring of 1995.
STS-57 MS2 Sherlock in EMU is ready for underwater EVA simulation at JSC
1992-06-25
S92-40376 (March 1992) --- Attired in a training version of the Extravehicular Mobility Unit (EMU), astronaut Nancy J. Sherlock participates in a training session at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Training as a mission specialist for the STS-57 mission, Sherlock was rehearsing a contingency space walk. Astronauts scheduled for Extravehicular Activity (EVA) duty and those who might be called upon for unscheduled space walk duty use a nearby 25 feet deep pool to practice various chores. The suits used in the training are equipped with communications gear, pressurized and weighted to create a neutral buoyancy in the water tank. EDITOR'S NOTE: Nancy J. Currie (formerly Sherlock) has been assigned as a mission specialist for the STS-70 mission, scheduled for launch in spring of 1995.
Alteration of Electro-Cortical Activity in Microgravity
NASA Astrophysics Data System (ADS)
Schneider, Stefan; Brummer, Vera; Carnahan, Heather; Askew, Christopher D.; Guardiera, Simon; Struder, Heiko K.
2008-06-01
There is growing interest in the effects of weightlessness on central nervous system (CNS) activity. Due to technical and logistical limitations it presently seems impossible to apply imaging techniques as fMRI or PET in weightless environments e.g. on ISS or during parabolic flights. Within this study we evaluated changes in brain cortical activity using low resolution brain electromagnetic tomography (LORETA) during parabolic flights. Results showed a distinct inhibition of right frontal area activity >12Hz during phases of microgravity compared to normal gravity. We conclude that the inhibition of high frequency frontal activity during microgravity may serve as a marker of emotional anxiety and/or indisposition associated with weightlessness. This puts a new light on the debate as to whether cognitive and sensorimotor impairments are attributable to primary physiological effects or secondary psychological effects of a weightless environment.
Astronaut Joseph Tanner is assisted into his EMU during training
1994-08-01
S94-40048 (1 August 1994) --- Astronaut Joseph R. Tanner, mission specialist, is assisted by Boeing suit expert Steve Voyles as he prepares to be submerged in a 25-feet deep pool at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Though no extravehicular activity (EVA) is planned for the mission, at least two astronauts are trained to perform tasks that would require a space walk in the event of failure of remote systems. In November, Tanner will join four other NASA astronauts and a European mission specialist for a week and a half in space aboard the Space Shuttle Atlantis. The flight will support the Atmospheric Laboratory for Applications and Science (ATLAS-3) mission.
Biomechanics of the Treadmill Locomotion on the International Space Station
NASA Technical Reports Server (NTRS)
DeWitt, John; Cromwell, R. L.; Ploutz-Snyder, L. L.
2014-01-01
Exercise prescriptions completed by International Space Station (ISS) crewmembers are typically based upon evidence obtained during ground-based investigations, with the assumption that the results of long-term training in weightlessness will be similar to that attained in normal gravity. Coupled with this supposition are the assumptions that exercise motions and external loading are also similar between gravitational environments. Normal control of locomotion is dependent upon learning patterns of muscular activation and requires continual monitoring of internal and external sensory input [1]. Internal sensory input includes signals that may be dependent on or independent of gravity. Bernstein hypothesized that movement strategy planning and execution must include the consideration of segmental weights and inertia [2]. Studies of arm movements in microgravity showed that individuals tend to make errors but that compensation strategies result in adaptations, suggesting that control mechanisms must include peripheral information [3-5]. To date, however, there have been no studies examining a gross motor activity such as running in weightlessness other than using microgravity analogs [6-8]. The objective of this evaluation was to collect biomechanical data from crewmembers during treadmill exercise before and during flight. The goal was to determine locomotive biomechanics similarities and differences between normal and weightless environments. The data will be used to optimize future exercise prescriptions. This project addresses the Critical Path Roadmap risks 1 (Accelerated Bone Loss and Fracture Risk) and 11 (Reduced Muscle Mass, Strength, and Endurance). Data were collected from 7 crewmembers before flight and during their ISS missions. Before launch, crewmembers performed a single data collection session at the NASA Johnson Space Center. Three-dimensional motion capture data were collected for 30 s at speeds ranging from 1.5 to 9.5 mph in 0.5 mph increments with a 12-camera system. During flight, each crewmember completed up to 6 data collection sessions spread across their missions, performing their normal exercise prescription for the test day, resulting in varying data collection protocols between sessions. Motion data were collected by a single HD video camera positioned to view the crewmembers' left side, and tape markers were placed on their feet, legs, and neck on specific landmarks. Before data collection, the crewmembers calibrated the video camera. Video data were collected during the entire exercise session at 30 Hz. Kinematic data were used to determine left leg hip, knee, and ankle range of motion and contact time, flight time, and stride time for each stride. 129 trials in weightlessness were analyzed. Mean time-normalized strides were found for each trial, and cross-correlation procedures were used to examine the strength and direction of relationships between segment movement pattern timing in each gravitational condition. Cross-correlation analyses between gravitational conditions revealed highly consistent movement patterns at each joint. Peak correlation coefficients occurred at 0% phase, indicating there were no lags in movement timing. Joint ranges of motion were similar between gravitational conditions, with some slight differences between subjects. Motion patterns in weightlessness were highly consistent at a given speed with those occurring in 1G, indicating that despite differing sensory input, subjects maintain running kinematics. The data suggest that individuals are capable of compensating for loss of limb weight when creating movement strategies. These results have important implications for creating training programs for use in weightlessness as practitioners can have greater confidence in running motions transferring across gravitational environments. Furthermore, these results have implications for use by researchers investigating motor control mechanisms and investigating hypotheses related to movement strategies when using sensory input that is dependent upon gravity.
STS-42 crewmembers in LESs prepare for egress exercises in JSC's WETF Bldg 29
NASA Technical Reports Server (NTRS)
1991-01-01
STS-42 Discovery, Orbiter Vehicle (OV) 103, crewmembers, (left to right) Commander Ronald J. Grabe, Payload Specialist Roberta L. Bondar, and Pilot Stephen S. Oswald, participate in launch emergency egress (bailout) exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. The crewmembers are outfitted in their launch and entry suits (LESs) and launch and entry helmets (LEHs) as they prepare for the simulated water landing using the WETF's 25 ft deep pool as the ocean.
STS-45 MS Foale dons EMU with technicians' help in JSC's WETF Bldg 29
NASA Technical Reports Server (NTRS)
1991-01-01
STS-45 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) C. Michael Foale stands on a platform as technicians help him don his extravehicular mobility unit (EMU). The technicians are preparing to connect the EMU upper and lower torsos at the waist ring. When fully suited, Foale will be lowered into a nearby 25 ft deep pool for an underwater simulation of contingency extravehicular activity (EVA) procedures. The pool is located in JSC's Weightless Environment Training Facility (WETF) Bldg 29.
STS-26 MS Hilmers floats in life raft during JSC WETF exercises
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) David C. Hilmers, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Hilmers pulls his legs into the inflating raft while he is assisted by two SCUBA-equipped divers. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.
STS-37 Mission Specialist (MS) Jerome Apt floats in raft in JSC's WETF pool
NASA Technical Reports Server (NTRS)
1990-01-01
STS-37 Mission Specialist (MS) Jerome Apt, wearing launch and entry suit (LES) and launch and entry helmet (LEH), propels his one-person life raft by splashing water during emergency egress exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Apt, floating in the life raft, was simulating the steps involved in emergency egress from a Space Shuttle. The WETF's 25-ft pool served as a simulated ocean into which a parachute landing might be made.
STS-26 Commander Hauck floats in life raft during JSC WETF exercises
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Removing water from his raft, Hauck awaits the assistance of SCUBA-equipped divers (one of whom is partially visible at bottom right). The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.
Performance evaluation of candidate space suit elements for the next generation orbital EMU
NASA Technical Reports Server (NTRS)
West, Philip R.; Trausch, Stephanie V.
1992-01-01
The AX-5 all metallic, multibearing technologies developed at the Ames Research Center and the Mk III fabric and metallic technologies developed at the Johnson Space Center were evaluated using the current Space Shuttle space suit technologies as a baseline. Manned evaluations were performed in the Weightless Environment Training Facility and KC-135 zero-gravity aircraft. Joint torque, range, cycle life, and environmental protection characteristics were analyzed during unmanned tests. Both numerical results and test subject comments on performance are presented.
Clément, Gilles R; Bukley, Angelia P; Paloski, William H
2015-01-01
In spite of the experience gained in human space flight since Yuri Gagarin's historical flight in 1961, there has yet to be identified a completely effective countermeasure for mitigating the effects of weightlessness on humans. Were astronauts to embark upon a journey to Mars today, the 6-month exposure to weightlessness en route would leave them considerably debilitated, even with the implementation of the suite of piece-meal countermeasures currently employed. Continuous or intermittent exposure to simulated gravitational states on board the spacecraft while traveling to and from Mars, also known as artificial gravity, has the potential for enhancing adaptation to Mars gravity and re-adaptation to Earth gravity. Many physiological functions are adversely affected by the weightless environment of spaceflight because they are calibrated for normal, Earth's gravity. Hence, the concept of artificial gravity is to provide a broad-spectrum replacement for the gravitational forces that naturally occur on the Earth's surface, thereby avoiding the physiological deconditioning that takes place in weightlessness. Because researchers have long been concerned by the adverse sensorimotor effects that occur in weightlessness as well as in rotating environments, additional study of the complex interactions among sensorimotor and other physiological systems in rotating environments must be undertaken both on Earth and in space before artificial gravity can be implemented.
Methods of body orientation in space in the absence of support under weightless conditions
NASA Technical Reports Server (NTRS)
Yeremin, A. V.; Stepantsov, V. I.; Chekidra, I. F.; Borisenko, I. P.; Kolosov, I. A.
1975-01-01
The experience accumulated in training subjects in methods of body orientation in space indicates the necessity of clear planning of the training process. After theoretical familiarization with the principles of body orientation in space and reviewing training films, practical mastery of the body orientation methods begins with working out of the individual elements on the Zhukovskiy stool. Then, the correctness and sequence of movements are carefully mastered in water, and the motor skills are then reinforced under time deficit conditions, on the vaulting bars, trampolines, and, in the concluding stage of training, the methods of orienting the body in space in weightlessness are worked out in laboratory-aircraft, with and without the spacesuit and with and without a load.
NASA Technical Reports Server (NTRS)
Miquel, J. (Editor); Economos, A. C. (Editor)
1982-01-01
Presentations are given which address the effects of space flght on the older person, the parallels between the physiological responses to weightlessness and the aging process, and experimental possibilities afforded by the weightless environment to fundamental research in gerontology and geriatrics.
Laparoscopic surgery in weightlessness
NASA Technical Reports Server (NTRS)
Campbell, M. R.; Billica, R. D.; Jennings, R.; Johnston, S. 3rd
1996-01-01
BACKGROUND: Performing a surgical procedure in weightlessness has been shown not to be any more difficult than in a 1g environment if the requirements for the restraint of the patient, operator, and surgical hardware are observed. The feasibility of performing a laparoscopic surgical procedure in weightlessness, however, has been questionable. Concerns have included the impaired visualization from the lack of gravitational retraction of the bowel and from floating debris such as blood. METHODS: In this project, laparoscopic surgery was performed on a porcine animal model in the weightlessness of parabolic flight. RESULTS: Visualization was unaffected due to the tethering of the bowel by the elastic mesentery and the strong tendency for debris and blood to adhere to the abdominal wall due to surface tension forces. CONCLUSIONS: There are advantages to performing a laparoscopic instead of an open surgical procedure in a weightless environment. These will become important as the laparoscopic support hardware is miniaturized from its present form, as laparoscopic technology becomes more advanced, and as more surgically capable crew medical officers are present in future long-duration space-exploration missions.
Man and machine design for space flight
NASA Technical Reports Server (NTRS)
Louviere, A. J.
1979-01-01
The factors involved in creating effective designs for living and working in a weightless environment are discussed. Among the areas covered are special provisions for eating and drinking, a special shower nozzle to remove soap, electric shavers designed for vacuum containment of the clippings, and the need for restraint systems at the crew's workstations. Attention is given to the fact that the crewmen assume a neutral body posture in weightlessness which is an important consideration in designing displays, controls, and windows. It is concluded that the incorporation of the change in body posture and the requirement for restraint into future designs will greatly facilitate the crewman's task in the weightless environment.
Geometry and gravity influences on strength capability
NASA Technical Reports Server (NTRS)
Poliner, Jeffrey; Wilmington, Robert P.; Klute, Glenn K.
1994-01-01
Strength, defined as the capability of an individual to produce an external force, is one of the most important determining characteristics of human performance. Knowledge of strength capabilities of a group of individuals can be applied to designing equipment and workplaces, planning procedures and tasks, and training individuals. In the manned space program, with the high risk and cost associated with spaceflight, information pertaining to human performance is important to ensuring mission success and safety. Knowledge of individual's strength capabilities in weightlessness is of interest within many areas of NASA, including workplace design, tool development, and mission planning. The weightless environment of space places the human body in a completely different context. Astronauts perform a variety of manual tasks while in orbit. Their ability to perform these tasks is partly determined by their strength capability as demanded by that particular task. Thus, an important step in task planning, development, and evaluation is to determine the ability of the humans performing it. This can be accomplished by utilizing quantitative techniques to develop a database of human strength capabilities in weightlessness. Furthermore, if strength characteristics are known, equipment and tools can be built to optimize the operators' performance. This study examined strength in performing a simple task, specifically, using a tool to apply a torque to a fixture.
2017-06-18
To observe the morphological changes on cochlear hair cells of rats in simulated weightlessness and inboard noise and to investigate the different changes in three turns of hair cells. Thirty-two healthy SD rats, all males, were randomly divided into four groups: control group, weightlessness group, noise group and weightlessness+noise groups (n=8). Then rats were exposed to -30° head down tilt as simulated weightlessness and inboard noise including steady-state noise which was (72±2) dB SPL and impulse noise up to 160 dB SPL in spaceship environment. The control group was kept in normal condition for 8 weeks. Bilateral auditory brainstem response (ABR) thresholds were tested before and after exposure respectively, and immunofluorescence staining and scanning electron microscopy (SEMs) of basilar membrane were applied after exposure. ABR threshold shifts of each group were higher after exposure. There was difference between ABRs of the experiment groups before and after exposure (P<0.05). IF showed that the inner hair cells (IHCs) missing was the main damage in the basal turn of weightlessness group, the hair cells in the middle turn were swell and in the top turn, the hair cells were not clear. In noise group, the main loss happened in the outer hair cells (OHCs) of the outermost layer. In weightlessness+noise group, the nuclear missing in the basal turn was apparent, and mainly happened at the outermost layer. Meanwhile, the missing of hair cells in the middle turn and top turn was seen at the innermost layer. SEM showed that the cilia in the basal turn of weightlessness group were serious lodging, and occasional absence. Furthermore, the basal cilia in noise group became lodged and absent, and the other two turns were seriously missing. And in weightlessness+noise group, the cilia missing in the basal turn was apparently seen. The damage degree of the four groups: weightlessness+noise group>noise group>weightlessness group>control group and the damage degree of the four turns of hair cells: basal turn>mid turn>top turn. The rats exposed to the above environment for 2 weeks displayed obvious changes in cochlea morphology, and the weightlessness +noise group had the most obvious damage.
STS-37 crewmembers test CETA hand cart during training session in JSC's WETF
NASA Technical Reports Server (NTRS)
1989-01-01
STS-37 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) Jerry L. Ross and MS Jerome Apt test crew and equipment translation aid (CETA) manual hand over hand cart during underwater session in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Wearing an extravehicular mobility unit (EMU), Ross pulls the CETA manual cart along the rail while Apt holds onto the back of the cart. The test will determine how difficult it is to maneuver cargo in such a manner when it is done in space on STS-37. The goal is to find the best method for astronauts to move around the exterior of Space Station Freedom (SSF).
Clément, Gilles R.; Bukley, Angelia P.; Paloski, William H.
2015-01-01
In spite of the experience gained in human space flight since Yuri Gagarin’s historical flight in 1961, there has yet to be identified a completely effective countermeasure for mitigating the effects of weightlessness on humans. Were astronauts to embark upon a journey to Mars today, the 6-month exposure to weightlessness en route would leave them considerably debilitated, even with the implementation of the suite of piece-meal countermeasures currently employed. Continuous or intermittent exposure to simulated gravitational states on board the spacecraft while traveling to and from Mars, also known as artificial gravity, has the potential for enhancing adaptation to Mars gravity and re-adaptation to Earth gravity. Many physiological functions are adversely affected by the weightless environment of spaceflight because they are calibrated for normal, Earth’s gravity. Hence, the concept of artificial gravity is to provide a broad-spectrum replacement for the gravitational forces that naturally occur on the Earth’s surface, thereby avoiding the physiological deconditioning that takes place in weightlessness. Because researchers have long been concerned by the adverse sensorimotor effects that occur in weightlessness as well as in rotating environments, additional study of the complex interactions among sensorimotor and other physiological systems in rotating environments must be undertaken both on Earth and in space before artificial gravity can be implemented. PMID:26136665
STS-53 MS Voss, in EMU, in lowered into JSC's WETF pool for EVA simulation
1992-08-07
S92-43335 (28 July 1992) --- STS-53 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist James S. Voss, wearing extravehicular mobility unit (EMU), is lowered into JSC?s Weightless Environment Training Facility (WETF) Bldg. 29 pool. Voss waves to his daughter standing on the poolside as the platform he is positioned in is submerged in the pool. Technicians on the poolside and scuba equipped divers in the water monitor activities. Once underwater, Voss will participate in contingency extravehicular activity (EVA) procedures.
STS-45 MS Foale in EMU is lowered into JSC's WETF pool for underwater test
1991-02-26
S91-30197 (1 March 1991) --- A wider shot of astronaut C. Michael Foale, mission specialist, standing on a platform which is part of a system that will lower him into a 25-ft. deep pool. Foale used the pool in the weightless environment training facility (WET-F) to rehearse a contingency extravehicular activity (EVA). Two SCUBA-equipped swimmers assist. Astronauts wear pressurized spacesuits configured for achieving a neutrally buoyant condition in the water to simulate both planned and contingency EVAs.
STS-55 Payload Specialist Schlegel with technicians during JSC WETF bailout
NASA Technical Reports Server (NTRS)
1992-01-01
STS-55 Columbia, Orbiter Vehicle (OV) 102, Payload Specialist 2 Hans Schlegel, wearing launch and entry suit (LES), launch and entry helmet (LEH), and parachute, discusses procedures with technicians Karen Porter and Todd Bailey prior to launch emergency egress (bailout) exercises. The session, held in JSC's Weightless Environment Training Facility (WETF) Bldg 29, used the facility's 25-foot deep pool to simulate the ocean as Schlegel and other crewmembers practiced water bailout procedures. Schlegel represents the DLR for the upcoming Spacelab Deutsche 2 (SL-D2) mission.
STS-55 backup Payload Specialist Thiele with technician in JSC's WETF
NASA Technical Reports Server (NTRS)
1992-01-01
STS-55 Columbia, Orbiter Vehicle (OV) 102, backup German Payload Specialist Dr. P. Gerhard Thiele, wearing launch and entry suit (LES), launch and entry helmet (LEH), and parachute, seated on the poolside waits his turn to participate in launch emergency egress (bailout) exercises. The session, held in JSC's Weightless Environment Training Facility (WETF) Bldg 29, used the facility's 25-foot deep pool to simulate the ocean as Thiele and other crewmembers practiced water bailout procedures. Thiele represents the DLR for the upcoming Spacelab Deutsche 2 (SL-D2) mission.
Astronaut Jones donning EMU during space walk simulations for STS-59
1993-08-16
Astronaut Thomas D. Jones, mission specialist, dons a space suit prior to participating in contingency space walk simulations at the JSC Weightless Environment Training Facility (WETF). Jones is assisted by Frank Hernandez (left) and suit technician Charles Hudson of Hamilton Standard. Jones suit is weighted to that he can achieve a neutrally buoyant state once under water. Extravehicular tasks are not planned for the STS-59 mission, but a number of chores are rehearsed in case of failure of remote systems to perform those jobs.
NASA Technical Reports Server (NTRS)
Rajulu, Sudhakar L.; Klute, Glenn K.; Fletcher, Lauren
1994-01-01
The STS-61 Shuttle mission, which took place in December 1993, was solely aimed at servicing the Hubble Space Telescope (HST). Successful completion of this mission was critical to NASA since it was necessary to rectify a flaw in the HST mirror. In addition, NASA had never scheduled a mission with such a high quantity of complex extravehicular activity. To meet the challenge of this mission, the STS-61 crew trained extensively in the Weightless Environment Test Facility at the Johnson Space Center and in the Neutral Buoyancy Simulator at the Marshall Space Flight Center. However, it was suspected that neutral buoyancy training might induce negative training by virtue of the viscous damping effect present in water. The mockups built for this training also did not have the mass properties of the actual orbital replacement units (ORUs). It was felt that the crew should be further trained on mockups with similar mass characteristics. A comprehensive study was designed to address these issues. The study was quantitative, and instrumentation was set up to measure and quantify the forces and moments experienced during ORU mass handling and remote manipulator system run conditions.
Work, exercise, and space flight. 1: Operations, environment, and effects of spaceflight
NASA Technical Reports Server (NTRS)
Thornton, William
1989-01-01
The selection, training, and operations of space flight impose significant physical demands which seem to be adequately met by the existing physical training facilities and informal individual exercise programs. The professional astronaut population has, by selection, better than average health and physical capacity. The essentials of life on earth are adequately met by the spacecraft. However, as the human body adapts to weightlessness, it is compromised for the usual life on earth, but readaptation is rapid. Long term flight without countermeasures will produce major changes in the cardiovascular, respiratory, musculoskeletal and neuromuscular systems. There is strong theoretical and experimental evidence from 1-g studies and limited in-flight evidence to believe that exercise is a key counter-measure to many of these adaptations.
STS-65 Mission Specialist Chiao floats in a single person raft in JSC's WETF
NASA Technical Reports Server (NTRS)
1994-01-01
Having just deployed a small, single-person life raft, astronaut and STS-65 Mission Specialist Leroy Chiao, outfitted in a launch and entry suit (LES) and launch and entry helmet (LEH), floats in a 25-feet deep pool at the Johnson Space Center (JSC). The astronaut was in the Weightless Environment Training Facility (WETF) Bldg 29 pool for a training exercise, designed to familiarize crewmembers with procedures to call on in the event of an emergency egress situation with the Space Shuttle. Chiao will join five other NASA astronauts and a Japanese payload specialist for the second International Microgravity Laboratory 2 (IML-2) mission aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.
NASA Technical Reports Server (NTRS)
Kakurin, L. I.; Gregoryev, A. I.; Mikhailov, V. M.; Tishler, V. A.
1980-01-01
A comparative assessment of the effectiveness of different prophylactic procedures to prevent the adverse effects of weightlessness is presented. It is concluded that: physical training is most effective but no single method by itself produces the full effect, and an adjustment of regimes to one another enhances the effect. The approved complex of prophylactic procedures affected basic changes occurring in hypokinesia: deficit of muscular activity, no or reduced BP hydrostatic component, reduced volume of blood circulation, reduced hydration level, and the application of various prophylactic complexes during 49 day antiorthostatic hypodynamia eliminated or reduced the adverse effects of weightlessness in simulation.
Spaceflight and bone turnover - Correlation with a new rat model of weightlessness
NASA Technical Reports Server (NTRS)
Morey, E. R.
1979-01-01
Earlier manned spaceflight studies have revealed that the near-weightless environment of orbital flight produce certain biological effects in humans, including abnormalities in mineral metabolism. The data collected were compatible with bone mineral loss. Cosmos 782 and 936 experiments have shown a decrease in rat bone formation rate. In this paper, a rat model of weightlessness is described, which is unique in that the animal is free to move about a 360-deg arc. The model meets the requirements for an acceptable system. Data from the model and spaceflight are presented. Many of the responses noted in suspended animals indicate that the model closely mimics results from rats and man exposed to near-weightlessness during orbital spaceflight.
NASA Technical Reports Server (NTRS)
Comfort, A.
1982-01-01
The relevancy of gerontology and geriatrics to the discipline of aerospace medicine is examined. It is noted that since the shuttle program gives the facility to fly passengers, including specially qualified older persons, it is essential to examine response to acceleration, weightlessness, and re-entry over the whole adult lifespan, not only its second quartile. The physiological responses of the older person to weightlessness and the return to Earth gravity are reviewed. The importance of the use of the weightless environment to solve critical problems in the fields of fundamental gerontology and geriatrics is also stressed.
NASA Technical Reports Server (NTRS)
1973-01-01
The materials science and technology investigation conducted on the Skylab vehicle are discussed. The thirteen experiments that support these investigations have been planned to evaluate the effect of a weightless environment on melting and resolidification of a variety of metals and semiconductor crystals, and on combustion of solid flammable materials. A glossary of terms which define the space activities and a bibliography of related data are presented.
STS-31 MS Sullivan poses next to stowed EMU in OV-103's airlock
1990-04-29
STS-31 Mission Specialist (MS) Kathryn D. Sullivan poses for a picture before beginning extravehicular mobility unit (EMU) donning procedures in the airlock of Discovery, Orbiter Vehicle (OV) 103. Sullivan will remove the lower torso restraint and don EMU which is supported on an airlock adapter plate (AAP). When suited, Sullivan will be ready for contingency extravehicular activity (EVA) in the event that problems arise with the Hubble Space Telescope (HST) deployment. Displayed on the front of the EMU are the STS-31 mission insignia and the JSC Weightless Environment Training Facility (WETF) insignia.
STS-42 Payload Specialist Bondar in single person life raft at JSC's WETF
NASA Technical Reports Server (NTRS)
1991-01-01
STS-42 Discovery, Orbiter Vehicle (OV) 103, Payload Specialist Roberta L. Bondar, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in single person life raft during launch emergency egress exercises held in the Weightless Environment Training Facility (WETF) Bldg 29 pool. Bondar holds the Space Shuttle Search and Rescue Satellite Aided Tracking (SARSAT) portable locating beacon (PLB). The STS-42 crewmembers rehearsed procedures for launch emergency egress and a water landing. Bondar is representing Canada during the International Microgravity Laboratory 1 (IML-1) mission aboard OV-103.
STS-26 MS Nelson during Crew escape system (CES) testing in JSC WETF Bldg 29
1988-07-08
S88-42409 (20 July 1988) --- STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) George D. Nelson participates in crew escape system (CES) testing in JSC Weightless Environment Training Facility (WETF) Bldg 29. Nelson, wearing the newly designed (navy blue) launch and entry suit (LES), floats in WETF pool with the aid of an underarm flotation device (modern version of Mas West floats). He awaits the assistance of SCUBA-equipped divers during a simulation of escape and rescue operations utilizing a new CES pole for emergency exit from the Space Shuttle.
STS-56 MS1 Foale, in LES/LEH, floats during bailout exercises in JSC WETF
NASA Technical Reports Server (NTRS)
1993-01-01
STS-56 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist 1 (MS1) Michael Foale, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in a single person life raft during launch emergency egress (bailout) exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Foale's body is covered with the life raft tarp. His head and the space shuttle search and rescue satellite aided tracking (SARSAT) antenna protrude above the tarp. This simulation prepares the astronauts for the event of an emergency egress and subsequent water landing during launch.
STS-48 MS Buchli dons EMU with technicians' assistance prior to JSC WETF dive
NASA Technical Reports Server (NTRS)
1991-01-01
STS-48 Mission Specialist (MS) James F. Buchli, wearing an extravehicular mobility unit (EMU) and communications carrier assembly (CCA), smiles as he listens to a technician's instructions prior to an underwater extravehicular activity (EMU) session in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Buchli is fully suited with the exception of his helmet as he stands on the WETF platform. He will be lowered into the WETF's 25-foot deep pool and once underwater he will practice contingency EVA operations for his upcoming mission aboard Discovery, Orbiter Vehicle (OV) 103.
STS-50 Payload Specialist DeLucas floats in life raft during JSC WETF bailout
NASA Technical Reports Server (NTRS)
1992-01-01
STS-50 Columbia, Orbiter Vehicle (OV) 102, United States Microgravity Laboratory 1 (USML-1) Payload Specialist Lawrence J. DeLucas, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in a single person life raft during launch emergency egress (bailout) exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. During the exercises, the WETF's 25-foot deep pool was used to simulate the ocean. Crewmembers were dropped from their parachute harnesses into the pool, inflated their life rafts, and used survival equipment to protect themselves from the elements and signal for help.
STS-26 MS Lounge floats in life raft during JSC WETF exercises
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) John M. Lounge, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Lounge pulls cord on life raft and enlists the aid of a SCUBA-equipped diver. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle. Lounge is wearing gear like that each STS-26 crewmember and subsequent crews will carry onboard during launch.
STS-55 MS2 Precourt in life raft during egress exercises at JSC's WETF
NASA Technical Reports Server (NTRS)
1992-01-01
Using a small single person life raft, STS-55 Mission Specialist 2 (MS2) Charles J. Precourt floats in the pool located in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Precourt, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), operates the Space Shuttle Search and Rescue Satellite Aided Tracking (SARSAT) portable locating beacon (PLC) as SCUBA-equipped diver looks on. Precourt, along with other crewmembers, practiced launch emergency egress (bailout). STS-55 with the Spacelab Deutsche 2 (SL-D2) payload will fly aboard Columbia, Orbiter Vehicle (OV) 102, in 1993.
STS-65 Mission Specialist Walz poolside at JSC's WETF during contingency exer
NASA Technical Reports Server (NTRS)
1994-01-01
STS-65 Mission Specialist Carl E. Walz, holding a NIKON camera, stands on the poolside of the Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) during extravehicular activity (EVA) contingency exercise preparations. Walz stands by to photograph two of his crewmates about to be lowered into the WETF's 25-feet deep pool. Astronauts Donald A. Thomas and Leroy Chiao were about to be submerged and made to be neutrally buoyant in order to rehearse several contingency tasks that would require a spacewalk. No spacewalks are scheduled for the STS-65 International Microgravity Laboratory 2 (IML-2) mission.
View of Zero-G training for astronauts and payload specialists
1984-08-27
Paul Scully-Power, 41-G payload specialist, links arms with two others as they experience weightlessness in the KC-135 training aircraft. The trio appears to be flying toward the front of the aircraft while others take photos.
CREW TRAINING - STS-33/51L (ZERO-G)
1985-10-16
S85-42472 (16 Oct. 1985) --- Teacher-in-Space trainees on the KC-135 for zero-G training. Sharon Christa McAuliffe, right, and Barbara R. Morgan, play leap-frog in the temporary weightlessness of the KC-135. Photo credit: NASA
Ground-based training for the stimulus rearrangement encountered during spaceflight
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Parker, D. E.; Harm, D. L.; Michaud, L.
1988-01-01
Approximately 65-70% of the crew members now experience motion sickness of some degree during the first 72 h of orbital flight on the Space Shuttle. Lack of congruence among signals from spatial orientation systems leads to sensory conflict, which appears to be the basic cause of space motion sickness. A project to develop training devices and procedures to preadapt astronauts to the stimulus rearrangements of microgravity is currently being pursued. The preflight adaptation trainers (PATs) are intended to: demonstrate sensory phenomena likely to be experienced in flight, allow astronauts to train preflight in an altered sensory environment, alter sensory-motor reflexes, and alleviate or shorten the duration of space motion sickness. Four part-task PATs are anticipated. The trainers are designed to evoke two adaptation processes, sensory compensation and sensory reinterpretation, which are necessary to maintain spatial orientation in a weightless environment. Recent investigations using one of the trainers indicate that self-motion perception of linear translation is enhanced when body tilt is combined with visual surround translation, and that a 270 degrees phase angle relationship between tilt and surround motion produces maximum translation perception.
Yoshimitsu, Kazuhiro; Shiba, Naoto; Matsuse, Hiroo; Takano, Yoshio; Matsugaki, Tohoru; Inada, Tomohisa; Tagawa, Yoshihiko; Nagata, Kensei
2010-01-01
Extreme skeletal muscle atrophy is rampant in astronauts exposed to extended periods of microgravity (muG), and it is one of the main problems in human space exploration. A "Hybrid training" (HYB) method utilizing combined electrical stimulation and voluntary muscle contraction has been developed as a possible solution. A wearable HYB device and a virtual reality (VR) system were developed for use in space, and were verified at muG generated by parabolic flight (PF). A 36-year-old male subject performed HYB of reciprocal flexion and extension as a knee joint exercise training in a seated position at 1G, 2G and muG. The wearable HYB device and VR system developed for the study functioned well during the flight. However knee extension was insufficient at 1G and 2G, and the maximum knee extension angles at 1G and 2G were smaller than at muG. The extension velocity in the latter half of each motion was slower than in the first half at 1G and 2G, but no difference in velocity was observed at muG. The subject could extend the knee joint sufficiently and keep a constant extension velocity, because his legs were weightless at muG. The congruity between the subject's actual joint motions and instructed joint motions during muG was improved, when VR was employed with or without body fixation; accordingly, the subject was able to perform the desired joint motion. The VR system improved HYB exercise performance at muG during PF. HYB is considered a useful training method for future human space exploration.
The exercise and environmental physiology of extravehicular activity
NASA Technical Reports Server (NTRS)
Cowell, Stephenie A.; Stocks, Jodie M.; Evans, David G.; Simonson, Shawn R.; Greenleaf, John E.
2002-01-01
Extravehicular activity (EVA), i.e., exercise performed under unique environmental conditions, is indispensable for supporting daily living in weightlessness and for further space exploration. From 1965-1996 an average of 20 h x yr(-1) were spent performing EVA. International Space Station (ISS) assembly will require 135 h x yr(-1) of EVA, and 138 h x yr(-1) is planned for post-construction maintenance. The extravehicular mobility unit (EMU), used to protect astronauts during EVA, has a decreased pressure of 4.3 psi that could increase astronauts' risk of decompression sickness (DCS). Exercise in and repeated exposure to this hypobaria may increase the incidence of DCS, although weightlessness may attenuate this risk. Exercise thermoregulation within the EMU is poorly understood; the liquid cooling garment (LCG), worn next to the skin and designed to handle thermal stress, is manually controlled. Astronauts may become dehydrated (by up to 2.6% of body weight) during a 5-h EVA, further exacerbating the thermoregulatory challenge. The EVA is performed mainly with upper body muscles; but astronauts usually exercise at only 26-32% of their upper body maximal oxygen uptake (VO2max). For a given ground-based work task in air (as opposed to water), the submaximal VO2 is greater while VO2max and metabolic efficiency are lower during ground-based arm exercise as compared with leg exercise, and cardiovascular responses to exercise and training are also different for arms and legs. Preflight testing and training, whether conducted in air or water, must account for these differences if ground-based data are extrapolated for flight requirements. Astronauts experience deconditioning during microgravity resulting in a 10-20% loss in arm strength, a 20-30% loss in thigh strength, and decreased lower-body aerobic exercise capacity. Data from ground-based simulations of weightlessness such as bed rest induce a 6-8% decrease in upper-body strength, a 10-16% loss in thigh extensor strength, and a 15-20% decrease in lower-body aerobic exercise capacity. Changes in EVA support systems and training based on a greater understanding of the physiological aspects of exercise in the EVA environment will help to insure the health, safety, and efficiency of working astronauts.
The exercise and environmental physiology of extravehicular activity.
