NASA Technical Reports Server (NTRS)
Roberts, W. E.
1985-01-01
Weightlessness and simulated weightlessness inhibit the rate of periosteal bone formation in long bones. Formation of preosteoblasts is suppressed in periodontal ligament (PDL) of maxillary molars, which suggests a generalized block in osteoblast histogenesis. Growth in length of long bones is decreased by simulated weightlessness, but there are no reliable data on the influence of actual weightlessness on metaphyseal growth. The nuclear size assay for assessing relative numbers of osteoblast precursor cells was utilized in the primary spongiosa of growing long bones subjected to actual and simulated weightlessness. It is found that: (1) Actual weightlessness decreases total number of osteogenic cells and inhibits differentiation of osteoblast precursor cells, (2) Simulated weightlessness suppresses only osteoblast differentation; and (3) The nuclear morphometric assay is an effective means of assessing osteogenic activity in the growing metaphysis or long bones.
Laboratory simulation of the action of weightlessness on the human organism
NASA Technical Reports Server (NTRS)
Genin, A. M.
1977-01-01
A brief history of attemps by the U.S. and the U.S.S.R. to simulate weightlessness in the laboratory is presented. Model for laboratory modeling of weightlessness included the bed regimen, the clinostat, and water immersion. An outline of immediate physiological effects of weightlessness and long term effects is offered.
NASA Technical Reports Server (NTRS)
Lafevers, E. V.; Nicogossian, A. E.; Hursta, W. N.
1976-01-01
Both integration and frequency analyses of the electromyograms from voluntary contractions were performed in one crewman of the Apollo-Soyuz Test Project mission. Of particular interest were changes in excitability, electrical efficiency, and fatigability. As a result of 9 days of weightlessness, muscle excitability was shown to increase; muscle electrical efficiency was found to decrease in calf muscles and to increase in arm muscles; and fatigability was found to increase significantly, as shown by spectral power shifts into lower frequencies. It was concluded from this study that skeletal muscles are affected by the disuse of weightlessness early in the period of weightlessness, antigravity muscles seem most affected by weightlessness, and exercise may abrogate the weightlessness effect. It was further concluded that electromyography is a sensitive tool for measuring spaceflight muscle effects.
An optimized index of human cardiovascular adaptation to simulated weightlessness
NASA Technical Reports Server (NTRS)
Wang, M.; Hassebrook, L.; Evans, J.; Varghese, T.; Knapp, C.
1996-01-01
Prolonged exposure to weightlessness is known to produce a variety of cardiovascular changes, some of which may influence the astronaut's performance during a mission. In order to find a reliable indicator of cardiovascular adaptation to weightlessness, we analyzed data from nine male subjects after a 24-hour period of normal activity and after a period of simulated weightlessness produced by two hours in a launch position followed by 20 hours of 6 degrees head-down tilt plus pharmacologically induced diuresis (furosemide). Heart rate, arterial pressure, thoracic fluid index, and radial flow were analyzed. Autoregressive spectral estimation and decomposition were used to obtain the spectral components of each variable from the subjects in the supine position during pre- and post-simulated weightlessness. We found a significant decrease in heart rate power and an increase in thoracic fluid index power in the high frequency region (0.2-0.45 Hz) and significant increases in radial flow and arterial pressure powers in the low frequency region (<0.2 Hz) in response to simulated weightlessness. However, due to the variability among subjects, any single variable appeared limited as a dependable index of cardiovascular adaptation to weightlessness. The backward elimination algorithm was then used to select the best discriminatory features from these spectral components. Fisher's linear discriminant and Bayes' quadratic discriminant were used to combine the selected features to obtain an optimal index of adaptation to simulated weightlessness. Results showed that both techniques provided improved discriminant performance over any single variable and thus have the potential for use as an index to track adaptation and prescribe countermeasures to the effects of weightlessness.
2017-06-18
To observe the morphological changes on cochlear hair cells of rats in simulated weightlessness and inboard noise and to investigate the different changes in three turns of hair cells. Thirty-two healthy SD rats, all males, were randomly divided into four groups: control group, weightlessness group, noise group and weightlessness+noise groups (n=8). Then rats were exposed to -30° head down tilt as simulated weightlessness and inboard noise including steady-state noise which was (72±2) dB SPL and impulse noise up to 160 dB SPL in spaceship environment. The control group was kept in normal condition for 8 weeks. Bilateral auditory brainstem response (ABR) thresholds were tested before and after exposure respectively, and immunofluorescence staining and scanning electron microscopy (SEMs) of basilar membrane were applied after exposure. ABR threshold shifts of each group were higher after exposure. There was difference between ABRs of the experiment groups before and after exposure (P<0.05). IF showed that the inner hair cells (IHCs) missing was the main damage in the basal turn of weightlessness group, the hair cells in the middle turn were swell and in the top turn, the hair cells were not clear. In noise group, the main loss happened in the outer hair cells (OHCs) of the outermost layer. In weightlessness+noise group, the nuclear missing in the basal turn was apparent, and mainly happened at the outermost layer. Meanwhile, the missing of hair cells in the middle turn and top turn was seen at the innermost layer. SEM showed that the cilia in the basal turn of weightlessness group were serious lodging, and occasional absence. Furthermore, the basal cilia in noise group became lodged and absent, and the other two turns were seriously missing. And in weightlessness+noise group, the cilia missing in the basal turn was apparently seen. The damage degree of the four groups: weightlessness+noise group>noise group>weightlessness group>control group and the damage degree of the four turns of hair cells: basal turn>mid turn>top turn. The rats exposed to the above environment for 2 weeks displayed obvious changes in cochlea morphology, and the weightlessness +noise group had the most obvious damage.
The importance of weightlessness and tides in teaching gravitation
NASA Astrophysics Data System (ADS)
Galili, I.; Lehavi, Y.
2003-11-01
We examine the presentation of the weight, weightlessness, and tides in university-level physics textbooks. Introductory textbooks often do not discuss tidal forces even though their understanding would be useful for understanding weightlessness. The explanations of tides often miss the free gravitational motion of both interacting objects, which is essential for the symmetry of tidal deformation. The shortcomings in the explanations of weightlessness and tides as provided by students and teachers are compared to textbook discussions. We suggest that an explicit discussion of the different definitions of weight and a synergetic presentation of weightlessness and tides might lead to a better understanding of gravitation. Our approach is illustrated by examples of tidal effects appropriate for introductory courses.
Dong, Li; Liu, Xin-Min; Wu, Li-Sha; Yang, Si-Jin; Wang, Qiong
2014-03-01
Aerospace medicine has paid more and more attention to abnormal changes of physiological functions induced by weightlessness and studies on their prevention during space flight. In this paper, the effect of space weightlessness on cognitive functions was introduced. We tried to analyze the correlation between the cognitive function changes and relevant Chinese medical syndromes, thus providing a potential available way to prevent and treat weightlessness induced cognitive deficit during space flight.
NASA Technical Reports Server (NTRS)
Gershuni, G. Z.; Zhukhovitskiy, Y. M.
1984-01-01
Abstracts of reports are given which were presented at the Second All Union Seminar on Hydromechanics and Heat-Mass Transfer in Weightlessness. Topics inlcude: (1) features of crystallization of semiconductor materials under conditions of microacceleration; (2) experimental results of crystallization of solid solutions of CDTE-HGTE under conditions of weightlessness; (3) impurities in crystals cultivated under conditions of weightlessness; and (4) a numerical investigation of the distribution of impurities during guided crystallization of a melt.
NASA Astrophysics Data System (ADS)
Gershuni, G. Z.; Zhukhovitskiy, Y. M.
1984-01-01
s of reports are given which were presented at the Second All Union Seminar on Hydromechanics and Heat-Mass Transfer in Weightlessness. Topics inlcude: (1) features of crystallization of semiconductor materials under conditions of microacceleration; (2) experimental results of crystallization of solid solutions of CDTE-HGTE under conditions of weightlessness; (3) impurities in crystals cultivated under conditions of weightlessness; and (4) a numerical investigation of the distribution of impurities during guided crystallization of a melt.
NASA Astrophysics Data System (ADS)
Gershuni, G. Z.; Zhukhovitskiy, Y. M.
1984-07-01
s of reports are given which were presented at the Second All Union Seminar on Hydromechanics and Heat-Mass Transfer in Weightlessness. Topics include: (1) features of crystallization of semiconductor materials under conditions of microacceleration; (2) experimental results of crystallization of solid solutions of CDTE-HGTE under conditions of weightlessness; (3) impurities in crystals cultivated under conditions of weightlessness; and (4) a numerical investigation of the distribution of impurities during guided crystallization of a melt.
NASA Technical Reports Server (NTRS)
Gershuni, G. Z. (Editor); Zhukhovitskiy, Y. M. (Editor)
1984-01-01
Abstracts of reports are given which were presented at the Second All Union Seminar on Hydromechanics and Heat-Mass Transfer in Weightlessness. Topics include: (1) features of crystallization of semiconductor materials under conditions of microacceleration; (2) experimental results of crystallization of solid solutions of CDTE-HGTE under conditions of weightlessness; (3) impurities in crystals cultivated under conditions of weightlessness; and (4) a numerical investigation of the distribution of impurities during guided crystallization of a melt.
Calcitonin control of calcium metabolism during weightlessness
NASA Technical Reports Server (NTRS)
Soliman, Karam F. A.
1993-01-01
The main objective of this proposal is to elucidate calcitonin role in calcium homeostasis during weightlessness. In this investigation our objectives are to study: the effect of weightlessness on thyroid and serum calcitonin, the effect of weightlessness on the circadian variation of calcitonin in serum and the thyroid gland, the role of light as zeitgeber for calcitonin circadian rhythm, the circadian pattern of thyroid sensitivity to release calcitonin in response to calcium load, and the role of serotonin and norepinephrine in the control of calcitonin release. The main objective of this research/proposal is to establish the role of calcitonin in calcium metabolism during weightlessness condition. Understanding the mechanism of these abnormalities will help in developing therapeutic means to counter calcium imbalance in spaceflights.
Reactions of animals and people under conditions of brief weightlessness
NASA Technical Reports Server (NTRS)
Kitayev-Smik, L. A.
1975-01-01
It has been shown that under brief weightlessness sensory reactions arise in a number of people, mainly those under these conditions for the first time, in the form of spatial and visual illusions, motor excitation, in which tonic and motor components can be distinguished, and vestibular-vegetative disturbances (nausea, vomiting, etc.). In repeated flights with creation of weightlessness, a decrease in the extent of expression and, then, disappearance of these reactions occurred in a significant majority of those studied. Experiments in weightlessness with the vision cut off and with the absence of vestibular functions in the subjects confirm the hypothesis that spatial conceptions of people in weightlessness depend on predominance of gravireceptor or visual afferent signals under these conditions.
[Research on the Kosmos biosatellites].
Il'in, E A
1984-01-01
In the last decade the USSR has launched six biosatellites of the Cosmos series. The duration of the first flight was 6 days and of the five subsequent flights 18 to 21 days. The major goals of the flight studies were: investigation of adaptation of living systems to weightlessness, identification of the modifying effect of weightlessness on radiosensitivity, and detection of the biological effect of artificial gravity. The examinations were performed on 37 biological species, with most of them on rats. The exposure to weightlessness gave rise to moderate stress reactions and specific changes, particularly in the musculo-skeletal system (muscle atrophy, reduced bone strength, etc). Artificial gravity of 1 g generated inflight helped maintain the normal function of most physiological systems. The exposure of mammals (rats) to 137Ce irradiation did not reveal a modifying effect of weightlessness on radiation sickness. Distinct manifestations of the effects of weightlessness on intracellular processes were not observed. Dissimilar results were obtained with respect to the growth and development of living organisms in weightlessness.
ERIC Educational Resources Information Center
Balukovic, Jasmina; Slisko, Josip; Cruz, Adrián Corona
2017-01-01
Different "thought experiments" dominate teaching approaches to weightlessness, reducing students' opportunities for active physics learning, which should include observations, descriptions, explanations and predictions of real phenomena. Besides the controversy related to conceptual definitions of weight and weightlessness, we report…
Islet in weightlessness: Biological experiments on board COSMOS 1129 satellite
NASA Technical Reports Server (NTRS)
Zhuk, Y.
1980-01-01
Biological experiments planned as an international venture for COSMOS 1129 satellite include tests of: (1) adaptation of rats to conditions of weightlessness, and readaption to Earth's gravity; (2) possibility of fertilization and embryonic development in weightlessness; (3) heat exchange processes; (4) amount of gravity force preferred by fruit flies for laying eggs (given a choice of three centrifugal zones); (5) growth of higher plants from seeds; (6) effects of weightlessness on cells in culture and (7) radiation danger from heavy nuclei, and electrostatic protection from charged particles.
Effects of prolonged weightlessness on the humoral immune response of humans
NASA Technical Reports Server (NTRS)
Voss, E. W., Jr.
1981-01-01
An experiment to examine the possible interrelationship of various classes of immunoglobulins by utilizing the effect of weightlessness as a stress factor and subsequently measuring inhibitory, compensatory, or enhancing interrelationships. A second objective of the experiment is to investigate the state of immune competency under conditions of sustained weightlessness.
Changes in muscles accompanying non-weight-bearing and weightlessness
NASA Technical Reports Server (NTRS)
Tischler, M. E.; Henriksen, E. J.; Jaspers, S. R.; Jacob, S.; Kirby, C.
1989-01-01
Results of hindlimb suspension and space flight experiments with rats examine the effects of weightlessness simulation, weightlessness, and delay in postflight recovery of animals. Parameters examined were body mass, protein balance, amino acid metabolism, glucose and glycogen metabolism, and hormone levels. Tables show metabolic responses to unweighting of the soleus muscle.
NASA Technical Reports Server (NTRS)
Gould, C. L.
1985-01-01
Certain immunological responses may be compromised as a result of changes in environmental conditions, such as the physiological adaptation to and from the weightlessness which occurs during space flight and recovery. A murine antiorthostatic model was developed to simulate weightlessness. Using this model, the proposed study will determine if differences in susceptibility to viral and bacterial infections exist among mice suspended in an antiorthostatic orientation to simulate weightlessness, mice suspended in an orthostatic orientation to provide a stressful situation without the condition of weightlessness simulation, and non-suspended control mice. Inbred mouse strains which are resistant to the diabetogenic effects of the D variant of encephalomyocarditis virus (EMC-D) and the lethal effects of Salmonella typhimurium will be evaluated. Glucose tolerance tests will be performed on all EMC-D-infected and non-infected control groups. The incidence of EMC-D-induced diabetes and the percentage survival of S. typhimurium-infected animals will be determined in each group. An additional study will determine the effects of simulated weightlessness on murine responses to exogenous interferon.
Objects Mental Rotation under 7 Days Simulated Weightlessness Condition: An ERP Study.
Wang, Hui; Duan, Jiaobo; Liao, Yang; Wang, Chuang; Li, Hongzheng; Liu, Xufeng
2017-01-01
During the spaceflight under weightlessness condition, human's brain function may be affected by the changes of physiological effects along with the distribution of blood and body fluids to the head. This variation of brain function will influence the performance of astronauts and therefore create possible harm to flight safety. This study employs 20 male subjects in a 7-day-6° head-down tilted (HDT) bed rest model to simulate physiological effects under weightlessness condition, and use behavioral, electrophysiological techniques to compare the changes of mental rotation ability (MR ability) before and after short-term simulated weightlessness state. Behavioral results suggested that significant linear relationship existed between the rotation angle of stimuli and the reaction time, which means mental rotation process do happen during the MR task in simulated weightlessness state. In the first 3 days, the P300 component induced by object mental rotation followed the "down-up-down" pattern. In the following 4 days it changed randomly. On HDT D2, the mean of the amplitude of the P300 was the lowest, while increased gently on HDT D3. There was no obvious changing pattern of the amplitude of P300 observed after 3 days of HDT. Simulated weightlessness doesn't change the basic process of mental rotation. The effect of simulated weightlessness is neural mechanism of self-adaptation. MR ability didn't bounce back to the original level after HDT test.
[Effects of high +Gx during simulated spaceship emergency return on learning and memory in rats].
Xu, Zhi-peng; Sun, Xi-qing; Liu, Ting-song; Wu, Bin; Zhang, Shu; Wu, Ping
2005-02-01
To observe the effects of high +Gx during simulated spaceship emergency return on learning and memory in rats. Thirty two male SD rats were randomly divided into control group, 7 d simulated weightlessness group, +15 Gx/180 s group and +15 Gx/180 s exposure after 7 d simulated weightlessness group, with 8 rats in each group. The changes of learning and memory in rats were measured after stresses by means of Y-maze test and step-through test. In Y-maze test, as compared with control group, percentage of correct reactions decreased significantly (P<0.01) and reaction time increased significantly (P<0.01) in hypergravity after simulated weightlessness group at all time after stress; as compared with +15 Gx group or simulated weightlessness group, percentage of correct reactions decreased significantly (P< 0.05) and reaction time increased significantly (P< 0.05) immediately after stress. In step-through test, as compared with control group, total time increased significantly (P<0.01) in hypergravity after simulated weightlessness group at 1 d after stress; latent time decreased significantly (P<0.01) and number of errors increased significantly (P< 0.01) at all the time after stress. As compared with +15 Gx group, total time increased significantly (P<0.05) immediately, 1 d after stress. As compared with simulated weightlessness group, total time and number of errors increased significantly (P<0.05) immediately after stress. It is suggested that +15 Gx/180 s and simulated weightlessness may affect the ability of learning and memory of rats. Simulated weightlessness for 7 d can aggravate the effect of +Gx on learning and memory ability in rats.
Effect of 5E Teaching Model on Student Teachers' Understanding of Weightlessness
ERIC Educational Resources Information Center
Tural, Guner; Akdeniz, Ali Riza; Alev, Nedim
2010-01-01
Weight is one of the basic concepts of physics. Its gravitational definition accommodates difficulties for students to understand the state of weightlessness. The aim of this study is to investigate the effect of materials based on 5E teaching model and related to weightlessness on science student teachers' learning. The sample of the study was 9…
Electrostatic demonstration of free-fall weightlessness
NASA Astrophysics Data System (ADS)
Balukovic, Jasmina; Slisko, Josip; Corona Cruz, Adrian
2015-05-01
The phenomena of free-fall weightlessness have been demonstrated to students for many years in a number of different ways. The essential basis of all these demonstrations is the fact that in free-falling, gravitationally accelerated systems, the weight force and weight-related forces (for example, friction and hydrostatic forces) disappear. In this article, an original electrostatic demonstration of weightlessness is presented. A charged balloon fixed at the opening of a plastic container cannot lift a light styrofoam sphere sitting on the bottom when the container is at rest. However, while the system is in free-fall, the sphere becomes weightless and the charged balloon is able to lift it electrostatically.
[Basic results of an experiment with mammals on the Kosmos-782 biosatellite].
Gazenko, O G; Genin, A M; Il'in, E A; Portugalov, V V; Serova, L V
1978-01-01
The rat experiments carried out onboard the biosatellite Cosmos-782 contributed to our understanding of mechanisms of animal adaption to prolonged weightlessness. Postflight analysis helped to study nonspecific changes related to the stress-reaction accompanying space flight and return to the Earth gravity as well as specific changes associated with functional unloading of the musculoskeletal system in weightlessness. The flight results confirmed the previously made conclusions concerning possible adaptation of mammals to prolonged weightlessness and lack of pathological changes in vital weightlessness. They included: metabolic and hormonal changes, muscle atrophy, osteoporosis and delayed bone growth, decrease of ATPase activity of myocardial myosin, inhibition of erythropoiesis.
Effects of simulated weightlessness on regional blood flow specifically during cardiovascular stress
NASA Technical Reports Server (NTRS)
Harrison, D. C.
1986-01-01
Significant changes in the cardiovasular system of humans and animals have been observed following exposure to prolonged periods of weightlessness during space flight. Although adaption to weightlessness is relatively uncomplicated, marked changes in cardiovascular deconditioning become evident upon return to normal gravity, including orthostatic hypotension and tachycardia. Some evidence that myocardial degeneration occurs has been demonstrated in animals who have been immobilized for two months. Also, evidence of possible loss of myocardial mass following manned space flight has been obtained by means of echocardiographic studies. These findings have serious implications in light of the increasing frequency and duration of Space Shuttle missions and the prospect of extended space station missions in the future. A number of both military and civilian investigators, including middle-aged scientists, will probably encounter prolonged periods of weightlessness. It has been imperative, therefore, to determine the effects of prolonged weightlessness on cardiovascular deconditioning and whether such effects are cumulative or reversible. The research project conducted under NASA Cooperative Agreement NCC 2-126 was undertaken to determine the effects of prolonged simulated weightlessness on regional blood flow. Research results are reported in the three appended publications.
Objects Mental Rotation under 7 Days Simulated Weightlessness Condition: An ERP Study
Wang, Hui; Duan, Jiaobo; Liao, Yang; Wang, Chuang; Li, Hongzheng; Liu, Xufeng
2017-01-01
During the spaceflight under weightlessness condition, human's brain function may be affected by the changes of physiological effects along with the distribution of blood and body fluids to the head. This variation of brain function will influence the performance of astronauts and therefore create possible harm to flight safety. This study employs 20 male subjects in a 7-day−6° head-down tilted (HDT) bed rest model to simulate physiological effects under weightlessness condition, and use behavioral, electrophysiological techniques to compare the changes of mental rotation ability (MR ability) before and after short-term simulated weightlessness state. Behavioral results suggested that significant linear relationship existed between the rotation angle of stimuli and the reaction time, which means mental rotation process do happen during the MR task in simulated weightlessness state. In the first 3 days, the P300 component induced by object mental rotation followed the “down-up-down” pattern. In the following 4 days it changed randomly. On HDT D2, the mean of the amplitude of the P300 was the lowest, while increased gently on HDT D3. There was no obvious changing pattern of the amplitude of P300 observed after 3 days of HDT. Simulated weightlessness doesn't change the basic process of mental rotation. The effect of simulated weightlessness is neural mechanism of self-adaptation. MR ability didn't bounce back to the original level after HDT test. PMID:29270115
Effect of weightlessness on mineral saturation of bone tissue
NASA Technical Reports Server (NTRS)
Krasnykh, I. G.
1975-01-01
X-ray photometry of bone density established dynamic changes in mineral saturation of bone tissues for Soyuz spacecraft and Salyut orbital station crews. Calcaneus optical bone densities in all crew members fell below initial values; an increase in spacecrew exposure time to weightlessness conditions also increased the degree of decalcification. Demineralization under weightlessness conditions took place at a higher rate than under hypodynamia.
Respiration, respiratory metabolism and energy consumption under weightless conditions
NASA Technical Reports Server (NTRS)
Kasyan, I. I.; Makarov, G. F.
1975-01-01
Changes in the physiological indices of respiration, respiratory metabolism and energy consumption in spacecrews under weightlessness conditions manifest themselves in increased metabolic rates, higher pulmonary ventilation volume, oxygen consumption and carbon dioxide elimination, energy consumption levels in proportion to reduction in neuroemotional and psychic stress, adaptation to weightlessness and work-rest cycles, and finally in a relative stabilization of metabolic processes due to hemodynamic shifts.
Parabolic flight experience is related to increased release of stress hormones.
Schneider, Stefan; Brümmer, Vera; Göbel, Simon; Carnahan, Heather; Dubrowski, Adam; Strüder, Heiko K
2007-06-01
Numerous studies have shown significant effects of weightlessness on adaptational processes of the CNS, cardiovascular and/or muscular system. Most of these studies have been carried out during parabolic flights, using the recurring 20 s of weightlessness at each parabola. Although some of these studies reported on potential influences not only of weightlessness but also of the stressful situation within a parabolic flight, especially provoked by the ongoing changes between 1.8, 1 and 0 G, so far there seems to be only marginal information about objective parameters of stress evoked by parabolic flights. By collecting blood samples from a permanent venous catheter several times during parabolic flights, we were able to show an increase of prolactin, cortisol and ACTH in the course of a 120 min flight. We conclude, therefore, that previous reported effects of weightlessness on adaptational processes may be affected not only by weightlessness but also by the exposure to other stressors experienced within the environment of a Zero-G airbus.
Reactivity of organism in prolonged space flights
NASA Technical Reports Server (NTRS)
Vasilyev, P. V.
1980-01-01
An analysis of published data are presented as well as the results of experiments which show that the state of weightlessness and hypodynamia result in a reduced orthostatic and vestibular resistance, increased sensitivity to infections, decreased endurance of accelerations and physical exercises, and altered reactivity of the organism to drugs. Various consequences of weightlessness on the human body, especially weightlessness combined with other factors linked to long space flights are also considered.
NASA Technical Reports Server (NTRS)
Alwood, J. S.; Limoli, C. L.; Delp, M. D.; Castillo, A. B.; Globus, R. K.
2012-01-01
Weightlessness causes a cephalad fluid shift and reduction in mechanical stimulation, adversely affecting both cortical and trabecular bone tissue in astronauts. In rodent models of weightlessness, the onset of bone loss correlates with reduced skeletal perfusion, reduced and rarified vasculature and lessened vasodilation, which resembles blood-bone symbiotic events that can occur with fracture repair and aging. These are especially serious risks for long term, exploration class missions when astronauts will face the challenge of increased exposure to space radiation and abrupt transitions between different gravity environments upon arrival and return. Previously, we found using the mouse hindlimb unloading model and exposure to heavy ion radiation, both disuse and irradiation cause an acute bone loss that was associated with a reduced capacity to produce bone-forming osteoblasts from the bone marrow. Together, these findings led us to hypothesize that exposure to space radiation exacerbates weightlessness-induced bone loss and impairs recovery upon return, and that treatment with anti-oxidants may mitigate these effects. The specific aims of this recently awarded grant are to: AIM 1 Determine the functional and structural consequences of prolonged weightlessness and space radiation (simulated spaceflight) for bone and skeletal vasculature in the context of bone cell function and oxidative stress. AIM 2 Determine the extent to which an anti-oxidant protects against weightlessness and space radiation-induced bone loss and vascular dysfunction. AIM 3 Determine how space radiation influences later skeletal and vasculature recovery from prolonged weightlessness and the potential of anti-oxidants to preserve adaptive remodeling.
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Parker, D. E.; Arrott, A. P.
1986-01-01
Report discusses physiological and physical concepts of proposed training system to precondition astronauts to weightless environment. System prevents motion sickness, often experienced during early part of orbital flight. Also helps prevent seasickness and other forms of terrestrial motion sickness, often experienced during early part of orbital flight. Training affects subject's perception of inner-ear signals, visual signals, and kinesthetic motion perception. Changed perception resembles that of astronauts who spent many days in space and adapted to weightlessness.
'Weightless' acrylic painting by Jack Kroehnke
NASA Technical Reports Server (NTRS)
1987-01-01
'Weightless' acrylic painting by Jack Kroehnke depicts STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) David C. Hilmers participating in extravehicular activity (EVA) simulation in JSC Weightless Environment Training Facility (WETF) Bldg 29. In the payload bay (PLB) mockup, Hilmers, wearing extravehicular mobility unit (EMU), holds onto the mission-peculiar equipment support structure in foreground while SCUBA-equipped diver monitors activity overhead and camera operator records EVA procedures. Copyrighted art work for use by NASA.
Influences of chemical sympathectomy and simulated weightlessness on male and female rats
NASA Technical Reports Server (NTRS)
Woodman, Christopher R.; Stump, Craig S.; Stump, Jane A.; Sebastian, Lisa A.; Rahman, Z.; Tipton, Charles M.
1991-01-01
Consideration is given to a study aimed at determining whether the sympathetic nervous system is associated with the changes in maximum oxygen consumption (VO2max), run time, and mechanical efficiency observed during simulated weightlessness in male and female rats. Female and male rats were compared for food consumption, body mass, and body composition in conditions of simulated weightlessness to provide an insight into how these parameters may influence aerobic capacity and exercise performance. It is concluded that chemical sympathectomy and/or a weight-bearing stimulus will attenuate the loss in VO2max associated with simulated weightlessness in rats despite similar changes in body mass and composition. It is noted that the mechanisms remain unclear at this time.
NASA Technical Reports Server (NTRS)
Young, L. R.; Oman, C. M.; Lichtenberg, B. K.; Watt, D. G. D.; Money, K. E.
1986-01-01
Human sensory/motor adaptation to weightlessness and readaptation to earth's gravity are assessed. Preflight and postflight vestibular and visual responses for the crew on the Spacelab-1 mission are studied; the effect of the abnormal pattern of otolith afferent signals caused by weightlessness on the pitch and roll perception and postural adjustments of the subjects are examined. It is observed that body position and postural reactions change due to weightlessness in order to utilize the varied sensory inputs in a manner suited to microgravity conditions. The aspects of reinterpretation include: (1) tilt acceleration reinterpretation, (2) reduced postural response to z-axis linear acceleration, and (3) increased attention to visual cues.
Spaceflight and bone turnover - Correlation with a new rat model of weightlessness
NASA Technical Reports Server (NTRS)
Morey, E. R.
1979-01-01
Earlier manned spaceflight studies have revealed that the near-weightless environment of orbital flight produce certain biological effects in humans, including abnormalities in mineral metabolism. The data collected were compatible with bone mineral loss. Cosmos 782 and 936 experiments have shown a decrease in rat bone formation rate. In this paper, a rat model of weightlessness is described, which is unique in that the animal is free to move about a 360-deg arc. The model meets the requirements for an acceptable system. Data from the model and spaceflight are presented. Many of the responses noted in suspended animals indicate that the model closely mimics results from rats and man exposed to near-weightlessness during orbital spaceflight.
Laparoscopic surgery in weightlessness
NASA Technical Reports Server (NTRS)
Campbell, M. R.; Billica, R. D.; Jennings, R.; Johnston, S. 3rd
1996-01-01
BACKGROUND: Performing a surgical procedure in weightlessness has been shown not to be any more difficult than in a 1g environment if the requirements for the restraint of the patient, operator, and surgical hardware are observed. The feasibility of performing a laparoscopic surgical procedure in weightlessness, however, has been questionable. Concerns have included the impaired visualization from the lack of gravitational retraction of the bowel and from floating debris such as blood. METHODS: In this project, laparoscopic surgery was performed on a porcine animal model in the weightlessness of parabolic flight. RESULTS: Visualization was unaffected due to the tethering of the bowel by the elastic mesentery and the strong tendency for debris and blood to adhere to the abdominal wall due to surface tension forces. CONCLUSIONS: There are advantages to performing a laparoscopic instead of an open surgical procedure in a weightless environment. These will become important as the laparoscopic support hardware is miniaturized from its present form, as laparoscopic technology becomes more advanced, and as more surgically capable crew medical officers are present in future long-duration space-exploration missions.
Gravity, weightlessness and the genetic structures of organisms.
Dubinin, N P; Vaulina, E N
1974-01-01
The whole evolution of life on earth has proceeded under the action of earth's gravity which must have influenced the structure and function of organisms. During space flights organisms are exposed to the entirely new condition of weightlessness, and to variations in gravity that produce various changes. Current flight data suggest that organisms most often respond to weightlessness by disturbances in physiological function, which are reversible after the brief exposures that have at present been possible. Only longer space flights will show whether these changes will be compensated, or will lead to alterations in the more important systems of organisms including their hereditary properties. There is evidence that weightlessness has a direct effect on genetic properties. Thus, in microspores of Tradescantia abnormal mitoses (that were not observed in the ground-based control) were recorded to an extent of 3%. The numerous changes in various vital systems suggest that for terrestrial organisms weightlessness is a factor which, if administered for a long time, may bring about serious disturbances in their activities and heredity. The higher the evolutionary position of the organism, the more pronounced the effect is likely to be.
NASA Technical Reports Server (NTRS)
Roberts, W. E.
1984-01-01
The effects of 18.5 days of weightlessness aboard a satellite, stress of restricted feeding, stress of noise and vibration to simulate space flight and 21 days of head down suspension via the Morey-Holton model for simulated weightlessness was studied. Nuclear size of fibroblastlike cells in PDL on the anterior surface of maxillary first molars was classified as: (1) A-cells, self perpetuating precursors with a nuclear volume 80 micron B-cells, nonosteogenic fibroblasts with a nuclear volume of 80-119 micron 3, C-cells, preosteoblasts that are in G1 stage of the cell cycle with a nuclear size of 120-170 micro, and D-cells, preosteoblasts that are in G2 stage of the cell cycle with a nuclear size 170 micro.
Blood circulation under conditions of weightlessness
NASA Technical Reports Server (NTRS)
Kastyan, I. I.; Kopanev, V. I.
1980-01-01
Experimental materials and published data on the problem of blood circulation in man and animals under conditions of short and long term weightlessness are summarized. The data obtained allow the conclusion, that when humans spent 5 days in a weightless state their blood circulation was not essentially distributed. Some features of the functioning of the cardiovascular system are pointed out: delay of adaptation rate, increase in lability, etc. There is a discussion of the physiological mechanisms for the direct and indirect effect of weightlessness. The direct effect comprise the complex of reactions caused by the significant fall in hydrostatic pressure and the indirect embraces all the reactions arising in the organism resulting from disturbance of the systematic character of the analyzers that take part in the analysis of space realtions and the body's orientation in space.
The regulation of fluid and electrolyte metabolism in weightlessness
NASA Technical Reports Server (NTRS)
Leach, C. S.; Johnson, P. C.; Cintron, N. M.
1986-01-01
Endocrine and biochemical changes in astronauts caused by weightlessness are discussed. Translocation of fluid from the extremities to the head and chest at the onset of weightlessness is thought to lead to the establishment of a lower blood volume as an adaptation to microgravity. Results of Skylab experiments indicate that several other regulatory systems have lower homeostatic set points during space flight. Inflight blood samples from three Spacelab flights show increased antidiuretic hormone throughout these short flights and decreased aldosterone and cortisol after 3 days. Results help to explain blood hypoosmolality and hyponatremia but do not explain what happens between the onset of weightlessness and hormone changes. Other factors such as natriuretic peptides and changes in renal function are being studied to elucidate the physiologic adaptation mechanisms.
Three-dimensional ballistocardiography in weightlessness
NASA Technical Reports Server (NTRS)
Scano, A.
1981-01-01
An experiment is described the aim of which is to record a three dimensional ballistocardiogram under the condition of weightlessness and to compare it with tracings recorded on the same subject on the ground as a means of clarifying the meaning of ballistocardiogram waves in different physiological and perphaps pathological conditions. Another purpose is to investigate cardiovascular and possibly fluid adaptations to weightlessness from data collected almost simultaneously on the same subjects during the other cardiovascular during the other cardiovascular and metabolic experiments.
NASA Technical Reports Server (NTRS)
Timofeyev-Resolskiy, N. V.; Parfenov, G. P.; Tairbekov, M.; Platonova, R. N.; Rostopshina, A. V.; Zhvalikovskaya, V. P.; Mosgovaya, I. Y.; Shvets, V. N.; Kovalev, Y. Y.; Dudkin, V. Y.
1978-01-01
Biological experiments onboard the Kosmos-936 investigated the effect of weightlessness on the basic components of cells, the genetic structure and energy apparatus. Genetic studies were made on the Drosophila melanogaster. Experiments were made on higher vegetation and fungi as well. The results indicate that weightlessness cannot be the principal barrier for normal development. An experiment with ectopic osteogenesis in weightlessness was carried out. Measurements were made of cosmic radiation inside and outside the biosatellite.
Effects of weightlessness on tissue proliferation
NASA Technical Reports Server (NTRS)
Crosby, W. H.; Tavassoli, M.
1975-01-01
The repair of bone marrow stroma following mechanical injury was studied to obtain baseline data for a proposed space experiment regarding the effect of weightlessness on marrow stroma and other proliferating cell systems.
STS-60 Cosmonauts in Weightless Environment Training Facility (WETF) training
1993-01-07
Russian Cosmonaut Vladimir Titov maneuvers a small life raft during bailout training at JSC's Weightless Environment Training Facility (WETF). Two SCUBA-equipped divers assisted Titov in the STS-60 training exercise.
Hydrogen and hydrocarbon diffusion flames in a weightless environment
NASA Technical Reports Server (NTRS)
Haggard, J. B., Jr.; Cochran, T. H.
1973-01-01
An experimental investigation was performed on laminar hydrogen-, ethylene-, and propylene-air diffusion burning in a weightless environment. The flames burned on nozzles with radii ranging from 0.051 to 0.186 cm with fuel Reynolds numbers at the nozzle exit from 9 to 410. Steady-state diffusion flames existed in a weightless environment for all the fuels tested. A correlation was obtained for their axial length as a function of Schmidt number, Reynolds numbers, and stoichiometric mole fraction. The maximum flame radii were correlated with the ratio of nozzle radius to average fuel velocity. The flames of ethylene and propylene on nozzles with radii 0.113 or larger appeared to be constantly changing color and/or length throughout the test. No extinguishment was observed for any of the gases tested within the 2.2 seconds of weightlessness.
Alteration of Electro-Cortical Activity in Microgravity
NASA Astrophysics Data System (ADS)
Schneider, Stefan; Brummer, Vera; Carnahan, Heather; Askew, Christopher D.; Guardiera, Simon; Struder, Heiko K.
2008-06-01
There is growing interest in the effects of weightlessness on central nervous system (CNS) activity. Due to technical and logistical limitations it presently seems impossible to apply imaging techniques as fMRI or PET in weightless environments e.g. on ISS or during parabolic flights. Within this study we evaluated changes in brain cortical activity using low resolution brain electromagnetic tomography (LORETA) during parabolic flights. Results showed a distinct inhibition of right frontal area activity >12Hz during phases of microgravity compared to normal gravity. We conclude that the inhibition of high frequency frontal activity during microgravity may serve as a marker of emotional anxiety and/or indisposition associated with weightlessness. This puts a new light on the debate as to whether cognitive and sensorimotor impairments are attributable to primary physiological effects or secondary psychological effects of a weightless environment.
NASA Technical Reports Server (NTRS)
Corker, K.; Bejczy, A. K.
1984-01-01
The effect of weightlessness on the human operator's performance in force reflecting position control of remote manipulators was investigated. A gravity compensation system was developed to simulate the effect of weightlessness on the operator's arm. A universal force reflecting hand controller (FRHC) and task simulation software were employed. Two experiments were performed because of anticipated disturbances in neuromotor control specification on the human operator in an orbital control environment to investigate: (1) the effect of controller stiffness on the attainment of a learned terminal position in the three dimensional controller space, and (2) the effect of controller stiffness and damping on force tracking of the contour of a simulated three dimensional cube using the part simulation of weightless conditions. The results support the extension of neuromotor control models, which postulate a stiffness balance encoding of terminal position, to three dimensional motion of a multilink system, confirm the existence of a disturbance in human manual control performance under gravity compensated conditions, and suggest techniques for compensation of weightlessness induced performance decrement through appropriate specification of hand controller response characteristics. These techniques are based on the human control model.
Responses of blind fish to gravitational changes as achieved in parabolic flight
NASA Technical Reports Server (NTRS)
Vonbaumgarten, R. J.; Shillinger, G. L., Jr.; Baldright, G.
1972-01-01
Blind fish, during parabolic flight, display a measurable and consistent behavior. The most spectacular new behavioral response is the forward looping of blind fish in or near weightlessness. This response shows no measurable adaptation during the entire period of weightlessness of about 30 sec. During the entrance and exit of weightless parabolas (pushover and pullout) respectively, the fish assumes a forward tilted diving position. Parabolic flight with negative g in the range between 0g and -1g causes similar diving responses of the fish with the only difference being that the dive is directed toward the top of the fish tank. When the response to a g value less than 1g is compared to the response to increased g load on the ground (escape of darting response) an essential difference is seen: higher horizontal acceleration or jerk on the ground causes fish to swim, or even dart, against the direction of inertial force; fish during weightless parabolas move into the direction of the inertial or gravitational force. Since the vestibular system of fish is homologous to that of man, the observed behavior of fish in weightless flight could help to better understand human performance and sensations in comparable situations.
Analysis of human microcirculation in weightlessness: Study protocol and pre-study experiments.
Bimpong-Buta, Nana-Yaw; Jirak, Peter; Wernly, Bernhard; Lichtenauer, Michael; Masyuk, Maryna; Muessig, Johanna Maria; Braun, Kristina; Kaya, Sema; Kelm, Malte; Jung, Christian
2018-04-14
In weightlessness, alterations in organ systems have been reported. The microcirculation consists of a network of blood vessels with diameters of a few μm. It is considered the largest part of the circulatory system of the human body and essential for exchange of gas, nutrients and waste products. An investigation of the microcirculation in weightlessness seems warranted but has not yet been performed. In this paper, we outline a study in which we will investigate the possible interrelations between weightlessness and microcirculation. We will induce weightlessness in the course of parabolic flight maneuvers, which will be conducted during a parabolic flight campaign. In this study protocol also an evaluation of a possible influence of parabolic flight premedication on microcirculation will be described. The microcirculation will be investigated by sublingual intravital measurements applying sidestream darkfield microscopy. Parameters of macrocirculation such as heart rate, blood pressure and blood oxygenation will also be investigated. In our pre-study experiments, neither dimenhydrinate nor scopolamine altered microcirculation. As the application of motion sickness therapy did not alter microcirculation, it will be applied during the parabolic flight maneuvers of the campaign. Our results might deepen the understanding of microcirculation on space missions and on earth.
NASA Technical Reports Server (NTRS)
Miquel, J. (Editor); Economos, A. C. (Editor)
1982-01-01
Presentations are given which address the effects of space flght on the older person, the parallels between the physiological responses to weightlessness and the aging process, and experimental possibilities afforded by the weightless environment to fundamental research in gerontology and geriatrics.
NASA Technical Reports Server (NTRS)
Pace, N.
1973-01-01
Physiological base line data are established, and physiological procedures and instrumentation necessary for the automatic measurement of hemodynamic and metabolic parameters during prolonged periods of weightlessness are developed.
A Systems Approach to the Physiology of Weightlessness
NASA Technical Reports Server (NTRS)
White, Ronald J.; Leonard, Joel I.; Rummel, John A.; Leach, Carolyn S.
1991-01-01
A systems approach to the unraveling of the complex response pattern of the human subjected to weightlessness is presented. The major goal of this research is to obtain an understanding of the role that each of the major components of the human system plays following the transition to and from space. The cornerstone of this approach is the utilization of a variety of mathematical models in order to pose and test alternative hypotheses concerned with the adaptation process. An integrated hypothesis for the human physiological response to weightlessness is developed.
NASA Technical Reports Server (NTRS)
Comfort, A.
1982-01-01
The relevancy of gerontology and geriatrics to the discipline of aerospace medicine is examined. It is noted that since the shuttle program gives the facility to fly passengers, including specially qualified older persons, it is essential to examine response to acceleration, weightlessness, and re-entry over the whole adult lifespan, not only its second quartile. The physiological responses of the older person to weightlessness and the return to Earth gravity are reviewed. The importance of the use of the weightless environment to solve critical problems in the fields of fundamental gerontology and geriatrics is also stressed.
Astronauts Hoffman and Seddon demonstrate effect of weightlessness on slinky
1985-04-14
51D-06-015 (12-19 April 1985) --- Astronaut Jeffrey A. Hoffman and Rhea Seddon mission specialists, demonstrate the effect of weightlessness on a slinky toy in the mid-deck of the Space Shuttle Discovery.
More Life-Science Experiments For Spacelab
NASA Technical Reports Server (NTRS)
Savage, P. D., Jr.; Dalton, B.; Hogan, R.; Leon, H.
1991-01-01
Report describes experiments done as part of Spacelab Life Sciences 2 mission (SLS-2). Research planned on cardiovascular, vestibular, metabolic, and thermal responses of animals in weightlessness. Expected to shed light on effects of prolonged weightlessness on humans.
Tang, Bin; Fan, Xiao-li; Wu, Su-di
2002-10-01
Objective. To explore the mechanisms involved in muscle atrophy and conversion of the fiber types induced by simulated weightlessness. Method. Weightlessness was simulated by tail suspension of female rats. Intrafusal and extrafusal fibers of soleus muscles in the rat were examined histochemically for their activity of acetylcholinesterase (AChE) and succinic dehydrogenase (SDH) in 7 d, 14 d, 21 d tail-suspended groups and control groups. Result. Staining for succinic dehydrogenase showed that simulated weightlessness caused obvious atrophy and change in fiber type composition in soleus muscle, with decrease of the proportion of type I fiber and increase of type II fiber. Acetylcholinesterase activities of intrafusal and extrafusal fibers were both decreased significantly after 21 d tail suspension. Conclusion. Simulated weightlessness could induce decrease of AChE activity in neuromuscular junctions, which might be linked with decrease in motor neuron activity.
Effect of weightlessness conditions on the somatic embryogenesis in the culture of carrot cells
NASA Technical Reports Server (NTRS)
Butenko, R. G.; Dmitriyeva, N. N.; Ongko, V.; Basyrova, L. V.
1977-01-01
A carrot cell culture seeded in Petri dishes in the United States and transported to the USSR was subjected to weightlessness for 20 days during the flight of Kosmos 782. The controls were cultures placed on a centrifuge (1 g) inside the satellite and cultures left on ground in the U.S.S.R. and the United States. A count of structures in the dishes after the flight showed that the number of developing embryonic structures and the extent of their differentiation in weightlessness did not reliably differ from the number and extent of differentiation in structures developed on the ground. Structures with long roots developed in weightlessness. Analysis of the root zones showed that these roots differed by the increased size of the zone of differentiated cells. The increased size of the zones of differentiated cells can indicate earlier development of embryonic structures.
NASA Technical Reports Server (NTRS)
Bennett, C. H.
1981-01-01
The effect of in-flight exercise programs on astronauts' cardiovascular adjustments during spaceflight weightlessness and upon return to Earth was studied. Physiological changes in muscle strength and volume, cardiovascular responses during the application of lower body negative pressure, and metabolic activities during pre-flight and flight tests were made on Skylab crewmembers. The successful completion of the Skylab missions showed that man can perform submaximal and maximal aerobic exercise in the weightless enviroment without detrimental trends in any of the physiologic data. Exercise tolerance during flight was unaffected. It was only after return to Earth that a tolerance decrement was noted. The rapid postflight recovery of orthostatic and exercise tolerance following two of the three Skylab missions appeared to be directly related to total in-flight exercise as well as to the graded, regular program of exercise performed during the postflight debriefing period.
Alterations in gut transport of minerals and in binding proteins during simulated weightlessness
NASA Technical Reports Server (NTRS)
Bikle, D. D.
1984-01-01
The structural components of the skeleton develop and are maintained in a 1 g environment, shaped by the mechanical load to which they are constantly exposed. Altering such a mechanical load by reducing the gravitational force imposed on the system, as in space flight, has profound effects on the skeleton and permits an exploration of the molecular events which regulate normal skeletal homeostasis. The objective was to determine whether simulated weightlessness reduced intestinal calcium transport, and if so, to determine the molecular mechanisms for such an effect. A nonstressful tail suspension in which the rats gained weight normally while suspended was used to simulate weightlessness. A significant change in intestinal calcium transport was not demonstrated. However, a cyclic change in bone formation with suspension was shown. Based on these observations, the objective changed to determination of the hormonal regulation of bone formation during simulated weightlessness.
Casellato, Claudia; Pedrocchi, Alessandra; Ferrigno, Giancarlo
2017-01-01
Switching between contexts affects the mechanisms underlying motion planning, in particular it may entail reranking the variables to be controlled in defining the motor solutions. Three astronauts performed multiple sessions of whole-body pointing, in normogravity before launch, in prolonged weightlessness onboard the International Space Station, and after return. The effect of gravity context on kinematic and dynamic components was evaluated. Hand trajectory was gravity independent; center-of-mass excursion was highly variable within and between subjects. The body-environment effort exchange, expressed as inertial ankle momentum, was systematically lower in weightlessness than in normogravity. After return on Earth, the system underwent a rapid 1-week readaptation. The study indicates that minimizing the control effort is given greater weight when optimizing the motor plan in weightlessness compared to normogravity: the hierarchies of the controlled variables are gravity dependent.
Wang, Linjie; Li, Zhili; Tan, Cheng; Liu, Shujuan; Zhang, Jianfeng; He, Siyang; Zou, Peng; Liu, Weibo; Li, Yinghui
2018-04-25
The Chinese space station will be built around 2020. As a national space laboratory, it will offer unique opportunities for studying the physiological effects of weightlessness and the efficacy of the countermeasures against such effects. In this paper, we described the development of countermeasure systems in the Chinese space program. To emphasize the need of the Chinese space program to implement its own program for developing countermeasures, we reviewed the literature on the negative physiological effects of weightlessness, the challenges of completing missions, the development of countermeasure devices, the establishment of countermeasure programs, and the efficacy of the countermeasure techniques in American and Russian manned spaceflights. In addition, a brief overview was provided on the Chinese research and development on countermeasures to discuss the current status and goals of the development of countermeasures against physiological problems associated with weightlessness.
NASA Technical Reports Server (NTRS)
Balakhovskiy, I. S.; Orlova, T. A.
1975-01-01
Biochemical blood composition studies on astronauts during weightlessness flight simulation tests and during actual space flights showed some disturbances of metabolic processes. Increases in blood sugar, fatty acid and cholesterol, and urea content are noted.
Effect of simulated weightlessness on the immune system in rats
NASA Technical Reports Server (NTRS)
Caren, L. D.; Mandel, A. D.; Nunes, J. A.
1980-01-01
Rats suspended in a model system designed to simulate many aspects of weightlessness were immunized with sheep red blood cells. Parameters measured on these and control rats included titers of anti-sheep red blood cell antibodies, serum immunoglobulin levels, spleen and thymus weights, hematocrits, and leukocyte differential counts on peripheral blood. No significant differences were found between test and weight-bearing, harnessed controls; however, the thymuses of animals in both these groups were significantly smaller than untreated cage controls. The lack of an effect of simulated weightlessness on the immune system is an interesting result, and its significance is discussed.
Comparison between the weightlessness syndrome and aging
NASA Technical Reports Server (NTRS)
Miquel, J.
1982-01-01
The similarity of detrimental effects of normal aging and of exposure to space weightlessness is discussed. The effects include: the reduction in cardiac output, increase in blood pressure, decrease in respiratory vital capacity, decrease in lean body weight and muscle mass, collagen and fat infiltration of muscle, bone demineralization, and a decrease in urinary excretion of total 17-hydroxicorticosteroids. It is also noted that dispite the accelerated aging of organisms, if animals or human subjects were to spend their entire lives in weightlessness, their lifespans might be significantly increased because of a reduction in metabolic rate. Experimental results are cited.