Cowell, Stephenie A; Stocks, Jodie M; Evans, David G; Simonson, Shawn R; Greenleaf, John E
2002-01-01
Extravehicular activity (EVA), i.e., exercise performed under unique environmental conditions, is indispensable for supporting daily living in weightlessness and for further space exploration. From 1965-1996 an average of 20 h x yr(-1) were spent performing EVA. International Space Station (ISS) assembly will require 135 h x yr(-1) of EVA, and 138 h x yr(-1) is planned for post-construction maintenance. The extravehicular mobility unit (EMU), used to protect astronauts during EVA, has a decreased pressure of 4.3 psi that could increase astronauts' risk of decompression sickness (DCS). Exercise in and repeated exposure to this hypobaria may increase the incidence of DCS, although weightlessness may attenuate this risk. Exercise thermoregulation within the EMU is poorly understood; the liquid cooling garment (LCG), worn next to the skin and designed to handle thermal stress, is manually controlled. Astronauts may become dehydrated (by up to 2.6% of body weight) during a 5-h EVA, further exacerbating the thermoregulatory challenge. The EVA is performed mainly with upper body muscles; but astronauts usually exercise at only 26-32% of their upper body maximal oxygen uptake (VO2max). For a given ground-based work task in air (as opposed to water), the submaximal VO2 is greater while VO2max and metabolic efficiency are lower during ground-based arm exercise as compared with leg exercise, and cardiovascular responses to exercise and training are also different for arms and legs. Preflight testing and training, whether conducted in air or water, must account for these differences if ground-based data are extrapolated for flight requirements. Astronauts experience deconditioning during microgravity resulting in a 10-20% loss in arm strength, a 20-30% loss in thigh strength, and decreased lower-body aerobic exercise capacity. Data from ground-based simulations of weightlessness such as bed rest induce a 6-8% decrease in upper-body strength, a 10-16% loss in thigh extensor strength, and a 15-20% decrease in lower-body aerobic exercise capacity. Changes in EVA support systems and training based on a greater understanding of the physiological aspects of exercise in the EVA environment will help to insure the health, safety, and efficiency of working astronauts.
Parabolic flight experience is related to increased release of stress hormones.
Schneider, Stefan; Brümmer, Vera; Göbel, Simon; Carnahan, Heather; Dubrowski, Adam; Strüder, Heiko K
2007-06-01
Numerous studies have shown significant effects of weightlessness on adaptational processes of the CNS, cardiovascular and/or muscular system. Most of these studies have been carried out during parabolic flights, using the recurring 20 s of weightlessness at each parabola. Although some of these studies reported on potential influences not only of weightlessness but also of the stressful situation within a parabolic flight, especially provoked by the ongoing changes between 1.8, 1 and 0 G, so far there seems to be only marginal information about objective parameters of stress evoked by parabolic flights. By collecting blood samples from a permanent venous catheter several times during parabolic flights, we were able to show an increase of prolactin, cortisol and ACTH in the course of a 120 min flight. We conclude, therefore, that previous reported effects of weightlessness on adaptational processes may be affected not only by weightlessness but also by the exposure to other stressors experienced within the environment of a Zero-G airbus.
MSFC Skylab neutral buoyancy simulator
NASA Technical Reports Server (NTRS)
1974-01-01
The use of a neutral buoyancy simulator for developing extravehicular activity systems and for training astronauts in weightless activities is discussed. The construction of the facility and the operations are described. The types of tests and the training activities conducted in the simulator are reported. Photographs of the components of the simulator and actual training exercises are included.
Spacsuit donning and doffing in zero-g training for Don Peterson STS-6
NASA Technical Reports Server (NTRS)
1982-01-01
Spacsuit donning and doffing in zero-g training for Don Peterson of the STS-6 crew. The training is being held aboard the KC-135 to simulate weightlessness. He is being assisted to don the lower torso of the extravehicular mobility unit (EMU) by an ILC technician.
Normal Impingement of a Circular Liquid Jet onto a Screen in a Weightless Environment
NASA Technical Reports Server (NTRS)
Symons, E. P.
1976-01-01
The normal impingement of a circular liquid jet onto a fine-mesh screen in a weightless environment was investigated. Equations were developed to predict the velocity of the emerging jet on the downstream side of the screen as a function of screen and liquid parameters and of the velocity of the impinging jet. Additionally, the stability of the emerging jet was found to be Weber number dependent. In general, excepting at high velocities, the screen behaved much as a baffle, deflecting the major portion of the impinging flow.
Motor imagery: lessons learned in movement science might be applicable for spaceflight
Bock, Otmar; Schott, Nadja; Papaxanthis, Charalambos
2015-01-01
Before participating in a space mission, astronauts undergo parabolic-flight and underwater training to facilitate their subsequent adaptation to weightlessness. Unfortunately, similar training methods can’t be used to prepare re-adaptation to planetary gravity. Here, we propose a quick, simple and inexpensive approach that could be used to prepare astronauts both for the absence and for the renewed presence of gravity. This approach is based on motor imagery (MI), a process in which actions are produced in working memory without any overt output. Training protocols based on MI have repeatedly been shown to modify brain circuitry and to improve motor performance in healthy young adults, healthy seniors and stroke victims, and are routinely used to optimize performance of elite athletes. We propose to use similar protocols preflight, to prepare for weightlessness, and late inflight, to prepare for landing. PMID:26042004
Compiling a Comprehensive EVA Training Dataset for NASA Astronauts
NASA Technical Reports Server (NTRS)
Laughlin, M. S.; Murray, J. D.; Lee, L. R.; Wear, M. L.; Van Baalen, M.
2016-01-01
Training for a spacewalk or extravehicular activity (EVA) is considered a hazardous duty for NASA astronauts. This places astronauts at risk for decompression sickness as well as various musculoskeletal disorders from working in the spacesuit. As a result, the operational and research communities over the years have requested access to EVA training data to supplement their studies. The purpose of this paper is to document the comprehensive EVA training data set that was compiled from multiple sources by the Lifetime Surveillance of Astronaut Health (LSAH) epidemiologists to investigate musculoskeletal injuries. The EVA training dataset does not contain any medical data, rather it only documents when EVA training was performed, by whom and other details about the session. The first activities practicing EVA maneuvers in water were performed at the Neutral Buoyancy Simulator (NBS) at the Marshall Spaceflight Center in Huntsville, Alabama. This facility opened in 1967 and was used for EVA training until the early Space Shuttle program days. Although several photographs show astronauts performing EVA training in the NBS, records detailing who performed the training and the frequency of training are unavailable. Paper training records were stored within the NBS after it was designated as a National Historic Landmark in 1985 and closed in 1997, but significant resources would be needed to identify and secure these records, and at this time LSAH has not pursued acquisition of these early training records. Training in the NBS decreased when the Johnson Space Center in Houston, Texas, opened the Weightless Environment Training Facility (WETF) in 1980. Early training records from the WETF consist of 11 hand-written dive logbooks compiled by individual workers that were digitized at the request of LSAH. The WETF was integral in the training for Space Shuttle EVAs until its closure in 1998. The Neutral Buoyancy Laboratory (NBL) at the Sonny Carter Training Facility near JSC opened in March 1997 and is the current site for US EVA training. Other space agencies also have used water to simulate weightlessness and train for EVAs. Russia has a training facility similar to the NBL named the Hydro Lab. The Hydro Lab began operations at the Gagarin Cosmonaut Training Center (GCTC) in 1980 and has been used extensively to the present. Although a majority of training in the Hydro Lab uses the Russian Orlan suit, a small number of sessions have been conducted using a NASA suit. The Japanese Weightlessness Environment Test System (WETS) went into service at the Tsukuba Space Center in 1997 but was closed in 2011 due to extensive earthquake damage. Several sessions were performed using a NASA suit, but these sessions were short and considered "development" runs. LSAH has assembled records from the WETF, NBL and Hydro Lab. Recording of the EVA training data has changed considerably from 1967 to present. The goal of early record keeping was to track use of hardware components, and the person involved was treated as a suited operator, not as a focus of interest. Records from the past two decades are fairly precise with the person, date, suit type and size noted. On occasion the length of the session was listed, but this data is not included on all records. Records were merged from data sources and extensive cleaning of the records was required since the multiple sources frequently overlapped and duplicated records. To date the LSAH EVA training dataset includes over 12,500 EVA training sessions performed by NASA astronauts since 1981. The following variables are included for most records: Name, Sex, Event date, Event name, HUT type, HUT size, Facility, and Estimated run time. For a smaller subset of records, the following variables are available: Actual run time, Time inverted, and the suit components Waist bearing type, Shoulder harness, Shoulder pads, and Teflon inserts. The LSAH dataset is currently the most complete resource for data regarding EVA training sessions performed by NASA astronauts. However, it is not 100 percent complete since the WETS (Japan) and NBS (Marshall) training facility data were not included. This dataset has been compiled by LSAH to study the relationship of EVA training to musculoskeletal injuries but has many other non-medical applications. This dataset can be provided to other groups in order to respond to program and research questions with appropriate board approvals.
Endocrine and metabolic changes in payload specialist (L-1)
NASA Technical Reports Server (NTRS)
Matsui, Nobuo
1993-01-01
The endocrine system plays an important role in the adaptation to unusual environments by secreting hormones to control metabolism. Since human beings have long evolved on the surface of the Earth under a gravity environment, the weightless environment must be quite unusual for them. The purpose of this experiment is to study the mechanisms of human adaptation to a weightless environment from endocrine and metabolic changes. Our study plan is focused on four major physiological changes which were reported during past space flights or which may be expected to occur under that condition: (1) hormone and metabolic changes associated with fluid shift; (2) bone demineralization and muscle atrophy; (3) altered circadian rhythm; and (4) stress reaction during space flight.
GEMINI-TITAN (GT)-3 - WEIGHTLESSNESS EXPERIMENT - AMES RESEARCH CENTER (ARC), CA
1965-03-01
S65-18762 (March 1965) --- Effects of the weightless environment on cell division, the basic growth process for living tissue, will be studied during the Gemini-Titan 3 flight scheduled for March 23, 1965. A spiny black sea urchin (upper left) is stimulated by mild electric shock or potassium chloride. As a result it sheds many thousands of eggs. When fertilized, these eggs become actively dividing cells very similar in basic processes to cells of other animals, including humans. These pictures show stages of cell division. At upper right is a single cell; at lower right cell divisions have produced many cells. Cell photos are magnified about 700 times, and all cells shown are too small to be seen by the naked eye. (Photos at upper right and lower left are of sea urchin eggs. Group of cells at lower right are from a sand dollar, which like the sea urchin, is an Echinoderm. Its eggs are virtually identical and are used interchangeably with those of the sea urchin in NASA Ames Center weightlessness experiments.) The Gemini experiment will involve cell division like that shown here. This will take place during several hours of weightlessness aboard the Gemini spacecraft. The experiment will be flown back to laboratories at Cape Kennedy after spacecraft recovery. It has been designed so that any abnormal cell division found by postflight analysis should suggest that the weightless environment has effects on individual cells. This might mean hazards for prolonged periods of manned spaceflight.
STS-57 MS2 Sherlock dons EMU upper torso with technicians' help at JSC's WETF
NASA Technical Reports Server (NTRS)
1992-01-01
STS-57 Mission Specialist 2 (MS2) Nancy J. Sherlock, wearing the liquid cooling and ventilation garment (LCVG) and an extravehicular mobility unit (EMU) lower torso, squats under the EMU upper torso and prepares to raise her arms into the sleeves. Technicians stand on either side of Sherlock and are ready to assist her in donning the upper torso. When fully suited the platform Sherlock is on will be lowered into the 25 foot deep pool located in JSC's Weightless Environment Training Facility (WETF) Bldg 29. During the underwater simulation, Sherlock will practice extravehicular activity (EVA) procedures.
STS-65 Mission Specialist Chiao in EMU prepares for WETF contingency EVA
NASA Technical Reports Server (NTRS)
1994-01-01
STS-65 Mission Specialist Leroy Chiao, fully suited in an extravehicular mobility unit (EMU) and helmet, prepares to be lowered into a 25-feet deep pool at the Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) Bldg 29. Chiao will practice door and latch contingency extravehicular activity (EVA) procedures once underwater. Mission Specialist Donald A. Thomas will join Chiao in the simulation. The two crewmates will be submerged and made to be neutrally buoyant in order to rehearse the contingency tasks that would require a spacewalk. No spacewalks are scheduled for the STS-65 International Microgravity Laboratory 2 (IML-2) mission.
STS-65 Mission Specialist Chiao in EMU prepares for WETF contingency EVA
NASA Technical Reports Server (NTRS)
1994-01-01
STS-65 Mission Specialist Leroy Chiao, fully suited in an extravehicular mobility unit (EMU) and helmet, stands on a platform and prepares to be lowered into a 25-feet deep pool at the Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) Bldg 29. Chiao will practice door and latch contingency extravehicular activity (EVA) procedures once underwater. Mission Specialist Donald A. Thomas will join Chiao in the simulation. The two crewmates will be submerged and made to be neutrally buoyant in order to rehearse the contingency tasks that would require a spacewalk. No spacewalks are scheduled for the STS-65 International Microgravity Laboratory 2 (IML-2) mission.
Distributed automatic control of technological processes in conditions of weightlessness
NASA Technical Reports Server (NTRS)
Kukhtenko, A. I.; Merkulov, V. I.; Samoylenko, Y. I.; Ladikov-Royev, Y. P.
1986-01-01
Some problems associated with the automatic control of liquid metal and plasma systems under conditions of weightlessness are examined, with particular reference to the problem of stability of liquid equilibrium configurations. The theoretical fundamentals of automatic control of processes in electrically conducting continuous media are outlined, and means of using electromagnetic fields for simulating technological processes in a space environment are discussed.
Alterations in gut transport of minerals and in binding proteins during simulated weightlessness
NASA Technical Reports Server (NTRS)
Bikle, D. D.
1984-01-01
The structural components of the skeleton develop and are maintained in a 1 g environment, shaped by the mechanical load to which they are constantly exposed. Altering such a mechanical load by reducing the gravitational force imposed on the system, as in space flight, has profound effects on the skeleton and permits an exploration of the molecular events which regulate normal skeletal homeostasis. The objective was to determine whether simulated weightlessness reduced intestinal calcium transport, and if so, to determine the molecular mechanisms for such an effect. A nonstressful tail suspension in which the rats gained weight normally while suspended was used to simulate weightlessness. A significant change in intestinal calcium transport was not demonstrated. However, a cyclic change in bone formation with suspension was shown. Based on these observations, the objective changed to determination of the hormonal regulation of bone formation during simulated weightlessness.
Casellato, Claudia; Pedrocchi, Alessandra; Ferrigno, Giancarlo
2017-01-01
Switching between contexts affects the mechanisms underlying motion planning, in particular it may entail reranking the variables to be controlled in defining the motor solutions. Three astronauts performed multiple sessions of whole-body pointing, in normogravity before launch, in prolonged weightlessness onboard the International Space Station, and after return. The effect of gravity context on kinematic and dynamic components was evaluated. Hand trajectory was gravity independent; center-of-mass excursion was highly variable within and between subjects. The body-environment effort exchange, expressed as inertial ankle momentum, was systematically lower in weightlessness than in normogravity. After return on Earth, the system underwent a rapid 1-week readaptation. The study indicates that minimizing the control effort is given greater weight when optimizing the motor plan in weightlessness compared to normogravity: the hierarchies of the controlled variables are gravity dependent.
STS-31 MS McCandless and MS Sullivan during JSC WETF underwater simulation
1990-03-05
This overall view shows STS-31 Mission Specialist (MS) Bruce McCandless II (left) and MS Kathryn D. Sullivan making a practice space walk in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. McCandless works with a mockup of the remote manipulator system (RMS) end effector which is attached to a grapple fixture on the Hubble Space Telescope (HST) mockup. Sullivan manipulates HST hardware on the Support System Module (SSM) forward shell. SCUBA-equipped divers monitor the extravehicular mobility unit (EMU) suited crewmembers during this simulated extravehicular activity (EVA). No EVA is planned for the Hubble Space Telescope (HST) deployment, but the duo has trained for contingencies which might arise during the STS-31 mission aboard Discovery, Orbiter Vehicle (OV) 103. Photo taken by NASA JSC photographer Sheri Dunnette.
STS-31 MS McCandless and MS Sullivan during JSC WETF underwater simulation
NASA Technical Reports Server (NTRS)
1990-01-01
This overall view shows STS-31 Mission Specialist (MS) Bruce McCandless II (left) and MS Kathryn D. Sullivan making a practice space walk in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. McCandless works with a mockup of the remote manipulator system (RMS) end effector which is attached to a grapple fixture on the Hubble Space Telescope (HST) mockup. Sullivan manipulates HST hardware on the Support System Module (SSM) forward shell. SCUBA-equipped divers monitor the extravehicular mobility unit (EMU) suited crewmembers during this simulated extravehicular activity (EVA). No EVA is planned for the Hubble Space Telescope (HST) deployment, but the duo has trained for contingencies which might arise during the STS-31 mission aboard Discovery, Orbiter Vehicle (OV) 103. Photo taken by NASA JSC photographer Sheri Dunnette.
1970-11-18
After the end of the Apollo missions, NASA's next adventure into space was the marned spaceflight of Skylab. Using an S-IVB stage of the Saturn V launch vehicle, Skylab was a two-story orbiting laboratory, one floor being living quarters and the other a work room. The objectives of Skylab were to enrich our scientific knowledge of the Earth, the Sun, the stars, and cosmic space; to study the effects of weightlessness on living organisms, including man; to study the effects of the processing and manufacturing of materials utilizing the absence of gravity; and to conduct Earth resource observations. At the Marshall Space Flight Center (MSFC), astronauts and engineers spent hundreds of hours in an MSFC Neutral Buoyancy Simulator (NBS) rehearsing procedures to be used during the Skylab mission, developing techniques, and detecting and correcting potential problems. The NBS was a 40-foot deep water tank that simulated the weightlessness environment of space. This photograph shows astronaut Ed Gibbon (a prime crew member of the Skylab-4 mission) during the neutral buoyancy Skylab extravehicular activity training at the Apollo Telescope Mount (ATM) mockup. One of Skylab's major components, the ATM was the most powerful astronomical observatory ever put into orbit to date.
STS-65 Mission Specialist Chiao in EMU prepares for WETF contingency EVA
NASA Technical Reports Server (NTRS)
1994-01-01
STS-65 Mission Specialist Leroy Chiao, fully suited in an extravehicular mobility unit (EMU) and helmet, stands on a platform suspended via an overhead crane as he is lowered into a 25-feet deep pool at the Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) Bldg 29. Chiao prepares to be immersed in the pool to practice door and latch contingency extravehicular activity (EVA) procedures. Although no spacewalk is planned for the STS-65 International Microgravity Laboratory 2 (IML-2) mission, NASA always trains some of each mission's crewmembers to perform in-space tasks that would be required in the event of remote system failure. For 14 years, the WETF pool has been used to train astronauts for spacewalks and to evaluate certain hardware and procedures. Chiao's EMU is weighted to enable the astronaut to achieve neutral buoyancy once in the tank. SCUBA-equipped divers already in the pool guide the platform into the water.
NASA Technical Reports Server (NTRS)
Corker, K.; Bejczy, A. K.
1984-01-01
The effect of weightlessness on the human operator's performance in force reflecting position control of remote manipulators was investigated. A gravity compensation system was developed to simulate the effect of weightlessness on the operator's arm. A universal force reflecting hand controller (FRHC) and task simulation software were employed. Two experiments were performed because of anticipated disturbances in neuromotor control specification on the human operator in an orbital control environment to investigate: (1) the effect of controller stiffness on the attainment of a learned terminal position in the three dimensional controller space, and (2) the effect of controller stiffness and damping on force tracking of the contour of a simulated three dimensional cube using the part simulation of weightless conditions. The results support the extension of neuromotor control models, which postulate a stiffness balance encoding of terminal position, to three dimensional motion of a multilink system, confirm the existence of a disturbance in human manual control performance under gravity compensated conditions, and suggest techniques for compensation of weightlessness induced performance decrement through appropriate specification of hand controller response characteristics. These techniques are based on the human control model.
Orientation Preferences and Motion Sickness Induced in a Virtual Reality Environment.
Chen, Wei; Chao, Jian-Gang; Zhang, Yan; Wang, Jin-Kun; Chen, Xue-Wen; Tan, Cheng
2017-10-01
Astronauts' orientation preferences tend to correlate with their susceptibility to space motion sickness (SMS). Orientation preferences appear universally, since variable sensory cue priorities are used between individuals. However, SMS susceptibility changes after proper training, while orientation preferences seem to be intrinsic proclivities. The present study was conducted to investigate whether orientation preferences change if susceptibility is reduced after repeated exposure to a virtual reality (VR) stimulus environment that induces SMS. A horizontal supine posture was chosen to create a sensory context similar to weightlessness, and two VR devices were used to produce a highly immersive virtual scene. Subjects were randomly allocated to an experimental group (trained through exposure to a provocative rotating virtual scene) and a control group (untrained). All subjects' orientation preferences were measured twice with the same interval, but the experimental group was trained three times during the interval, while the control group was not. Trained subjects were less susceptible to SMS, with symptom scores reduced by 40%. Compared with untrained subjects, trained subjects' orientation preferences were significantly different between pre- and posttraining assessments. Trained subjects depended less on visual cues, whereas few subjects demonstrated the opposite tendency. Results suggest that visual information may be inefficient and unreliable for body orientation and stabilization in a rotating visual scene, while reprioritizing preferences for different sensory cues was dynamic and asymmetric between individuals. The present findings should facilitate customization of efficient and proper training for astronauts with different sensory prioritization preferences and dynamic characteristics.Chen W, Chao J-G, Zhang Y, Wang J-K, Chen X-W, Tan C. Orientation preferences and motion sickness induced in a virtual reality environment. Aerosp Med Hum Perform. 2017; 88(10):903-910.
NASA Technical Reports Server (NTRS)
Alwood, J. S.; Limoli, C. L.; Delp, M. D.; Castillo, A. B.; Globus, R. K.
2012-01-01
Weightlessness causes a cephalad fluid shift and reduction in mechanical stimulation, adversely affecting both cortical and trabecular bone tissue in astronauts. In rodent models of weightlessness, the onset of bone loss correlates with reduced skeletal perfusion, reduced and rarified vasculature and lessened vasodilation, which resembles blood-bone symbiotic events that can occur with fracture repair and aging. These are especially serious risks for long term, exploration class missions when astronauts will face the challenge of increased exposure to space radiation and abrupt transitions between different gravity environments upon arrival and return. Previously, we found using the mouse hindlimb unloading model and exposure to heavy ion radiation, both disuse and irradiation cause an acute bone loss that was associated with a reduced capacity to produce bone-forming osteoblasts from the bone marrow. Together, these findings led us to hypothesize that exposure to space radiation exacerbates weightlessness-induced bone loss and impairs recovery upon return, and that treatment with anti-oxidants may mitigate these effects. The specific aims of this recently awarded grant are to: AIM 1 Determine the functional and structural consequences of prolonged weightlessness and space radiation (simulated spaceflight) for bone and skeletal vasculature in the context of bone cell function and oxidative stress. AIM 2 Determine the extent to which an anti-oxidant protects against weightlessness and space radiation-induced bone loss and vascular dysfunction. AIM 3 Determine how space radiation influences later skeletal and vasculature recovery from prolonged weightlessness and the potential of anti-oxidants to preserve adaptive remodeling.
1973-05-01
This photograph was taken during testing of an emergency procedure to free jammed solar array panels on the Skylab workshop. A metal strap became tangled over one of the folded solar array panels when Skylab lost its micrometeoroid shield during the launch. This photograph shows astronauts Schweickart and Gibson in the Marshall Space Flight Center (MSFC) Neutral Buoyancy Simulator (NBS) using various cutting tools and methods developed by the MSFC to free the jammed solar wing. Extensive testing and many hours of practice in simulators such as the NBS tank helped prepare the Skylab crewmen for extravehicular performance in the weightless environment. This huge water tank simulated the weightless environment that the astronauts would encounter in space.
Yang, Wenting; Wang, Dongmei; Lei, Zhoujixin; Wang, Chunhui; Chen, Shanguang
2017-12-01
Astronauts who are exposed to weightless environment in long-term spaceflight might encounter bone density and mass loss for the mechanical stimulus is smaller than normal value. This study built a three dimensional model of human femur to simulate the remodeling process of human femur during bed rest experiment based on finite element analysis (FEA). The remodeling parameters of this finite element model was validated after comparing experimental and numerical results. Then, the remodeling process of human femur in weightless environment was simulated, and the remodeling function of time was derived. The loading magnitude and loading cycle on human femur during weightless environment were increased to simulate the exercise against bone loss. Simulation results showed that increasing loading magnitude is more effective in diminishing bone loss than increasing loading cycles, which demonstrated that exercise of certain intensity could help resist bone loss during long-term spaceflight. At the end, this study simulated the bone recovery process after spaceflight. It was found that the bone absorption rate is larger than bone formation rate. We advise that astronauts should take exercise during spaceflight to resist bone loss.
NASA Technical Reports Server (NTRS)
Komendantov, G. L.; Kopanev, V. I.
1975-01-01
Spacesickness under weightlessness conditions is explained mainly by disruption of the activity of the functional system perceiving space and participating in carrying out the balancing function, consisting, in particular, of the vestibular, proprioceptive, interoceptive, visual and cutaneomechanical analyzers. It can be assumed that, under specific conditions, Coriolis acceleration also is a cause of spacesickness. Adaptation is possible by formation of a new functional system which is adequate to the new mechanical conditions of weightlessness. Selection, training, creation of optimum conditions in the spacecraft cabin, medicinal, and technical improvement of spacecraft play an important role in prophylaxis of the space form of seasickness.
STS-65 Pilot Halsell floats in a life raft during WETF bailout exercises
NASA Technical Reports Server (NTRS)
1994-01-01
STS-65 Pilot James D. Halsell, Jr, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), floats in a single person life raft while he is assisted by a SCUBA-equipped diver during an emergency egress bailout rehearsal. The STS-65 crew used the 25-feet deep pool in Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) Bldg 29 to simulate a water landing during the launch emergency egress (bailout) exercise. Halsell will join five other NASA astronauts and a Japanese payload specialist for the International Microgravity Laboratory 2 (IML-2) mission aboard Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.
Astronaut Guion S. Bluford and others participate in zero-g studies
1979-03-06
S79-28602 (2 March 1979) --- Astronaut candidate Guion S. Bluford and Aviation Safety Officer Charles F. Hayes got a unique perspective of their environment during a zero gravity flight. They are aboard a KC-135 aircraft, which flies a special pattern repeatedly to afford a series of 30-seconds-of-weightlessness sessions. Bluford and Hayes are being assisted by C. P. Stanley of the photography branch of the photographic technology division at Johnson Space Center (JSC). Some medical studies and a motion sickness experiment were conducted on this particular flight. Bluford is one of 20 scientist-astronaut candidates who began training at JSC in July of 1978. Photo credit: NASA
1979-03-01
Astronaut -Candidate (ASCAN) Guion S. Bluford and Aviation Safety Officer Charles F. Hayes got a unique perspective of their environment during a zero- gravity flight. They are aboard a KC-135 Aircraft, which flies a special pattern repeatedly to afford a series of 30-seconds-of-weightlessness sessions. Astronauts Bluford and Hayes are being assisted by C. P. Stanley of the Photography Branch of the Photographic Technology Division (PTD) at Johnson Space Center (JSC). Some medical studies and a Motion Sickness Experiment were conducted on this particular flight. Astronaut Bluford is one of 20 Scientist/ASCAN's who began training at JSC, 07/1978. 1. Dr. Jeffrey A. Hoffman - Zero-G 2. ASCAN Shannon Lucid - Zero-G 3. ASCAN Guion Bluford - Zero-G
Surgical Instrument Restraint in Weightlessness
NASA Technical Reports Server (NTRS)
Campbell, Mark R.; Dawson, David L.; Melton, Shannon; Hooker, Dona; Cantu, Hilda
2000-01-01
Performing a surgical procedure during spaceflight will become more likely with longer duration missions in the near future. Minimal surgical capability has been present on previous missions as the definitive medical care time was short and the likelihood of surgical events too low to justify surgical hardware availability. Early demonstrations of surgical procedures in the weightlessness of parabolic flight indicated the need for careful logistical planning and restraint of surgical hardware. The consideration of human ergonomics also has more impact in weightlessness than in the conventionall-g environment. Three methods of surgical instrument restraint - a Minor Surgical Kit (MSK), a Surgical Restraint Scrub Suit (SRSS), and a Surgical Tray (ST) were evaluated in parabolic flight surgical procedures. The Minor Surgical Kit was easily stored, easily deployed, and demonstrated the best ability to facilitate a surgical procedure in weightlessness. Important factors in this surgical restraint system include excellent organization of supplies, ability to maintain sterility, accessibility while providing secure restraint, ability to dispose of sharp items and biological trash, and ergonomical efficiency.
CREW TRAINING - STS-33/51L (ZERO-G)
1985-10-16
Teacher-in-Space trainees on the KC-135 for Zero-G training. Sharon Christa McAuliffe experiences a few moments of weightlessness provided by the KC-135. She and Bob Mayfield, a JSC Aerospace Education Specialist, are previewing a Molecular Mixing Experiment which was designed to demonstrate differences of separation process in 1-G and Zero-G.
The effects of prolonged weightlessness and reduced gravity environments on human survival.
Taylor, R L
1993-03-01
The manned exploration of the solar system and the surfaces of some of the smaller planets and larger satellites requires that we are able to keep the adverse human physiological response to long term exposure to near zero and greatly reduced gravity environments within acceptable limits consistent with metabolic function. This paper examines the physiological changes associated with microgravity conditions with particular reference to the weightless demineralizatoin of bone (WDB). It is suggested that many of these changes are the result of physical/mechanical processes and are not primarily a medical problem. There are thus two immediately obvious and workable, if relatively costly, solutions to the problem of weightlessness. The provision of a near 1 g field during prolonged space flights, and/or the development of rapid transit spacecraft capable of significant acceleration and short flight times. Although these developments could remove or greatly ameliorate the effects of weightlessness during long-distance space flights there remains a problem relating to the long term colonization of the surfaces of Mars, the Moon, and other small solar system bodies. It is not yet known whether or not there is a critical threshold value of 'g' below which viable human physiological function cannot be sustained. If such a threshold exists permanent colonization may only be possible if the threshold value of 'g' is less than that at the surface of the planet on which we wish to settle.
Effect of prehatching weightlessness on adult fish behavior in dynamic environments
NASA Technical Reports Server (NTRS)
Hoffman, R. B.; Salinas, G. A.; Boyd, J. F.; Baky, A. A.; Von Baumgarten, R. J.
1978-01-01
At 16-17 months of age, three groups of fish from the embryonated eggs in the ASTP killifish experiment were subjected to postflight tests consisting of rapidly changing environments. It was found that the group of fish with the least amount of development at orbital insertion (A-32) had a decreased rheotropism for both the moving background and the rotating water current tests when compared to ground control fish. Exposure to parabolic aircraft flight conditions revealed that the A-32 fish were less disoriented during zero gravity periods and were hypersensitive to high-gravity periods. These results suggested a modified vestibular competency due to a 9-d prehatching weightlessness exposure.
NASA Technical Reports Server (NTRS)
Romanowski, William E. (Inventor); Suljak, George T. (Inventor)
1989-01-01
A fuel cell power system for use in a weightless environment, such as in space, includes a device for removing water from a water-hydrogen mixture condensed from the exhaust from the fuel cell power section of the system. Water is removed from the mixture in a centrifugal separator, and is fed into a holding, pressure operated water discharge valve via a Pitot tube. Entrained nondissolved hydrogen is removed from the Pitot tube by a bleed orifice in the Pitot tube before the water reaches the water discharge valve. Water discharged from the valve thus has a substantially reduced hydrogen content.
Some psychological and engineering aspects of the extravehicular activity of astronauts.
Khrunov, E V
1973-01-01
One of the main in-flight problems being fulfilled by astronauts is the preparation for and realization of egress into open space for the purpose of different kinds of extravehicular activity, such as, the performance of scientific experiments, repairing and dismantling operations etc. The astronaut's activity outside the space vehicle is the most difficult item of the space flight programme, which is complicated by a number of space factors affecting a man, viz. dynamic weightlessness, work in a space suit under conditions of excessive pressure, difficulties of space orientation etc. The peculiarities mentioned require special training of the cosmonaut. The physical training involves a series of exercises forming the body-control habits necessary for work in a state of weightlessness. In a new kind of training use is made of equipment simulating the state of weightlessness. From analysis of the available data and the results of my own investigations during ground training and the Soyuz 4 and 5 flights one can establish the following peculiarities of the astronaut's extravehicular activity: (1) Operator response lag in the planned algorithm; (ii) systematic appearance of some stereotype errors in the mounting and dismantling of the outer equipment and in scientific-technical experiments; (iii) a high degree of emotional strain and 30-35% decrease in in-flight working capacity of the astronaut compared with the ground training data; (iv) a positive influence of space adaptation on the cosmonaut and the efficiency of his work in open space; (v) the necessity for further engineering and psychological analysis of the astronaut's activity under conditions of the long space flight of the multi-purpose orbital station. One of the main reasons for the above peculiarities is the violation of the control-coordination functions of the astronaut in the course of the dynamical operations. The paper analyses the extravehicular activity of the astronaut and presents some recommendations for its more efficient realization. Proposals are given concerning the complex engineering, psychological and technical investigations to be made during in-flight egress.
Perception of linear acceleration in weightlessness
NASA Technical Reports Server (NTRS)
Arrott, Anthony P.; Young, Laurence R.; Merfeld, Daniel M.
1991-01-01
Tests of the perception and use of linear acceleration sensory information were performed on the science crews of the Spacelab 1 (SL-1) and D-1 missions using linear 'sleds' in-flight (D-1) and pre-post flight. The time delay between the acceleration step stimulus and the subjective response was consistently reduced during weightlessness, but was neither statistically significant nor of functional importance. Increased variability of responses when going from one environment to the other was apparent from measurements on the first day of the mission and in the first days post-flight. Subjective reports of perceived motion during sinusoidal oscillation in weightlessness were qualitatively similar to reports on earth. In a closed-loop motion nulling task, enhanced performance was observed post-flight in all crewmembers tested in the Y or Z axes.
Perception of linear acceleration in weightlessness
NASA Technical Reports Server (NTRS)
Arrott, A. P.; Young, L. R.; Merfeld, D. M.
1990-01-01
Tests of the perception and use of linear acceleration sensory information were performed on the science crews of the Spacelab 1 (SL-1) and D-1 missions using linear "sleds" in-flight (D-1) and pre-post flight. The time delay between the acceleration step stimulus and the subjective response was consistently reduced during weightlessness, but was neither statistically significant nor of functional importance. Increased variability of responses when going from one environment to the other was apparent from measurements on the first day of the mission and in the first days post-flight. Subjective reports of perceived motion during sinusoidal oscillation in weightlessness were qualitatively similar to reports on earth. In a closed-loop motion nulling task, enhanced performance was observed post-flight in all crewmembers tested in the Y or Z axes.
Hindlimb suspension reduces muscle regeneration
NASA Technical Reports Server (NTRS)
Mozdziak, P. E.; Truong, Q.; Macius, A.; Schultz, E.