Loading Configurations and Ground Reaction Forces During Treadmill Running in Weightlessness
NASA Technical Reports Server (NTRS)
DeWitt, John; Schaffner, Grant; Blazine, Kristi; Bentley, Jason; Laughlin, Mitzi; Loehr, James; Hagan, Donald
2003-01-01
Studies have shown losses in bone mineral density of 1-2% per month in critical weight bearing areas such as the proximal femur during long-term space flight (Grigoriev, 1998). The astronauts currently onboard the International Space Station (ISS) use a treadmill as an exercise countermeasure to bone loss that occurs as a result of prolonged exposure to weightlessness. A crewmember exercising on the treadmill is attached by a harness and loading device. Ground reaction forces are obtained through the loading device that pulls the crewn1ember towards the treadmill surface during locomotion. McCrory et al. (2002) found that the magnitude of the peak ground reaction force (pGRF) during horizontal suspension running, or simulated weightlessness, was directly related to the load applied to the subject. It is thought that strain magnitude and strain rate affects osteogenesis, and is a function of the magnitude and rate of change of the ground reaction force. While it is not known if a minimum stimulus exists for osteogenesis, it has been hypothesized that in order to replicate the bone formation occurring in normal gravity (1 G), the exercise in weightlessness should mimic the forces that occur on earth. Specifically, the pGRF obtained in weightlessness should be comparable to that achieved in 1 G.
Clément, Gilles R; Bukley, Angelia P; Paloski, William H
2015-01-01
In spite of the experience gained in human space flight since Yuri Gagarin's historical flight in 1961, there has yet to be identified a completely effective countermeasure for mitigating the effects of weightlessness on humans. Were astronauts to embark upon a journey to Mars today, the 6-month exposure to weightlessness en route would leave them considerably debilitated, even with the implementation of the suite of piece-meal countermeasures currently employed. Continuous or intermittent exposure to simulated gravitational states on board the spacecraft while traveling to and from Mars, also known as artificial gravity, has the potential for enhancing adaptation to Mars gravity and re-adaptation to Earth gravity. Many physiological functions are adversely affected by the weightless environment of spaceflight because they are calibrated for normal, Earth's gravity. Hence, the concept of artificial gravity is to provide a broad-spectrum replacement for the gravitational forces that naturally occur on the Earth's surface, thereby avoiding the physiological deconditioning that takes place in weightlessness. Because researchers have long been concerned by the adverse sensorimotor effects that occur in weightlessness as well as in rotating environments, additional study of the complex interactions among sensorimotor and other physiological systems in rotating environments must be undertaken both on Earth and in space before artificial gravity can be implemented.
NASA Technical Reports Server (NTRS)
Parker, D. E.; Reschke, M. F.
1988-01-01
An effort to develop preflight adaptation training (PAT) apparatus and procedures to adapt astronauts to the stimulus rearrangement of weightless spaceflight is being pursued. Based on the otolith tilt-translation reinterpretation model of sensory adaptation to weightlessness, two prototype preflight adaptation trainers (PAT) have been developed. These trainers couple pitch movement of the subject with translation of the visual surround. Subjects were exposed to this stimulus rearrangement for periods of 30 m. The hypothesis is that exposure to the rearrangement would attenuate vertical eye movements was supported by two experiments using the Miami University Seesaw (MUS) PAT prototype. The Dynamic Environment Simulator (DES) prototype failed to support this hypothesis; this result is attributed to a pecularity of the DES apparatus. A final experiment demonstrated that changes in vertical eye movements were not a consequence of fixation on an external target during exposure to a control condition. Together these experiments support the view that preflight adaptation training can alter eye movements in a manner consistent with adaptation to weightlessness. Following these initial studies, concepts for development of operational preflight trainers were proposed. The trainers are intended to: demonstrate the stimulus rearrangement of weightlessness; allow astronauts to train in altered sensory environment; modify sensory motor reflexes; and reduce/eliminate space motion sickness symptoms.
Hydromechanics and heat and mass exchange in weightlessness (Russian book): Table of contents
NASA Technical Reports Server (NTRS)
Avduyevskiy, V. S.; Poleshayev, V. I.
1983-01-01
The table of contents is given for a book on hydromechanics and heat and mass exchange in weightlessness. The book covers such subjects as hydromechanics, convection and heat and mass exchange, and technological experiments and complicated systems.
Physiological problems of weightlessness
NASA Technical Reports Server (NTRS)
Vasilyev, P. V.; Kasyan, I. I.
1975-01-01
A brief review of the compensatory-adjusting body changes observed during and after human exposure to prolonged spaceflight is given. Pathological disturbances caused by increased functional hypokinesia and weightlessness loads affect the cardiovascular system, the nervous and hormonal systems, and the state of the skeletal musculo apparatus.
GEMINI-TITAN (GT)-8 - TRAINING - PILOT IN WEIGHTLESSNESS USING EXPERIMENT TOOL - FL
1966-02-18
S66-24410 (18 Feb. 1966) --- Astronaut David R. Scott performs a maintenance and repair experiment with a battery-powered tool during a state of weightlessness while in extravehicular activity (EVA) training on a KC-135. Photo credit: NASA
The effect of simulated weightlessness on hypobaric decompression sickness
NASA Technical Reports Server (NTRS)
Balldin, Ulf I.; Pilmanis, Andrew A.; Webb, James T.
2002-01-01
BACKGROUND: A discrepancy exists between the incidence of ground-based decompression sickness (DCS) during simulated extravehicular activity (EVA) at hypobaric space suit pressure (20-40%) and crewmember reports during actual EVA (zero reports). This could be due to the effect of gravity during ground-based DCS studies. HYPOTHESIS: At EVA suit pressures of 29.6 kPa (4.3 psia), there is no difference in the incidence of hypobaric DCS between a control group and group exposed to simulated weightlessness (supine body position). METHODS: Male subjects were exposed to a hypobaric pressure of 29.6 kPa (4.3 psi) for up to 4 h. The control group (n = 26) pre-oxygenated for 60 min (first 10 min exercising) before hypobaric exposure and walking around in the altitude chamber. The test group (n = 39) remained supine for a 3 h prior to and during the 60-min pre-oxygenation (also including exercise) and at hypobaric pressure. DCS symptoms and venous gas emboli (VGE) at hypobaric pressure were registered. RESULTS: DCS occurred in 42% in the control and in 44% in simulated weightlessness group (n.s.). The mean time for DCS to develop was 112 min (SD +/- 61) and 123 min (+/- 67), respectively. VGE occurred in 81% of the control group subjects and in 51% of the simulated weightlessness subjects (p = 0.02), while severe VGE occurred in 58% and 33%, respectively (p = 0.08). VGE started after 113 min (+/- 43) in the control and after 76 min (+/- 64) in the simulated weightlessness group. CONCLUSIONS: No difference in incidence of DCS was shown between control and simulated weightlessness conditions. VGE occurred more frequently during the control condition with bubble-releasing arm and leg movements.
NASA Technical Reports Server (NTRS)
Fitts, R. H.; Romatowski, J. G.; De La Cruz, L.; Widrick, J. J.; Desplanches, D.
2000-01-01
Weightlessness has been shown to cause limb muscle wasting and a reduced peak force and power in the antigravity soleus muscle. Despite a reduced peak power, Caiozzo et al. observed an increased maximal shortening velocity in the rat soleus muscle following a 14-day space flight. The major purpose of the present investigation was to determine if weightlessness induced an elevated velocity in the antigravity slow type I fibers of the rhesus monkey (Macaca mulatta), as well as to establish a cellular mechanism for the effect. Spaceflight or models of weightlessness have been shown to increase glucose uptake, elevate muscle glycogen content, and increase fatigability of the soleus muscle. The latter appears to be in part caused by a reduced ability of the slow oxidative fibers to oxidize fats. A second goal of this study was to establish the extent to which weightlessness altered the substrate profile and glycolytic and oxidative enzyme capacity of individual slow- and fast-twitch fibers.
NASA Astrophysics Data System (ADS)
Vaulina, E. N.; Anikeeva, I. D.; Kostina, L. N.; Kogan, I. G.; Palmbakh, L. R.; Mashinsky, A. L.
The effect of weightlessness on chromosomal aberration frequency in preflight irradiated Crepis capillaris seeds, on the viability, fertility and mutation frequency in Arabidopsis thaliana, and on the frequency of nondisjunction and loss of X chromosomes in preflight irradiated Drosophila melanogaster gametes was studied aboard the Salyut 6 orbital station. The following effects were observed: a flight-time dependent amplification of the effects of preflight ?-irradiation in A. thaliana with respect to all the parameters studied; unequal effects in seeds and seedlings of Crepis capillaris; and a significant increase in the frequency of nondisjunction and loss of chromosomes during meiosis in Drosophila females. These observations are discussed in terms of the data of ground-based model experiments and flight experiments with a different time of exposure of objects to weightlessness. An attempt is made to elucidate the role of weightlessness in the modification of ionizing radiation effects.
Surgical Instrument Restraint in Weightlessness
NASA Technical Reports Server (NTRS)
Campbell, Mark R.; Dawson, David L.; Melton, Shannon; Hooker, Dona; Cantu, Hilda
2000-01-01
Performing a surgical procedure during spaceflight will become more likely with longer duration missions in the near future. Minimal surgical capability has been present on previous missions as the definitive medical care time was short and the likelihood of surgical events too low to justify surgical hardware availability. Early demonstrations of surgical procedures in the weightlessness of parabolic flight indicated the need for careful logistical planning and restraint of surgical hardware. The consideration of human ergonomics also has more impact in weightlessness than in the conventionall-g environment. Three methods of surgical instrument restraint - a Minor Surgical Kit (MSK), a Surgical Restraint Scrub Suit (SRSS), and a Surgical Tray (ST) were evaluated in parabolic flight surgical procedures. The Minor Surgical Kit was easily stored, easily deployed, and demonstrated the best ability to facilitate a surgical procedure in weightlessness. Important factors in this surgical restraint system include excellent organization of supplies, ability to maintain sterility, accessibility while providing secure restraint, ability to dispose of sharp items and biological trash, and ergonomical efficiency.
NASA Technical Reports Server (NTRS)
Halloran, B. P.; Bikle, D. D.; Globus, R. K.; Levens, M. J.; Wronski, T. J.; Morey-Holton, E.
1985-01-01
Weightlessness, as experienced during space flight, and simulated weightlessness induce osteopenia. Using the suspended rat model to simulate weightlessness, a reduction in total tibia Ca and bone formation rate at the tibiofibular junction as well as an inhibition of Ca-45 and H-3-proline uptake by bone within 5-7 days of skeletal unloading was observed. Between days 7 and 15 of unloading, uptake of Ca-45 and H-3-proline, and bone formation rate return to normal, although total bone Ca remains abnormally low. To examine the relationship between these characteristic changes in bone metabolism induced by skeletal unloading and vitamin D metabolism, the serum concentrations of 25-hydroxyvitamin D (25-OH-D), 24, 25-dihydroxyvitamin D (24,25(OH)2D) and 1,25-dihydroxyvitamin D (1,25(OH)2D) at various times after skeletal unloading were measured. The effect of chronic infusion of 1,25(OH)2D3 on the bone changes associated with unloading was also determined.
Effect of weightlessness and centrifugation on red cell survival in rats subjected to space flight
NASA Technical Reports Server (NTRS)
Leon, H. A.; Serova, L. V.; Landaw, S. A.
1980-01-01
Rats were flown aboard the Soviet biosatellite Cosmos 936 for 18.5 d during August, 1977. Five rats were subjected to near-weightless space flight, as with Cosmos 782, and five rats were subjected to a 1-G force via an on-board centrifuge. These rats and three control groups were injected with 2-(C-14) glycine 19 d preflight. The flight rats were recovered from orbit after 18.5 d of space flight. Erythrocyte hemolysis and lifespan were evaluated in the five groups of rats by quantitation of radioactive carbon monoxide exhaled in the breath which arises from the breakdown of the previously labeled hemoglobin. The results support the previous findings wherein hemolysis was found to increase as a result of weightless space flight. A comparison to the centrifuged animals indicates that artificial gravity attenuates the effect of weightlessness on hemolysis and appears to normalize the hemolytic rate in the early postflight period.
The first dedicated life sciences mission - Spacelab 4
NASA Technical Reports Server (NTRS)
Cramer, D. R.; Reid, D. H.; Klein, H. P.
1983-01-01
The details of the payload and the experiments in Spacelab 4, the first Spacelab mission dedicated entirely to the life sciences, are discussed. The payload of Spacelab 4, carried in the bay of the Shuttle Orbiter, consists of 25 tentatively selected investigations combined into a comprehensive integrated exploration of the effects of acute weightlessness on living systems. The payload contains complementary designs in the human and animal investigations in order to validate animal models of human physiology in weightlessness. Animals used as experimental subjects will include squirrel monkeys, laboratory rats, several species of plants, and frog eggs. The main scientific objectives of the investigations include the study of the acute cephalic fluid shift, cardiovascular adaptation to weightlessness, including postflight reductions in orthostatic tolerance and exercise capacity, and changes in vestibular function, including space motion sickness, associated with weightlessness. Other scientific objective include the study of red cell mass reduction, negative nitrogen balance, altered calcium metabolism, suppressed in vitro lymphocyte reactivity, gravitropism and photropism in plants, and fertilization and early development in frog eggs.
NASA Technical Reports Server (NTRS)
Globus, R. K.; Alwood, J.; Tahimic, C.; Schreurs, A.-S.; Shirazi-Fard, Y.; Terada, M.; Zaragoza, J.; Truong, T.; Bruns, K.; Castillo, A.;
2018-01-01
We examined experimentally the effects of radiation and/or simulated weightlessness by hindlimb unloading on bone and blood vessel function either after a short period or at a later time after transient exposures in adult male, C57Bl6J mice. In sum, recent findings from our studies show that in the short term, ionizing radiation and simulate weightlessness cause greater deficits in blood vessels when combined compared to either challenge alone. In the long term, heavy ion radiation, but not unloading, can lead to persistent, adverse consequences for bone and vessel function, possibly due to oxidative stress-related pathways.
Mass discrimination during weightlessness
NASA Technical Reports Server (NTRS)
Ross, H.
1981-01-01
An experiment concerned with the ability of astronauts to discriminate between the mass of objects when both the objects and the astronauts are in weightless states is described. The main object of the experiment is to compare the threshold for weight-discrimination on Earth with that for mass-discrimination in orbit. Tests will be conducted premission and postmission and early and late during the mission while the crew is experiencing weightlessness. A comparison of early and late tests inflight and postflight will reveal the rate of adaptation to zero-gravity and 1-g. The mass discrimination box holds 24 balls which the astronaut will compare to one another in a random routine.
Germination of pine seed in weightlessness (investigation in Kosmos 782)
NASA Technical Reports Server (NTRS)
Platonova, R. N.; Parfenov, G. P.; Olkhovenko, V. P.; Karpova, N. I.; Pichugov, M. Y.
1978-01-01
An investigation was made of the orientation of aboveground and underground organs of pine plants grown from seed in weightlessness. Orientation was found to be caused by the position of the seeds relative to the substrate surface. Normal growth was manifest only for the plants grown from seed oriented with embryo toward the substrate. Differences were noted between experiment and control as to the quantitative content of nucleoli in the meristematic cells of the rootlets and the shape of cells in the cotyledonous leaflets. No complete agreement was found between data obtained in weightlessness and when gravity was compensated (clinostat treatment with horizontal rotation).
NASA Technical Reports Server (NTRS)
Wolegemuth, D. J.; Grills, G. S.
1984-01-01
The effects of weightlessness on three aspects of mammalian reproduction: oocyte development, fertilization, and early embryogenesis was studied. Zero-gravity conditions within the laboratory by construction of a clinostat designed to support in vitro tissue culture were simulated and the effects of simulated weightlessness on meiotic maturation in mammalian oocytes using mouse as the model system were studied. The timing and frequency of germinal vesicule breakdown and polar body extrusion, and the structural and numerical properties of meiotic chromosomes at Metaphase and Metaphase of meiosis are assessed.
Pine seed germination under weightlessness (a study of the Kosmos 782 satellite)
NASA Technical Reports Server (NTRS)
Platonova, R. N.; Parfenov, G. P.; Olkhovenko, V. P.; Karpova, N. I.; Pichugov, M. Y.
1977-01-01
Orientation of the above and underground organs of pine plants, grown from seeds under weightlessness, was found to be determined by seed position on the substrate. Normal plant growth was observed only if the seed embryos were oriented toward the substrate. Some differences were noted between the experimental and control plants concerning the amount of nucleoli in the root meristematic cells and the cell shape in cotyledonous leaves. No complete similarity was found in experimental results obtained with plants under weightlessness and under compensated gravity. The seeds were obtained from Pinus silvestris, considered to be particularly suitable for this experiment.
Man and machine design for space flight
NASA Technical Reports Server (NTRS)
Louviere, A. J.
1979-01-01
The factors involved in creating effective designs for living and working in a weightless environment are discussed. Among the areas covered are special provisions for eating and drinking, a special shower nozzle to remove soap, electric shavers designed for vacuum containment of the clippings, and the need for restraint systems at the crew's workstations. Attention is given to the fact that the crewmen assume a neutral body posture in weightlessness which is an important consideration in designing displays, controls, and windows. It is concluded that the incorporation of the change in body posture and the requirement for restraint into future designs will greatly facilitate the crewman's task in the weightless environment.
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1985-01-01
Theoretical responses to weightlessness are summarized. The studies include development and validation of a model of erythropoiesis regulation, analysis of the behavior of erythropoiesis under a variety of conditions, simulations of bed rest and space flight, and an evaluation of ground-based animal studies which were conducted as analogs of zero-g. A review of all relevant space flight findings and a set of testable hypotheses which attempt to explain how red cell mass decreases in space flight are presented. An additional document describes details of the mathematical model used in these studies.
Perception of time under conditions of brief weightlessness
NASA Technical Reports Server (NTRS)
Lebedev, V. I.; Chekidra, I. F.; Kolosov, I. A.
1975-01-01
Results of experiments under conditions of brief weightlessness confirmed the theoretical concepts of the dependence of time perception on the emotional state of a man. The time test, together with other methods, can be used to precisely define the emotional state of subjects in stress situations.
Clément, Gilles R.; Bukley, Angelia P.; Paloski, William H.
2015-01-01
In spite of the experience gained in human space flight since Yuri Gagarin’s historical flight in 1961, there has yet to be identified a completely effective countermeasure for mitigating the effects of weightlessness on humans. Were astronauts to embark upon a journey to Mars today, the 6-month exposure to weightlessness en route would leave them considerably debilitated, even with the implementation of the suite of piece-meal countermeasures currently employed. Continuous or intermittent exposure to simulated gravitational states on board the spacecraft while traveling to and from Mars, also known as artificial gravity, has the potential for enhancing adaptation to Mars gravity and re-adaptation to Earth gravity. Many physiological functions are adversely affected by the weightless environment of spaceflight because they are calibrated for normal, Earth’s gravity. Hence, the concept of artificial gravity is to provide a broad-spectrum replacement for the gravitational forces that naturally occur on the Earth’s surface, thereby avoiding the physiological deconditioning that takes place in weightlessness. Because researchers have long been concerned by the adverse sensorimotor effects that occur in weightlessness as well as in rotating environments, additional study of the complex interactions among sensorimotor and other physiological systems in rotating environments must be undertaken both on Earth and in space before artificial gravity can be implemented. PMID:26136665
NASA Technical Reports Server (NTRS)
Simanonok, K. E.; Srinivasan, R. S.; Charles, J. B.
1993-01-01
Central volume expansion due to fluid shifts in weightlessness is believed to activate adaptive reflexes which ultimately result in a reduction of the total circulating blood volume. However, the flight data suggests that a central volume overdistention does not persist, in which case some other factor or factors must be responsible for body fluid losses. We used a computer simulation to test the hypothesis that factors other than central volume overdistention are involved in the loss of blood volume and other body fluid volumes observed in weightlessness and in weightless simulations. Additionally, the simulation was used to identify these factors. The results predict that atrial volumes and pressures return to their prebedrest baseline values within the first day of exposure to head down tilt (HDT) as the blood volume is reduced by an elevated urine formation. They indicate that the mechanisms for large and prolonged body fluid losses in weightlessness is red cell hemoconcentration that elevates blood viscosity and peripheral resistance, thereby lowering capillary pressure. This causes a prolonged alteration of the balance of Starling forces, depressing the extracellular fluid volume until the hematocrit is returned to normal through a reduction of the red cell mass, which also allows some restoration of the plasma volume. We conclude that the red cell mass becomes the physiologic driver for a large 'undershoot' of the body fluid volumes after the normalization of atrial volumes and pressures.
Low-G simulation in mammalian research
NASA Technical Reports Server (NTRS)
Sandler, H.
1982-01-01
After a review of space-flight research concerning the effects of weightlessness on mammals, the paper reviews various methods of low-G simulation. Consideration is given to water immersion; bed rest, chair rest, and confinement; immobilization; and partial body-support systems. Countermeasures to offset the effects of weightlessness are also discussed.
Teaching Science. A Weighty Gravity Lesson.
ERIC Educational Resources Information Center
Leyden, Michael B.
1996-01-01
Describes an activity that uses a candle, a scale, and an elevator to demonstrate the concept of weightlessness in space, showing that astronauts are not truly weightless. Activity includes an exploration phase, a concept introduction phase, and a concept application phase. Provides guidelines and safety measures for conducting the activity. (JW)
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
Weightlessness and how it can be artificially produced is described in this pamphlet written for junior high school students. The pamphlet is one of the NASA Facts Science Series (each of which consists of four pages) and is designed to fit in the standard size three-ring notebook. Review questions, suggested activities, and references are…
Results from recent spaceflight experiments (1).
Hoffmann, Uwe
2009-10-01
Since the flight of Sputnik 2 in 1957 the effects of weightlessness on the cardiovascular regulation are subject of physiological research. This introduction gives a short summary of the further development of cardiovascular research related to weightlessness which was subject of the contributions to the first part of this workshop.
NASA Technical Reports Server (NTRS)
Kakurin, L. I.; Gregoryev, A. I.; Mikhailov, V. M.; Tishler, V. A.
1980-01-01
A comparative assessment of the effectiveness of different prophylactic procedures to prevent the adverse effects of weightlessness is presented. It is concluded that: physical training is most effective but no single method by itself produces the full effect, and an adjustment of regimes to one another enhances the effect. The approved complex of prophylactic procedures affected basic changes occurring in hypokinesia: deficit of muscular activity, no or reduced BP hydrostatic component, reduced volume of blood circulation, reduced hydration level, and the application of various prophylactic complexes during 49 day antiorthostatic hypodynamia eliminated or reduced the adverse effects of weightlessness in simulation.
NASA Astrophysics Data System (ADS)
Sytnik, K. M.; Kordyum, E. L.; Belyavskaya, N. A.; Nedukha, E. M.; Tarasenko, V. A.
Research in cellular reproduction, differentiation and vital activity, i.e. processes underlying the development and functioning of organisms, plants included, is essential for solving fundamental and applied problems of space biology. Detailed anatomical analysis of roots of higher plants grown on board the Salyut 6 orbital research station show that under conditions of weightlessness for defined duration mitosis, cytokinesis and tissue differentiation in plant vegetative organs occur essentially normally. At the same time, certain rearrangements in the structural organization of cellular organelles - mainly the plastid apparatus, mitochondria, Golgi apparatus and nucleus - are established in the root meristem and cap of the experimental plants. This is evidence for considerable changes in cellular metabolism. The structural changes in the subcellular level arising under spaceflight conditions are partially absent in clinostat experiments designed to simulate weightlessness. Various clinostatic conditions have different influences on the cell structural and functional organization than does space flight. It is suggested that alterations of cellular metabolism under weightlessness and clinostatic conditions occur within existing genetic programs.
GEMINI-TITAN (GT)-3 - WEIGHTLESSNESS EXPERIMENT - AMES RESEARCH CENTER (ARC), CA
1965-03-01
S65-18762 (March 1965) --- Effects of the weightless environment on cell division, the basic growth process for living tissue, will be studied during the Gemini-Titan 3 flight scheduled for March 23, 1965. A spiny black sea urchin (upper left) is stimulated by mild electric shock or potassium chloride. As a result it sheds many thousands of eggs. When fertilized, these eggs become actively dividing cells very similar in basic processes to cells of other animals, including humans. These pictures show stages of cell division. At upper right is a single cell; at lower right cell divisions have produced many cells. Cell photos are magnified about 700 times, and all cells shown are too small to be seen by the naked eye. (Photos at upper right and lower left are of sea urchin eggs. Group of cells at lower right are from a sand dollar, which like the sea urchin, is an Echinoderm. Its eggs are virtually identical and are used interchangeably with those of the sea urchin in NASA Ames Center weightlessness experiments.) The Gemini experiment will involve cell division like that shown here. This will take place during several hours of weightlessness aboard the Gemini spacecraft. The experiment will be flown back to laboratories at Cape Kennedy after spacecraft recovery. It has been designed so that any abnormal cell division found by postflight analysis should suggest that the weightless environment has effects on individual cells. This might mean hazards for prolonged periods of manned spaceflight.
NASA Astrophysics Data System (ADS)
Zhang, S.; Wang, B.; Cao, X. S.; Yang, Z.
Objective The mRNA expression of alpha 1 chain of type I collagen COL-I alpha 1 in rat osteosarcoma ROS17 2 8 cells induced by bone morphogenetic protein-2 BMP-2 was reduced under simulated microgravity The protein kinase MEK1 of MAPK signal pathway plays an important role in the expression of COL-I alpha 1 mRNA The purpose of this study is to investigate the effects of simulated weightlessness on the activity of MEK1 induced by BMP-2 in ROS17 2 8 cells Methods ROS17 2 8 cells were cultured in 1G control and rotating clinostat simulated weightlessness for 24 h 48 h and 72 h BMP-2 500 ng ml was added into the medium 1 h before the culture ended There was a control group in which ROS17 2 8 cells were cultured in 1G condition without BMP-2 Then the total protein of cells was extracted and the expression of phosphated-ERK1 2 p-ERK1 2 protein was detected by means of Western Blotting to show the kinase activity of MEK1 Results There were no significant differences in the expression of total ERK1 2 among all groups The expression of p-ERK1 2 was unconspicuous in the control group without BMP-2 but increased significantly when BMP-2 was added P 0 01 The level of p-ERK1 2 in simulated weightlessness group was much more lower than that in 1G group in every time point P 0 01 The expression of p-ERK1 2 gradually decreased along with the time of weightlessness simulation P 0 01 Conclusions The kinase activity of MEK1 induced by BMP-2 in rat osteosarcoma cells was reduced under simulated weightlessness
Calbindins decreased after space flight
NASA Technical Reports Server (NTRS)
Sergeev, I. N.; Rhoten, W. B.; Carney, M. D.
1996-01-01
Exposure of the body to microgravity during space flight causes a series of well-documented changes in Ca2+ metabolism, yet the cellular and molecular mechanisms leading to these changes are poorly understood. Calbindins, vitamin D-dependent Ca2+ binding proteins, are believed to have a significant role in maintaining cellular Ca2+ homeostasis. In this study, we used biochemical and immunocytochemical approaches to analyze the expression of calbindin-D28k and calbindin-D9k in kidneys, small intestine, and pancreas of rats flown for 9 d aboard the space shuttle. The effects of microgravity on calbindins in rats from space were compared with synchronous Animal Enclosure Module controls, modeled weightlessness animals (tail suspension), and their controls. Exposure to microgravity resulted in a significant and sustained decrease in calbindin-D28k content in the kidney and calbindin-D9k in the small intestine of flight animals, as measured by enzyme-linked immunosorbent assay (ELISA). Modeled weightlessness animals exhibited a similar decrease in calbindins by ELISA. Immunocytochemistry (ICC) in combination with quantitative computer image analysis was used to measure in situ the expression of calbindins in the kidney and the small intestine, and the expression of insulin in pancreas. There was a large decrease of immunoreactivity in renal distal tubular cell-associated calbindin-D28k and in intestinal absorptive cell-associated calbindin-D9k of space flight and modeled weightlessness animals compared with matched controls. No consistent difference in pancreatic insulin immunoreactivity between space flight, modeled weightlessness, and controls was observed. Regression analysis of results obtained by quantitative ICC and ELISA for space flight, modeled weightlessness animals, and their controls demonstrated a significant correlation. These findings after a short-term exposure to microgravity or modeled weightlessness suggest that a decreased expression of calbindins may contribute to the disorders of Ca2+ metabolism induced by space flight.
[Metabolic processes in rat skeletal muscle after a flight on the Kosmos-936 biosatellite].
Nosova, E A; Veresotskaia, N A; Kolchina, E V; Kurkina, L M; Belitskaia, R A
1981-01-01
The study of skeletal muscles of rats flown on Cosmos-936 demonstrated different metabolic reactions in muscle fibers of different function and type to weightlessness and Earth gravity. The data obtained gave evidence that artificial gravity may considerably prevent metabolic changes in muscles developing in response to specific effects of weightlessness.
NASA Technical Reports Server (NTRS)
Sandler, H.; Winter, D. L.
1978-01-01
Subjects were exposed to centrifugation, to lower body negative pressure (LBNP), and to exericse stress both before and after bed rest. Areas studied were centrifugation tolerance, fluid electrolyte changes and hematology, tolerance to LBNP, physical working capacity, biochemistries, blood fibrinolytic activity, female metabolic and hormonal responses, circadian alterations, and gynecology. Results were compared with the responses observed in similarly bed-rested male subjects. The bed-rested females showed deconditioning responses similar to those of the males, although with some differences. Results indicate that women are capable of coping with exposure to weightlessness and, moreover, that they may be more sensitive subjects for evaluating countermeasures to weightlessness and developing criteria for assessing applicants for shuttle voyages.
Biomedical and Human Factors Requirements for a Manned Earth-Orbiting Station
NASA Technical Reports Server (NTRS)
Reynolds, J. B.
1963-01-01
The study reported here has presented a measurement data pool for the determination of biomedical and behavioral effects of long-term exposure to weightlessness. This includes measures, techniques, equipment, and requirements in terms of weight, power, volume, time, crew activities, subsystem interfaces and experimental programs and designs, and confidence ratings for their effectiveness for determining weightlessness effects.
Physiological responses to environmental factors related to space flight
NASA Technical Reports Server (NTRS)
Pace, N.; Grunbaum, B. W.; Kodama, A. M.; Mains, R. C.; Rahlmann, D. F.
1975-01-01
Physiological procedures and instrumentation developed for the measurement of hemodynamic and metabolic parameters during prolonged periods of weightlessness are described along with the physiological response of monkeys to weightlessness. Specific areas examined include: cardiovascular studies; thyroid function; blood oxygen transport; growth and reproduction; excreta analysis for metabolic balance studies; and electrophoretic separation of creatine phosphokinase isoenzymes in human blood.
The Beginnings of Airborne Weightlessness Research.
1985-01-01
experiments in aircraft with humans and test animals (water turtles) which were published at the 4th International Astronautical Congress in Zurich...EXPERIMENTS ON WEIGHTLESSNESS WHICH I CONDUCTED IN THE UNITED STATES .......... 15 HUMAN REACTIONS DURING FLIGHT TO ACCELERATION PRECEDED BY OR FOLLOWED BY...The astronautical pioneers Tsiolkovsky, Goddard, and Oberth first considered the possible effects of spaceflight *i on humans early in the twentieth
Gravitational Effects on Brain and Behavior
NASA Technical Reports Server (NTRS)
Young, Laurence R.
1991-01-01
Visual, vestibular, tactile, proprioceptive, and perhaps auditory clues are combined with knowledge of commanded voluntary movement to produce a single, usually consistent, perception of spatial orientation. The recent Spacelab flights have provided especially valuable observations on the effects of weightlessness and space flight. The response of the otolith organs to weightlessness and readapting to Earth's gravitation is described. Reference frames for orientation are briefly discussed.
[The righting reaction in the free fall of rats after a flight on the Kosmos-936 biosatellite].
Aĭzikov, G S; Markin, A S; Shipov, A A
1992-01-01
The free fall turning over reaction has been studied in the weightless and centrifuged rats flown on board Cosmos 936. There occur particular changes of the reaction in the weightless rats after landing and its complete absence in eyes-closed centrifuged rats. The possible mechanisms responsible for the observed alterations are discussed.
GEMINI-TITAN (GT)-III - WEIGHTLESSNESS EXPERIMENT - AMES RESEARCH CENTER (ARC), CA
1965-03-19
S65-18766 (March 1965) --- Diagram of experiment planned for the Gemini-Titan 3 mission scheduled on March 23, 1965, to find out if there are effects of weightlessness on individual living cells. The round canister (top) shows the experiment package. It will contain eight identical chambers, each with sections of sperm, eggs and fixative. Cells are eggs of the spiny, black sea animal, the sea urchin. Bottom panel shows the three stages of each chamber. From left in the first stage, sperm, eggs and fixative are separated. By turning the handle, astronauts will fertilize a certain portion of the eggs, which will begin to divide. At 20 minutes after launch, further turns of the handle will force fixative into two chambers and stop cell division. At 70 minutes after launch, cell division in four more chambers will be stopped, and just prior to re-entry, growth of the remaining two chambers will be terminated by a turn of the handle. This system will allow study after the flight of how cells divided after various time periods in weightlessness. Abnormalities would suggest weightlessness effects on living tissue and possible hazard to prolonged manned spaceflight.
Role of muscle spindle in weightlessness-induced amyotrophia and muscle pain.
Ali, Umar; Fan, Xiao-Li; You, Hao-Jun
2009-10-01
To date, the medium and long-term space flight is urgent in need and has become a major task of our manned space flight program. There is no doubt that medium and long-term space flight has serious damaging impact upon human physiological systems. For instance, atrophy of the lower limb anti-gravity muscle can be induced during the space flight. Muscle atrophy significantly affects the flight of astronauts in space. Most importantly, it influences the precise manipulation of the astronauts and their response capacity to emergencies on returning to the atmosphere from space. Muscle atrophy caused by weightlessness may also seriously disrupt the normal life and work of the astronauts during the re-adaptation period. Here we summarize the corresponding research concentrating on weightlessness-induced changes of muscular structure and function. By combining research on muscle pain, which is a common clinical pain disease, we further provide a hypothesis concerning a dynamic feedback model of "weightlessness condition right triple arrow muscular atrophy <--> muscle pain". This may be useful to explore the neural mechanisms underlying the occurrence and development of muscular atrophy and muscle pain, through the key study of muscle spindle, and furthermore provide more effective therapy for clinical treatment.
Potential benefits of maximal exercise just prior to return from weightlessness
NASA Technical Reports Server (NTRS)
Convertino, Victor A.
1987-01-01
The purpose of this study was to determine whether performance of a single maximal bout of exercise during weightlessness within hours of return to earth would enhance recovery of aerobic fitness and physical work capacities under a 1G environment. Ten healthy men were subjected to a 10-d bedrest period in the 6-deg headdown position. A graded maximal supine cycle ergometer test was performed before and at the end of bedrest to simulate exercise during weightlessness. Following 3 h of resumption of the upright posture, a second maximal exercise test was performed on a treadmill to measure work capacity under conditions of 1G. Compared to before bedrest, peak oxygen consumption, V(O2), decreased by 8.7 percent and peak heart rate (HR) increased by 5.6 percent in the supine cycle test at the end of bedrest. However, there were no significant changes in peak V(O2) and peak HR in the upright treadmill test following bedrest. These data suggest that one bout of maximal leg exercise prior to return from 10 d of weightlessness may be adequate to restore preflight aerobic fitness and physical work capacity.
Responses of Cardiac Tissue to Simulated Weightlessness
NASA Technical Reports Server (NTRS)
Tahimic, Candice; Steczina, Sonette; Terada, Masahiro; Shirazi-Fard, Yasaman; Schreurs, Ann-Sofie; Goukassian, David; Globus, Ruth
2017-01-01
Our current study aims to determine the molecular mechanisms that underlie these cardiac changes in response to spaceflight. The central hypothesis of our study is that long duration simulated weightlessness and subsequent recovery causes select and persistent changes in gene expression and oxidative defense-related pathways. In this study, we will first conduct general analyses of three-month old male and female animals, focusing on two key long-duration time points, (i.e. after 90 days of simulated weightlessness (HU) and after 90 days recovery from 90 days of HU. Both rat-specific gene arrays and qPCR will be performed focusing on genes already implicated in oxidative stress responses and cardiac disease. Gene expression analyses will be complemented by biochemical tests of frozen tissue lysates for select markers of oxidative damage.
Mathematical modeling of fluid-electrolyte alterations during weightlessness
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1984-01-01
Fluid electrolyte metabolism and renal endocrine control as it pertains to adaptation to weightlessness were studied. The mathematical models that have been particularly useful are discussed. However, the focus of the report is on the physiological meaning of the computer studies. A discussion of the major ground based analogs of weightlessness are included; for example, head down tilt, water immersion, and bed rest, and a comparison of findings. Several important zero g phenomena are described, including acute fluid volume regulation, blood volume regulation, circulatory changes, longer term fluid electrolyte adaptations, hormonal regulation, and body composition changes. Hypotheses are offered to explain the major findings in each area and these are integrated into a larger hypothesis of space flight adaptation. A conceptual foundation for fluid electrolyte metabolism, blood volume regulation, and cardiovascular regulation is reported.
Perception of linear acceleration in weightlessness
NASA Technical Reports Server (NTRS)
Arrott, Anthony P.; Young, Laurence R.; Merfeld, Daniel M.
1991-01-01
Tests of the perception and use of linear acceleration sensory information were performed on the science crews of the Spacelab 1 (SL-1) and D-1 missions using linear 'sleds' in-flight (D-1) and pre-post flight. The time delay between the acceleration step stimulus and the subjective response was consistently reduced during weightlessness, but was neither statistically significant nor of functional importance. Increased variability of responses when going from one environment to the other was apparent from measurements on the first day of the mission and in the first days post-flight. Subjective reports of perceived motion during sinusoidal oscillation in weightlessness were qualitatively similar to reports on earth. In a closed-loop motion nulling task, enhanced performance was observed post-flight in all crewmembers tested in the Y or Z axes.
Perception of linear acceleration in weightlessness
NASA Technical Reports Server (NTRS)
Arrott, A. P.; Young, L. R.; Merfeld, D. M.
1990-01-01
Tests of the perception and use of linear acceleration sensory information were performed on the science crews of the Spacelab 1 (SL-1) and D-1 missions using linear "sleds" in-flight (D-1) and pre-post flight. The time delay between the acceleration step stimulus and the subjective response was consistently reduced during weightlessness, but was neither statistically significant nor of functional importance. Increased variability of responses when going from one environment to the other was apparent from measurements on the first day of the mission and in the first days post-flight. Subjective reports of perceived motion during sinusoidal oscillation in weightlessness were qualitatively similar to reports on earth. In a closed-loop motion nulling task, enhanced performance was observed post-flight in all crewmembers tested in the Y or Z axes.
Skeletal response to short-term weightlessness
NASA Technical Reports Server (NTRS)
Wronski, T. J.; Morey-Holton, E. R.
1986-01-01
Male Sprague Dawley rats were placed in orbit for 7 days aboard the space shuttle. Bone histomorphometry was performed in the long bones and lumbar vertebrae of flight rats and compared to data derived from ground based control rats. Trabecular bone mass was not altered during the first week of weightlessness. Strong trends were observed in flight rats for decreased periosteal bone formation in the tibial diaphysis, reduced osteoblast size in the proximal tibia, and decreased osteoblast surface and number in the lumbar vertebra. Histologic indices of bone resorption was relatively normal in flight rats. The results indicate that 7 day of weightlessness are not of sufficient duration to induce histologicaly detectable loss of trabecular bone in rats. However, cortical and trabecular bone formation appear to be diminished during the first week of space flight.
NASA Technical Reports Server (NTRS)
Clark, D. L.
1972-01-01
The chronic 2g centrifuge was constructed for testing weightlessness effects on development of vestibular apparatus and ocular nystagmus in the rat. Both the stationary and rotating rail tests were performed. A physiological review is presented on vestibular apparatus, along with a system analysis. Time constants and input threshold level of the system are also considered.
Weightless Environment Training Facility (WETF) materials coating evaluation, volume 2
NASA Technical Reports Server (NTRS)
1995-01-01
This volume consists of Appendices A and B to the report on the Weightless Environment Training Facility Materials Coating Evaluation project. The project selected 10 coating systems to be evaluated in six separate exposure environments, and subject to three tests for physical properties. Appendix A holds the coating system, surface preparation, and application data. Appendix B holds the coating material infrared spectra.
NASA Technical Reports Server (NTRS)
1997-01-01
Session MP4 includes short reports on: (1) Face Recognition in Microgravity: Is Gravity Direction Involved in the Inversion Effect?; (2) Motor Timing under Microgravity; (3) Perceived Self-Motion Assessed by Computer-Generated Animations: Complexity and Reliability; (4) Prolonged Weightlessness Reference Frames and Visual Symmetry Detection; (5) Mental Representation of Gravity During a Locomotor Task; and (6) Haptic Perception in Weightlessness: A Sense of Force or a Sense of Effort?
Distributed automatic control of technological processes in conditions of weightlessness
NASA Technical Reports Server (NTRS)
Kukhtenko, A. I.; Merkulov, V. I.; Samoylenko, Y. I.; Ladikov-Royev, Y. P.
1986-01-01
Some problems associated with the automatic control of liquid metal and plasma systems under conditions of weightlessness are examined, with particular reference to the problem of stability of liquid equilibrium configurations. The theoretical fundamentals of automatic control of processes in electrically conducting continuous media are outlined, and means of using electromagnetic fields for simulating technological processes in a space environment are discussed.
NASA Astrophysics Data System (ADS)
Yang, Z.; Zhang, S.; Wang, B.; Sun, X. Q.
Objective The role of mechanical load in the functional regulation of osteoblasts becomes an emphasis in osseous biomechanical researches recently This study was aim to explore the effect of flow shear stress on the expression of Cbf alpha 1 in human osteosarcoma cells and to survey its functional alteration in simulated weightlessness Method After cultured for 72 h in two different gravitational environments i e 1G terrestrial gravitational condition and simulated weightlessness condition human osteosarcoma cells MG-63 were treated with 0 5 Pa or 1 5 Pa fluid shear stress FSS in a flow chamber for 15 30 60 min respectively The total RNA in cells was isolated Transcription PCR analysis was made to examine the gene expression of Cbf alpha 1 And the total protein of cells was extracted and the expression of Cbf alpha 1 protein was detected by means of Western Blotting Results MG-63 cultured in 1G condition reacted to FSS treatment with an enhanced expression of Cbf alpha 1 Compared with no FSS control group Cbf alpha 1 mRNA and protein expression increased significantly at 30 and 60 min with the treatment of FSS P 0 01 And there was remarkable difference on the Cbf alpha 1 mRNA and protein expression between the treatments of 0 5 Pa and 1 5 Pa FSS at 30 min or 60 min P 0 01 As to the osteoblasts cultured in simulated weightlessness by using clinostat the expression of Cbf alpha 1 was significantly different between 1G and simulated weightlessness conditions at each test time P 0 05 Compared with no FSS
Changes in intervertebral disc cross-sectional area with bed rest and space flight
NASA Technical Reports Server (NTRS)
LeBlanc, A. D.; Evans, H. J.; Schneider, V. S.; Wendt, R. E. 3rd; Hedrick, T. D.
1994-01-01
STUDY DESIGN. We measured the cross-sectional area of the intervertebral discs of normal volunteers after an overnight rest; before, during, and after 5 or 17 weeks of bed rest; and before and after 8 days of weightlessness. OBJECTIVES. This study sought to determine the degree of expansion of the lumbar discs resulting from bed rest and space flight. SUMMARY OF BACKGROUND DATA. Weightlessness and bed rest, an analog for weightlessness, reduce the mechanical loading on the musculoskeletal system. When unloaded, intervertebral discs will expand, increasing the nutritional diffusion distance and altering the mechanical properties of the spine. METHODS. Magnetic resonance imaging was used to measure the cross-sectional area and transverse relaxation time (T2) of the intervertebral discs. RESULTS. Overnight or longer bed rest causes expansion of the disc area, which reaches an equilibrium value of about 22% (range 10-40%) above baseline within 4 days. Increases in disc area were associated with modest increases in disc T2. During bed rest, disc height increased approximately 1 mm, about one-half of previous estimates based on body height measurements. After 5 weeks of bed rest, disc area returned to baseline within a few days of ambulation, whereas after 17 weeks, disc area remained above baseline 6 weeks after reambulation. After 8 days of weightlessness, T2, disc area, and lumbar length were not significantly different from baseline values 24 hours after landing. CONCLUSIONS. Significant adaptive changes in the intervertebral discs can be expected during weightlessness. These changes, which are rapidly reversible after short-duration flights, may be an important factor during and after long-duration missions.
Some results from studies on the effects of weightlessness on the growth of epiphytic orchids
NASA Technical Reports Server (NTRS)
Cherevchenko, T. M.; Mayko, T. K.
1983-01-01
Epidendrum orchids were placed in a Malakhit-2 micro-greenhouse aboard the Soyuz-36-Salyut-6 space station to test their growth under weightless conditions. Growth occurred but was less than in control plants left on Earth; cells were smaller and parenchymal development slowed in all tissues. Stems, roots, and leaves were smaller. The number of stomas on the leaves was about the same as in the controls, but, because of the smaller leaf size, there were more per unit area. A modeling experiment using a clinostat revealed a large decrease in gibberellin activity and auxin activity. It was assumed that weightlessness primarily affects gibberellin biosynthesis, inhibiting cell growth. Reestablishment of growth compound activity upon return of the plants to Earth was indicated by the fact that the orchids resumed growth thereafter.
Bone density in limb-immobilized beagles: An animal model for bone loss in weightlessness
NASA Technical Reports Server (NTRS)
Wolinsky, Ira
1987-01-01
Prolonged weightlessness is man in space flight results in a slow progressive demineralization of bone accompanied by an increased calcium output in the urine resulting in negative calcium balances. This possibly irreversible bone loss may constitute a serious limiting factor to long duration manned space flight. In order to seek and test preventative measures an appropriate ground based animal model simulating weightlessness is necessary. Use of the mature Beagle in limb immobilization has been documented as an excellent model for orthopedic research since this animal most closely simulates the phenomenom of bone loss with regards to growth, remodeling, structure, chemistry and mineralization. The purpose of this project is to develop a research protocol for the study of bone loss in Beagles during and after cast immobilization of a hindleg; research will then be initiated.
Work/control stations in Space Station weightlessness
NASA Technical Reports Server (NTRS)
Willits, Charles
1990-01-01
An ergonomic integration of controls, displays, and associated interfaces with an operator, whose body geometry and dynamics may be altered by the state of weightlessness, is noted to rank in importance with the optimal positioning of controls relative to the layout and architecture of 'body-ported' work/control stations applicable to the NASA Space Station Freedom. A long-term solution to this complex design problem is envisioned to encompass the following features: multiple imaging, virtual optics, screen displays controlled by a keyboard ergonomically designed for weightlessness, cursor control, a CCTV camera, and a hand-controller featuring 'no-grip' vernier/tactile positioning. This controller frees all fingers for multiple-switch actuations, while retaining index/register determination with the hand controller. A single architectural point attachment/restraint may be used which requires no residual muscle tension in either brief or prolonged operation.
NASA Technical Reports Server (NTRS)
Young, Laurence R.; Oman, C. M.; Watt, D. G. D.; Money, K. E.; Lichtenberg, B. K.; Kenyon, R. V.; Arrott, A. P.
1991-01-01
Experiments on human spatial orientation were conducted on four crewmembers of Space Shuttle Spacelab Mission 1. The conceptual background of the project, the relationship among the experiments, and their relevance to a 'sensory reinterpretation hypothesis' are presented. Detailed experiment procedures and results are presented in the accompanying papers in this series. The overall findings are discussed as they pertain to the following aspects of hypothesized sensory reinterpretation in weightlessness: (1) utricular otolith afferent signals are reinterpreted as indicating head translation rather than tilt, (2) sensitivity of reflex responses to footward acceleration is reduced, and (3) increased weighting is given to visual and tactile cues in orientation perception and posture control. Results suggest increased weighting of visual cues and reduced weighting of graviceptor signals in weightlessness.
Physiological changes in fast and slow muscle with simulated weightlessness
NASA Technical Reports Server (NTRS)
Dettbarn, W. D.; Misulis, K. E.
1984-01-01
A rat hindlimb suspension model of simulated weightlessness was used to examine the physiological characteristics of skeletal muscle. The physiological sequelae of hindlimb suspension were compared to those of spinal cord section, denervation by sciatic nerve crush, and control. Muscle examined were the predominantly slow (Type 1) soleus (SOL) and the predominantly fast (Type 2) extensor digitorum longus (EDL). Two procedures which alter motor unit activity, hindlimb suspension and spinal cord section, produce changes in characteristics of skeletal muscles that are dependent upon fiber type. The SOL develops characteristics more representative of a fast muscle, including smaller Type 1 fiber proportion and higher AChE activity. The EDL, which is already predominantly fast, loses most of its few Type 1 fibers, thus also becoming faster. These data are in agreement with the studies in which rats experienced actual weightlessness.
Influence of single hindlimb support during simulated weightlessness in the rat
NASA Technical Reports Server (NTRS)
Stump, Craig S.; Overton, J. Michael; Tipton, Charles M.
1990-01-01
A study was carried out to develop and evaluate a hindlimb suspension model, making it possible to differentiate the effects of non-weight bearing by hindlimbs per se from the systemic influence of simulated weightlessness. A support platform was designed which allowed the animal to maintain one hindlimb in a posture similar to the hindlimbs of the control animals at rest and to maintain one hindlimb in a posture similar to the hindlimbs of the control animals, providing a support for the animal to contract or stretch hindlimb muscles against at any time during suspension. The results of this study indicated that hindlimb support during head-down suspension will maintain muscle-mass/body-mass ratios, glycogen concentration, and blood flow. However, it will not prevent the loss in citrate synthase activity associated with conditions of simulated weightlessness.
[Effects of space-flight factors on cytochemical characteristics of the motor analyzer neurons].
Gorbunova, A V
2010-01-01
The work was designed to study metabolism of motoneurons in anterior horns of the spinal cord and sensorimotor cortex of Wistar rats after flights on Earth's satellites for 22.5 days (Kosmos-605), 19.5 days (Kosmos-782), and 18.5 days (Kosmos-936). Control rats underwent simulated space-flight factors under laboratory conditions excepting weightlessness. Rats placed in Kosmos-936 were subjected to artificial gravity (AG). They showed complete recovery of motoneuronal metabolism 25 days after landing unlike animals that had experienced weightlessness in which enhanced functional activity of the genetic apparatus was manifest as increased RNA level, protein content, and nuclei size. These finding may reflect differences of neuronal metabolism in animals experiencing weightlessness and AG. We believe they may be due to reduced static load on the locomotor system during the space flight.
Senator Jake Garn on the KC-135
NASA Technical Reports Server (NTRS)
1985-01-01
Senator Jake Garn appears to be springing from a trampoline in this scene, taken during a brief period of weightlessness provided by a parabola flown by the KC-135. Jeff Bingham, an aide to the senator, floats freely nearby (25616); Sen. Garn and Jeff Bingham prepare to ease from a partially anchored position to a totally free flying mode during a brief weightless session (25617); Sen. Garn gets an initial 'feel' of weightlessness as his feet float freely while he anchors himself with his hands. Seated nearby is his aide Bingham (25618); Sen. Garn (background) shares some of the ceiling space of the KC-135 with Bingham (25619); Sen. Garn (foreground) takes a seat behind the KC-135's crew in the forward cabin. Roger Zweig and Joseph S. Algranti, pilot and co-pilot, are partially visible in the background (25620).
Iarullin, Kh Kh; Vasil'eva, T D; Turchaninova, V F; Sokolova, I V; Vikharev, N D
1984-01-01
This paper discusses regional hemodynamics and vascular regulation during and after space flights of over 3 months in duration. Mechanisms of cardiovascular adaptation to weightlessness are described. The postflight differences in the recovery of regional hemodynamics seem to depend on the individual characteristics, age-related changes of the cardiovascular system, as well as the countermeasures and rehabilitation measures performed during and after flight.
Spatial orientation in weightlessness and readaptation to earth's gravity
NASA Technical Reports Server (NTRS)
Young, L. R.; Oman, C. M.; Lichtenberg, B. K.; Watt, D. G. D.; Money, K. E.
1984-01-01
Unusual vestibular responses to head movements in weightlessness may produce spatial orientation illusions and symptoms of space motion sickness. An integrated set of experiments was performed during Spacelab 1, as well as before and after the flight, to evaluate responses mediated by the otolith organs and semicircular canals. A variety of measurements were used, including eye movements, postural control, perception of orientation, and susceptibility to space sickness.
Automated potentiometric electrolyte analysis system. [for use in weightlessness
NASA Technical Reports Server (NTRS)
1973-01-01
The feasibility is demonstrated of utilizing chemical sensing electrode technology as the basis for an automatically-controlled system for blood gas and electrolyte analyses under weightlessness conditions. The specific measurements required were pH, pCO2, sodium, chloride, potassium ions, and ionized calcium. The general electrode theory, and ion activity measurements are described along with the fluid transport package, electronics unit, and controller for the automated potentiometric analysis system.
NASA Technical Reports Server (NTRS)
1976-01-01
The Coastal Center and the NASA Biomedical Team are working together to adapt a suspension device that simulates weightlessness. Attempts to approximate weightlessness have led astronauts underwater and into harnesses that suspend all or part of their weight. One such device, built at Langley Research Center, is being transferred to rehabilitation work. It can help a person walk and re-learn muscular coordination following a stroke. Hospitals could use it to lift handicapped persons.
The first dedicated life sciences mission - Spacelab 4
NASA Astrophysics Data System (ADS)
Cramer, D. R.; Reid, D. H.; Klein, H. P.
Spacelab is a large versatile laboratory carried in the bay of the Shuttle Orbiter. The first Spacelab mission dedicated entirely to Life Sciences is known as Spacelab 4. It is scheduled for launch in late 1985 and will remain aloft for seven days. This payload consists of 25 tentatively selected investigations combined into a comprehensive integrated exploration of the effects of acute weightlessness on living systems. An emphasis is placed on studying physiological changes that have been previously observed in manned space flight. This payload has complementary designs in the human and animal investigations in order to validate animal models of human physiology in weightlessness. The experimental subjects include humans, squirrel monkeys, laboratory rats, several species of plants, and frog eggs. The primary scientific objectives include study of the acute cephalic fluid shift, cardiovascular adaptation to weightlessness, including postflight reductions in orthostatic tolerance and exercise capacity, and changes in vestibular function, including space motion sickness, associated with weightlessness. Secondary scientific objectives include the study of red cell mass reduction, negative nitrogen balance, altered calcium metabolism, suppressed in vitro lymphocyte reactivity, gravitropism and photropism in plants, and fertilization and early development in frog eggs. The rationale behind this payload, the selection process, and details of the individual investigations are presented in this paper.
The effect of changing gravity and weightlessness of vasopressin control systems
NASA Technical Reports Server (NTRS)
Moran, W. H.
1972-01-01
An immunoassay to determine the effects of changing gravity and weightlessness on vasopressin control system is discussed. Seven extracts from persons known to have inappropriate ADH syndrome secondary to pulmonary oat cell cancer were examined. The extracts had previously been subject to bioassay in rats. The intent of the examination was to determine if the vasopressin content could be confirmed immunologically. The results compared favorably with the values obtained by biological assay.
Weightlessness - A case history. [for Skylab 2 crewmen
NASA Technical Reports Server (NTRS)
Kerwin, J. P.
1975-01-01
A review of the average bodily systems functioning aboard Skylab II after 20 days of weightlessness is presented. Condition of eyes, ears, nose and throat, gastrointestinal tract, vestibular organs, cardiovascular system, musculoskeletal system, sleep, general appearance, skin, abdomen, and extremities is summarized. The general health of the crewmen is good, although there are some slight anomalies, such as weight loss, dry skin, nasal speech, and paresthesia of the soles of the feet.
1968-10-01
Dr. von Braun inside the KC-135 in flight. The KC-135 provide NASA's Reduced-Gravity Program the unique weightlessness or zero-g environment of space flight for testing and training of human and hardware reactions. The recent version, KC-135A, is a specially modified turbojet transport which flies parabolic arcs to produce weightlessness periods of 20 to 25 seconds and its cargo bay test area is approximately 60 feet long, 10 feet wide, and 7 feet high.
2004-04-15
The Reduced-Gravity Program provides the unique weightless or zero-g environment of space flight for testing and training of human and hardware reactions. The reduced-gravity environment is obtained with a specially modified KC-135A turbojet transport which flies parabolic arcs to produce weightless periods of 20 to 25 seconds. KC-135A cargo bay test area is approximately 60 feet long, 10 feet wide, and 7 feet high. The image shows KC-135A in flight.
History of suborbital spaceflight: medical and performance issues.
Campbell, Mark R; Garbino, Alejandro
2011-04-01
The development of manned sub-orbital commercial space vehicles is rapidly occurring and flight testing followed by operational flights will soon begin. The experience of manned suborbital spaceflight at the designated altitude (100 km/62.14 mi) is very limited--two Mercury-Redstone flights, two X-15 flights, one inadvertent Soyuz launch abort, and three recent SpaceShipOne flights, with only 15 min of critical flight time each. All indications were that the sequence of acceleration-weightlessness-deceleration was well tolerated with minimal neurovestibular dysfunction. However, there are some indications that distraction and spatial disorientation did occur. Vertigo on transition from the boost phase to weightlessness was reported on most high-altitude X-15 flights. +Gz tolerance to re-entry deceleration forces (as high as 6 + Gz) after 4 min of weightlessness is still unknown. Only further suborbital spaceflight experience will clarify if pilot performance will be affected.
The sympathetic nervous system and the physiologic consequences of spaceflight: a hypothesis
NASA Technical Reports Server (NTRS)
Robertson, D.; Convertino, V. A.; Vernikos, J.
1994-01-01
Many of the physiologic consequences of weightlessness and the cardiovascular abnormalities on return from space could be due, at least in part, to alterations in the regulation of the autonomic nervous system. In this article, the authors review the rationale and evidence for an autonomic mediation of diverse changes that occur with spaceflight, including the anemia and hypovolemia of weightlessness and the tachycardia and orthostatic intolerance on return from space. This hypothesis is supported by studies of two groups of persons known to have low catecholamine levels: persons subjected to prolonged bedrest and persons with syndromes characterized by low circulating catecholamines (Bradbury-Eggleston syndrome and dopamine beta-hydroxylase deficiency). Both groups exhibit the symptoms mentioned. The increasing evidence that autonomic mechanisms underlie many of the physiologic consequences of weightlessness suggests that new pharmacologic approaches (such as administration of beta-blockers and/or sympathomimetic amines) based on these findings may attenuate these unwanted effects.
Stimulation of cardiovascular adaptability during prolonged space exposure
NASA Technical Reports Server (NTRS)
Gorman, H. A.
1971-01-01
The deconditioning effects of weightlessness on the cardiovascular system of astronauts are discussed. It is believed that man cannot tolerate indefinite exposure to weightlessness without considerable circulatory deterioration. Analyses of data collected from space flights to date substantiate these beliefs, and confirm the fact that some form of compensation must be provided to keep the cardiovascular system of space travelers properly conditioned. Sequential pulsatile devices were investigated to produce periodic hydrostatic pressure gradients in the venous system of eight subhuman primates. Intermittent venous pooling of blood in the extremities triggers and stimulates the vascular reflex mechanisms of the cardiovascular system that may have significant benefits in maintaining the circulatory system in proper tone under weightless conditions. Electrocardiograms, blood pressure measurements, cardiac output and stroke volume determinations were used to evaluate the efficiency of the described technique. Results were amazingly consistent to indicate an efficient system for intermittently exercising the heart within safe and medically acceptable limits.
Effects of simulated weightlessness on bone mineral metabolism
NASA Technical Reports Server (NTRS)
Globus, R. K.; Bikle, D. D.; Morey-Holton, E.
1984-01-01
It is pointed out that prolonged space flight, bedrest, and immobilization are three factors which can produce a negative calcium balance, osteopenia, and an inhibition of bone formation. It is not known whether the effects of gravity on bone mineral metabolism are mediated by systemic endocrine factors which affect all bones simultaneously, or by local factors which affect each bone individually. The present investigation has the objective to test the relative importance of local vs. systemic factors in regulating the bone mineral response to conditions simulating weightlessness. Experiments were conducted with male Sprague-Dawley rats. The test conditions made it possible to compare the data from weighted and unweighted bones in the same animal. The obtained findings indicate that a decrease in bone mass relative to control value occurs rapidly under conditions which simulate certain aspects of weightlessness. However, this decrease reaches a plateau after 10 days.
Intracranial pressure increases during weightlessness: A parabolic flights study
NASA Astrophysics Data System (ADS)
Denise, P.; Normand, H.; Buzer, L.; Duretete, A.; Avan, P.
2005-08-01
The fluid shift induced by weightlessness likely induces an elevated intracranial pressure (ICP). This factor may contribute to space adaptation syndrome (SAS). Recently, it has been shown that ICP can be monitored every few seconds non invasively by otoacoustic emissions (OAE). The OAE of 6 subjects were measured along the course of parabolic flights aboard the zero-gravity A300 Airbus. Built-in noise rejection and signal processing techniques enabled valid OAE signals to be collected and analyzed online in 4 of 6 subjects. On average, the phase of 1 kHz- OAE rotated by -41° from 1 to 1.8 g, and by +78.7° at 0 g relative to 1 g. From reference invasive ICP measurements in a control group of neurosurgery patients, it is possible to infer that ICP increased by about 34 mmHg in transient weightlessness.
NASA Technical Reports Server (NTRS)
Fielder, Paul J.; Morey, Emily R.; Roberts, W. Eugene
1986-01-01
Utilizing the nuclear morphometric assay for osteoblast histogenesis, the effect of simulated weightlessness (SW) on the relative numbers of the periodontal ligament (PDL) osteoblast progenitors and on the total number of osteogenic cells was determined in rats. Weightlessness was simulated by subjecting rats to continuous 30-deg head-down posture using a modified back-harness device of Morey (1979). The response of a partially unloaded, weight-bearing bone, tibial primary spongiosa (PS), was compared to a normally loaded, nonweight-bearing PDL bone. Data indicated a similar differentiation sequence in PS and PDL, which suggests that these bones might be sensitive to the same systemic factors. Preosteoblast numbers were seen to decrease in both nonweight-bearing and weight-bearing bones during SW (compared with rats not exposed to SW), indicating the importance of systemic mediators, such as cephalad fluid shift, physiological stress, and/or growth retardation.
Simulated weightlessness - Effects on bioenergetic balance
NASA Technical Reports Server (NTRS)
Jordan, J. P.; Sykes, H. A.; Crownover, J. C.; Schatte, C. L.; Simmons, J. B., II; Jordan, D. P.
1980-01-01
As a prelude to a flight experiment, an attempt was made to separate energy requirements associated with gravity from all other metabolic needs. The biological effects of weightlessness were simulated by suspending animals in a harness so that antigravity muscles were not supporting the body. Twelve pairs of rats were allowed to adapt to wearing a harness for 5 d. Experimental animals were then suspended in harness for 7 d followed by recovery for 7 d. Control animals were harnessed but never suspended. Oxygen consumption, carbon dioxide production and rate of (C-14)O2 expiration from radio-labeled glucose were monitored on selected days. Food intake and body mass were recorded daily. Metabolic rate decreased in experimental animals during 7 d of suspension and returned to normal during recovery. Although some of the metabolic changes may have related to variation in food intake, simulated weightlessness appears to directly affect bioenergetic balance.
Olenev, S N; Danilov, A R; Kriuchkova, T A; Sorokina, L M; Krasnov, I B
1987-09-01
Beginning from the 13th day of pregnancy the rats were under conditions of weightlessness of spaceflight for 6 days. After landing in 18-day-old fetuses the state of their brain development is investigated comparing to that in control animals, that are on the Earth. As demonstrates analysis of a number of morphological processes: reproduction, migration, neuronal differentiation, growth of processes, establishment of nervous connections, neuroglial interconnections and vascularization--all they under conditions of weightlessness develop rather fully. Certain deviations in vascularization (as examples the medulla oblongata and the striated tuber are taken) are observed--the amount of vessels is greater and they are thinner--and changes in migration rate of cells is demonstrated by the example of the cortical plate formation. These changes are quickly levelled during their subsequent development on the Earth.
Effects of simulated weightlessness on fish otolith growth: Clinostat versus Rotating-Wall Vessel
NASA Astrophysics Data System (ADS)
Brungs, Sonja; Hauslage, Jens; Hilbig, Reinhard; Hemmersbach, Ruth; Anken, Ralf
2011-09-01
Stimulus dependence is a general feature of developing sensory systems. It has been shown earlier that the growth of inner ear heavy stones (otoliths) of late-stage Cichlid fish ( Oreochromis mossambicus) and Zebrafish ( Danio rerio) is slowed down by hypergravity, whereas microgravity during space flight yields an opposite effect, i.e. larger than 1 g otoliths, in Swordtail ( Xiphophorus helleri) and in Cichlid fish late-stage embryos. These and related studies proposed that otolith growth is actively adjusted via a feedback mechanism to produce a test mass of the appropriate physical capacity. Using ground-based techniques to apply simulated weightlessness, long-term clinorotation (CR; exposure on a fast-rotating Clinostat with one axis of rotation) led to larger than 1 g otoliths in late-stage Cichlid fish. Larger than normal otoliths were also found in early-staged Zebrafish embryos after short-term Wall Vessel Rotation (WVR; also regarded as a method to simulate weightlessness). These results are basically in line with the results obtained on Swordtails from space flight. Thus, the growth of fish inner ear otoliths seems to be an appropriate parameter to assess the quality of "simulated weightlessness" provided by a particular simulation device. Since CR and WVR are in worldwide use to simulate weightlessness conditions on ground using small-sized specimens, we were prompted to directly compare the effects of CR and WVR on otolith growth using developing Cichlids as model organism. Animals were simultaneously subjected to CR and WVR from a point of time when otolith primordia had begun to calcify both within the utricle (gravity perception) and the saccule (hearing); the respective otoliths are the lapilli and the sagittae. Three such runs were subsequently carried out, using three different batches of fish. The runs were discontinued when the animals began to hatch. In the course of all three runs performed, CR led to larger than normal lapilli, whereas WVR had no effect on the growth of these otoliths. Regarding sagittae, CR resulted in larger than normal stones in one of the three runs. The other CR runs and all WVR runs had no effect on sagittal growth. These results clearly indicate that CR rather than WVR can be regarded as a device to simulate weightlessness using the Cichlid as model organism. Since WVR has earlier been shown to affect otolith growth in Zebrafish, the lifestyle of an animal (mouth-breeding versus egg-laying) seems to be of considerable importance. Further studies using a variety of simulation techniques (including, e.g. magnetic levitation and random positioning) and various species are needed in order to identify the most appropriate technique to simulate weightlessness regarding a particular model organism.
Is gravity a morphological determinant in plants at the cellular level
NASA Technical Reports Server (NTRS)
Krikorian, A. D.; Steward, F. C.
1978-01-01
The present paper deals with the question whether plant development can proceed normally in the weightless state, particularly in the critical stage where single cells produce multicellular units, leading to embryos with the growing regions of shoot and root which, in turn, give rise to all the tissues of the plant body. An experiment that tested whether carrot embryos capable of developing from cultured somatic cells could do so under conditions of weightlessness is described.
Magnetic levitation in two-dimensional geometry with translational invariance
NASA Astrophysics Data System (ADS)
Lorin, C.; Mailfert, A.
2008-11-01
The development of activities in space and of the corresponding technologies requires research on the behavior of both matter and biological organisms under weightless conditions. Various methods have been invented in order to simulate weightlessness, for example, drop towers, sounding rockets, or parabolic flights. Magnetic field ground-based devices have also been developed. This paper introduces an optimization method of the magnetic field so as to obtain magnetic levitation in a two-dimensional cylindrical geometry.
Perception of linear acceleration in weightlessness
NASA Technical Reports Server (NTRS)
Arrott, A. P.; Young, L. R.
1987-01-01
Eye movements and subjective detection of acceleration were measured on human experimental subjects during vestibular sled acceleration during the D1 Spacelab Mission. Methods and results are reported on the time to detection of small acceleration steps, the threshold for detection of linear acceleration, perceived motion path, and CLOAT. A consistently shorter time to detection of small acceleration steps is found. Subjective reports of perceived motion during sinusoidal oscillation in weightlessness were qualitatively similar to reports on earth.
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Silverstein, L.; Bliss, J.; Langenheim, V.; Rosson, H.; Chao, C.
1982-01-01
Water immersion and prolonged bed rest reproduce nearly all the physiological responses observed in astronauts in the weightless state. Related to actual weightlessness, given responses tend to occur sooner in immersion and later in bed rest. Much research was conducted on humans using these two techniques, especially by Russian scientists. Abstracts and annotations of reports that appeared in the literature from January 1974 through December 1980 are compiled and discussed.
Acoustical levitation for space processing. [weightless molten material manipulation
NASA Technical Reports Server (NTRS)
Wang, T. G.; Saffren, M. M.; Elleman, D. D.
1974-01-01
It is pointed out that many space-manufacturing processes will require the manipulation of weightless molten material within a container in such a way that the material does not touch the container wall. A description is given of an acoustical method which can be used for the positioning and shaping of any molten material including nonconductors such as glasses. The new approach makes use of an acoustical standing wave which is excited within an enclosure or resonator.
The effects of prolonged weightlessness and reduced gravity environments on human survival.
Taylor, R L
1993-03-01
The manned exploration of the solar system and the surfaces of some of the smaller planets and larger satellites requires that we are able to keep the adverse human physiological response to long term exposure to near zero and greatly reduced gravity environments within acceptable limits consistent with metabolic function. This paper examines the physiological changes associated with microgravity conditions with particular reference to the weightless demineralizatoin of bone (WDB). It is suggested that many of these changes are the result of physical/mechanical processes and are not primarily a medical problem. There are thus two immediately obvious and workable, if relatively costly, solutions to the problem of weightlessness. The provision of a near 1 g field during prolonged space flights, and/or the development of rapid transit spacecraft capable of significant acceleration and short flight times. Although these developments could remove or greatly ameliorate the effects of weightlessness during long-distance space flights there remains a problem relating to the long term colonization of the surfaces of Mars, the Moon, and other small solar system bodies. It is not yet known whether or not there is a critical threshold value of 'g' below which viable human physiological function cannot be sustained. If such a threshold exists permanent colonization may only be possible if the threshold value of 'g' is less than that at the surface of the planet on which we wish to settle.
Perception of Affordance during Short-Term Exposure to Weightlessness in Parabolic Flight
Bourrelly, Aurore; McIntyre, Joseph; Morio, Cédric; Despretz, Pascal; Luyat, Marion
2016-01-01
We investigated the role of the visual eye-height (VEH) in the perception of affordance during short-term exposure to weightlessness. Sixteen participants were tested during parabolic flight (0g) and on the ground (1g). Participants looked at a laptop showing a room in which a doorway-like aperture was presented. They were asked to adjust the opening of the virtual doorway until it was perceived to be just wide enough to pass through (i.e., the critical aperture). We manipulated VEH by raising the level of the floor in the visual room by 25 cm. The results showed effects of VEH and of gravity on the perceived critical aperture. When VEH was reduced (i.e., when the floor was raised), the critical aperture diminished, suggesting that widths relative to the body were perceived to be larger. The critical aperture was also lower in 0g, for a given VEH, suggesting that participants perceived apertures to be wider or themselves to be smaller in weightlessness, as compared to normal gravity. However, weightlessness also had an effect on the subjective level of the eyes projected into the visual scene. Thus, setting the critical aperture as a fixed percentage of the subjective visual eye-height remains a viable hypothesis to explain how human observers judge visual scenes in terms of potential for action or “affordances”. PMID:27097218
Skeletal Responses to Long-Duration Simulated Weightlessness in Rats
NASA Technical Reports Server (NTRS)
Adams, Julia; Torres, Samantha; Schreurs, Ann-Sofie; Alwood, Joshua S.; Shirazi-Fard, Yasaman; Tahimic, Candice; Globus, Ruth
2017-01-01
Damaging effects due to spaceflight and long-duration weightlessness are seen in the musculoskeletal system, specifically with regards to bone loss, bone resorption, and changes in overall bone structure. These adverse effects are all seen with indicators of oxidative stress and a variation in the levels of oxidative gene expression. Once gravity is restored, however, the recovery is slow and incomplete. Despite this, few reports have investigated the correlation between oxidative damage and general modifications within the bone. In this project, we will make use of a ground-based model of simulated weightlessness (hindlimb unloading, HU) in order to observe skeletal changes in response to induced microgravity due to changes in oxidative pressures. With this model we will analyze samples at 14-day and 90-day time points following HU for the determination of acute and chronic effects, each with corresponding controls. We hypothesize that simulated microgravity will lead to skeletal adaptations including time-dependent activation of pro-oxidative processes and pro-osteoclastogenic signals related to the progression, plateau, and recovery of the bone. Microcomputed tomography techniques will be utilized to measure skeletal changes in response to HU. With the results of this study, we hope to further the understanding of skeletal affects as a result of long-duration weightlessness and develop countermeasures to combat bone loss in spaceflight and osteoporosis on Earth.
A universal multilingual weightless neural network tagger via quantitative linguistics.
Carneiro, Hugo C C; Pedreira, Carlos E; França, Felipe M G; Lima, Priscila M V
2017-07-01
In the last decade, given the availability of corpora in several distinct languages, research on multilingual part-of-speech tagging started to grow. Amongst the novelties there is mWANN-Tagger (multilingual weightless artificial neural network tagger), a weightless neural part-of-speech tagger capable of being used for mostly-suffix-oriented languages. The tagger was subjected to corpora in eight languages of quite distinct natures and had a remarkable accuracy with very low sample deviation in every one of them, indicating the robustness of weightless neural systems for part-of-speech tagging tasks. However, mWANN-Tagger needed to be tuned for every new corpus, since each one required a different parameter configuration. For mWANN-Tagger to be truly multilingual, it should be usable for any new language with no need of parameter tuning. This article proposes a study that aims to find a relation between the lexical diversity of a language and the parameter configuration that would produce the best performing mWANN-Tagger instance. Preliminary analyses suggested that a single parameter configuration may be applied to the eight aforementioned languages. The mWANN-Tagger instance produced by this configuration was as accurate as the language-dependent ones obtained through tuning. Afterwards, the weightless neural tagger was further subjected to new corpora in languages that range from very isolating to polysynthetic ones. The best performing instances of mWANN-Tagger are again the ones produced by the universal parameter configuration. Hence, mWANN-Tagger can be applied to new corpora with no need of parameter tuning, making it a universal multilingual part-of-speech tagger. Further experiments with Universal Dependencies treebanks reveal that mWANN-Tagger may be extended and that it has potential to outperform most state-of-the-art part-of-speech taggers if better word representations are provided. Copyright © 2017 Elsevier Ltd. All rights reserved.
Burbank uses the Neurospat hardware in the Columbus Module
2012-03-15
ISS030-E-177227 (15 March 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, uses Neurospat hardware to perform a science session with the European Space Agency PASSAGES experiment in the Columbus laboratory of the International Space Station. PASSAGES is designed to test how astronauts interpret visual information in weightlessness. It aims at studying the effects of microgravity on the use of the 'Eye-Height' strategy for estimating allowed actions in an environment, and whether this could possibly decrease after a long exposure to weightlessness.
2010-10-19
ISS025-E-008371 (20 Oct. 2010) --- NASA astronaut Doug Wheelock, Expedition 25 commander, uses Neurospat hardware to perform a science session with the European Space Agency PASSAGES experiment in the Columbus laboratory of the International Space Station. PASSAGES is designed to test how astronauts interpret visual information in weightlessness. It aims at studying the effects of microgravity on the use of the ‘Eye-Height’ strategy for estimating allowed actions in an environment, and whether this could possibly decrease after a long exposure to weightlessness.
2011-10-06
ISS029-E-021636 (6 Oct. 2011) --- Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 29 flight engineer, uses Neurospat hardware to perform a science session with the European Space Agency PASSAGES experiment in the Columbus laboratory of the International Space Station. PASSAGES is designed to test how astronauts interpret visual information in weightlessness. It aims at studying the effects of microgravity on the use of the 'Eye-Height' strategy for estimating allowed actions in an environment, and whether this could possibly decrease after a long exposure to weightlessness.
2011-10-06
ISS029-E-021641 (6 Oct. 2011) --- NASA astronaut Mike Fossum, Expedition 29 commander, uses Neurospat hardware to perform a science session with the European Space Agency PASSAGES experiment in the Columbus laboratory of the International Space Station. PASSAGES is designed to test how astronauts interpret visual information in weightlessness. It aims at studying the effects of microgravity on the use of the 'Eye-Height' strategy for estimating allowed actions in an environment, and whether this could possibly decrease after a long exposure to weightlessness.
Burbank uses the Neurospat hardware in the Columbus Module
2012-03-15
ISS030-E-177225 (15 March 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, uses Neurospat hardware to perform a science session with the European Space Agency PASSAGES experiment in the Columbus laboratory of the International Space Station. PASSAGES is designed to test how astronauts interpret visual information in weightlessness. It aims at studying the effects of microgravity on the use of the 'Eye-Height' strategy for estimating allowed actions in an environment, and whether this could possibly decrease after a long exposure to weightlessness.
Astronaut activity in weightlessness and unsupported space
NASA Technical Reports Server (NTRS)
Ivanov, Y. A.; Popov, V. A.; Kachaturyants, L. S.
1975-01-01
For the purpose of study of the performance ability of a human operator in prolonged weightless conditions was studied by the following methods: (1) psychophysiological analysis of certain operations; (2) the dynamic characteristics of a man, included in a model control system, with direct and delayed feedback; (3) evaluation of the singularities of analysis and quality of the working memory, in working with outlines of patterned and random lines; and (4) biomechanical analysis of spatial orientation and motor activity in unsupported space.
Effects of weightlessness on human fluid and electrolyte physiology
NASA Technical Reports Server (NTRS)
Leach, Carolyn S.; Johnson, Philip C., Jr.
1991-01-01
Skylab and Spacelab data on changes occurring in human fluid and electrolyte physiology during the acute and adaptive phases of adaptation to spaceflight are summarized. The combined results for all three Spacelab studies show that hyponatremia developed within 20 h after the onset of weightlessness and continued throughout the flights, and hypokalemia developed by 40 h. Antidiuretic hormone was increased in plasma throughout the flights. Aldosterone decreased by 40 h, but after 7 days it had reached preflight levels.
Evaluation of the response of rat skeletal muscle to a model of weightlessness
NASA Technical Reports Server (NTRS)
Templeton, G. H.; Padalino, M.; Glasberg, M.; Manton, J.; Silver, P.; Sutko, J.
1982-01-01
Suspension of rats in a head-down tilt position such that their hind limbs are non-load bearing has been proposed as a model for weightlessness. Changes observed in metabolism, bone formation (Morey et al., 1979), and muscle catabolism (Mussachia et al., 1980) support the validity of the model. To further document this model, the effects of suspension on the mechanical, biochemical and histochemical characteristics of two hind limb skeletal muscles, the gastrocnemius and the soleus, are investigated.
Weightless Environment Training Facility (WETF) materials coating evaluation, volume 3
NASA Technical Reports Server (NTRS)
1995-01-01
This volume consists of Appendices C, D, E, and F to the report on the Weightless Environment Training Facility Materials Coating Evaluation project. The project selected 10 coating systems to be evaluated in six separate exposure environments, and subject to three tests for physical properties. Appendix C is the photographic appendix of the test panels. Appendix D details methods and procedures. Appendix E lists application equipment costs. Appendix F is a compilation of the solicitation of the candidate coating systems.
Vestibular-related neuroscience and manned space flight
NASA Technical Reports Server (NTRS)
Igarashi, Makoto
1988-01-01
The effects of weightlessness on the human vestibular system are examined, reviewing the results of recent investigations. The functional, neurophysiological, and neurochemical changes which occur during adaptation to weightlessness are discussed; theoretical models proposed to explain the underlying mechanism are outlined; and particular attention is given to the author's experiments on squirrel monkeys. There, good correlations were found between (1) the recovery of locomotor balance function in the acute compensation phase after unilateral labyrinthectomy and (2) the bilateral imbalance in the optical density of GABA-like immunoreactivity.
Axial jet mixing of ethanol in spherical containers during weightlessness
NASA Technical Reports Server (NTRS)
Audelott, J. C.
1976-01-01
An experimental program was conducted to examine the liquid flow patterns that result from the axial jet mixing of ethanol in 10-centimeter-diameter spherical containers in weightlessness. Complete liquid circulation flow patterns were easily established in containers that were less than half full of liquid, while for higher liquid fill conditions, vapor was drawn into the inlet of the simulated mixer unit. Increasing the liquid-jet or lowering the position at which the liquid jet entered the container caused increasing turbulence and bubble formation.
Axial jet mixing of ethanol in cylindrical containers during weightlessness
NASA Technical Reports Server (NTRS)
Aydelott, J. C.
1979-01-01
An experimental program was conducted to examine the liquid flow patterns that result from the axial jet mixing of ethanol in 10-centimeter-diameter cylindrical tanks in weightlessness. A convex hemispherically ended tank and two Centaur liquid-hydrogen-tank models were used for the study. Four distinct liquid flow patterns were observed to be a function of the tank geometry, the liquid-jet velocity, the volume of liquid in the tank, and the location of the tube from which the liquid jet exited.
NASA Technical Reports Server (NTRS)
1973-01-01
The materials science and technology investigation conducted on the Skylab vehicle are discussed. The thirteen experiments that support these investigations have been planned to evaluate the effect of a weightless environment on melting and resolidification of a variety of metals and semiconductor crystals, and on combustion of solid flammable materials. A glossary of terms which define the space activities and a bibliography of related data are presented.
Theoretical bases for conducting certain technological processes in space
NASA Technical Reports Server (NTRS)
Okhotin, A. S.
1979-01-01
Dimensionless conservation equations are presented and the theoretical bases of fluid behavior aboard orbiting satellites with application to the processes of manufacturing crystals in weightlessness. The small amount of gravitational acceleration is shown to increase the separation of bands of varying concentration. Natural convection is shown to have no practical effect on crystallization from a liquid melt. Barodiffusion is also negligibly small in realistic conditions of weightlessness. The effects of surface tension become increasingly large, and suggestions are made for further research.
Simulated weightlessness in fish and neurophysiological studies on memory storage
NASA Technical Reports Server (NTRS)
Vonbaumgarten, R. J.
1973-01-01
Simulated weightlessness was used to study the different types of gravity responses in blind fish. It was found that a shift in the direction of low magnitude acceleration in weightlessness causes a rapid 180 deg turn in the blind fish, while a shift in the direction of the applied acceleration in the earth's gravitational field is not significant because of a higher acceleration magnitude threshold than during the zero g condition. This increased responsiveness seems to be explained by a combination of directional sensitivity with a Weber-Fechner relationship of increased receptor sensitivity at diminished levels of background stimulation. Neurophysical studies of the statocyst nerve of the gastropod Mollusc Pleurobranchaea Californica were undertaken in order to understand how complex otolith systems operate. Information storage was investigated on relatively simple neuronal networks in the mollusc Aplysia. Intracellular electrical stimulation of isolated neurons show that a manipulation of autoditonous rhymicity is possible. It was also found that glycolysis and oxidative phosphorylation are involved in inherent rhymicity of Aplysis neurons.
Effects of chronic acceleration on body composition
NASA Technical Reports Server (NTRS)
Pitts, G. C.
1982-01-01
Studies of the centrifugation of adult rats showed an unexpected decrease in the mass of fat-free muscle and bone, in spite of the added load induced by centrifugation. It is suggested that the lower but constant fat-free body mass was probably regulated during centrifugation. Rats placed in weightless conditions for 18.5 days gave indirect but strong evidence that the muscle had increased in mass. Other changes in the rats placed in weightless conditions included a smaller fraction of skeletal mineral, a smaller fraction of water in the total fat-free body, and a net shift of fluid from skin to viscera. Adult rats centrifuged throughout the post-weaning growth period exhibited smaller masses of bone and central nervous system (probably attributable to slower growth of the total body), and a larger mass of skin than controls at 1 G. Efforts at simulating the effects of weightlessness or centrifugation on the body composition of rats by regimens at terrestrial gravity were inconclusive.
Analysis of magnetic gradients to study gravitropism.
Hasenstein, Karl H; John, Susan; Scherp, Peter; Povinelli, Daniel; Mopper, Susan
2013-01-01
Gravitropism typically is generated by dense particles that respond to gravity. Experimental stimulation by high-gradient magnetic fields provides a new approach to selectively manipulate the gravisensing system. The movement of corn, wheat, and potato starch grains in suspension was examined with videomicroscopy during parabolic flights that generated 20 to 25 s of weightlessness. During weightlessness, a magnetic gradient was generated by inserting a wedge into a uniform, external magnetic field that caused repulsion of starch grains. The resultant velocity of movement was compared with the velocity of sedimentation under 1 g conditions. The high-gradient magnetic fields repelled the starch grains and generated a force of at least 0.6 g. Different wedge shapes significantly affected starch velocity and directionality of movement. Magnetic gradients are able to move diamagnetic compounds under weightless or microgravity conditions and serve as directional stimulus during seed germination in low-gravity environments. Further work can determine whether gravity sensing is based on force or contact between amyloplasts and statocyte membrane system.
NASA Technical Reports Server (NTRS)
Watt, D. G.; Money, K. E.; Tomi, L. M.
1986-01-01
Reflex responses that depend on human otolith organ sensitivity were measured before, during and after a 10 day space flight. Otolith-spinal reflexes were elicited by means of sudden, unexpected falls. In weightlessness, "falls" were achieved using elastic cords running from a torso harness to the floor. Electromyographic (EMG) activity was recorded from gastrocnemius-soleus. The EMG response occurring in the first 100-120 ms of a fall, considered to be predominantly otolith-spinal in origin, decreased in amplitude immediately upon entering weightlessness, and continued to decline throughout the flight, especially during the first two mission days. The response returned to normal before the first post-flight testing session. The results suggest that information coming from the otolith organs is gradually ignored by the nervous system during prolonged space flight, although the possibility that otolith-spinal reflexes are decreased independent of other otolith output pathways cannot be ruled out.
NASA Technical Reports Server (NTRS)
Watt, D. G. D.; Money, K. E.; Tomi, L. M.
1986-01-01
Reflex responses that depend on human otolith organ sensitivity were measured before, during and after a 10 day space flight. Otolith-spinal reflexes were elicited by means of sudden, unexpected falls. In weightlessness, 'falls' were achieved using elastic cords running from a torso harness to the floor. Electromyographic (EMG) activity was recorded from gastrocnemius-soleus. The EMG response occurring in the first 100-120 ms of a fall, considered to be predominantly otolith-spinal in origin, decreased in amplitude immediately upon entering weightlessness, and continued to decline throughout the flight, especially during the first two mission days. The response returned to normal before the first post-flight testing session. The results suggest that information coming from the otolith organs is gradually ignored by the nervous system during prolonged space flight, although the possibility that otolith-spinal reflexes are decreased independent of other otolith output pathways cannot by ruled out.
NASA Technical Reports Server (NTRS)
Lindberg, R. G.; Hayden, P.
1974-01-01
Three areas of inquiry are reported for the Skylab Experiment S-071 whose objective was to study the circadian system of a mammal during space flight. The thermoregulatory behavior of the Perognathus longimembris, or little pocket mouse, was studied under conditions of constant dark and constant temperature in the prolonged weightless environment of Skylab. The following specific questions were studied: (1) the effects of weightlessness on circadian periodicity in the little pocket mouse; (2) stability of the free-running circadian period of body temperature of the little pocket mouse exposed to simulated launch stress; and (3) characteristics of the circadian rhythm of body temperature in the little pocket mouse. Diagrams of the electronic circuitry and hardware used in the experiment are shown and results are given in both graphical and tabular form. The methods used in the experiment are fully documented, along with conclusions and recommendations for future research.
NASA Astrophysics Data System (ADS)
Kvetňanský, R.; Vigaš, M.; Németh, Š.; Macho, L.; Tigranyan, R. A.
The indicators of adrenomedullary activity (catecholamine content (CA) and the activity of the catecholamine-synthesizing enzymes tyrosine hydroxylase (TH) and dopamine-β-hydroxylase (DBH)) were measured in the adrenal glands of rats living in a state of weightlessness for 18.5-19.5 days on board the biosatellites COSMOS 936 and COSMOS 1129. None of these indicators was significantly changed by space flight, neither in the group living in a state of weightlessness nor in the group living in a centrifuge on board the spacecraft and exposed to artificial gravity of 1 g (COSMOS 936). Animals exposed after space flight to repeated immobilization stress on Earth showed a significant decrease of adrenal adrenaline and an appreciable increase in adrenal TH activity compared to stressed animals which were not in space. These results suggest that a prolonged state of weightlessness during space flight does not by itself represent an intensive stressful stimulus for the adrenomedullary system but potentiates the response of cosmonauts to stress after return to Earth.
NASA Astrophysics Data System (ADS)
Stapley, Paul; Pozzo, Thierry
In normal gravity conditions the execution of voluntary movement involves the displacement of body segments as well as the maintenance of a stable reference value for equilibrium control. It has been suggested that centre of mass (CM) projection within the supporting base (BS) is the stabilised reference for voluntary action, and is conserved in weightlessness. The purpose of this study was to determine if the CM is stabilised during whole body reaching movements executed in weightlessness. The reaching task was conducted by two cosmonauts aboard the Russian orbital station MIR, during the Franco-Russian mission ALTAIR, 1993. Movements of reflective markers were recorded using a videocamera, successive images being reconstructed by computer every 40ms. The position of the CM, ankle joint torques and shank and thigh angles were computed for each subject pre- in- and post-flight using a 7-link mathematical model. Results showed that both cosmonauts adopted a backward leaning posture prior to reaching movements. Inflight, the CM was displaced throughout values in the horizontal axis three times those of pre-flight measures. In addition, ankle dorsi flexor torques inflight increased to values double those of pre- and post-flight tests. This study concluded that CM displacements do not remain stable during complex postural equilibrium tasks executed in weightlessness. Furthermore, in the absence of gravity, subjects changed their strategy for producing ankle torque during spaceflight from a forward to a backward leaning posture.
Gravity influences top-down signals in visual processing.
Cheron, Guy; Leroy, Axelle; Palmero-Soler, Ernesto; De Saedeleer, Caty; Bengoetxea, Ana; Cebolla, Ana-Maria; Vidal, Manuel; Dan, Bernard; Berthoz, Alain; McIntyre, Joseph
2014-01-01
Visual perception is not only based on incoming visual signals but also on information about a multimodal reference frame that incorporates vestibulo-proprioceptive input and motor signals. In addition, top-down modulation of visual processing has previously been demonstrated during cognitive operations including selective attention and working memory tasks. In the absence of a stable gravitational reference, the updating of salient stimuli becomes crucial for successful visuo-spatial behavior by humans in weightlessness. Here we found that visually-evoked potentials triggered by the image of a tunnel just prior to an impending 3D movement in a virtual navigation task were altered in weightlessness aboard the International Space Station, while those evoked by a classical 2D-checkerboard were not. Specifically, the analysis of event-related spectral perturbations and inter-trial phase coherency of these EEG signals recorded in the frontal and occipital areas showed that phase-locking of theta-alpha oscillations was suppressed in weightlessness, but only for the 3D tunnel image. Moreover, analysis of the phase of the coherency demonstrated the existence on Earth of a directional flux in the EEG signals from the frontal to the occipital areas mediating a top-down modulation during the presentation of the image of the 3D tunnel. In weightlessness, this fronto-occipital, top-down control was transformed into a diverging flux from the central areas toward the frontal and occipital areas. These results demonstrate that gravity-related sensory inputs modulate primary visual areas depending on the affordances of the visual scene.
Leg Vascular Responsiveness During Acute Orthostasis Following Simulated Weightlessness
NASA Technical Reports Server (NTRS)
Blamick, Cynthia A.; Goldwater, Danielle J.; Convertino, Victor A.
1988-01-01
Ten men (35-49 years old) underwent lower body negative pressure (LBNP) exposures before and offer 10 d of continuous 6 degrees head-down bedrest in order to predict the effect of weightlessness on the responsiveness of leg vasculature to an orthostatic stress. Heart rate (HR), mean arterial blood pressure (MAP), and Impedance rheographic indices of arterial pulse volume (APV) of the legs were measured during rest and at 1 min at -30 mm Hg LBNP. Bedrest-induced deconditioning was manifested by decreases (p less than 0.06) in plasma volume (17%), peak oxygen uptake (16%), and LBNP tolerance (17%). Resting HR was unchanged after bedrest, but HR was higher (p less than 0.05) at 1 min of -30 mm Hg LBNP after, compared with before bedrest. Responses of MAP to -30 mm Hg LBNP were not altered by bodrest. Resting APV was decreased (p less than 0.05) by simulated weightlessness. However, APV was reduced (p less than 0.05) from rest to 1 min -30 mm Hg LBNP by the same relative magnitude before and after bodrest (-21.4 +/- 3.4% and -20.5 +/- 2.7%, respectively). We conclude that peripheral arterial vasoconstriction, as indicated by reductions in APV during LBNP, was not affected by bedrest. These results suggest that there was no apparent alteration in responsiveness of the leg vasculature following simulated weightlessness. Therefore, it appears unlikely that control mechanisms of peripheral resistance contribute significantly to reduced orthostatic tolerance following space-flight.
NASA Technical Reports Server (NTRS)
Fitts, Robert H.; Romatowski, Janell G.; Widrick, Jeffrey J.; DeLaCruz, Lourdes
1999-01-01
Although it is well known that microgravity induces considerable limb muscle atrophy, little is known about how weightlessness alters cell function. In this study, we investigated how weightlessness altered the functional properties of single fast and slow striated muscle fibers. Physiological studies were carried out to test the hypothesis that microgravity causes fiber atrophy, a decreased peak force (Newtons), tension (Newtons/cross-sectional area) and power, an elevated peak rate of tension development (dp/dt), and an increased maximal shortening velocity (V(sub o)) in the slow type I fiber, while changes in the fast-twitch fiber are restricted to atrophy and a reduced peak force. For each fiber, we determined the peak force (P(sub o)), V(sub o), dp/dt, the force-velocity relationship, peak power, the power-force relationship, the force-pCa relationship, and fiber stiffness. Biochemical studies were carried out to assess the effects of weightlessness on the enzyme and substrate profile of the fast- and slow-twitch fibers. We predicted that microgravity would increase resting muscle glycogen and glycolytic metabolism in the slow fiber type, while the fast-twitch fiber enzyme profile would be unaltered. The increased muscle glycogen would in part result from an elevated hexokinase and glycogen synthase. The enzymes selected for study represent markers for mitochondrial function (citrate synthase and 0-hydroxyacyl-CoA dehydrogenase), glycolysis (Phosphofructokinase and lactate dehydrogenase), and fatty acid transport (Carnitine acetyl transferase). The substrates analyzed will include glycogen, lactate, adenosine triphosphate, and phosphocreatine.
Yue, Yong; Yao, Yong-jie; Xie, Xiao-ping; Wang, Bing; Zhu, Qing-sheng; Wu, Xing-yu
2002-12-01
Objective. To observe the changes of pressure-volume relationships of rabbit femoral veins and their structural changes caused by simulated weightlessness. Method. Head-Down Tilt (HDT) -20 degrees rabbit model was used to simulate weightlessness. Twenty four healthy male New Zealand Rabbits were randomly divided into 21 d HDT group,10 d HDT group and control group, (8 in each group). Pressure-volume (P-V) relationship of rabbits femoral veins was measured and the microstructure of the veins was observed. Result. The femoral vein P-V relationship curves of HDT groups showed a larger volume change ratio than that of control group. This change was that 21 d HDT group was even more obvious than that of HDT-10 d group. B1 and B2 in quadratic equations of 21 d HDT group were significantly higher than the values of both 10 d HDT group and control group during expansion (inflow) and collapse (outflow) (P<0.01). The result of histological examination showed that the contents and structure of femoral vein wall of HDT-rabbits changed significantly. Endothelial cells of femoral vein became short and columnar or cubic, some of which fell off. Smooth muscle layer became thinner. Conclusion. Femoral venous compliance increased after weightlessness-simulation and the femoral venous compliance in 21 d-HDT rabbits increased more obviously than that in 10 d-HDT rabbits. The structure of femoral vein wall had changed obviously.
View of FE Fossum working on the ESA PASSAGES Experiment
2011-06-16
ISS028-E-008393 (16 June 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, uses Neurospat hardware to perform a science session with the European Space Agency PASSAGES experiment in the Columbus laboratory of the International Space Station. PASSAGES is designed to test how astronauts interpret visual information in weightlessness. It aims at studying the effects of microgravity on the use of the 'Eye-Height' strategy for estimating allowed actions in an environment, and whether this could possibly decrease after a long exposure to weightlessness.
Formation of ectopic osteogenesis in weightlessness
NASA Technical Reports Server (NTRS)
1977-01-01
An ectopic osteogenesis experiment aboard the Cosmos-936 biosatellite is described. Decalcified, lyophilized femur and tibia were implanted under the fascia or in the anterior wall of the abdomen in rats. Bone formation before and after the tests is described and illustrated. The extent of formation of ectopic bone in weightlessness did not differ significantly from that in the ground controls, but the bone marrow of the ectopic bone of the flight rats consisted exclusively of fat cells. The deficit of support-muscle loading was considered to cause the disturbance in skeletal bone tissue development.
Hybrid water immersion simulation of manual IVA performance in weightlessness
NASA Technical Reports Server (NTRS)
Loats, H. L., Jr.; Mattingly, G. S.
1971-01-01
A description is given of the development, tests, and analysis of a manual simulator. The simulator was developed to test mass handling and translation under weightlessness conditions by a test subject. The system is composed of a hybrid simulator with a combination of water immersion and mechanical, Peter Pan, simulation. The concept operates on the equivalence principle, with the subject and the cargo remaining quasi-stationary. Movement is effected through a moving device controlled through force by the subject. Motion response is determined through computations of the inertial movement under such conditions.
Some physiological effects of alternation between zero gravity and one gravity
NASA Technical Reports Server (NTRS)
Graybiel, A.
1977-01-01
The anatomy and physiology of the healthy vestibular system and the history of its study, maintenance of muskuloskeletal fitness under low-gravity conditions, tests of motion sickness, and data and techniques on testing subjects in a slow rotation room, are covered. Components of the inner ear labyrinth and their behavior in relation to equilibrium, gravity and inertial forces, motion sickness, and dizziness are discussed. Preventive medicine, the biologically effective force environment, weightlessness per se, activity in a weightless spacecraft, exercizing required to maintain musculoskeletal function, and ataxia problems are dealt with.
The Development of the Vestibular Apparatus Under Conditions of Weightlessness
NASA Technical Reports Server (NTRS)
Vinnikov, Y. A.; Gazenko, O. G.; Lychakov, D. V.; Palmbakh, L. R.
1984-01-01
A series of experiments has been carried out on the effect of space flight conditions on morphogenesis and the structure of the vestibular apparatus in amphibian and fish larvae. Larval development proceeded in weightlessness without serious morphological defects. The vestibular apparatus developed; its organization in the experimental animals did not differ qualitatively from that in the controls. The specific external stimulus (gravitation) appears not to be a necessary condition for the development of a gravitation receptor in ontogenesis although the appearance of the vestibular apparatus in phylogenesis was apparently related to this stimulus.
[Some problems of space medicine].
Gurovskiĭ, N N; Egorov, A D
1976-01-01
The paper discusses the problems to be resolved by space medicine and the main stages in the development of this branch of science, beginning with the vertical launches of rockets and ending with the flights of orbital stations. On the basis of ground-based simulation experiments and real space flights it presents a classification of the major symptomocomplexes that may occur inflight. The paper describes the main stages of adaptation to weightlessness and physiological changes in the weightless state. The paper also outlines further pathways in the development of space medicine.
A review of the consequences of fluid and electrolyte shifts in weightlessness
NASA Technical Reports Server (NTRS)
Leach, C. S.
1979-01-01
This review describes the renal-endocrine mechanisms related to the early losses of fluid-electrolytes from the body during weightlessness as well as their contribution to longer term adaptation of fluid-electrolyte balance. The hypotheses presented were generated by a systematic analysis of body fluid and renal dynamics observed under conditions of actual and simulated spaceflight. These have increased our understanding of the effects of acute headward fluid shifts on renal excretion, the factors promoting excess sodium excretion and the regulation of extracellular fluid composition.
A review of the consequences of fluid and electrolyte shifts in weightlessness
NASA Technical Reports Server (NTRS)
Leach, C. S.