1998-01-01
Exposure of juvenile skeletal muscle to a weightless environment reduces growth and satellite cell mitotic activity. However, the effect of a weightless environment on the satellite cell population during muscle repair remains unknown. Muscle injury was induced in rat soleus muscles using the myotoxic snake venom, notexin. Rats were placed into hindlimb-suspended or weightbearing groups for 10 days following injury. Cellular proliferation during regeneration was evaluated using 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry and image analysis. Hindlimb suspension reduced (P < 0.05) regenerated muscle mass, regenerated myofiber diameter, uninjured muscle mass, and uninjured myofiber diameter compared to weightbearing rats. Hindlimb suspension reduced (P < 0.05) BrdU labeling in uninjured soleus muscles compared to weight-bearing muscles. However, hindlimb suspension did not abolish muscle regeneration because myofibers formed in the injured soleus muscles of hindlimb-suspended rats, and BrdU labeling was equivalent (P > 0.10) on myofiber segments isolated from the soleus muscles of hindlimb-suspended and weightbearing rats following injury. Thus, hindlimb suspension (weightlessness) does not suppress satellite cell mitotic activity in regenerating muscles before myofiber formation, but reduces growth of the newly formed myofibers.
Burbank uses the Neurospat hardware in the Columbus Module
2012-03-15
ISS030-E-177227 (15 March 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, uses Neurospat hardware to perform a science session with the European Space Agency PASSAGES experiment in the Columbus laboratory of the International Space Station. PASSAGES is designed to test how astronauts interpret visual information in weightlessness. It aims at studying the effects of microgravity on the use of the 'Eye-Height' strategy for estimating allowed actions in an environment, and whether this could possibly decrease after a long exposure to weightlessness.
2010-10-19
ISS025-E-008371 (20 Oct. 2010) --- NASA astronaut Doug Wheelock, Expedition 25 commander, uses Neurospat hardware to perform a science session with the European Space Agency PASSAGES experiment in the Columbus laboratory of the International Space Station. PASSAGES is designed to test how astronauts interpret visual information in weightlessness. It aims at studying the effects of microgravity on the use of the ‘Eye-Height’ strategy for estimating allowed actions in an environment, and whether this could possibly decrease after a long exposure to weightlessness.
2011-10-06
ISS029-E-021636 (6 Oct. 2011) --- Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 29 flight engineer, uses Neurospat hardware to perform a science session with the European Space Agency PASSAGES experiment in the Columbus laboratory of the International Space Station. PASSAGES is designed to test how astronauts interpret visual information in weightlessness. It aims at studying the effects of microgravity on the use of the 'Eye-Height' strategy for estimating allowed actions in an environment, and whether this could possibly decrease after a long exposure to weightlessness.
2011-10-06
ISS029-E-021641 (6 Oct. 2011) --- NASA astronaut Mike Fossum, Expedition 29 commander, uses Neurospat hardware to perform a science session with the European Space Agency PASSAGES experiment in the Columbus laboratory of the International Space Station. PASSAGES is designed to test how astronauts interpret visual information in weightlessness. It aims at studying the effects of microgravity on the use of the 'Eye-Height' strategy for estimating allowed actions in an environment, and whether this could possibly decrease after a long exposure to weightlessness.
Burbank uses the Neurospat hardware in the Columbus Module
2012-03-15
ISS030-E-177225 (15 March 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, uses Neurospat hardware to perform a science session with the European Space Agency PASSAGES experiment in the Columbus laboratory of the International Space Station. PASSAGES is designed to test how astronauts interpret visual information in weightlessness. It aims at studying the effects of microgravity on the use of the 'Eye-Height' strategy for estimating allowed actions in an environment, and whether this could possibly decrease after a long exposure to weightlessness.
Effect of altered 'weight' upon animal tolerance to restraint.
NASA Technical Reports Server (NTRS)
Burton, R. R.; Smith, A. H.; Beljan, J. R.
1971-01-01
The effect of altered weight upon animal tolerance to restraint was determined by simulating various accelerative forces with directed lead weights using restrained and nonrestrained domestic fowl (chickens). Weighting (increased weight) and conterweighting (reduced weight) produced a stressed condition - reduced relative lymphocyte counts, loss of body mass, and/or the development of a disorientation syndrome - in both restrained and nonrestrained (caged only) birds. The animal's tolerance to altered weight appeared to be a function of its body weight. Unrestrained birds were stressed by counterweighting (mean plus or minus standard error) 58.3 plus or minus 41% of their body weight, whereas restrained birds tolerated only 32.2 plus or minus 2.6% reduction in body weight. A training regimen for restrained birds was not effective in improving their tolerance to a reduced weight environment. It was concluded that domestic fowl living in a weightless (space) environment should be restrained minimally and supported by ventrally directed tension equivalent to approximately 50% of their body mass (their weight in a 1 G environment).
STS-47 MS Jemison trains in SLJ module at MSFC Payload Crew Training Complex
NASA Technical Reports Server (NTRS)
1992-01-01
STS-47 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist (MS) Mae C. Jemison, wearing Autogenic Feedback Training System 2 suit, works with the Frog Embryology Experiment in a General Purpose Workstation (GPWS) in the Spacelab Japan (SLJ) module mockup at the Payload Crew Training Complex. The experiment will study the effects of weightlessness on the development of frog eggs fertilized in space. The Payload Crew Training Complex is located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama. View provided with alternate number 92P-139.
NASA Technical Reports Server (NTRS)
Charles, John B.
2013-01-01
An attempt to clarify some vague memories of underwater studies of astronaut capabilities in space led Dr. John Charles to become acquainted with Sam Mattingly, one of the pioneers in the field, and to greater insights into Mattingly's work simulating Gemini EVAs in the mid-1960s. Charles recounted major accomplishments by Environmental Research Associates (ERA), Mattingly's company for contracting with NASA Langley on several early studies. ERA's work was considered within the context of contemporary efforts to simulate weightlessness and the widespread development of neutral buoyancy facilities after ERA's successful demonstration for Gemini 12.
Injury Surveillance Among NASA Astronauts Using the Barell Injury Diagnosis Matrix
NASA Technical Reports Server (NTRS)
Murray, J. D.; Laughlin, M. S.; Eudy, D. L.; Wear, M. L.; VanBaalen, M. G.
2014-01-01
Astronauts perform physically demanding tasks and risk incurring musculoskeletal injuries during both groundbased training and missions. Increased injury rates throughout the history of the U.S. space program have been attributed to numerous factors, including an aging astronaut corps, increased Weightless Environment Training Facility (WETF) and Neutral Buoyancy Laboratory (NBL) training to construct the International Space Station, and improved clinical operations that promote injury prevention and reporting. With NASA program changes through the years (including retirement of the Shuttle program) and an improved training environment (including a new astronaut gym), there is no surveillance program to systematically track injury rates. A limited number of research projects have been conducted over the past 20 years to evaluate musculoskeletal injuries: (1) to evaluate orthopedic injuries from 1987 to 1995, (2) to describe upper extremity injuries, (3) to evaluate EVA spacesuit training related injuries, and (4) to evaluate in-flight musculoskeletal injuries. Nevertheless, there has been no consistently performed comprehensive assessment of musculoskeletal injuries among astronauts. The Barell Injury Diagnosis Matrix was introduced at the 2001 meeting of the International Collaborative Effort (ICE) on Injury Statistics. The Matrix proposes a standardized method of classifying body region by nature of injury. Diagnoses are coded using the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) coding system. The purpose of this study is to assess the usefulness and complexity of the Barell Injury Diagnosis Matrix to classify and track musculoskeletal injuries among NASA astronauts.
Man in space - A time for perspective. [crew performance on Space Shuttle-Spacelab program
NASA Technical Reports Server (NTRS)
Winter, D. L.
1975-01-01
Factors affecting crew performances in long-term space flights are examined with emphasis on the Space Shuttle-Spacelab program. Biomedical investigations carried out during four Skylab missions indicate that initially rapid changes in certain physiological parameters, notably in cardiovascular response and red-blood-cell levels, lead to an adapted condition. Calcium loss remains a potential problem. Space Shuttle environmental control and life-support systems are described together with technology facilitating performance of mission objectives in a weightless environment. It is concluded that crew requirements are within the physical and psychological capability of astronauts, but the extent to which nonastronaut personnel will be able to participate without extensive training and pre-conditioning remains to be determined.
STS-37 crewmembers move CETA electrical cart along rail in JSC's WETF pool
1989-12-06
STS-37 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) Jerry L. Ross generates electrical power using hand pedals to move crew and equipment translation aid (CETA) cart along a rail during underwater session in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Wearing an extravehicular mobility unit (EMU), Ross operates CETA electrical cart as MS Jerome Apt holds onto the back of the cart. The two crewmembers are practicing a extravehicular activity (EVA) spacewalk they will perform in OV-104's payload bay during STS-37. CETA is a type of railroad hand cart planned as a spacewalker's transportation system along the truss of Space Station Freedom (SSF). SCUBA divers monitor astronauts' underwater activity.
STS-26 crewmembers participate in contingency EVA exercise in JSC's WETF
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, mission specialists George D. Nelson and John M. Lounge, wearing extravehicular mobility units (EMUs), participate in contingency extravehicular activity (EVA) exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Overall view of WETF underwater activity shows Nelson (foreground) working with EVA wrench as Lounge looks on and SCUBA-equipped divers monitor procedures. A mockup of the tracking and data relay satellite C (TDRS-C) appears behind astronauts in payload bay (PLB). In the event of in-cabin remote control failure, the procedure Nelson is conducting would upright the tracking and data relay satellite C (TDRS-C) from its stowed position to its deployment position. Photograph was taken by Keith Meyers of the NEW YORK TIMES.
SPACESUIT DONNING AND DOFFING - ZERO-G TRAINING - DON PETERSON - STS-6
1982-07-14
Spacesuit Donning and Doffing in Zero-G Training for Don Peterson of the STS-6 Crew with Astronaut Jerry Ross assisting; and, apparatus for testing the JSC Mechanically-Induced Settling Technology (MIST) Experiment. The training is being held aboard the KC-135 to simulate weightlessness. He is being assisted to don the lower torso of the Extravehicular Mobility Unit (EMU) by an ILC Technician. 1. ASTRONAUT ROSS, JERRY L. - ZERO-G SUITING 2. SHUTTLE - EXPERIMENTS (MIST)
NASA Astrophysics Data System (ADS)
Wang, Lin-Jie; Cheng, Tan; Zhi-Li, Li; Hui-juan, Wang; Wen-juan, Chen; Jianfeng, Zhang; Desheng, Wang; Dongbin, Niu; Qi, Zhao; Chengjia, Yang; Yanqing, Wang
High intensity interval training (HIIT) has been demonstrated to improve performance in a relatively short training period. But the difference between high intensity interval training and moderate intensity interval training (MIIT) in simulated weightlessness still has not been well studied. This study sought to characterize the difference between 6 weeks high intensity interval training and moderate intensity interval training under reduced weight (RW) gait training device and zero-gravity locomotion system (ZLS). Twenty-three subjects (14M/4F, 32.5±4.5 years) volunteered to participate. They were divided into three groups, that were MITT (alternating 2 min at 40% VO _{2} peak and 2 min at 60% VO _{2} peak for 30min, five days per week) RW group (n=8), HITT (alternating 2 min at 40% VO _{2} peak and 2 min at 90% VO _{2} peak for 30min, three days per week) RW group (n=8) and HITT ZLS group (n=7). The Z-axis load used in RW group was 80% body weight (BW) and in ZLS was 100% BW. Cardiopulmonary function was measured before, after 4-week training and after 6-week training. Isokinetic knee extension-flexion test at 60(°) deg/s and 180(°) deg/s were performed before and after the 6-week training, and isometric knee extension-flexion test at 180(°) deg/s was also examined at the same time. It was found that the VO _{2} peaks, metabolic equivalent (MET), Speedmax and respiratory exchange ratio (RER) were significantly increased after 4 and 6-week training in all three groups and no significant group difference were detected. The peak torque at 60(°) deg/s for right knee flexion were significantly increased after 6 week-training in all three groups, and only in HITT RW group the total power at 60(°) deg/s for right knee flexion enhanced. The total power and average power at 60(°) deg/s for right knee extension decreased significantly after 6-week training in all three groups. The peak torque at 60(°) deg/s for right knee extension in MIIT RW group was significantly higher than that in HIIT ZLS group. The maximum average peak torque for isometric left knee contraction was enhanced after 6-week training in all three groups. It was suggested that HITT can be used in weightlessness to maintain the cardiopulmonary function in a relatively short training period, but the effect of HIIT on the maintenance of muscle function still need further study. (Supported by State Key Laboratory Grant NO. SMFA10A04 and The Twelfth Five Year Plan of Medical and Health Research Grant NO. BWS11J055)
1973-05-01
This photograph was taken in the Marshall Space Flight Center (MSFC) Neutral Buoyancy Simulator (NBS) during the testing of an emergency procedure to deploy a twin-pole sunshade to protect the orbiting workshop from overheating due to the loss of its thermal shield. The spacecraft suffered damage to its sunshield during its launch on May 14, 1973. This photograph shows the base plate used to hold the twin-pole in place, the bag to hold the fabric sail, and the lines that were used to draw the sail into place. Extensive testing and many hours of practice in simulators, such as the NBS, helped prepare the Skylab crewmen for extravehicular performance in the weightless environment. This huge water tank simulated the weightless environment that the astronauts would encounter in space.
Advances in electrophoretic separations
NASA Technical Reports Server (NTRS)
Snyder, R. S.; Rhodes, P. H.
1984-01-01
Free fluid electrophoresis is described using laboratory and space experiments combined with extensive mathematical modeling. Buoyancy driven convective flows due to thermal and concentration gradients are absent in the reduced gravity environment of space. The elimination of convection in weightlessness offers possible improvements in electrophoresis and other separation methods which occur in fluid media. The mathematical modeling suggests new ways of doing electrophoresis in space and explains various phenomena observed during past experiments. The extent to which ground based separation techniques are limited by gravity induced convection is investigated and space experiments are designed to evaluate specific characteristics of the fluid/particle environment. A series of experiments are proposed that require weightlessness and apparatus is developed that can be used to carry out these experiments in the near future.
The physiological basis for spacecraft environmental limits
NASA Technical Reports Server (NTRS)
Waligora, J. M. (Compiler)
1979-01-01
Limits for operational environments are discussed in terms of acceptable physiological changes. The environmental factors considered are pressure, contaminants, temperature, acceleration, noise, rf radiation, and weightlessness.
View of FE Fossum working on the ESA PASSAGES Experiment
2011-06-16
ISS028-E-008393 (16 June 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, uses Neurospat hardware to perform a science session with the European Space Agency PASSAGES experiment in the Columbus laboratory of the International Space Station. PASSAGES is designed to test how astronauts interpret visual information in weightlessness. It aims at studying the effects of microgravity on the use of the 'Eye-Height' strategy for estimating allowed actions in an environment, and whether this could possibly decrease after a long exposure to weightlessness.
Some physiological effects of alternation between zero gravity and one gravity
NASA Technical Reports Server (NTRS)
Graybiel, A.
1977-01-01
The anatomy and physiology of the healthy vestibular system and the history of its study, maintenance of muskuloskeletal fitness under low-gravity conditions, tests of motion sickness, and data and techniques on testing subjects in a slow rotation room, are covered. Components of the inner ear labyrinth and their behavior in relation to equilibrium, gravity and inertial forces, motion sickness, and dizziness are discussed. Preventive medicine, the biologically effective force environment, weightlessness per se, activity in a weightless spacecraft, exercizing required to maintain musculoskeletal function, and ataxia problems are dealt with.
Evaporative water loss in man in a gravity-free environment
NASA Technical Reports Server (NTRS)
Leach, C. S.; Leonard, J. I.; Rambaut, P. C.; Johnson, P. C.
1978-01-01
Daily evaporative water losses (EWL) during the three Skylab missions were measured indirectly using mass and water-balance techniques. The mean daily values of EWL for the nine crew members who averaged 1 hr of daily exercise were: preflight 1,750 + or - 37 (SE) ml or 970 + or - 20 ml/sq m and inflight 1,560 + or - 26 ml or 860 + or - 14 ml/sq m. Although it was expected the EWL would increase in the hypobaric environment of Skylab, an average decrease from preflight sea-level conditions of 11% was measured. The results suggest that weightlessness decreased sweat losses during exercise and possibly reduced insensible skin losses. The weightlessness environment apparently promotes the formation of an observed sweat film on the skin surface during exercise by reducing convective flow and sweat drippage, resulting in high levels of skin wettedness that favor sweat suppression.
Du, Fang; Ding, Ye; Zou, Jun; Li, Zhili; Tian, Jijing; She, Ruiping; Wang, Desheng; Wang, Huijuan; Lv, Dongqiang; Chang, Lingling
2015-01-01
This study investigated the effects of long-term simulated weightlessness on liver morphology, enzymes, glycogen, and apoptosis related proteins by using two-month rat-tail suspension model (TS), and liver injury improvement by rat-tail suspension with resistance training model (TS&RT). Microscopically the livers of TS rats showed massive granular degeneration, chronic inflammation, and portal fibrosis. Mitochondrial and endoplasmic reticulum swelling and loss of membrane integrity were observed by transmission electron microscopy (TEM). The similar, but milder, morphological changes were observed in the livers of TS&RT rats. Serum biochemistry analysis revealed that the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were significantly higher (p<0.05) in TS rats than in controls. The levels of ALT and AST in TS&RT rats were slightly lower than in RT rats, but they were insignificantly higher than in controls. However, both TS and TS&RT rats had significantly lower levels (p<0.05) of serum glucose and hepatic glycogen than in controls. Immunohistochemistry demonstrated that the expressions of Bax, Bcl-2, and active caspase-3 were higher in TS rats than in TS&RT and control rats. Real-time polymerase chain reaction (real-time PCR) showed that TS rats had higher mRNA levels (P < 0.05) of glucose-regulated protein 78 (GRP78) and caspase-12 transcription than in control rats; whereas mRNA expressions of C/EBP homologous protein (CHOP) and c-Jun N-terminal kinase (JNK) were slightly higher in TS rats. TS&RT rats showed no significant differences of above 4 mRNAs compared with the control group. Our results demonstrated that long-term weightlessness caused hepatic injury, and may trigger hepatic apoptosis. Resistance training slightly improved hepatic damage.
Zou, Jun; Li, Zhili; Tian, Jijing; She, Ruiping; Wang, Desheng; Wang, Huijuan; Lv, Dongqiang; Chang, Lingling
2015-01-01
This study investigated the effects of long-term simulated weightlessness on liver morphology, enzymes, glycogen, and apoptosis related proteins by using two-month rat-tail suspension model (TS), and liver injury improvement by rat-tail suspension with resistance training model (TS&RT). Microscopically the livers of TS rats showed massive granular degeneration, chronic inflammation, and portal fibrosis. Mitochondrial and endoplasmic reticulum swelling and loss of membrane integrity were observed by transmission electron microscopy (TEM). The similar, but milder, morphological changes were observed in the livers of TS&RT rats. Serum biochemistry analysis revealed that the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were significantly higher (p<0.05) in TS rats than in controls. The levels of ALT and AST in TS&RT rats were slightly lower than in RT rats, but they were insignificantly higher than in controls. However, both TS and TS&RT rats had significantly lower levels (p<0.05) of serum glucose and hepatic glycogen than in controls. Immunohistochemistry demonstrated that the expressions of Bax, Bcl-2, and active caspase-3 were higher in TS rats than in TS&RT and control rats. Real-time polymerase chain reaction (real-time PCR) showed that TS rats had higher mRNA levels (P < 0.05) of glucose-regulated protein 78 (GRP78) and caspase-12 transcription than in control rats; whereas mRNA expressions of C/EBP homologous protein (CHOP) and c-Jun N-terminal kinase (JNK) were slightly higher in TS rats. TS&RT rats showed no significant differences of above 4 mRNAs compared with the control group. Our results demonstrated that long-term weightlessness caused hepatic injury, and may trigger hepatic apoptosis. Resistance training slightly improved hepatic damage. PMID:26000905
A "Bony" Proposition: Pathways Mediating Responses to Simulated Weightlessness and Radiation
NASA Technical Reports Server (NTRS)
Tahimic, Candice; Globus, Ruth
2016-01-01
There is evidence that weightlessness and radiation, two elements of the spaceflight environment, can lead to detrimental changes in human musculoskeletal tissue, including bone loss and muscle atrophy. This bone loss is thought to be brought about by the increased activity of bone-resorbing osteoclasts and functional changes in bone-forming osteoblasts, cells that give rise to mature osteocytes. My current area of research focuses on understanding the mechanistic basis for the responses of bone to the spaceflight environment using earth-based animal and cellular models. The overarching goal is to identify molecular targets to prevent bone loss in space exploration and earth-based scenarios of radiotherapy, accidental radiation exposure and reduced mobility. In this talk, I will highlight two signaling pathways that potentially play a role in the response of bone to spaceflight-like conditions. Firstly, I will discuss the role of insulin-like growth factor 1 (IGF1) signaling as it pertains to the recovery of bone from simulated weightlessness (rodent hindlimb unloading model). Secondly, I will share recent findings from our study that aims to understand the emerging role of autophagy in maintaining the balance between bone formation and resorption (bone homeostasis) as well as normal skeletal structure.
Astronaut Gregory Jarvis during KC-135 zero gravity training
1985-01-25
S85-26106 (25 Jan. 1985) --- Astronaut Gregory Jarvis gets a familiarization session in weightlessness aboard a KC-135 "zero gravity" aircraft. Jarvis was originally assigned as payload specialist to STS-51D but was reassigned to STS-51L. Photo credit: NASA
Potential benefits of maximal exercise just prior to return from weightlessness
NASA Technical Reports Server (NTRS)
Convertino, Victor A.
1987-01-01
The purpose of this study was to determine whether performance of a single maximal bout of exercise during weightlessness within hours of return to earth would enhance recovery of aerobic fitness and physical work capacities under a 1G environment. Ten healthy men were subjected to a 10-d bedrest period in the 6-deg headdown position. A graded maximal supine cycle ergometer test was performed before and at the end of bedrest to simulate exercise during weightlessness. Following 3 h of resumption of the upright posture, a second maximal exercise test was performed on a treadmill to measure work capacity under conditions of 1G. Compared to before bedrest, peak oxygen consumption, V(O2), decreased by 8.7 percent and peak heart rate (HR) increased by 5.6 percent in the supine cycle test at the end of bedrest. However, there were no significant changes in peak V(O2) and peak HR in the upright treadmill test following bedrest. These data suggest that one bout of maximal leg exercise prior to return from 10 d of weightlessness may be adequate to restore preflight aerobic fitness and physical work capacity.
Float-zone processing in a weightless environment
NASA Technical Reports Server (NTRS)
Fowle, A. A.; Haggerty, J. S.; Perron, R. R.; Strong, P. F.; Swanson, J. L.
1976-01-01
The results were reported of investigations to: (1) test the validity of analyses which set maximum practical diameters for Si crystals that can be processed by the float zone method in a near weightless environment, (2) determine the convective flow patterns induced in a typical float zone, Si melt under conditions perceived to be advantageous to the crystal growth process using flow visualization techniques applied to a dimensionally scaled model of the Si melt, (3) revise the estimates of the economic impact of space produced Si crystal by the float zone method on the U.S. electronics industry, and (4) devise a rational plan for future work related to crystal growth phenomena wherein low gravity conditions available in a space site can be used to maximum benefit to the U.S. electronics industry.
The Role of Visual Cues in Microgravity Spatial Orientation
NASA Technical Reports Server (NTRS)
Oman, Charles M.; Howard, Ian P.; Smith, Theodore; Beall, Andrew C.; Natapoff, Alan; Zacher, James E.; Jenkin, Heather L.
2003-01-01
In weightlessness, astronauts must rely on vision to remain spatially oriented. Although gravitational down cues are missing, most astronauts maintain a subjective vertical -a subjective sense of which way is up. This is evidenced by anecdotal reports of crewmembers feeling upside down (inversion illusions) or feeling that a floor has become a ceiling and vice versa (visual reorientation illusions). Instability in the subjective vertical direction can trigger disorientation and space motion sickness. On Neurolab, a virtual environment display system was used to conduct five interrelated experiments, which quantified: (a) how the direction of each person's subjective vertical depends on the orientation of the surrounding visual environment, (b) whether rolling the virtual visual environment produces stronger illusions of circular self-motion (circular vection) and more visual reorientation illusions than on Earth, (c) whether a virtual scene moving past the subject produces a stronger linear self-motion illusion (linear vection), and (d) whether deliberate manipulation of the subjective vertical changes a crewmember's interpretation of shading or the ability to recognize objects. None of the crew's subjective vertical indications became more independent of environmental cues in weightlessness. Three who were either strongly dependent on or independent of stationary visual cues in preflight tests remained so inflight. One other became more visually dependent inflight, but recovered postflight. Susceptibility to illusions of circular self-motion increased in flight. The time to the onset of linear self-motion illusions decreased and the illusion magnitude significantly increased for most subjects while free floating in weightlessness. These decreased toward one-G levels when the subject 'stood up' in weightlessness by wearing constant force springs. For several subjects, changing the relative direction of the subjective vertical in weightlessness-either by body rotation or by simply cognitively initiating a visual reorientation-altered the illusion of convexity produced when viewing a flat, shaded disc. It changed at least one person's ability to recognize previously presented two-dimensional shapes. Overall, results show that most astronauts become more dependent on dynamic visual motion cues and some become responsive to stationary orientation cues. The direction of the subjective vertical is labile in the absence of gravity. This can interfere with the ability to properly interpret shading, or to recognize complex objects in different orientations.
CREW TRAINING - STS-33/51L (ZERO-G)
1985-10-16
S85-42473 (16 Oct. 1985) --- Sharon Christa McAuliffe, a teacher-citizen observer on STS-51L, smiles before participating in some zero-G rehearsals for her upcoming flight. She is seated near the controls of the KC-135 aircraft, flying for the Johnson Space Center from Ellington Air Field. Referred to as the ?zero-gravity? aircraft, the KC-135 provides brief moments of weightlessness for shuttle crew members in training. Photo credit: NASA
Crippen, pilot for STS-1, during a training session
1978-03-22
S79-25014 (13 Dec. 1978) --- Astronaut Robert L. Crippen, pilot of the first space shuttle orbital flight test (STS-1), eases into a water immersion facility (WIF) during a training session in the Johnson Space Center?s training and test facility (Bldg. 260). The WIF affords one of two ways to simulate the feeling of weightlessness experienced during space extravehicular activity (EVA), the other being inside aircraft flying a parabolic curve. Crippen will be joined by astronaut John W. Young, commander for the STS-1 flight. Photo credit: NASA
Shiba, Naoto; Matsuse, Hiroo; Nago, Takeshi; Masayuki, Omoto; Kawaguchi, Takumi; Tagawa, Yoshihiko
2012-12-01
We have developed a "hybrid training system" (HTS) that is designed to maintain the musculoskeletal system of astronauts by using an electrically stimulated antagonist to resist the volitional contraction of agonist muscles in weightlessness. In other words, electrical stimulation generates a resistive force instead of gravity. HTS will become a useful back-up for the standard training device in the International Space Station, or a useful training device in the small space ship for the exploration of the Moon and Mars.
NASA Technical Reports Server (NTRS)
Brady, J. F.
1972-01-01
Future manned space missions may require transition between artificial gravity and weightlessness environments. The frequency and rate of such transition will influence the psychophysiological responses of man. Abrupt transfers are examined between such rotating and nonrotating environments to determine the physiological and behavioral responses of man. Five subjects were tested using rates of rotation up to 5 rpm.
Test of a life support system with Hirudo medicinalis in a sounding rocket.
Lotz, R G; Baum, P; Bowman, G H; Klein, K D; von Lohr, R; Schrotter, L
1972-01-01
Two Nike-Tomahawk rockets each carrying two Biosondes were launched from Wallops Island, Virginia, the first on 10 December 1970 and the second on 16 December 1970. The primary objective of both flights was to test the Biosonde life support system under a near weightless environment and secondarily to subject the Hirudo medicinalis to the combined stresses of a rocket flight. The duration of the weightless environment was approximately 6.5 minutes. Data obtained during the flight by telemetry was used to ascertain the operation of the system and the movements of the leeches during flight. Based on the information obtained, it has been concluded that the operation of the Biosondes during the flight was similar to that observed in the laboratory. The experiment and equipment are described briefly and the flight results presented.
Dubeau-Laramée, Geneviève; Rivière, Christophe; Jean, Isabelle; Mermut, Ozzy; Cohen, Luchino Y
2014-04-01
A fiber-optic based flow cytometry platform was designed to build a portable and robust instrument for space applications. At the core of the Microflow1 is a unique fiber-optic flow cell fitted to a fluidic system and fiber coupled to the source and detection channels. A Microflow1 engineering unit was first tested and benchmarked against a commercial flow cytometer as a reference in a standard laboratory environment. Testing in parabolic flight campaigns was performed to establish Microflow1's performance in weightlessness, before operating the new platform on the International Space Station. Microflow1 had comparable performances to commercial systems, and operated remarkably and robustly in weightlessness (microgravity). Microflow1 supported immunophenotyping as well as microbead-based multiplexed cytokine assays in the space environment and independently of gravity levels. Results presented here provide evidence that this fiber-optic cytometer technology is inherently compatible with the space environment with negligible compromise to analytical performance. © 2013 International Society for Advancement of Cytometry.
Automatic water inventory, collecting, and dispensing unit
NASA Technical Reports Server (NTRS)
Hall, J. B., Jr.; Williams, E. F.
1972-01-01
Two cylindrical tanks with piston bladders and associated components for automatic filling and emptying use liquid inventory readout devices in control of water flow. Unit provides for adaptive water collection, storage, and dispensation in weightlessness environment.
Aerospace Medicine and Biology: A cumulative index to the 1981 issues
NASA Technical Reports Server (NTRS)
1982-01-01
The aeromedical research reported considers the safety of the human component in manned space flight. The effects of spacecraft environment, radiation and weightlessness on human biological and psychological processes are covered.
Analysis of magnetic gradients to study gravitropism.
Hasenstein, Karl H; John, Susan; Scherp, Peter; Povinelli, Daniel; Mopper, Susan
2013-01-01
Gravitropism typically is generated by dense particles that respond to gravity. Experimental stimulation by high-gradient magnetic fields provides a new approach to selectively manipulate the gravisensing system. The movement of corn, wheat, and potato starch grains in suspension was examined with videomicroscopy during parabolic flights that generated 20 to 25 s of weightlessness. During weightlessness, a magnetic gradient was generated by inserting a wedge into a uniform, external magnetic field that caused repulsion of starch grains. The resultant velocity of movement was compared with the velocity of sedimentation under 1 g conditions. The high-gradient magnetic fields repelled the starch grains and generated a force of at least 0.6 g. Different wedge shapes significantly affected starch velocity and directionality of movement. Magnetic gradients are able to move diamagnetic compounds under weightless or microgravity conditions and serve as directional stimulus during seed germination in low-gravity environments. Further work can determine whether gravity sensing is based on force or contact between amyloplasts and statocyte membrane system.
NASA Technical Reports Server (NTRS)
Lindberg, R. G.; Hayden, P.
1974-01-01
Three areas of inquiry are reported for the Skylab Experiment S-071 whose objective was to study the circadian system of a mammal during space flight. The thermoregulatory behavior of the Perognathus longimembris, or little pocket mouse, was studied under conditions of constant dark and constant temperature in the prolonged weightless environment of Skylab. The following specific questions were studied: (1) the effects of weightlessness on circadian periodicity in the little pocket mouse; (2) stability of the free-running circadian period of body temperature of the little pocket mouse exposed to simulated launch stress; and (3) characteristics of the circadian rhythm of body temperature in the little pocket mouse. Diagrams of the electronic circuitry and hardware used in the experiment are shown and results are given in both graphical and tabular form. The methods used in the experiment are fully documented, along with conclusions and recommendations for future research.
USSR and Eastern Europe Scientific Abstracts, Geophysics, Astronomy and Space, Number 413.
1978-01-17
weightlessness conditions. It is especial- ly timely now, when, as is well known, citizens of Czechoslovakia, Poland , GDR are in training for manned...consider Georgiy Grechko to be one of our specialists," says L. V. Des- inov . "He thoroughly knows these problems. He visited the Nurekskaya Hydro
Li, Zhili; Tian, Jijing; Abdelalim, Saed; Du, Fang; She, Ruiping; Wang, Desheng; Tan, Cheng; Wang, Huijuan; Chen, Wenjuan; Lv, Dongqiang; Chang, Lingling
2011-01-01
To explore the effects of long-term weightlessness on the renal tissue, we used the two months tail suspension model to simulate microgravity and investigated the simulated microgravity on the renal morphological damages and related molecular mechanisms. The microscopic examination of tissue structure and ultrastructure was carried out for histopathological changes of renal tissue morphology. The immunohistochemistry, real-time PCR and Western blot were performed to explore the molecular mechanisms associated the observations. Hematoxylin and eosin (HE) staining showed severe pathological kidney lesions including glomerular atrophy, degeneration and necrosis of renal tubular epithelial cells in two months tail-suspended rats. Ultrastructural studies of the renal tubular epithelial cells demonstrated that basal laminas of renal tubules were rough and incrassate with mitochondria swelling and vacuolation. Cell apoptosis in kidney monitored by the expression of Bax/Bcl-2 and caspase-3 accompanied these pathological damages caused by long-term microgravity. Analysis of the HSP70 protein expression illustrated that overexpression of HSP70 might play a crucial role in inducing those pathological damages. Glucose regulated protein 78 (GRP78), one of the endoplasmic reticulum (ER) chaperones, was up-regulated significantly in the kidney of tail suspension rat, which implied that ER-stress was associated with apoptosis. Furthermore, CHOP and caspase-12 pathways were activated in ER-stress induced apoptosis. Resistance training not only reduced kidney cell apoptosis and expression of HSP70 protein, it also can attenuate the kidney impairment imposed by weightlessness. The appropriate optimization might be needed for the long term application for space exploration. PMID:21625440
NASA Technical Reports Server (NTRS)
Hewes, D. E.; Glover, K. E.
1975-01-01
A Skylab experiment was conducted to study the maneuvering capabilities of astronauts using a relatively simple self-locomotive device, referred to as the foot-controlled maneuvering unit, and to evaluate the effectiveness of ground-based facilities simulating the operation of this device in weightless conditions of space. Some of the special considerations given in the definition and development of the experiment as related to the two ground-based simulators are reviewed. These simulators were used to train the test subjects and to obtain baseline data which could be used for comparison with the in-flight tests that were performed inside the Skylab orbital workshop. The results of both premission and postmission tests are discussed, and subjective comparisons of the in-flight and ground-based test conditions are presented.
So You Want to Go to Mars: Bones and Matters of the Heart
NASA Technical Reports Server (NTRS)
Tahimic, Candice; Globus, Ruth; Torres, Samantha; Steczina, Sonette
2017-01-01
There is evidence that weightlessness and radiation, two elements of the spaceflight environment, can lead to detrimental changes in human musculoskeletal tissue, including bone loss and muscle atrophy. This bone loss is thought to be brought about by the increased activity of bone-resorbing osteoclasts and functional changes in bone-forming osteoblasts, cells that give rise to mature osteocytes. Collectively, our research team aims to understand the molecular mechanisms underlying the responses of mammalian tissue to the spaceflight environment using earth-based animal and cellular models. The overarching goal is to identify molecular targets to prevent tissue decrements induced by spaceflight and earth-based scenarios of radiotherapy, accidental radiation exposure and reduced mobility. In this talk, I will provide an overview of skeletal and cardiovascular responses to spaceflight and will highlight our research progress on understanding the role of reactive oxygen species (ROS) signaling in skeletal responses to radiation and simulated weightlessness.