1978-01-01
This review describes the renal-endocrine mechanisms related to the early losses of fluid-electrolytes from the body during weightlessness as well as their contribution to longer term adaptation of fluid-electrolyte balance. The hypotheses presented were generated by a systematic analysis of body fluid and renal dynamics observed under conditions of actual and simulated spaceflight. These have increased our understanding of the effects of acute headward fluid shifts on renal excretion, the factors promoting excess sodium excretion and the regulation of extracellular fluid composition.
Effects of weightlessness in man.
NASA Technical Reports Server (NTRS)
Berry, C. A.
1973-01-01
The program for the Apollo 16 flight was designed to include both safeguards against and investigations of the physiological problems arising from increase in the period of manned space flight. Precautions included the provision of a controlled diet with high potassium content, carefully controlled work loads and work-rest cycles, and an emergency cardiology consultation service, and investigations were made to enable preflight vs postflight comparisons of metabolic, cardiovascular, and central nervous system data. Results of these investigations indicate that adjustment to weightlessness can be satisfactorily assisted by appropriate countermeasures, including attention to diet.
Briegleb, W; Neubert, J; Schatz, A; Sinapius, F
1975-01-01
Experiments with Tribolium confusum showed that the morphological characteristics of the beetles are modified by simulated weightlessness (fast running clinostat). Because of possible side effects due to differences in fertility of inbred lines, the first experiments were made with a genetically heterogeneous stock. Thereafter experiments were confirmed with inbred beetles. For both stocks a rise of mainly wing anomalies resulted from rotation of whole cultures of beetles within horizontal tubes. The extent to which these anomalies are teratogenetic or genetic has not yet been analysed in detail.
Eccentric and concentric muscle performance following 7 days of simulated weightlessness
NASA Technical Reports Server (NTRS)
Hayes, Judith C.; Roper, Mary L.; Mazzocca, Augustus D.; Mcbrine, John J.; Barrows, Linda H.; Harris, Bernard A.; Siconolfi, Steven F.
1992-01-01
Changes in skeletal muscle strength occur in response to chronic disuse or insufficient functional loading. The purpose of this study was to examine changes in muscle performance of the lower extremity and torso prior to and immediately after 7 days of simulated weightlessness (horizontal bed rest). A Biodex was used to determine concentric and eccentric peak torque and angle at peak torque for the back, abdomen, quadriceps, hamstring, soleus, and tibialis anterior. A reference angle of 0 degrees was set at full extension. Data were analyzed by ANOVA.
Changes in renal function and fluid and electrolyte regulation in space flight
NASA Technical Reports Server (NTRS)
Leach, C. S.
1992-01-01
The cephalad fluid redistribution resulting from weightlessness has a number of physiologic consequences. Plasma volume is reduced soon after weightlessness is reached, and red blood cell mass reduction follows. Plasma atrial natriuretic peptide, which inhibits aldosterone secretion, was elevated during space flight while plasma aldosterone was below preflight levels. Serum sodium was also reduced and potassium was elevated. Antidiuretic hormone (ADH) was markedly elevated at almost all measurement times in the first eight days of flight, but plasma volume did not return to preflight levels.
Commander Lousma records PGU data on middeck
1982-03-30
STS003-22-122 (30 March 1982) --- STS-3 Commander Lousma, wearing communications kit assembly (ASSY) mini-headset (HDST), records Plant Growth Unit (PGU) data for the Influence of Weightlessness on Plant Lignification Experiment at forward middeck locker MF14K. The experiment is designed to demonstrate the effect of weightlessness on the quantity and rate of lignin formation in different plant species during early stages of development. Port side bulkhead with window shade and filter kit appears behind Lousma and potable water tank below him. Trash bag also appears in view. Photo credit: NASA
Results of intravehicular manned cargo-transfer studies in simulated weightlessness
NASA Technical Reports Server (NTRS)
Spady, A. A., Jr.; Beasley, G. P.; Yenni, K. R.; Eisele, D. F.
1972-01-01
A parametric investigation was conducted in a water immersion simulator to determine the effect of package mass, moment of inertia, and size on the ability of man to transfer cargo in simulated weightlessness. Results from this study indicate that packages with masses of at least 744 kg and moments of inertia of at least 386 kg-m2 can be manually handled and transferred satisfactorily under intravehicular conditions using either one- or two-rail motion aids. Data leading to the conclusions and discussions of test procedures and equipment are presented.
View of the Life Sciences Laboratory Equipment (LSLE) Incubator - Lymphocite Proliferation
1984-10-18
S84-43683 (26 Nov 1984) --- This vertically positioned rectangular piece of hardware, scheduled to fly on the science module of Spacelab Life Sciences-1, is important to the immunology investigation on the mission. Called Lymphocyte Proliferation in Weightlessness (Experiment 240), the test was developed by Dr. Augosto Cogoli of the Institute of Biotechnology, Gruppe Weltraum Biologie, in Zurich, Switzerland. It represents a continuation of previous Spacelab experiments by examining the effects of weightlessness on lymphocyte activation. Cultures will be grown in the microgravity incubators on the pictured hardware.
Tigranian, R A; Nosova, E A; Kolchina, E V; Veresotskaia, N A; Kurkina, L M
1981-01-01
The effect of artificial gravity on protein fractions and their enzyme activity in the myocardium of rats flown on board Cosmos-936 was studied. In weightless rats the content of sarcoplasmic proteins increased at R + O and that of T fraction proteins decreased at R + 25. In centrifuged rats such changes were not seen. In centrifuged rats the enzyme activity of sarcoplasmic proteins did not alter. In weightless rats ATPase activity of myosin decreased significantly, and in centrifuged rats it remained almost unchanged.
Astronaut Catherine G. Coleman aboard KC-135 aircraft
1994-01-10
S94-26350 (10 Jan. 1994) --- Astronaut Catherine G. Coleman seems to enjoy the brief period of weightlessness she is sharing with fellow members of the 1992 class of astronauts. The weightless experience was afforded by a special parabolic pattern flown by NASA?s KC-135 ?zero gravity? aircraft. Left to right behind her are astronauts Michael E. Lopez-Alegria, Kevin R. Kregel and Winston E. Scott. EDITOR?S NOTE: Since this photograph was taken the four have been named to flights as follows: Kregel, STS-70; Scott, STS-72.
Considerations in prescribing preflight aerobic exercise for astronauts
NASA Technical Reports Server (NTRS)
Frey, Mary Anne Bassett
1987-01-01
The physiological effects of prolonged exposure to weightlessness are discussed together with the effects of aerobic exercise on human characteristics affected by weightlessness. It is noted that, although early data on orthostatic intolerance after spaceflight led to a belief that a high level of aerobic fitness for astronauts was detrimental to orthostatic tolerance on return to earth, most of the data available today do not suport this contention. Aerobic fitness was found to be beneficial to cardiovascular function and to mental performance; therefore, it may be important in performing extravehicular activities during flight.
Normal Impingement of a Circular Liquid Jet onto a Screen in a Weightless Environment
NASA Technical Reports Server (NTRS)
Symons, E. P.
1976-01-01
The normal impingement of a circular liquid jet onto a fine-mesh screen in a weightless environment was investigated. Equations were developed to predict the velocity of the emerging jet on the downstream side of the screen as a function of screen and liquid parameters and of the velocity of the impinging jet. Additionally, the stability of the emerging jet was found to be Weber number dependent. In general, excepting at high velocities, the screen behaved much as a baffle, deflecting the major portion of the impinging flow.
A systems approach to the physiology of weightlessness
NASA Technical Reports Server (NTRS)
White, Ronald J.; Leonard, Joel I.; Rummel, John A.; Leach, Carolyn S.
1991-01-01
A general systems approach to conducting and analyzing research on the human adaptation to weightlessness is presented. The research is aimed at clarifying the role that each of the major components of the human system plays following the transition to and from space. The approach utilizes a variety of mathematical models in order to pose and test alternative hypotheses concerned with the adaptation process. Certain aspects of the problem of fluid and electrolyte shifts in weightlessnes are considered, and an integrated hypothesis based on numerical simulation studies and experimental data is presented.
Song, Yan; Zhao, Guo-zhen; Zhao, Bai-xiao; Ji, Bo; Wang, De-sheng; Zhang, He; Mao, Ying-qiu; Zhang, Ping; Xu, Yong-si; Liu, Ya-li; Lu, Ya-wen; Dai, Jian; Li, Ying-hui
2015-10-01
To observe the effect of acupuncture intervention at different time-points on the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), the content of malonaldehyde (MDA) and expression of heat shock protein 70 (HSP 70) of liver tissue in rats with simulated weightlessness, so as to explore its mechanism underlying improvement of liver injury in rats with simulated weightlessness. Twenty male Wistar rats were randomly divided into control group, model group, pre-acupuncture group and EA group, 5 rats in each. The model of simulated weightlessness was established by tail suspension for 4 week. One week before the tail suspension, the rats in the pre-acupuncture group were treated with electroacupuncture (EA) at "Shenshu" (BL 23), "Pishu"(BL 20) and "Sanyinjiao" (SP 6) for 30 min before treatment, once a day for 7 days. The rats in the EA group received tail suspension and acupuncture intervention at the same time. EA was applied for 30 min per treatment, once every other day for 14 times. Immunohistochemical staining was used to assay the expression of HSP 70 in the liver tissue. The activities of SOD and GSH-PX and content of MDA in liver tissues were examined by means of colourimetric method. Results Compared with the control group,the expression of HSP 70 and the content of MDA in the liver tissue were increased significantly (P < 0.01), and the activity of SOD and GSH-PX was notably reduced (P < 0.05) in the model group. Compared with the model group, the content of HSP 70 was significantly reduced in the pre-acupuncture group (P < 0.01). There were no significant changes in the levels of SOD, GSH-PX, MDA and HSP 70 in the EA group (P > 0.05). In comparison with the pre-acupuncture group, the activity of GSH-PX was lower (P < 0.05) and the content of MDA was higher (P < 0.05) in the EA group. EA-pretreatment can suppress the increase of liver HSP 70 immunoactivity in rats with simulated weightlessness, being likely to improve the antioxidant ability of liver.
Gravity as a biochemical determinant
NASA Technical Reports Server (NTRS)
Siegel, S. M.
1979-01-01
The existence of obvious morphological and physiological changes in living systems exposed to altered gravity immediately informs us that prior changes have taken place in the chemistry of exposed cells, tissues and organs. These changes include transients that return more or less promptly to the norm when the system is restored to the terrestrial g-field. For example, altered serum hormone and electrolyte levels in man, which appear to reflect successful adaptation to the conditions of orbital weightlessness, disappear shortly after return to Earth. Other changes--in mineral and protein constituents of the skeletal system in man, and cell wall composition in plants--are more persistent or even permanent. Hypogravitational departures from the norm include not only "weightlessness" as achieved in orbit, but also experimental modes of compensation, on the clinostat or by flotation. These techniques are useful in the study of hypogravity but cannot replace fully the weightless environment. Plant ethylene and peroxidase both increase under orbital, clinostat and/or flotation conditions whereas 3-phosphoglyceraldehyde-dehydrogenase increases under orbital but not clinostat conditions; cytochrome reductase and malic dehydrogenase levels are affected by the clinostat, but not by actual weightless conditions. How do the altered organismal biochemistries induced by the centrifuge and the clinostat relate to one another? Does gravity operate on living systems as a continuous variable from 0 to superterrestrial values, or do deviations from g(earth) generate non-uniform, discontinuous stress responses, irrespective of sign? In plants, measurements of wall lignin content and peroxidase activity yield opposite answers. Given the limited data so far available we will consider the meaning of these contradictions.
Inertial torque during reaching directly impacts grip-force adaptation to weightless objects.
Giard, T; Crevecoeur, F; McIntyre, J; Thonnard, J-L; Lefèvre, P
2015-11-01
A hallmark of movement control expressed by healthy humans is the ability to gradually improve motor performance through learning. In the context of object manipulation, previous work has shown that the presence of a torque load has a direct impact on grip-force control, characterized by a significantly slower grip-force adjustment across lifting movements. The origin of this slower adaptation rate remains unclear. On the one hand, information about tangential constraints during stationary holding may be difficult to extract in the presence of a torque. On the other hand, inertial torque experienced during movement may also potentially disrupt the grip-force adjustments, as the dynamical constraints clearly differ from the situation when no torque load is present. To address the influence of inertial torque loads, we instructed healthy adults to perform visually guided reaching movements in weightlessness while holding an unbalanced object relative to the grip axis. Weightlessness offered the possibility to remove gravitational constraints and isolate the effect of movement-related feedback on grip force adjustments. Grip-force adaptation rates were compared with a control group who manipulated a balanced object without any torque load and also in weightlessness. Our results clearly show that grip-force adaptation in the presence of a torque load is significantly slower, which suggests that the presence of torque loads experienced during movement may alter our internal estimates of how much force is required to hold an unbalanced object stable. This observation may explain why grasping objects around the expected location of the center of mass is such an important component of planning and control of manipulation tasks.
NASA Technical Reports Server (NTRS)
Kenyon, R. V.; Young, L. R.
1986-01-01
The four science crewmembers of Spacelab-1 were tested for postural control before and after a 10 day mission in weightlessness. Previous reports have shown changes in astronaut postural behavior following a return to earth's 1-g field. This study was designed to identify changes in EMG latency and amplitudes that might explain the instabilities observed post-flight. Erect posture was tested having the subject stand on a pneumatically driven posture platform which pitched rapidly and unexpectedly about the ankles causing dorsi- and plantarflexion. Electromyographic (EMG) activity from the tibialis anterior and the gastrocnemius-soleus muscles was measured during eyes open and eyes closed trials. The early (pre 500 ms) EMG response characteristics (latency, amplitude) in response to a disturbance in the posture of the subject were apparently unchanged by the 10 days of weightlessness. However, the late (post 500 ms) response showed higher amplitudes than was found pre-flight. General postural control was quantitatively measured pre- and post-flight by a 'sharpened Romberg Rails test'. This test showed decrements in standing stability with eyes closed for several days post-flight.
NASA Technical Reports Server (NTRS)
Glenny, R. W.; Lamm, W. J.; Bernard, S. L.; An, D.; Chornuk, M.; Pool, S. L.; Wagner, W. W. Jr; Hlastala, M. P.; Robertson, H. T.
2000-01-01
To compare the relative contributions of gravity and vascular structure to the distribution of pulmonary blood flow, we flew with pigs on the National Aeronautics and Space Administration KC-135 aircraft. A series of parabolas created alternating weightlessness and 1.8-G conditions. Fluorescent microspheres of varying colors were injected into the pulmonary circulation to mark regional blood flow during different postural and gravitational conditions. The lungs were subsequently removed, air dried, and sectioned into approximately 2 cm(3) pieces. Flow to each piece was determined for the different conditions. Perfusion heterogeneity did not change significantly during weightlessness compared with normal and increased gravitational forces. Regional blood flow to each lung piece changed little despite alterations in posture and gravitational forces. With the use of multiple stepwise linear regression, the contributions of gravity and vascular structure to regional perfusion were separated. We conclude that both gravity and the geometry of the pulmonary vascular tree influence regional pulmonary blood flow. However, the structure of the vascular tree is the primary determinant of regional perfusion in these animals.
Effects of weightlessness on body composition in the rat
NASA Technical Reports Server (NTRS)
Pitts, G. C.; Ushakov, A. S.; Pace, N.; Smith, A. H.; Rahlmann, D. F.; Smirnova, T. A.
1983-01-01
The effects of weightlessness on the body composition of rats were investigated using 5 male rats exposed to 18.5 days of weightlessness on the COSMOS 1129 biosatellite and killed after reentry. The animals were immediately dissected and the three major body divisions (musculoskeletal system, skin, and pooled viscera) were analyzed for fat, water, solids, and six elements. These results were determined as percentages of the fat-free body or its components and then compared with two groups of terrestrial controls, one of which was subjected to a flight simulation in a spacecraft mock-up while the other was under standard vivarium conditions. Compared with the control groups, the flight group was found to exhibit a reduced fraction of total body water, a net shift of body water from skin to viscera, a marked diminution in the fraction of extracellular water in the fat-free body, a marked reduction in the fraction of bone mineral, no change in the quantity of stored fat or adrenal masses, and a net increase in total muscle mass as indicated by total body creatine, protein, and body cell mass.
Hindlimb suspension reduces muscle regeneration
NASA Technical Reports Server (NTRS)
Mozdziak, P. E.; Truong, Q.; Macius, A.; Schultz, E.
1998-01-01
Exposure of juvenile skeletal muscle to a weightless environment reduces growth and satellite cell mitotic activity. However, the effect of a weightless environment on the satellite cell population during muscle repair remains unknown. Muscle injury was induced in rat soleus muscles using the myotoxic snake venom, notexin. Rats were placed into hindlimb-suspended or weightbearing groups for 10 days following injury. Cellular proliferation during regeneration was evaluated using 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry and image analysis. Hindlimb suspension reduced (P < 0.05) regenerated muscle mass, regenerated myofiber diameter, uninjured muscle mass, and uninjured myofiber diameter compared to weightbearing rats. Hindlimb suspension reduced (P < 0.05) BrdU labeling in uninjured soleus muscles compared to weight-bearing muscles. However, hindlimb suspension did not abolish muscle regeneration because myofibers formed in the injured soleus muscles of hindlimb-suspended rats, and BrdU labeling was equivalent (P > 0.10) on myofiber segments isolated from the soleus muscles of hindlimb-suspended and weightbearing rats following injury. Thus, hindlimb suspension (weightlessness) does not suppress satellite cell mitotic activity in regenerating muscles before myofiber formation, but reduces growth of the newly formed myofibers.
The response of structure and function of the gravireceptor in a vertebrate to near weightlessness.
Neubert, J; Briegleb, W; Schatz, A; Hertwig, I; Kruse, B
1988-02-01
The paper sums up results of a 7-day space flight experiment (D-l-Mission-BW-STA 00-STATEX) using growing frog embryos and larvae (Xenopus laevis) as a model system. Evaluation of photographs taken from the surface of sectioned deep-frozen objects, and micrographs using TEM and SEM show no aberrations in the shape, size, position, or respective electron density of the otolith membranes in larvae developed for 154 h under near-zero g. The further evaluation of the "weightless larvae" revealed a probably not yet described otolith-like formation below the dorsal wall of the vestibulum. In the weightless larvae this formation outnumbers, also qualitatively, strongly the 1-g control samples. The swimming behavior of the tadpoles which was observed about one hour after landing of the Space Shuttle showed a typical anomaly (loop swimming), which is known from larvae developed on the clinostat or from fish flown aboard Apollo capsules. An extra result is the lack of striking effects of cosmic radiation on the embryonic development of the flown Xenopus eggs.
NASA Technical Reports Server (NTRS)
Simanonok, K. E.; Srinivasan, R.; Charles, J. B.
1992-01-01
Fluid shifts in weightlessness may cause a central volume expansion, activating reflexes to reduce the blood volume. Computer simulation was used to test the hypothesis that preadaptation of the blood volume prior to exposure to weightlessness could counteract the central volume expansion due to fluid shifts and thereby attenuate the circulatory and renal responses resulting in large losses of fluid from body water compartments. The Guyton Model of Fluid, Electrolyte, and Circulatory Regulation was modified to simulate the six degree head down tilt that is frequently use as an experimental analog of weightlessness in bedrest studies. Simulation results show that preadaptation of the blood volume by a procedure resembling a blood donation immediately before head down bedrest is beneficial in damping the physiologic responses to fluid shifts and reducing body fluid losses. After ten hours of head down tilt, blood volume after preadaptation is higher than control for 20 to 30 days of bedrest. Preadaptation also produces potentially beneficial higher extracellular volume and total body water for 20 to 30 days of bedrest.
The response of structure and function of the gravireceptor in a vertebrate to near weightlessness
NASA Astrophysics Data System (ADS)
Neubert, J.; Briegleb, W.; Schatz, A.; Hertwig, I.; Kruse, B.
The paper sums up results of a 7-day space flight experiment (D-1-Mission-BW-STA 00-STATEX) using growing frog embryos and larvae ( Xenopus laevis) as a model system. Evaluation of photographs taken from the surface of sectioned deep-frozen objects, and micrographs using TEM and SEM show no aberrations in the shape, size, position, or respective electron density of the otolith membranes in larvae developed for 154 h under near-zero g. The further evaluation of the "weightless larvae" revealed a probably not yet described otolith-like formation below the dorsal wall of the vestibulum. In the weightless larvae this formation outnumbers, also qualitatively, strongly the 1- g control samples. The swimming behavior of the tadpoles which was observed about one hour after landing of the Space Shuttle showed a typical anomaly (loop swimming), which is known from larvae developed on the clinostat or from fish flown aboard Apollo capsules. An extra result is the lack of striking effects of cosmic radiation on the embryonic development of the flown Xenopus eggs.
NASA's Zero-g aircraft operations
NASA Technical Reports Server (NTRS)
Williams, R. K.
1988-01-01
NASA's Zero-g aircraft, operated by the Johnson Space Center, provides the unique weightless or zero-g environment of space flight for hardware development and test and astronaut training purposes. The program, which began in 1959, uses a slightly modified Boeing KC-135A aircraft, flying a parabolic trajectory, to produce weightless periods of 20 to 25 seconds. The program has supported the Mercury, Gemini, Apollo, Skylab, Apollo-Soyuz and Shuttle programs as well as a number of unmanned space operations. Typical experiments for flight in the aircraft have included materials processing experiments, welding, fluid manipulation, cryogenics, propellant tankage, satellite deployment dynamics, planetary sciences research, crew training with weightless indoctrination, space suits, tethers, etc., and medical studies including vestibular research. The facility is available to microgravity research organizations on a cost-reimbursable basis, providing a large, hands-on test area for diagnostic and support equipment for the Principal Investigators and providing an iterative-type design approach to microgravity experiment development. The facility allows concepts to be proven and baseline experimentation to be accomplished relatively inexpensively prior to committing to the large expense of a space flight.
Animals in biomedical space research
NASA Technical Reports Server (NTRS)
Phillips, R. W.
1986-01-01
Rat and squirrel monkeys experiments have been planned in concert with human experiments to help answer fundamental questions concerning the effect of weightlessness on mammalism function. For the most part, these experiments focus on identified changes noted in humans during space flight. Utilizing space laboratory facilities, manipulative experiments can be completed while animals are still in orbit. Other experiments are designed to study changes in gravity receptor structure and function and the effect of weightlessness on early vertibrate development. Following these preliminary animal experiments on Spacelab Shuttle flights, longer term programs of animal investigation will be conducted on Space Station.
NASA Technical Reports Server (NTRS)
Krikorian, A. D.; Steward, F. C.
1978-01-01
An experiment designed to test whether embryos capable of developing from isolated somatic carrot cells could do so under conditions of weightlessness in space was performed aboard the unmanned Soviet biosatellite Kosmos 782 under the auspices of the joint United States-Soviet Biological Satellite Mission. Space flight and weightlessness seem to have had no adverse effects on the induction of embryoids or on the development of their organs. A portion of the crop of carrot plantlets originated in space and grown to maturity were not morphologically different from controls.
Torda, T; Kvetnansky, R; Tigranian, R A; Chulman, J; Genin, A M
1981-01-01
In the hypothalamus of the weightless and centrifuged rats flown for 18.5 days on board the biosatellite Cosmos-936 the noradrenaline concentration and activity of the enzymes involved in the catecholamine synthesis and degradation were measured. It was found that under the space flight influence the noradrenaline concentration and tyrosine hydroxylase, dopamine-beta-hydroxylase and monoamine oxidase activities remained unaltered. These findings indicate that a prolonged exposure to weightlessness was not a stressogenic agent that could activate the adrenergic system in the rat hypothalamus.
NASA Technical Reports Server (NTRS)
Komendantov, G. L.; Kopanev, V. I.
1975-01-01
Spacesickness under weightlessness conditions is explained mainly by disruption of the activity of the functional system perceiving space and participating in carrying out the balancing function, consisting, in particular, of the vestibular, proprioceptive, interoceptive, visual and cutaneomechanical analyzers. It can be assumed that, under specific conditions, Coriolis acceleration also is a cause of spacesickness. Adaptation is possible by formation of a new functional system which is adequate to the new mechanical conditions of weightlessness. Selection, training, creation of optimum conditions in the spacecraft cabin, medicinal, and technical improvement of spacecraft play an important role in prophylaxis of the space form of seasickness.
Endoscopic surgery in weightlessness: the investigation of basic principles for surgery in space.
Campbell, M R; Kirkpatrick, A W; Billica, R D; Johnston, S L; Jennings, R; Short, D; Hamilton, D; Dulchavsky, S A
2001-12-01
Performing a surgical procedure in weightlessness, also called 0-gravity (0-g), has been shown to be no more difficult than in a 1-g environment if the requirements for the restraint of the patient, operator, surgical hardware, are observed. The performance of laparoscopic and thorascopic procedures in weightlessness, if feasible, would offer several advantages over the performance of an open operation. Concerns about the feasibility of performing minimally invasive procedures in weightlessness have included impaired visualization from the absence of gravitational retraction of the bowel (laparoscopy) or thoracic organs (thoracoscopy) as well as obstruction and interference from floating debris such as blood, pus, and irrigation fluid. The purpose of this study was to determine the feasibility of performing laparoscopic and thorascopic procedures and the degree of impaired surgical endoscopic visualization in weightlessness. From 1993 to 2000, laparoscopic and thorascopic procedures were performed on 10 anesthetized adult pigs weighing approximately 50 kg in the National Aeronautics and Space Administration (NASA) Microgravity Program using a modified KC-135 airplane. The parabolic simulation system for advanced life support was used in this project, and 20 to 40 parabolas were used for laparoscopic or thorascopic investigation, each containing approximately 30 s of 0-g alternating with 2-g pullouts. The animal model was restrained in the supine position on a floor-level Crew Medical Restraint System, and the abdominal cavity was insufflated with carbon dioxide. The intraabdominal and intrathoracic anatomy was visualized in the 1-g, 0-g, and 2-g periods of parabolic flight. Bleeding was created in the animals, and the behavior of the blood in the abdominal and thoracic cavities was observed. In the thoracic cavity, gas insufflation and mechanical retraction was used at times unilaterally to decrease pulmonary ventilation enough to increase the thoracic domain. Visualization was improved in laparoscopy, from tethering of the bowel by the elastic mesentery, and from the strong tendency for debris and blood to adhere to the abdominal wall because of surface tension forces. The lack of adequate thoracic domain made thorascopy more difficult. Fluid in the thoracic cavity did not impair visualization because the fluid at 0-g does not loculate posteriorly, but disperses along the thoracic wall and mediastinal reflections. Performing minimally invasive procedures instead of open surgical procedures in a weightless environment has theoretical advantages, especially in the ability to prevent cabin atmosphere contamination from surgical fluids (blood, pus, irrigation). Visualization will become more important and practical as the endoscopic hardware is miniaturized from its current form, as endoscopic technology becomes more advanced, and as more surgically capable medical crew officers are present in future long-duration space exploration missions.
Endoscopic surgery in weightlessness: the investigation of basic principles for surgery in space
NASA Technical Reports Server (NTRS)
Campbell, M. R.; Kirkpatrick, A. W.; Billica, R. D.; Johnston, S. L.; Jennings, R.; Short, D.; Hamilton, D.; Dulchavsky, S. A.
2001-01-01
BACKGROUND: Performing a surgical procedure in weightlessness, also called 0-gravity (0-g), has been shown to be no more difficult than in a 1-g environment if the requirements for the restraint of the patient, operator, surgical hardware, are observed. The performance of laparoscopic and thorascopic procedures in weightlessness, if feasible, would offer several advantages over the performance of an open operation. Concerns about the feasibility of performing minimally invasive procedures in weightlessness have included impaired visualization from the absence of gravitational retraction of the bowel (laparoscopy) or thoracic organs (thoracoscopy) as well as obstruction and interference from floating debris such as blood, pus, and irrigation fluid. The purpose of this study was to determine the feasibility of performing laparoscopic and thorascopic procedures and the degree of impaired surgical endoscopic visualization in weightlessness. METHODS: From 1993 to 2000, laparoscopic and thorascopic procedures were performed on 10 anesthetized adult pigs weighing approximately 50 kg in the National Aeronautics and Space Administration (NASA) Microgravity Program using a modified KC-135 airplane. The parabolic simulation system for advanced life support was used in this project, and 20 to 40 parabolas were used for laparoscopic or thorascopic investigation, each containing approximately 30 s of 0-g alternating with 2-g pullouts. The animal model was restrained in the supine position on a floor-level Crew Medical Restraint System, and the abdominal cavity was insufflated with carbon dioxide. The intraabdominal and intrathoracic anatomy was visualized in the 1-g, 0-g, and 2-g periods of parabolic flight. Bleeding was created in the animals, and the behavior of the blood in the abdominal and thoracic cavities was observed. In the thoracic cavity, gas insufflation and mechanical retraction was used at times unilaterally to decrease pulmonary ventilation enough to increase the thoracic domain. RESULTS: Visualization was improved in laparoscopy, from tethering of the bowel by the elastic mesentery, and from the strong tendency for debris and blood to adhere to the abdominal wall because of surface tension forces. The lack of adequate thoracic domain made thorascopy more difficult. Fluid in the thoracic cavity did not impair visualization because the fluid at 0-g does not loculate posteriorly, but disperses along the thoracic wall and mediastinal reflections. CONCLUSIONS: Performing minimally invasive procedures instead of open surgical procedures in a weightless environment has theoretical advantages, especially in the ability to prevent cabin atmosphere contamination from surgical fluids (blood, pus, irrigation). Visualization will become more important and practical as the endoscopic hardware is miniaturized from its current form, as endoscopic technology becomes more advanced, and as more surgically capable medical crew officers are present in future long-duration space exploration missions.
NASA Technical Reports Server (NTRS)
Kravik, Stein E.
1989-01-01
Because of their erect posture, humans are more vulnerable to gravitational changes than any other animal. During standing or walking man must constantly use his antigravity muscles and his two columns, his legs, to balance against the force of gravity. At the same time, blood is surging downward to the dependent portions of the body, draining blood away from the brain and heart, and requiring a series of complex cardiovascular adjustments to maintain the human in a bipedal position. It was not until 12 April 1961, when Yuri Gagarin became the first human being to orbit Earth, that we could confirm man's ability to maintain vital functions in space -- at least for 90 min. Nevertheless, man's adaptation to weightlessness entails the deconditioning of various organs in the body. Muscles atrophy, and calcium loss leads to loss of bone strength as the demands on the musculoskeletal system are almost nonexistent in weightlessness. Because of the lack of hydrostatic pressures in space, blood rushes to the upper portions of the body, initiating a complex series of cardioregulatory responses. Deconditioning during spaceflight, however, first becomes a potentially serious problem in humans returning to Earth, when the cardiovascular system, muscles and bones are suddenly exposed to the demanding counterforce of gravity -- weight. One of the main purposes of our studies was to test the feasibility of using Lower Body Positive Pressure, applied with an antigravity suit, as a new and alternative technique to bed rest and water immersion for studying cardioregulatory, renal, electrolyte, and hormonal changes in humans. The results suggest that Lower Body Positive Pressure can be used as an analog of microgravity-induced physiological responses in humans.
Focused Assessment with Sonography for Trauma in weightlessness: a feasibility study
NASA Technical Reports Server (NTRS)
Kirkpatrick, Andrew W.; Hamilton, Douglas R.; Nicolaou, Savvas; Sargsyan, Ashot E.; Campbell, Mark R.; Feiveson, Alan; Dulchavsky, Scott A.; Melton, Shannon; Beck, George; Dawson, David L.
2003-01-01
BACKGROUND: The Focused Assessment with Sonography for Trauma (FAST) examines for fluid in gravitationally dependent regions. There is no prior experience with this technique in weightlessness, such as on the International Space Station, where sonography is currently the only diagnostic imaging tool. STUDY DESIGN: A ground-based (1 g) porcine model for sonography was developed. We examined both the feasibility and the comparative performance of the FAST examination in parabolic flight. Sonographic detection and fluid behavior were evaluated in four animals during alternating weightlessness (0 g) and hypergravity (1.8 g) periods. During flight, boluses of fluid were incrementally introduced into the peritoneal cavity. Standardized sonographic windows were recorded. Postflight, the video recordings were divided into 169 20-second segments for subsequent interpretation by 12 blinded ultrasonography experts. Reviewers first decided whether a video segment was of sufficient diagnostic quality to analyze (determinate). Determinate segments were then analyzed as containing or not containing fluid. A probit regression model compared the probability of a positive fluid diagnosis to actual fluid levels (0 to 500 mL) under both 0-g and 1.8-g conditions. RESULTS: The in-flight sonographers found real-time scanning and interpretation technically similar to that of terrestrial conditions, as long as restraint was maintained. On blinded review, 80% of the recorded ultrasound segments were considered determinate. The best sensitivity for diagnosis in 0 g was found to be from the subhepatic space, with probability of a positive fluid diagnosis ranging from 9% (no fluid) to 51% (500 mL fluid). CONCLUSIONS: The FAST examination is technically feasible in weightlessness, and merits operational consideration for clinical contingencies in space.
Liu, C; Zhang, L F; Zhang, L N; Ni, H Y; Zhang, Y Q; Sun, L
2000-12-01
Objective. To study the efficacy of intermittent + Gz (45 degrees head-up tilt, HUT) exposures in preventing or alleviating atrophic changes in hind limb muscles induced by simulated weightlessness. Method. Male Sprague-Dawley (SD) rats were assigned randomly to one of three groups: simultaneous control (CON), simulated weightlessness (SUS), and SUS plus 6 h/d HUT (SUS + HUT). Muscles examined included soleus (SOL), medial gastrocnemius (correction from grastrocnemius) (MG), lateral gastrocnemius (LG) and extensor digitorum longus (EDL). Sections were treated with an adenosinetriphosphatase (ATPase) stain or alkaline phosphatase stain. The cross-sectional areas (CSA) of fibers, the relative proportion of type I fiber and the ratio of capillaries/fibers (C/F) were measured using Leica image analysis system. Result. Compared with CON, the wet weight of hind limb muscles in SUS were significantly reduced. The changes of wet weight in different groups were various. The C/F ratios of all muscles were significantly reduced. SUS + HUT rats showed significant increases in SOL and MG wet weight, and the relative counter-effects of intermittent HUT were 93.4% and 34.8%, respectively. In SUS + HUT group, the CSA of both type I and II fibers and relative proportion of type I fibers were completely recovered in SOL, and partially recovered in MG, while the counter-effects were much less obvious in the fibers of LG and EDL. However, HUT resulted in a significant recovery of the C/F ratios in all muscles. Conclusion. The present study demonstrated that intermittent HUT is effective in counteracting the atrophy induced by simulated weightlessness. The result that reactivity to HUT varied among different muscles suggests that the intermittent artificial gravity should be complemented with other countermeasures.
The Effect of Hindlimb Suspension on the Reproductive System of Young Male Rats
NASA Technical Reports Server (NTRS)
Tou, Janet; Grindeland, R.; Baer, L.; Guran, G.; Fung, C.; Wade, C.; Dalton, Bonnie P. (Technical Monitor)
2001-01-01
Colonization of space requires the ability to reproduce in reduced gravity. Following spaceflight, astronauts and male rats exhibit decreased testosterone (T). This has important implications as T effects the testes and accessory sex glands. To our knowledge no studies have examined the effects of spaceflight on accessory sex glands. Due to the rarity of spaceflight opportunities, ground models have been used to simulate weightlessness. The objective of this study was to determine the effect of long-term (21 d) weightlessness on the reproductive system of male rats. Weightlessness was simulated using the Morey-Holton hindlimb suspension (HLS) model. Age 10 week old, male Sprague-Dawley rats weighing (209.0 +9.7g) were randomly assigned (n=10/group) to either HLS or ambulatory control. In HLS rats, testes mass was 33% lower (p<0.05) than ambulatory controls. However, HLS had no effect on prostate (0.65 +0.09g vs 0.69 +0.12g) or seminal vesicles (1.01 +0.35g vs 0.75 +0.22g) weights compared to controls. The absence of effects on plasma T in this study contrasts previous reports of reduced plasma T in HLS male rats. This discrepancy may have been due to the age of animal and timing of sampling. T levels vary dramatically during testes development as well as within normal diurnal cycles. In young HLS rats, testes weight was reduced but not plasma T. Subsequently there was no effect on accessory sex glands. However, this may not be the case in older rats. More studies using standardized methods are needed to gain a better understanding of male reproduction function and capability in weightlessness. Funding provided by NASA.
Otolith mass asymmetry: natural, and after weightlessness and hypergravity
NASA Astrophysics Data System (ADS)
Lychakov, Dmitri
It is believed that otolith mass asymmetry (OA) can play an essential role in genesis of vestibular space disturbances in human subjects and fish. This review poster presents data on values and characters of OA in animals of various species and classes and on the effect of weightlessness and hypergravity on OA; the issue of the effect of OA on vestibular and auditory functions also is considered (Lychakov, Rebane, 2004, 2005; Lychakov et al., 2006, 2008). In symmetric vertebrates, OA was shown to be fluctuating, its coefficient chiχ ranges from - 0.2 to + 0.2 (±± 20%). It should be stressed that in the overwhelming majority of individuals absolute values of chiχ << 0.06. The low OA level enables the paired otolith organs to work in coordination; this is why the OA level is equally low regardless of the individual taxonomic and ecological position, size, age, and otolith growth rate. Individuals with the abnormally high OA level can experience difficulties in analyzing auditory and vestibular stimuli; therefore, most of such individuals are eliminated by natural selection. Unlike symmetric vertebrates, labyrinths of many Pleuronectiformes have pronounced OA. Otoliths in the lower labyrinth, on average, are significantly heavier than those in the upper labyrinth. The organs of flatfish represent the only example when OA, being directional, seem to play an essential role in lateralized behavior and are suggested to be used in the spatial localization of the source of sound. The short-term weightlessness and relatively weak hypergravity (<< 2g) do not affect OA. However, it cannot be ruled out that the long-term weightlessness and hypergravity >> 3g as well as some diseases and age-related changes can indirectly enhance OA and cause some functional disturbances. This work was partly supported by Russian grant RFFI 14-04-00601.
Creating a Lunar EVA Work Envelope
NASA Technical Reports Server (NTRS)
Griffin, Brand N.; Howard, Robert; Rajulu, Sudhakar; Smitherman, David
2009-01-01
A work envelope has been defined for weightless Extravehicular Activity (EVA) based on the Space Shuttle Extravehicular Mobility Unit (EMU), but there is no equivalent for planetary operations. The weightless work envelope is essential for planning all EVA tasks because it determines the location of removable parts, making sure they are within reach and visibility of the suited crew member. In addition, using the envelope positions the structural hard points for foot restraints that allow placing both hands on the job and provides a load path for reacting forces. EVA operations are always constrained by time. Tasks are carefully planned to ensure the crew has enough breathing oxygen, cooling water, and battery power. Planning first involves computers using a virtual work envelope to model tasks, next suited crew members in a simulated environment refine the tasks. For weightless operations, this process is well developed, but planetary EVA is different and no work envelope has been defined. The primary difference between weightless and planetary work envelopes is gravity. It influences anthropometry, horizontal and vertical mobility, and reaction load paths and introduces effort into doing "overhead" work. Additionally, the use of spacesuits other than the EMU, and their impacts on range of motion, must be taken into account. This paper presents the analysis leading to a concept for a planetary EVA work envelope with emphasis on lunar operations. There is some urgency in creating this concept because NASA has begun building and testing development hardware for the lunar surface, including rovers, habitats and cargo off-loading equipment. Just as with microgravity operations, a lunar EVA work envelope is needed to guide designers in the formative stages of the program with the objective of avoiding difficult and costly rework.
Fu, Q; Sugiyama, Y; Kamiya, A; Mano, T
2000-04-12
Six-degree head-down tilt (HDT) is well accepted as an effective weightlessness model in humans. However, some researchers utilized lower body positive pressure (LBPP) to simulate the cardiovascular and renal effects of a decreased gravitational stress. In order to determine whether LBPP was a suitable model for simulated weightlessness, we compared the differences between these two methods. Ten healthy males, aged 21-41 years, were subjected to graded LBPP at 10, 20 and 30 mmHg, as well as 6 degrees HDT. Muscle sympathetic nerve activity (MSNA) was microneurographically recorded from the tibial nerve along with cardiovascular variables. We found that MSNA decreased by 27% to a similar extent both at low levels of LBPP (10 and 20 mmHg) and HDT. However, at a high level of LBPP (30 mmHg), MSNA tended to increase. Mean arterial pressure was elevated significantly by 11% (10 mmHg) at 30 mmHg LBPP, but remained unchanged at low levels of LBPP and HDT. Heart rate did not change during the entire LBPP and HDT procedures. Total peripheral resistance markedly increased by 36% at 30 mmHg LBPP, but decreased by 9% at HDT. Both stroke volume and cardiac output tended to decrease at 30 mmHg LBPP, but increased at HDT. These results suggest that although both LBPP and HDT induce fluid shifts from the lower body toward the thoracic compartment, autonomic responses are different, especially at LBPP greater than 20 mmHg. We note that high levels of LBPP (>20 mmHg) activate not only cardiopulmonary and arterial baroreflexes, but also intramuscular mechanoreflexes, while 6 degrees HDT only activates cardiopulmonary baroreflexes. We conclude that LBPP is not a suitable model for simulated weightlessness in humans.
Lychakov, D V
2016-01-01
The review contains data on functional shifts in fishes, amphibians and birds caused by changes in the otolith system operation after stay under weightlessness conditions. These data are of theoretical and practical significance and are important to resolve some fundamental problems of vestibulogy. The analysis of the results of space experiments has shown that weightlessness conditions do not exert a substantial impact on formation and functional state of the otolith system in embryonic fishes, amphibians and birds developed during space flight. Weightlessness conditions do pot inhibit embryonic development of lower vertebrates but even have rather beneficial effect on it. This is consistent with conclusions concerning development of mammalian fetuses. The experimental results show that weightlessness can cause similar functional and behavioral vestibular shifts both in lower vertebrates and in mammals. For example, immediately after an orbital flight the vestibuloocular reflex in fish larvae and tadpoles (without lordosis) was stronger than in control individuals. A similar shift of the otolith reflex was observed in the majority of cosmonauts after short-term orbital flights. Immediately after landing adult terrestrial vertebrates, as well as human beings, exhibit lower activity levels, worse equilibrium and coordination of movements. Another interesting finding observed after landing of the cosmic apparatus was an unusual looping character of tadpole swimming. It is supposed that the unusual motor activity of animals as well as appearance of illusions in cosmonauts and astronauts after switching from 1 to 0 g have the same nature and are related to the change in character of otolith organs stimulation. Considering this similarity of vestibular reactions, using animals seems rather perspective. Besides it allows applying in experiments various invasive techniques.
NASA Technical Reports Server (NTRS)
Hutchins, P. M.; Marshburn, T. H.; Smith, T. L.; Osborne, S. W.; Lynch, C. D.; Moultsby, S. J.
1988-01-01
The investigation of cardiovascular function necessarily involves a consideration of the exchange of substances at the capillary. If cardiovascular function is compromised or in any way altered during exposure to zero gravity in space, then it stands to reason that microvascular function is also modified. We have shown that an increase in cardiac output similar to that reported during simulated weightlessness is associated with a doubling of the number of post-capillary venules and a reduction in the number of arterioles by 35%. If the weightlessness of space travel produces similar changes in cardiopulmonary volume and cardiac output, a reasonable expectation is that astronauts will undergo venous neovascularization. We have developed an animal model in which to correlate microvascular and systemic cardiovascular function. The microcirculatory preparation consists of a lightweight, thermo-neutral chamber implanted around intact skeletal muscle on the back of a rat. Using this technique, the performed microvasculature of the cutaneous maximus muscle may be observed in the conscious, unanesthetized animal. Microcirculatory variables which may be obtained include venular and arteriolar numbers, lengths and diameters, single vessel flow velocities, vasomotion, capillary hematocrit anastomoses and orders of branching. Systemic hemodynamic monitoring of cardiac output by electromagnetic flowmetry, and arterial and venous pressures allows correlation of macro- and microcirculatory changes at the same time, in the same animal. Observed and calculated hemodynamic variables also include pulse pressure, heart rate, stroke volume, total peripheral resistance, aortic compliance, minute work, peak aortic flow velocity and systolic time interval. In this manner, an integrated assessment of total cardiovascular function may be obtained in the same animal without the complicating influence of anesthetics.
Vinnikov, Ia A; Gazenko, O G; Titova, L K; Bronshteĭn, A A; Govardovskiĭ, V I
1978-01-01
Vestibular apparatus was investigated in rats subjected to weightlessness for 19.5 days in the satelite "Cosmos-782" and experienced acceleration on launching and landing. Some structural and functional changes were noted. They were seen in otolith clinging to the utricular receptor surface and in the peripheral arrangement of the nucleolus in the nuclei of the receptor cells. It is also possible that increased edema of the vestibular tissue resulted in destruction of some receptor cells, and within the otolith--changes in the form and structure of otoconia. In the horizontal crista the cupula was separated.
Gravity as a probe for understanding pattern specification
NASA Technical Reports Server (NTRS)
Malacinski, George M.; Neff, Anton W.
1993-01-01
Amphibian eggs from Xenopus laevis were employed as a model system. Xenopus embryos were demonstrated to be sensitive to novel force fields. Under clinostat-simulated weightlessness the location of the third cleavage furrow was shifted towards the equator; the dorsal lip was shifted closer to the vegetal pole; and head and eye dimensions of hatching tadpoles were enlarged. Effects of centrifuge-simulated hypergravity were the opposite of those of simulated weightlessness. Those morphological alterations had their own force-sensitive period, and a substantial spawning-to-spawning variation in sensitivity was observed. Despite those dramatic differences in embryogenesis, tadpoles at the feeding stage were largely indistinguishable from controls.
1973-05-01
This photograph was taken during testing of an emergency procedure to free jammed solar array panels on the Skylab workshop. A metal strap became tangled over one of the folded solar array panels when Skylab lost its micrometeoroid shield during the launch. This photograph shows astronauts Schweickart and Gibson in the Marshall Space Flight Center (MSFC) Neutral Buoyancy Simulator (NBS) using various cutting tools and methods developed by the MSFC to free the jammed solar wing. Extensive testing and many hours of practice in simulators such as the NBS tank helped prepare the Skylab crewmen for extravehicular performance in the weightless environment. This huge water tank simulated the weightless environment that the astronauts would encounter in space.
NASA Technical Reports Server (NTRS)
Kirsch, K.
1981-01-01
A Spacelab experiment is described which proposes to obtain data on the degree of engorgement of the cephalad circulation during weightlessness by recording central venous pressure. Of practical importance is the question of how close the astronauts are to pulmonary edema and whether the pressure falls toward normal during the time of the mission. Another experiment to investigate deviations from normal fluid and mineral metabolism, possibly initiated by the central engorgement of the low pressure system, is discussed. Hormones responsible for the control of water and mineral balance (vasopressin, catecholamines, renin, aldosterone, corticosteroids, and prostaglandin E1) will be analyzed from blood samples.
Gravity as a probe for understanding pattern specification
NASA Astrophysics Data System (ADS)
Malacinski, George M.; Neff, Anton W.
1993-08-01
Amphibian eggs from Xenopus laevis were employed as a model system. Xenopus embryos were demonstrated to be sensitive to novel force fields. Under clinostat-simulated weightlessness the location of the third cleavage furrow was shifted towards the equator; the dorsal lip was shifted closer to the vegetal pole; and head and eye dimensions of hatching tadpoles were enlarged. Effects of centrifuge-simulated hypergravity were the opposite of those of simulated weightlessness. Those morphological alterations had their own force-sensitive period, and a substantial spawning-to-spawning variation in sensitivity was observed. Despite those dramatic differences in embryogenesis, tadpoles at the feeding stage were largely indistinguishable from controls.
The vestibulo-ocular reflex and its possible roles in space motion sickness
NASA Technical Reports Server (NTRS)
Watt, Douglas G. D.
1987-01-01
Prolonged exposure to an inappropriate vestibulo-ocular reflex (VOR) will usually lead to motion sickness, and it has been predicted on theoretical grounds that VOR gain may be decreased in weightlessness. While experiments during parabolic flight in aircraft tend to confirm this prediction, experiments during orbital spaceflight have led to apparently contradictory results. It is suggested that VOR gain is reduced initially, but that rapid compensatory mechanisms restore it to normal within minutes of reaching weightlessness. However, even though this process may lead to the rapid return of functionally normal gaze stability, it may not protect against the development of motion sickness.
NASA Technical Reports Server (NTRS)
Charles, John B.
2013-01-01
An attempt to clarify some vague memories of underwater studies of astronaut capabilities in space led Dr. John Charles to become acquainted with Sam Mattingly, one of the pioneers in the field, and to greater insights into Mattingly's work simulating Gemini EVAs in the mid-1960s. Charles recounted major accomplishments by Environmental Research Associates (ERA), Mattingly's company for contracting with NASA Langley on several early studies. ERA's work was considered within the context of contemporary efforts to simulate weightlessness and the widespread development of neutral buoyancy facilities after ERA's successful demonstration for Gemini 12.
Metabolic changes in rats subjected to space flight for 18.5 days in the biosatellite Cosmos 936
NASA Astrophysics Data System (ADS)
Németh, Š.; Macho, L.; Palkovič, M.; Škottová, N.; Tigranyan, R. A.
From an investigation of the activity of six glucocorticoid dependent liver enzymes, the existence of chronic, transient, stress-induced hypercorticosteronaemia during flight is probable. This hypercorticosteronaemia arises from weightlessness and induces gluconeogenesis. Weightlessness also caused substantial increases in liver glycogen level. The increased lipolytic activity and that of lipoprotein lipase in several groups of animals could be interpreted as enhancement of fat mobilization and utilization under the influence of stress. As this latter enhancement was also found in ground-based controls, it may have been due to the stress of handling rather than to space flight per se.
Increased hematuria following hypergravic exposure in middle-aged women
NASA Technical Reports Server (NTRS)
Goldwater, D. J.; Ohara, D. B.; Sandler, H.
1982-01-01
The effects of simulated weightlessness on orthostatic tolerance were studied in 9 women (55 to 65 years old) who underwent acceleration and lower body negative pressure before and after 10 days of horizontal bed rest. The results of this study show the first known association of microscopic hematuria with hypergravic and orthostatic stress which suggests similarities to the 'stress hematuria syndrome' previously seen with heavy exercise (Boileau et al., 1980). In addition, the sporadic occurrence of this phenomenon indicates a multifactorial etiology in predisposed individuals. Bedrest or weightlessness simulation per se does not seem to significantly alter renal function, but may decrease microscopic hematuria with an orthostatic component.
Medical considerations for extending human presence in space
NASA Technical Reports Server (NTRS)
Leach, C. S.; Dietlein, L. F.; Pool, S. L.; Nicogossian, A. E.