SKYLAB (SL) PRIME CREW - BLDG. 5 - JSC
1973-03-20
S73-20759 (1 March 1973) --- Astronaut Charles Conrad Jr., commander of the first manned Skylab mission, takes items from the M512 materials processing equipment storage assembly during Skylab training at Johnson Space Center. Conrad is standing in the Multiple Docking Adapter (MDA) trainer in the JSC Mission Simulation and Training Facility. The assembly holds equipment designed to explore space manufacturing capability in a weightless state. Conrad is holding one of the experiment parts in his left hand. Photo credit: NASA
ASTRONAUT CRIPPEN, ROBERT L. - PILOT - STS-1 - TRAINING - JSC
1978-03-22
S79-25007 (13 Dec. 1978) --- Astronaut Robert L. Crippen, pilot for the first space shuttle orbital flight test (STS-1), is assisted by technicians prior to entering a water immersion facility (WIF) during a training session. The zero-gravity familiarization took place in the Johnson Space Center?s training and test center (Building 260). The WIF afford one of two ways to simulate the feeling of weightlessness experienced during space extravehicular activity (EVA), the other being inside aircraft flying a parabolic curve. Crippen will be joined by astronaut John W. Young for the STS-1 flight. Photo credit: NASA
Angular velocities, angular accelerations, and coriolis accelerations
NASA Technical Reports Server (NTRS)
Graybiel, A.
1975-01-01
Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.
Enhancing Team Performance for Long-Duration Space Missions
NASA Technical Reports Server (NTRS)
Orasanu, Judith M.
2009-01-01
Success of exploration missions will depend on skilled performance by a distributed team that includes both the astronauts in space and Mission Control personnel. Coordinated and collaborative teamwork will be required to cope with challenging complex problems in a hostile environment. While thorough preflight training and procedures will equip creW'S to address technical problems that can be anticipated, preparing them to solve novel problems is much more challenging. This presentation will review components of effective team performance, challenges to effective teamwork, and strategies for ensuring effective team performance. Teamwork skills essential for successful team performance include the behaviors involved in developing shared mental models, team situation awareness, collaborative decision making, adaptive coordination behaviors, effective team communication, and team cohesion. Challenges to teamwork include both chronic and acute stressors. Chronic stressors are associated with the isolated and confined environment and include monotony, noise, temperatures, weightlessness, poor sleep and circadian disruptions. Acute stressors include high workload, time pressure, imminent danger, and specific task-related stressors. Of particular concern are social and organizational stressors that can disrupt individual resilience and effective mission performance. Effective team performance can be developed by training teamwork skills, techniques for coping with team conflict, intracrew and intercrew communication, and working in a multicultural team; leadership and teamwork skills can be fostered through outdoor survival training exercises. The presentation will conclude with an evaluation of the special requirements associated with preparing crews to function autonomously in long-duration missions.
Space sickness predictors suggest fluid shift involvement and possible countermeasures
NASA Technical Reports Server (NTRS)
Simanonok, K. E.; Moseley, E. C.; Charles, J. B.
1992-01-01
Preflight data from 64 first time Shuttle crew members were examined retrospectively to predict space sickness severity (NONE, MILD, MODERATE, or SEVERE) by discriminant analysis. From 9 input variables relating to fluid, electrolyte, and cardiovascular status, 8 variables were chosen by discriminant analysis that correctly predicted space sickness severity with 59 pct. success by one method of cross validation on the original sample and 67 pct. by another method. The 8 variables in order of their importance for predicting space sickness severity are sitting systolic blood pressure, serum uric acid, calculated blood volume, serum phosphate, urine osmolality, environmental temperature at the launch site, red cell count, and serum chloride. These results suggest the presence of predisposing physiologic factors to space sickness that implicate a fluid shift etiology. Addition of a 10th input variable, hours spent in the Weightless Environment Training Facility (WETF), improved the prediction of space sickness severity to 66 pct. success by the first method of cross validation on the original sample and to 71 pct. by the second method. The data suggest that WETF training may reduce space sickness severity.
Hill, Richard J. A.; Larkin, Oliver J.; Dijkstra, Camelia E.; Manzano, Ana I.; de Juan, Emilio; Davey, Michael R.; Anthony, Paul; Eaves, Laurence; Medina, F. Javier; Marco, Roberto; Herranz, Raul
2012-01-01
Understanding the effects of gravity on biological organisms is vital to the success of future space missions. Previous studies in Earth orbit have shown that the common fruitfly (Drosophila melanogaster) walks more quickly and more frequently in microgravity, compared with its motion on Earth. However, flight preparation procedures and forces endured on launch made it difficult to implement on the Earth's surface a control that exposed flies to the same sequence of major physical and environmental changes. To address the uncertainties concerning these behavioural anomalies, we have studied the walking paths of D. melanogaster in a pseudo-weightless environment (0g*) in our Earth-based laboratory. We used a strong magnetic field, produced by a superconducting solenoid, to induce a diamagnetic force on the flies that balanced the force of gravity. Simultaneously, two other groups of flies were exposed to a pseudo-hypergravity environment (2g*) and a normal gravity environment (1g*) within the spatially varying field. The flies had a larger mean speed in 0g* than in 1g*, and smaller in 2g*. The mean square distance travelled by the flies grew more rapidly with time in 0g* than in 1g*, and slower in 2g*. We observed no other clear effects of the magnetic field, up to 16.5 T, on the walks of the flies. We compare the effect of diamagnetically simulated weightlessness with that of weightlessness in an orbiting spacecraft, and identify the cause of the anomalous behaviour as the altered effective gravity. PMID:22219396
Hill, Richard J A; Larkin, Oliver J; Dijkstra, Camelia E; Manzano, Ana I; de Juan, Emilio; Davey, Michael R; Anthony, Paul; Eaves, Laurence; Medina, F Javier; Marco, Roberto; Herranz, Raul
2012-07-07
Understanding the effects of gravity on biological organisms is vital to the success of future space missions. Previous studies in Earth orbit have shown that the common fruitfly (Drosophila melanogaster) walks more quickly and more frequently in microgravity, compared with its motion on Earth. However, flight preparation procedures and forces endured on launch made it difficult to implement on the Earth's surface a control that exposed flies to the same sequence of major physical and environmental changes. To address the uncertainties concerning these behavioural anomalies, we have studied the walking paths of D. melanogaster in a pseudo-weightless environment (0g*) in our Earth-based laboratory. We used a strong magnetic field, produced by a superconducting solenoid, to induce a diamagnetic force on the flies that balanced the force of gravity. Simultaneously, two other groups of flies were exposed to a pseudo-hypergravity environment (2g*) and a normal gravity environment (1g*) within the spatially varying field. The flies had a larger mean speed in 0g* than in 1g*, and smaller in 2g*. The mean square distance travelled by the flies grew more rapidly with time in 0g* than in 1g*, and slower in 2g*. We observed no other clear effects of the magnetic field, up to 16.5 T, on the walks of the flies. We compare the effect of diamagnetically simulated weightlessness with that of weightlessness in an orbiting spacecraft, and identify the cause of the anomalous behaviour as the altered effective gravity.
Development of an EVA systems cost model. Volume 3: EVA systems cost model
NASA Technical Reports Server (NTRS)
1975-01-01
The EVA systems cost model presented is based on proposed EVA equipment for the space shuttle program. General information on EVA crewman requirements in a weightless environment and an EVA capabilities overview are provided.
ERIC Educational Resources Information Center
Reiss, Fred
1982-01-01
Students in two Camden County high schools planned and built a space shuttle project to send ants into space to examine the effects of weightlessness on a life colony. The experiments, tests, colony design, development of a computer-controlled environment, and production are described. (CM)
Commercial Spacewalking: Designing an EVA Qualification Program for Space Tourism
NASA Technical Reports Server (NTRS)
Gast, Matthew A.
2010-01-01
In the near future, accessibility to space will be opened to anyone with the means and the desire to experience the weightlessness of microgravity, and to look out upon both the curvature of the Earth and the blackness of space, from the protected, shirt-sleeved environment of a commercial spacecraft. Initial forays will be short-duration, suborbital flights, but the experience and expertise of half a century of spaceflight will soon produce commercial vehicles capable of achieving low Earth orbit. Even with the commercial space industry still in its infancy, and manned orbital flight a number of years away, there is little doubt that there will one day be a feasible and viable market for those courageous enough to venture outside the vehicle and into the void, wearing nothing but a spacesuit, armed with nothing but preflight training. What that Extravehicular Activity (EVA) preflight training entails, however, is something that has yet to be defined. A number of significant factors will influence the composition of a commercial EVA training program, but a fundamental question remains: 'what minimum training guidelines must be met to ensure a safe and successful commercial spacewalk?' Utilizing the experience gained through the development of NASA's Skills program - designed to qualify NASA and International Partner astronauts for EVA aboard the International Space Station - this paper identifies the attributes and training objectives essential to the safe conduct of an EVA, and attempts to conceptually design a comprehensive training methodology meant to represent an acceptable qualification standard.
STS-35 MS Hoffman is suspended above pool during JSC water egress exercises
NASA Technical Reports Server (NTRS)
1990-01-01
STS-35 Mission Specialist (MS) Jeffrey A. Hoffman is suspended above pool during launch emergency egress procedures conducted in JSC's Weightless Environmental Training Facility Bldg 29. Hoffman, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), adjusts flotation device (life jacket) as he is raised above the pool.
NASA Astrophysics Data System (ADS)
Yang, Z.; Zhang, S.; Wang, B.; Sun, X. Q.
Objective The role of mechanical load in the functional regulation of osteoblasts becomes an emphasis in osseous biomechanical researches recently This study was aim to explore the effect of flow shear stress on the expression of Cbf alpha 1 in human osteosarcoma cells and to survey its functional alteration in simulated weightlessness Method After cultured for 72 h in two different gravitational environments i e 1G terrestrial gravitational condition and simulated weightlessness condition human osteosarcoma cells MG-63 were treated with 0 5 Pa or 1 5 Pa fluid shear stress FSS in a flow chamber for 15 30 60 min respectively The total RNA in cells was isolated Transcription PCR analysis was made to examine the gene expression of Cbf alpha 1 And the total protein of cells was extracted and the expression of Cbf alpha 1 protein was detected by means of Western Blotting Results MG-63 cultured in 1G condition reacted to FSS treatment with an enhanced expression of Cbf alpha 1 Compared with no FSS control group Cbf alpha 1 mRNA and protein expression increased significantly at 30 and 60 min with the treatment of FSS P 0 01 And there was remarkable difference on the Cbf alpha 1 mRNA and protein expression between the treatments of 0 5 Pa and 1 5 Pa FSS at 30 min or 60 min P 0 01 As to the osteoblasts cultured in simulated weightlessness by using clinostat the expression of Cbf alpha 1 was significantly different between 1G and simulated weightlessness conditions at each test time P 0 05 Compared with no FSS
NASA Technical Reports Server (NTRS)
Roberts, W. E.
1985-01-01
Weightlessness and simulated weightlessness inhibit the rate of periosteal bone formation in long bones. Formation of preosteoblasts is suppressed in periodontal ligament (PDL) of maxillary molars, which suggests a generalized block in osteoblast histogenesis. Growth in length of long bones is decreased by simulated weightlessness, but there are no reliable data on the influence of actual weightlessness on metaphyseal growth. The nuclear size assay for assessing relative numbers of osteoblast precursor cells was utilized in the primary spongiosa of growing long bones subjected to actual and simulated weightlessness. It is found that: (1) Actual weightlessness decreases total number of osteogenic cells and inhibits differentiation of osteoblast precursor cells, (2) Simulated weightlessness suppresses only osteoblast differentation; and (3) The nuclear morphometric assay is an effective means of assessing osteogenic activity in the growing metaphysis or long bones.
Smart active pilot-in-the-loop systems
NASA Astrophysics Data System (ADS)
Thomas, Segun
1995-04-01
Representation of on-orbit microgravity environment in a 1-g environment is a continuing problem in space engineering analysis, procedures development and crew training. A way of adequately depicting weightlessness in the performance of on-orbit tasks is by a realistic (or real-time) computer based representation that provides the look, touch, and feel of on-orbit operation. This paper describes how a facility, the Systems Engineering Simulator at the Johnson Space Center, is utilizing recent advances in computer processing power and multi- processing capability to intelligently represent all systems, sub-systems and environmental elements associated with space flight operations. It first describes the computer hardware and interconnection between processors; the computer software responsible for task scheduling, health monitoring, sub-system and environment representation; control room and crew station. It then describes, the mathematical models that represent the dynamics of contact between the Mir and the Space Shuttle during the upcoming US and Russian Shuttle/Mir space mission. Results are presented comparing the response of the smart, active pilot-in-the-loop system to non-time critical CRAY model. A final example of how these systems are utilized is given in the development that supported the highly successful Hubble Space Telescope repair mission.
First Middle East Aircraft Parabolic Flights for ISU Participant Experiments
NASA Astrophysics Data System (ADS)
Pletser, Vladimir; Frischauf, Norbert; Cohen, Dan; Foster, Matthew; Spannagel, Ruven; Szeszko, Adam; Laufer, Rene
2017-06-01
Aircraft parabolic flights are widely used throughout the world to create microgravity environment for scientific and technology research, experiment rehearsal for space missions, and for astronaut training before space flights. As part of the Space Studies Program 2016 of the International Space University summer session at the Technion - Israel Institute of Technology, Haifa, Israel, a series of aircraft parabolic flights were organized with a glider in support of departmental activities on `Artificial and Micro-gravity' within the Space Sciences Department. Five flights were organized with manoeuvres including several parabolas with 5 to 6 s of weightlessness, bank turns with acceleration up to 2 g and disorientation inducing manoeuvres. Four demonstration experiments and two experiments proposed by SSP16 participants were performed during the flights by on board operators. This paper reports on the microgravity experiments conducted during these parabolic flights, the first conducted in the Middle East for science and pedagogical experiments.
Biological research on a Space Station
NASA Technical Reports Server (NTRS)
Krikorian, A. D.; Johnson, Catherine C.
1990-01-01
A Space Station can provide reliable, long duration access to ug environments for basic and applied biological research. The uniqueness of access to near-weightless environments to probe fundamental questions of significance to gravitational and Space biologists can be exploited from many vantage points. Access to centrifuge facilities that can provide 1 g and hypo-g controls will permit identification of gravity-dependent or primary effects. Understanding secondary effects of the ug environment as well will allow a fuller exploitation of the Space environment.
NASA Technical Reports Server (NTRS)
Smith, Jeffrey D.; Dalton, Bonnie (Technical Monitor)
2002-01-01
The era of the International Space Station (ISS) has finally arrived, providing researchers on Earth a unique opportunity to study long-term effects of weightlessness and the space environment on structures, materials and living systems. Many of the physical, biological and material science experiments planned for ISS will require significant input and expertise from astronauts who must conduct the research, follow complicated assay procedures and collect data and samples in space. Containment is essential for Much of this work, both to protect astronauts from potentially harmful biological, chemical or material elements in the experiments as well as to protect the experiments from contamination by air-born particles In the Space Station environment. When astronauts must open the hardware containing such experiments, glovebox facilities provide the necessary barrier between astronaut and experiment. On Earth, astronauts are laced with the demanding task of preparing for the many glovebox experiments they will perform in space. Only a short time can be devoted to training for each experimental task and gl ovebox research only accounts for a small portion of overall training and mission objectives on any particular ISS mission. The quality of the research also must remain very high, requiring very detailed experience and knowledge of instrumentation, anatomy and specific scientific objectives for those who will conduct the research. This unique set of needs faced by NASA has stemmed the development of a new computer simulation tool, the Virtual Glovebox (VGB), which is designed to provide astronaut crews and support personnel with a means to quickly and accurately prepare and train for glovebox experiments in space.
Testing of the Japanese Experimental Module in NBS
NASA Technical Reports Server (NTRS)
1993-01-01
This photograph was taken in the Marshall Space Flight Center (MSFC) Neutral Buoyancy Simulator (NBS) during the testing of the Japanese Experimental Module. The NBS provided the weightless environment encountered in space needed for testing and the practices of extra-vehicular activities.
Teacher in Space Christa McAuliffe on the KC-135 for zero-G training
1986-01-08
S86-25180 (October 1985) --- Sharon Christa McAuliffe, STS-51L citizen observer/payload specialist, representing the Teacher-in-Space Project, floats forward and upward during a few moments of weightlessness aboard a KC-135 aircraft. The flight is part of her training for the scheduled five-day flight aboard the Challenger in January of next year. Barbara R. Morgan, backup payload specialist for STS-51L, is partially visible in the background. The photo was taken by Keith Meyers of the New York Times. Photo credit: NASA
View of backup payload specialist Robert Thirsk during Zero-G training
1984-07-16
S84-37532 (18 July 1984) --? Robert B. Thirsk, backup payload specialist for 41-G appears to be shaking hands with an unoccupied extravehicular mobility unit (EMU) during a familiarization flight aboard NASA?s KC-135 aircraft. Thirsk, representing Canada?s National Research Council (NRC), serves as backup to Marc Garneau on the seven-member crew for Challenger?s October 1984 flight. This aircraft is used extensively for training and exposing Shuttle crewmembers to weightlessness as well as for evaluation of equipment and experiments scheduled for future flights.
Early detection of epilepsy seizures based on a weightless neural network.
de Aguiar, Kleber; Franca, Felipe M G; Barbosa, Valmir C; Teixeira, Cesar A D
2015-08-01
This work introduces a new methodology for the early detection of epileptic seizure based on the WiSARD weightless neural network model and a new approach in terms of preprocessing the electroencephalogram (EEG) data. WiSARD has, among other advantages, the capacity of perform the training phase in a very fast way. This speed in training is due to the fact that WiSARD's neurons work like Random Access Memories (RAM) addressed by input patterns. Promising results were obtained in the anticipation of seizure onsets in four representative patients from the European Database on Epilepsy (EPILEPSIAE). The proposed seizure early detection WNN architecture was explored by varying the detection anticipation (δ) in the 2 to 30 seconds interval, and by adopting 2 and 3 seconds as the width of the Sliding Observation Window (SOW) input. While in the most challenging patient (A) one obtained accuracies from 99.57% (δ=2s; SOW=3s) to 72.56% (δ=30s; SOW=2s), patient D seizures could be detected in the 99.77% (δ=2s; SOW=2s) to 99.93% (δ=30s; SOW=3s) accuracy interval.
Endoscopic surgery in weightlessness: the investigation of basic principles for surgery in space.
Campbell, M R; Kirkpatrick, A W; Billica, R D; Johnston, S L; Jennings, R; Short, D; Hamilton, D; Dulchavsky, S A
2001-12-01
Performing a surgical procedure in weightlessness, also called 0-gravity (0-g), has been shown to be no more difficult than in a 1-g environment if the requirements for the restraint of the patient, operator, surgical hardware, are observed. The performance of laparoscopic and thorascopic procedures in weightlessness, if feasible, would offer several advantages over the performance of an open operation. Concerns about the feasibility of performing minimally invasive procedures in weightlessness have included impaired visualization from the absence of gravitational retraction of the bowel (laparoscopy) or thoracic organs (thoracoscopy) as well as obstruction and interference from floating debris such as blood, pus, and irrigation fluid. The purpose of this study was to determine the feasibility of performing laparoscopic and thorascopic procedures and the degree of impaired surgical endoscopic visualization in weightlessness. From 1993 to 2000, laparoscopic and thorascopic procedures were performed on 10 anesthetized adult pigs weighing approximately 50 kg in the National Aeronautics and Space Administration (NASA) Microgravity Program using a modified KC-135 airplane. The parabolic simulation system for advanced life support was used in this project, and 20 to 40 parabolas were used for laparoscopic or thorascopic investigation, each containing approximately 30 s of 0-g alternating with 2-g pullouts. The animal model was restrained in the supine position on a floor-level Crew Medical Restraint System, and the abdominal cavity was insufflated with carbon dioxide. The intraabdominal and intrathoracic anatomy was visualized in the 1-g, 0-g, and 2-g periods of parabolic flight. Bleeding was created in the animals, and the behavior of the blood in the abdominal and thoracic cavities was observed. In the thoracic cavity, gas insufflation and mechanical retraction was used at times unilaterally to decrease pulmonary ventilation enough to increase the thoracic domain. Visualization was improved in laparoscopy, from tethering of the bowel by the elastic mesentery, and from the strong tendency for debris and blood to adhere to the abdominal wall because of surface tension forces. The lack of adequate thoracic domain made thorascopy more difficult. Fluid in the thoracic cavity did not impair visualization because the fluid at 0-g does not loculate posteriorly, but disperses along the thoracic wall and mediastinal reflections. Performing minimally invasive procedures instead of open surgical procedures in a weightless environment has theoretical advantages, especially in the ability to prevent cabin atmosphere contamination from surgical fluids (blood, pus, irrigation). Visualization will become more important and practical as the endoscopic hardware is miniaturized from its current form, as endoscopic technology becomes more advanced, and as more surgically capable medical crew officers are present in future long-duration space exploration missions.
Endoscopic surgery in weightlessness: the investigation of basic principles for surgery in space
NASA Technical Reports Server (NTRS)
Campbell, M. R.; Kirkpatrick, A. W.; Billica, R. D.; Johnston, S. L.; Jennings, R.; Short, D.; Hamilton, D.; Dulchavsky, S. A.
2001-01-01
BACKGROUND: Performing a surgical procedure in weightlessness, also called 0-gravity (0-g), has been shown to be no more difficult than in a 1-g environment if the requirements for the restraint of the patient, operator, surgical hardware, are observed. The performance of laparoscopic and thorascopic procedures in weightlessness, if feasible, would offer several advantages over the performance of an open operation. Concerns about the feasibility of performing minimally invasive procedures in weightlessness have included impaired visualization from the absence of gravitational retraction of the bowel (laparoscopy) or thoracic organs (thoracoscopy) as well as obstruction and interference from floating debris such as blood, pus, and irrigation fluid. The purpose of this study was to determine the feasibility of performing laparoscopic and thorascopic procedures and the degree of impaired surgical endoscopic visualization in weightlessness. METHODS: From 1993 to 2000, laparoscopic and thorascopic procedures were performed on 10 anesthetized adult pigs weighing approximately 50 kg in the National Aeronautics and Space Administration (NASA) Microgravity Program using a modified KC-135 airplane. The parabolic simulation system for advanced life support was used in this project, and 20 to 40 parabolas were used for laparoscopic or thorascopic investigation, each containing approximately 30 s of 0-g alternating with 2-g pullouts. The animal model was restrained in the supine position on a floor-level Crew Medical Restraint System, and the abdominal cavity was insufflated with carbon dioxide. The intraabdominal and intrathoracic anatomy was visualized in the 1-g, 0-g, and 2-g periods of parabolic flight. Bleeding was created in the animals, and the behavior of the blood in the abdominal and thoracic cavities was observed. In the thoracic cavity, gas insufflation and mechanical retraction was used at times unilaterally to decrease pulmonary ventilation enough to increase the thoracic domain. RESULTS: Visualization was improved in laparoscopy, from tethering of the bowel by the elastic mesentery, and from the strong tendency for debris and blood to adhere to the abdominal wall because of surface tension forces. The lack of adequate thoracic domain made thorascopy more difficult. Fluid in the thoracic cavity did not impair visualization because the fluid at 0-g does not loculate posteriorly, but disperses along the thoracic wall and mediastinal reflections. CONCLUSIONS: Performing minimally invasive procedures instead of open surgical procedures in a weightless environment has theoretical advantages, especially in the ability to prevent cabin atmosphere contamination from surgical fluids (blood, pus, irrigation). Visualization will become more important and practical as the endoscopic hardware is miniaturized from its current form, as endoscopic technology becomes more advanced, and as more surgically capable medical crew officers are present in future long-duration space exploration missions.
Fire extinguishment in hypobaric and hyperbaric environments
NASA Technical Reports Server (NTRS)
Kimzey, J. H.
1971-01-01
Work that has been performed to provide information on the effects of various fire extinguishing agents in special atmospheres is discussed. Data used in the development of both equipment and techniques for manned spacecraft and related equipment are discussed. The equipment includes a hypobaric chamber suitable for low pressure use and a hyperbaric chamber for high pressure operation. The effectiveness of agents in weightless environment is also discussed.
High mobility work station restraint support
NASA Technical Reports Server (NTRS)
Schermerhorn, R. S.
1971-01-01
Chair holds man in semistanding posture enabling astronauts to work comfortably with minimum restriction in weightless environment. Seat, angled at 130 deg to back support, twists and swivels up to 20 deg in all directions but forward. Two flexible thigh clips prevent occupant from slipping off.
1973-01-01
Judith S. Miles of Lexington High School, Lexington, Massachusetts, proposed skylab student experiment ED-52, Web Formation. This experiment was a study of a spider's behavior in a weightless environment. The geometrical structure of the web of the orb-weaving spider provides a good measure of the condition of its central nervous system. Since the spider senses its own weight to determine the required thickness of web material and uses both the wind and gravity to initiate construction of its web, the lack of gravitational force in Skylab provided a new and different stimulus to the spider's behavioral response. Two common cross spiders, Arabella and Anita, were used for the experiment aboard the Skylab-3 mission. After initial disoriented attempts, both spiders produced almost Earth-like webs once they had adapted to weightlessness. This photograph is of Arabella, a cross spider, in her initial attempt at spirning a web. This picture was taken by the crew of the Skylab 3 mission before Arabella adapted to her new environment.
Web Formation - Skylab Student Experiment ED-52
NASA Technical Reports Server (NTRS)
1973-01-01
Judith S. Miles of Lexington High School, Lexington, Massachusetts, proposed skylab student experiment ED-52, Web Formation. This experiment was a study of a spider's behavior in a weightless environment. The geometrical structure of the web of the orb-weaving spider provides a good measure of the condition of its central nervous system. Since the spider senses its own weight to determine the required thickness of web material and uses both the wind and gravity to initiate construction of its web, the lack of gravitational force in Skylab provided a new and different stimulus to the spider's behavioral response. Two common cross spiders, Arabella and Anita, were used for the experiment aboard the Skylab-3 mission. After initial disoriented attempts, both spiders produced almost Earth-like webs once they had adapted to weightlessness. This photograph is of Arabella, a cross spider, in her initial attempt at spirning a web. This picture was taken by the crew of the Skylab 3 mission before Arabella adapted to her new environment.
Analysis of evaporative water loss in the Skylab astronauts
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1977-01-01
Daily evaporative water losses (EWL) during the three Skylab missions were measured using the indirect mass and water balance techniques. A mean inflight EWL of 860 ml/day-m 2 was obtained for nine men who averaged one hour of daily exercise. Although it was expected the EWL would increase in the hypobaric environment of Skylab (1/3 atmosphere), an average decrease from preflight sea level conditions of 11 percent was measured. The results suggest that weightlessness may have been a factor in modifying EWL primarily by decreasing sweat losses during exercise and possibly by reducing insensible skin losses as well. The weightless environment apparently promotes the formation of a sweat film on the skin surface both directly, by reducing heat and mass convective flow and sweat drippage, and perhaps indirectly by inducing measurable biochemical changes resulting in high initial sweating rates. It is proposed that these high levels of skin wettedness favor sweat suppression by a previously described mechanism.
NASA Astrophysics Data System (ADS)
Yang, T. D.; Zhang, R. G.; Wang, C. M.; Fu, H. W.; Zhang, B. L.; Zhang, J. X.
1999-01-01
Cabin emergent depressurization (CED) may occur in spacecraft during manned space flight. The purpose of this paper was to study the combined effects of simulated weightlessness (SW) and CED factors on humans and animals. It was found that the amplitude of T wave of human electrocardiograms (ECG) significantly decreased in bed rest and hypoxia compared with the control condition (P<0.05), and that suspension with pure O2 induced severer edema in the lungs of rats than that in only a pure O2 environment. SW and pure O2 caused middle ear congestion and decreased the barofunction during pressure changes. These results indicate that human response to CED factors become more serious under SW because of the blood redistribution.
NASA Technical Reports Server (NTRS)
Charles, John B.
2013-01-01
The technique of neutral buoyancy during water immersion was applied to a variety of questions pertaining to human performance factors in the early years of the space age. It was independently initiated by numerous aerospace contractors at nearly the same time, but specific applications depended on the problems that the developers were trying to solve. Those problems dealt primarily with human restraint and maneuverability and were often generic across extravehicular activity (EVA) and intravehicular activity (IVA) worksites. The same groups often also considered fractional gravity as well as weightless settings and experimented with ballasting to achieve lunar and Mars-equivalent loads as part of their on-going research and development. Dr. John Charles reviewed the association of those tasks with contemporary perceptions of the direction of NASA's future space exploration activities and with Air Force assessments of the military value of man in space.
NASA Technical Reports Server (NTRS)
Ronca, A. E.; Moyer, E. L.; Talyansky, Y.; Solomides, P.; Choi, S.; Gong, C.; Globus, R. K.
2017-01-01
As interest in long duration effects of space habitation increases, understanding the behavior of model organisms living within the habitats engineered to fly them is vital for designing, validating, and interpreting future spaceflight studies. Only a handful of papers have previously reported behavior of mice and rats in the weightless environment of space (Andreev-Andrievskiy, et al., 2013; Cancedda et al., 2012; Ronca et al., 2008). The Rodent Research Hardware and Operations Validation Mission (Rodent Research-1; RR1) utilized the Rodent Habitat (RH) developed at NASA Ames Research Center to fly mice on the ISS. Ten adult (16-week-old) female C57BL6J mice were launched on September 21st, 2014 in an unmanned Dragon Capsule, and spent 37 days in flight. Here we report group behavioral phenotypes of the RR1 Flight (FLT) and environment-matched Ground Control (GC) mice in the RH during this long duration flight. Video was recorded for 34 days on the ISS, permitting daily assessments of overall health and well being of the mice, and providing a valuable repository for detailed behavioral analysis. As compared to GC mice, RR1 FLT mice exhibited the same range of behaviors, including eating, drinking, exploration, self- and allogrooming, and social interactions at similar or greater levels of occurrence. Overall activity was greater in FLT as compared to GC mice, with spontaneous ambulatory behavior, including organized circling or race-tracking behavior that emerged within the first few days of flight following a common developmental sequence, comprising the primary dark cycle activity of FLT mice. Circling participation by individual mice persisted throughout the mission. Analysis of group behavior over mission days revealed recruitment of mice into the group phenotype, coupled with decreasing numbers of collisions between circling mice. This analysis provides insights into the behavior of mice in microgravity, and clear evidence for the emergence of a distinctive, organized group behavior unique to the weightless space environment. Supported by the NASA Rodent Research Project, Space Biology Program, and Space Life Sciences Training Program.
Laboratory simulation of the action of weightlessness on the human organism
NASA Technical Reports Server (NTRS)
Genin, A. M.
1977-01-01
A brief history of attemps by the U.S. and the U.S.S.R. to simulate weightlessness in the laboratory is presented. Model for laboratory modeling of weightlessness included the bed regimen, the clinostat, and water immersion. An outline of immediate physiological effects of weightlessness and long term effects is offered.
Research opportunities in muscle atrophy
NASA Technical Reports Server (NTRS)
Herbison, G. J. (Editor); Talbot, J. M. (Editor)
1984-01-01
Muscle atrophy in a weightless environment is studied. Topics of investigation include physiological factors of muscle atrophy in space flight, biochemistry, countermeasures, modelling of atrophied muscle tissue, and various methods of measurement of muscle strength and endurance. A review of the current literature and suggestions for future research are included.
Romanenko works with the Coulomb Crystal Experiment in the MRM-2
2013-01-28
ISS034-E-035764 (28 Jan. 2013) --- In the International Space Station?s Poisk Mini-Research Module 2 (MRM2), Russian cosmonaut Roman Romanenko, Expedition 34 flight engineer, works with the Coulomb Crystal experiment, which gathers data about charged particles in a weightless environment.
Preparatory studies of zero-g cloud drop coalescence experiment
NASA Technical Reports Server (NTRS)
Telford, J. W.; Keck, T. S.
1979-01-01
Experiments to be performed in a weightless environment in order to study collision and coalescence processes of cloud droplets are described. Rain formation in warm clouds, formation of larger cloud drops, ice and water collision processes, and precipitation in supercooled clouds are among the topics covered.
How Will Astronauts Stay Fit during Long Spaceflights?
ERIC Educational Resources Information Center
Pine, Devera
1989-01-01
Astronauts on lengthy spaceflights must exercise regularly to forestall muscle atrophy and bone loss, but exercise presents unique problems in a weightless environment. All exercise equipment must have a harness or seat belt. Soviet and NASA space exercise plans and experimental ideas are discussed. (Author/SM)
Low-g simulation testing of propellant systems using neutral buoyancy
NASA Technical Reports Server (NTRS)
Balzer, D. L.; Lake, R. J., Jr.
1972-01-01
A two liquid, neutral buoyancy technique is being used to simulate propellant behavior in a weightless environment. By equalizing the density of two immiscible liquids within a container (propellant tank), the effect of gravity at the liquid interface is balanced. Therefore the surface-tension forces dominate to control the liquid/liquid system configuration in a fashion analogous to a liquid/gas system in a zero gravity environment.
SPACE MEDICINE and Medical Operations Overview
NASA Technical Reports Server (NTRS)
Dervay, Joe
2009-01-01
This presentation is an overview of the function of the work of the Space Medicine & Health Care Systems Office. The objective of the medical operations is to ensure the health, safety and well being of the astronaut corps and ground support team during all phases of space flight. There are many issues that impact the health of the astronauts. Some of them are physiological, and others relate to behavior, psychological issues and issues of the environment of space itself. Reviews of the medical events that have affected both Russian, and Americans while in space are included. Some views of shuttle liftoff, and ascent, the medical training aboard NASA's KC-135 and training in weightlessness, the Shuttle Orbiter Medical system (SOMS), and some of the medical equipment are included. Also included are a graphs showing Fluid loading countermeasures, and vertical pursuit tracking with head and eye. The final views are representations of the future crew exploration vehicle (CEV) approaching the International Space Station, and the moon, and a series of perspective representations of the earth in comparison to the other planets and the Sun, the Sun in relation to other stars, and a view of where in the galaxy the Sun is.
NASA Astrophysics Data System (ADS)
Neri, Gianluca; Zolesi, Valfredo
2000-01-01
Accumulated evidence, based on information gathered on space flight missions and ground based models involving both humans and animals, clearly suggests that exposure to states of microgravity conditions for varying duration induces certain physiological changes; they involve cardiovascular deconditioning, balance disorders, bone weakening, muscle hypertrophy, disturbed sleep patterns and depressed immune responses. The effects of the microgravity on the astronauts' movement and attitude have been studied during different space missions, increasing the knowledge of the human physiology in weightlessness. The purpose of the research addressed in the present paper is to understand and to assess the performances of the upper limb, especially during grasp. Objects of the research are the physiological changes related to the long-term duration spaceflight environment. Specifically, the changes concerning the upper limb are investigated, with particular regard to the performances of the hand in zero-g environments. This research presents also effects on the Earth, improving the studies on a number of pathological states, on the health care and the rehabilitation. In this perspective, a set of experiments are proposed, aimed at the evaluation of the effects of the zero-g environments on neurophysiology of grasping movements, fatigue assessment, precision grip. .
Effects of hypercapnia and bedrest on psychomotor performance
NASA Technical Reports Server (NTRS)
Storm, W. F.; Giannetta, C. L.
1974-01-01
Two weeks of continuous exposure to simulated weightlessness (bedrest) and/or an elevated (30 torr) CO2 environment had no detrimental effect on complex tracking performance, eye-hand coordination, or problem-solving ability. These results were consistent with previously reported behavioral findings which investigated these two factors only as independent stressors.
Astronaut Walter Cunningham photographed performing flight tasks
NASA Technical Reports Server (NTRS)
1968-01-01
Astronaut Walter Cunningham, Apollo 7 lunar module pilot, writes with space pen as he is photographed performing flight tasks on the ninth day of the Apollo 7 mission. Note the 70mm Hasselblad camera film magazine just above Cunningham's right hand floating in the weightless (zero gravity) environment of the spacecraft.
Astronaut Richard H. Truly gets practice eating in weghtlessness
NASA Technical Reports Server (NTRS)
1981-01-01
Astronaut Richard H. Truly, STS-2 pilot, gets some practice eating in a weightless environment during moments of zero gravity on the KC-135 aircraft. He holds a spoon in his right hand and a package of dehydrated food in his left hand and is in the process of swallowing.
STS-28 Columbia, OV-102, Mission Specialist Adamson eating on middeck
NASA Technical Reports Server (NTRS)
1989-01-01
On middeck, Mission Specialist (MS) James C. Adamson enjoys the rare opportunity of eating in a weightless environment as he flips a shrimp with a spoon. In the background is a second crewmember holding a meal tray assembly (food tray) and sleep restraints fastened to starboard wall.
Reisman floats in the FWD MDDK during STS-132
2010-05-15
S132-E-007185 (15 May 2010) --- NASA astronaut Garrett Reisman, STS-132 mission specialist, takes advantage of the weightless environment on the middeck of the Earth-orbiting space shuttle Atlantis to get creative with his posture during Flight Day 2 activities. Photo credit: National Aeronautics and Space Administration
Medical considerations for extending human presence in space
NASA Technical Reports Server (NTRS)
Leach, C. S.; Dietlein, L. F.; Pool, S. L.; Nicogossian, A. E.
1990-01-01
The prospects for extending the length of time that humans can safely remain in space depend partly on resolution of a number of medical issues. Physiologic effects of weightlessness that may affect health during flight include loss of body fluid, functional alterations in the cardiovascular system, loss of red blood cells and bone mineral, compromised immune system function, and neurosensory disturbances. Some of the physiologic adaptations to weightlessness contribute to difficulties with readaptation to Earth's gravity. These include cardiovascular deconditioning and loss of body fluids and electrolytes; red blood cell mass; muscle mass, strength, and endurance; and bone mineral. Potentially harmful factors in space flight that are not related to weightlessness include radiation, altered circadian rhythms and rest/work cycles, and the closed, isolated environment of the spacecraft. There is no evidence that space flight has long-term effects on humans, except that bone mass lost during flight may not be replaced, and radiation damage is cumulative. However, the number of people who have spent several months or longer in space is still small. Only carefully-planned experiments in space preceded by thorough ground-based studies can provide the information needed to increase the amount of time humans can safely spend in space.
Delineating the Impact of Weightlessness on Human Physiology Using Computational Models
NASA Technical Reports Server (NTRS)
Kassemi, Mohammad
2015-01-01
Microgravity environment has profound effects on several important human physiological systems. The impact of weightlessness is usually indirect as mediated by changes in the biological fluid flow and transport and alterations in the deformation and stress fields of the compliant tissues. In this context, Fluid-Structural and Fluid-Solid Interaction models provide a valuable tool in delineating the physical origins of the physiological changes so that systematic countermeasures can be devised to reduce their adverse effects. In this presentation, impact of gravity on three human physiological systems will be considered. The first case involves prediction of cardiac shape change and altered stress distributions in weightlessness. The second, presents a fluid-structural-interaction (FSI) analysis and assessment of the vestibular system and explores the reasons behind the unexpected microgravity caloric stimulation test results performed aboard the Skylab. The last case investigates renal stone development in microgravity and the possible impact of re-entry into partial gravity on the development and transport of nucleating, growing, and agglomerating renal calculi in the nephron. Finally, the need for model validation and verification and application of the FSI models to assess the effects of Artificial Gravity (AG) are also briefly discussed.
Dijkstra, Camelia E.; Larkin, Oliver J.; Anthony, Paul; Davey, Michael R.; Eaves, Laurence; Rees, Catherine E. D.; Hill, Richard J. A.
2011-01-01
Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to reproduce aspects of weightlessness, on the Earth. We used a superconducting magnet to levitate growing bacterial cultures for up to 18 h, to determine the effect of diamagnetic levitation on all phases of the bacterial growth cycle. We find that diamagnetic levitation increases the rate of population growth in a liquid culture and reduces the sedimentation rate of the cells. Further experiments and microarray gene analysis show that the increase in growth rate is owing to enhanced oxygen availability. We also demonstrate that the magnetic field that levitates the cells also induces convective stirring in the liquid. We present a simple theoretical model, showing how the paramagnetic force on dissolved oxygen can cause convection during the aerobic phases of bacterial growth. We propose that this convection enhances oxygen availability by transporting oxygen around the liquid culture. Since this process results from the strong magnetic field, it is not present in other weightless environments, e.g. in Earth orbit. Hence, these results are of significance and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena. PMID:20667843
Dijkstra, Camelia E; Larkin, Oliver J; Anthony, Paul; Davey, Michael R; Eaves, Laurence; Rees, Catherine E D; Hill, Richard J A
2011-03-06
Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to reproduce aspects of weightlessness, on the Earth. We used a superconducting magnet to levitate growing bacterial cultures for up to 18 h, to determine the effect of diamagnetic levitation on all phases of the bacterial growth cycle. We find that diamagnetic levitation increases the rate of population growth in a liquid culture and reduces the sedimentation rate of the cells. Further experiments and microarray gene analysis show that the increase in growth rate is owing to enhanced oxygen availability. We also demonstrate that the magnetic field that levitates the cells also induces convective stirring in the liquid. We present a simple theoretical model, showing how the paramagnetic force on dissolved oxygen can cause convection during the aerobic phases of bacterial growth. We propose that this convection enhances oxygen availability by transporting oxygen around the liquid culture. Since this process results from the strong magnetic field, it is not present in other weightless environments, e.g. in Earth orbit. Hence, these results are of significance and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena.
NASA Technical Reports Server (NTRS)
Chou, J. L.; McKenzie, M. A.; Stad, N. J.; Barnes, P. R.; Jackson, C. G. R.; Ghiasvand, F.; Greenleaf, J. E.
1997-01-01
This compendium includes abstracts and annotations of clinical observations and of more basic studies involving physiological mechanisms concerning interaction of acceleration, training and deconditioning. If the author's abstract or summary was appropriate, it was included. In other cases a more detailed annotation of the paper was prepared under the subheadings Purpose, Methods, Results, and Conclusions. Author and keyword indices are provided, plus an additional selected bibliography of related work and of those papers received after the volume was prepared for publication. This volume includes material published from 1950-1996.
CREW TRAINING - STS-33/51L (ZERO-G)
1985-10-16
S85-42474 (16 Oct. 1985) --- A KC-135 aircraft provides a brief period of weightlessness as a preview for a teacher, in training to fly onboard a space shuttle for the Teacher-in-Space Project, and her backup. Sharon Christa McAuliffe (center frame), STS-51L prime crew member, and Barbara Morgan, her backup, monitor an experiment involving magnetic effects - one of the tests to be performed on the STS-51L flight. The experiment uses a control box, a square receptacle containing rubber tubing, stainless steel rod, a filter with desiccant, soft iron wire and a magnet. Photo credit: NASA
PERSONNEL - MINNOWS - SKYLAB (SL)-3 - JSC
1973-07-18
S73-30856 (29 June 1973) --- John Boyd observes a bag with two ?brackish water? minnows known as ?Mummichog Minnows? which will be onboard Skylab 3 with astronauts Alan L. Bean, Owen K. Garriott and Jack R. Lousma. The fish were added to the flight at the request of scientist-astronaut Dr. Owen K. Garriott, science pilot. Fifty eggs from the minnows will also be included in the bag. The objective of this experiment is to show what disorientation the fish will experience when exposed to weightlessness. Many fish have vestibular apparatus quite similar to man. Even though they live in an environment usually considered to resemble weightlessness, they do perceive a gravity vector. An aquarium of the minnows, caught off the coast of Beaufort, North Carolina, is in the background. Photo credit: NASA
SKYLAB (SL)-3 - EXPERIMENT HARDWARE
1973-11-08
S74-19677 (April 1974) --- This crystal of Germanium Selenide (GeSe) was grown under weightless conditions in an electric furnace aboard the Skylab space station. Experiment M556, Vapor Growth of IV-VI Compounds, was conducted as a comparative test of GeSe crystals grown on Earth and those grown in a weightless environment. Skylab postflight results indicate that crystals grown in a zero-gravity situation demonstrate greater growth and better composite structure than those grown in ground-bases laboratories. The GeSe crystal shown here is 20 millimeters long, the largest crystal ever grown on Earth or in space. Principal Investigator for Experiment M556 is Dr. Harry Wiedemaier, Rensselaer Polytechnic Institute, Troy, New York. (See NASA photograph S74-19676 for an example of an Earth-grown Germanium Selenide crystal.) Photo credit: NASA
Gravity as a biochemical determinant
NASA Technical Reports Server (NTRS)
Siegel, S. M.
1979-01-01
The existence of obvious morphological and physiological changes in living systems exposed to altered gravity immediately informs us that prior changes have taken place in the chemistry of exposed cells, tissues and organs. These changes include transients that return more or less promptly to the norm when the system is restored to the terrestrial g-field. For example, altered serum hormone and electrolyte levels in man, which appear to reflect successful adaptation to the conditions of orbital weightlessness, disappear shortly after return to Earth. Other changes--in mineral and protein constituents of the skeletal system in man, and cell wall composition in plants--are more persistent or even permanent. Hypogravitational departures from the norm include not only "weightlessness" as achieved in orbit, but also experimental modes of compensation, on the clinostat or by flotation. These techniques are useful in the study of hypogravity but cannot replace fully the weightless environment. Plant ethylene and peroxidase both increase under orbital, clinostat and/or flotation conditions whereas 3-phosphoglyceraldehyde-dehydrogenase increases under orbital but not clinostat conditions; cytochrome reductase and malic dehydrogenase levels are affected by the clinostat, but not by actual weightless conditions. How do the altered organismal biochemistries induced by the centrifuge and the clinostat relate to one another? Does gravity operate on living systems as a continuous variable from 0 to superterrestrial values, or do deviations from g(earth) generate non-uniform, discontinuous stress responses, irrespective of sign? In plants, measurements of wall lignin content and peroxidase activity yield opposite answers. Given the limited data so far available we will consider the meaning of these contradictions.
STS-40 Payload Specialist Millie Hughes-Fulford trains in JSC's SLS mockup
1987-03-10
STS-40 Payload Specialist Millie Hughes-Fulford conducts Spacelab Life Sciences 1 (SLS-1) Experiment No. 198, Pulmonary Function During Weightlessness, in JSC's Life Sciences Project Division (LSPD) SLS mockup located in the Bioengineering and Test Support Facility Bldg 36. Hughes-Fulford sets switches on Rack 8. Behind her in the center aisle are the stowed bicycle ergometer (foreground) and the body restraint system.
NASA Technical Reports Server (NTRS)
Lafevers, E. V.; Nicogossian, A. E.; Hursta, W. N.
1976-01-01
Both integration and frequency analyses of the electromyograms from voluntary contractions were performed in one crewman of the Apollo-Soyuz Test Project mission. Of particular interest were changes in excitability, electrical efficiency, and fatigability. As a result of 9 days of weightlessness, muscle excitability was shown to increase; muscle electrical efficiency was found to decrease in calf muscles and to increase in arm muscles; and fatigability was found to increase significantly, as shown by spectral power shifts into lower frequencies. It was concluded from this study that skeletal muscles are affected by the disuse of weightlessness early in the period of weightlessness, antigravity muscles seem most affected by weightlessness, and exercise may abrogate the weightlessness effect. It was further concluded that electromyography is a sensitive tool for measuring spaceflight muscle effects.
2011-02-25
STS133-E-006008 (25 Feb. 2011) --- On space shuttle Discovery’s middeck, astronaut Nicole Stott, STS-133 mission specialist, enjoys a flight day 2 snack. She is holding an apple and a tortilla, food items that do not tend to create burdensome crumbs in the weightless environment of space. Photo credit: NASA or National Aeronautics and Space Administration
Recent NASA aerospace medicine technology developments
NASA Technical Reports Server (NTRS)
Jones, W. L.
1973-01-01
Areas of life science are being studied to obtain baseline data, strategies, and technology to permit life research in the space environment. The reactions of the cardiovascular system to prolonged weightlessness are also being investigated. Particle deposition in the human lung, independent respiratory support system, food technology, and remotely controlled manipulators are mentioned briefly.
Pilot Fullerton examines SE-81-8 Insect Flight Motion Study
NASA Technical Reports Server (NTRS)
1982-01-01
Pilot Fullerton examines Student Experiment 81-8 (SE-81-8) Insect Flight Motion Study taped to the airlock on aft middeck. Todd Nelson, a high school senior from Minnesota, won a national contest to fly his experiment on this particular flight. Moths, flies, and bees were studied in the near weightless environment.
Skylab Experiments, Volume 3, Materials Science.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
Basic knowledge about Skylab experiments is presented in this book, one of a series, for the purpose of informing high school teachers about scientific research performed in orbit and enabling the teachers to broaden their basis for material selection. This third volume is concerned with the effect of a weightless environment on melting and…
NASA Technical Reports Server (NTRS)
1997-01-01
Session TP3 includes short reports on: (1) Modification of Goal-Directed Arm Movements During Inflight Adaptation to Microgravity; (2) Quantitative Analysis of Motion control in Long Term Microgravity; (3) Does the Centre of Gravity Remain the Stabilised Reference during Complex Human Postural Equilibrium Tasks in Weightlessness?; and (4) Arm End-Point Trajectories Under Normal and Microgravity Environments.
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1985-01-01
The most important results of the Skylab studies related to fluid-electrolyte regulation are summarized. These data are the starting point of a systems analysis to study adaptation to the weightlessness environment. A summary of the systems analysis study, including an interpretation of Skylab results, is included.
Human Pathophysiological Adaptations to the Space Environment
Demontis, Gian C.; Germani, Marco M.; Caiani, Enrico G.; Barravecchia, Ivana; Passino, Claudio; Angeloni, Debora
2017-01-01
Space is an extreme environment for the human body, where during long-term missions microgravity and high radiation levels represent major threats to crew health. Intriguingly, space flight (SF) imposes on the body of highly selected, well-trained, and healthy individuals (astronauts and cosmonauts) pathophysiological adaptive changes akin to an accelerated aging process and to some diseases. Such effects, becoming manifest over a time span of weeks (i.e., cardiovascular deconditioning) to months (i.e., loss of bone density and muscle atrophy) of exposure to weightlessness, can be reduced through proper countermeasures during SF and in due time are mostly reversible after landing. Based on these considerations, it is increasingly accepted that SF might provide a mechanistic insight into certain pathophysiological processes, a concept of interest to pre-nosological medicine. In this article, we will review the main stress factors encountered in space and their impact on the human body and will also discuss the possible lessons learned with space exploration in reference to human health on Earth. In fact, this is a productive, cross-fertilized, endeavor in which studies performed on Earth yield countermeasures for protection of space crew health, and space research is translated into health measures for Earth-bound population. PMID:28824446
NASA Technical Reports Server (NTRS)
Poliner, Jeffrey; Fletcher, Lauren; Klute, Glenn K.
1994-01-01
Video-based motion analysis systems are widely employed to study human movement, using computers to capture, store, process, and analyze video data. This data can be collected in any environment where cameras can be located. One of the NASA facilities where human performance research is conducted is the Weightless Environment Training Facility (WETF), a pool of water which simulates zero-gravity with neutral buoyance. Underwater video collection in the WETF poses some unique problems. This project evaluates the error caused by the lens distortion of the WETF cameras. A grid of points of known dimensions was constructed and videotaped using a video vault underwater system. Recorded images were played back on a VCR and a personal computer grabbed and stored the images on disk. These images were then digitized to give calculated coordinates for the grid points. Errors were calculated as the distance from the known coordinates of the points to the calculated coordinates. It was demonstrated that errors from lens distortion could be as high as 8 percent. By avoiding the outermost regions of a wide-angle lens, the error can be kept smaller.
Human Pathophysiological Adaptations to the Space Environment.
Demontis, Gian C; Germani, Marco M; Caiani, Enrico G; Barravecchia, Ivana; Passino, Claudio; Angeloni, Debora
2017-01-01
Space is an extreme environment for the human body, where during long-term missions microgravity and high radiation levels represent major threats to crew health. Intriguingly, space flight (SF) imposes on the body of highly selected, well-trained, and healthy individuals (astronauts and cosmonauts) pathophysiological adaptive changes akin to an accelerated aging process and to some diseases. Such effects, becoming manifest over a time span of weeks (i.e., cardiovascular deconditioning) to months (i.e., loss of bone density and muscle atrophy) of exposure to weightlessness, can be reduced through proper countermeasures during SF and in due time are mostly reversible after landing. Based on these considerations, it is increasingly accepted that SF might provide a mechanistic insight into certain pathophysiological processes, a concept of interest to pre-nosological medicine. In this article, we will review the main stress factors encountered in space and their impact on the human body and will also discuss the possible lessons learned with space exploration in reference to human health on Earth. In fact, this is a productive, cross-fertilized, endeavor in which studies performed on Earth yield countermeasures for protection of space crew health, and space research is translated into health measures for Earth-bound population.
An optimized index of human cardiovascular adaptation to simulated weightlessness
NASA Technical Reports Server (NTRS)
Wang, M.; Hassebrook, L.; Evans, J.; Varghese, T.; Knapp, C.
1996-01-01
Prolonged exposure to weightlessness is known to produce a variety of cardiovascular changes, some of which may influence the astronaut's performance during a mission. In order to find a reliable indicator of cardiovascular adaptation to weightlessness, we analyzed data from nine male subjects after a 24-hour period of normal activity and after a period of simulated weightlessness produced by two hours in a launch position followed by 20 hours of 6 degrees head-down tilt plus pharmacologically induced diuresis (furosemide). Heart rate, arterial pressure, thoracic fluid index, and radial flow were analyzed. Autoregressive spectral estimation and decomposition were used to obtain the spectral components of each variable from the subjects in the supine position during pre- and post-simulated weightlessness. We found a significant decrease in heart rate power and an increase in thoracic fluid index power in the high frequency region (0.2-0.45 Hz) and significant increases in radial flow and arterial pressure powers in the low frequency region (<0.2 Hz) in response to simulated weightlessness. However, due to the variability among subjects, any single variable appeared limited as a dependable index of cardiovascular adaptation to weightlessness. The backward elimination algorithm was then used to select the best discriminatory features from these spectral components. Fisher's linear discriminant and Bayes' quadratic discriminant were used to combine the selected features to obtain an optimal index of adaptation to simulated weightlessness. Results showed that both techniques provided improved discriminant performance over any single variable and thus have the potential for use as an index to track adaptation and prescribe countermeasures to the effects of weightlessness.
The importance of weightlessness and tides in teaching gravitation
NASA Astrophysics Data System (ADS)
Galili, I.; Lehavi, Y.
2003-11-01
We examine the presentation of the weight, weightlessness, and tides in university-level physics textbooks. Introductory textbooks often do not discuss tidal forces even though their understanding would be useful for understanding weightlessness. The explanations of tides often miss the free gravitational motion of both interacting objects, which is essential for the symmetry of tidal deformation. The shortcomings in the explanations of weightlessness and tides as provided by students and teachers are compared to textbook discussions. We suggest that an explicit discussion of the different definitions of weight and a synergetic presentation of weightlessness and tides might lead to a better understanding of gravitation. Our approach is illustrated by examples of tidal effects appropriate for introductory courses.
NASA Technical Reports Server (NTRS)
Homick, J. L.
1979-01-01
Research on the etiology, prediction, treatment and prevention of space motion sickness, designed to minimize the impact of this syndrome which was experienced frequently and with severity by individuals on the Skylab missions, on Space Shuttle crews is reviewed. Theories of the cause of space motion sickness currently under investigation by NASA include sensory conflict, which argues that motion sickness symptoms result from a mismatch between the total pattern of information from the spatial senses and that stored from previous experiences, and fluid shift, based upon the redistribution of bodily fluids that occurs upon continued exposure to weightlessness. Attempts are underway to correlate space motion sickness susceptibility to different provocative environments, vestibular and nonvestibular responses, and the rate of acquisition and length of retention of sensory adaptation. Space motion sickness countermeasures under investigation include various drug combinations, of which the equal combination of promethazine and ephedrine has been found to be as effective as the scopolomine and dexedrine combination, and vestibular adaptation and biofeedback training and autogenic therapy.
Dong, Li; Liu, Xin-Min; Wu, Li-Sha; Yang, Si-Jin; Wang, Qiong
2014-03-01
Aerospace medicine has paid more and more attention to abnormal changes of physiological functions induced by weightlessness and studies on their prevention during space flight. In this paper, the effect of space weightlessness on cognitive functions was introduced. We tried to analyze the correlation between the cognitive function changes and relevant Chinese medical syndromes, thus providing a potential available way to prevent and treat weightlessness induced cognitive deficit during space flight.
1973-01-01
Vincent W. Converse of Rockford, Illinois proposed Skylab's student experiment ED-74, Mass Measurement, to measure mass in a weightless environment. This chart describes Converse's experiment. Mass is the quantity of matter in any object. The gravitational force between an object and the Earth is called weight, which is a result of the Earth's gravity acting upon the object's mass. Even though objects in Skylab were apparently weightless, their mass properties were unchanged. Measurement of mass is therefore an acceptable alternative to measurement of weight. The devices used in this experiment provided accurate mass measurements of the astronauts' weights, intakes, and body wastes throughout the missions. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
Performance of advanced trauma life support procedures in microgravity
NASA Technical Reports Server (NTRS)
Campbell, Mark R.; Billica, Roger D.; Johnston, Smith L 3rd; Muller, Matthew S.
2002-01-01
BACKGROUND: Medical operations on the International Space Station will emphasize the stabilization and transport of critically injured personnel and so will need to be capable of advanced trauma life support (ATLS). METHODS: We evaluated the ATLS invasive procedures in the microgravity environment of parabolic flight using a porcine animal model. Included in the procedures evaluated were artificial ventilation, intravenous infusion, laceration closure, tracheostomy, Foley catheter drainage, chest tube insertion, peritoneal lavage, and the use of telemedicine methods for procedural direction. RESULTS: Artificial ventilation was performed and appeared to be unaltered from the 1-G environment. Intravenous infusion, laceration closure, percutaneous dilational tracheostomy, and Foley catheter drainage were achieved without difficulty. Chest tube insertion and drainage were performed with no more difficulty than in the 1-G environment due to the ability to restrain patient, operator and supplies. A Heimlich valve and Sorenson drainage system were both used to provide for chest tube drainage collection with minimal equipment, without the risk of atmospheric contamination, and with the capability to auto-transfuse blood drained from a hemothorax. The use of telemedicine in chest tube insertion was demonstrated to be useful and feasible. Peritoneal lavage using a percutaneous technique, although requiring less training to perform, was found to be dangerous in weightlessness due to the additional pressure of the bowel on the anterior abdominal wall creating a high risk of bowel perforation. CONCLUSIONS: The performance of ATLS procedures in microgravity appears to be feasible with the exception of diagnostic peritoneal lavage. Minor modifications to equipment and techniques are required in microgravity to effect surgical drainage in the presence of altered fluid dynamics, to prevent atmospheric contamination, and to provide for the restraint requirements. A parabolic simulation system was developed for equipment and procedure verification, physiological research, and possible crew medical officer training in the future.
NASA Technical Reports Server (NTRS)
Gershuni, G. Z.; Zhukhovitskiy, Y. M.
1984-01-01
Abstracts of reports are given which were presented at the Second All Union Seminar on Hydromechanics and Heat-Mass Transfer in Weightlessness. Topics inlcude: (1) features of crystallization of semiconductor materials under conditions of microacceleration; (2) experimental results of crystallization of solid solutions of CDTE-HGTE under conditions of weightlessness; (3) impurities in crystals cultivated under conditions of weightlessness; and (4) a numerical investigation of the distribution of impurities during guided crystallization of a melt.
NASA Astrophysics Data System (ADS)
Gershuni, G. Z.; Zhukhovitskiy, Y. M.
1984-01-01
s of reports are given which were presented at the Second All Union Seminar on Hydromechanics and Heat-Mass Transfer in Weightlessness. Topics inlcude: (1) features of crystallization of semiconductor materials under conditions of microacceleration; (2) experimental results of crystallization of solid solutions of CDTE-HGTE under conditions of weightlessness; (3) impurities in crystals cultivated under conditions of weightlessness; and (4) a numerical investigation of the distribution of impurities during guided crystallization of a melt.
NASA Astrophysics Data System (ADS)
Gershuni, G. Z.; Zhukhovitskiy, Y. M.
1984-07-01
s of reports are given which were presented at the Second All Union Seminar on Hydromechanics and Heat-Mass Transfer in Weightlessness. Topics include: (1) features of crystallization of semiconductor materials under conditions of microacceleration; (2) experimental results of crystallization of solid solutions of CDTE-HGTE under conditions of weightlessness; (3) impurities in crystals cultivated under conditions of weightlessness; and (4) a numerical investigation of the distribution of impurities during guided crystallization of a melt.
NASA Technical Reports Server (NTRS)
Gershuni, G. Z. (Editor); Zhukhovitskiy, Y. M. (Editor)
1984-01-01
Abstracts of reports are given which were presented at the Second All Union Seminar on Hydromechanics and Heat-Mass Transfer in Weightlessness. Topics include: (1) features of crystallization of semiconductor materials under conditions of microacceleration; (2) experimental results of crystallization of solid solutions of CDTE-HGTE under conditions of weightlessness; (3) impurities in crystals cultivated under conditions of weightlessness; and (4) a numerical investigation of the distribution of impurities during guided crystallization of a melt.
“Cerebellar contribution to visuo-attentional alpha rhythm: insights from weightlessness”
Cebolla, A. M.; Petieau, M.; Dan, B.; Balazs, L.; McIntyre, J.; Cheron, G.
2016-01-01
Human brain adaptation in weightlessness follows the necessity to reshape the dynamic integration of the neural information acquired in the new environment. This basic aspect was here studied by the electroencephalogram (EEG) dynamics where oscillatory modulations were measured during a visuo-attentional state preceding a visuo-motor docking task. Astronauts in microgravity conducted the experiment in free-floating aboard the International Space Station, before the space flight and afterwards. We observed stronger power decrease (~ERD: event related desynchronization) of the ~10 Hz oscillation from the occipital-parietal (alpha ERD) to the central areas (mu ERD). Inverse source modelling of the stronger alpha ERD revealed a shift from the posterior cingulate cortex (BA31, from the default mode network) on Earth to the precentral cortex (BA4, primary motor cortex) in weightlessness. We also observed significant contribution of the vestibular network (BA40, BA32, and BA39) and cerebellum (lobule V, VI). We suggest that due to the high demands for the continuous readjustment of an appropriate body posture in free-floating, this visuo-attentional state required more contribution from the motor cortex. The cerebellum and the vestibular network involvement in weightlessness might support the correction signals processing necessary for postural stabilization, and the increased demand to integrate incongruent vestibular information. PMID:27883068
A test to verify the biocompatibility of a method for plant culture in a microgravity environment
NASA Technical Reports Server (NTRS)
Brown, A. H.; Chapman, D. K.
1984-01-01
We report a pioneering attempt to use the NASA Shuttle Orbiter Middeck locker facility to acquire data on plant growth in near weightlessness. The information was needed to confirm the suitability of a plant culture system to be used in an experiment scheduled for the first Spacelab mission. The test was designed to measure germination and early seedling growth in a series of soil mixtures covering a range of water contents. Empirical determination of growth dependence on moisture content was required because both in theory and from Soviet flight experience it seemed possible that the dependence function in near weightlessness could be critically different from what we had measured on Earth. Such a difference could invalidate the future test in Spacelab 1 of gravity dependence of the differential growth process, circumnutation. After two failed attempts sufficient measurements were obtained from the third Shuttle Orbiter flight test to confirm the biocompatibility of the plant culture system--viz. soil moisture content variations had the same effect in near weightlessness as at 1 g. A number of supplemental observations about middeck locker conditions in Shuttle flight are presented. These may prove helpful to would-be experimenters who will plan to take advantage of future Shuttle flight opportunities for biological research.
Creating a Lunar EVA Work Envelope
NASA Technical Reports Server (NTRS)
Griffin, Brand N.; Howard, Robert; Rajulu, Sudhakar; Smitherman, David
2009-01-01
A work envelope has been defined for weightless Extravehicular Activity (EVA) based on the Space Shuttle Extravehicular Mobility Unit (EMU), but there is no equivalent for planetary operations. The weightless work envelope is essential for planning all EVA tasks because it determines the location of removable parts, making sure they are within reach and visibility of the suited crew member. In addition, using the envelope positions the structural hard points for foot restraints that allow placing both hands on the job and provides a load path for reacting forces. EVA operations are always constrained by time. Tasks are carefully planned to ensure the crew has enough breathing oxygen, cooling water, and battery power. Planning first involves computers using a virtual work envelope to model tasks, next suited crew members in a simulated environment refine the tasks. For weightless operations, this process is well developed, but planetary EVA is different and no work envelope has been defined. The primary difference between weightless and planetary work envelopes is gravity. It influences anthropometry, horizontal and vertical mobility, and reaction load paths and introduces effort into doing "overhead" work. Additionally, the use of spacesuits other than the EMU, and their impacts on range of motion, must be taken into account. This paper presents the analysis leading to a concept for a planetary EVA work envelope with emphasis on lunar operations. There is some urgency in creating this concept because NASA has begun building and testing development hardware for the lunar surface, including rovers, habitats and cargo off-loading equipment. Just as with microgravity operations, a lunar EVA work envelope is needed to guide designers in the formative stages of the program with the objective of avoiding difficult and costly rework.
Calcitonin control of calcium metabolism during weightlessness
NASA Technical Reports Server (NTRS)
Soliman, Karam F. A.
1993-01-01
The main objective of this proposal is to elucidate calcitonin role in calcium homeostasis during weightlessness. In this investigation our objectives are to study: the effect of weightlessness on thyroid and serum calcitonin, the effect of weightlessness on the circadian variation of calcitonin in serum and the thyroid gland, the role of light as zeitgeber for calcitonin circadian rhythm, the circadian pattern of thyroid sensitivity to release calcitonin in response to calcium load, and the role of serotonin and norepinephrine in the control of calcitonin release. The main objective of this research/proposal is to establish the role of calcitonin in calcium metabolism during weightlessness condition. Understanding the mechanism of these abnormalities will help in developing therapeutic means to counter calcium imbalance in spaceflights.
Reactions of animals and people under conditions of brief weightlessness
NASA Technical Reports Server (NTRS)
Kitayev-Smik, L. A.
1975-01-01
It has been shown that under brief weightlessness sensory reactions arise in a number of people, mainly those under these conditions for the first time, in the form of spatial and visual illusions, motor excitation, in which tonic and motor components can be distinguished, and vestibular-vegetative disturbances (nausea, vomiting, etc.). In repeated flights with creation of weightlessness, a decrease in the extent of expression and, then, disappearance of these reactions occurred in a significant majority of those studied. Experiments in weightlessness with the vision cut off and with the absence of vestibular functions in the subjects confirm the hypothesis that spatial conceptions of people in weightlessness depend on predominance of gravireceptor or visual afferent signals under these conditions.
[Research on the Kosmos biosatellites].
Il'in, E A
1984-01-01
In the last decade the USSR has launched six biosatellites of the Cosmos series. The duration of the first flight was 6 days and of the five subsequent flights 18 to 21 days. The major goals of the flight studies were: investigation of adaptation of living systems to weightlessness, identification of the modifying effect of weightlessness on radiosensitivity, and detection of the biological effect of artificial gravity. The examinations were performed on 37 biological species, with most of them on rats. The exposure to weightlessness gave rise to moderate stress reactions and specific changes, particularly in the musculo-skeletal system (muscle atrophy, reduced bone strength, etc). Artificial gravity of 1 g generated inflight helped maintain the normal function of most physiological systems. The exposure of mammals (rats) to 137Ce irradiation did not reveal a modifying effect of weightlessness on radiation sickness. Distinct manifestations of the effects of weightlessness on intracellular processes were not observed. Dissimilar results were obtained with respect to the growth and development of living organisms in weightlessness.
Astronaut Walter Cunningham photographed performing flight tasks
1968-10-20
AS07-04-1586 (20 Oct. 1968) --- Astronaut Walter Cunningham, Apollo 7 lunar module pilot, writes with space pen as he is photographed performing flight tasks on the ninth day of the Apollo 7 mission. Note the 70mm Hasselblad camera film magazine just above Cunningham's right hand floating in the weightless (zero gravity) environment of the spacecraft.
Astronaut Story Musgrave during final stages of exercise in the WETF
NASA Technical Reports Server (NTRS)
1982-01-01
Astronaut Story Musgrave, STS-6 mission specialist, checks a sequence list on his spacesuit during the final stages of suit-donning exercise in the weightless environment test facility (WETF). He is wearing the full extravehicular mobility unit (EMU), including helmet and gloves and is strapped in to the platform for movement into the water.
Conditions and constraints of food processing in space
NASA Technical Reports Server (NTRS)
Fu, B.; Nelson, P. E.; Mitchell, C. A. (Principal Investigator)
1994-01-01
Requirements and constraints of food processing in space include a balanced diet, food variety, stability for storage, hardware weight and volume, plant performance, build-up of microorganisms, and waste processing. Lunar, Martian, and space station environmental conditions include variations in atmosphere, day length, temperature, gravity, magnetic field, and radiation environment. Weightlessness affects fluid behavior, heat transfer, and mass transfer. Concerns about microbial behavior include survival on Martian and lunar surfaces and in enclosed environments. Many present technologies can be adapted to meet space conditions.
ERIC Educational Resources Information Center
Balukovic, Jasmina; Slisko, Josip; Cruz, Adrián Corona
2017-01-01
Different "thought experiments" dominate teaching approaches to weightlessness, reducing students' opportunities for active physics learning, which should include observations, descriptions, explanations and predictions of real phenomena. Besides the controversy related to conceptual definitions of weight and weightlessness, we report…
Islet in weightlessness: Biological experiments on board COSMOS 1129 satellite
NASA Technical Reports Server (NTRS)
Zhuk, Y.
1980-01-01
Biological experiments planned as an international venture for COSMOS 1129 satellite include tests of: (1) adaptation of rats to conditions of weightlessness, and readaption to Earth's gravity; (2) possibility of fertilization and embryonic development in weightlessness; (3) heat exchange processes; (4) amount of gravity force preferred by fruit flies for laying eggs (given a choice of three centrifugal zones); (5) growth of higher plants from seeds; (6) effects of weightlessness on cells in culture and (7) radiation danger from heavy nuclei, and electrostatic protection from charged particles.