1990-01-01
The prospects for extending the length of time that humans can safely remain in space depend partly on resolution of a number of medical issues. Physiologic effects of weightlessness that may affect health during flight include loss of body fluid, functional alterations in the cardiovascular system, loss of red blood cells and bone mineral, compromised immune system function, and neurosensory disturbances. Some of the physiologic adaptations to weightlessness contribute to difficulties with readaptation to Earth's gravity. These include cardiovascular deconditioning and loss of body fluids and electrolytes; red blood cell mass; muscle mass, strength, and endurance; and bone mineral. Potentially harmful factors in space flight that are not related to weightlessness include radiation, altered circadian rhythms and rest/work cycles, and the closed, isolated environment of the spacecraft. There is no evidence that space flight has long-term effects on humans, except that bone mass lost during flight may not be replaced, and radiation damage is cumulative. However, the number of people who have spent several months or longer in space is still small. Only carefully-planned experiments in space preceded by thorough ground-based studies can provide the information needed to increase the amount of time humans can safely spend in space.
Delineating the Impact of Weightlessness on Human Physiology Using Computational Models
NASA Technical Reports Server (NTRS)
Kassemi, Mohammad
2015-01-01
Microgravity environment has profound effects on several important human physiological systems. The impact of weightlessness is usually indirect as mediated by changes in the biological fluid flow and transport and alterations in the deformation and stress fields of the compliant tissues. In this context, Fluid-Structural and Fluid-Solid Interaction models provide a valuable tool in delineating the physical origins of the physiological changes so that systematic countermeasures can be devised to reduce their adverse effects. In this presentation, impact of gravity on three human physiological systems will be considered. The first case involves prediction of cardiac shape change and altered stress distributions in weightlessness. The second, presents a fluid-structural-interaction (FSI) analysis and assessment of the vestibular system and explores the reasons behind the unexpected microgravity caloric stimulation test results performed aboard the Skylab. The last case investigates renal stone development in microgravity and the possible impact of re-entry into partial gravity on the development and transport of nucleating, growing, and agglomerating renal calculi in the nephron. Finally, the need for model validation and verification and application of the FSI models to assess the effects of Artificial Gravity (AG) are also briefly discussed.
A "Bony" Proposition: Pathways Mediating Responses to Simulated Weightlessness and Radiation
NASA Technical Reports Server (NTRS)
Tahimic, Candice; Globus, Ruth
2016-01-01
There is evidence that weightlessness and radiation, two elements of the spaceflight environment, can lead to detrimental changes in human musculoskeletal tissue, including bone loss and muscle atrophy. This bone loss is thought to be brought about by the increased activity of bone-resorbing osteoclasts and functional changes in bone-forming osteoblasts, cells that give rise to mature osteocytes. My current area of research focuses on understanding the mechanistic basis for the responses of bone to the spaceflight environment using earth-based animal and cellular models. The overarching goal is to identify molecular targets to prevent bone loss in space exploration and earth-based scenarios of radiotherapy, accidental radiation exposure and reduced mobility. In this talk, I will highlight two signaling pathways that potentially play a role in the response of bone to spaceflight-like conditions. Firstly, I will discuss the role of insulin-like growth factor 1 (IGF1) signaling as it pertains to the recovery of bone from simulated weightlessness (rodent hindlimb unloading model). Secondly, I will share recent findings from our study that aims to understand the emerging role of autophagy in maintaining the balance between bone formation and resorption (bone homeostasis) as well as normal skeletal structure.
Cardiovascular and fluid volume control in humans in space.
Norsk, Peter
2005-08-01
The human cardiovascular system and regulation of fluid volume are heavily influenced by gravity. When decreasing the effects of gravity in humans such as by anti-orthostatic posture changes or immersion into water, venous return is increased by some 25%. This leads to central blood volume expansion, which is accompanied by an increase in renal excretion rates of water and sodium. The mechanisms for the changes in renal excretory rates include a complex interaction of cardiovascular reflexes, neuroendocrine variables, and physical factors. Weightlessness is unique to obtain more information on this complex interaction, because it is the only way to completely abolish the effects of gravity over longer periods. Results from space have been unexpected, because astronauts exhibit a fluid and sodium retaining state with activation of the sympathetic nervous system, which subjects during simulations by head-down bed rest do not. Therefore, the concept as to how weightlessness affects the cardiovascular system and modulates regulation of body fluids should be revised and new simulation models developed. Knowledge as to how gravity and weightlessness modulate integrated fluid volume control is of importance for understanding pathophysiology of heart failure, where gravity plays a strong role in fluid and sodium retention.
Dijkstra, Camelia E.; Larkin, Oliver J.; Anthony, Paul; Davey, Michael R.; Eaves, Laurence; Rees, Catherine E. D.; Hill, Richard J. A.
2011-01-01
Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to reproduce aspects of weightlessness, on the Earth. We used a superconducting magnet to levitate growing bacterial cultures for up to 18 h, to determine the effect of diamagnetic levitation on all phases of the bacterial growth cycle. We find that diamagnetic levitation increases the rate of population growth in a liquid culture and reduces the sedimentation rate of the cells. Further experiments and microarray gene analysis show that the increase in growth rate is owing to enhanced oxygen availability. We also demonstrate that the magnetic field that levitates the cells also induces convective stirring in the liquid. We present a simple theoretical model, showing how the paramagnetic force on dissolved oxygen can cause convection during the aerobic phases of bacterial growth. We propose that this convection enhances oxygen availability by transporting oxygen around the liquid culture. Since this process results from the strong magnetic field, it is not present in other weightless environments, e.g. in Earth orbit. Hence, these results are of significance and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena. PMID:20667843
Dijkstra, Camelia E; Larkin, Oliver J; Anthony, Paul; Davey, Michael R; Eaves, Laurence; Rees, Catherine E D; Hill, Richard J A
2011-03-06
Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to reproduce aspects of weightlessness, on the Earth. We used a superconducting magnet to levitate growing bacterial cultures for up to 18 h, to determine the effect of diamagnetic levitation on all phases of the bacterial growth cycle. We find that diamagnetic levitation increases the rate of population growth in a liquid culture and reduces the sedimentation rate of the cells. Further experiments and microarray gene analysis show that the increase in growth rate is owing to enhanced oxygen availability. We also demonstrate that the magnetic field that levitates the cells also induces convective stirring in the liquid. We present a simple theoretical model, showing how the paramagnetic force on dissolved oxygen can cause convection during the aerobic phases of bacterial growth. We propose that this convection enhances oxygen availability by transporting oxygen around the liquid culture. Since this process results from the strong magnetic field, it is not present in other weightless environments, e.g. in Earth orbit. Hence, these results are of significance and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena.
Yang, Wenting; Wang, Dongmei; Lei, Zhoujixin; Wang, Chunhui; Chen, Shanguang
2017-12-01
Astronauts who are exposed to weightless environment in long-term spaceflight might encounter bone density and mass loss for the mechanical stimulus is smaller than normal value. This study built a three dimensional model of human femur to simulate the remodeling process of human femur during bed rest experiment based on finite element analysis (FEA). The remodeling parameters of this finite element model was validated after comparing experimental and numerical results. Then, the remodeling process of human femur in weightless environment was simulated, and the remodeling function of time was derived. The loading magnitude and loading cycle on human femur during weightless environment were increased to simulate the exercise against bone loss. Simulation results showed that increasing loading magnitude is more effective in diminishing bone loss than increasing loading cycles, which demonstrated that exercise of certain intensity could help resist bone loss during long-term spaceflight. At the end, this study simulated the bone recovery process after spaceflight. It was found that the bone absorption rate is larger than bone formation rate. We advise that astronauts should take exercise during spaceflight to resist bone loss.
The Role of Visual Cues in Microgravity Spatial Orientation
NASA Technical Reports Server (NTRS)
Oman, Charles M.; Howard, Ian P.; Smith, Theodore; Beall, Andrew C.; Natapoff, Alan; Zacher, James E.; Jenkin, Heather L.
2003-01-01
In weightlessness, astronauts must rely on vision to remain spatially oriented. Although gravitational down cues are missing, most astronauts maintain a subjective vertical -a subjective sense of which way is up. This is evidenced by anecdotal reports of crewmembers feeling upside down (inversion illusions) or feeling that a floor has become a ceiling and vice versa (visual reorientation illusions). Instability in the subjective vertical direction can trigger disorientation and space motion sickness. On Neurolab, a virtual environment display system was used to conduct five interrelated experiments, which quantified: (a) how the direction of each person's subjective vertical depends on the orientation of the surrounding visual environment, (b) whether rolling the virtual visual environment produces stronger illusions of circular self-motion (circular vection) and more visual reorientation illusions than on Earth, (c) whether a virtual scene moving past the subject produces a stronger linear self-motion illusion (linear vection), and (d) whether deliberate manipulation of the subjective vertical changes a crewmember's interpretation of shading or the ability to recognize objects. None of the crew's subjective vertical indications became more independent of environmental cues in weightlessness. Three who were either strongly dependent on or independent of stationary visual cues in preflight tests remained so inflight. One other became more visually dependent inflight, but recovered postflight. Susceptibility to illusions of circular self-motion increased in flight. The time to the onset of linear self-motion illusions decreased and the illusion magnitude significantly increased for most subjects while free floating in weightlessness. These decreased toward one-G levels when the subject 'stood up' in weightlessness by wearing constant force springs. For several subjects, changing the relative direction of the subjective vertical in weightlessness-either by body rotation or by simply cognitively initiating a visual reorientation-altered the illusion of convexity produced when viewing a flat, shaded disc. It changed at least one person's ability to recognize previously presented two-dimensional shapes. Overall, results show that most astronauts become more dependent on dynamic visual motion cues and some become responsive to stationary orientation cues. The direction of the subjective vertical is labile in the absence of gravity. This can interfere with the ability to properly interpret shading, or to recognize complex objects in different orientations.
NASA Technical Reports Server (NTRS)
Barnett, R. D.; Gowen, R. J.; Carroll, D. R.
1975-01-01
The cardiovascular responses of the Apollo crewmen associated with postflight evaluations indicate varying decrements of orthostatic tolerance. The postflight changes indicate a slightly diminished ability to the cardiovascular system to function effectively against gravity following exposure to weightlessness. The objective of the Skylab LBNP experiments (M092) was to provide information about the magnitude and time course of the cardiovascular changes associated with prolonged periods of exposure to weightlessness. This report details the equipment, signal processing and analysis of the leg volume data obtained from the M092 experiment of the Skylab 3 Mission.
Effect of prehatching weightlessness on adult fish behavior in dynamic environments
NASA Technical Reports Server (NTRS)
Hoffman, R. B.; Salinas, G. A.; Boyd, J. F.; Baky, A. A.; Von Baumgarten, R. J.
1978-01-01
At 16-17 months of age, three groups of fish from the embryonated eggs in the ASTP killifish experiment were subjected to postflight tests consisting of rapidly changing environments. It was found that the group of fish with the least amount of development at orbital insertion (A-32) had a decreased rheotropism for both the moving background and the rotating water current tests when compared to ground control fish. Exposure to parabolic aircraft flight conditions revealed that the A-32 fish were less disoriented during zero gravity periods and were hypersensitive to high-gravity periods. These results suggested a modified vestibular competency due to a 9-d prehatching weightlessness exposure.
NASA Technical Reports Server (NTRS)
Romanowski, William E. (Inventor); Suljak, George T. (Inventor)
1989-01-01
A fuel cell power system for use in a weightless environment, such as in space, includes a device for removing water from a water-hydrogen mixture condensed from the exhaust from the fuel cell power section of the system. Water is removed from the mixture in a centrifugal separator, and is fed into a holding, pressure operated water discharge valve via a Pitot tube. Entrained nondissolved hydrogen is removed from the Pitot tube by a bleed orifice in the Pitot tube before the water reaches the water discharge valve. Water discharged from the valve thus has a substantially reduced hydrogen content.
Varenik, E N; Lipina, T V; Shornikova, M V; Krasnov, I B; Chentsov, Iu S
2012-01-01
Electron microscopic study of left ventricle cardiomyocytes and quantitative analysis of their mitochondriom was performed in rats exposed to tail-suspension, as a model of weightlessness effects, to artificial gravity produced by intermittent 2G centrifugation and a combination of these effects. It was found that the cardiomyocytes ultrastructure changed slightly after tail-suspension and after intermittent 2G influence, as well as under a combination of these effects. However, the number of intermitochondrial junctions increased significantly in the interfibrillar zone of cardiomyocytes under a combination of tail-suspension and intermittent 2G influence, which agrees with the cell hypertrophy described earlier.
Vinnikov, Y A; Gazenko, O G; Titova, L K; Bronstein, A A; Govardovskii, V I; Gribakin, F G; Pevzner, R A; Aronova, M Z; Kharkeevich, T A; Tsirulis, T P; Pyatkina, G A; Lichakov, D V; Pal'mbach, L P; Anichin, V F
1979-01-01
This investigation of the vestibular apparatus of rats exposed for 20 days to weightlessness on board an earth satellite and to acceleration during take-off and landing has revealed a set of changes in the structural and functional organization, such as adjoinment of the otolith to the utricle receptor surface and peripheral localization of the nucleoli inside the receptor cells' nuclei. Destruction of some receptor cells, apparently due to increased swelling of the vestibular apparatus tissue and alteration of the shape and structure of the otoconia were observed. In the horizontal crista, detachment of the cupula took place.
Gravity effects on reproduction, development, and aging
NASA Technical Reports Server (NTRS)
Miquel, Jaime; Souza, Kenneth A.
1991-01-01
The effects of various levels of gravity force (obtained by rotation in clinostats or by centrifugation) and the near-weightlessness condition aboard orbiting spacecraft on the fertilization, embryonic development, maturation, and aging of animals are examined. Results obtained from the American and Soviet spaceborne biology experiments are presented including those on mammals, amphibians, fish, birds, invertebrates, and protozoa. Theoretical issues related to the effect of gravity on various physiological systems are discused together with the future research goals concerning human life in space. It is noted that life in space (after adaptation to near-weightlessness) might be significantly prolonged due to a reduction in metabolic rate and a concomitant decrease in oxygen radical reactions.
Validation of a model for investigating red cell mass changes during weightlessness
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1976-01-01
The model, both the conceptual model and simulation model, provided a convenient framework on which to demonstrate the commonality between such diverse stresses as descent from altitude, red cell infusions, bed rest, and weightlessness. The results suggest that all of these stresses induce an increased blood hematocrit leading to tissue hyperoxia and eventual inhibition of the erythyocyte producing circuit until the hyperoxic condition is relieved. The erythropoietic system was acting, in these situations, as if it were an hematocrit sensor and regulator. In these terms the decreases in red cell mass during Skylab may be explained in terms of normal feedback regulation of the erythropoietic system in the face of sustained decreases in plasma colume.
[The development OF THE vestibular apparatus under conditions of weightlessness].
Vinikov, Ia A; Gazenko, O G; Titovo, L K; Bornshteĭn, A A; Govardovskiĭ, V I
1976-01-01
The spawn of the aquarium fish Brachydanio rerio was developing during 5--6 days under conditions of weightlessness (first on board the spaceship "Sojuz-16", then in the space station "Salut-4") in special aquariums "EMKON", in thermostable installations. Electron microscopically the embryos were found to have a well developed labyrinth in early developmental histologically and cytologically differentiated receptory structures of the macula utriculi and macula saccili. In contrast to controls, the experimental animals showed certain alterations in the otolite organization. In similar experiments the embryos of clawed frog Xenopus laevis in the stage of the tail bud were also placed in special containers "EMKON" and thermostable apparatus "Biotherm-4" and by the spaceship "Sojuz-17" were brought to the space station "Salut-4", where it stayed for 16 days. The initial embryos had already had a well developed acoustic vesicle with macula communis. Inspite of the preliminary load by start acceleration and staying under conditions of weightlessness, they reached the general development fairly similar to controls. As it was shown electron microscopically their labyrinth had highly histologically and cytologically differentiated structures. However, a disturbance of the development of the otolithic membrane and otoconia should be noted. The alterations observed in the otolithic membrane organization in experimental fishes and frogs may be explained by general disorders in calcium metabolism.
Selection of an appropriate animal model for study of bone loss in weightlessness
NASA Technical Reports Server (NTRS)
Wolinsky, I.
1986-01-01
Prolonged weightlessness in space flight results in a slow progressive demineralization of bone accompanied by an increased calcium output in the urine resulting in negative calcium balances. This possibly irreversible bone loss may constitute a serious limiting factor to long duration manned space flight. A number of preventative measures have been suggested, i.e., exercise during flight, dietary calcium supplements, use of specific prophylactic drugs. In order to facilitate research in these areas it is necessary to develop appropriate ground-based animal models that simulate the human condition of osteoporsis. An appropriate animal model would permit bone density studies, calcium balance studies, biochemical analyses, ground-based simulation models of weightlessness (bed rest, restraint, immobilization) and the planning of inflight experiments. Several animal models have been proposed in the biomedical research literature, but have inherent deficiencies. The purpose of this project was to evaluate models in the literature and determine which of these most closely simulates the phenomenon of bone loss in humans with regard to growth, bone remodeling, structural, chemical and mineralization similarities to human. This was accomplished by a comprehensive computer assisted literature search and report. Three animal models were examined closely for their relative suitability: the albino rat, monkey, and Beagle.
Geometry and gravity influences on strength capability
NASA Technical Reports Server (NTRS)
Poliner, Jeffrey; Wilmington, Robert P.; Klute, Glenn K.
1994-01-01
Strength, defined as the capability of an individual to produce an external force, is one of the most important determining characteristics of human performance. Knowledge of strength capabilities of a group of individuals can be applied to designing equipment and workplaces, planning procedures and tasks, and training individuals. In the manned space program, with the high risk and cost associated with spaceflight, information pertaining to human performance is important to ensuring mission success and safety. Knowledge of individual's strength capabilities in weightlessness is of interest within many areas of NASA, including workplace design, tool development, and mission planning. The weightless environment of space places the human body in a completely different context. Astronauts perform a variety of manual tasks while in orbit. Their ability to perform these tasks is partly determined by their strength capability as demanded by that particular task. Thus, an important step in task planning, development, and evaluation is to determine the ability of the humans performing it. This can be accomplished by utilizing quantitative techniques to develop a database of human strength capabilities in weightlessness. Furthermore, if strength characteristics are known, equipment and tools can be built to optimize the operators' performance. This study examined strength in performing a simple task, specifically, using a tool to apply a torque to a fixture.
“Cerebellar contribution to visuo-attentional alpha rhythm: insights from weightlessness”
Cebolla, A. M.; Petieau, M.; Dan, B.; Balazs, L.; McIntyre, J.; Cheron, G.
2016-01-01
Human brain adaptation in weightlessness follows the necessity to reshape the dynamic integration of the neural information acquired in the new environment. This basic aspect was here studied by the electroencephalogram (EEG) dynamics where oscillatory modulations were measured during a visuo-attentional state preceding a visuo-motor docking task. Astronauts in microgravity conducted the experiment in free-floating aboard the International Space Station, before the space flight and afterwards. We observed stronger power decrease (~ERD: event related desynchronization) of the ~10 Hz oscillation from the occipital-parietal (alpha ERD) to the central areas (mu ERD). Inverse source modelling of the stronger alpha ERD revealed a shift from the posterior cingulate cortex (BA31, from the default mode network) on Earth to the precentral cortex (BA4, primary motor cortex) in weightlessness. We also observed significant contribution of the vestibular network (BA40, BA32, and BA39) and cerebellum (lobule V, VI). We suggest that due to the high demands for the continuous readjustment of an appropriate body posture in free-floating, this visuo-attentional state required more contribution from the motor cortex. The cerebellum and the vestibular network involvement in weightlessness might support the correction signals processing necessary for postural stabilization, and the increased demand to integrate incongruent vestibular information. PMID:27883068
Unique life sciences research facilities at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.
1994-01-01
The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.
A test to verify the biocompatibility of a method for plant culture in a microgravity environment
NASA Technical Reports Server (NTRS)
Brown, A. H.; Chapman, D. K.
1984-01-01
We report a pioneering attempt to use the NASA Shuttle Orbiter Middeck locker facility to acquire data on plant growth in near weightlessness. The information was needed to confirm the suitability of a plant culture system to be used in an experiment scheduled for the first Spacelab mission. The test was designed to measure germination and early seedling growth in a series of soil mixtures covering a range of water contents. Empirical determination of growth dependence on moisture content was required because both in theory and from Soviet flight experience it seemed possible that the dependence function in near weightlessness could be critically different from what we had measured on Earth. Such a difference could invalidate the future test in Spacelab 1 of gravity dependence of the differential growth process, circumnutation. After two failed attempts sufficient measurements were obtained from the third Shuttle Orbiter flight test to confirm the biocompatibility of the plant culture system--viz. soil moisture content variations had the same effect in near weightlessness as at 1 g. A number of supplemental observations about middeck locker conditions in Shuttle flight are presented. These may prove helpful to would-be experimenters who will plan to take advantage of future Shuttle flight opportunities for biological research.
Zwart, Sara R; Pierson, Duane; Mehta, Satish; Gonda, Steve; Smith, Scott M
2010-05-01
NF-kappaB is a transcriptional activator of many genes, including some that lead to muscle atrophy and bone resorption-significant concerns for astronauts. NF-kappaB activation is inhibited by eicosapentaenoic acid (EPA), but the influence of this omega-3 fatty acid on the effects of weightlessness are unknown. We report here cellular, ground analogue, and spaceflight findings. We investigated the effects of EPA on differentiation of RAW264.7 monocyte/macrophage cells induced by receptor activator of NF-kappaB ligand (RANKL) and on activation of NF-kappaB by tumor necrosis factor alpha (TNF-alpha) or exposure to modeled weightlessness. EPA (50 microM for 24 hours) inhibited RANKL-induced differentiation and decreased activation of NF-kappaB induced by 0.2 microg/mL of TNF-alpha for 30 minutes or by modeled weightlessness for 24 hours (p < .05). In human studies, we evaluated whether NF-kappaB activation was altered after short-duration spaceflight and determined the relationship between intake of omega-3 fatty acids and markers of bone resorption during bed rest and the relationship between fish intake and bone mineral density after long-duration spaceflight. NF-kappaB was elevated in crew members after short-duration spaceflight, and higher consumption of fish (a rich source of omega-3 fatty acids) was associated with reduced loss of bone mineral density after flight (p < .05). Also supporting the cell study findings, a higher intake of omega-3 fatty acids was associated with less N-telopeptide excretion during bed rest (Pearson r = -0.62, p < .05). Together these data provide mechanistic cellular and preliminary human evidence of the potential for EPA to counteract bone loss associated with spaceflight. (c) 2010 American Society for Bone and Mineral Research.
A unique problem of muscle adaptation from weightlessness: The deceleration deficiency
NASA Technical Reports Server (NTRS)
Stauber, William T.
1989-01-01
Decelerator problems of the knee are emphasized since the lower leg musculature is known to atrophy in response to weightlessness. However, other important decelerator functions are served by the shoulder muscles, in particular the rotator cuff muscles. Problems in these muscles often result in tears and dislocations as seen in baseball pitchers. It is noteworthy that at least one device currently exists that can measure concentric and eccentric muscle loading including a submaximal simulated free weight exercise (i.e., force-controlled) and simultaneously record integrated EMG analysis appropriate for assessment of all muscle functional activities. Studies should be undertaken to provide information as to the performance of maximal and submaximal exercise in space travelers to define potential problems and provide rationale for prevention.
STS-60 Cosmonauts in Weightless Environment Training Facility (WETF) training
1993-01-07
S93-26022 (Feb 1993) --- Russian cosmonaut Sergei Krikalev maneuvers a small life raft during bailout training at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Shuttle crew members frequently utilize the 25-ft. deep pool to learn proper procedures to follow in the event of emergency egress from their Space Shuttle via the escape pole system. Krikalev is one of two cosmonauts in training for the STS-60 mission. One of the two will serve as primary payload specialist with the other filling an alternate's role. This pool and the facility in which it is housed are titled the WET-F because they are also used by astronauts rehearsing both mission-specific and contingency extravehicular activities (EVA).
NASA Technical Reports Server (NTRS)
Vinnikov, Y. A.; Gazenko, O. G.; Titova, L. K.; Bronshteyn, A. A.; Govardovskiy, V. I.; Pevzner, R. A.; Gribakin, G. G.; Aronova, M. Z.; Kharkeyevich, T. A.; Tsirulis, T. P.
1978-01-01
The vestibular apparatus was investigated in rats subjected to weightlessness for 19.5 days. The vestibular apparatus was removed and its sections were fixed in a glutaraldehyde solution for investigation by light and electron microscopes. Structural and functional charges were noted in the otolith portions of the ear, with the otolith particles clinging to the utricular receptor surface and with the peripheral arrangement of the nucleolus in the nuclei of the receptor cells. It is possible that increased edema of the vestibular tissue resulted in the destruction of some receptor cells and in changes in the form and structure of the otolith. In the horizontal crista, the capula was separated.
Weightless Environment Training Facility (WETF) Materials Coating Evaluation, Volume 1
NASA Technical Reports Server (NTRS)
1995-01-01
The Weightless Environment Training Facility Material Coating Evaluation project has included preparing, coating, testing, and evaluating 800 test panels of three differing substrates. Ten selected coating systems were evaluated in six separate exposure environments and subject to three tests for physical properties. Substrate materials were identified, the manner of surface preparation described, and exposure environments defined. Exposure environments included immersion exposure, cyclic exposure, and field exposure. Cyclic exposures, specifically QUV-Weatherometer and the KTA Envirotest were found to be the most agressive of the environments included in the study when all three evaluation criteria are considered. This was found to result primarily from chalking of the coatings under ultraviolet (UV) light exposure. Volumes 2 and 3 hold the 5 appendices to this report.
1973-05-01
This photograph was taken in the Marshall Space Flight Center (MSFC) Neutral Buoyancy Simulator (NBS) during the testing of an emergency procedure to deploy a twin-pole sunshade to protect the orbiting workshop from overheating due to the loss of its thermal shield. The spacecraft suffered damage to its sunshield during its launch on May 14, 1973. This photograph shows the base plate used to hold the twin-pole in place, the bag to hold the fabric sail, and the lines that were used to draw the sail into place. Extensive testing and many hours of practice in simulators, such as the NBS, helped prepare the Skylab crewmen for extravehicular performance in the weightless environment. This huge water tank simulated the weightless environment that the astronauts would encounter in space.
Age effects on rat hindlimb muscle atrophy during suspension unloading
NASA Technical Reports Server (NTRS)
Steffen, Joseph M.; Fell, Ronald D.; Geoghegan, Thomas E.; Ringel, Lisa C.; Musacchia, X. J.
1990-01-01
The effects of hindlimb unloading on muscle mass and biochemical responses were examined and compared in adult (450-g) and juvenile (200-g) rats after 1, 7, or 14 days of whole-body suspension. Quantitatively and qualitatively the soleus, gastrocnemius, plantaris, and extensor digitorum longus (EDL) muscles of the hindlimb exhibited a differential sensitivity to suspension and weightlessness unloading in both adults and juveniles. The red slow-twitch soleus exhibited the most pronounced atrophy under both conditions, with juvenile responses being greater than adult. In contrast, the fast-twitch EDL hypertrophied during suspension and atrophied during weightlessness, with no significant difference between adults and juveniles. Determination of biochemical parameters (total protein, RNA, and DNA) indicates a less rapid rate of response in adult muscles.
Liquid inflow to a baffled cylindrical tank during weightlessness
NASA Technical Reports Server (NTRS)
Staskus, J. V.
1972-01-01
An experimental investigation was conducted in which the behavior of liquid inflow to a cylindrical tank containing inlet baffles was observed during weightlessness. A single tank radius (2 cm), inlet radius (0.2 cm), and liquid (ethanol)were used. The inlet end of the tank was hemispherical with a 30 deg convergent inlet. All the baffle configurations tested were cylindrically symmetric and mounted coaxially with the tank within the hemispherical end. Both stable and unstable inflow behavior were observed using each baffle. It was found that, depending on which of the baffles was used, the critical inflow velocity at which a transition to unstable inflow began was from 2.5 to 12 times greater than the corresponding velocity in an unbaffled tank.
Animals in biomedical space research
NASA Astrophysics Data System (ADS)
Phillips, Robert W.
The use of experimental animals has been a major component of biomedical research progress. Using animals in space presents special problems, but also provides special opportunities. Rat and squirrel monkeys experiments have been planned in concert with human experiments to help answer fundamental questions concerning the effect of weightlessness on mammalian function. For the most part, these experiments focus on identified changes noted in humans during space flight. Utilizing space laboratory facilities, manipulative experiments can be completed while animals are still in orbit. Other experiments are designed to study changes in gravity receptor structure and function and the effect of weightlessness on early vertebrate development. Following these preliminary animals experiments on Spacelab Shuttle flights, longer term programs of animal investigation will be conducted on Space Station.
JSC Human Life Sciences Project
NASA Technical Reports Server (NTRS)
1998-01-01
This section of the Life and Microgravity Spacelab (LMS) publication includes articles entitled: (1) E029 - Magnetic Resonance Imaging after Exposure to Microgravity; (2) E030 - Extended Studies of Pulmonary Function in Weightlessness; (3) E074 - Direct Measurement of the Initial Bone Response to Spaceflight in Humans; (4) E401 - The Effects of Microgravity on Skeletal Muscle Contractile Properties; (5) E407 - Effects of Microgravity on the Biochemical and Bioenergetic Characteristics of Human Skeletal Muscle; (6) E410 - Torso Rotation Experiment; (7) E920 - Effect of Weightlessness on Human Single Muscle Fiber Function; (8) E948 - Human Sleep, Circadian Rhythms and Performance in Space; (9) E963 - Microgravity Effects on Standardized Cognitive Performance Measures; and (10) E971 - Measurement of Energy Expenditures During Spaceflight Using the Doubly Labeled Water Method
Advances in electrophoretic separations
NASA Technical Reports Server (NTRS)
Snyder, R. S.; Rhodes, P. H.
1984-01-01
Free fluid electrophoresis is described using laboratory and space experiments combined with extensive mathematical modeling. Buoyancy driven convective flows due to thermal and concentration gradients are absent in the reduced gravity environment of space. The elimination of convection in weightlessness offers possible improvements in electrophoresis and other separation methods which occur in fluid media. The mathematical modeling suggests new ways of doing electrophoresis in space and explains various phenomena observed during past experiments. The extent to which ground based separation techniques are limited by gravity induced convection is investigated and space experiments are designed to evaluate specific characteristics of the fluid/particle environment. A series of experiments are proposed that require weightlessness and apparatus is developed that can be used to carry out these experiments in the near future.
Endocrine and metabolic changes in payload specialist (L-1)
NASA Technical Reports Server (NTRS)
Matsui, Nobuo
1993-01-01
The endocrine system plays an important role in the adaptation to unusual environments by secreting hormones to control metabolism. Since human beings have long evolved on the surface of the Earth under a gravity environment, the weightless environment must be quite unusual for them. The purpose of this experiment is to study the mechanisms of human adaptation to a weightless environment from endocrine and metabolic changes. Our study plan is focused on four major physiological changes which were reported during past space flights or which may be expected to occur under that condition: (1) hormone and metabolic changes associated with fluid shift; (2) bone demineralization and muscle atrophy; (3) altered circadian rhythm; and (4) stress reaction during space flight.
NASA Astrophysics Data System (ADS)
Yang, T. D.; Zhang, R. G.; Wang, C. M.; Fu, H. W.; Zhang, B. L.; Zhang, J. X.
1999-01-01
Cabin emergent depressurization (CED) may occur in spacecraft during manned space flight. The purpose of this paper was to study the combined effects of simulated weightlessness (SW) and CED factors on humans and animals. It was found that the amplitude of T wave of human electrocardiograms (ECG) significantly decreased in bed rest and hypoxia compared with the control condition (P<0.05), and that suspension with pure O2 induced severer edema in the lungs of rats than that in only a pure O2 environment. SW and pure O2 caused middle ear congestion and decreased the barofunction during pressure changes. These results indicate that human response to CED factors become more serious under SW because of the blood redistribution.
[Energy reactions in the skeletal muscles of rats after a flight on the Kosmos-1129 biosatellite].
Mailian, E S; Buravkova, L B; Kokoreva, L V
1983-01-01
The polarographic analysis of biological oxidation in rat skeletal muscles after the 18.5-day flight revealed changes specific for the flight animals: oxidative phosphorylation uncoupling, distinct inertness of energy accumulation 10 hrs after recovery. Tissue respiration inhibition occurred in both flight and synchronous rats suggesting the effect of other than weightlessness factors. In the flight animals the parameters of energy metabolism returned to the prelaunch level within a longer (29 days) time than in the synchronous rats (6 days). Muscles of different function (predominance of fast or slow fibers) showed similar responses of energy metabolism to weightlessness, i. e. inhibition of the intensity and decrease of the energy efficiency of oxidative processes.
Methods of body orientation in space in the absence of support under weightless conditions
NASA Technical Reports Server (NTRS)
Yeremin, A. V.; Stepantsov, V. I.; Chekidra, I. F.; Borisenko, I. P.; Kolosov, I. A.
1975-01-01
The experience accumulated in training subjects in methods of body orientation in space indicates the necessity of clear planning of the training process. After theoretical familiarization with the principles of body orientation in space and reviewing training films, practical mastery of the body orientation methods begins with working out of the individual elements on the Zhukovskiy stool. Then, the correctness and sequence of movements are carefully mastered in water, and the motor skills are then reinforced under time deficit conditions, on the vaulting bars, trampolines, and, in the concluding stage of training, the methods of orienting the body in space in weightlessness are worked out in laboratory-aircraft, with and without the spacesuit and with and without a load.
The physiological basis for spacecraft environmental limits
NASA Technical Reports Server (NTRS)
Waligora, J. M. (Compiler)
1979-01-01
Limits for operational environments are discussed in terms of acceptable physiological changes. The environmental factors considered are pressure, contaminants, temperature, acceleration, noise, rf radiation, and weightlessness.
NASA Technical Reports Server (NTRS)
Ross, M. D.
2000-01-01
This study combined ultrastructural and statistical methods to learn the effects of weightlessness on rat utricular maculae. A principle aim was to determine whether weightlessness chiefly affects ribbon synapses of type II cells, since the cells communicate predominantly with branches of primary vestibular afferent endings. Maculae were microdissected from flight and ground control rat inner ears collected on day 13 of a 14-day spaceflight (F13), landing day (R0) and day 14 postflight (R14) and were prepared for ultrastructural study. Ribbon synapses were counted in hair cells examined in a Zeiss 902 transmission electron microscope. Significance of synaptic mean differences was determined for all hair cells contained within 100 section series, and for a subset of complete hair cells, using SuperANOVA software. The synaptic mean for all type II hair cells of F13 flight rats increased by 100%, and that for complete cells by 200%. Type I cells were less affected, with synaptic mean differences statistically insignificant in complete cells. Synapse deletion began within 8 h upon return to Earth. Additionally, hair cell laminated rough endoplasmic reticulum of flight rats was reversibly disorganized on R0. Results support the thesis that synapses in type II hair cells are uniquely affected by altered gravity. Type II hair cells may be chiefly sensors of gravitational and type I cells of translational linear accelerations.
Musculoskeletal adaptations to weightlessness and development of effective countermeasures
NASA Technical Reports Server (NTRS)
Baldwin, K. M.; White, T. P.; Arnaud, S. B.; Edgerton, V. R.; Kraemer, W. J.; Kram, R.; Raab-Cullen, D.; Snow, C. M.
1996-01-01
A Research Roundtable, organized by the American College of Sports Medicine with sponsorship from the National Aeronautics and Space Administration, met in November 1995 to define research strategies for effective exercise countermeasures to weightlessness. Exercise was considered both independently of, and in conjunction with, other therapeutic modalities (e.g., pharmacological nutritional, hormonal, and growth-related factors) that could prevent or minimize the structural and functional deficits involving skeletal muscle and bone in response to chronic exposure to weightlessness, as well as return to Earth baseline function if a degree of loss is inevitable. Musculoskeletal deficits and countermeasures are described with respect to: 1) muscle and connective tissue atrophy and localized bone loss, 2) reductions in motor performance, 3) potential proneness to injury of hard and soft tissues, and 4) probable interaction between muscle atrophy and cardiovascular alterations that contribute to the postural hypotension observed immediately upon return from space flight. In spite of a variety of countermeasure protocols utilized previously involving largely endurance types of exercise, there is presently no activity-specific countermeasure(s) that adequately prevent or reduce musculoskeletal deficiencies. It seems apparent that countermeasure exercises that have a greater resistance element, as compared to endurance activities, may prove beneficial to the musculoskeletal system. Many questions remain for scientific investigation to identify efficacious countermeasure protocols, which will be imperative with the emerging era of long-term space flight.
Neurovestibular and Sensorimotor Studies in Space and Earth Benefits
NASA Technical Reports Server (NTRS)
Clement, Gilles; Reschke, Millard; Wood, Scott
2005-01-01
This review summarizes what has been learned from studies of human neurovestibular system in weightless conditions, including balance and locomotion, gaze control, vestibular-autonomic function and spatial orientation, and gives some examples of the potential Earth benefits of this research. Results show that when astronauts and cosmonauts return from space flight, both the peripheral and central neural processes are physiologically and functionally altered. There are clear distinctions between the virtually immediate adaptive compensations to weightlessness and those that require longer periods of time to adapt. However, little is known to date about the adaptation of sensory-motor functions to long-duration space missions in weightlessness and to the transitions between various reduced gravitational levels, such as on the Moon and Mars. Results from neurovestibular research in space have substantially enhanced our understanding of the mechanisms and characteristics of postural, gaze, and spatial orientation deficits, analogous to clinical cases of labyrinthine-defective function. Also, space neurosciences research has participated in the development and application of significant new technologies, such as video recording and processing of three-dimensional eye movements and posture, hardware for the unencumbered measurement of head and body movement, and procedures for investigating otolith function on Earth. In particular, devices such as centrifugation or off-vertical axis rotation could enhance clinical neurological testing because it provides linear acceleration which specifically stimulates the otolith organs in a frequency range close to natural head and body movement.
Neurovestibular and sensorimotor studies in space and Earth benefits.
Clément, Gilles; Reschke, Millard; Wood, Scott
2005-08-01
This review summarizes what has been learned from studies of human neurovestibular system in weightless conditions, including balance and locomotion, gaze control, vestibular-autonomic function and spatial orientation, and gives some examples of the potential Earth benefits of this research. Results show that when astronauts and cosmonauts return from space flight both the peripheral and central neural processes are physiologically and functionally altered. There are clear distinctions between the virtually immediate adaptive compensations to weightlessness and those that require longer periods of time to adapt. However, little is known to date about the adaptation of sensory-motor functions to long-duration space missions in weightlessness and to the transitions between various reduced gravitational levels, such as on the Moon and Mars. Results from neurovestibular research in space have substantially enhanced our understanding of the mechanisms and characteristics of postural, gaze, and spatial orientation deficits, analogous to clinical cases of labyrinthine-defective function. Also, space neurosciences research has participated in the development and application of significant new technologies, such as video recording and processing of three-dimensional eye movements and posture, hardware for the unencumbered measurement of head and body movement, and procedures for investigating otolith function on Earth. In particular, devices such as centrifugation or off-vertical axis rotation could enhance clinical neurological testing because it provides linear acceleration which specifically stimulates the otolith organs in a frequency range close to natural head and body movement.
2004-04-15
Jules Verne published his first science fiction novel in 1865 called "From the Earth to the Moon." As shown here in an illustration, passengers in Verne's space ship enjoy their first taste of weightlessness.
Preliminary benefit analysis of biological space processing
NASA Technical Reports Server (NTRS)
Perrine, J.
1976-01-01
The value of weightlessness in bioprocessing is assessed. The ecomonic benefits are assessed for space processing urokinase and human lymphocytes for treatment of end stage renal disease and thromboembolisms.
NASA Technical Reports Server (NTRS)
Charles, John B.; Boettcher, Sheila W.
1994-01-01
During the STS-50/USML-1 mission and five other Shuttle flights, decompression of the legs and lower abdomen ('lower body negative pressure,' LBNP) was used: (1) to apply a standardized stress to the cardiovascular system, to document the loss of orthostatic function during an extended period in weightlessness, and (2) to test its efficacy as a treatment which may be used to protect astronauts from gravitationally-induced fainting during and after reentry on Space Shuttle flights. The loss of orthostatic tolerance (as determined by LBNP) occured even earlier than indicated by similar testing on Skylab (1973-1974). The treatment was shown to be effective in reversing some of the effects of extended weightlessness on the cardiovascular system for at least one day after treatment.
Float-zone processing in a weightless environment
NASA Technical Reports Server (NTRS)
Fowle, A. A.; Haggerty, J. S.; Perron, R. R.; Strong, P. F.; Swanson, J. L.
1976-01-01
The results were reported of investigations to: (1) test the validity of analyses which set maximum practical diameters for Si crystals that can be processed by the float zone method in a near weightless environment, (2) determine the convective flow patterns induced in a typical float zone, Si melt under conditions perceived to be advantageous to the crystal growth process using flow visualization techniques applied to a dimensionally scaled model of the Si melt, (3) revise the estimates of the economic impact of space produced Si crystal by the float zone method on the U.S. electronics industry, and (4) devise a rational plan for future work related to crystal growth phenomena wherein low gravity conditions available in a space site can be used to maximum benefit to the U.S. electronics industry.
Human physiological adaptation to extended Space Flight and its implications for Space Station
NASA Technical Reports Server (NTRS)
Kutyna, F. A.; Shumate, W. H.
1985-01-01
Current work evaluating short-term space flight physiological data on the homeostatic changes due to weightlessness is presented as a means of anticipating Space Station long-term effects. An integrated systems analysis of current data shows a vestibulo-sensory adaptation within days; a loss of body mass, fluids, and electrolytes, stabilizing in a month; and a loss in red cell mass over a month. But bone demineralization which did not level off is seen as the biggest concern. Computer algorithms have been developed to simulate the human adaptation to weightlessness. So far these paradigms have been backed up by flight data and it is hoped that they will provide valuable information for future Space Station design. A series of explanatory schematics is attached.
STS-60 Cosmonauts in Weightless Environment Training Facility (WETF) training
1993-01-07
S93-26021 (Feb 1993) --- Russian cosmonaut Sergei Krikalev maneuvers a small life raft during bailout training at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Two SCUBA-equipped divers assisted Krikalev in the STS-60 training exercise. Shuttle crew members frequently utilize the 25-ft. deep pool to learn proper procedures to follow in the event of emergency egress from their Space Shuttle via the escape pole system. Krikalev is one of two cosmonauts in training for the STS-60 mission. One of the two will serve as primary payload specialist with the other filling an alternate's role. This pool and the facility in which it is housed are titled the WET-F, because they are also used by astronauts rehearsing both mission-specific and contingency extravehicular activities (EVA).
NASA Technical Reports Server (NTRS)
Chenault, V. Michelle; Lynch, Colleen D.; Morris, Mariana; Clodfelter, Jill; Hutchins, Phillip M.
1990-01-01
It was demonstrated that up to 8ml of blood can be drawn from donar rats without significantly increasing volume and stress sensitive hormones, and thus can be used for volume expansion studies. Infusion of whole blood allows more physiological changes that can be seen with volume expansion by saline or other ionic solutions. The infusion of whole blood to induce hypervolemia may provide an improved model to study the fluid balance and control mechanisms operative in weightlessness. Blood samples were drawn as quickly as possible from femoral artery catheters chronically implanted in Sprague Dawley rats and analyzed for hematocrit, plasma sodium, potassium, osmolality, corticosterone, epinepherine, norepinephrine, and vasopressin. The levels were found to be comparable to those of normal rats.
Computer simulation analysis of the behavior of renal-regulating hormones during hypogravic stress
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1982-01-01
A computer simulation of a mathematical circulation model is used to study the alterations of body fluids and their electrolyte composition that occur in weightlessness. The behavior of the renal-regulating hormones which control these alterations is compared in simulations of several one-g analogs of weightlessness and space flight. It is shown that the renal-regulating hormones represent a tightly coupled system that responds acutely to volume disturbances and chronically to electrolyte disturbances. During hypogravic conditions these responses lead to an initial suppression of hormone levels and a long-term effect which varies depending on metabolic factors that can alter the plasma electrolytes. In addition, it is found that if pressure effects normalize rapidly, a transition phase may exist which leads to a dynamic multiphasic endocrine response.
Hematology and biochemical findings of Spacelab 1 flight
NASA Technical Reports Server (NTRS)
Leach, Carolyn S.; Chen, J. P.; Crosby, W.; Johnson, P. C.; Lange, R. D.; Larkin, E.; Tavassoli, M.
1988-01-01
The changes in erythropoiesis in astronauts caused by weightlessness was experimentally studied during the Spacelab 1 flight. Immediately after landing showed a mean decrease of 9,3 percent in the four astronauts. Neither hyperoxia nor an increase in blood phosphate caused the decrease. Red cell survival time and iron incorporation postflight were not significantly different from their preflight levels. Serum haptoglobin did not decrease, indicating that intravascular hemolysis was not a major cause of red cell mass change. An increase in serum ferritin after the second day of flight may have been caused by red cell breakdown early in flight. The space flight-induced decrease in red cell mass may result from a failure of erythropoesis to replace cells destroyed by the spleen soon after weightlessness is attained.
Continuous 30-day measurements utilizing the monkey metabolism pod. [study of weightlessness effects
NASA Technical Reports Server (NTRS)
Pace, N.; Kodama, A. M.; Mains, R. C.; Rahlmann, D. F.; Grunbaum, B. W.
1977-01-01
A fiberglass system was previously described, using which quantitative physiological measurements could be made to study the effects of weightlessness on 10 to 14 kg adult monkeys maintained in comfortable restraint under space flight conditions. Recent improvements in the system have made it possible to obtain continuous measurements of respiratory gas exchange, cardiovascular function, and mineral balance for periods of up to 30 days on pig-tailed monkeys. It has also been possible to operate two pods which share one set of instrumentation, thereby permitting simultaneous measurements to be made on two animals by commutating signal outputs from the pods. In principle, more than two pods could be operated in this fashion. The system is compatible with Spacelab design. Representative physiological data from ground tests of the system are presented.
PERSONNEL - MINNOWS - SKYLAB (SL)-3 - JSC
1973-07-18
S73-30856 (29 June 1973) --- John Boyd observes a bag with two ?brackish water? minnows known as ?Mummichog Minnows? which will be onboard Skylab 3 with astronauts Alan L. Bean, Owen K. Garriott and Jack R. Lousma. The fish were added to the flight at the request of scientist-astronaut Dr. Owen K. Garriott, science pilot. Fifty eggs from the minnows will also be included in the bag. The objective of this experiment is to show what disorientation the fish will experience when exposed to weightlessness. Many fish have vestibular apparatus quite similar to man. Even though they live in an environment usually considered to resemble weightlessness, they do perceive a gravity vector. An aquarium of the minnows, caught off the coast of Beaufort, North Carolina, is in the background. Photo credit: NASA
SKYLAB (SL)-3 - EXPERIMENT HARDWARE
1973-11-08
S74-19677 (April 1974) --- This crystal of Germanium Selenide (GeSe) was grown under weightless conditions in an electric furnace aboard the Skylab space station. Experiment M556, Vapor Growth of IV-VI Compounds, was conducted as a comparative test of GeSe crystals grown on Earth and those grown in a weightless environment. Skylab postflight results indicate that crystals grown in a zero-gravity situation demonstrate greater growth and better composite structure than those grown in ground-bases laboratories. The GeSe crystal shown here is 20 millimeters long, the largest crystal ever grown on Earth or in space. Principal Investigator for Experiment M556 is Dr. Harry Wiedemaier, Rensselaer Polytechnic Institute, Troy, New York. (See NASA photograph S74-19676 for an example of an Earth-grown Germanium Selenide crystal.) Photo credit: NASA
Regulation of body fluid volume and electrolyte concentrations in spaceflight.
Smith, S M; Krauhs, J M; Leach, C S
1997-01-01
Despite a number of difficulties in performing experiments during weightlessness, a great deal of information has been obtained concerning the effects of spaceflight on the regulation of body fluid and electrolytes. Many paradoxes and questions remain, however. Although body mass, extracellular fluid volume, and plasma volume are reduced during spaceflight and remain so at landing, the changes in total body water are comparatively small. Serum or plasma sodium and osmolality have generally been unchanged or reduced during the spaceflight, and fluid intake is substantially reduced, especially during the first of flight. The diuresis that was predicted to be caused by weightlessness, has only rarely been observed as an increased urine volume. What has been well established by now, is the occurrence of a relative diuresis, where fluid intake decreases more than urine volume does. Urinary excretion of electrolytes has been variable during spaceflight, but retention of fluid and electrolytes at landing has been consistently observed. The glomerular filtration rate was significantly elevated during the SLS missions, and water and electrolyte loading tests have indicated that renal function is altered during readaptation to Earth's gravity. Endocrine control of fluid volumes and electrolyte concentrations may be altered during weightlessness, but levels of hormones in body fluids do not conform to predictions based on early hypotheses. Antidiuretic hormone is not suppressed, though its level is highly variable and its secretion may be affected by space motion sickness and environmental factors. Plasma renin activity and aldosterone are generally elevated at landing, consistent with sodium retention, but inflight levels have been variable. Salt intake may be an important factor influencing the levels of these hormones. The circadian rhythm of cortisol has undoubtedly contributed to its variability, and little is known yet about the influence of spaceflight on circadian rhythms. Atrial natriuretic peptide does not seem to play an important role in the control of natriuresis during spaceflight. Inflight activity of the sympathetic nervous system, assessed by measuring catecholamines and their metabolites and precursors in body fluids, generally seems to be no greater than on Earth, but this system is usually activated at landing. Collaborative experiments on the Mir and the International Space Station should provide more of the data needed from long-term flights, and perhaps help to resolve some of the discrepancies between U.S. and Russian data. The use of alternative methods that are easier to execute during spaceflight, such as collection of saliva instead of blood and urine, should permit more thorough study of circadian rhythms and rapid hormone changes in weightlessness. More investigations of dietary intake of fluid and electrolytes must be performed to understand regulatory processes. Additional hormones that may participate in these processes, such as other natriuretic hormones, should be determined during and after spaceflight. Alterations in body fluid volume and blood electrolyte concentrations during spaceflight have important consequences for readaptation to the 1-G environment. The current assessment of fluid and electrolyte status during weightlessness and at landing and our still incomplete understanding of the processes of adaptation to weightlessness and readaptation to Earth's gravity have resulted in the development of countermeasures that are only partly successful in reducing the postflight orthostatic intolerance experienced by astronauts and cosmonauts. More complete knowledge of these processes can be expected to produce countermeasures that are even more successful, as well as expand our comprehension of the range of adaptability of human physiologic processes.