The simulation of microgravity conditions on the ground.
Albrecht-Buehler, G
1992-10-01
This chapter defines weightlessness as the condition where the acceleration of an object is independent of its mass. Applying this definition to the clinostat, it argues that the clinostat is very limited as a simulator of microgravity because it (a) generates centrifugal forces, (b) generates particle oscillations with mass-dependent amplitudes of speed and phase shifts relative to the clinorotation, (c) is unable to remove globally the scalar effects of gravity such as hydrostatic pressure, which are independent of the direction of gravity in the first place, and, (d) generates more convective mixing of the gaseous or liquid environment of the test object, rather than eliminating it, as would true weightlessness. It is proposed that attempts to simulate microgravity must accept the simulation of one aspect of microgravity at a time, and urges that the suppression of convective currents be a major feature of experimental methods that simulate microgravity.
Mass Measurement - Skylab Student Experiment ED-74
NASA Technical Reports Server (NTRS)
1973-01-01
Vincent W. Converse of Rockford, Illinois proposed Skylab's student experiment ED-74, Mass Measurement, to measure mass in a weightless environment. This chart describes Converse's experiment. Mass is the quantity of matter in any object. The gravitational force between an object and the Earth is called weight, which is a result of the Earth's gravity acting upon the object's mass. Even though objects in Skylab were apparently weightless, their mass properties were unchanged. Measurement of mass is therefore an acceptable alternative to measurement of weight. The devices used in this experiment provided accurate mass measurements of the astronauts' weights, intakes, and body wastes throughout the missions. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
NASA Technical Reports Server (NTRS)
Pace, N.; Rahlmann, D. F.; Mains, R. C.; Kodama, A. M.; Mccutcheon, E. P.
1979-01-01
A 10-kg male pig-tailed monkey (Macaca nemestrina) was selected as an optimal species for spaceflight studies on weightlessness. Three days before the simulated launch, the animal was placed in a fiberglass pod system to provide continuous measurement of respiratory gas exchange. Attention is given to examining the effects of weightlessness on several basic parameters of metabolic and cardiovascular function in an adult nonhuman primate. The 10.7-day total simulated-experiment period consisted of preflight 2.6 days, inflight 6.3 days, and postflight 1.8 days. Statistically significant diurnal variation was noted in oxygen consumption and CO2 production rates, body temperature and HR, but not in respiratory quotient or blood pressure. The high quality of the continuous data obtained demonstrates the feasibility of performing sound physiological experimentation on nonhuman primates in the Spacelab environment.
Effect of Altered Gravity on the Neurobiology of Fish
NASA Astrophysics Data System (ADS)
Anken, R. H.; Rahmann, H.
In vertebrates (including humans) altered gravitational environments such as weightlessness can induce malfunction of the inner ears due to a mismatch between canal and statolith afferents. This leads to an illusionary tilt because the inputs from the inner ear are not confirmed by the other sensory organs, which then results in intersensory conflict. Vertebrates in orbit therefore face severe orientation problems. In humans the intersensory conflict may additionally lead to a malaise commonly referred to as space motion sickness (SMS). After the initial days of weightlessness the orientation problems (and SMS) disappear as the brain develops a new interpretation of the available sensory data. The present contribution reviews the neurobiological responses, particularly those of fish, observed under altered gravitational states concerning behavior and neuroplastic reactivities. Investigations employing microgravity (spaceflight, parabolic aircraft flights, clinostat) and hypergravity (laboratory centrifuges as ground-based research tools) provide insights for understanding the basic phenomena, many of which remain only incompletely explained
Effects of prolonged weightlessness on the humoral immune response of humans
NASA Technical Reports Server (NTRS)
Voss, E. W., Jr.
1981-01-01
An experiment to examine the possible interrelationship of various classes of immunoglobulins by utilizing the effect of weightlessness as a stress factor and subsequently measuring inhibitory, compensatory, or enhancing interrelationships. A second objective of the experiment is to investigate the state of immune competency under conditions of sustained weightlessness.
Changes in muscles accompanying non-weight-bearing and weightlessness
NASA Technical Reports Server (NTRS)
Tischler, M. E.; Henriksen, E. J.; Jaspers, S. R.; Jacob, S.; Kirby, C.
1989-01-01
Results of hindlimb suspension and space flight experiments with rats examine the effects of weightlessness simulation, weightlessness, and delay in postflight recovery of animals. Parameters examined were body mass, protein balance, amino acid metabolism, glucose and glycogen metabolism, and hormone levels. Tables show metabolic responses to unweighting of the soleus muscle.
NASA Technical Reports Server (NTRS)
Gould, C. L.
1985-01-01
Certain immunological responses may be compromised as a result of changes in environmental conditions, such as the physiological adaptation to and from the weightlessness which occurs during space flight and recovery. A murine antiorthostatic model was developed to simulate weightlessness. Using this model, the proposed study will determine if differences in susceptibility to viral and bacterial infections exist among mice suspended in an antiorthostatic orientation to simulate weightlessness, mice suspended in an orthostatic orientation to provide a stressful situation without the condition of weightlessness simulation, and non-suspended control mice. Inbred mouse strains which are resistant to the diabetogenic effects of the D variant of encephalomyocarditis virus (EMC-D) and the lethal effects of Salmonella typhimurium will be evaluated. Glucose tolerance tests will be performed on all EMC-D-infected and non-infected control groups. The incidence of EMC-D-induced diabetes and the percentage survival of S. typhimurium-infected animals will be determined in each group. An additional study will determine the effects of simulated weightlessness on murine responses to exogenous interferon.
Functional preservation of vascular smooth muscle tissue
NASA Technical Reports Server (NTRS)
Alexander, W. C.; Hutchins, P. M.; Kimzey, S. L.
1973-01-01
The ionic and cellular feedback relationships operating to effect the vascular decompensatory modifications were examined to reveal procedures for implementing protective measures guarding against vascular collapse when returning from a weightless environment to that of the earth's gravity. The surgical procedures for preparing the rat cremaster, and the fixation methods are described. Abstracts of publications resulting from this research are included.
Spacelab J experiment descriptions
NASA Technical Reports Server (NTRS)
Miller, Teresa Y. (Editor)
1993-01-01
Brief descriptions of the experiment investigations for the Spacelab J Mission which was launched from the Kennedy Space Center aboard the Endeavour in Sept. 1992 are presented. Experiments cover the following: semiconductor crystals; single crystals; superconducting composite materials; crystal growth; bubble behavior in weightlessness; microgravity environment; health monitoring of Payload Specialists; cultured plant cells; effect of low gravity on calcium metabolism and bone formation; and circadian rhythm.
Containerless processing of beryllium
NASA Technical Reports Server (NTRS)
Wouch, G.; Keith, G. H.; Frost, R. T.; Pinto, N. P.
1977-01-01
Melting and solidification of a beryllium alloy containing 1.5% BeO by weight in the weightless environment of space has produced cast beryllium with a relatively uniform dispersion of BeO throughout. Examination of the cast material shows that it is coarse grained, although the BeO is not heavily agglomerated in the flight specimen. Ground based comparison experiments show extreme agglomeration and segregation of BeO, resulting in large zones which are practically free of the oxide. Several postulated hypotheses for the failure to grain refine the beryllium are formulated. These are: (1) spherodization of the BeO particles during specimen preparation and during the molten phase of the experiment; (2) loss of nucleation potency through aging in the molten phase; and (3) inability of BeO to act as a grain refiner for beryllium. Further investigation with non spherodized particles and shorter dwell times molten may delineate which of these hypotheses are valid. The results of this flight experiment indicate that the weightless environment of space is an important asset in conducting research to find grain refiners for beryllium and other metals for which cast dispersions of grain refining agents cannot be prepared terrestrially due to gravitationally driven settling and agglomeration.
Objects Mental Rotation under 7 Days Simulated Weightlessness Condition: An ERP Study.
Wang, Hui; Duan, Jiaobo; Liao, Yang; Wang, Chuang; Li, Hongzheng; Liu, Xufeng
2017-01-01
During the spaceflight under weightlessness condition, human's brain function may be affected by the changes of physiological effects along with the distribution of blood and body fluids to the head. This variation of brain function will influence the performance of astronauts and therefore create possible harm to flight safety. This study employs 20 male subjects in a 7-day-6° head-down tilted (HDT) bed rest model to simulate physiological effects under weightlessness condition, and use behavioral, electrophysiological techniques to compare the changes of mental rotation ability (MR ability) before and after short-term simulated weightlessness state. Behavioral results suggested that significant linear relationship existed between the rotation angle of stimuli and the reaction time, which means mental rotation process do happen during the MR task in simulated weightlessness state. In the first 3 days, the P300 component induced by object mental rotation followed the "down-up-down" pattern. In the following 4 days it changed randomly. On HDT D2, the mean of the amplitude of the P300 was the lowest, while increased gently on HDT D3. There was no obvious changing pattern of the amplitude of P300 observed after 3 days of HDT. Simulated weightlessness doesn't change the basic process of mental rotation. The effect of simulated weightlessness is neural mechanism of self-adaptation. MR ability didn't bounce back to the original level after HDT test.
CREW TRAINING (ZERO-G) - STS-41G - OUTER SPACE
1984-07-16
S84-37514 (18 July 1984) --- Marc Garneau, representing Canada's National Research Council as one of two 41-G payload specialists, gets the "feel" of zero gravity aboard a special NASA aircraft designed to create brief periods of weightlessness. Five astronauts and an oceanographer from the U.S. Dept. of the Navy will join Canada's first representative in space for the trip aboard Challenger later this year. This KC-135 aircraft is used extensively for evaluation of equipment and experiments scheduled for future missions.
On the wings of a dream: The Space Shuttle
NASA Technical Reports Server (NTRS)
1988-01-01
Described are the organization and some of the interests and missions of NASA, the Space Transportation System, the Space Shuttle orbiter Enterprise, astronaut training and clothing, being launched into space, living and working in weightlessness, extravehicular activity, and the return from space to Earth. The various aspects of living in space are treated in considerable detail. This includes how the astronauts prepare food, how they eat and drink, how they sleep, exercise, change clothes and handle personal hygiene when in space.
NASA Technical Reports Server (NTRS)
1995-01-01
The Attitude Adjuster is a system for weight repositioning corresponding to a SCUBA diver's changing positions. Compact tubes on the diver's air tank permit controlled movement of lead balls within the Adjuster, automatically repositioning when the diver changes position. Manufactured by Think Tank Technologies, the system is light and small, reducing drag and energy requirements and contributing to lower air consumption. The Mid-Continent Technology Transfer Center helped the company with both technical and business information and arranged for the testing at Marshall Space Flight Center's Weightlessness Environmental Training Facility for astronauts.
View of Zero-G training for astronauts and payload specialists
1984-08-27
S84-40538 (24 Aug 1984) --- Two 41-G payload specialists and a backup for one of them appear to be at home in zero gravity in this scene photographed aboard a KC-135 "Zero gravity" aircraft flying one of its weightlessness opportunity parabolas. Paul D. Scully-Power, a civilian oceanographer with the U.S. Navey, is flanked by Marc Garneau (left) and Robert Thirsk, both representing the National Research Council of Canada. Thirsk is back up payload specialist for Garneau.
[Effects of high +Gx during simulated spaceship emergency return on learning and memory in rats].
Xu, Zhi-peng; Sun, Xi-qing; Liu, Ting-song; Wu, Bin; Zhang, Shu; Wu, Ping
2005-02-01
To observe the effects of high +Gx during simulated spaceship emergency return on learning and memory in rats. Thirty two male SD rats were randomly divided into control group, 7 d simulated weightlessness group, +15 Gx/180 s group and +15 Gx/180 s exposure after 7 d simulated weightlessness group, with 8 rats in each group. The changes of learning and memory in rats were measured after stresses by means of Y-maze test and step-through test. In Y-maze test, as compared with control group, percentage of correct reactions decreased significantly (P<0.01) and reaction time increased significantly (P<0.01) in hypergravity after simulated weightlessness group at all time after stress; as compared with +15 Gx group or simulated weightlessness group, percentage of correct reactions decreased significantly (P< 0.05) and reaction time increased significantly (P< 0.05) immediately after stress. In step-through test, as compared with control group, total time increased significantly (P<0.01) in hypergravity after simulated weightlessness group at 1 d after stress; latent time decreased significantly (P<0.01) and number of errors increased significantly (P< 0.01) at all the time after stress. As compared with +15 Gx group, total time increased significantly (P<0.05) immediately, 1 d after stress. As compared with simulated weightlessness group, total time and number of errors increased significantly (P<0.05) immediately after stress. It is suggested that +15 Gx/180 s and simulated weightlessness may affect the ability of learning and memory of rats. Simulated weightlessness for 7 d can aggravate the effect of +Gx on learning and memory ability in rats.
Skylab task and work performance /Experiment M-151 - Time and motion study/
NASA Technical Reports Server (NTRS)
Kubis, J. F.; Mclaughlin, E. J.
1975-01-01
The primary objective of Experiment M151 was to study the inflight adaptation of Skylab crewmen to a variety of task situations involving different types of activity. A parallel objective was to examine astronaut inflight performance for any behavioral stress effects associated with the working and living conditions of the Skylab environment. Training data provided the basis for comparison of preflight and inflight performance. Efficiency was evaluated through the adaptation function, namely, the relation of performance time over task trials. The results indicate that the initial changeover from preflight to inflight was accompanied by a substantial increase in performance time for most work and task activities. Equally important was the finding that crewmen adjusted rapidly to the weightless environment and became proficient in developing techniques with which to optimize task performance. By the end of the second inflight trial, most of the activities were performed almost as efficiently as on the last preflight trial. The analysis demonstrated the sensitivity of the adaptation function to differences in task and hardware configurations. The function was found to be more regular and less variable inflight than preflight. Translation and control of masses were accomplished easily and efficiently through the rapid development of the arms and legs as subtle guidance and restraint systems.
Effect of 5E Teaching Model on Student Teachers' Understanding of Weightlessness
ERIC Educational Resources Information Center
Tural, Guner; Akdeniz, Ali Riza; Alev, Nedim
2010-01-01
Weight is one of the basic concepts of physics. Its gravitational definition accommodates difficulties for students to understand the state of weightlessness. The aim of this study is to investigate the effect of materials based on 5E teaching model and related to weightlessness on science student teachers' learning. The sample of the study was 9…
Electrostatic demonstration of free-fall weightlessness
NASA Astrophysics Data System (ADS)
Balukovic, Jasmina; Slisko, Josip; Corona Cruz, Adrian
2015-05-01
The phenomena of free-fall weightlessness have been demonstrated to students for many years in a number of different ways. The essential basis of all these demonstrations is the fact that in free-falling, gravitationally accelerated systems, the weight force and weight-related forces (for example, friction and hydrostatic forces) disappear. In this article, an original electrostatic demonstration of weightlessness is presented. A charged balloon fixed at the opening of a plastic container cannot lift a light styrofoam sphere sitting on the bottom when the container is at rest. However, while the system is in free-fall, the sphere becomes weightless and the charged balloon is able to lift it electrostatically.
[Basic results of an experiment with mammals on the Kosmos-782 biosatellite].
Gazenko, O G; Genin, A M; Il'in, E A; Portugalov, V V; Serova, L V
1978-01-01
The rat experiments carried out onboard the biosatellite Cosmos-782 contributed to our understanding of mechanisms of animal adaption to prolonged weightlessness. Postflight analysis helped to study nonspecific changes related to the stress-reaction accompanying space flight and return to the Earth gravity as well as specific changes associated with functional unloading of the musculoskeletal system in weightlessness. The flight results confirmed the previously made conclusions concerning possible adaptation of mammals to prolonged weightlessness and lack of pathological changes in vital weightlessness. They included: metabolic and hormonal changes, muscle atrophy, osteoporosis and delayed bone growth, decrease of ATPase activity of myocardial myosin, inhibition of erythropoiesis.
Effects of simulated weightlessness on regional blood flow specifically during cardiovascular stress
NASA Technical Reports Server (NTRS)
Harrison, D. C.
1986-01-01
Significant changes in the cardiovasular system of humans and animals have been observed following exposure to prolonged periods of weightlessness during space flight. Although adaption to weightlessness is relatively uncomplicated, marked changes in cardiovascular deconditioning become evident upon return to normal gravity, including orthostatic hypotension and tachycardia. Some evidence that myocardial degeneration occurs has been demonstrated in animals who have been immobilized for two months. Also, evidence of possible loss of myocardial mass following manned space flight has been obtained by means of echocardiographic studies. These findings have serious implications in light of the increasing frequency and duration of Space Shuttle missions and the prospect of extended space station missions in the future. A number of both military and civilian investigators, including middle-aged scientists, will probably encounter prolonged periods of weightlessness. It has been imperative, therefore, to determine the effects of prolonged weightlessness on cardiovascular deconditioning and whether such effects are cumulative or reversible. The research project conducted under NASA Cooperative Agreement NCC 2-126 was undertaken to determine the effects of prolonged simulated weightlessness on regional blood flow. Research results are reported in the three appended publications.
Objects Mental Rotation under 7 Days Simulated Weightlessness Condition: An ERP Study
Wang, Hui; Duan, Jiaobo; Liao, Yang; Wang, Chuang; Li, Hongzheng; Liu, Xufeng
2017-01-01
During the spaceflight under weightlessness condition, human's brain function may be affected by the changes of physiological effects along with the distribution of blood and body fluids to the head. This variation of brain function will influence the performance of astronauts and therefore create possible harm to flight safety. This study employs 20 male subjects in a 7-day−6° head-down tilted (HDT) bed rest model to simulate physiological effects under weightlessness condition, and use behavioral, electrophysiological techniques to compare the changes of mental rotation ability (MR ability) before and after short-term simulated weightlessness state. Behavioral results suggested that significant linear relationship existed between the rotation angle of stimuli and the reaction time, which means mental rotation process do happen during the MR task in simulated weightlessness state. In the first 3 days, the P300 component induced by object mental rotation followed the “down-up-down” pattern. In the following 4 days it changed randomly. On HDT D2, the mean of the amplitude of the P300 was the lowest, while increased gently on HDT D3. There was no obvious changing pattern of the amplitude of P300 observed after 3 days of HDT. Simulated weightlessness doesn't change the basic process of mental rotation. The effect of simulated weightlessness is neural mechanism of self-adaptation. MR ability didn't bounce back to the original level after HDT test. PMID:29270115
Electromagnetic free suspension system for space manufacturing. Volume 1: Technology department
NASA Technical Reports Server (NTRS)
Buerger, E. H.; Frost, R. T.; Lambert, R. H.; Oconnor, M. F.; Odell, E. L. G.; Napaluch, L. J.; Stockhoff, E. H.; Wouch, G.
1972-01-01
The technology developed in defining a facility to be used on the Skylab mission for electromagnetic suspension of small, molten spheres in the weightless space environment is described. The technologies discussed include: four-coil optimization, four-coil versus six-coil configuration comparison, four-coil position servocontrol, four-coil breadboard, position sensing and servosystem, two-color pyrometer, and specimen toration mode analysis.
Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 259)
NASA Technical Reports Server (NTRS)
1984-01-01
A bibliography containing 476 documents introduced into the NASA scientific and technical information system in May 1984 is presented. The primary subject categories included are: life sciences, aerospace medicine, behavioral sciences, man/system technology, life support, and planetary biology. Topics extensively represented were space flight stress, man machine systems, weightlessness, human performance, mental performance, and spacecraft environments. Abstracts for each citation are given.
Effect of weightlessness on mineral saturation of bone tissue
NASA Technical Reports Server (NTRS)
Krasnykh, I. G.
1975-01-01
X-ray photometry of bone density established dynamic changes in mineral saturation of bone tissues for Soyuz spacecraft and Salyut orbital station crews. Calcaneus optical bone densities in all crew members fell below initial values; an increase in spacecrew exposure time to weightlessness conditions also increased the degree of decalcification. Demineralization under weightlessness conditions took place at a higher rate than under hypodynamia.
Respiration, respiratory metabolism and energy consumption under weightless conditions
NASA Technical Reports Server (NTRS)
Kasyan, I. I.; Makarov, G. F.
1975-01-01
Changes in the physiological indices of respiration, respiratory metabolism and energy consumption in spacecrews under weightlessness conditions manifest themselves in increased metabolic rates, higher pulmonary ventilation volume, oxygen consumption and carbon dioxide elimination, energy consumption levels in proportion to reduction in neuroemotional and psychic stress, adaptation to weightlessness and work-rest cycles, and finally in a relative stabilization of metabolic processes due to hemodynamic shifts.
Klaus, D M
2001-06-01
The environment created on Earth within a clinostat or Rotating Wall Vessel (RWV) bioreactor is often referred to as "simulated microgravity". Both devices utilize constant reorientation to effectively nullify cumulative sedimentation of particles. Neither, however, can fully reproduce the concurrent lack of structural deformation, displacement of intercellular components and/or reduced mass transfer in the extracellular fluid that occur in actual weightlessness. Parameters including density, viscosity, and even container geometry must each be considered to determine the overall gravity-dependent effects produced by either a clinostat or the RWV bioreactor; in addition, the intended application of these two devices differs considerably. A state of particle "motionlessness" relative to the surrounding bulk fluid, which is nearly analogous to the extracellular environment encountered under weightless conditions, can theoretically be achieved through clinorotation. The RWV bioreactor, on the other hand, while similarly maintaining cells in suspension as they continually "fall" through the medium under 1 g conditions, can also purposefully induce a perfusion of nutrients to and waste from the culture. A clinostat, therefore, is typically used in an attempt to reproduce the quiescent, unstirred fluid conditions achievable on orbit; while the RWV bioreactor ideally creates a low shear, but necessarily mixed, fluid environment that is optimized for suspension culture and tissue growth. Other techniques for exploring altered inertial environments, such as freefall, neutral buoyancy and electromagnetic levitation, can also provide unique insight into how gravity affects biological systems. Ultimately, all underlying biophysical principles thought to give rise to gravity-dependent physiological responses must be identified and thoroughly examined in order to accurately interpret data from flight experiments or ground-based microgravity analogs.
Reactivity of organism in prolonged space flights
NASA Technical Reports Server (NTRS)
Vasilyev, P. V.
1980-01-01
An analysis of published data are presented as well as the results of experiments which show that the state of weightlessness and hypodynamia result in a reduced orthostatic and vestibular resistance, increased sensitivity to infections, decreased endurance of accelerations and physical exercises, and altered reactivity of the organism to drugs. Various consequences of weightlessness on the human body, especially weightlessness combined with other factors linked to long space flights are also considered.
CALCIUM. Photography of the Experiment Ops
2014-08-22
ISS040-E-104588 (22 Aug. 2014) --- In the International Space Station’s Rassvet Mini-Research Module 1 (MRM-1), Russian cosmonaut Maxim Suraev, Expedition 40 flight engineer, performs a session of the Calcium experiment, which examines the causes of the loss of bone density that occurs in a weightless environment. For this study, Russian researchers are looking at the solubility of calcium phosphates and human bone samples in water in space.
Pilot Fullerton examines SE-81-8 Insect Flight Motion Study
1982-03-30
STS003-23-178 (22-30 March 1982) --- Astronaut C. Gordon Fullerton, STS-3 pilot, examines Student Experiment 81-8 (SE-81-8) Insect Flight Motion Study taped to the airlock on aft middeck. Todd Nelson, a high school senior from Minnesota, won a national contest to fly his experiment on this particular flight. Moths, flies, and bees were studied in the near weightless environment. Photo credit: NASA
1995-10-20
Payload specialist Fred Leslie makes use of the versatile U.S. Microgravity Laboratory (USML-2) glovebox to conduct an investigation with the Oscillatory Thermocapillary Flow Experiment (OTFE). This complement of the Surface-Tension-Driven Convection Experiment (STDCE) studies the shapes that fluid surfaces in weightless environments assume within specific containers. Leslie was one of two guest researchers who joined five NASA astronauts for 16 days of on Earth-orbit research in support of USML-2.
1973-01-01
Pictures 1 and 2 show samples of Bacillus Subtillus grown during the first performance of Robert Staehle's experiment (ED-31) aboard Skylab. Pictures 3 and 4 show colonies of the same bacteria that developed during the second performance of the experiment. The experiment ED-31 was proposed by Robert L. Staehle of Rochester, New York to determine the effect of the Skylab environment (particularly weightlessness) on the survival, growth rates, and mutations of certain bacteria and spores.
Idris, Zamzuri
2014-07-01
Cerebrospinal fluid (CSF) serves buoyancy. The buoyancy thought to play crucial role in many aspects of the central nervous system (CNS). Weightlessness is produced mainly by the CSF. This manuscript is purposely made to discuss its significance which thought contributing towards an ideal environment for the CNS to develop and function normally. The idea of microgravity environment for the CNS is supported not only by the weightlessness concept of the brain, but also the noted anatomical position of the CNS. The CNS is positioned in bowing position (at main cephalic flexure) which is nearly similar to an astronaut in a microgravity chamber, fetus in the amniotic fluid at early gestation, and animals and plants in the ocean or on the land. Therefore, this microgravity position can bring us closer to the concept of origin. The hypothesis on 'the origin' based on the microgravity were explored and their similarities were identified including the brainwaves and soul. Subsequently a review on soul was made. Interestingly, an idea from Leonardo da Vinci seems in agreement with the notion of seat of the soul at the greater limbic system which has a distinctive feature of "from God back to God".
To crash or not to crash: how do hoverflies cope with free-fall situations and weightlessness?
Goulard, Roman; Vercher, Jean-Louis; Viollet, Stéphane
2016-08-15
Insects' aptitude to perform hovering, automatic landing and tracking tasks involves accurately controlling their head and body roll and pitch movements, but how this attitude control depends on an internal estimation of gravity orientation is still an open question. Gravity perception in flying insects has mainly been studied in terms of grounded animals' tactile orientation responses, but it has not yet been established whether hoverflies use gravity perception cues to detect a nearly weightless state at an early stage. Ground-based microgravity simulators provide biologists with useful tools for studying the effects of changes in gravity. However, in view of the cost and the complexity of these set-ups, an alternative Earth-based free-fall procedure was developed with which flying insects can be briefly exposed to microgravity under various visual conditions. Hoverflies frequently initiated wingbeats in response to an imposed free fall in all the conditions tested, but managed to avoid crashing only in variably structured visual environments, and only episodically in darkness. Our results reveal that the crash-avoidance performance of these insects in various visual environments suggests the existence of a multisensory control system based mainly on vision rather than gravity perception. © 2016. Published by The Company of Biologists Ltd.
Web Formation - Skylab Student Experiment ED-52
NASA Technical Reports Server (NTRS)
1973-01-01
This chart describes the Skylab student experiment Web Formation. Judith S. Miles of Lexington High School, Lexington, Massachusetts, proposed a study of the spider's behavior in a weightless environment. The geometrical structure of the web of the orb-weaving spider provides a good measure of the condition of its central nervous system. Since the spider senses its own weight to determine the required thickness of web material and uses both the wind and gravity to initiate construction of its web, the lack of gravitational force in Skylab provided a new and different stimulus to the spider's behavioral response. Two common cross spiders, Arabella and Anita, were used for the experiment aboard the Skylab-3 mission. After initial disoriented attempts, both spiders produced almost Earth-like webs once they had adapted to weightlessness. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
1973-01-01
This chart describes the Skylab student experiment Web Formation. Judith S. Miles of Lexington High School, Lexington, Massachusetts, proposed a study of the spider's behavior in a weightless environment. The geometrical structure of the web of the orb-weaving spider provides a good measure of the condition of its central nervous system. Since the spider senses its own weight to determine the required thickness of web material and uses both the wind and gravity to initiate construction of its web, the lack of gravitational force in Skylab provided a new and different stimulus to the spider's behavioral response. Two common cross spiders, Arabella and Anita, were used for the experiment aboard the Skylab-3 mission. After initial disoriented attempts, both spiders produced almost Earth-like webs once they had adapted to weightlessness. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
Stability Limits and Dynamics of Nonaxisymmetric Liquid Bridges
NASA Technical Reports Server (NTRS)
Alexander, J. Iwan D.; Slobozhanin, Lev A.; Resnick, Andrew H.; Ramus, Jean-Francois; Delafontaine, Sylvie
1999-01-01
Liquid bridges have been the focus of numerous theoretical and experimental investigations since the early work by Plateau more than a century ago. More recently, motivated by interest in their physical behavior and their occurrence in a variety of technological situations, there has been a resurgence of interest in the static and dynamic behavior of liquid bridges. Furthermore, opportunities to carry out experiments in the near weightless environment of a low-Earth-orbit spacecraft have also led to a number of low-gravity experiments involving large liquid bridges. In this paper, we present selected results from our work concerning the stability of nonaxisymmetric liquid bridges, the bifurcation of weightless bridges in the neighborhood of the maximum volume stability limit, isorotating axisymmetric bridges contained between equidimensional disks, and bridges contained between unequal disks. For the latter, we discuss both theoretical and experimental results. Finally, we present results concerning the stability of axisymmetric equilibrium configurations for a capillary liquid partly contained in a closed circular cylinder.
Gravitational Neurobiology of Fish
NASA Astrophysics Data System (ADS)
Rahmann, H.; Anken, R. H.
In vertebrates (including man), altered gravitational environments such as weightlessness can induce malfunctions of the inner ears, based on irregular movements of the semicircular cristae or on dislocations of the inner ear otoliths from the corresponding sensory epithelia. This will lead to illusionary tilts, since the vestibular inputs are not confirmed by the other sensory organs, which results in an intersensory conflict. Vertebrates in orbit therefore face severe orientation problems. In humans, the intersensory conflict may additionally lead to a malaise, commonly referred to as space motion sickness (SMS), a kinetosis. During the first days at weightlessness, the orientation problems (and SMS) disappear, since the brain develops a new compensatory interpretation of the available sensory data. The present review reports on the neurobiological responses - particularly of fish - observed at altered gravitational states, concerning behaviour and neuroplastic reactivities. Recent investigations employing microgravity (spaceflight, parabolic aircraft flights, clinostat) and hyper-gravity (laboratory centrifuges as ground based research tools) yielded clues and insights into the understanding of the respective basic phenomena
Influences of chemical sympathectomy and simulated weightlessness on male and female rats
NASA Technical Reports Server (NTRS)
Woodman, Christopher R.; Stump, Craig S.; Stump, Jane A.; Sebastian, Lisa A.; Rahman, Z.; Tipton, Charles M.
1991-01-01
Consideration is given to a study aimed at determining whether the sympathetic nervous system is associated with the changes in maximum oxygen consumption (VO2max), run time, and mechanical efficiency observed during simulated weightlessness in male and female rats. Female and male rats were compared for food consumption, body mass, and body composition in conditions of simulated weightlessness to provide an insight into how these parameters may influence aerobic capacity and exercise performance. It is concluded that chemical sympathectomy and/or a weight-bearing stimulus will attenuate the loss in VO2max associated with simulated weightlessness in rats despite similar changes in body mass and composition. It is noted that the mechanisms remain unclear at this time.
NASA Technical Reports Server (NTRS)
Young, L. R.; Oman, C. M.; Lichtenberg, B. K.; Watt, D. G. D.; Money, K. E.
1986-01-01
Human sensory/motor adaptation to weightlessness and readaptation to earth's gravity are assessed. Preflight and postflight vestibular and visual responses for the crew on the Spacelab-1 mission are studied; the effect of the abnormal pattern of otolith afferent signals caused by weightlessness on the pitch and roll perception and postural adjustments of the subjects are examined. It is observed that body position and postural reactions change due to weightlessness in order to utilize the varied sensory inputs in a manner suited to microgravity conditions. The aspects of reinterpretation include: (1) tilt acceleration reinterpretation, (2) reduced postural response to z-axis linear acceleration, and (3) increased attention to visual cues.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 395)
NASA Technical Reports Server (NTRS)
1994-01-01
This bibliography lists 82 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Nov. 1992. Subject coverage includes: general life sciences; aerospace medicine (including physiological factors, biological effects of radiation, and effects of weightlessness on man and animals); behavioral sciences (including psychological factors, individual and group behavior, crew training and evaluation, and psychic research); man/system technology and life support (including human engineering, biotechnology, and space suits and protective clothing) and space biology (including exobiology, planetary biology, and extraterrestrial life).
Renal response to seven days of lower body positive pressure in the squirrel monkey
NASA Technical Reports Server (NTRS)
Churchill, Susanne; Pollock, David M.; Natale, Mary Ellen; Moore-Ede, Martin C.
1987-01-01
As a ground-based model for weightlessness, the response of the chair-trained squirrel monkey to lower body positive pressure (LBPP) was evaluated in a length of study similar to a typical Space Shuttle mission (7 days). Results were compared to time control experiments that included chair-sitting without exposure to LBPP. Chronic exposure to LBPP results in an acute diuretic and natriuretic response independent of changes in plasma aldosterone concentrations and produces a chronic reduction in fluid volume lasting the duration in the stimulus.
View of Payload specialist Paul Scully-Power during Zero-G training
1984-07-16
S84-37536 (18 July 1984) --- Astronaut Robert L. Crippen, left, 41-G crew commander watches as one of his fellow crewmembers gets an introduction to weightlessness aboard a KC-135, "zero-gravity" aircraft. Paul D. Scully-Power is the crew member literally floating here in the brief period of micro-gravity. Scully-Power, an oceanographer with the U.S. Navy, and Marc Garneau (partially visible in chair behind the floating Scully-Power)are payload specialists for 41-G. Garneau represents the National Research Council (Canada).
Crew Training - STS-33/51L (Zero-G)
1985-10-16
S85-42470 (16 Oct. 1985) --- Sharon Christa McAuliffe, right, and Barbara R. Morgan, participating in the Teacher-in-Space Project, team up with Bob Mayfield, a JSC aerospace educations specialist, to preview some experiments in zero-G. A KC-135 aircraft flies a special pattern to provide series of brief periods of weightlessness. McAuliffe, prime crew member for STS-51L, injects a hydroponic solution into a cylinder to review one of the experiments planned for the flight. Morgan is backup for McAuliffe on that mission. Photo credit: NASA
Piracetam and fish orientation during parabolic aircraft flight
NASA Technical Reports Server (NTRS)
Hoffman, R. B.; Salinas, G. A.; Homick, J. L.
1980-01-01
Goldfish were flown in parabolic Keplerian trajectories in a KC-135 aircraft to assay both the effectiveness of piracetam as an antimotion sickness drug and the effectiveness of state-dependent training during periods of oscillating gravity levels. Single-frame analyses of infrared films were performed for two classes of responses - role rates in hypogravity or hypogravity orienting responses (LGR) and climbing responses in hypergravity or hypergravity orienting responses (HGR). In Experiment I, preflight training with the vestibular stressor facilitated suppression of LGR by the 10th parabola. An inverse correlation was found between the magnitudes of LGR and HGR. Piracetam was not effective in a state-dependent design, but the drug did significantly increase HGR when injected into trained fish shortly before flight. In Experiment II, injections of saline, piracetam, and modifiers of gamma-aminobutyric acid - aminooxyacetic acid (AOAA) and isonicotinic acid did not modify LGR. AOAA did significantly increase HGR. Thus, the preflight training has a beneficial effect in reducing disorientation in the fish in weightlessness, but the drugs employed were ineffective.
Gravity, weightlessness and the genetic structures of organisms.
Dubinin, N P; Vaulina, E N
1974-01-01
The whole evolution of life on earth has proceeded under the action of earth's gravity which must have influenced the structure and function of organisms. During space flights organisms are exposed to the entirely new condition of weightlessness, and to variations in gravity that produce various changes. Current flight data suggest that organisms most often respond to weightlessness by disturbances in physiological function, which are reversible after the brief exposures that have at present been possible. Only longer space flights will show whether these changes will be compensated, or will lead to alterations in the more important systems of organisms including their hereditary properties. There is evidence that weightlessness has a direct effect on genetic properties. Thus, in microspores of Tradescantia abnormal mitoses (that were not observed in the ground-based control) were recorded to an extent of 3%. The numerous changes in various vital systems suggest that for terrestrial organisms weightlessness is a factor which, if administered for a long time, may bring about serious disturbances in their activities and heredity. The higher the evolutionary position of the organism, the more pronounced the effect is likely to be.
NASA Technical Reports Server (NTRS)
Roberts, W. E.
1984-01-01
The effects of 18.5 days of weightlessness aboard a satellite, stress of restricted feeding, stress of noise and vibration to simulate space flight and 21 days of head down suspension via the Morey-Holton model for simulated weightlessness was studied. Nuclear size of fibroblastlike cells in PDL on the anterior surface of maxillary first molars was classified as: (1) A-cells, self perpetuating precursors with a nuclear volume 80 micron B-cells, nonosteogenic fibroblasts with a nuclear volume of 80-119 micron 3, C-cells, preosteoblasts that are in G1 stage of the cell cycle with a nuclear size of 120-170 micro, and D-cells, preosteoblasts that are in G2 stage of the cell cycle with a nuclear size 170 micro.
Blood circulation under conditions of weightlessness
NASA Technical Reports Server (NTRS)
Kastyan, I. I.; Kopanev, V. I.
1980-01-01
Experimental materials and published data on the problem of blood circulation in man and animals under conditions of short and long term weightlessness are summarized. The data obtained allow the conclusion, that when humans spent 5 days in a weightless state their blood circulation was not essentially distributed. Some features of the functioning of the cardiovascular system are pointed out: delay of adaptation rate, increase in lability, etc. There is a discussion of the physiological mechanisms for the direct and indirect effect of weightlessness. The direct effect comprise the complex of reactions caused by the significant fall in hydrostatic pressure and the indirect embraces all the reactions arising in the organism resulting from disturbance of the systematic character of the analyzers that take part in the analysis of space realtions and the body's orientation in space.
The regulation of fluid and electrolyte metabolism in weightlessness
NASA Technical Reports Server (NTRS)
Leach, C. S.; Johnson, P. C.; Cintron, N. M.
1986-01-01
Endocrine and biochemical changes in astronauts caused by weightlessness are discussed. Translocation of fluid from the extremities to the head and chest at the onset of weightlessness is thought to lead to the establishment of a lower blood volume as an adaptation to microgravity. Results of Skylab experiments indicate that several other regulatory systems have lower homeostatic set points during space flight. Inflight blood samples from three Spacelab flights show increased antidiuretic hormone throughout these short flights and decreased aldosterone and cortisol after 3 days. Results help to explain blood hypoosmolality and hyponatremia but do not explain what happens between the onset of weightlessness and hormone changes. Other factors such as natriuretic peptides and changes in renal function are being studied to elucidate the physiologic adaptation mechanisms.
Close-up locker scene of material belonging to Payload specialist Neri
NASA Technical Reports Server (NTRS)
1985-01-01
Close-up locker scene of materials belonging to Payload specialist Rodolfo Neri. Items include a Morelos satellite decal, the crest of the Universidad Nacional Autonoma de Mexico (Neri's alma mater), and one of the plant experiments he monitored during the flight. The experiment at bottom frame is the Transportation of Nutrients in a Weightless Environment (TRANSPORT). A pair of scissors are on the locker and a pen floats above it.
Device for Extracting Flavors and Fragrances
NASA Technical Reports Server (NTRS)
Chang, F. R.
1986-01-01
Machine for making coffee and tea in weightless environment may prove even more valuable on Earth as general extraction apparatus. Zero-gravity beverage maker uses piston instead of gravity to move hot water and beverage from one chamber to other and dispense beverage. Machine functions like conventional coffeemaker during part of operating cycle and includes additional features that enable operation not only in zero gravity but also extraction under pressure in presence or absence of gravity.
Skylab vectorcardiograph: System description and in flight operation
NASA Technical Reports Server (NTRS)
Lintott, J.; Costello, M. J.
1975-01-01
A vectorcardiograph system was used to measure cardiac electrical activity of Skylab crewmen. This system was chosen because of its data-quantification advantages. The vectorcardiograph was required to meet recommended American Heart Association specifications, to withstand space environmental extremes, and to facilitate data gathering in the weightless environment. The vectorcardiograph system performed without failure, and all projected data were acquired. The appendix lists the design specifications used for the Skylab vectorcardiograph system.
Liquid Dynamics from Spacelab to Sloshsat
NASA Astrophysics Data System (ADS)
Vreeburg, Jan P. B.
2009-01-01
The European participation in manned spaceflight had a strong impact on research in the natural sciences because weightlessness became available as experimental condition. Preparation for Spacelab required many decisions on organization, funding and allocation of resources. Lessons were learned from results obtained in precursors like Skylab or in unmanned programs such as TEXUS. ESA with scientists from the major disciplines instituted Working Groups that acted as consultant bodies. European experiment hardware has been realized by industry using specifications and not, traditionally, by evolution in a laboratory. The development of the Fluid Physics Module preceded many instruments for liquid research in space. The training of Payload Specialists for the operation of the FPM included theory of fluids and laboratory instruction. The dynamics of spacecraft with a partially filled tank can be studied in weightlessness only. Observation of the liquid behaviour inside the tank is a challenging problem but the momentum of the rigid part of the spacecraft can be tracked accurately. Analytical expressions for transient liquid flow in a moving tank should be identified, together with the tank motion. A validated model of liquid momentum transfer during spacecraft manoeuvres will make many missions more efficient and less costly. Sloshsat FLEVO was flown to provide reference data for this purpose.
Otorhinolaryngological problems in medical support of space flights.
Bryanov, I I; Matsnev, E I; Yakovleva, I Y
1975-01-01
At present the main trends among the most important problems of otorhinolaryngology in space medicine have become defined as vestibulology, audiology and clinical aspects (prophylaxis, diagnosis and treatment of ENT diseases in flight). The principal result of recent vestibular studies has probably been the establishment of an apparent relationship between the resistance of the vestibular system to adequate ground-based stimulation and tolerance to space flight. The findings of the studies formed the basis for the development of a new system of vestibular selection, as well as demonstrated the usefulness of special vestibular training of astronauts by active and passive methods. In audiology certain urgency is acquired by the problem of noise limitation in space cabins and auditory system reliability prediction for preserving a high work capability in crew members. The hemodynamic changes in weightlessness, as well as the possibility for allergic lesions, create conditions for distorted course of the ENT diseases and vaso-motor disorders. The prophylaxis of aspirations also deserves close attention since the possibilities of their onset increase in weightlessness. The rendering of immediate, timely aid will depend not only on the presence of the necessary medical equipment but also on the ability of the crew members to render the appropriate otorhinolaryngological aid.
Three-dimensional ballistocardiography in weightlessness
NASA Technical Reports Server (NTRS)
Scano, A.
1981-01-01
An experiment is described the aim of which is to record a three dimensional ballistocardiogram under the condition of weightlessness and to compare it with tracings recorded on the same subject on the ground as a means of clarifying the meaning of ballistocardiogram waves in different physiological and perphaps pathological conditions. Another purpose is to investigate cardiovascular and possibly fluid adaptations to weightlessness from data collected almost simultaneously on the same subjects during the other cardiovascular during the other cardiovascular and metabolic experiments.
NASA Technical Reports Server (NTRS)
Timofeyev-Resolskiy, N. V.; Parfenov, G. P.; Tairbekov, M.; Platonova, R. N.; Rostopshina, A. V.; Zhvalikovskaya, V. P.; Mosgovaya, I. Y.; Shvets, V. N.; Kovalev, Y. Y.; Dudkin, V. Y.
1978-01-01
Biological experiments onboard the Kosmos-936 investigated the effect of weightlessness on the basic components of cells, the genetic structure and energy apparatus. Genetic studies were made on the Drosophila melanogaster. Experiments were made on higher vegetation and fungi as well. The results indicate that weightlessness cannot be the principal barrier for normal development. An experiment with ectopic osteogenesis in weightlessness was carried out. Measurements were made of cosmic radiation inside and outside the biosatellite.
Effects of weightlessness on tissue proliferation
NASA Technical Reports Server (NTRS)
Crosby, W. H.; Tavassoli, M.
1975-01-01
The repair of bone marrow stroma following mechanical injury was studied to obtain baseline data for a proposed space experiment regarding the effect of weightlessness on marrow stroma and other proliferating cell systems.
Responses of blind fish to gravitational changes as achieved in parabolic flight
NASA Technical Reports Server (NTRS)
Vonbaumgarten, R. J.; Shillinger, G. L., Jr.; Baldright, G.
1972-01-01
Blind fish, during parabolic flight, display a measurable and consistent behavior. The most spectacular new behavioral response is the forward looping of blind fish in or near weightlessness. This response shows no measurable adaptation during the entire period of weightlessness of about 30 sec. During the entrance and exit of weightless parabolas (pushover and pullout) respectively, the fish assumes a forward tilted diving position. Parabolic flight with negative g in the range between 0g and -1g causes similar diving responses of the fish with the only difference being that the dive is directed toward the top of the fish tank. When the response to a g value less than 1g is compared to the response to increased g load on the ground (escape of darting response) an essential difference is seen: higher horizontal acceleration or jerk on the ground causes fish to swim, or even dart, against the direction of inertial force; fish during weightless parabolas move into the direction of the inertial or gravitational force. Since the vestibular system of fish is homologous to that of man, the observed behavior of fish in weightless flight could help to better understand human performance and sensations in comparable situations.
Analysis of human microcirculation in weightlessness: Study protocol and pre-study experiments.
Bimpong-Buta, Nana-Yaw; Jirak, Peter; Wernly, Bernhard; Lichtenauer, Michael; Masyuk, Maryna; Muessig, Johanna Maria; Braun, Kristina; Kaya, Sema; Kelm, Malte; Jung, Christian
2018-04-14
In weightlessness, alterations in organ systems have been reported. The microcirculation consists of a network of blood vessels with diameters of a few μm. It is considered the largest part of the circulatory system of the human body and essential for exchange of gas, nutrients and waste products. An investigation of the microcirculation in weightlessness seems warranted but has not yet been performed. In this paper, we outline a study in which we will investigate the possible interrelations between weightlessness and microcirculation. We will induce weightlessness in the course of parabolic flight maneuvers, which will be conducted during a parabolic flight campaign. In this study protocol also an evaluation of a possible influence of parabolic flight premedication on microcirculation will be described. The microcirculation will be investigated by sublingual intravital measurements applying sidestream darkfield microscopy. Parameters of macrocirculation such as heart rate, blood pressure and blood oxygenation will also be investigated. In our pre-study experiments, neither dimenhydrinate nor scopolamine altered microcirculation. As the application of motion sickness therapy did not alter microcirculation, it will be applied during the parabolic flight maneuvers of the campaign. Our results might deepen the understanding of microcirculation on space missions and on earth.
NASA Technical Reports Server (NTRS)
Pace, N.
1973-01-01
Physiological base line data are established, and physiological procedures and instrumentation necessary for the automatic measurement of hemodynamic and metabolic parameters during prolonged periods of weightlessness are developed.
A Systems Approach to the Physiology of Weightlessness
NASA Technical Reports Server (NTRS)
White, Ronald J.; Leonard, Joel I.; Rummel, John A.; Leach, Carolyn S.
1991-01-01
A systems approach to the unraveling of the complex response pattern of the human subjected to weightlessness is presented. The major goal of this research is to obtain an understanding of the role that each of the major components of the human system plays following the transition to and from space. The cornerstone of this approach is the utilization of a variety of mathematical models in order to pose and test alternative hypotheses concerned with the adaptation process. An integrated hypothesis for the human physiological response to weightlessness is developed.
NASA Astrophysics Data System (ADS)
Stroud, Kenneth Joshua
Seventy to eighty percent of astronauts reportedly exhibit undesirable vestibular disturbances during the first few days of weightlessness, including space motion sickness (SMS) and spatial disorientation (SD). SMS presents a potentially dangerous situation, both because critical piloted tasks such as docking maneuvers and emergency reentry may be compromised, and because of the potential for asphyxiation should an astronaut vomit while wearing a space suit. SD can be provocative for SMS as well as become dangerous during an emergency in which it is critical for an astronaut to move quickly through the vehicle. In the U.S. space program, medication is currently used both for prevention and treatment of SMS. However, this approach has had only moderate success, and the side effects of drowsiness and lack of concentration are undesirable. Research suggests that preflight training in virtual reality devices can simulate certain aspects of microgravity and may prove to be an effective countermeasure for SMS and SD. It was hypothesized that exposing subjects preflight to variable virtual orientations, similar to those encountered during space flight, will reduce the incidence and/or severity of SMS and SD. Results from a study conducted at the NASA Johnson Space Center as part of this research demonstrated that this type of training is effective for reducing motion sickness and improving task performance in potentially disorienting visual surroundings, thus suggesting the possibility that such training may prove an effective countermeasure for SMS, SD and related performance decrements that occur in space flight. In addition to the effects associated with weightlessness, almost all astronauts experience vestibular disturbances associated with gravity-transitions incurred during the return to Earth, which could be exacerbated if traveling in a spacecraft that is designed differently than a conventional aircraft. Therefore, for piloted descent and landing operations, reducing vestibular disturbances must be considered in the early phases of spacecraft design. An integrated approach combining vestibular disturbances, mission constraints, and other human concerns is proposed in a spacecraft design solution that concurrently addresses all of the above constraints.
Life science experiments during parabolic flight: The McGill experience
NASA Technical Reports Server (NTRS)
Watt, D. G. D.
1988-01-01
Over the past twelve years, members of the Aerospace Medical Research Unit of McGill University have carried out a wide variety of tests and experiments in the weightless condition created by parabolic flight. This paper discusses the pros and cons of that environment for the life scientist, and uses examples from the McGill program of the types of activities which can be carried out in a transport aircraft such as the NASA KC-135.
1973-01-01
This chart describes the Skylab student experiment Bacteria and Spores, proposed by Robert L. Staehle of Rochester, New York. This experiment was intended to determine the effect of the Skylab environment (particularly weightlessness) on the survival, growth rates, and mutations of certain bacteria and spores. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
STS-47 Commander Gibson and MS Apt in JSC WETF for bailout exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-47 Endeavour, Orbiter Vehicle (OV) 105, Commander Robert L. Gibson, wearing launch and entry suit (LES) and launch and entry helmet (LEH), listens to instructions before participating in launch emergency egress (bailout) exercises in JSC's Weightless Environment Trainining Facility (WETF) Bldg 29. Mission Specialist (MS) Jerome Apt, wearing LES and LES parachute, is seen in the background. This exercise is conducted in the WETF pool to simulate a water landing.
IDRIS, Zamzuri
2014-01-01
Cerebrospinal fluid (CSF) serves buoyancy. The buoyancy thought to play crucial role in many aspects of the central nervous system (CNS). Weightlessness is produced mainly by the CSF. This manuscript is purposely made to discuss its significance which thought contributing towards an ideal environment for the CNS to develop and function normally. The idea of microgravity environment for the CNS is supported not only by the weightlessness concept of the brain, but also the noted anatomical position of the CNS. The CNS is positioned in bowing position (at main cephalic flexure) which is nearly similar to an astronaut in a microgravity chamber, fetus in the amniotic fluid at early gestation, and animals and plants in the ocean or on the land. Therefore, this microgravity position can bring us closer to the concept of origin. The hypothesis on ‘the origin’ based on the microgravity were explored and their similarities were identified including the brainwaves and soul. Subsequently a review on soul was made. Interestingly, an idea from Leonardo da Vinci seems in agreement with the notion of seat of the soul at the greater limbic system which has a distinctive feature of “from God back to God”. PMID:25977615
Astronauts Hoffman and Seddon demonstrate effect of weightlessness on slinky
1985-04-14
51D-06-015 (12-19 April 1985) --- Astronaut Jeffrey A. Hoffman and Rhea Seddon mission specialists, demonstrate the effect of weightlessness on a slinky toy in the mid-deck of the Space Shuttle Discovery.
More Life-Science Experiments For Spacelab
NASA Technical Reports Server (NTRS)
Savage, P. D., Jr.; Dalton, B.; Hogan, R.; Leon, H.
1991-01-01
Report describes experiments done as part of Spacelab Life Sciences 2 mission (SLS-2). Research planned on cardiovascular, vestibular, metabolic, and thermal responses of animals in weightlessness. Expected to shed light on effects of prolonged weightlessness on humans.
Personal miniature electrophysiological tape recorder
NASA Astrophysics Data System (ADS)
Green, H.
1981-11-01
The use of a personal miniature electrophysiological tape recorder to measure the physiological reactions of space flight personnel to space flight stress and weightlessness is described. The Oxford Instruments Medilog recorder, a battery-powered, four-channel cassette tape recorder with 24 hour endurance is carried on the person and will record EKG, EOG, EEG, and timing and event markers. The data will give information about heart rate and morphology changes, and document adaptation to zero gravity on the part of subjects who, unlike highly trained astronauts, are more representative of the normal population than were the subjects of previous space flight studies.
Astronauts Carr and Pogue demonstrate weight training in zero-gravity
1974-02-01
SL4-150-5080 (16 Nov. 1973-8 Feb. 1974) --- Two of the three Skylab 4 (third manning) astronauts exhibit the "magic" that can be accomplished in the weightlessness of space. Astronaut Gerald D. Carr, mission commander, uses his index finger to suspend astronaut William R. Pogue, pilot, in the Orbital Workshop (OWS). The two "wizards" completed almost three months aboard the Earth-orbiting Skylab space station, plenty of time to grow these full beards. The photograph was taken with a 35mm camera by astronaut Edward G. Gibson, science pilot. Photo credit: NASA
Spacsuit donning and doffing in zero-g training for Story Musgrave STS-6
1982-07-14
S82-33603 (November 1982) --- Astronaut F. Story Musgrave, STS-6 mission specialist, is assisted in a suit donning and doffing exercise in the weightlessness provided by a KC-135 ?zero-gravity? aircraft. Dr. Musgrave and the next mission?s other mission specialist, astronaut Donald H. Peterson, participated in the donning and doffing as a simulation for their preparations aboard the Challenger when they are called upon to perform an extravehicular activity (EVA) which was postponed from NASA?s first operational STS flight earlier this month. The suit is called an Extravehicular Mobility Unit (EMU). Photo credit: NASA
Tang, Bin; Fan, Xiao-li; Wu, Su-di
2002-10-01
Objective. To explore the mechanisms involved in muscle atrophy and conversion of the fiber types induced by simulated weightlessness. Method. Weightlessness was simulated by tail suspension of female rats. Intrafusal and extrafusal fibers of soleus muscles in the rat were examined histochemically for their activity of acetylcholinesterase (AChE) and succinic dehydrogenase (SDH) in 7 d, 14 d, 21 d tail-suspended groups and control groups. Result. Staining for succinic dehydrogenase showed that simulated weightlessness caused obvious atrophy and change in fiber type composition in soleus muscle, with decrease of the proportion of type I fiber and increase of type II fiber. Acetylcholinesterase activities of intrafusal and extrafusal fibers were both decreased significantly after 21 d tail suspension. Conclusion. Simulated weightlessness could induce decrease of AChE activity in neuromuscular junctions, which might be linked with decrease in motor neuron activity.
Effect of weightlessness conditions on the somatic embryogenesis in the culture of carrot cells
NASA Technical Reports Server (NTRS)
Butenko, R. G.; Dmitriyeva, N. N.; Ongko, V.; Basyrova, L. V.
1977-01-01
A carrot cell culture seeded in Petri dishes in the United States and transported to the USSR was subjected to weightlessness for 20 days during the flight of Kosmos 782. The controls were cultures placed on a centrifuge (1 g) inside the satellite and cultures left on ground in the U.S.S.R. and the United States. A count of structures in the dishes after the flight showed that the number of developing embryonic structures and the extent of their differentiation in weightlessness did not reliably differ from the number and extent of differentiation in structures developed on the ground. Structures with long roots developed in weightlessness. Analysis of the root zones showed that these roots differed by the increased size of the zone of differentiated cells. The increased size of the zones of differentiated cells can indicate earlier development of embryonic structures.
NASA Technical Reports Server (NTRS)
Bennett, C. H.
1981-01-01
The effect of in-flight exercise programs on astronauts' cardiovascular adjustments during spaceflight weightlessness and upon return to Earth was studied. Physiological changes in muscle strength and volume, cardiovascular responses during the application of lower body negative pressure, and metabolic activities during pre-flight and flight tests were made on Skylab crewmembers. The successful completion of the Skylab missions showed that man can perform submaximal and maximal aerobic exercise in the weightless enviroment without detrimental trends in any of the physiologic data. Exercise tolerance during flight was unaffected. It was only after return to Earth that a tolerance decrement was noted. The rapid postflight recovery of orthostatic and exercise tolerance following two of the three Skylab missions appeared to be directly related to total in-flight exercise as well as to the graded, regular program of exercise performed during the postflight debriefing period.
Wang, Linjie; Li, Zhili; Tan, Cheng; Liu, Shujuan; Zhang, Jianfeng; He, Siyang; Zou, Peng; Liu, Weibo; Li, Yinghui
2018-04-25
The Chinese space station will be built around 2020. As a national space laboratory, it will offer unique opportunities for studying the physiological effects of weightlessness and the efficacy of the countermeasures against such effects. In this paper, we described the development of countermeasure systems in the Chinese space program. To emphasize the need of the Chinese space program to implement its own program for developing countermeasures, we reviewed the literature on the negative physiological effects of weightlessness, the challenges of completing missions, the development of countermeasure devices, the establishment of countermeasure programs, and the efficacy of the countermeasure techniques in American and Russian manned spaceflights. In addition, a brief overview was provided on the Chinese research and development on countermeasures to discuss the current status and goals of the development of countermeasures against physiological problems associated with weightlessness.
NASA Technical Reports Server (NTRS)
Brown, A. H.; Chapman, D. K.; Johnsson, A.; Heathcote, D.
1995-01-01
We conducted a series of gravitropic experiments on Avena coleoptiles in the weightlessness environment of Spacelab. The purpose was to test the threshold stimulus, reciprocity rule and autotropic reactions to a range of g-force stimulations of different intensities and durations The tests avoided the potentially complicating effects of earth's gravity and the interference from clinostat ambiguities. Using slow-speed centrifuges, coleoptiles received transversal accelerations in the hypogravity range between 0.l and 1.0 g over periods that ranged from 2 to 130 min. All responses that occurred in weightlessness were compared to clinostat experiments on earth using the same apparatus. Characteristic gravitropistic response patterns of Atuena were not substantially different from those observed in ground-based experiments. Gravitropic presentation times were extrapolated. The threshold at 1.0 g was less than 1 min (shortest stimulation time 2 min), in agreement with values obtained on the ground. The least stimulus tested, 0.1 g for 130 min, produced a significant response. Therefore the absolute threshold for a gravitropic response is less than 0.1 g.
Dual matter-wave inertial sensors in weightlessness
Barrett, Brynle; Antoni-Micollier, Laura; Chichet, Laure; Battelier, Baptiste; Lévèque, Thomas; Landragin, Arnaud; Bouyer, Philippe
2016-01-01
Quantum technology based on cold-atom interferometers is showing great promise for fields such as inertial sensing and fundamental physics. However, the finite free-fall time of the atoms limits the precision achievable on Earth, while in space interrogation times of many seconds will lead to unprecedented sensitivity. Here we realize simultaneous 87Rb–39K interferometers capable of operating in the weightless environment produced during parabolic flight. Large vibration levels (10−2 g Hz−1/2), variations in acceleration (0–1.8 g) and rotation rates (5° s−1) onboard the aircraft present significant challenges. We demonstrate the capability of our correlated quantum system by measuring the Eötvös parameter with systematic-limited uncertainties of 1.1 × 10−3 and 3.0 × 10−4 during standard- and microgravity, respectively. This constitutes a fundamental test of the equivalence principle using quantum sensors in a free-falling vehicle. Our results are applicable to inertial navigation, and can be extended to the trajectory of a satellite for future space missions. PMID:27941928
Effect of STS space suit on astronaut dominant upper limb EVA work performance
NASA Technical Reports Server (NTRS)
Greenisen, Michael C.
1987-01-01
The STS Space Suited and unsuited dominant upper limb performance was evaluated in order to quantify future EVA astronaut skeletal muscle upper limb performance expectations. Testing was performed with subjects standing in EVA STS foot restraints. Data was collected with a CYBEX Dynamometer enclosed in a waterproof container. Control data was taken in one g. During one g testing, weight of the Space Suit was relieved from the subject via an overhead crane with a special connection to the PLSS of the suit. Experimental data was acquired during simulated zero g, accomplished by neutral buoyancy in the Weightless Environment Training Facility. Unsuited subjects became neutrally buoyant via SCUBA BC vests. Actual zero g experimental data was collected during parabolic arc flights on board NASA's modified KC-135 aircraft. During all test conditions, subjects performed five EVA work tasks requiring dominant upper limb performance and ten individual joint articulation movements. Dynamometer velocities for each tested movement were 0 deg/sec, 30 or 60 deg/sec and 120 or 180 deg/sec, depending on the test, with three repetitions per test. Performance was measured in foot pounds of torque.
Athletes, astronauts and orthostatic tolerance.
Harrison, M H
1986-01-01
Specific alterations in autonomic functions induced by endurance training may lead to a reduced ability to withstand orthostatic stress. This possibility has caused some authorities to suggest that, because of potentially greater pooling of blood in the lower extremities during gravitational loading, endurance-trained athletes may make poor astronauts. Although results from spaceflight studies have provided little evidence to support this suggestion, data from water-immersion studies indicate that endurance-trained athletes do become more orthostatically intolerant following a few hours of simulated weightlessness. Unfortunately, other evidence supporting the hypothesis that endurance training reduces orthostatic tolerance has not received adequate publication in the open scientific literature. On the other hand, a number of studies which have been openly reported clearly refute this hypothesis. Nevertheless, the established physiological differences between endurance athletes and non-athletes are themselves sufficient to suggest that the hypothesis could be tenable. Consequently, it has to be concluded that the presently available information is both qualitatively and quantitatively inadequate to permit any definite statement regarding a possible relationship between aerobic power (VO2max) and orthostatic tolerance.
NASA Technical Reports Server (NTRS)
Balakhovskiy, I. S.; Orlova, T. A.
1975-01-01
Biochemical blood composition studies on astronauts during weightlessness flight simulation tests and during actual space flights showed some disturbances of metabolic processes. Increases in blood sugar, fatty acid and cholesterol, and urea content are noted.
Effect of simulated weightlessness on the immune system in rats
NASA Technical Reports Server (NTRS)
Caren, L. D.; Mandel, A. D.; Nunes, J. A.
1980-01-01
Rats suspended in a model system designed to simulate many aspects of weightlessness were immunized with sheep red blood cells. Parameters measured on these and control rats included titers of anti-sheep red blood cell antibodies, serum immunoglobulin levels, spleen and thymus weights, hematocrits, and leukocyte differential counts on peripheral blood. No significant differences were found between test and weight-bearing, harnessed controls; however, the thymuses of animals in both these groups were significantly smaller than untreated cage controls. The lack of an effect of simulated weightlessness on the immune system is an interesting result, and its significance is discussed.
Comparison between the weightlessness syndrome and aging
NASA Technical Reports Server (NTRS)
Miquel, J.
1982-01-01
The similarity of detrimental effects of normal aging and of exposure to space weightlessness is discussed. The effects include: the reduction in cardiac output, increase in blood pressure, decrease in respiratory vital capacity, decrease in lean body weight and muscle mass, collagen and fat infiltration of muscle, bone demineralization, and a decrease in urinary excretion of total 17-hydroxicorticosteroids. It is also noted that dispite the accelerated aging of organisms, if animals or human subjects were to spend their entire lives in weightlessness, their lifespans might be significantly increased because of a reduction in metabolic rate. Experimental results are cited.
Loading Configurations and Ground Reaction Forces During Treadmill Running in Weightlessness
NASA Technical Reports Server (NTRS)
DeWitt, John; Schaffner, Grant; Blazine, Kristi; Bentley, Jason; Laughlin, Mitzi; Loehr, James; Hagan, Donald
2003-01-01
Studies have shown losses in bone mineral density of 1-2% per month in critical weight bearing areas such as the proximal femur during long-term space flight (Grigoriev, 1998). The astronauts currently onboard the International Space Station (ISS) use a treadmill as an exercise countermeasure to bone loss that occurs as a result of prolonged exposure to weightlessness. A crewmember exercising on the treadmill is attached by a harness and loading device. Ground reaction forces are obtained through the loading device that pulls the crewn1ember towards the treadmill surface during locomotion. McCrory et al. (2002) found that the magnitude of the peak ground reaction force (pGRF) during horizontal suspension running, or simulated weightlessness, was directly related to the load applied to the subject. It is thought that strain magnitude and strain rate affects osteogenesis, and is a function of the magnitude and rate of change of the ground reaction force. While it is not known if a minimum stimulus exists for osteogenesis, it has been hypothesized that in order to replicate the bone formation occurring in normal gravity (1 G), the exercise in weightlessness should mimic the forces that occur on earth. Specifically, the pGRF obtained in weightlessness should be comparable to that achieved in 1 G.
Bone loss and human adaptation to lunar gravity
NASA Technical Reports Server (NTRS)
Keller, T. S.; Strauss, A. M.
1992-01-01
Long-duration space missions and establishment of permanently manned bases on the Moon and Mars are currently being planned. The weightless environment of space and the low-gravity environments of the Moon and Mars pose an unknown challenge to human habitability and survivability. Of particular concern in the medical research community today is the effect of less than Earth gravity on the human skeleton, since the limits, if any, of human endurance in low-gravity environments are unknown. This paper provides theoretical predictions on bone loss and skeletal adaptation to lunar and other nonterrestrial-gravity environments based upon the experimentally derived relationship, density approximately (mass x gravity)(exp 1/8). The predictions are compared to skeletal changes reported during bed rest, immobilization, certrifugation, and spaceflight. Countermeasures to reduce bone losses in fractional gravity are also discussed.
NASA Technical Reports Server (NTRS)
Brown, N. E.
1973-01-01
Parameters that require consideration by the planners and designers when planning for man to perform functions outside the vehicle are presented in terms of the impact the extravehicular crewmen and major EV equipment items have on the mission, vehicle, and payload. Summary data on man's performance capabilities in the weightless space environment are also provided. The performance data are based on orbital and transearth EVA from previous space flight programs and earthbound simulations, such as water immersion and zero-g aircraft.
The Automated Primate Research Laboratory (APRL)
NASA Technical Reports Server (NTRS)
Pace, N.; Smith, G. D.
1972-01-01
A description is given of a self-contained automated primate research laboratory to study the effects of weightlessness on subhuman primates. Physiological parameters such as hemodynamics, respiration, blood constituents, waste, and diet and nutrition are analyzed for abnormalities in the simulated space environment. The Southeast Asian pig-tailed monkey (Macaca nemistrina) was selected for the experiments owing to its relative intelligence and learning capacity. The objective of the program is to demonstrate the feasibility of a man-tended primate space flight experiment.
OTFE, Payload Specialist Fred Leslie works in Spacelab
1995-11-05
STS073-233-007 (20 October - 5 November 1995) --- Payload specialist Fred W. Leslie makes use of the versatile U.S. Microgravity Laboratory (USML-2) glovebox to conduct an investigation with the Oscillatory Thermocapillary Flow Experiment (OTFE). This complement of the Surface-Tension-Driven Convection Experiment (STDCE) studies the shapes that fluid surfaces in weightless environments assume within specific containers. Leslie was one of two guest researchers who joined five NASA astronauts for 16 days of on Earth-orbit research in support of USML-2.
View of Arabella, one of two Skylab spiders and her web
NASA Technical Reports Server (NTRS)
1973-01-01
A close-up view of Arabella, one of the two Skylab 3 common cross spiders 'aranous diadematus,' and the web it had spun in the zero gravity of space aboard the Skylab space station cluster in Earth orbit. During the 59 day Skylab 3 mission the two spiders Arabella and Anita, were housed in an enclosure onto which a motion picture and still camera were attached to record the spiders' attempts to build a web in the weightless environment.
NASA Technical Reports Server (NTRS)
Vongierke, H. E.; Brinkley, J. W.
1975-01-01
The degree to which impact acceleration is an important factor in space flight environments depends primarily upon the technology of capsule landing deceleration and the weight permissible for the associated hardware: parachutes or deceleration rockets, inflatable air bags, or other impact attenuation systems. The problem most specific to space medicine is the potential change of impact tolerance due to reduced bone mass and muscle strength caused by prolonged weightlessness and physical inactivity. Impact hazards, tolerance limits, and human impact tolerance related to space missions are described.
Physiological Health Challenges for Human Missions to Mars
NASA Technical Reports Server (NTRS)
Norsk, Peter
2015-01-01
During the next decades, manned space missions are expected to be aiming at the Lagrange points, near Earth asteroids, and Mars flyby and/or landing. The question is therefore: Are we ready to go? To answer this with a yes, we are currently using the International Space Station to develop an integrated human physiological countermeasure suite. The integrated countermeasure suite will most likely encounter: 1) Exercise devices for aerobic, dynamic and resistive exercise training; 2) sensory-motor computer training programs and anti-motion sickness medication for preparing EVAs and G-transitions; 3) lower limb bracelets for preventing and/or treating the VIIP (vision impairment and intracranial pressure) syndrome; 4) nutritional components for maintenance of bone, muscle, the cardiovascular system and preventing oxidative stress and damage and immune deficiencies (e. g. omega-3 fatty acids, PRO/K, anti-oxidants and less salt and iron); 5) bisphosphonates for preventing bone degradation.; 6) lower body compression garment and oral salt and fluid loading for landing on a planetary surface to combat orthostatic intolerance; 7) laboratory analysis equipment for individualized monitoring of biomarkers in blood, urine and saliva for estimation of health status in; 8) advanced ultrasound techniques for monitoring bone and cardiovascular health; and 9) computer modeling programs for individual health status assessments of efficiency and subsequent adjustments of countermeasures. In particular for future missions into deep space, we are concerned with the synergistic effects of weightlessness, radiation, operational constraints and other spaceflight environmental factors. Therefore, increased collaboration between physiological, behavioral, radiation and space vehicle design disciplines are strongly warranted. Another venue we are exploring in NASA's Human Research Program is the usefulness of artificial gravity for mitigating the health risks of long duration weightlessness.
Hydromechanics and heat and mass exchange in weightlessness (Russian book): Table of contents
NASA Technical Reports Server (NTRS)
Avduyevskiy, V. S.; Poleshayev, V. I.
1983-01-01
The table of contents is given for a book on hydromechanics and heat and mass exchange in weightlessness. The book covers such subjects as hydromechanics, convection and heat and mass exchange, and technological experiments and complicated systems.