Biomechanics of the Treadmill Locomotion on the International Space Station
NASA Technical Reports Server (NTRS)
DeWitt, John; Cromwell, R. L.; Ploutz-Snyder, L. L.
2014-01-01
Exercise prescriptions completed by International Space Station (ISS) crewmembers are typically based upon evidence obtained during ground-based investigations, with the assumption that the results of long-term training in weightlessness will be similar to that attained in normal gravity. Coupled with this supposition are the assumptions that exercise motions and external loading are also similar between gravitational environments. Normal control of locomotion is dependent upon learning patterns of muscular activation and requires continual monitoring of internal and external sensory input [1]. Internal sensory input includes signals that may be dependent on or independent of gravity. Bernstein hypothesized that movement strategy planning and execution must include the consideration of segmental weights and inertia [2]. Studies of arm movements in microgravity showed that individuals tend to make errors but that compensation strategies result in adaptations, suggesting that control mechanisms must include peripheral information [3-5]. To date, however, there have been no studies examining a gross motor activity such as running in weightlessness other than using microgravity analogs [6-8]. The objective of this evaluation was to collect biomechanical data from crewmembers during treadmill exercise before and during flight. The goal was to determine locomotive biomechanics similarities and differences between normal and weightless environments. The data will be used to optimize future exercise prescriptions. This project addresses the Critical Path Roadmap risks 1 (Accelerated Bone Loss and Fracture Risk) and 11 (Reduced Muscle Mass, Strength, and Endurance). Data were collected from 7 crewmembers before flight and during their ISS missions. Before launch, crewmembers performed a single data collection session at the NASA Johnson Space Center. Three-dimensional motion capture data were collected for 30 s at speeds ranging from 1.5 to 9.5 mph in 0.5 mph increments with a 12-camera system. During flight, each crewmember completed up to 6 data collection sessions spread across their missions, performing their normal exercise prescription for the test day, resulting in varying data collection protocols between sessions. Motion data were collected by a single HD video camera positioned to view the crewmembers' left side, and tape markers were placed on their feet, legs, and neck on specific landmarks. Before data collection, the crewmembers calibrated the video camera. Video data were collected during the entire exercise session at 30 Hz. Kinematic data were used to determine left leg hip, knee, and ankle range of motion and contact time, flight time, and stride time for each stride. 129 trials in weightlessness were analyzed. Mean time-normalized strides were found for each trial, and cross-correlation procedures were used to examine the strength and direction of relationships between segment movement pattern timing in each gravitational condition. Cross-correlation analyses between gravitational conditions revealed highly consistent movement patterns at each joint. Peak correlation coefficients occurred at 0% phase, indicating there were no lags in movement timing. Joint ranges of motion were similar between gravitational conditions, with some slight differences between subjects. Motion patterns in weightlessness were highly consistent at a given speed with those occurring in 1G, indicating that despite differing sensory input, subjects maintain running kinematics. The data suggest that individuals are capable of compensating for loss of limb weight when creating movement strategies. These results have important implications for creating training programs for use in weightlessness as practitioners can have greater confidence in running motions transferring across gravitational environments. Furthermore, these results have implications for use by researchers investigating motor control mechanisms and investigating hypotheses related to movement strategies when using sensory input that is dependent upon gravity.
Regulation of body fluid volume and electrolyte concentrations in spaceflight
NASA Technical Reports Server (NTRS)
Smith, S. M.; Krauhs, J. M.; Leach, C. S.
1997-01-01
Despite a number of difficulties in performing experiments during weightlessness, a great deal of information has been obtained concerning the effects of spaceflight on the regulation of body fluid and electrolytes. Many paradoxes and questions remain, however. Although body mass, extracellular fluid volume, and plasma volume are reduced during spaceflight and remain so at landing, the changes in total body water are comparatively small. Serum or plasma sodium and osmolality have generally been unchanged or reduced during the spaceflight, and fluid intake is substantially reduced, especially during the first of flight. The diuresis that was predicted to be caused by weightlessness, has only rarely been observed as an increased urine volume. What has been well established by now, is the occurrence of a relative diuresis, where fluid intake decreases more than urine volume does. Urinary excretion of electrolytes has been variable during spaceflight, but retention of fluid and electrolytes at landing has been consistently observed. The glomerular filtration rate was significantly elevated during the SLS missions, and water and electrolyte loading tests have indicated that renal function is altered during readaptation to Earth's gravity. Endocrine control of fluid volumes and electrolyte concentrations may be altered during weightlessness, but levels of hormones in body fluids do not conform to predictions based on early hypotheses. Antidiuretic hormone is not suppressed, though its level is highly variable and its secretion may be affected by space motion sickness and environmental factors. Plasma renin activity and aldosterone are generally elevated at landing, consistent with sodium retention, but inflight levels have been variable. Salt intake may be an important factor influencing the levels of these hormones. The circadian rhythm of cortisol has undoubtedly contributed to its variability, and little is known yet about the influence of spaceflight on circadian rhythms. Atrial natriuretic peptide does not seem to play an important role in the control of natriuresis during spaceflight. Inflight activity of the sympathetic nervous system, assessed by measuring catecholamines and their metabolites and precursors in body fluids, generally seems to be no greater than on Earth, but this system is usually activated at landing. Collaborative experiments on the Mir and the International Space Station should provide more of the data needed from long-term flights, and perhaps help to resolve some of the discrepancies between U.S. and Russian data. The use of alternative methods that are easier to execute during spaceflight, such as collection of saliva instead of blood and urine, should permit more thorough study of circadian rhythms and rapid hormone changes in weightlessness. More investigations of dietary intake of fluid and electrolytes must be performed to understand regulatory processes. Additional hormones that may participate in these processes, such as other natriuretic hormones, should be determined during and after spaceflight. Alterations in body fluid volume and blood electrolyte concentrations during spaceflight have important consequences for readaptation to the 1-G environment. The current assessment of fluid and electrolyte status during weightlessness and at landing and our still incomplete understanding of the processes of adaptation to weightlessness and readaptation to Earth's gravity have resulted in the development of countermeasures that are only partly successful in reducing the postflight orthostatic intolerance experienced by astronauts and cosmonauts. More complete knowledge of these processes can be expected to produce countermeasures that are even more successful, as well as expand our comprehension of the range of adaptability of human physiologic processes.
Influences of Vestibular System on Sympathetic Nervous System. Implications for countermeasures.
NASA Astrophysics Data System (ADS)
Denise, Pr Pierre
As gravity is a direct and permanent stress on body fluids, muscles and bones, it is not surpris-ing that weightlessness has important effects on cardiovascular and musculo-skeletal systems. However, these harmful effects do not totally result from the removal of the direct stress of gravity on these organs, but are also partially and indirectly mediated by the vestibular sys-tem. Besides its well known crucial role in spatial orientation and postural equilibrium, it is now clear that the vestibular system is also involved in the regulation of other important physi-ological systems: respiratory and cardiovascular systems, circadian regulation, food intake and even bone mineralization. The neuroanatomical substrate for these vestibular-mediated reg-ulations is still poorly defined, but there is much evidence that vestibular system has strong impacts not only on brainstem autonomic centers but on many hypothalamic nuclei as well. As autonomic nervous system controls almost all body organs, bringing into play the vestibular system by hypergravity or microgravity could virtually affects all major physiological func-tions. There is experimental evidence that weightlessness as well as vestibular lesion induce sympathetic activation thus participating in space related physiological alterations. The fact that some effects of weightlessness on biological systems are mediated by the vestibular system has an important implication for using artificial gravity as a countermeasure: artificial gravity should load not only bones and the cardiovascular system but the vestibular system as well. In short-arm centrifuges, the g load at the head level is low because the head is near the axis of rotation. If the vestibular system is involved in cardiovascular deconditioning and bone loss during weightlessness, it would be more effective to significantly stimulate it and thus it would be necessary to place the head off-axis. Moreover, as the otolithic organs are non longer stimu-lated in term of gravity during space flight, and because of the plasticity of the brain, it might be possible that their inputs be progressively interpreted as resulting from translational move-ment with no gravity related activation. Therefore, on return to Earth the effect of the otoliths on cardiovascular regulation might be temporarily lost leading to orthostatic intolerance.
Skeletal Micro-RNA Responses to Simulated Weightlessness
NASA Technical Reports Server (NTRS)
Thomas, Nicholas J.; Choi, Catherine Y.; Alwood, Joshua S.
2016-01-01
Astronauts lose bone structure during long-duration spaceflight. These changes are due, in part, to insufficient bone formation by the osteoblast cells. Little is known about the role that small (approximately 22 nucleotides), non-coding micro-RNAs (miRNAs) play in the osteoblast response to microgravity. We hypothesize that osteoblast-lineage cells alter their miRNA status during microgravity exposure, contributing to impaired bone formation during weightlessness. To simulate weightlessness, female mice (C57BL/6, Charles River, 10 weeks of age, n = 7) were hindlimb unloaded up to 12 days. Age-matched and normally ambulating mice served as controls (n=7). To assess the expression of miRNAs in skeletal tissue, the tibia was collected ex vivo and cleaned of soft-tissue and marrow. Total RNA was collected from tibial bone and relative abundance was measured for miRNAs of interest using quantitative real time PCR array looking at 372 unique and well-characterized mature miRNAs using the delta-delta Ct method. Transcripts of interest were normalized to an average of 6 reference RNAs. Preliminary results show that hindlimb unloading decreased the expression of 14 miRNAs to less than 0.5 times that of the control levels and increased the expression of 5 miRNAs relative to the control mice between 1.2-1.5-fold (p less than 0.05, respectively). Using the miRSystem we assessed overlapping target genes predicted to be regulated by multiple members of the 19 differentially expressed miRNAs as well as in silico predicted targets of our individual miRNAs. Our miRsystem results indicated that a number of our differentially expressed miRNAs were regulators of genes related to the Wnt-Beta Catenin pathway-a known regulator of bone health-and, interestingly, the estrogen-mediated cell-cycle regulation pathway, which may indicate that simulated weightlessness modulated systemic hormonal levels or hormonal transduction that additionally contributed to bone loss. We plan to follow up these findings by measuring gene expression of miRNA-regulated genes within these two pathways with the aim of furthering our understanding of the function of miRNAs in the skeletal response to spaceflight.
NASA Technical Reports Server (NTRS)
Howard, W. H.; Young, D. R.
1972-01-01
Device applies compressive force to bone to minimize loss of bone calcium during weightlessness or bedrest. Force is applied through weights, or hydraulic, pneumatic or electrically actuated devices. Device is lightweight and easy to maintain and operate.
Astronaut Robert L. Crippen prepares for underwater training session
NASA Technical Reports Server (NTRS)
1983-01-01
Astronaut Robert L. Crippen, STS-7 crew commander, adjusts his extravehicular mobility unit's (EMU) gloves prior to donning his helmet for a training session in the weightless environment test facility (WETF).
NASA Technical Reports Server (NTRS)
1978-01-01
The adequate modeling of physiological reactions inherent to the state of weightlessness has become a matter of particular urgency in space medicine. This modeling is necessary for studying the phenomenology and degree of disorders, prognostication of the crew's health, and developing the various preventive measures employed in space flights. A comparison is made of the physiological effects brought about by bed rest in a horizontal and antiorthostatic body position. A study is done of the influence of brief antiorthostatic hypokinesia, simulating the acute period of adaptation to weightlessness, on circulation and on a number of involved analytical systems. The basic model accepted is antiorthostatic hypokinesia with a body position declination angle of 4 deg (head lower than feet). The experiment's duration is dictated by the objectives of the research.
Effects of simulated weightlessness and sympathectomy on maximum VO2 of male rats
NASA Technical Reports Server (NTRS)
Woodman, C. R.; Stump, C. S.; Beaulieu, S. M.; Rahman, Z.; Sebastian, L. A.
1989-01-01
The effects of simulated weightlessness (hind-limb suspension) and chemical sympathectomy (by repeated injections with guanethidine sulfate) on the maximum oxygen consumption (VO2 max) of female rats were investigated in rats assigned for 14 days to one of three groups: a head-down hind-limb suspension, a horizontal suspension with hind limbs weight bearing, or the caged control. The VO2 max values were assessed by having rats run on a treadmill enclosed in an airtight chamber. The hind-limb-suspended sympathectomized rats were found to exhibit shorter run times and lower mechanical efficiencies, compared to their presuspension values or the values from saline-injected suspended controls. On the other hand, the suspended sympathectomized rats did not demonstrate a decrease in the VO2 max values that was observed in saline-injected controls.
Test of a life support system with Hirudo medicinalis in a sounding rocket.
Lotz, R G; Baum, P; Bowman, G H; Klein, K D; von Lohr, R; Schrotter, L
1972-01-01
Two Nike-Tomahawk rockets each carrying two Biosondes were launched from Wallops Island, Virginia, the first on 10 December 1970 and the second on 16 December 1970. The primary objective of both flights was to test the Biosonde life support system under a near weightless environment and secondarily to subject the Hirudo medicinalis to the combined stresses of a rocket flight. The duration of the weightless environment was approximately 6.5 minutes. Data obtained during the flight by telemetry was used to ascertain the operation of the system and the movements of the leeches during flight. Based on the information obtained, it has been concluded that the operation of the Biosondes during the flight was similar to that observed in the laboratory. The experiment and equipment are described briefly and the flight results presented.
1973-01-01
Vincent W. Converse of Rockford, Illinois proposed Skylab's student experiment ED-74, Mass Measurement, to measure mass in a weightless environment. This chart describes Converse's experiment. Mass is the quantity of matter in any object. The gravitational force between an object and the Earth is called weight, which is a result of the Earth's gravity acting upon the object's mass. Even though objects in Skylab were apparently weightless, their mass properties were unchanged. Measurement of mass is therefore an acceptable alternative to measurement of weight. The devices used in this experiment provided accurate mass measurements of the astronauts' weights, intakes, and body wastes throughout the missions. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
NASA Technical Reports Server (NTRS)
Reschke, Millard F.; Parker, Donald E.
1987-01-01
Seven astronauts reported translational self-motion during roll simulation 1-3 h after landing following 5-7 d of orbital flight. Two reported strong translational self-motion perception when they performed pitch head motions during entry and while the orbiter was stationary on the runway. One of two astronauts from whom adequate data were collected exhibited a 132-deg shift in the phase angle between roll stimulation and horizontal eye position 2 h after landing. Neither of two from whom adequate data were collected exhibited increased horizontal eye movement amplitude or disturbance of voluntary pitch or roll body motion immediately postflight. These results are generally consistent with an otolith tilt-translation reinterpretation model and are being applied to the development of apparatus and procedures intended to preadapt astronauts to the sensory rearrangement of weightlessness.
NASA Technical Reports Server (NTRS)
Holland, Albert W. (Editor)
1987-01-01
Topics discussed in this volume include space motion sickness, cardiovascular adaptation, fluid shifts, extravehicular activity, general physiology, perception, vestibular response modifications, vestibular physiology, and pharmacology. Papers are presented on the clinical characterization and etiology of space motion sickness, ultrasound techniques in space medicine, fluid shifts in weightlessness, Space Shuttle inflight and postflight fluid shifts measured by leg volume changes, and the probability of oxygen toxicity in an 8-psi space suit. Consideration is also given to the metabolic and hormonal status of crewmembers in short-term space flights, adaptive changes in perception of body orientation and mental image rotation in microgravity, the effects of a visual-vestibular stimulus on the vestibulo-ocular reflex, rotation tests in the weightless phase of parabolic flight, and the mechanisms of antimotion sickness drugs.
Effect of antiorthostatic bed rest on hepatic blood flow in man.
Putcha, L; Cintron, N M; Vanderploeg, J M; Chen, Y; Habis, J; Adler, J
1988-04-01
Physiological changes that occur during exposure to weightlessness may induce alterations in blood flow to the liver. Estimation of hepatic blood flow (HBF) using ground-based weightlessness simulation models may provide insight into functional changes of the liver in crewmembers during flight. In the present study HBF, indirectly estimated by indocyanine green (ICG) clearance, is compared in 10 subjects during the normal ambulatory condition and antiorthostatic (-6 degrees) bed rest. Plasma clearance of ICG was determined following intravenous administration of a 0.5-mg.kg-1 dose of ICG to each subject on two separate occasions, once after being seated for 1 h and once after 24 h of head-down bed rest. After 24 h of head-down bed rest, hepatic blood flow did not change significantly from the respective control value.
Effects of prolonged weightlessness on the swimming pattern of fish aboard Skylab 3
NASA Technical Reports Server (NTRS)
Von Baumgarten, R. J.; Simmonds, R. C.; Boyd, J. F.; Garriott, O. K.
1975-01-01
Looping behavior of minnows aboard Skylab 3 is analyzed. Extensive looping patterns were observed at first look on the third day of weightlessness; thereafter, the frequency of the looping episodes diminished until complete adaptation on the twenty-first day, at which time the fish oriented themselves with their backs to the light. The swimming anomaly could be due to (1) absence of continuous bending of sense hairs to a certain extent by gravity, causing the fish to tilt forward in an attempt to increase leverage on the hairs - in the absence of all gravity, tilting is continued into looping (this hypothesis is supported by parabolic flight experiments with partial gravity, in which only tilting was seen); or (2) an attempt by the fish to create a gravitoinertial stimulus by 'centrifuging' its otoliths by looping.
Spaceflight effects on adult rat muscle protein, nucleic acids, and amino acids
NASA Technical Reports Server (NTRS)
Steffen, J. M.; Musacchia, X. J.
1986-01-01
Exposure to conditions of weightlessness has been associated with decrements in muscle mass and strength. The present studies were undertaken to determine muscle responses at the cellular level. Male Sprague-Dawley rats (360-410 g) were exposed to 7 days of weightlessness during the Spacelab-3 shuttle flight (May 1985). Animals were killed 12 h postflight, and soleus (S), gastrocnemius (G), and extensor digitorum longus (EDL) muscles were excised. Muscle protein, RNA, and DNA were extracted and quantified. Differential muscle atrophy was accompanied by a significant (P less than 0.05) reduction in total protein only in S muscles. There were no significant changes in protein concentration (mg/g) in the muscles examined. In S muscles from flight animals, sarcoplasmic protein accounted for a significantly greater proportion of total protein that in ground controls (37.5 vs. 32.5%). Tissue concentrations (nmol/g) of asparagine-aspartate, glutamine-glutamate, glycine, histidine, and lysine were significantly reduced (from 17 to 63%) in S muscles from flight animals, but only glutamine-glutamate levels were decreased in the G and EDL. Muscle DNA content (microgram) was unchanged in the tissues examined, but S muscle DNA concentration (micrograms/mg) increased 27%. RNA content (micrograms) was significantly (P less than 0.025) reduced in S (-28%) and G(-22%) muscles following spaceflight. These results identify specific alterations in rat skeletal muscle during short term (7-day) exposure to weightlessness and compare favorably with observations previously obtained from ground-based suspension simulations.
Possibility of long-distance heat transport in weightlessness using supercritical fluids
NASA Astrophysics Data System (ADS)
Beysens, D.; Chatain, D.; Nikolayev, V. S.; Ouazzani, J.; Garrabos, Y.
2010-12-01
Heat transport over large distances is classically performed with gravity or capillarity driven heat pipes. We investigate here whether the “piston effect,” a thermalization process that is very efficient in weightlessness in compressible fluids, could also be used to perform long-distance heat transfer. Experiments are performed in a modeling heat pipe (16.5 mm long, 3 mm inner diameter closed cylinder), with nearly adiabatic polymethylmethacrylate walls and two copper base plates. The cell is filled with H2 near its gas-liquid critical point (critical temperature: 33 K). Weightlessness is achieved by submitting the fluid to a magnetic force that compensates gravity. Initially the fluid is isothermal. Then heat is sent to one of the bases with an electrical resistance. The instantaneous amount of heat transported by the fluid is measured at the other end. The data are analyzed and compared with a two-dimensional numerical simulation that allows an extrapolation to be made to other fluids (e.g., CO2 , with critical temperature of 300 K). The major result is concerned with the existence of a very fast response at early times that is only limited by the thermal properties of the cell materials. The yield in terms of ratio, injected or transported heat power, does not exceed 10-30% and is limited by the heat capacity of the pipe. These results are valid in a large temperature domain around the critical temperature.
Noninvasive methods in space cardiology.
Baevsky, R M
1997-01-01
The development and application of noninvasive methods in space cardiology is discussed. These methods are used in astronautics both to gain new insights into the impact of weightlessness conditions on the human organism and to help solve problems involved in the medical monitoring of space crew members. The cardiovascular system is a major target for the action of microgravity. Noninvasive methods used to examine the cardiovascular system during space flights over the past 30 years are listed. Special attention is given to methods for studying heart rate variability and contactless recording of physiologic functions during night sleep. Analysis of heart rate variability highlights an important principle of space cardiology-gaining the maximum amount of information while recording as little data as possible. With this method, the degree of strain experienced by the systems of autonomic regulation and the adaptational capabilities of the body can be assessed at various stages of a space flight. Discriminant analysis of heart rate variability data enables the psycho-emotional component of stress to be separated from the component associated with the impact of weightlessness. A major advance in space medicine has been the development of techniques for contactless recording of pulse rates, breathing frequency, myocardial contractility, and motor activity during sleep using a sensor installed on the cosmonaut's sleeping bag. The data obtained can be used to study ultradian rhythms, which reflect the activity of higher autonomic centers. An important role of these centers in mobilizing functional reserves of the body to ensure its relatively stable adaptation to weightless conditions is shown.
NASA Technical Reports Server (NTRS)
Simanonok, K.; Mosely, E.; Charles, J.
1992-01-01
Nine preflight variables related to fluid, electrolyte, and cardiovascular status from 64 first-time Shuttle crewmembers were differentially weighted by discrimination analysis to predict the incidence and severity of each crewmember's space sickness as rated by NASA flight surgeons. The nine variables are serum uric acid, red cell count, environmental temperature at the launch site, serum phosphate, urine osmolality, serum thyroxine, sitting systolic blood pressure, calculated blood volume, and serum chloride. Using two methods of cross-validation on the original samples (jackknife and a stratefied random subsample), these variables enable the prediction of space sickness incidence (NONE or SICK) with 80 percent sickness and space severity (NONE, MILD, MODERATE, of SEVERE) with 59 percent success by one method of cross-validation and 67 percent by another method. Addition of a tenth variable, hours spent in the Weightlessness Environment Training Facility (WETF) did not improve the prediction of space sickness incidences but did improve the prediction of space sickness severity to 66 percent success by the first method of cross-validation of original samples and to 71 percent by the second method. Results to date suggest the presence of predisposing physiologic factors to space sickness that implicate fluid shift etiology. The data also suggest that prior exposure to fluid shift during WETF training may produce some circulatory pre-adaption to fluid shifts in weightlessness that results in a reduction of space sickness severity.
Bourrelly, Aurore; McIntyre, Joseph; Luyat, Marion
2015-09-01
On Earth, visual eye height (VEH)--the distance from the observer's line of gaze to the ground in the visual scene--constitutes an effective cue in perceiving affordance such as the passability through apertures, based on the assumption that one's feet are on the ground. In the present study, we questioned whether an observer continues to use VEH to estimate the width of apertures during long-term exposure to weightlessness, where contact with the floor is not required. Ten astronauts were tested in preflight, inflight in the International Space Station, and postflight sessions. They were asked to adjust the opening of a virtual doorway displayed on a laptop device until it was perceived to be just wide enough to pass through (i.e., the critical aperture). We manipulated VEH by raising and lowering the level of the floor in the visual scene. We observed an effect of VEH manipulation on the critical aperture. When VEH decreased, the critical aperture decreased too, suggesting that widths relative to the body were perceived to be larger when VEH was smaller. There was no overall significant session effect, but the analysis of between-subjects variability revealed two participant profile groups. The effect of weightlessness was different for these two groups even though the VEH strategy remained operational during spaceflight. This study shows that the VEH strategy appears to be very robust and can be used, if necessary, in inappropriate circumstances such as free-floating, perhaps promoted by the nature of the visual scene.
Ground-facilities at the DLR Institute of Aerospace Medicine for preparation of flight experiments
NASA Astrophysics Data System (ADS)
Hemmersbach, Ruth; Hendrik Anken, Ralf; Hauslage, Jens; von der Wiesche, Melanie; Baerwalde, Sven; Schuber, Marianne
In order to investigate the influence of altered gravity on biological systems and to identify gravisensitive processes, various experimental platforms have been developed, which are useful to simulate weightlessness or are able to produce hypergravity. At the Institute of Aerospace Medicine, DLR Cologne, a broad spectrum of applications is offered to scientists: clinostats with one rotation axis and variable rotation speeds for cultivation of small objects (including aquatic organisms) in simulated weightlessness conditions, for online microscopic observations and for online kinetic measurements. Own research concentrates on comparative studies with other kinds of methods to simulate weightlessness, also available at the institute: Rotating Wall Vessel (RWV) for aquatic studies, Random Positioning Machine (RPM; manufactured by Dutch Space, Leiden, The Netherlands). Correspondingly, various centrifuge devices are available to study different test objects under hypergravity conditions -such as NIZEMI, a slow rotating centrifuge microscope, and MUSIC, a multi-sample centrifuge. Mainly for experiments with human test subjects (artificial gravity), but also for biological systems or for testing various kinds of (flight-) hardware, the SAHC, a short arm human centrifuge -loaned by ESA -was installed in Cologne and completes our experimental scenario. Furthermore, due to our specific tasks such as providing laboratories during the German Parabolic Flight Experiments starting from Cologne and being the Facility Responsible Center for BIOLAB, a science rack in the Columbus module aboard the ISS, scientists have the possibility for an optimal preparation of their flight experiments.
From Milk to Bones, Moving Calcium Through the Body: Calcium Kinetics During Space Flight
NASA Technical Reports Server (NTRS)
Smith, Scott; Bloomberg, Jacob; Lee, Angie (Technical Monitor)
2002-01-01
Did you know that when astronauts are in space, their height increases about two inches? This happens because the weightlessness of space allows the spine, usually compressed in Earth's gravity, to expand. While this change is relatively harmless, other more serious things can happen with extended stays in weightlessness, notably bone loss. From previous experiments, scientists have observed that astronauts lose bone mass at a rate of about one percent per month during flight. Scientists know that bone is a dynamic tissue - continually being made and repaired by specialized bone cells throughout life. Certain cells produce new bone, while other cells are responsible for removing and replacing old bone. Research on the mechanisms of bone metabolism and the effects of space flight on its formation and repair are part of the exciting studies that will be performed during STS-107. Calcium plays a central role because 1) it gives strength and structure to bone and 2) all types of cells require it to function normally. Ninety-nine percent of calcium in the body is stored in the skeleton. However, calcium may be released, or resorbed, from bone to provide for other tissues when you are not eating. To better understand how and why weightlessness induces bone loss, astronauts will participate in a study of calcium kinetics - that is, the movement of calcium through the body, including absorption from food, and its role in the formation and breakdown of bone.
Bed Rest and Immobilization: Risk Factors for Bone Loss
... Loss Bed Rest and Immobilization: Risk Factors for Bone Loss Like muscle, bone is living tissue that ... bones adjust to the state of weightlessness. Maintaining Bone Health In general, healthy people who undergo prolonged ...
Automatic water inventory, collecting, and dispensing unit
NASA Technical Reports Server (NTRS)
Hall, J. B., Jr.; Williams, E. F.
1972-01-01
Two cylindrical tanks with piston bladders and associated components for automatic filling and emptying use liquid inventory readout devices in control of water flow. Unit provides for adaptive water collection, storage, and dispensation in weightlessness environment.
Aerospace Medicine and Biology: A cumulative index to the 1981 issues
NASA Technical Reports Server (NTRS)
1982-01-01
The aeromedical research reported considers the safety of the human component in manned space flight. The effects of spacecraft environment, radiation and weightlessness on human biological and psychological processes are covered.
Space weightlessness and hormonal changes in human subjects and experimental animals
NASA Technical Reports Server (NTRS)
Grindeland, R. E.
1982-01-01
Data from spaceflight and bed rest studies are briefly described and the difficulties in interpreting these results are discussed. Growth hormone, prolactin, adrenocorticotropic hormone, cortisol, insulin, aldosterone, and other hormones are addressed.
Physiology of the sensory sphere under spaceflight conditions
NASA Technical Reports Server (NTRS)
Yuganov, Y. M.; Kopanev, V. I.
1975-01-01
Information regarding the influence on sensory perception of certain space flight factors, including weightlessness, acceleration, and vibration, is presented. Several illusions which occur under these conditions are described. The results of ground based experiments are also discussed.
Astronaut Donald McMonagle checks drainage hose on his life raft in training
NASA Technical Reports Server (NTRS)
1994-01-01
Astronaut Donald R. McMonagle, STS-66 mission commander, checks the drainage hose on his rapidly fashioned life raft during an emergency bailout training exercise in JSC's Weightless Environment Training Facility (WETF).
Changes of brain response induced by simulated weightlessness
NASA Astrophysics Data System (ADS)
Wei, Jinhe; Yan, Gongdong; Guan, Zhiqiang
The characteristics change of brain response was studied during 15° head-down tilt (HDT) comparing with 45° head-up tilt (HUT). The brain responses evaluated included the EEG power spectra change at rest and during mental arithmetic, and the event-related potentials (ERPs) of somatosensory, selective attention and mental arithmetic activities. The prominent feature of brain response change during HDT revealed that the brain function was inhibited to some extent. Such inhibition included that the significant increment of "40Hz" activity during HUT arithmetic almost disappeared during HDT arithmetic, and that the positive-potential effect induced by HDT presented in all kinds of ERPs measured, but the slow negative wave reflecting mental arithmetic and memory process was elongated. These data suggest that the brain function be affected profoundly by the simulated weightlessness, therefore, the brain function change during space flight should be studied systematically.
The simulation of microgravity conditions on the ground.
Albrecht-Buehler, G
1992-10-01
This chapter defines weightlessness as the condition where the acceleration of an object is independent of its mass. Applying this definition to the clinostat, it argues that the clinostat is very limited as a simulator of microgravity because it (a) generates centrifugal forces, (b) generates particle oscillations with mass-dependent amplitudes of speed and phase shifts relative to the clinorotation, (c) is unable to remove globally the scalar effects of gravity such as hydrostatic pressure, which are independent of the direction of gravity in the first place, and, (d) generates more convective mixing of the gaseous or liquid environment of the test object, rather than eliminating it, as would true weightlessness. It is proposed that attempts to simulate microgravity must accept the simulation of one aspect of microgravity at a time, and urges that the suppression of convective currents be a major feature of experimental methods that simulate microgravity.
NASA Technical Reports Server (NTRS)
Meyers, D. G.
1984-01-01
Aquatic microcrustaceans of the genus Daphnia are known to orient to light during the day. At night, in the absence of visual cues, daphnids were suspected of maintaining equilibrium by monitoring the direction of gravity through their swimming antennae. Recent investigations using simulated, weightlessness conditions coupled with absence of illumination revealed hair like structures or setae on the basal, articulating socket of the antennae that, when surgically removed, resulted in disorientation. Given the simulated weightlessness or neutrally buoyant condition that eliminated sinking of the normally negatively buoyant Daphnia, it was proposed that the antennal socket setae function as rheoceptors stimulated by the upward rush of water currents during gravity induced, sinking phase of daphnid swimming movements. This rheoceptively mediated, gravity perception hypothesis is further supported by morphological investigations. Scanning electron micrographs indicate that antennal socket setae are anatomically similar to proprioceptors used by higher crustaceans to monitor gravitational direction.
Effect of simulated weightlessness on energy metabolism in the rat
NASA Technical Reports Server (NTRS)
Jordan, J. P.; Sykes, H. A.; Crownover, J. C.; Schatte, C. L.; Simmons, J. B., II; Jordan, D. P.
1982-01-01
Results of measurements of food uptake and body weight changes occurring in rats suspended from a harness so that the antigravity muscles were not used for locomotion are presented. The rats were tested in pairs, with both in a harness but only one suspended off its hind legs; this section lasted 7 days. A second phase of the experiment involved feeding the nonsuspended rat the same amount of food the experimental rat had consumed the previous day. All rats experienced decreased in body weight and food intake in the first stage, while in the second stage the suspended rat lost more weight. The total oxygen uptake, CO2 output, and rate of C-14O2 production were depressed in the suspended rats, then returned to normal levels once the rats were back on the ground. It is concluded that the gross metabolic processes are unaffected by simulated weightlessness.
So You Want to Go to Mars: Bones and Matters of the Heart
NASA Technical Reports Server (NTRS)
Tahimic, Candice; Globus, Ruth; Torres, Samantha; Steczina, Sonette
2017-01-01
There is evidence that weightlessness and radiation, two elements of the spaceflight environment, can lead to detrimental changes in human musculoskeletal tissue, including bone loss and muscle atrophy. This bone loss is thought to be brought about by the increased activity of bone-resorbing osteoclasts and functional changes in bone-forming osteoblasts, cells that give rise to mature osteocytes. Collectively, our research team aims to understand the molecular mechanisms underlying the responses of mammalian tissue to the spaceflight environment using earth-based animal and cellular models. The overarching goal is to identify molecular targets to prevent tissue decrements induced by spaceflight and earth-based scenarios of radiotherapy, accidental radiation exposure and reduced mobility. In this talk, I will provide an overview of skeletal and cardiovascular responses to spaceflight and will highlight our research progress on understanding the role of reactive oxygen species (ROS) signaling in skeletal responses to radiation and simulated weightlessness.
Fungi in space--literature survey on fungi used for space research.
Kern, V D; Hock, B
1993-09-01
A complete review of the scientific literature on experiments involving fungi in space is presented. This review begins with balloon experiments around 1935 which carried fungal spores, rocket experiments in the 1950's and 60's, satellite and moon expeditions, long-time orbit experiments and Spacelab missions in the 1980's and 90's. All these missions were aimed at examining the influence of cosmic radiation and weightlessness on genetic, physiological, and morphogenetic processes. During the 2nd German Spacelab mission (D-2, April/May 1993), the experiment FUNGI provided the facilities to cultivate higher basidiomycetes over a period of 10 d in orbit, document gravimorphogenesis and chemically fix fruiting bodies under weightlessness for subsequent ultrastructural analysis. This review shows the necessity of space travel for research on the graviperception of higher fungi and demonstrates the novelty of the experiment FUNGI performed within the framework of the D-2 mission.
NASA Technical Reports Server (NTRS)
Dickey, D. T.; Billman, G. E.; Teoh, K.; Sandler, H.; Stone, H. L.
1982-01-01
To simulate the weightless condition, eight rhesus monkeys, instrumented with solid-state pressure transducers, were horizontally restrained in body casts for 28 days. Blood volume decreased an average of 13% after 14 days of restraint, due mainly to a drop in plasma volume. Aortic pressure and heart rate responses to norepinephrine and phenylephrine decreased after 14 days of restraint. The monkeys did not show a statistically significant decreased tolerance to a 90 deg sudden upright tilt after horizontal restraint. During the fifth week of casting, four animals were subjected to +Gz acceleration tests on a centrifuge. The acceleration tolerance of the casted monkeys was significantly reduced compared to four similarly instrumented control animals. These findings indicate that the cardiovascular deconditioning associated with simulated weightlessness results from an inability to maintain central blood volume during orthostatic stress.
Absence of center of mass control for leg abduction in long-term weightlessness in humans.
Pedrocchi, Alessandra; Baroni, Guido; Mouchnino, Laurence; Ferrigno, Giancarlo; Pedotti, Antonio; Massion, Jean
2002-02-22
The present investigation describes for the first time leg lateral abduction performance during long-term microgravity exposure. Two astronauts took part in the experiments, starting 2 weeks into the mission and lasting for 5 months. Results on joint angles kinematics confirm previous investigations on parabolic flights, showing good task fulfillment for both subjects. Special interest was focused on whole body center of mass (CM) positioning. As in short-term microgravity, no initial CM lateral shift toward the 'supporting' leg was observed. In contrast with short-term microgravity and ground-based experiments, no stabilization of the CM medio-lateral position was found but a significant shift of CM toward the moving leg was observed. This suggests that the adaptation to sustained weightlessness might have led to a microgravity-specific motor strategy for leg abduction, which was not focused on CM strategy.
Mass Measurement - Skylab Student Experiment ED-74
NASA Technical Reports Server (NTRS)
1973-01-01
Vincent W. Converse of Rockford, Illinois proposed Skylab's student experiment ED-74, Mass Measurement, to measure mass in a weightless environment. This chart describes Converse's experiment. Mass is the quantity of matter in any object. The gravitational force between an object and the Earth is called weight, which is a result of the Earth's gravity acting upon the object's mass. Even though objects in Skylab were apparently weightless, their mass properties were unchanged. Measurement of mass is therefore an acceptable alternative to measurement of weight. The devices used in this experiment provided accurate mass measurements of the astronauts' weights, intakes, and body wastes throughout the missions. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
NASA Technical Reports Server (NTRS)
Pace, N.; Rahlmann, D. F.; Mains, R. C.; Kodama, A. M.; Mccutcheon, E. P.
1979-01-01
A 10-kg male pig-tailed monkey (Macaca nemestrina) was selected as an optimal species for spaceflight studies on weightlessness. Three days before the simulated launch, the animal was placed in a fiberglass pod system to provide continuous measurement of respiratory gas exchange. Attention is given to examining the effects of weightlessness on several basic parameters of metabolic and cardiovascular function in an adult nonhuman primate. The 10.7-day total simulated-experiment period consisted of preflight 2.6 days, inflight 6.3 days, and postflight 1.8 days. Statistically significant diurnal variation was noted in oxygen consumption and CO2 production rates, body temperature and HR, but not in respiratory quotient or blood pressure. The high quality of the continuous data obtained demonstrates the feasibility of performing sound physiological experimentation on nonhuman primates in the Spacelab environment.
Group Housing During Hindlimb Unloading to Simulate Weightlessness
NASA Technical Reports Server (NTRS)
Tahimic, Candice; Lowe, Moniece; Steczina, Sonette; Torres, Samantha; Terada, Masahiro; Schreurs, Ann-Sofie; Ronca, April; Alwood, Joshua; Globus, Ruth K.
2017-01-01
The rodent hindlimb unloading (HU) model was developed in the 1980s to faciliate the study of mechanisms, responses, and treatments for the adverse effects of spaceflight. A number of variations on unloading systems and cage designs have been developed, although most entail individually housing the HU animals. In this study, we performed hindlimb unloading under group housing conditions. Our preliminary results indicate that HU animals that were group housed for 30 days, displayed musculoskeletal decrements associated with disuse, and further, body weights did not differ compared to age-matched controls. In conclusion, group housing of HU mice provides a novel means to simulate weightlessness under conditions that more closely resemble living conditions of Rodent Research Project ISS flight hardware habitats, and minimizes the social stress of isolation, which is consistent with current animal welfare standards (Guide for the Care and Use of Laboratory Animals: Eighth Edition, National Research Council).
Evaporative water loss in man in a gravity-free environment
NASA Technical Reports Server (NTRS)
Leach, C. S.; Leonard, J. I.; Rambaut, P. C.; Johnson, P. C.
1978-01-01
Daily evaporative water losses (EWL) during the three Skylab missions were measured indirectly using mass and water-balance techniques. The mean daily values of EWL for the nine crew members who averaged 1 hr of daily exercise were: preflight 1,750 + or - 37 (SE) ml or 970 + or - 20 ml/sq m and inflight 1,560 + or - 26 ml or 860 + or - 14 ml/sq m. Although it was expected the EWL would increase in the hypobaric environment of Skylab, an average decrease from preflight sea-level conditions of 11% was measured. The results suggest that weightlessness decreased sweat losses during exercise and possibly reduced insensible skin losses. The weightlessness environment apparently promotes the formation of an observed sweat film on the skin surface during exercise by reducing convective flow and sweat drippage, resulting in high levels of skin wettedness that favor sweat suppression.
Development and testing of a mouse simulated space flight model
NASA Technical Reports Server (NTRS)
Sonnenfeld, G.
1985-01-01
The development and testing of a mouse model for simulating some aspects of weightlessness that occur during space flight, and the carrying out of immunological flight experiments on animals was discussed. The mouse model is an antiorthostatic, hypokinetic, hypodynamic suspension model similar to the one used with rats. It is shown that this murine model yield similar results to the rat model of antiorthostatic suspension for simulating some aspects of weightlessness. It is also shown that mice suspended in this model have decreased interferon-alpha/beta production as compared to control, nonsuspended mice or to orthostatically suspended mice. It is suggested that the conditions occuring during space flight could possibly affect interferon production. The regulatory role of interferon in nonviral diseases is demonstrated including several bacterial and protozoan infections indicating the great significance of interferon in resistance to many types of infectious diseases.
NASA Technical Reports Server (NTRS)
Charles, John B.
2013-01-01
The technique of neutral buoyancy during water immersion was applied to a variety of questions pertaining to human performance factors in the early years of the space age. It was independently initiated by numerous aerospace contractors at nearly the same time, but specific applications depended on the problems that the developers were trying to solve. Those problems dealt primarily with human restraint and maneuverability and were often generic across extravehicular activity (EVA) and intravehicular activity (IVA) worksites. The same groups often also considered fractional gravity as well as weightless settings and experimented with ballasting to achieve lunar and Mars-equivalent loads as part of their on-going research and development. Dr. John Charles reviewed the association of those tasks with contemporary perceptions of the direction of NASA's future space exploration activities and with Air Force assessments of the military value of man in space.
1973-01-01
This chart describes the Skylab student experiment Motor Sensory Performance, proposed by Kathy L. Jackson of Houston, Texas. Her proposal was a very simple but effective test to measure the potential degradation of man's motor-sensory skills while weightless. Without knowing whether or not man can retain a high level of competency in the performance of various tasks after long exposure to weightlessness, this capability could not be fully known. Skylab, with its long-duration missions, provided an ideal testing situation. The experiment Kathy Jackson proposed was similar in application to the tasks involved in docking one spacecraft to another using manual control. It required one of the greatest tests of the motor-sensory capabilities of man. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
Effect of Altered Gravity on the Neurobiology of Fish
NASA Astrophysics Data System (ADS)
Anken, R. H.; Rahmann, H.
In vertebrates (including humans) altered gravitational environments such as weightlessness can induce malfunction of the inner ears due to a mismatch between canal and statolith afferents. This leads to an illusionary tilt because the inputs from the inner ear are not confirmed by the other sensory organs, which then results in intersensory conflict. Vertebrates in orbit therefore face severe orientation problems. In humans the intersensory conflict may additionally lead to a malaise commonly referred to as space motion sickness (SMS). After the initial days of weightlessness the orientation problems (and SMS) disappear as the brain develops a new interpretation of the available sensory data. The present contribution reviews the neurobiological responses, particularly those of fish, observed under altered gravitational states concerning behavior and neuroplastic reactivities. Investigations employing microgravity (spaceflight, parabolic aircraft flights, clinostat) and hypergravity (laboratory centrifuges as ground-based research tools) provide insights for understanding the basic phenomena, many of which remain only incompletely explained
Human tolerance to space flight
NASA Technical Reports Server (NTRS)
Huntoon, C. L.
1989-01-01
Medical studies of astronauts and cosmonauts before, during, and after space missions have identified several effects of weightlessness and other factors that influence the ability of humans to tolerate space flight. Weightlessness effects include space motion sickness, cardiovascular abnormalities, reduction in immune system function, loss of red blood cells, loss of bone mass, and muscle atrophy. Extravehicular activity (EVA) increases the likelihood that decompression sickness may occur. Radiation also gives reason for concern about health of crewmembers, and psychological factors are important on long-term flights. Countermeasures that have been used include sensory preadaptation, prebreathing and use of various air mixtures for EVA, loading with water and electrolytes, exercise, use of pharmacological agents and special diets, and psychological support. It appears that humans can tolerate and recover satisfactorily from at least one year of space flight, but a number of conditions must be further ameliorated before long-duration missions can be considered routine.
Regulation of body fluid and salt homeostasis--from observations in space to new concepts on Earth.
Gerzer, R; Heer, M
2005-08-01
The present manuscript summarizes recent discoveries that were made by studying salt and fluid homeostasis in weightlessness. These data indicate that 1. atrial natriuretic peptide appears not to play an important role in natriuresis in physiology, 2. the distribution of body fluids appears to be tightly coupled with hunger and thirst regulation, 3. intrathoracic pressure may be an important co-regulator of body fluid homeostasis, 4. a so far unknown low-affinity, high capacity osmotically inactive sodium storage mechanism appears to be present in humans that is acting through sodium/hydrogen exchange on glycosaminoglycans and might explain the pathophysiology, e.g., of salt sensitive hypertension. The surprising and unexpected data underline that weightlessness is an excellent tool to investigate the physiology of our human body: If we knew it, we should be able to predict changes that occur when gravity is absent. But, as data from space demonstrate, we do not.
Biochemical changes in rat liver after 18.5 days of spaceflight (41566)
NASA Technical Reports Server (NTRS)
Abraham, S.; Lin, C.Y.; Volkmann, C. M.; Klein, H. P.
1983-01-01
The effect of weightlessness on liver metabolism was investigated using tissue from rats flown in earth orbit for 18.5 days on the Soviet Cosmos 936 biosatellite and the changes in the activities of 28 carbohydrate and lipid enzymes were determined. The activities of two enzymes, palmitoyl-CoA desaturase and lactate dehydrogenase, increased, while the activities of five, glycogen phosphorylase, 6-phosphogluconate dehydrogenase, both acyltransferases which act on alpha-glycerolphosphate and diglycerides, and and aconitate hydratase decreased. The other enzyme activities were found to be unchanged. In addition, increased levels of liver glycogen and palmitoleate were detected which probably resulted from the lowered glycogen phosphorylase and increased palmitoyl-CoA desaturase activities, respectively, in those animals that experienced weightlessness. All of the changes observed in the rats after 18.5 days of spaceflight disappear by 25 days after the flight.
The validity of an animal model for experiments related to weightlessness
NASA Technical Reports Server (NTRS)
Musacchia, X. J.; Steffen, J. M.
1983-01-01
Animal evolution has witnessed morphological and physiological adaptations to gravitational forces. In the rat, hind limb muscles can be used to illustrate a range of load bearing functions: soleus - gastrocnemius = plantaris - extensor digitorum longus (EDL). A harness suspension apparatus is used to induce hypokinesia and hypodynamia (H&H) and to simulate responses comparable to those seen in weightlessness (i.e., COSMOS experiments). After one and two weeks of suspension H&H, there is muscle atrophy with a loss in muscle mass; the result of loss in muscle protein. Concommitantly, there is a decrease in RNA, but not in DNA content. The effects are greatest in the soleus and least in the EDL. These recent findings, in concert with earlier reports of increased nitrogenous excretion, suggest that both decreased protein synthesis and increased protein catabolism are characteristic of muscle atrophy. Recovery is seen in terms of reversal of these effects after removal from suspension.
Motor imagery: lessons learned in movement science might be applicable for spaceflight
Bock, Otmar; Schott, Nadja; Papaxanthis, Charalambos
2015-01-01
Before participating in a space mission, astronauts undergo parabolic-flight and underwater training to facilitate their subsequent adaptation to weightlessness. Unfortunately, similar training methods can’t be used to prepare re-adaptation to planetary gravity. Here, we propose a quick, simple and inexpensive approach that could be used to prepare astronauts both for the absence and for the renewed presence of gravity. This approach is based on motor imagery (MI), a process in which actions are produced in working memory without any overt output. Training protocols based on MI have repeatedly been shown to modify brain circuitry and to improve motor performance in healthy young adults, healthy seniors and stroke victims, and are routinely used to optimize performance of elite athletes. We propose to use similar protocols preflight, to prepare for weightlessness, and late inflight, to prepare for landing. PMID:26042004
Motor Sensory Performance - Skylab Student Experiment ED-41
NASA Technical Reports Server (NTRS)
1973-01-01
This chart describes the Skylab student experiment Motor Sensory Performance, proposed by Kathy L. Jackson of Houston, Texas. Her proposal was a very simple but effective test to measure the potential degradation of man's motor-sensory skills while weightless. Without knowing whether or not man can retain a high level of competency in the performance of various tasks after long exposure to weightlessness, this capability could not be fully known. Skylab, with its long-duration missions, provided an ideal testing situation. The experiment Kathy Jackson proposed was similar in application to the tasks involved in docking one spacecraft to another using manual control. It required one of the greatest tests of the motor-sensory capabilities of man. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
Li, Zhili; Tian, Jijing; Abdelalim, Saed; Du, Fang; She, Ruiping; Wang, Desheng; Tan, Cheng; Wang, Huijuan; Chen, Wenjuan; Lv, Dongqiang; Chang, Lingling
2011-01-01
To explore the effects of long-term weightlessness on the renal tissue, we used the two months tail suspension model to simulate microgravity and investigated the simulated microgravity on the renal morphological damages and related molecular mechanisms. The microscopic examination of tissue structure and ultrastructure was carried out for histopathological changes of renal tissue morphology. The immunohistochemistry, real-time PCR and Western blot were performed to explore the molecular mechanisms associated the observations. Hematoxylin and eosin (HE) staining showed severe pathological kidney lesions including glomerular atrophy, degeneration and necrosis of renal tubular epithelial cells in two months tail-suspended rats. Ultrastructural studies of the renal tubular epithelial cells demonstrated that basal laminas of renal tubules were rough and incrassate with mitochondria swelling and vacuolation. Cell apoptosis in kidney monitored by the expression of Bax/Bcl-2 and caspase-3 accompanied these pathological damages caused by long-term microgravity. Analysis of the HSP70 protein expression illustrated that overexpression of HSP70 might play a crucial role in inducing those pathological damages. Glucose regulated protein 78 (GRP78), one of the endoplasmic reticulum (ER) chaperones, was up-regulated significantly in the kidney of tail suspension rat, which implied that ER-stress was associated with apoptosis. Furthermore, CHOP and caspase-12 pathways were activated in ER-stress induced apoptosis. Resistance training not only reduced kidney cell apoptosis and expression of HSP70 protein, it also can attenuate the kidney impairment imposed by weightlessness. The appropriate optimization might be needed for the long term application for space exploration. PMID:21625440
Hill, Richard J. A.; Larkin, Oliver J.; Dijkstra, Camelia E.; Manzano, Ana I.; de Juan, Emilio; Davey, Michael R.; Anthony, Paul; Eaves, Laurence; Medina, F. Javier; Marco, Roberto; Herranz, Raul
2012-01-01
Understanding the effects of gravity on biological organisms is vital to the success of future space missions. Previous studies in Earth orbit have shown that the common fruitfly (Drosophila melanogaster) walks more quickly and more frequently in microgravity, compared with its motion on Earth. However, flight preparation procedures and forces endured on launch made it difficult to implement on the Earth's surface a control that exposed flies to the same sequence of major physical and environmental changes. To address the uncertainties concerning these behavioural anomalies, we have studied the walking paths of D. melanogaster in a pseudo-weightless environment (0g*) in our Earth-based laboratory. We used a strong magnetic field, produced by a superconducting solenoid, to induce a diamagnetic force on the flies that balanced the force of gravity. Simultaneously, two other groups of flies were exposed to a pseudo-hypergravity environment (2g*) and a normal gravity environment (1g*) within the spatially varying field. The flies had a larger mean speed in 0g* than in 1g*, and smaller in 2g*. The mean square distance travelled by the flies grew more rapidly with time in 0g* than in 1g*, and slower in 2g*. We observed no other clear effects of the magnetic field, up to 16.5 T, on the walks of the flies. We compare the effect of diamagnetically simulated weightlessness with that of weightlessness in an orbiting spacecraft, and identify the cause of the anomalous behaviour as the altered effective gravity. PMID:22219396
Hill, Richard J A; Larkin, Oliver J; Dijkstra, Camelia E; Manzano, Ana I; de Juan, Emilio; Davey, Michael R; Anthony, Paul; Eaves, Laurence; Medina, F Javier; Marco, Roberto; Herranz, Raul
2012-07-07
Understanding the effects of gravity on biological organisms is vital to the success of future space missions. Previous studies in Earth orbit have shown that the common fruitfly (Drosophila melanogaster) walks more quickly and more frequently in microgravity, compared with its motion on Earth. However, flight preparation procedures and forces endured on launch made it difficult to implement on the Earth's surface a control that exposed flies to the same sequence of major physical and environmental changes. To address the uncertainties concerning these behavioural anomalies, we have studied the walking paths of D. melanogaster in a pseudo-weightless environment (0g*) in our Earth-based laboratory. We used a strong magnetic field, produced by a superconducting solenoid, to induce a diamagnetic force on the flies that balanced the force of gravity. Simultaneously, two other groups of flies were exposed to a pseudo-hypergravity environment (2g*) and a normal gravity environment (1g*) within the spatially varying field. The flies had a larger mean speed in 0g* than in 1g*, and smaller in 2g*. The mean square distance travelled by the flies grew more rapidly with time in 0g* than in 1g*, and slower in 2g*. We observed no other clear effects of the magnetic field, up to 16.5 T, on the walks of the flies. We compare the effect of diamagnetically simulated weightlessness with that of weightlessness in an orbiting spacecraft, and identify the cause of the anomalous behaviour as the altered effective gravity.