Physiological problems of weightlessness
NASA Technical Reports Server (NTRS)
Vasilyev, P. V.; Kasyan, I. I.
1975-01-01
A brief review of the compensatory-adjusting body changes observed during and after human exposure to prolonged spaceflight is given. Pathological disturbances caused by increased functional hypokinesia and weightlessness loads affect the cardiovascular system, the nervous and hormonal systems, and the state of the skeletal musculo apparatus.
The effect of simulated weightlessness on hypobaric decompression sickness
NASA Technical Reports Server (NTRS)
Balldin, Ulf I.; Pilmanis, Andrew A.; Webb, James T.
2002-01-01
BACKGROUND: A discrepancy exists between the incidence of ground-based decompression sickness (DCS) during simulated extravehicular activity (EVA) at hypobaric space suit pressure (20-40%) and crewmember reports during actual EVA (zero reports). This could be due to the effect of gravity during ground-based DCS studies. HYPOTHESIS: At EVA suit pressures of 29.6 kPa (4.3 psia), there is no difference in the incidence of hypobaric DCS between a control group and group exposed to simulated weightlessness (supine body position). METHODS: Male subjects were exposed to a hypobaric pressure of 29.6 kPa (4.3 psi) for up to 4 h. The control group (n = 26) pre-oxygenated for 60 min (first 10 min exercising) before hypobaric exposure and walking around in the altitude chamber. The test group (n = 39) remained supine for a 3 h prior to and during the 60-min pre-oxygenation (also including exercise) and at hypobaric pressure. DCS symptoms and venous gas emboli (VGE) at hypobaric pressure were registered. RESULTS: DCS occurred in 42% in the control and in 44% in simulated weightlessness group (n.s.). The mean time for DCS to develop was 112 min (SD +/- 61) and 123 min (+/- 67), respectively. VGE occurred in 81% of the control group subjects and in 51% of the simulated weightlessness subjects (p = 0.02), while severe VGE occurred in 58% and 33%, respectively (p = 0.08). VGE started after 113 min (+/- 43) in the control and after 76 min (+/- 64) in the simulated weightlessness group. CONCLUSIONS: No difference in incidence of DCS was shown between control and simulated weightlessness conditions. VGE occurred more frequently during the control condition with bubble-releasing arm and leg movements.
NASA Technical Reports Server (NTRS)
Fitts, R. H.; Romatowski, J. G.; De La Cruz, L.; Widrick, J. J.; Desplanches, D.
2000-01-01
Weightlessness has been shown to cause limb muscle wasting and a reduced peak force and power in the antigravity soleus muscle. Despite a reduced peak power, Caiozzo et al. observed an increased maximal shortening velocity in the rat soleus muscle following a 14-day space flight. The major purpose of the present investigation was to determine if weightlessness induced an elevated velocity in the antigravity slow type I fibers of the rhesus monkey (Macaca mulatta), as well as to establish a cellular mechanism for the effect. Spaceflight or models of weightlessness have been shown to increase glucose uptake, elevate muscle glycogen content, and increase fatigability of the soleus muscle. The latter appears to be in part caused by a reduced ability of the slow oxidative fibers to oxidize fats. A second goal of this study was to establish the extent to which weightlessness altered the substrate profile and glycolytic and oxidative enzyme capacity of individual slow- and fast-twitch fibers.
NASA Astrophysics Data System (ADS)
Vaulina, E. N.; Anikeeva, I. D.; Kostina, L. N.; Kogan, I. G.; Palmbakh, L. R.; Mashinsky, A. L.
The effect of weightlessness on chromosomal aberration frequency in preflight irradiated Crepis capillaris seeds, on the viability, fertility and mutation frequency in Arabidopsis thaliana, and on the frequency of nondisjunction and loss of X chromosomes in preflight irradiated Drosophila melanogaster gametes was studied aboard the Salyut 6 orbital station. The following effects were observed: a flight-time dependent amplification of the effects of preflight ?-irradiation in A. thaliana with respect to all the parameters studied; unequal effects in seeds and seedlings of Crepis capillaris; and a significant increase in the frequency of nondisjunction and loss of chromosomes during meiosis in Drosophila females. These observations are discussed in terms of the data of ground-based model experiments and flight experiments with a different time of exposure of objects to weightlessness. An attempt is made to elucidate the role of weightlessness in the modification of ionizing radiation effects.
NASA Technical Reports Server (NTRS)
Halloran, B. P.; Bikle, D. D.; Globus, R. K.; Levens, M. J.; Wronski, T. J.; Morey-Holton, E.
1985-01-01
Weightlessness, as experienced during space flight, and simulated weightlessness induce osteopenia. Using the suspended rat model to simulate weightlessness, a reduction in total tibia Ca and bone formation rate at the tibiofibular junction as well as an inhibition of Ca-45 and H-3-proline uptake by bone within 5-7 days of skeletal unloading was observed. Between days 7 and 15 of unloading, uptake of Ca-45 and H-3-proline, and bone formation rate return to normal, although total bone Ca remains abnormally low. To examine the relationship between these characteristic changes in bone metabolism induced by skeletal unloading and vitamin D metabolism, the serum concentrations of 25-hydroxyvitamin D (25-OH-D), 24, 25-dihydroxyvitamin D (24,25(OH)2D) and 1,25-dihydroxyvitamin D (1,25(OH)2D) at various times after skeletal unloading were measured. The effect of chronic infusion of 1,25(OH)2D3 on the bone changes associated with unloading was also determined.
Effect of weightlessness and centrifugation on red cell survival in rats subjected to space flight
NASA Technical Reports Server (NTRS)
Leon, H. A.; Serova, L. V.; Landaw, S. A.
1980-01-01
Rats were flown aboard the Soviet biosatellite Cosmos 936 for 18.5 d during August, 1977. Five rats were subjected to near-weightless space flight, as with Cosmos 782, and five rats were subjected to a 1-G force via an on-board centrifuge. These rats and three control groups were injected with 2-(C-14) glycine 19 d preflight. The flight rats were recovered from orbit after 18.5 d of space flight. Erythrocyte hemolysis and lifespan were evaluated in the five groups of rats by quantitation of radioactive carbon monoxide exhaled in the breath which arises from the breakdown of the previously labeled hemoglobin. The results support the previous findings wherein hemolysis was found to increase as a result of weightless space flight. A comparison to the centrifuged animals indicates that artificial gravity attenuates the effect of weightlessness on hemolysis and appears to normalize the hemolytic rate in the early postflight period.
The first dedicated life sciences mission - Spacelab 4
NASA Technical Reports Server (NTRS)
Cramer, D. R.; Reid, D. H.; Klein, H. P.
1983-01-01
The details of the payload and the experiments in Spacelab 4, the first Spacelab mission dedicated entirely to the life sciences, are discussed. The payload of Spacelab 4, carried in the bay of the Shuttle Orbiter, consists of 25 tentatively selected investigations combined into a comprehensive integrated exploration of the effects of acute weightlessness on living systems. The payload contains complementary designs in the human and animal investigations in order to validate animal models of human physiology in weightlessness. Animals used as experimental subjects will include squirrel monkeys, laboratory rats, several species of plants, and frog eggs. The main scientific objectives of the investigations include the study of the acute cephalic fluid shift, cardiovascular adaptation to weightlessness, including postflight reductions in orthostatic tolerance and exercise capacity, and changes in vestibular function, including space motion sickness, associated with weightlessness. Other scientific objective include the study of red cell mass reduction, negative nitrogen balance, altered calcium metabolism, suppressed in vitro lymphocyte reactivity, gravitropism and photropism in plants, and fertilization and early development in frog eggs.
NASA Technical Reports Server (NTRS)
Wolgemuth, D. J.; Grills, G. S.
1985-01-01
In order to understand the role of gravity in basic cellular processes that are important during development, the effects of a simulated microgravity environment on mammalian gametes and early embryos cultured in vitro are examined. A microgravity environment is simulated by use of a clinostat, which essentially reorients cells relative to the gravity vector. Initial studies have focused on assessing the effects of clinostat rotation on the meiotic progression of mouse oocytes. Modifications centered on providing the unique in vitro culture of the clinostat requirements of mammalian oocytes and embryos: 37 C temperature, constant humidity, and a 5% CO2 in air environment. The oocytes are observed under the dissecting microscope for polar body formation and gross morphological appearance. They are then processed for cytogenetic analysis.
NASA Astrophysics Data System (ADS)
Wei, Lijun; Han, Fang; Yue, Lei; Zheng, Hongxia; Yu, Dan; Ma, Xiaohuan; Cheng, Huifang; Li, Yu
2012-11-01
The complex space environments can influence cell structure and function. The research results on space biology have shown that the major mutagenic factors in space are microgravity and ionizing radiation. In addition, possible synergistic effects of radiation and microgravity on human cells are not well understood. In this study, human immortal lymphoblastoid cells were established from human peripheral blood lymphocytes and the cells were treated with low dose (0.1, 0.15 and 0.2 Gy) cumulative 60Co γ-irradiation and simulated weightlessness [obtained by culturing cells in the Rotating Cell Culture System (RCCS)]. The commonly used indexes of cell damage such as micronucleus rate, cell cycle and mitotic index were studied. Previous work has proved that Gadd45 (growth arrest and DNA-damage-inducible protein 45) gene increases with a dose-effect relationship, and will possibly be a new biological dosimeter to show irradiation damage. So Gadd45 expression is also detected in this study. The micronucleus rate and the expression of Gadd45α gene increased with irradiation dose and were much higher after incubation in the rotating bioreactor than that in the static irradiation group, while the cell proliferation after incubation in the rotating bioreactor decreased at the same time. These results indicate synergetic effects of simulated weightlessness and low dose irradiation in human cells. The cell damage inflicted by γ-irradiation increased under simulated weightlessness. Our results suggest that during medium- and long-term flight, the human body can be damaged by cumulative low dose radiation, and the damage will even be increased by microgravity in space.
NASA Technical Reports Server (NTRS)
Globus, R. K.; Alwood, J.; Tahimic, C.; Schreurs, A.-S.; Shirazi-Fard, Y.; Terada, M.; Zaragoza, J.; Truong, T.; Bruns, K.; Castillo, A.;
2018-01-01
We examined experimentally the effects of radiation and/or simulated weightlessness by hindlimb unloading on bone and blood vessel function either after a short period or at a later time after transient exposures in adult male, C57Bl6J mice. In sum, recent findings from our studies show that in the short term, ionizing radiation and simulate weightlessness cause greater deficits in blood vessels when combined compared to either challenge alone. In the long term, heavy ion radiation, but not unloading, can lead to persistent, adverse consequences for bone and vessel function, possibly due to oxidative stress-related pathways.
Mass discrimination during weightlessness
NASA Technical Reports Server (NTRS)
Ross, H.
1981-01-01
An experiment concerned with the ability of astronauts to discriminate between the mass of objects when both the objects and the astronauts are in weightless states is described. The main object of the experiment is to compare the threshold for weight-discrimination on Earth with that for mass-discrimination in orbit. Tests will be conducted premission and postmission and early and late during the mission while the crew is experiencing weightlessness. A comparison of early and late tests inflight and postflight will reveal the rate of adaptation to zero-gravity and 1-g. The mass discrimination box holds 24 balls which the astronaut will compare to one another in a random routine.
Germination of pine seed in weightlessness (investigation in Kosmos 782)
NASA Technical Reports Server (NTRS)
Platonova, R. N.; Parfenov, G. P.; Olkhovenko, V. P.; Karpova, N. I.; Pichugov, M. Y.
1978-01-01
An investigation was made of the orientation of aboveground and underground organs of pine plants grown from seed in weightlessness. Orientation was found to be caused by the position of the seeds relative to the substrate surface. Normal growth was manifest only for the plants grown from seed oriented with embryo toward the substrate. Differences were noted between experiment and control as to the quantitative content of nucleoli in the meristematic cells of the rootlets and the shape of cells in the cotyledonous leaflets. No complete agreement was found between data obtained in weightlessness and when gravity was compensated (clinostat treatment with horizontal rotation).
NASA Technical Reports Server (NTRS)
Wolegemuth, D. J.; Grills, G. S.
1984-01-01
The effects of weightlessness on three aspects of mammalian reproduction: oocyte development, fertilization, and early embryogenesis was studied. Zero-gravity conditions within the laboratory by construction of a clinostat designed to support in vitro tissue culture were simulated and the effects of simulated weightlessness on meiotic maturation in mammalian oocytes using mouse as the model system were studied. The timing and frequency of germinal vesicule breakdown and polar body extrusion, and the structural and numerical properties of meiotic chromosomes at Metaphase and Metaphase of meiosis are assessed.
Pine seed germination under weightlessness (a study of the Kosmos 782 satellite)
NASA Technical Reports Server (NTRS)
Platonova, R. N.; Parfenov, G. P.; Olkhovenko, V. P.; Karpova, N. I.; Pichugov, M. Y.
1977-01-01
Orientation of the above and underground organs of pine plants, grown from seeds under weightlessness, was found to be determined by seed position on the substrate. Normal plant growth was observed only if the seed embryos were oriented toward the substrate. Some differences were noted between the experimental and control plants concerning the amount of nucleoli in the root meristematic cells and the cell shape in cotyledonous leaves. No complete similarity was found in experimental results obtained with plants under weightlessness and under compensated gravity. The seeds were obtained from Pinus silvestris, considered to be particularly suitable for this experiment.
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1985-01-01
Theoretical responses to weightlessness are summarized. The studies include development and validation of a model of erythropoiesis regulation, analysis of the behavior of erythropoiesis under a variety of conditions, simulations of bed rest and space flight, and an evaluation of ground-based animal studies which were conducted as analogs of zero-g. A review of all relevant space flight findings and a set of testable hypotheses which attempt to explain how red cell mass decreases in space flight are presented. An additional document describes details of the mathematical model used in these studies.
1977-04-12
Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built.Pictured is an experiment where the astronaut is required to move a large object which weighed 19,000 pounds. It was moved with realitive ease once the astronaut became familiar with his environment and his near weightless condition. Experiments of this nature provided scientists with the information needed regarding weight and mass allowances astronauts could manage in preparation for building a permanent space station in the future.
Neutral Buoyancy Test NB-14 Large Space Structure Assembly
NASA Technical Reports Server (NTRS)
1977-01-01
Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built.Pictured is an experiment where the astronaut is required to move a large object which weighed 19,000 pounds. It was moved with realitive ease once the astronaut became familiar with his environment and his near weightless condition. Experiments of this nature provided scientists with the information needed regarding weight and mass allowances astronauts could manage in preparation for building a permanent space station in the future.
Perception of time under conditions of brief weightlessness
NASA Technical Reports Server (NTRS)
Lebedev, V. I.; Chekidra, I. F.; Kolosov, I. A.
1975-01-01
Results of experiments under conditions of brief weightlessness confirmed the theoretical concepts of the dependence of time perception on the emotional state of a man. The time test, together with other methods, can be used to precisely define the emotional state of subjects in stress situations.
NASA Technical Reports Server (NTRS)
Simanonok, K. E.; Srinivasan, R. S.; Charles, J. B.
1993-01-01
Central volume expansion due to fluid shifts in weightlessness is believed to activate adaptive reflexes which ultimately result in a reduction of the total circulating blood volume. However, the flight data suggests that a central volume overdistention does not persist, in which case some other factor or factors must be responsible for body fluid losses. We used a computer simulation to test the hypothesis that factors other than central volume overdistention are involved in the loss of blood volume and other body fluid volumes observed in weightlessness and in weightless simulations. Additionally, the simulation was used to identify these factors. The results predict that atrial volumes and pressures return to their prebedrest baseline values within the first day of exposure to head down tilt (HDT) as the blood volume is reduced by an elevated urine formation. They indicate that the mechanisms for large and prolonged body fluid losses in weightlessness is red cell hemoconcentration that elevates blood viscosity and peripheral resistance, thereby lowering capillary pressure. This causes a prolonged alteration of the balance of Starling forces, depressing the extracellular fluid volume until the hematocrit is returned to normal through a reduction of the red cell mass, which also allows some restoration of the plasma volume. We conclude that the red cell mass becomes the physiologic driver for a large 'undershoot' of the body fluid volumes after the normalization of atrial volumes and pressures.
STS-44 Atlantis, OV-104, crewmembers participate in JSC FB-SMS training
1991-04-22
S91-38355 (28 May 1991) --- Seen floating about the vacant spaces of the Johnson Space Center's KC-135 "zero-gravity" aircraft are the six crewmembers for the STS 44 mission. Left to right are Terence T. Henricks, James S. Voss, F. Story Musgrave (partially obscured), Frederick D. Gregory, Thomas J. Hennen and Mario Runco Jr. Gregory is mission commander. Hennen is payload specialist for this flight, dedicated to the Department of Defense. The flight served as a refresher and a preview of the experience of weightlessness, as the special aircraft flew a series of parabolas which provided short sessions of zero-gravity.
Distribution of pulmonary ventilation and perfusion during short periods of weightlessness
NASA Technical Reports Server (NTRS)
Michels, D. B.; West, J. B.
1978-01-01
Airborne experiments were conducted on four trained normal male subjects (28-40 yr) to study pulmonary function during short periods (22-27 sec) of zero gravity obtained by flying a jet aircraft through appropriate parabolic trajectories. The cabin was always pressurized to a sea-level altitude. The discussion is limited to pulmonary ventilation and perfusion. The results clearly demonstrate that gravity is the major factor causing nonuniformity in the topographical distribution of pulmonary ventilation. More importantly, the results suggest that virtually all the topographical nonuniformity of ventilation, blood flow, and lung volume observed under 1-G conditions are eliminated during short periods of zero gravity.
Low-G simulation in mammalian research
NASA Technical Reports Server (NTRS)
Sandler, H.
1982-01-01
After a review of space-flight research concerning the effects of weightlessness on mammals, the paper reviews various methods of low-G simulation. Consideration is given to water immersion; bed rest, chair rest, and confinement; immobilization; and partial body-support systems. Countermeasures to offset the effects of weightlessness are also discussed.
Teaching Science. A Weighty Gravity Lesson.
ERIC Educational Resources Information Center
Leyden, Michael B.
1996-01-01
Describes an activity that uses a candle, a scale, and an elevator to demonstrate the concept of weightlessness in space, showing that astronauts are not truly weightless. Activity includes an exploration phase, a concept introduction phase, and a concept application phase. Provides guidelines and safety measures for conducting the activity. (JW)
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
Weightlessness and how it can be artificially produced is described in this pamphlet written for junior high school students. The pamphlet is one of the NASA Facts Science Series (each of which consists of four pages) and is designed to fit in the standard size three-ring notebook. Review questions, suggested activities, and references are…
Results from recent spaceflight experiments (1).
Hoffmann, Uwe
2009-10-01
Since the flight of Sputnik 2 in 1957 the effects of weightlessness on the cardiovascular regulation are subject of physiological research. This introduction gives a short summary of the further development of cardiovascular research related to weightlessness which was subject of the contributions to the first part of this workshop.
The Franco-American macaque experiment. [bone demineralization of monkeys on Space Shuttle
NASA Technical Reports Server (NTRS)
Cipriano, Leonard F.; Ballard, Rodney W.
1988-01-01
The details of studies to be carried out jointly by French and American teams on two rhesus monkeys prepared for future experiments aboard the Space Shuttle are discussed together with the equipment involved. Seven science discipline teams were formed, which will study the effects of flight and/or weightlessness on the bone and calcium metabolism, the behavior, the cardiovascular system, the fluid balance and electrolytes, the muscle system, the neurovestibular interactions, and the sleep/biorhythm cycles. New behavioral training techniques were developed, in which the animals were trained to respond to behavioral tasks in order to measure the parameters involving eye/hand coordination, the response time to target tracking, visual discrimination, and muscle forces used by the animals. A large data set will be obtained from different animals on the two to three Space Shuttle flights; the hardware technologies developed for these experiments will be applied for primate experiments on the Space Station.
The Art of Space Flight Exercise Hardware: Design and Implementation
NASA Technical Reports Server (NTRS)
Beyene, Nahom M.
2004-01-01
The design of space flight exercise hardware depends on experience with crew health maintenance in a microgravity environment, history in development of flight-quality exercise hardware, and a foundation for certifying proper project management and design methodology. Developed over the past 40 years, the expertise in designing exercise countermeasures hardware at the Johnson Space Center stems from these three aspects of design. The medical community has steadily pursued an understanding of physiological changes in humans in a weightless environment and methods of counteracting negative effects on the cardiovascular and musculoskeletal system. The effects of weightlessness extend to the pulmonary and neurovestibular system as well with conditions ranging from motion sickness to loss of bone density. Results have shown losses in water weight and muscle mass in antigravity muscle groups. With the support of university-based research groups and partner space agencies, NASA has identified exercise to be the primary countermeasure for long-duration space flight. The history of exercise hardware began during the Apollo Era and leads directly to the present hardware on the International Space Station. Under the classifications of aerobic and resistive exercise, there is a clear line of development from the early devices to the countermeasures hardware used today. In support of all engineering projects, the engineering directorate has created a structured framework for project management. Engineers have identified standards and "best practices" to promote efficient and elegant design of space exercise hardware. The quality of space exercise hardware depends on how well hardware requirements are justified by exercise performance guidelines and crew health indicators. When considering the microgravity environment of the device, designers must consider performance of hardware separately from the combined human-in-hardware system. Astronauts are the caretakers of the hardware while it is deployed and conduct all sanitization, calibration, and maintenance for the devices. Thus, hardware designs must account for these issues with a goal of minimizing crew time on orbit required to complete these tasks. In the future, humans will venture to Mars and exercise countermeasures will play a critical role in allowing us to continue in our spirit of exploration. NASA will benefit from further experimentation on Earth, through the International Space Station, and with advanced biomechanical models to quantify how each device counteracts specific symptoms of weightlessness. With the continued support of international space agencies and the academic research community, we will usher the next frontier in human space exploration.
1977-08-30
Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. Pictured is Astronaut Paul Weitz training on a mock-up of Spacelab's airlock-hatch cover. Training was also done on the use of foot restraints which had recently been developed to help astronauts maintain their positions during space walks rather than having their feet float out from underneath them while they tried to perform maintenance and repair operations. Every aspect of every space mission was researched and demonstrated in the NBS. Using the airlock hatch cover and foot restraints were just a small example of the preparation that went into each mission.
1977-10-13
Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. Pictured is Astronaut Paul Weitz training on a mock-up of Spacelab's airlock-hatch cover. Training was also done on the use of foot restraints which had recently been developed to help astronauts maintain their positions during space walks rather than having their feet float out from underneath them while they tried to perform maintenance and repair operations. Every aspect of every space mission was researched and demonstrated in the NBS. Using the airlock hatch cover and foot restraints were just a small example of the preparation that went into each mission.
Postural equilibrium following exposure to weightless space flight
NASA Technical Reports Server (NTRS)
Homick, J. L.; Reschke, M. F.
1977-01-01
Postural equilibrium performance by Skylab crewmen following exposure to weightlessness of 28, 59, and 84 days respectively was evaluated using a modified version of a quantitative ataxia test developed by Graybiel and Fregly (1966). Performance for this test was measured under two sets of conditions. In the first, the crewman was required to maintain postural equilibrium on narrow metal rails (or floor) with his eyes open. In the second condition, he attempted to balance with his eyes closed. A comparison of the preflight and postflight data indicated moderate postflight decrements in postural equilibrium in three of the crewmen during the eyes open test condition. In the eyes-closed condition, a considerable decrease in ability to maintain balance on the rails was observed postflight for all crewmen tested. The magnitude of the change was most pronounced during the first postflight test day. Improvement was slow; however, on the basis of data obtained, recovery of preflight baseline levels of performance was evidently complete at the end of approximately two weeks for all crewmen. The findings are explained in terms of functional alterations in the kinesthetic, touch, vestibular and neuromuscular sensory mechanisms induced by the prolonged absence of a normal 1-G gravitational environment.
Kirkpatrick, Andrew W; McKee, Jessica Lynn; Tien, Colonel Homer; LaPorta, Anthony J; Lavell, Kit; Leslie, Tim; McBeth, Paul B; Roberts, Derek J; Ball, Chad G
2017-05-01
Far-Forward Damage Control Laparotomies (DCLs) might provide direct-compression of visceral hemorrhage, however, suturing is a limiting factor, especially for non-physicians. We thus compared abbreviated skin closures comparing skin-suture (SS) versus wound-clamp (WC), on-board a research aircraft in weightlessness (0g) and normal gravity (1g). Surgeons conducted DCLs on a surgical-simulator; onboard the hangered-aircraft (1g), or during parabolic flight (0g), randomized to either WC or SS. Ten surgeons participated. Two (40%) surgeons randomized to suture in 0g were incapacitated with motion-sickness, and none were able to close in either 1 or 0g. With WC, two completely closed in 1g as did three in 0g, despite having longer incisions (p = 0.016). Overall skin-closure with WC was significantly greater in both 1g (p = 0.016) and 0g (p = 0.008). WC was more effective in 1g and particularly 0g. Future studies should address the utility of abbreviated WC abdominal closure to facilitate potential Far-Forward DCL. ID ISRCTN/77929274. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sytnik, K. M.; Kordyum, E. L.; Belyavskaya, N. A.; Nedukha, E. M.; Tarasenko, V. A.
Research in cellular reproduction, differentiation and vital activity, i.e. processes underlying the development and functioning of organisms, plants included, is essential for solving fundamental and applied problems of space biology. Detailed anatomical analysis of roots of higher plants grown on board the Salyut 6 orbital research station show that under conditions of weightlessness for defined duration mitosis, cytokinesis and tissue differentiation in plant vegetative organs occur essentially normally. At the same time, certain rearrangements in the structural organization of cellular organelles - mainly the plastid apparatus, mitochondria, Golgi apparatus and nucleus - are established in the root meristem and cap of the experimental plants. This is evidence for considerable changes in cellular metabolism. The structural changes in the subcellular level arising under spaceflight conditions are partially absent in clinostat experiments designed to simulate weightlessness. Various clinostatic conditions have different influences on the cell structural and functional organization than does space flight. It is suggested that alterations of cellular metabolism under weightlessness and clinostatic conditions occur within existing genetic programs.
The Gravity of the Situation. Chapter 1
NASA Technical Reports Server (NTRS)
Paloski, William; Clement, Gilles; Bukley, Angie; Paloski, William
2006-01-01
Prolonged exposure in humans to a microgravity environment can lead to significant loss of bone and muscle mass, cardiovascular and sensory-motor deconditioning, and hormonal changes. These adaptive changes to weightlessness present a formidable obstacle to human exploration of space, particularly for missions requiring travel times of several months or more, such as on a trip to Mars. Countermeasures that address each of these body systems separately show only limited success. One possible remedy for this situation is artificial gravity, because it tackles all these systems across the board.
NASA Technical Reports Server (NTRS)
1983-01-01
In the mid 60s under contract with NASA, Dr. Benjamin W. Grunbaum was responsible for the development of an automated electrophoresis device that would work in the weightless environment of space. The device was never used in space but was revived during the mid 70s as a technology utilization project aimed at an automated system for use on Earth. The advanced system became known as the Grunbaum System for electrophoresis. It is a versatile, economical assembly for rapid separation of specific blood proteins in very small quantities, permitting their subsequent identification and quantification.
View of Arabella, one of the two Skylab 3 spiders used in experiment
NASA Technical Reports Server (NTRS)
1973-01-01
A close-up view of Arabella, one of the two Skylab 3 common cross spiders 'Araneus diadematus,' and the web it had spun in the zero gravity of space aboard the Skylab space station cluster in Earth orbit. This is a photographic reproduction made from a color television transmission aboard Skylab. Arabella and Anita, were housed in an enclosure onto which a motion picture camera and a still camera were attached to record the spiders' attempts to build a web in the weightless environment.
Effects of hypodynamic simulations on the skeletal system of monkeys
NASA Technical Reports Server (NTRS)
Young, D. R.; Tremor, J. W.
1977-01-01
A research and development program was undertaken to evaluate the skeletal losses of subhuman primates in hypodynamic environments. The goals of the program are: (1) to uncover the mechanisms by which weightlessness affects the skeletal system; (2) to determine the consequences and reversibility of bone mineral losses; and (3) to acquire a body of data needed to formulate an appropriate countermeasure program for the prevention of skeletal deconditioning. Space flight experiment simulation facilities are under development and will be tested for their capability in supporting certain of the requirements for these investigations.
2013-03-03
ISS034-E-062050 (3 March 2013) --- Taking advantage of a weightless environment onboard the Earth-orbiting International Space Station, Expedition 34 Commander Kevin Ford juggles some tomatoes, which he probably considers to be among the more delicious components of a recent "package" that arrived from Earth on March 3. The SpaceX Dragon 2 spacecraft brought up a large shipment of food and other supplies, and the spacecraft will remain docked to the station for three weeks. Ford is in Node 1 or Unity. The U.S. lab or Destiny is in the background.
The Role of Plants in Space Exploration: Some History and Background
NASA Technical Reports Server (NTRS)
Wheeler, Raymond M.
2016-01-01
For over 3 decades, NASA has sponsored research on crops for human life support in space. Specialized watering techniques have even been tested for weightless settings, but most studies used conventional watering, such as hydroponics, which should work well on surface settings of the Moon or Mars. NASAs testing has spanned a wide range of crops and studied innovative techniques to increase yields, reduce power, minimize growing volume, and recycle water and nutrients. These issues closely parallel challenges faced in terrestrial controlled environment agriculture, which is expanding around the world.
Regulation of body fluid volume and electrolyte concentrations in spaceflight.
Smith, S M; Krauhs, J M; Leach, C S
1997-01-01
Despite a number of difficulties in performing experiments during weightlessness, a great deal of information has been obtained concerning the effects of spaceflight on the regulation of body fluid and electrolytes. Many paradoxes and questions remain, however. Although body mass, extracellular fluid volume, and plasma volume are reduced during spaceflight and remain so at landing, the changes in total body water are comparatively small. Serum or plasma sodium and osmolality have generally been unchanged or reduced during the spaceflight, and fluid intake is substantially reduced, especially during the first of flight. The diuresis that was predicted to be caused by weightlessness, has only rarely been observed as an increased urine volume. What has been well established by now, is the occurrence of a relative diuresis, where fluid intake decreases more than urine volume does. Urinary excretion of electrolytes has been variable during spaceflight, but retention of fluid and electrolytes at landing has been consistently observed. The glomerular filtration rate was significantly elevated during the SLS missions, and water and electrolyte loading tests have indicated that renal function is altered during readaptation to Earth's gravity. Endocrine control of fluid volumes and electrolyte concentrations may be altered during weightlessness, but levels of hormones in body fluids do not conform to predictions based on early hypotheses. Antidiuretic hormone is not suppressed, though its level is highly variable and its secretion may be affected by space motion sickness and environmental factors. Plasma renin activity and aldosterone are generally elevated at landing, consistent with sodium retention, but inflight levels have been variable. Salt intake may be an important factor influencing the levels of these hormones. The circadian rhythm of cortisol has undoubtedly contributed to its variability, and little is known yet about the influence of spaceflight on circadian rhythms. Atrial natriuretic peptide does not seem to play an important role in the control of natriuresis during spaceflight. Inflight activity of the sympathetic nervous system, assessed by measuring catecholamines and their metabolites and precursors in body fluids, generally seems to be no greater than on Earth, but this system is usually activated at landing. Collaborative experiments on the Mir and the International Space Station should provide more of the data needed from long-term flights, and perhaps help to resolve some of the discrepancies between U.S. and Russian data. The use of alternative methods that are easier to execute during spaceflight, such as collection of saliva instead of blood and urine, should permit more thorough study of circadian rhythms and rapid hormone changes in weightlessness. More investigations of dietary intake of fluid and electrolytes must be performed to understand regulatory processes. Additional hormones that may participate in these processes, such as other natriuretic hormones, should be determined during and after spaceflight. Alterations in body fluid volume and blood electrolyte concentrations during spaceflight have important consequences for readaptation to the 1-G environment. The current assessment of fluid and electrolyte status during weightlessness and at landing and our still incomplete understanding of the processes of adaptation to weightlessness and readaptation to Earth's gravity have resulted in the development of countermeasures that are only partly successful in reducing the postflight orthostatic intolerance experienced by astronauts and cosmonauts. More complete knowledge of these processes can be expected to produce countermeasures that are even more successful, as well as expand our comprehension of the range of adaptability of human physiologic processes.
Regulation of body fluid volume and electrolyte concentrations in spaceflight
NASA Technical Reports Server (NTRS)
Smith, S. M.; Krauhs, J. M.; Leach, C. S.
1997-01-01
Despite a number of difficulties in performing experiments during weightlessness, a great deal of information has been obtained concerning the effects of spaceflight on the regulation of body fluid and electrolytes. Many paradoxes and questions remain, however. Although body mass, extracellular fluid volume, and plasma volume are reduced during spaceflight and remain so at landing, the changes in total body water are comparatively small. Serum or plasma sodium and osmolality have generally been unchanged or reduced during the spaceflight, and fluid intake is substantially reduced, especially during the first of flight. The diuresis that was predicted to be caused by weightlessness, has only rarely been observed as an increased urine volume. What has been well established by now, is the occurrence of a relative diuresis, where fluid intake decreases more than urine volume does. Urinary excretion of electrolytes has been variable during spaceflight, but retention of fluid and electrolytes at landing has been consistently observed. The glomerular filtration rate was significantly elevated during the SLS missions, and water and electrolyte loading tests have indicated that renal function is altered during readaptation to Earth's gravity. Endocrine control of fluid volumes and electrolyte concentrations may be altered during weightlessness, but levels of hormones in body fluids do not conform to predictions based on early hypotheses. Antidiuretic hormone is not suppressed, though its level is highly variable and its secretion may be affected by space motion sickness and environmental factors. Plasma renin activity and aldosterone are generally elevated at landing, consistent with sodium retention, but inflight levels have been variable. Salt intake may be an important factor influencing the levels of these hormones. The circadian rhythm of cortisol has undoubtedly contributed to its variability, and little is known yet about the influence of spaceflight on circadian rhythms. Atrial natriuretic peptide does not seem to play an important role in the control of natriuresis during spaceflight. Inflight activity of the sympathetic nervous system, assessed by measuring catecholamines and their metabolites and precursors in body fluids, generally seems to be no greater than on Earth, but this system is usually activated at landing. Collaborative experiments on the Mir and the International Space Station should provide more of the data needed from long-term flights, and perhaps help to resolve some of the discrepancies between U.S. and Russian data. The use of alternative methods that are easier to execute during spaceflight, such as collection of saliva instead of blood and urine, should permit more thorough study of circadian rhythms and rapid hormone changes in weightlessness. More investigations of dietary intake of fluid and electrolytes must be performed to understand regulatory processes. Additional hormones that may participate in these processes, such as other natriuretic hormones, should be determined during and after spaceflight. Alterations in body fluid volume and blood electrolyte concentrations during spaceflight have important consequences for readaptation to the 1-G environment. The current assessment of fluid and electrolyte status during weightlessness and at landing and our still incomplete understanding of the processes of adaptation to weightlessness and readaptation to Earth's gravity have resulted in the development of countermeasures that are only partly successful in reducing the postflight orthostatic intolerance experienced by astronauts and cosmonauts. More complete knowledge of these processes can be expected to produce countermeasures that are even more successful, as well as expand our comprehension of the range of adaptability of human physiologic processes.