Afonin, B V
2013-01-01
The research excretory and incretory of activity of a stomach and pancreas is carried out at astronauts in the early period after completion of space flights of various duration. It is shown, that the increase of the contents of gastric and pancreatic enzymes and hormones (insulin and C-peptide) in blood reflects increased excretory and incretory activity of organs of gastroduodenal area which arises in weightlessness. The complex of countermeasures, which prevent ingress of subjects, infected by Helicobacter pylori in space flight crew, excluded participation of this microorganism in the mechanism of increase of secretory activity of a stomach. The absence of interrelation between increase of secretory activity of gastroduodenal area organs and space flights' duration has allowed to exclude the hypokinetic mechanism which determined by duration of stay in weightlessness. It was shown that after the end of space flights the increase ofbasal excretory activity of organs of gastroduodenal area occurs simultaneously with increase of a fasting insulin secretion. The changes in gastroduodenal area organs revealed after space flights were are compared to similar changes received in ground-based experiments, simulating hemodynamic reorganization in venous system of abdominal cavity, arising in weightlessness. The conclusion is made, that the basic mechanism of changes of a functional condition of digestive system in space flights, is determined by reorganization venous hemodynamic in abdominal cavity organs reproduced in ground experiments. Increase insulin and C-peptide after space flights are considered as hormonal component of this hemodynamic mechanism.
NASA Technical Reports Server (NTRS)
Norsk, P.; Shelhamer, M.
2016-01-01
This panel will present NASA's plans for ongoing and future research to define the requirements for Artificial Gravity (AG) as a countermeasure against the negative health effects of long-duration weightlessness. AG could mitigate the gravity-sensitive effects of spaceflight across a host of physiological systems. Bringing gravity to space could mitigate the sensorimotor and neuro-vestibular disturbances induced by G-transitions upon reaching a planetary body, and the cardiovascular deconditioning and musculoskeletal weakness induced by weightlessness. Of particular interest for AG during deep-space missions is mitigation of the Visual Impairment Intracranial Pressure (VIIP) syndrome that the majority of astronauts exhibit in space to varying degrees, and which presumably is associated with weightlessness-induced fluid shift from lower to upper body segments. AG could be very effective for reversing the fluid shift and thus help prevent VIIP. The first presentation by Dr. Charles will summarize some of the ground-based and (very little) space-based research that has been conducted on AG by the various space programs. Dr. Paloski will address the use of AG during deep-space exploration-class missions and describe the different AG scenarios such as intra-vehicular, part-of-vehicle, or whole-vehicle centrifugations. Dr. Clement will discuss currently planned NASA research as well as how to coordinate future activities among NASA's international partners. Dr. Barr will describe some possible future plans for using space- and ground-based partial-G analogs to define the relationship between physiological responses and G levels between 0 and 1. Finally, Dr. Stenger will summarize how the human cardiovascular system could benefit from intermittent short-radius centrifugations during long-duration missions.
Astronauts and cosmonauts during emergency bailout training session
NASA Technical Reports Server (NTRS)
1994-01-01
Using small life rafts, several cosmonauts and astronauts participating in joint Russia - United States space missions take part in an emergency bailout training session in the JSC Weightless Environment Training Facility (WETF) 25-feet-deep pool. In the
Fifth Symposium on the Role of the Vestibular Organs in Space Exploration
NASA Technical Reports Server (NTRS)
1973-01-01
Vestibular problems of manned space flight are investigated for weightlessness and reduced gravity conditions with emphasis on space station development. Intensive morphological studies on the vestibular system and its central nervous system connections are included.
Equipment for surgical interventions and childbirth in weightlessness
NASA Astrophysics Data System (ADS)
Mutke, H. G.
A transparent plastic sack has been devised for surgical interventions in space. Fixed airtight on the patient, containing sterilized medical equipment and comprising long sleeves for the operations, it retains all its contents for the rest of the flight.
Development of an EVA systems cost model. Volume 3: EVA systems cost model
NASA Technical Reports Server (NTRS)
1975-01-01
The EVA systems cost model presented is based on proposed EVA equipment for the space shuttle program. General information on EVA crewman requirements in a weightless environment and an EVA capabilities overview are provided.
ERIC Educational Resources Information Center
Reiss, Fred
1982-01-01
Students in two Camden County high schools planned and built a space shuttle project to send ants into space to examine the effects of weightlessness on a life colony. The experiments, tests, colony design, development of a computer-controlled environment, and production are described. (CM)
Ribbon Synaptic Plasticity in Gravity Sensors of Rats Flown on Neurolab
NASA Technical Reports Server (NTRS)
Ross, Muriel D.; Varelas, Joseph
2003-01-01
Previous spaceflight experiments (Space Life Sciences-1 and -2 (SLS-1 and SLS-2)) first demonstrated the extraordinary ability of gravity sensor hair cells to change the number, kind, and distribution of connections (synapses) they make to other cells while in weightlessness. The number of synapses in hair cells in one part of the inner ear (the utricle) was markedly elevated on flight day 13 (FD13) of SLS-2. Unanswered questions, however, were whether these increases in synapses occur rapidly and whether they remain stable in weightlessness. The answers have implications for long-duration human space travel. If gravity sensors can adapt quickly, crews may be able to move easily between different gravity levels, since the sensors will adapt rapidly to weightlessness on the spacecraft and then back to Earth's gravity when the mission ends. This ability to adapt is also important for recovery from balance disorders. To further our understanding of this adaptive potential (a property called neuronal synaptic plasticity), the present Neurolab research was undertaken. Our experiment examined whether: (a) increases in synapses would remain stable throughout the flight, (b) changes in the number of synapses were uniform across different portions of the gravity sensors (the utricle and saccule), and (c) synaptic changes were similar for the different types of hair cells (Type I and Type II). Utricular and saccular maculae (the gravity-sensing portions of the inner ear) were collected in flight from rats on FD2 and FD14. Samples were also collected from control rats on the ground. Tissues were prepared for ultrastructural study. Hair cells and their ribbon synapses were examined in a transmission electron microscope. Synapses were counted in all hair cells in 50 consecutive sections that crossed the striolar zone. Results indicate that utricular hair cell synapses initially increased significantly in number in both types of hair cells by FD2. Counts declined by FD14, but the mean number of synapses in utricular Type II cells remained significantly higher than in the ground control rats. For saccular samples, synaptic number in Type I and Type II cells declined on FD2, but returned to near-baseline values by FD14. These findings indicate that: (a) synaptic plasticity occurs rapidly in weightlessness, and (b) synaptic changes are not identical for the two types of hair cells or for the two maculae.
Thank You for Flying the Vomit Comet
NASA Technical Reports Server (NTRS)
Dempsey, Robert; DiLisi, Gregory A.; DiLisi, Lori A.; Santo, Gretchen
2007-01-01
This paper describes our flight aboard NASA's C9 Weightless Wonder, more affectionately known as The Vomit Comet. The C9 is NASA's aircraft that creates multiple periods of microgravity by conducting a series of parabolic maneuvers over the Gulf of Mexico.
Astronaut Bonnie Dunbar watches crewmates during training
NASA Technical Reports Server (NTRS)
1994-01-01
Astronaut Bonnie J. Dunbar, STS-71 mission specialist, smiles as she watches a crew mate (out of frame) make a simulated parachute landing in nearby water. The action came as part of an emergency bailout training session in the JSC Weightless Environment
Cosmonaut Vladimir Titov participates in bail-out training for STS-60
NASA Technical Reports Server (NTRS)
1993-01-01
Cosmanaut Vladimir Titov, an alternate mission specialist for STS-60, simulates a parachute glide into water during a bailout training exercise at JSC. This phase of emergency egress training took place in JSC's Weightless Environment Training Facility (WETF).
View of Zero-G training for astronauts and payload specialists
1984-08-27
Paul Scully-Power, 41-G payload specialist, links arms with two others as they experience weightlessness in the KC-135 training aircraft. The trio appears to be flying toward the front of the aircraft while others take photos.
CREW TRAINING - STS-33/51L (ZERO-G)
1985-10-16
S85-42472 (16 Oct. 1985) --- Teacher-in-Space trainees on the KC-135 for zero-G training. Sharon Christa McAuliffe, right, and Barbara R. Morgan, play leap-frog in the temporary weightlessness of the KC-135. Photo credit: NASA
Astronaut Bobko assists Astronaut Peterson prior to underwater training
NASA Technical Reports Server (NTRS)
1982-01-01
Astronaut Karol J. Bobko, left, STS-6 pilot, assists Astronaut Donald H. Peterson, STS-6 mission specialist, prior to underwater training session in the weightless environment training facility. Peterson is wearing the extravehicular mobility unit minus the helmet and gloves.
Cosmonaut Vladimir Titov participates in bail-out training for STS-60
1993-07-16
Cosmanaut Vladimir Titov, an alternate mission specialist for STS-60, simulates a parachute glide into water during a bailout training exercise at JSC. This phase of emergency egress training took place in JSC's Weightless Environment Training Facility (WETF).
ERIC Educational Resources Information Center
Steinberg, Florence S.
This 32-page pamphlet contains color photographs and detailed diagrams which illustrate general descriptive comments about living conditions aboard the space shuttle. Described are details of the launch, the cabin, the condition of weightlessness, food, sleep, exercise, atmosphere, personal hygiene, medicine, going EVA (extra-vehicular activity),…
Astronaut Michael Clifford takes a break during bailout training
NASA Technical Reports Server (NTRS)
1993-01-01
Astronaut Michael R.U. (Rich) Clifford takes a break while video taping crew mates in training in the JSC Weightless Environment Training Facility (WETF). He is pictured with Trent G. Keeple, a member of the training staff assigned to STS-59.
Testing of the Japanese Experimental Module in NBS
NASA Technical Reports Server (NTRS)
1993-01-01
This photograph was taken in the Marshall Space Flight Center (MSFC) Neutral Buoyancy Simulator (NBS) during the testing of the Japanese Experimental Module. The NBS provided the weightless environment encountered in space needed for testing and the practices of extra-vehicular activities.
Astronaut Bonnie Dunbar wearing extravehicular mobility unit
NASA Technical Reports Server (NTRS)
1985-01-01
Astronaut Bonnie J. Dunbar, wearing an extravehicular mobility unit (EMU), is about to be submerged in the weightless environment training facility (WETF) to simulate a contingency extravehicular activity (EVA) for STS 61-A. In this portrait view, Dunbar is not wearing a helmet.
Astronaut Eugene Cernan eating a meal aboard Apollo 17 spacecraft
NASA Technical Reports Server (NTRS)
1972-01-01
A fellow crewman took this photograph of Astronaut Eugene A. Cernan, Apollo 17 mission commander, eating a meal under the weightless conditions of space during the final lunar landing mission in the Apollo program. Cernan appears to be eating chocolate pudding.
NASA Technical Reports Server (NTRS)
Simanonok, K. E.; Srinivasan, R. S.; Myrick, E. E.; Blomkalns, A. L.; Charles, J. B.
1994-01-01
The Guyton model of fluid, electrolyte, and circulatory regulation is an extensive mathematical model capable of simulating a variety of experimental conditions. It has been modified for use at NASA to simulate head-down tilt, a frequently used analog of weightlessness. Weightlessness causes a headward shift of body fluids that is believed to expand central blood volume, triggering a series of physiologic responses resulting in large losses of body fluids. We used the modified Guyton model to test the hypothesis that preadaptation of the blood volume before weightless exposure could counteract the central volume expansion caused by fluid shifts, and thereby attenuate the circulatory and renal responses that result in body fluid losses. Simulation results show that circulatory preadaptation, by a procedure resembling blood donation immediately before head-down bedrest, is effective in damping the physiologic responses to fluid shifts and reducing body fluid losses. After 10 hours of head-down tilt, preadaptation also produces higher blood volume, extracellular volume, and total body water for 20 to 30 days of bedrest, compared with non-preadapted control. These results indicate that circulatory preadaptation before current Space Shuttle missions may be beneficial for the maintenance of reentry and postflight orthostatic tolerance in astronauts. This paper presents a comprehensive examination of the simulation results pertaining to changes in relevant physiologic variables produced by blood volume reduction before a prolonged head-down tilt. The objectives were to study and develop the countermeasure theoretically, to aid in planning experimental studies of the countermeasure, and to identify potentially disadvantageous physiologic responses that may be caused by the countermeasure.
Du, Fang; Ding, Ye; Zou, Jun; Li, Zhili; Tian, Jijing; She, Ruiping; Wang, Desheng; Wang, Huijuan; Lv, Dongqiang; Chang, Lingling
2015-01-01
This study investigated the effects of long-term simulated weightlessness on liver morphology, enzymes, glycogen, and apoptosis related proteins by using two-month rat-tail suspension model (TS), and liver injury improvement by rat-tail suspension with resistance training model (TS&RT). Microscopically the livers of TS rats showed massive granular degeneration, chronic inflammation, and portal fibrosis. Mitochondrial and endoplasmic reticulum swelling and loss of membrane integrity were observed by transmission electron microscopy (TEM). The similar, but milder, morphological changes were observed in the livers of TS&RT rats. Serum biochemistry analysis revealed that the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were significantly higher (p<0.05) in TS rats than in controls. The levels of ALT and AST in TS&RT rats were slightly lower than in RT rats, but they were insignificantly higher than in controls. However, both TS and TS&RT rats had significantly lower levels (p<0.05) of serum glucose and hepatic glycogen than in controls. Immunohistochemistry demonstrated that the expressions of Bax, Bcl-2, and active caspase-3 were higher in TS rats than in TS&RT and control rats. Real-time polymerase chain reaction (real-time PCR) showed that TS rats had higher mRNA levels (P < 0.05) of glucose-regulated protein 78 (GRP78) and caspase-12 transcription than in control rats; whereas mRNA expressions of C/EBP homologous protein (CHOP) and c-Jun N-terminal kinase (JNK) were slightly higher in TS rats. TS&RT rats showed no significant differences of above 4 mRNAs compared with the control group. Our results demonstrated that long-term weightlessness caused hepatic injury, and may trigger hepatic apoptosis. Resistance training slightly improved hepatic damage.
Zou, Jun; Li, Zhili; Tian, Jijing; She, Ruiping; Wang, Desheng; Wang, Huijuan; Lv, Dongqiang; Chang, Lingling
2015-01-01
This study investigated the effects of long-term simulated weightlessness on liver morphology, enzymes, glycogen, and apoptosis related proteins by using two-month rat-tail suspension model (TS), and liver injury improvement by rat-tail suspension with resistance training model (TS&RT). Microscopically the livers of TS rats showed massive granular degeneration, chronic inflammation, and portal fibrosis. Mitochondrial and endoplasmic reticulum swelling and loss of membrane integrity were observed by transmission electron microscopy (TEM). The similar, but milder, morphological changes were observed in the livers of TS&RT rats. Serum biochemistry analysis revealed that the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were significantly higher (p<0.05) in TS rats than in controls. The levels of ALT and AST in TS&RT rats were slightly lower than in RT rats, but they were insignificantly higher than in controls. However, both TS and TS&RT rats had significantly lower levels (p<0.05) of serum glucose and hepatic glycogen than in controls. Immunohistochemistry demonstrated that the expressions of Bax, Bcl-2, and active caspase-3 were higher in TS rats than in TS&RT and control rats. Real-time polymerase chain reaction (real-time PCR) showed that TS rats had higher mRNA levels (P < 0.05) of glucose-regulated protein 78 (GRP78) and caspase-12 transcription than in control rats; whereas mRNA expressions of C/EBP homologous protein (CHOP) and c-Jun N-terminal kinase (JNK) were slightly higher in TS rats. TS&RT rats showed no significant differences of above 4 mRNAs compared with the control group. Our results demonstrated that long-term weightlessness caused hepatic injury, and may trigger hepatic apoptosis. Resistance training slightly improved hepatic damage. PMID:26000905
NASA Technical Reports Server (NTRS)
Ludwig, David A.; Convertino, Victor A.; Goldwater, Danielle J.; Sandler, Harold
1987-01-01
Small sample size (n less than 1O) and inappropriate analysis of multivariate data have hindered previous attempts to describe which physiologic and demographic variables are most important in determining how long humans can tolerate acceleration. Data from previous centrifuge studies conducted at NASA/Ames Research Center, utilizing a 7-14 d bed rest protocol to simulate weightlessness, were included in the current investigation. After review, data on 25 women and 22 men were available for analysis. Study variables included gender, age, weight, height, percent body fat, resting heart rate, mean arterial pressure, Vo(sub 2)max and plasma volume. Since the dependent variable was time to greyout (failure), two contemporary biostatistical modeling procedures (proportional hazard and logistic discriminant function) were used to estimate risk, given a particular subject's profile. After adjusting for pro-bed-rest tolerance time, none of the profile variables remained in the risk equation for post-bed-rest tolerance greyout. However, prior to bed rest, risk of greyout could be predicted with 91% accuracy. All of the profile variables except weight, MAP, and those related to inherent aerobic capacity (Vo(sub 2)max, percent body fat, resting heart rate) entered the risk equation for pro-bed-rest greyout. A cross-validation using 24 new subjects indicated a very stable model for risk prediction, accurate within 5% of the original equation. The result for the inherent fitness variables is significant in that a consensus as to whether an increased aerobic capacity is beneficial or detrimental has not been satisfactorily established. We conclude that tolerance to +Gz acceleration before and after simulated weightlessness is independent of inherent aerobic fitness.
Pedrocchi, Alessandra; Baroni, Guido; Pedotti, Antonio; Massion, Jean; Ferrigno, Giancarlo
2005-04-01
This study deals with the quantitative assessment of exchanged forces and torques at the restraint point during whole body posture perturbation movements in long-term microgravity. The work was based on the results of a previous study focused on trunk bending protocol, which suggested that the minimization of the torques exchanged at the restraint point could be a strategy for movement planning in microgravity (J. Biomech. 36(11) (2003) 1691). Torques minimization would lead to the optimization of muscles activity, to the minimization of energy expenditure and, ultimately, to higher movement control capabilities. Here, we focus on leg lateral abduction from anchored stance. The analysis was based on inverse dynamic modelling, leading to the estimation of the total angular momentum at the supporting ankle joint. Results agree with those obtained for trunk bending movements and point out a consistent minimization of the torques exchanged at the restraint point in weightlessness. Given the kinematic features of the examined motor task, this strategy was interpreted as a way to master the rotational dynamic effects on the frontal plane produced by leg lateral abduction. This postural stabilizing effects was the result of a multi-segmental compensation strategy, consisting of the counter rotation of the supporting limb and trunk accompanying the leg raising. The observed consistency of movement-posture co-ordination patterns among lateral leg raising and trunk bending is put forward as a novel interpretative issue of the adaptation mechanisms of the motor system to sustained microgravity, especially if one considers the completely different kinematics of the centre of mass, which was observed in weightlessness for these two motor tasks.
NASA Astrophysics Data System (ADS)
Wei, Lijun; Han, Fang; Yue, Lei; Zheng, Hongxia; Yu, Dan; Ma, Xiaohuan; Cheng, Huifang; Li, Yu
2012-11-01
The complex space environments can influence cell structure and function. The research results on space biology have shown that the major mutagenic factors in space are microgravity and ionizing radiation. In addition, possible synergistic effects of radiation and microgravity on human cells are not well understood. In this study, human immortal lymphoblastoid cells were established from human peripheral blood lymphocytes and the cells were treated with low dose (0.1, 0.15 and 0.2 Gy) cumulative 60Co γ-irradiation and simulated weightlessness [obtained by culturing cells in the Rotating Cell Culture System (RCCS)]. The commonly used indexes of cell damage such as micronucleus rate, cell cycle and mitotic index were studied. Previous work has proved that Gadd45 (growth arrest and DNA-damage-inducible protein 45) gene increases with a dose-effect relationship, and will possibly be a new biological dosimeter to show irradiation damage. So Gadd45 expression is also detected in this study. The micronucleus rate and the expression of Gadd45α gene increased with irradiation dose and were much higher after incubation in the rotating bioreactor than that in the static irradiation group, while the cell proliferation after incubation in the rotating bioreactor decreased at the same time. These results indicate synergetic effects of simulated weightlessness and low dose irradiation in human cells. The cell damage inflicted by γ-irradiation increased under simulated weightlessness. Our results suggest that during medium- and long-term flight, the human body can be damaged by cumulative low dose radiation, and the damage will even be increased by microgravity in space.
Mechanisms for vestibular disorders in space flight. Facts and hypotheses
NASA Technical Reports Server (NTRS)
Matsnev, E. I.
1980-01-01
This article discusses the vestibular disorders associated with space flight. It is found there is still no complete understanding of the changes occurring in the sensory systems of the body during weightlessness. Results of studies are presented, including results of a ground model.
International space research perspectives of commercialization for German industry
NASA Technical Reports Server (NTRS)
Jordan, H. L.
1985-01-01
A brief overview of space flight activities is presented. West German contributions to satellite mapping, communication satellites, navigation, Spacelab, diffusion under weightlessness, crystal growth in space, metal bonding, and biochemistry are described. The future of the research in the space station is analyzed.
High mobility work station restraint support
NASA Technical Reports Server (NTRS)
Schermerhorn, R. S.
1971-01-01
Chair holds man in semistanding posture enabling astronauts to work comfortably with minimum restriction in weightless environment. Seat, angled at 130 deg to back support, twists and swivels up to 20 deg in all directions but forward. Two flexible thigh clips prevent occupant from slipping off.
Basic results of medical examinations of Soyuz spacecraft crew members
NASA Technical Reports Server (NTRS)
Gurovskiy, N. N.; Yegorov, A. D.; Kakurin, L. I.; Nefedov, Y. G.
1975-01-01
Weightlessness, hypokinesia and intense activity of crew members caused changes in human physiological functions during prolonged space flight as expressed in unusual diurnal rhythms. Microclimate, radiation and the nervous emotional state were not of significance in emergence of human body response reactions.
Astronaut James Buchli wearing extravehicular mobility unit
NASA Technical Reports Server (NTRS)
1985-01-01
Astronaut James F. Buchli, wearing an extravehicular mobility unit (EMU), is about to be submerged in the weightless environment training facility (WETF) to simulate a contingency extravehicular activity (EVA) for STS 61-A. In this portrait view, Buchli is wearing a communications carrier assembly (CCA).
NASA Technical Reports Server (NTRS)
Calvin, M. (Editor); Gazenko, O. G. (Editor)
1975-01-01
Barometric pressure, gas composition, toxicity, and thermal exchange of spacecraft cabin atmospheres are discussed. Effects of gravitation, acceleration, weightlessness, noise, and vibration on human behavior and performance during space flight are also described.
Astronaut Gregory Jarvis during KC-135 zero gravity training
1985-01-25
S85-26106 (25 Jan. 1985) --- Astronaut Gregory Jarvis gets a familiarization session in weightlessness aboard a KC-135 "zero gravity" aircraft. Jarvis was originally assigned as payload specialist to STS-51D but was reassigned to STS-51L. Photo credit: NASA
Underwater EVA training in the WETF with astronaut Robert L. Stewart
NASA Technical Reports Server (NTRS)
1983-01-01
Underwater extravehicular activity (EVA) training in the weightless environment training facility (WETF) with astronaut Robert L. Stewart. Stewart is simulating a planned EVA using the mobile foot restraint device and a one-G version of the Canadian-built remote manipulator system.
Spectral analysis of skeletal muscle changes resulting from 59 days of weightlessness in Skylab 2
NASA Technical Reports Server (NTRS)
Lafevers, E. V.; Nicogossian, A. E.; Hoffler, G. W.; Hursta, W.; Baker, J.
1975-01-01
During stressful exercise of the m. gastrocnemius, preflight and postflight surface electromyograms (EMG) were taken from each of the Skylab II astronauts. Measurements on the muscle were made once 5 days before launch, and four times postflight on recovery day, 4 days after recovery, 16 days after recovery and 29 days after recovery. It was hypothesized that the disused gastrocnemius would exhibit dysfunction characteristics similar to those found in laboratory studies on disuse and of pathologically astrophied muscle, and that physical stress would be associated with heightened fatigability in the muscle. Both hypotheses were sustained. The results showed significant shifts of the predominant frequency of the gastrocnemius into higher than normal bands which suggests a relationship between muscle disuse characteristics and pathologic dysfunction characteristics. It was concluded that the spectrally analyzed EMG is a sensitive measure of muscle dsyfunction that is associated with disuse. Antigravity muscles exhibit heightened susceptibility to fatigue when subjected to lengthy weightlessness.
NASA Technical Reports Server (NTRS)
Musacchia, X. J.; Steffen, Joseph M.; Fell, R. D.; Dombrowski, M. J.
1988-01-01
This work is a continuation of efforts to assess responses of rat skeletal muscle to weightlessness (W) and earthside laboratory experiments with unloading of hind limbs. The soleus is a slow-twitch, load-bearing (antigravity) muscle. Both exposure to W and to the hypokinesia/hypodynamia of whole-body suspension (WBS) results in soleus atrophy. Cross-sectional areas of both slow- and fast-twitch fibers decrease during 7 days of W or 7 or 14 days of WBS. Density and area changes tended to reverse to control levels during 7 days of recovery (R) following WBS. Capillary density was increased with 7 days of W or 7 or 14 days of WBS. During 7 days of R the capillary density returned toward control levels. In summary, the reduction in fiber cross-sectional areas and the increase in fiber and capillary densities support the hypothesis that in both W and WBS there is a loss in soleus muscle cell mass and not in fiber numbers.
NASA Technical Reports Server (NTRS)
Barnett, R. D.; Gowen, R. J.; Carroll, D. R.
1975-01-01
The design of the leg volume measuring system employed for the M092 portion of the Skylab missions required the development of a system sensitive to large and small volume changes at the calf of the leg. These changes in volume were produced in response to the orthostatic stress of a Lower Body Negative Pressure Device (LBNPD) or by venous occlusion. The cardiovascular responses of the Apollo crewman associated with the postflight evaluations indicate varying decrements of orthostatic tolerance. The postflight changes indicate a slightly diminished ability of the cardiovascular system to function effectively against gravity following exposure to weightlessness. The objective of the Skylab LBNP experiments (M092) was to provide information about the magnitude and time course of the cardiovascular changes associated with prolonged periods of exposure to weightlessness. The equipment, signal processing, and analysis of the leg volume data obtained from the M092 experiment of the Skylab 2 Mission are described.
Circumnutations of sunflower hypocotyls in satellite orbit
NASA Technical Reports Server (NTRS)
Brown, A. H.; Chapman, D. K.; Lewis, R. F.; Venditti, A. L.
1990-01-01
The principal objective of the research reported here was to determine whether a plant's periodic growth oscillations, called circumnutations, would persist in the absence of a significant gravitational or inertial force. The definitive experiment was made possible by access to the condition of protracted near weightlessness in an earth satellite. The experiment, performed during the first flight of Spacelab on the National Aeronautics and Space Administration shuttle, Columbia, in November and December, 1983, tested a biophysical model, proposed in 1967, that might account for circumnutation as a gravity-dependent growth response. However, circumnutations were observed in microgravity. They continued for many hours without stimulation by a significant g-force. Therefore, neither a gravitational nor an inertial g-force was an absolute requirement for initiation [correction of initation] or continuation of circumnutation. On average, circumnutation was significantly more vigorous in satellite orbit than on earth-based clinostats. Therefore, at least for sunflower (Helianthus annuus L.) circumnutation, clinostatting is not the functional equivalent of weightlessness.
Residual nutational activity of the sunflower hypocotyl in simulated weightlessness
NASA Technical Reports Server (NTRS)
Chapman, D. K.; Brown, A. H.
1979-01-01
The gravity dependence of circumnutational activity in the sunflower hypocotyl is investigated under conditions of simulated weightlessness. Seedling cultures of the sunflower Helianthus annuus were placed four days after planting in clinostats rotating at a rate of 1.0 rpm in the horizontal or somersaulting configurations, and plant movements around their growth axes were recorded in infrared light by a time-lapse closed-circuit video system. The amplitudes and mean cycle durations of the plant nutations in the horizontal and tumbling clinostats are observed to be 20% and 72%, and 32% and 74%, respectively, of the values observed in stationary plants; extrapolations to a state of zero g by the imposition of small centripetal forces on horizontally clinostated plants also indicate some nutational motion in the absence of gravity. It is concluded that the results are incompatible with the model of Israelsson and Johnsson (1967) of geotropic response with overshoot for sunflower circumnutation; however, results of the Spacelab 1 mission experiment are needed to unambiguously define the role of gravitation.
Web Formation - Skylab Student Experiment ED-52
NASA Technical Reports Server (NTRS)
1973-01-01
This chart describes the Skylab student experiment Web Formation. Judith S. Miles of Lexington High School, Lexington, Massachusetts, proposed a study of the spider's behavior in a weightless environment. The geometrical structure of the web of the orb-weaving spider provides a good measure of the condition of its central nervous system. Since the spider senses its own weight to determine the required thickness of web material and uses both the wind and gravity to initiate construction of its web, the lack of gravitational force in Skylab provided a new and different stimulus to the spider's behavioral response. Two common cross spiders, Arabella and Anita, were used for the experiment aboard the Skylab-3 mission. After initial disoriented attempts, both spiders produced almost Earth-like webs once they had adapted to weightlessness. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
1973-01-01
Judith S. Miles of Lexington High School, Lexington, Massachusetts, proposed skylab student experiment ED-52, Web Formation. This experiment was a study of a spider's behavior in a weightless environment. The geometrical structure of the web of the orb-weaving spider provides a good measure of the condition of its central nervous system. Since the spider senses its own weight to determine the required thickness of web material and uses both the wind and gravity to initiate construction of its web, the lack of gravitational force in Skylab provided a new and different stimulus to the spider's behavioral response. Two common cross spiders, Arabella and Anita, were used for the experiment aboard the Skylab-3 mission. After initial disoriented attempts, both spiders produced almost Earth-like webs once they had adapted to weightlessness. This photograph is of Arabella, a cross spider, in her initial attempt at spirning a web. This picture was taken by the crew of the Skylab 3 mission before Arabella adapted to her new environment.
1973-01-01
This chart describes the Skylab student experiment Web Formation. Judith S. Miles of Lexington High School, Lexington, Massachusetts, proposed a study of the spider's behavior in a weightless environment. The geometrical structure of the web of the orb-weaving spider provides a good measure of the condition of its central nervous system. Since the spider senses its own weight to determine the required thickness of web material and uses both the wind and gravity to initiate construction of its web, the lack of gravitational force in Skylab provided a new and different stimulus to the spider's behavioral response. Two common cross spiders, Arabella and Anita, were used for the experiment aboard the Skylab-3 mission. After initial disoriented attempts, both spiders produced almost Earth-like webs once they had adapted to weightlessness. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
Web Formation - Skylab Student Experiment ED-52
NASA Technical Reports Server (NTRS)
1973-01-01
Judith S. Miles of Lexington High School, Lexington, Massachusetts, proposed skylab student experiment ED-52, Web Formation. This experiment was a study of a spider's behavior in a weightless environment. The geometrical structure of the web of the orb-weaving spider provides a good measure of the condition of its central nervous system. Since the spider senses its own weight to determine the required thickness of web material and uses both the wind and gravity to initiate construction of its web, the lack of gravitational force in Skylab provided a new and different stimulus to the spider's behavioral response. Two common cross spiders, Arabella and Anita, were used for the experiment aboard the Skylab-3 mission. After initial disoriented attempts, both spiders produced almost Earth-like webs once they had adapted to weightlessness. This photograph is of Arabella, a cross spider, in her initial attempt at spirning a web. This picture was taken by the crew of the Skylab 3 mission before Arabella adapted to her new environment.
Influence of gravity on cardiac performance.
Pantalos, G M; Sharp, M K; Woodruff, S J; O'Leary, D S; Lorange, R; Everett, S D; Bennett, T E; Shurfranz, T
1998-01-01
Results obtained by the investigators in ground-based experiments and in two parabolic flight series of tests aboard the NASA KC-135 aircraft with a hydraulic simulator of the human systemic circulation have confirmed that a simple lack of hydrostatic pressure within an artificial ventricle causes a decrease in stroke volume of 20%-50%. A corresponding drop in stroke volume (SV) and cardiac output (CO) was observed over a range of atrial pressures (AP), representing a rightward shift of the classic CO versus AP cardiac function curve. These results are in agreement with echocardiographic experiments performed on space shuttle flights, where an average decrease in SV of 15% was measured following a three-day period of adaptation to weightlessness. The similarity of behavior of the hydraulic model to the human system suggests that the simple physical effects of the lack of hydrostatic pressure may be an important mechanism for the observed changes in cardiac performance in astronauts during the weightlessness of space flight.
NASA Technical Reports Server (NTRS)
Halloran, B. P.; Wronski, T. J.
1985-01-01
The role of vitamin D, PTH and corticosterone in the skeletal alterations induced by simulated weightlessness was examined. The first objective was to determine if changes in the serum concentrations of Ca, P sub i, osteocalcin, 25-OH-D, 24,25(OH)2D or 1,25(OH)2D also occur following acute skeletal unloading. Animals were either suspended or pair fed for 2, 5, 7, 10, 12 and 15 days and the serum concentrations of Ca, P sub i, osteocalcin and the vitamin D metabolites measured. Bone histology was examined at day 5 after suspension. Acute skeletal unloading produced a transient hypercalcemia, a significant fall in serum osteocalcin and serum 1,25(OH)2D, a slight rise in serum 24,25(OH)2D, but did not affect the serum concentrations of P sub i or 25-OH-D. At the nadir in serum 1,25(OH)2D serum osteocalcin was reduced by 22%, osteoblast surface by 32% and longitudinal bone growth by 21%.
Analysis of evaporative water loss in the Skylab astronauts
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1977-01-01
Daily evaporative water losses (EWL) during the three Skylab missions were measured using the indirect mass and water balance techniques. A mean inflight EWL of 860 ml/day-m 2 was obtained for nine men who averaged one hour of daily exercise. Although it was expected the EWL would increase in the hypobaric environment of Skylab (1/3 atmosphere), an average decrease from preflight sea level conditions of 11 percent was measured. The results suggest that weightlessness may have been a factor in modifying EWL primarily by decreasing sweat losses during exercise and possibly by reducing insensible skin losses as well. The weightless environment apparently promotes the formation of a sweat film on the skin surface both directly, by reducing heat and mass convective flow and sweat drippage, and perhaps indirectly by inducing measurable biochemical changes resulting in high initial sweating rates. It is proposed that these high levels of skin wettedness favor sweat suppression by a previously described mechanism.
Stability Limits and Dynamics of Nonaxisymmetric Liquid Bridges
NASA Technical Reports Server (NTRS)
Alexander, J. Iwan D.; Slobozhanin, Lev A.; Resnick, Andrew H.; Ramus, Jean-Francois; Delafontaine, Sylvie
1999-01-01
Liquid bridges have been the focus of numerous theoretical and experimental investigations since the early work by Plateau more than a century ago. More recently, motivated by interest in their physical behavior and their occurrence in a variety of technological situations, there has been a resurgence of interest in the static and dynamic behavior of liquid bridges. Furthermore, opportunities to carry out experiments in the near weightless environment of a low-Earth-orbit spacecraft have also led to a number of low-gravity experiments involving large liquid bridges. In this paper, we present selected results from our work concerning the stability of nonaxisymmetric liquid bridges, the bifurcation of weightless bridges in the neighborhood of the maximum volume stability limit, isorotating axisymmetric bridges contained between equidimensional disks, and bridges contained between unequal disks. For the latter, we discuss both theoretical and experimental results. Finally, we present results concerning the stability of axisymmetric equilibrium configurations for a capillary liquid partly contained in a closed circular cylinder.
NASA Technical Reports Server (NTRS)
Fujimoto, K.
1986-01-01
What happens if a stainless steel ball hits a water ball in the weightless space ot the Universe? In other words, it was the objective of our experiments in the Space to observe the surface tension of liquid by means of making a solid collide with a liquid. Place a small volume of water between 2 glass sheets to make a thin water membrane: the 2 glass sheets cannot be separated unless an enormous force is applied. It is obvious from this phenomenom that the surface tension of water is far greater than presumed. On Earth, however, it is impossible in most cases to observe only the surface tension of liquid, because gravity always acts on the surface tension. Water and stainless steel balls were chosen the liquid and solids for the experiments. Because water is the liquid most familiar to us, its properties are well known. And it is also of great interest to compare its properties on the Earth with those in the weightless space.
Gravitational Neurobiology of Fish
NASA Astrophysics Data System (ADS)
Rahmann, H.; Anken, R. H.
In vertebrates (including man), altered gravitational environments such as weightlessness can induce malfunctions of the inner ears, based on irregular movements of the semicircular cristae or on dislocations of the inner ear otoliths from the corresponding sensory epithelia. This will lead to illusionary tilts, since the vestibular inputs are not confirmed by the other sensory organs, which results in an intersensory conflict. Vertebrates in orbit therefore face severe orientation problems. In humans, the intersensory conflict may additionally lead to a malaise, commonly referred to as space motion sickness (SMS), a kinetosis. During the first days at weightlessness, the orientation problems (and SMS) disappear, since the brain develops a new compensatory interpretation of the available sensory data. The present review reports on the neurobiological responses - particularly of fish - observed at altered gravitational states, concerning behaviour and neuroplastic reactivities. Recent investigations employing microgravity (spaceflight, parabolic aircraft flights, clinostat) and hyper-gravity (laboratory centrifuges as ground based research tools) yielded clues and insights into the understanding of the respective basic phenomena
Dubeau-Laramée, Geneviève; Rivière, Christophe; Jean, Isabelle; Mermut, Ozzy; Cohen, Luchino Y
2014-04-01
A fiber-optic based flow cytometry platform was designed to build a portable and robust instrument for space applications. At the core of the Microflow1 is a unique fiber-optic flow cell fitted to a fluidic system and fiber coupled to the source and detection channels. A Microflow1 engineering unit was first tested and benchmarked against a commercial flow cytometer as a reference in a standard laboratory environment. Testing in parabolic flight campaigns was performed to establish Microflow1's performance in weightlessness, before operating the new platform on the International Space Station. Microflow1 had comparable performances to commercial systems, and operated remarkably and robustly in weightlessness (microgravity). Microflow1 supported immunophenotyping as well as microbead-based multiplexed cytokine assays in the space environment and independently of gravity levels. Results presented here provide evidence that this fiber-optic cytometer technology is inherently compatible with the space environment with negligible compromise to analytical performance. © 2013 International Society for Advancement of Cytometry.
NASA Technical Reports Server (NTRS)
West, Harry; Papadopoulos, Evangelos; Dubowsky, Steven; Cheah, Hanson
1989-01-01
Emulating on earth the weightlessness of a manipulator floating in space requires knowledge of the manipulator's mass properties. A method for calculating these properties by measuring the reaction forces and moments at the base of the manipulator is described. A manipulator is mounted on a 6-DOF sensor, and the reaction forces and moments at its base are measured for different positions of the links as well as for different orientations of its base. A procedure is developed to calculate from these measurements some combinations of the mass properties. The mass properties identified are not sufficiently complete for computed torque and other dynamic control techniques, but do allow compensation for the gravitational load on the links, and for simulation of weightless conditions on a space emulator. The algorithm has been experimentally demonstrated on a PUMA 260 and used to measure the independent combinations of the 16 mass parameters of the base and three proximal links.
Cycle-powered short radius (1.9M) centrifuge: exercise vs. passive acceleration
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Gundo, D. P.; Watenpaugh, D. E.; Mulenburg, G. M.; Marchman, N.; Looft-Wilson, R.; Hargens, A. R.
1996-01-01
A human-powered short-arm centrifuge is described. This centrifuge could be used during spaceflight to provide +Gz acceleration while subjects performed exercise, thus supplying two forms of weightlessness countermeasures. Results from a study of cardiovascular responses while using the centrifuge are presented.
Working the Continuum between Therapy and Exercise.
ERIC Educational Resources Information Center
Sova, Ruth
Because of the relative weightlessness factor, water exercise is an excellent low-impact aerobic activity for people with physical difficulties. Participants should inform their physicians of intentions to begin aquatic exercise, and physicians should advise participants that water exercise is exertive. Program instructors must be prepared to…
Astronauts McMonagle and Brown float in one-man life rafts during training
NASA Technical Reports Server (NTRS)
1994-01-01
In separate life rafts, astronauts Donald R. McMonagle (right), STS-66 mission commander, and Curtis L. Brown, STS-66 pilot, are assisted by several SCUBA-equipped divers during an emergency bailout training exercise in JSC's Weightless Environment Training Facility (WETF).
Research opportunities in muscle atrophy
NASA Technical Reports Server (NTRS)
Herbison, G. J. (Editor); Talbot, J. M. (Editor)
1984-01-01
Muscle atrophy in a weightless environment is studied. Topics of investigation include physiological factors of muscle atrophy in space flight, biochemistry, countermeasures, modelling of atrophied muscle tissue, and various methods of measurement of muscle strength and endurance. A review of the current literature and suggestions for future research are included.
Romanenko works with the Coulomb Crystal Experiment in the MRM-2
2013-01-28
ISS034-E-035764 (28 Jan. 2013) --- In the International Space Station?s Poisk Mini-Research Module 2 (MRM2), Russian cosmonaut Roman Romanenko, Expedition 34 flight engineer, works with the Coulomb Crystal experiment, which gathers data about charged particles in a weightless environment.
USSR and Eastern europe Scientific Abstracts, Biomedical and Behavioral Sciences. Number 55.
1976-11-02
could solve the problems of the first manned flight. Can people breathe in weightlessness? Are they capable of digesting food? Is it possible in...Animals and Department of Poultry Farming (Timiryazev Agri- cultural Academy) MEAT PRODUCTIVITY OF BROILERS FED WITH DIFFERENT FATS Moscow
Astronaut Ronald Sega in crew cabin
1999-02-23
STS060-57-033 (3-11 Feb 1994) --- Astronaut Ronald M. Sega suspends himself in the weightlessness aboard the Space Shuttle Discovery's crew cabin, as the Remote Manipulator System (RMS) arm holds the Wake Shield Facility (WSF) aloft. The mission specialist is co-principal investigator on the WSF project.
Ways to Bring a "Far Out" Subject SPACE BIOLOGY Into the Classroom.
ERIC Educational Resources Information Center
Lamb, Janice
This document describes a grade 10-12 biology course designed to increase student interest by introducing topics in space biology including: the book "Andromeda Strain"; weightlessness; centrifuge; cosmic radiation; space research; origins of life; extraterrestrial life; and the Mars Viking Mission. (SL)
Dr. von Braun Tries Out the Neutral Buoyancy Simulator (NBS)
NASA Technical Reports Server (NTRS)
1967-01-01
Marshall Space Flight Center (MSFC) Director, Dr. von Braun, submerges after spending some time under water in the MSFC Neutral Buoyancy Simulator (NBS). Weighted to a neutrally buoyant condition, Dr. von Braun was able to perform tasks underwater which simulated weightless conditions found in space.
STS-59 crewmembers during bailout training in WETF
1993-12-22
S93-50710 (22 Dec 1993) --- Astronaut Sidney M. Gutierrez, commander, takes a break during emergency bailout training at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Gutierrez and five other NASA astronauts are scheduled to fly aboard the Space Shuttle Endeavour next year.
Pathophysiological aspects of the problem of prolonged hypokinesia
NASA Technical Reports Server (NTRS)
Kovalenko, Y. A.
1978-01-01
The changes in man's acitivity due to modern life with automation and sedentary activities and man's exploration of space in a state of weightlessness have accentuated the importance of hypokinesia. The pathogenesis of hypokinesia is discussed. Experiments and results made on man and animals are included.
The respiratory system under weightlessness
NASA Technical Reports Server (NTRS)
Paiva, M.; Engel, L. A.; Hughes, J. M. B.; Guy, H. J.; Prisk, G. K.; West, J. B.
1987-01-01
Studies of pulmonary functions at rest to be studied on Spacelab mission D-2 are introduced. Gravity dependence of the distribution of ventilation (single breath washout, multibreath washout-washin); chest wall shape and motion; and the vascular compartment (lung blood flow, capillary volume, liquid content, diffusive capacity) are discussed.
Preparatory studies of zero-g cloud drop coalescence experiment
NASA Technical Reports Server (NTRS)
Telford, J. W.; Keck, T. S.
1979-01-01
Experiments to be performed in a weightless environment in order to study collision and coalescence processes of cloud droplets are described. Rain formation in warm clouds, formation of larger cloud drops, ice and water collision processes, and precipitation in supercooled clouds are among the topics covered.
NASA Astrophysics Data System (ADS)
Norsk, P.; Simonsen, L. C.; Alwood, J.
2018-02-01
Investigations of mammalian cell cultures as well as organs-on-chips will be done from the Deep Space Gateway by telemetry. Cells will be monitored regularly for metabolic activity, growth, and viability, and results compared to ground control data.
How Will Astronauts Stay Fit during Long Spaceflights?
ERIC Educational Resources Information Center
Pine, Devera
1989-01-01
Astronauts on lengthy spaceflights must exercise regularly to forestall muscle atrophy and bone loss, but exercise presents unique problems in a weightless environment. All exercise equipment must have a harness or seat belt. Soviet and NASA space exercise plans and experimental ideas are discussed. (Author/SM)
Effects of hypercapnia and bedrest on psychomotor performance
NASA Technical Reports Server (NTRS)
Storm, W. F.; Giannetta, C. L.
1974-01-01
Two weeks of continuous exposure to simulated weightlessness (bedrest) and/or an elevated (30 torr) CO2 environment had no detrimental effect on complex tracking performance, eye-hand coordination, or problem-solving ability. These results were consistent with previously reported behavioral findings which investigated these two factors only as independent stressors.
Astronaut Walter Cunningham photographed performing flight tasks
NASA Technical Reports Server (NTRS)
1968-01-01
Astronaut Walter Cunningham, Apollo 7 lunar module pilot, writes with space pen as he is photographed performing flight tasks on the ninth day of the Apollo 7 mission. Note the 70mm Hasselblad camera film magazine just above Cunningham's right hand floating in the weightless (zero gravity) environment of the spacecraft.
STS-35 Commander Brand listens to trainer during water egress exercises
NASA Technical Reports Server (NTRS)
1990-01-01
STS-35 Commander Vance D. Brand listens to training personnel during launch emergency egress procedures conducted in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Brand, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), is seated on the pool side while reviewing instructions.
Frog egg growth, experiment S003
NASA Technical Reports Server (NTRS)
Young, R. S.; Tremor, J. W.
1971-01-01
The objective of experiment was to determine the effect of weightlessness on the ability of a fertilized frog egg to divide normally and to differentiate and form a normal embryo. This experiment was first attempted on the Gemini 8 mission and was completed only partially because of the early termination of that mission.
Antigravity Suits For Studies Of Weightlessness
NASA Technical Reports Server (NTRS)
Kravik, Stein E.; Greenleaf, John
1992-01-01
Report presents results of research on use of "antigravity" suit, one applying positive pressure to lower body to simulate some effects of microgravity. Research suggests lower-body positive pressure is alternative to bed rest or immersion in water in terrestrial studies of cardioregulatory, renal, electrolyte, and hormonal changes induced in humans by microgravity.
Astronaut Ronald Sega in crew cabin
NASA Technical Reports Server (NTRS)
1994-01-01
Astronaut Ronald M. Sega suspends himself in the weightlessness aboard the Space Shuttle Discovery's crew cabin, as the Remote Manipulator System (RMS) arm holds the Wake Shield Facility (WSF) aloft. The mission specialist is co-principle investigator on the the WSF project. Note the University of Colorado, Colorado Springs banner above his head.
Experiment M133. Sleep monitoring on Skylab
NASA Technical Reports Server (NTRS)
Frost, J. D., Jr.; Shumate, W. H.; Salamy, J. G.; Booher, C. R.
1977-01-01
Subjective sleep logs during 59-day and 84-day Skylab missions indicate that prolonged space flight, with its accompanying weightless state, is not directly associated with major adverse changes in sleep characteristics. Observed alterations in sleep patterns were not of sufficient magnitude to result in significant degradation of performance capacity.
Exercise issues related to the neuromuscular function and adaptation to microgravity
NASA Technical Reports Server (NTRS)
Edgerton, Reggie
1989-01-01
Explored here is the question of whether astronauts can perform extravehicular activities effectively, efficiently, and productively. The loss of muscle mass, movement control, central nervous system function, muscle atrophy and fatigue, all consequent to weightlessness exposure, are discussed. The author recommends more research in these areas.
Astronaut Richard H. Truly gets practice eating in weghtlessness
NASA Technical Reports Server (NTRS)
1981-01-01
Astronaut Richard H. Truly, STS-2 pilot, gets some practice eating in a weightless environment during moments of zero gravity on the KC-135 aircraft. He holds a spoon in his right hand and a package of dehydrated food in his left hand and is in the process of swallowing.
STS-28 Columbia, OV-102, Mission Specialist Adamson eating on middeck
NASA Technical Reports Server (NTRS)
1989-01-01
On middeck, Mission Specialist (MS) James C. Adamson enjoys the rare opportunity of eating in a weightless environment as he flips a shrimp with a spoon. In the background is a second crewmember holding a meal tray assembly (food tray) and sleep restraints fastened to starboard wall.
Crystal growth of artificial snow
NASA Technical Reports Server (NTRS)
Kimura, S.; Oka, A.; Taki, M.; Kuwano, R.; Ono, H.; Nagura, R.; Narimatsu, Y.; Tanii, J.; Kamimiytat, Y.
1984-01-01
Snow crystals were grown onboard the space shuttle during STS-7 and STS-8 to facilitate the investigation of crystal growth under conditions of weightlessness. The experimental design and hardware are described. Space-grown snow crystals were polyhedrons looking like spheres, which were unlike snow crystals produced in experiments on Earth.
ERIC Educational Resources Information Center
Curtis, Jeremy
2012-01-01
Gravity affects everything we do. Only in very recent years have we been able to carry out experiments in orbit around the Earth and see for the first time how things behave in its absence. This has allowed us to understand fundamental processes better and to design new materials using this knowledge. (Contains 6 figures.)
Astronaut Catherine G. Coleman aboard KC-135 aircraft
1994-05-28
S94-35542 (June 1994) --- Astronaut Catherine G. Coleman, mission specialist, gets a preview of next year?s United States Microgravity Laboratory (USML-2) mission aboard the Space Shuttle Columbia. The weightless experience was afforded by a special parabolic pattern flown by NASA?s KC-135 ?zero gravity? aircraft.
Gravity: Simple Experiments for Young Scientists.
ERIC Educational Resources Information Center
White, Larry
This book contains 12 simple experiments through which students can learn about gravity and its implications. Some of the topics included are weight, weightlessness, artificial gravity, the pull of gravity on different shapes, center of gravity, the universal law of gravity, and balancing. Experiments include: finding the balancing point; weighing…
Astronaut Bruce McCandless during an underwater test MMU/FSS in bldg 29 WETF
1981-08-04
Astronaut Bruce McCandless during an underwater test of the Manned Maneuvering Unit (MMU) Flight Support Station (FSS) donning and doffing in the Bldg 29 Weightless Environment Training Facility (WETF). View is of McCandless wearing the extravehicular mobility unit (EMU), stepping into the MMU.
Jernigan and Wolf in Neutral Buoyancy Simulator (NBS)
NASA Technical Reports Server (NTRS)
1995-01-01
Astronauts Tamara Jernigan (#1) and David Wolf (#2) are training in the Neutral Buoyancy Simulator (NBS) at Marshall Space Flight center with an exercise for International Space Station Alpha. The NBS provided the weightless environment encountered in space needed for testing and the practices of Extravehicular Activities (EVA).
NASA Technical Reports Server (NTRS)
1997-01-01
On this fifth day of the STS-87 mission, the flight crew, Cmdr. Kevin R. Kregel, Pilot Steven W. Lindsey, Mission Specialists Winston E. Scott, Kalpana Chawla, and Takao Doi, and Payload Specialist Leonid K. Kadenyuk continue experimental work aboard Columbia. Leonid Kadenyuk focuses on studies of plant growth in weightlessness.
Dr. von Braun Tries Out the NBS
NASA Technical Reports Server (NTRS)
1967-01-01
Marshall Space Flight Center (MSFC) Director, Dr. von Braun, is shown fitted with suit and diving equipment as he prepares for a tryout in the MSFC Neutral Buoyancy Simulator (NBS). Weighted to a neutrally buoyant condition, Dr. von Braun was able to perform tasks underwater which simulated weightless conditions found in space.
Astronaut Kevin Chilton takes a break during bailout training
1993-12-22
S93-50720 (22 Dec 1993) --- Astronaut Kevin P. Chilton, pilot, takes a break during emergency bailout training at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Chilton and five other NASA astronauts are scheduled to fly aboard the Space Shuttle Endeavour next year.
Astronaut Sidney Gutierrez suspended by parachute during bailout training
1993-12-22
S93-50718 (22 Dec 1993) --- Astronaut Sidney M. Gutierrez, commander, is suspended by his parachute gear during emergency bailout training at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Gutierrez and five other NASA astronauts are scheduled to fly aboard the Space Shuttle Endeavour next year.
Biochemical and physiological consequences of the Apollo flight diet.
NASA Technical Reports Server (NTRS)
Hander, E. W.; Leach, C. S.; Fischer, C. L.; Rummel, J.; Rambaut, P.; Johnson, P. C.
1971-01-01
Six male subjects subsisting on a typical Apollo flight diet for five consecutive days were evaluated for changes in biochemical and physiological status. Laboratory examinations failed to demonstrate any significant changes of the kind previously attributed to weightlessness, such as in serum electrolytes, endocrine values, body fluid, or hematologic parameters.
Astronaut Thomas Jones during emergency bailout training in WETF
1993-06-02
S93-43108 (2 June 1993) --- Astronaut Thomas D. Jones, mission specialist, takes a break during emergency bailout training at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Jones and five other NASA astronauts are scheduled to fly aboard the Space Shuttle Endeavour next year.
STS-35 MS Hoffman watches water egress exercises at JSC's WETF Bldg 29 pool
NASA Technical Reports Server (NTRS)
1990-01-01
STS-35 Mission Specialist (MS) Jeffrey A. Hoffman, wearing launch and entry suit (LES), comments on launch emergency egress procedures from the poolside of JSC's Weightless Environment Training Facility (WETF) Bldg 29. Hoffman awaits his turn to participate in the training activities.
STS-81 crewmembers participate in bailout training in Bldg 29 WETF
1996-09-26
S96-15407 (26 Sept. 1996) --- In the Johnson Space Center's weightless environment training facility, astronaut Peter J.K. (Jeff) Wisoff, STS-81 mission specialist, simulates a parachute drop into water. Five STS-81 crewmates, out of frame, joined him for the bailout training exercises.
STS-81 crewmembers participate in bailout training in Bldg 29 WETF
1996-09-26
S96-15402 (26 Sept. 1996) --- In the Johnson Space Center's weightless environment training facility, astronaut John M. Grunsfeld, STS-81 mission specialist, prepares to simulate a parachute drop into water. Five STS-81 crewmates, out of frame, joined him for the bailout training exercises.
ERIC Educational Resources Information Center
Lee, Tom E.; And Others
This compilation of resource units concerns the latest developments in space biology. Some of the topics included are oxygen consumption, temperature, radiation, rhythms, weightlessness, acceleration and vibration stress, toxicity, and sensory and perceptual problems. Many of the topics are interdisciplinary and relate biology, physiology,…
Effects of Inactivity and Exercise on Bone.
ERIC Educational Resources Information Center
Smith, Everett L.; Gilligan, Catherine
1987-01-01
Research has shown that bone tissue responds to the forces of gravity and muscle contraction. The benefits of weight-bearing exercise in preventing or reversing bone mass loss related to osteoporosis is reviewed. The effects of weightlessness and immobilization, and the possible effects of athletic amenorrhea, on bone mineral density are…
NASA Technical Reports Server (NTRS)
Parin, V. V.; Gorbov, F. D.; Kosmolinskiy, F. P.
1974-01-01
Psychological selection of astronauts considers mental responses and adaptation to the following space flight stress factors: (1) confinement in a small space; (2) changes in three dimensional orientation; (3) effects of altered gravity and weightlessness; (4) decrease in afferent nerve pulses; (5) a sensation of novelty and danger; and (6) a sense of separation from earth.
Reisman floats in the FWD MDDK during STS-132
2010-05-15
S132-E-007185 (15 May 2010) --- NASA astronaut Garrett Reisman, STS-132 mission specialist, takes advantage of the weightless environment on the middeck of the Earth-orbiting space shuttle Atlantis to get creative with his posture during Flight Day 2 activities. Photo credit: National Aeronautics and Space Administration
Crewmember in the aft flight deck.
1992-11-01
STS052-24-014 (22 Oct-1 Nov 1992) --- Canadian payload specialist Steven G. MacLean tries out gymnastics in the weightlessness of space on the aft flight deck of the Earth-orbiting Space Shuttle Columbia. MacLean, along with five NASA astronauts, spent ten days aboard Columbia for the STS-52 mission.
NASA Astrophysics Data System (ADS)
Belostotskaya, Galina; Zakharov, Eugeny
Prolonged exposure to weightlessness during space flights is known to cause depression of heart function in mammals. The decrease in heart weight and its remodeling under the influence of prolonged weightlessness (or space microgravity) is assumed to be due to both morphological changes of working cardiomyocytes and their progressive loss, as well as to possible depletion of resident cardiac stem cells (CSCs) population, or their inability to self-renewal and regeneration of muscle tissue under conditions of weightlessness. We have previously shown that the presence of different maturity clones formed by resident CSCs not only in culture but also in the mammalian myocardium can be used as an indicator of the regenerative activity of myocardial cells [Belostotskaya, et al., 2013: 2014]. In this study, we were interested to investigate whether the 30-day near-Earth space flight on the spacecraft BION-M1 affects the regenerative potential of resident CSCs. Immediately after landing of the spacecraft, we had examined the presence of resident c-kit+, Sca-1+ and Isl1+ CSCs and their development in suspension of freshly isolated myocardial cells of C57BL mice in comparison to controls. Cardiac cell suspension was obtained by enzymatic digestion of the heart [Belostotskaya and Golovanova, 2014]. Immunocytochemically stained preparations of fixed cells were analyzed with confocal microscope Leica TCS SP5 (Germany) in the Resource Center of St-Petersburg State University. CSCs were labeled with appropriate antibodies. CSCs differentiation into mature cardiomyocytes was verified using antibodies to Sarcomeric α-Actinin and Cardiac Troponin T. Antibodies to Connexin43 were used to detect cell-cell contacts. All antibodies were conjugated with Alexa fluorochromes (488, 532, 546, 568, 594 and/or 647 nm), according to Zenon-technology (Invitrogen). It has been shown that, under identical conditions of cell isolation, more complete digestion of heart muscle was observed in weightlessness-treated samples vs. controls. These findings correlated with reduced expression of Connexin43. Typical elongated cardiomyocytes, presenting as both individual cells and conglomerates, were present in the control samples, whereas the shortened and thickened individual cardiac myocytes prevailed in the samples subjected to space microgravity. Both control samples and microgravity-treated samples contained resident CSCs of all subtypes. Both individual CSCs and CSC-derived clones were present in the suspension of myocardial cells. However, the number of CSC-formed clones of different maturity was significantly higher in the samples subjected to space microgravity. Some clones comprised only small undifferentiated cells of one CSCs subtype, while the cells of the other clones expressed some of the specific cardiac antigens (α-Actinin and Troponin T) at varying rate. In addition, large α-actinin- and troponin T-positive individual cardiomyocytes with readily discernible sarcomeric structure still expressing the original CSC antigens were also identified. The data obtained suggest that prolonged space microgravity exposure during space flight causes significant structural changes in the mammalian myocardium which may affect cardiac contractile function. Weightlessness-induced loss in heart muscle weight is assumed to be compensated by an increase in the activity of resident CSCs, which form new cardiomyocytes proliferating and differentiating inside the clones. The authors express their gratitude to the staff of Institute of Biomedical Problems of the Russian Academy of Sciences and Company "Progress" for the preparation of experimental animals for the biosatellite flight. The study was in part supported by grants from BION-M1 Project and Program of Presidium of Russian Academy of Sciences “Fundamental Sciences for Medicine” (2013).
USSR and Eastern Europe Scientific Abstracts, Geophysics, Astronomy and Space, Number 413.
1978-01-17
weightlessness conditions. It is especial- ly timely now, when, as is well known, citizens of Czechoslovakia, Poland , GDR are in training for manned...consider Georgiy Grechko to be one of our specialists," says L. V. Des- inov . "He thoroughly knows these problems. He visited the Nurekskaya Hydro
2011-02-25
STS133-E-006008 (25 Feb. 2011) --- On space shuttle Discovery’s middeck, astronaut Nicole Stott, STS-133 mission specialist, enjoys a flight day 2 snack. She is holding an apple and a tortilla, food items that do not tend to create burdensome crumbs in the weightless environment of space. Photo credit: NASA or National Aeronautics and Space Administration
Recent NASA aerospace medicine technology developments
NASA Technical Reports Server (NTRS)
Jones, W. L.
1973-01-01
Areas of life science are being studied to obtain baseline data, strategies, and technology to permit life research in the space environment. The reactions of the cardiovascular system to prolonged weightlessness are also being investigated. Particle deposition in the human lung, independent respiratory support system, food technology, and remotely controlled manipulators are mentioned briefly.
Pilot Fullerton examines SE-81-8 Insect Flight Motion Study
NASA Technical Reports Server (NTRS)
1982-01-01
Pilot Fullerton examines Student Experiment 81-8 (SE-81-8) Insect Flight Motion Study taped to the airlock on aft middeck. Todd Nelson, a high school senior from Minnesota, won a national contest to fly his experiment on this particular flight. Moths, flies, and bees were studied in the near weightless environment.
Environmental stressors during space flight: potential effects on body temperature
NASA Technical Reports Server (NTRS)
Jauchem, J. R.
1988-01-01
1. Organisms may be affected by many environmental factors during space flight, e.g., acceleration, weightlessness, decreased pressure, changes in oxygen tension, radiofrequency radiation and vibration. 2. Previous studies of change in body temperature--one response to these environmental factors--are reviewed. 3. Conditions leading to heat stress and hypothermia are discussed.
Astronaut William Fisher preparing to train in the WETF
NASA Technical Reports Server (NTRS)
1985-01-01
Astronaut William Fisher is shown in his extravehicular mobility unit (EMU) preparing to train in the Weightless Environment Training Facility (WETF). He is wearing the communications carrier assembly but not the full helmet (32102); Reflections of the WETF can be seen on the closed visor of the EMU helmet Fiser is wearing (32103).
Thank You for Flying the Vomit Comet
ERIC Educational Resources Information Center
Dempsey, Robert; DiLisi, Gregory A.; DiLisi, Lori A.; Santo, Gretchen
2007-01-01
This paper describes our flight aboard NASA's C9 "Weightless Wonder," an aircraft that creates multiple periods of microgravity by conducting a series of parabolic maneuvers over the Gulf of Mexico. Because passengers often develop motion sickness during these parabolic maneuvers, the C9 is more affectionately known as the "Vomit Comet." To…
1996-03-14
S96-08073 (April 1996) --- Astronaut Daniel W. Bursch, mission specialist, uses his helmet to bail out water from his life raft during emergency bailout training for crewmembers in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Bursch will join five other astronauts for nine days aboard the Space Shuttle Endeavour next month.
Skylab Experiments, Volume 3, Materials Science.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
Basic knowledge about Skylab experiments is presented in this book, one of a series, for the purpose of informing high school teachers about scientific research performed in orbit and enabling the teachers to broaden their basis for material selection. This third volume is concerned with the effect of a weightless environment on melting and…
Williams with TVIS hardware in Zvezda Service module
2007-02-27
ISS014-E-15349 (27 Feb. 2007) --- Assisted by the weightlessness of space, astronaut Sunita L. Williams, Expedition 14 flight engineer, hoists the Treadmill Vibration Isolation System (TVIS). She took a moment to pose for a photo during routine in-flight maintenance (IFM) on TVIS in the Zvezda Service Module of the International Space Station.
NASA Technical Reports Server (NTRS)
1997-01-01
Session TP3 includes short reports on: (1) Modification of Goal-Directed Arm Movements During Inflight Adaptation to Microgravity; (2) Quantitative Analysis of Motion control in Long Term Microgravity; (3) Does the Centre of Gravity Remain the Stabilised Reference during Complex Human Postural Equilibrium Tasks in Weightlessness?; and (4) Arm End-Point Trajectories Under Normal and Microgravity Environments.
Space adaptation syndrome experiments (8-IML-1)
NASA Technical Reports Server (NTRS)
Watt, D.
1992-01-01
A set of seven experiments will study adaptation of the human nervous system to weightlessness. Particular emphasis will be placed on the vestibular and proprioceptive systems. The experiments are as follows: the sled/H-reflex; rotation/vestibulo-ocular reflex; the visual stimulator experiment; proprioception (relaxed) experiment; proprioception (active) experiment; proprioception (illusion) experiment; and tactile acuity.
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1985-01-01
The most important results of the Skylab studies related to fluid-electrolyte regulation are summarized. These data are the starting point of a systems analysis to study adaptation to the weightlessness environment. A summary of the systems analysis study, including an interpretation of Skylab results, is included.
MSFC Skylab neutral buoyancy simulator
NASA Technical Reports Server (NTRS)
1974-01-01
The use of a neutral buoyancy simulator for developing extravehicular activity systems and for training astronauts in weightless activities is discussed. The construction of the facility and the operations are described. The types of tests and the training activities conducted in the simulator are reported. Photographs of the components of the simulator and actual training exercises are included.
Spacsuit donning and doffing in zero-g training for Don Peterson STS-6
NASA Technical Reports Server (NTRS)
1982-01-01
Spacsuit donning and doffing in zero-g training for Don Peterson of the STS-6 crew. The training is being held aboard the KC-135 to simulate weightlessness. He is being assisted to don the lower torso of the extravehicular mobility unit (EMU) by an ILC technician.
Dr. von Braun Tries Out the Neutral Buoyancy Simulator (NBS)
NASA Technical Reports Server (NTRS)
1967-01-01
Marshall Space Flight Center (MSFC) Director, Dr. von Braun, is shown leaving the suiting-up van wearing a pressure suit prepared for a tryout in the MSFC Neutral Buoyancy Simulator (NBS). Weighted to a neutrally buoyant condition, Dr. von Braun was able to perform tasks underwater which simulated weightless conditions found in space.
Hematology/immunology (M110 series). [human hemodynamic response to weightlessness simulation
NASA Technical Reports Server (NTRS)
1973-01-01
The hematology/immunology experiments in the Skylab mission study various aspects of the red blood cell, including its metabolism and life span, and blood volume changes under zero gravity conditions to determine the precise mechanism of the transient changes which have been seen on the relatively brief missions of the past.
RHESUS MONKEY - SAM - POSTFLIGHT - LITTLE JOE II (LJ-2) SPACECRAFT
1963-10-23
S63-19199 (4 Dec. 1959) --- Sam, the Rhesus monkey, and his handler after his ride in the Little Joe 2 (LJ-2) spacecraft. He is still encased in his contour couch. A U.S. Navy destroyer safely recovered Sam after he experienced three minutes of weightlessness during the flight. Photo credit: NASA
Astronaut Mary Ellen Weber during training session in WETF
1994-05-01
Attired in a training version of the Extravehicular Mobility Unit (EMU), astronaut Mary Ellen Weber gets help with the final touches of suit donning during a training session at JSC's Weightless Environment Training Facility (WETF). Training as a mission specialist for the STS-70 mission, Weber was about to rehearse a contingency space walk.
STS-81 crewmembers participate in bailout training in Bldg 29 WETF
1996-09-26
S96-15393 (26 Sept. 1996) --- In the Johnson Space Center's weightless environment training facility, astronaut Brent W. Jett Jr., STS-81 mission specialist, deploys his "Mae West" device to stay afloat during water bailout survival training. Five STS-81 crewmates, out of frame, joined him for the bailout training exercises.
Free suspension processing of oxides to form amorphous oxide materials, appendix B
NASA Technical Reports Server (NTRS)
Wouch, G.
1973-01-01
The processing of yttria, zirconia, and alumina under weightless conditions is discussed. The process consists of levitation or position control, heating and melting, superheating, and supercooling. The use of arc imaging furnaces, lasers, induction heating, microwave, and electron beam methods are analyzed to show the advantages and disadvantages of each.
USSR Space Life Sciences Digest
NASA Technical Reports Server (NTRS)
Lewis, C. S. (Editor); Donnelly, K. L. (Editor)
1980-01-01
Research in exobiology, life sciences technology, space biology, and space medicine and physiology, primarily using data gathered on the Salyut 6 orbital space station, is reported. Methods for predicting, diagnosing, and preventing the effects of weightlessness are discussed. Psychological factors are discussed. The effects of space flight on plants and animals are reported. Bioinstrumentation advances are noted.
Hands-On Experiences with Buoyant-Less Water
ERIC Educational Resources Information Center
Slisko, Josip; Planinsic, Gorazd
2010-01-01
The phenomenon of weightlessness is known to students thanks to videos of amazing things astronauts do in spaceships orbiting the Earth. In this article we propose two hands-on activities which give students opportunities to infer by themselves the absence of buoyant force in a gravity accelerated system. The system is a free-falling or vertically…
NASA space biology accomplishments, 1983-84
NASA Technical Reports Server (NTRS)
Halstead, T. W.; Dutcher, F. R.; Pleasant, L. G.
1984-01-01
Approximately 42 project summaries from NASA's Space Biology Program are presented. Emphasis is placed on gravitational effects on plant and animal life. The identification of gravity perception; the effects of weightlessness on genetic integrity, cellular differentiation, reproduction, development, growth, maturation, and senescence; and how gravity affects and controls physiology, morphology, and behavior of organisms are studied.
SKYLAB (SL)-3 - EXPERIMENT HARDWARE
1973-11-08
S74-19675 (1974) --- Medium close-up view of the M512 materials processing equipment storage assembly and the M518 electric furnace in the Multiple Docking Adapter (MDA), one of the primary elements of the Skylab space station. The assembly holds equipment designed to explore space manufacturing capability in a weightless state. Photo credit: NASA
Underwater views of STS-11 crewman Robert L. Stewart during EVA training
NASA Technical Reports Server (NTRS)
1983-01-01
Underwater views of STS-11 crewman Robert L. Stewart during extravehicular activity (EVA) training in the cargo bay in the weightless environment training facility (WETF) in bldg 27. Stewart busies himself with donning and doffing of the manned maneuvering unit (MMU) in a mockup of the Shuttle's cargo bay.
Clinorotation Increases the Growth of Utricular Otoliths of Developing Cichlid Fish
NASA Astrophysics Data System (ADS)
Anken, Ralf H.; Baur, Ulrich; Hilbig, Reinhard
2010-04-01
It has been shown earlier that hypergravity slows down inner ear otolith growth in developing fish as an adaptation towards increased environmental gravity. Suggesting that otolith growth is regulated by the central nervous system, thus adjusting otolithic weight to produce a test mass, applying functional weightlessness should yield an opposite effect, i.e. larger than normal otoliths. Therefore, larval siblings of cichlid fish ( Oreochromis mossambicus) were housed for 7 days in a submersed, two-dimensional clinostat, which provided a residual gravity of approximately 0.007g. After the experiment, otoliths were dissected and their size (area grown during the experiment) was determined. Maintenance in the clinostat resulted in significantly larger utricular otoliths (lapilli, involved in graviperception). There were no statistical significant differences regarding saccular otoliths obtained (sagittae, involved in transmitting linear acceleration and, especially, in the hearing process). These results indicated, that the animals had in fact received functional weightlessness. In line and contrasting results on the otoliths of other teleost species kept at actual microgravity (spaceflight) or within rotating wall vessels are discussed.
NASA Technical Reports Server (NTRS)
Tipton, Charles M.
1991-01-01
The primary purpose of this research is to study the physiological mechanisms associated with the exercise performance of rats subjected to conditions of simulated weightlessness. A secondary purpose is to study related physiological changes associated with other systems. To facilitate these goals, a rodent suspension model was developed (Overton-Tipton) and a VO2 max testing procedure was perfected. Three methodological developments occurred during this past year deserving of mention. The first was the refinement of the tail suspension model so that (1) the heat dissipation functions of the caudal artery can be better utilized, and (2) the blood flow distribution to the tail would have less external constriction. The second was the development on a one-leg weight bearing model for use in simulated weightlessness studies concerned with change in muscle mass, muscle enzyme activity, and hind limb blood flow. The chemical body composition of 30 rats was determined and used to develop a prediction equation for percent fat using underwater weighing procedures to measure carcass specific gravity and to calculate body density, body fat, and fat free mass.
Anticipatory Postural Activity During Long-Duration Space Flight
NASA Technical Reports Server (NTRS)
Layne, C. S.; Mulavara, A. P.; McDonald, P. V.; Pruett, C. J.; Koslovskaya, B.; Bloomberg, J. J.
1999-01-01
Somatosensory input has been used to modify motor output in many contexts. During space flight, the use of the lower limb musculature is much less than during activities in 1g. Consequently the neuromuscular activity of the legs is also reduced during space flight. This decrease in muscle activity contributes to muscle atrophy. Furthermore, adaptations to weightlessness contribute to posture and locomotion problems upon the return to Earth. Providing techniques to counter the negative effects of weightlessness on the neuromuscular system is an important goal, particularly during a long-duration mission. Previous work by our group has shown that lower limb neuromuscular activation that normally precedes arm movements in 1g is absent or greatly reduced during similar movements made while freefloating. However, preliminary evidence indicates that applying pressure to the feet results in enhanced neuromuscular activation during rapid arm movements performed while freefloating. This finding suggests that sensory input can be used to "drive" the motor system to increase neuromuscular functioning throughout a mission. The purpose of this investigation was to quantify the increase in neuromuscular activation resulting from the application of pressure to the feet.
Body composition changes in men and women after 2-3 weeks of bed rest
NASA Technical Reports Server (NTRS)
Pace, N.; Kodama, A. M.; Grunbaum, B. W.; Rahlmann, D. F.; Price, D. C.; Newsom, B. D.
1976-01-01
Several parameters of body composition were measured in eight men before and after 14 days of continuous recumbency, and in eight women before and after 17 days of recumbency. The parameters measured included body weight, body water, body potassium, plasma volume, and plasma protein concentrations. From these, values were derived for body fat content, lean body mass, body mass, and circulating plasma proteins. In general, the men and women responded similarly to continuous recumbency. Characteristically, there was significant reduction of plasma volume and body potassium in both groups. The women showed a significant reduction in circulating plasma protein, entirely in the albumin fraction; a similar change was observed in the men. The women, but not the men, showed a significant increase in circulating fibrinogen. Both men and women lost body cell mass, while body fat content remained the same or tended to increase slightly. It is expected that similar changes would occur in weightlessness. It is further concluded that women should tolerate the weightlessness of space flight physiologically as well as men.
NASA Technical Reports Server (NTRS)
Brown, A. H.; Chapman, D. K.; Johnsson, A.; Heathcote, D.
1995-01-01
We conducted a series of gravitropic experiments on Avena coleoptiles in the weightlessness environment of Spacelab. The purpose was to test the threshold stimulus, reciprocity rule and autotropic reactions to a range of g-force stimulations of different intensities and durations The tests avoided the potentially complicating effects of earth's gravity and the interference from clinostat ambiguities. Using slow-speed centrifuges, coleoptiles received transversal accelerations in the hypogravity range between 0.l and 1.0 g over periods that ranged from 2 to 130 min. All responses that occurred in weightlessness were compared to clinostat experiments on earth using the same apparatus. Characteristic gravitropistic response patterns of Atuena were not substantially different from those observed in ground-based experiments. Gravitropic presentation times were extrapolated. The threshold at 1.0 g was less than 1 min (shortest stimulation time 2 min), in agreement with values obtained on the ground. The least stimulus tested, 0.1 g for 130 min, produced a significant response. Therefore the absolute threshold for a gravitropic response is less than 0.1 g.
Dual matter-wave inertial sensors in weightlessness
Barrett, Brynle; Antoni-Micollier, Laura; Chichet, Laure; Battelier, Baptiste; Lévèque, Thomas; Landragin, Arnaud; Bouyer, Philippe
2016-01-01
Quantum technology based on cold-atom interferometers is showing great promise for fields such as inertial sensing and fundamental physics. However, the finite free-fall time of the atoms limits the precision achievable on Earth, while in space interrogation times of many seconds will lead to unprecedented sensitivity. Here we realize simultaneous 87Rb–39K interferometers capable of operating in the weightless environment produced during parabolic flight. Large vibration levels (10−2 g Hz−1/2), variations in acceleration (0–1.8 g) and rotation rates (5° s−1) onboard the aircraft present significant challenges. We demonstrate the capability of our correlated quantum system by measuring the Eötvös parameter with systematic-limited uncertainties of 1.1 × 10−3 and 3.0 × 10−4 during standard- and microgravity, respectively. This constitutes a fundamental test of the equivalence principle using quantum sensors in a free-falling vehicle. Our results are applicable to inertial navigation, and can be extended to the trajectory of a satellite for future space missions. PMID:27941928
Fluid shifts and muscle function in humans during acute simulated weightlessness
NASA Technical Reports Server (NTRS)
Hargens, A. R.; Tipton, C. M.; Gollnick, P. D.; Mubarak, S. J.; Tucker, B. J.; Akeson, W. H.
1983-01-01
The acute effects of simulated weightlessness on transcapillary fluid balance, tissue fluid shifts, muscle function, and triceps surface reflex time were studied in eight supine human subjects who were placed in a 5 degrees head-down tilt position for 8 hr. Results show a cephalic fluid shift from the legs as indicated by facial edema, nasal congestion, increased urine flow, decreased creatinine excretion, reduced calf girth, and decreased lower leg volume. The interstitial fluid pressure in the tibialis anterior muscle and subcutaneous tissue of the lower leg was found to fall significantly, while other transcapillary pressures (capillary and interstitial fluid colloid osmotic pressures) were relatively unchanged. The total water content of the soleus muscle was unchanged during the head-down tilt. After head-down tilt, isometric strength and isokinetic strength of the plantar flexors were unchanged, while the triceps surae reflex time associated with plantar flexion movement slowed slightly. These results demonstrate a dehydration effect of head-down tilt on muscle and subcutaneous tissue of the lower leg that may affect muscle function.
Midodrine prevents orthostatic intolerance associated with simulated spaceflight
NASA Technical Reports Server (NTRS)
Ramsdell, C. D.; Mullen, T. J.; Sundby, G. H.; Rostoft, S.; Sheynberg, N.; Aljuri, N.; Maa, M.; Mukkamala, R.; Sherman, D.; Toska, K.;
2001-01-01
Many astronauts after being weightless in space become hypotensive and presyncopal when they assume an upright position. This phenomenon, known as orthostatic intolerance, may interfere with astronaut function during reentry and after spaceflight and may limit the ability of an astronaut to exit a landed spacecraft unaided during an emergency. Orthostatic intolerance is more pronounced after long-term spaceflight and is a major concern with respect to the extended flights expected aboard the International Space Station and for interplanetary exploration class missions, such as a human mission to Mars. Fully effective countermeasures to this problem have not yet been developed. To test the hypothesis that alpha-adrenergic stimulation might provide an effective countermeasure, we conducted a 16-day head-down-tilt bed-rest study (an analog of weightlessness) using normal human volunteers and administered the alpha(1)-agonist drug midodrine at the end of the bed-rest period. Midodrine was found to significantly ameliorate excessive decreases in blood pressure and presyncope during a provocative tilt test. We conclude that midodrine may be an effective countermeasure for the prevention of orthostatic intolerance following spaceflight.
Cardiovascular effects of weightlessness and ground-based simulation
NASA Technical Reports Server (NTRS)
Sandler, Harold
1988-01-01
A large number of animal and human flight and ground-based studies were conducted to uncover the cardiovascular effects of weightlessness. Findings indicate changes in cardiovascular function during simulations and with spaceflight that lead to compromised function on reambulation and/or return to earth. This altered state termed cardiovascular deconditioning is most clearly manifest when in an erect body state. Hemodynamic parameters inidicate the presence of excessive tachnycardia, hypotension (leading to presyncope in one-third of the subjects), decreased heart volume, decreased plasma and circulating blood volumes and loss of skeletal muscle mass, particularly in the lower limbs. No clinically harmful effects were observed to date, but in-depth follow-ups were limited, as was available physiologic information. Available data concerning the causes for the observed changes indicate significant roles for mechanisms involved with body fluid-volume regulation, altered cardiac function, and the neurohumoral control of the control of the peripheral circulation. Satisfactory measures are not found. Return to preflight state was variable and only slightly dependent on flight duration. Future progress awaits availability of flight durations longer than several weeks.
Analogs of microgravity: head-down tilt and water immersion.
Watenpaugh, Donald E
2016-04-15
This article briefly reviews the fidelity of ground-based methods used to simulate human existence in weightlessness (spaceflight). These methods include horizontal bed rest (BR), head-down tilt bed rest (HDT), head-out water immersion (WI), and head-out dry immersion (DI; immersion with an impermeable elastic cloth barrier between subject and water). Among these, HDT has become by far the most commonly used method, especially for longer studies. DI is less common but well accepted for long-duration studies. Very few studies exist that attempt to validate a specific simulation mode against actual microgravity. Many fundamental physical, and thus physiological, differences exist between microgravity and our methods to simulate it, and between the different methods. Also, although weightlessness is the salient feature of spaceflight, several ancillary factors of space travel complicate Earth-based simulation. In spite of these discrepancies and complications, the analogs duplicate many responses to 0 G reasonably well. As we learn more about responses to microgravity and spaceflight, investigators will continue to fine-tune simulation methods to optimize accuracy and applicability. Copyright © 2016 the American Physiological Society.
Midodrine prevents orthostatic intolerance associated with simulated spaceflight.
Ramsdell, C D; Mullen, T J; Sundby, G H; Rostoft, S; Sheynberg, N; Aljuri, N; Maa, M; Mukkamala, R; Sherman, D; Toska, K; Yelle, J; Bloomfield, D; Williams, G H; Cohen, R J
2001-06-01
Many astronauts after being weightless in space become hypotensive and presyncopal when they assume an upright position. This phenomenon, known as orthostatic intolerance, may interfere with astronaut function during reentry and after spaceflight and may limit the ability of an astronaut to exit a landed spacecraft unaided during an emergency. Orthostatic intolerance is more pronounced after long-term spaceflight and is a major concern with respect to the extended flights expected aboard the International Space Station and for interplanetary exploration class missions, such as a human mission to Mars. Fully effective countermeasures to this problem have not yet been developed. To test the hypothesis that alpha-adrenergic stimulation might provide an effective countermeasure, we conducted a 16-day head-down-tilt bed-rest study (an analog of weightlessness) using normal human volunteers and administered the alpha(1)-agonist drug midodrine at the end of the bed-rest period. Midodrine was found to significantly ameliorate excessive decreases in blood pressure and presyncope during a provocative tilt test. We conclude that midodrine may be an effective countermeasure for the prevention of orthostatic intolerance following spaceflight.
Spacelab 1 hematology experiment (INS103): Influence of space flight on erythrokinetics in man
NASA Technical Reports Server (NTRS)
Leach, C. S.; Chen, J. P.; Crosby, W.; Dunn, C. D. R.; Johnson, P. C.; Lange, R. D.; Larkin, E.; Tavassoli, M.
1985-01-01
An experiment conducted on the 10-day Spacelab 1 mission aboard the ninth Space Shuttle flight in November to December 1983 was designed to measure factors involved in the control of erythrocyte turnover that might be altered during weightlessness. Blood samples were collected before, during, and after the flight. Immediately after landing, red cell mass showed a mean decrease of 9.3 percent in the four astronauts. Neither hyperoxia nor an increase in blood phosphate was a cause of the decrease. Red cell survival time and iron incorporation postflight were not significantly different from their preflight levels. Serum haptoglobin did not decrease, indicating that intravascular hemolysis was not a major cause of red cell mass change. An increase in serum ferritin after the second day of flight may have been caused by red cell breakdown early in flight. Erythropoietin levels decreased during and after flight, but preflight levels were high and the decrease was not significant. The space flight-induced decrease in red cell mass may result from a failure of erythropoiesis to replace cells destroyed by the spleen soon after weightlessness is attained.
The temporal response of bone to unloading
NASA Technical Reports Server (NTRS)
Globus, R. K.; Bikle, D. D.; Morey-Holton, E.
1984-01-01
Rats were suspended by their tails with the forelimbs bearing the weight load to simulate the weightlessness of space flight. Growth in bone mass ceased by 1 week in the hindlimbs and lumbar vertebrae in growing rats, while growth in the forelimbs and cervical vertebrae remained unaffected. The effects of selective skeletal unloading on bone formation during 2 weeks of suspension was investigated using radio iostope incorporation (with Ca-45 and H-3 proline) and histomorphometry (with tetracycline labeling). The results of these studies were confirmed by histomorphometric measurements of bone formation using triple tetracycline labeling. This model of simulated weightlessness results in an initial inhibition of bone formation in the unloaded bones. This temporary cessation of bone formation is followed in the accretion of bone mass, which then resumes at a normal rate by 14 days, despite continued skeletal unloading. This cycle of inhibition and resumption of bone formation has profound implication for understanding bone dynamics durng space flight, immobilization, or bed rest and offers an opportunity to study the hormonal and mechanical factors that regulate bone formation.
Solar energy collector including a weightless balloon with sun tracking means
Hall, Frederick F.
1978-01-01
A solar energy collector having a weightless balloon, the balloon including a transparent polyvinylfluoride hemisphere reinforced with a mesh of ropes secured to its outside surface, and a laminated reflector hemisphere, the inner layer being clear and aluminized on its outside surface and the outer layer being opaque, the balloon being inflated with lighter-than-air gas. A heat collection probe extends into the balloon along the focus of reflection of the reflective hemisphere for conducting coolant into and out of the balloon. The probe is mounted on apparatus for keeping the probe aligned with the sun's path, the apparatus being founded in the earth for withstanding wind pressure on the balloon. The balloon is lashed to the probe by ropes adhered to the outer surface of the balloon for withstanding wind pressures of 100 miles per hour. Preferably, the coolant is liquid sodium-potassium eutectic alloy which will not normally freeze at night in the temperate zones, and when heated to 4,000.degree. R exerts a pressure of only a few atmospheres.
Water immersion and its computer simulation as analogs of weightlessness
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1982-01-01
Experimental studies and computer simulations of water immersion are summarized and discussed with regard to their utility as analogs of weightlessness. Emphasis is placed on describing and interpreting the renal, endocrine, fluid, and circulatory changes that take place during immersion. A mathematical model, based on concepts of fluid volume regulation, is shown to be well suited to simulate the dynamic responses to water immersion. Further, it is shown that such a model provides a means to study specific mechanisms and pathways involved in the immersion response. A number of hypotheses are evaluated with the model related to the effects of dehydration, venous pressure disturbances, the control of ADH, and changes in plasma-interstitial volume. By inference, it is suggested that most of the model's responses to water immersion are plausible predictions of the acute changes expected, but not yet measured, during space flight. One important prediction of the model is that previous attempts to measure a diuresis during space flight failed because astronauts may have been dehydrated and urine samples were pooled over 24-hour periods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plakhuta-Plakutina, G.I.
1978-10-26
In studying the modifying effects of space flight factors on radiosensitivity of various physiological systems of the body, of definite interest is the reaction of critical organs, in particular the testes, which have a high degree of heterogenic sensitivity of spermatogenic epithelium. Impairment of proliferative activity of testicular epithelium is largely related to the radiovulnerability of cells of the stem type, spermatogonia. In determining the modifying effects of weightlessness and other factors of space flights, it is necessary to compare the cytological state and quantitative evaluation of the incidence of spermatogonia, spermatocytes, spermatids, and spermatozoa in order to determine themore » possible injury to specific stages of spectrogenesis, depending on the radiation doses during space flights and in ground-based model experiments. The effects of radiation under weightless conditions on the reproductive glands of 30 male Wistar rats flown aboard Kosmos-690 and submitted to prolonged ..gamma.. radiation on the 10th day of the flight were investigated.« less
Simulated weightlessness and synbiotic diet effects on rat bone mechanical strength
NASA Astrophysics Data System (ADS)
Sarper, Hüseyin; Blanton, Cynthia; DePalma, Jude; Melnykov, Igor V.; Gabaldón, Annette M.
2014-10-01
This paper reports results on exposure to simulated weightlessness that leads to a rapid decrease in bone mineral density known as spaceflight osteopenia by evaluating the effectiveness of dietary supplementation with synbiotics to counteract the effects of skeletal unloading. Forty adult male rats were studied under four different conditions in a 2 × 2 factorial design with main effects of diet (synbiotic and control) and weight condition (unloaded and control). Hindlimb unloading was performed at all times for 14 days followed by 14 days of recovery (reambulation). The synbiotic diet contained probiotic strains Lactobacillus acidophilus and Lactococcus lactis lactis and prebiotic fructooligosaccharide. This paper also reports on the development of a desktop three-point bending device to measure the mechanical strength of bones from rats subjected to simulated weightlessness. The importance of quantifying bone resistance to breakage is critical when examining the effectiveness of interventions against osteopenia resulting from skeletal unloading, such as astronauts experience, disuse or disease. Mechanical strength indices provide information beyond measures of bone density and microarchitecture that enhance the overall assessment of a treatment's potency. In this study we used a newly constructed three-point bending device to measure the mechanical strength of femur and tibia bones from hindlimb-unloaded rats fed an experimental synbiotic diet enriched with probiotics and fermentable fiber. Two calculated outputs for each sample were Young's modulus of elasticity and fracture stress. Bone major elements (calcium, magnesium, and phosphorous) were quantified using ICP-MS analysis. Hindlimb unloading was associated with a significant loss of strength in the femur, and with significant reductions in major bone elements. The synbiotic diet did not protect against these unloading effects. Tibia strength and major elements were not reduced by hindlimb unloading, as was the case for femur, but tibia bone strength was negatively affected by the synbiotic diet. Thus, unexpectedly, the synbiotic diet was associated with null or detrimental effects on bone strength.
Progress on Concepts for Next-Generation Drop Tower Systems
NASA Astrophysics Data System (ADS)
Könemann, Thorben; Eigenbrod, Christian; Von Kampen, Peter; Laemmerzahl, Claus; Kaczmarczik, Ulrich
2016-07-01
The Center of Applied Space Technology and Microgravity (ZARM) founded by Prof. Dr.-Ing. Hans J. Rath in 1985 is part of the Department of Production Engineering at the University of Bremen, Germany. ZARM is mainly concentrated on fundamental investigations of gravitational and space-related phenomenas under conditions of weightlessness as well as questions and developments related to technologies for space. At ZARM about 100 scientists, engineers, and administrative staff as well as many students from different departments are employed. Today, ZARM is still one of the largest and most important research center for space sciences and technologies in Europe. With a height of 146 m the Bremen Drop Tower is the predominant facility of ZARM and also the only drop tower of its class in Europe. ZARM's ground-based laboratory offers the opportunity for daily short-term experiments under conditions of high-quality weightlessness at a level of 10-6 g (microgravity), which is one of the best achievable for ground-based flight opportunities. Scientists may choose up to three times a day between a single drop experiment with 4.74 s in simple free fall and an experiment in ZARM's worldwide unique catapult system with 9.3 s in weightlessness. Since the start of operation of the facility in 1990, over 7500 drops or catapult launches of more than 160 different experiment types from various scientific fields like fundamental physics, combustion, fluid dynamics, planetary formation / astrophysics, biology and materials sciences have been accomplished so far. In addition, more and more technology tests have been conducted under microgravity conditions at the Bremen Drop Tower in order to effectively prepare appropriate space missions in advance. In this paper we report on the progress on concepts for next-generation drop tower systems based on the GraviTower idea utilizing a guided electro-magnetic linear drive. Alternative concepts motivated by the scientific demand for higher experiment repetition rates are discussed.
Some psychological and engineering aspects of the extravehicular activity of astronauts.
Khrunov, E V
1973-01-01
One of the main in-flight problems being fulfilled by astronauts is the preparation for and realization of egress into open space for the purpose of different kinds of extravehicular activity, such as, the performance of scientific experiments, repairing and dismantling operations etc. The astronaut's activity outside the space vehicle is the most difficult item of the space flight programme, which is complicated by a number of space factors affecting a man, viz. dynamic weightlessness, work in a space suit under conditions of excessive pressure, difficulties of space orientation etc. The peculiarities mentioned require special training of the cosmonaut. The physical training involves a series of exercises forming the body-control habits necessary for work in a state of weightlessness. In a new kind of training use is made of equipment simulating the state of weightlessness. From analysis of the available data and the results of my own investigations during ground training and the Soyuz 4 and 5 flights one can establish the following peculiarities of the astronaut's extravehicular activity: (1) Operator response lag in the planned algorithm; (ii) systematic appearance of some stereotype errors in the mounting and dismantling of the outer equipment and in scientific-technical experiments; (iii) a high degree of emotional strain and 30-35% decrease in in-flight working capacity of the astronaut compared with the ground training data; (iv) a positive influence of space adaptation on the cosmonaut and the efficiency of his work in open space; (v) the necessity for further engineering and psychological analysis of the astronaut's activity under conditions of the long space flight of the multi-purpose orbital station. One of the main reasons for the above peculiarities is the violation of the control-coordination functions of the astronaut in the course of the dynamical operations. The paper analyses the extravehicular activity of the astronaut and presents some recommendations for its more efficient realization. Proposals are given concerning the complex engineering, psychological and technical investigations to be made during in-flight egress.
Surveillance, Big Data Analytics and the Death of Privacy
ERIC Educational Resources Information Center
Doughty, Howard A.
2014-01-01
In this article, Howard Doughty examines how today's technological devices alter and increasingly substitute for one's body/mind, sociality and (a)morality. He claims that today, under the crushing weightlessness of virtuality, citizens are less confident, more willing to retreat into the idiocy of private life. He goes on to address the…
Angular velocities, angular accelerations, and coriolis accelerations
NASA Technical Reports Server (NTRS)
Graybiel, A.
1975-01-01
Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.
Nutrition and Musculoskeletal Function: Skylab Experiment Series Number M070
NASA Technical Reports Server (NTRS)
Raumbaut, P. C.
1972-01-01
The M070 experiments are expected to give medical investigators precise information on a variety of biochemical changes occurring during exposure to space flight. Sufficient control data are being generated by baseline studies to differentiate those effects that are caused by weightless flight and those that are caused by other abnormal conditions that normally accompany spaceflight.
How Can "Weightless" Astronauts Be Weighed?
ERIC Educational Resources Information Center
Carnicer, Jesus; Reyes, Francisco; Guisasola, Jenaro
2012-01-01
In introductory physics courses, within the context of studying Newton's laws, it is common to consider the problem of a body's "weight" when it is in free fall. The solution shows that the "weight" is zero and this leads to a discussion of the concept of weight. There are permanent free-fall situations such as astronauts in a spacecraft orbiting…
1992-02-10
The image shows a test cell of Crystal Growth experiment inside the Vapor Crystal Growth System (VCGS) furnace aboard the STS-42, International Microgravity Laboratory-1 (IML-1), mission. The goal of IML-1, a pressurized marned Spacelab module, was to explore in depth the complex effects of weightlessness of living organisms and materials processing. More than 200 scientists from 16 countires participated in the investigations.
Astronaut Stephen Oswald during emergency bailout training
NASA Technical Reports Server (NTRS)
1994-01-01
Suited in a training version of the Shuttle partial-pressure launch and entry garment, astronaut Stephen S. Oswald, STS-67 commander, gets help with a piece of gear from Boeing's David Brandt. The scene was photographed prior to a session of emergency bailout training in the 25-feet deep pool at JSC's Weightless Environment Training Facility (WETF).
Specialized physiological studies in support of manned space flight
NASA Technical Reports Server (NTRS)
Luft, U. C.
1980-01-01
The reversible changes that take place in the cardiovascular system during weightlessness were investigated. Particular attention was given to the assessment of cardiovascular functions during and after space missions. One of the most important of these functions is the amount of blood pumped by the heart per min at rest and during exercise of gravitational stress.
Space bioreactor: Design/process flow
NASA Technical Reports Server (NTRS)
Cross, John H.
1987-01-01
The design of the space bioreactor stems from three considerations. First, and foremost, it must sustain cells in microgravity. Closely related is the ability to take advantage of the weightlessness and microgravity. Lastly, it should fit into a bioprocess. The design of the space bioreactor is described in view of these considerations. A flow chart of the bioreactor is presented and discussed.
CREW TRAINING - STS-33/51L (ZERO-G)
1985-10-16
Teacher-in-Space trainees on the KC-135 for Zero-G training. Sharon Christa McAuliffe experiences a few moments of weightlessness provided by the KC-135. She and Bob Mayfield, a JSC Aerospace Education Specialist, are previewing a Molecular Mixing Experiment which was designed to demonstrate differences of separation process in 1-G and Zero-G.
A Person Stands on a Balance in an Elevator: What Happens When the Elevator Starts to Fall?
ERIC Educational Resources Information Center
Balukovic, Jasmina; Slisko, Josip; Cruz, Adrián Corona
2018-01-01
Physics textbook authors commonly introduce the concept of weightlessness (apparent or real) through a "thought experiment" in which a person weighs herself or himself in an elevator. When the elevator falls freely, the spring balance should show zero weight. There is an unresolved controversy about how this "zero reading"…
NASA Technical Reports Server (NTRS)
1997-01-01
On this second day of the STS-87 mission, the flight crew, Cmdr. Kevin R. Kregel, Pilot Steven W. Lindsey, Mission Specialists Winston E. Scott, Kalpana Chawla, and Takao Doi, and Payload Specialist Leonid K. Kadenyuk are seen conducting experiments involving the effect of weightlessness on materials and fluids. They also work with an experiment to study Earth's protective ozone layers.
Astronaut Walter Cunningham photographed performing flight tasks
1968-10-20
AS07-04-1586 (20 Oct. 1968) --- Astronaut Walter Cunningham, Apollo 7 lunar module pilot, writes with space pen as he is photographed performing flight tasks on the ninth day of the Apollo 7 mission. Note the 70mm Hasselblad camera film magazine just above Cunningham's right hand floating in the weightless (zero gravity) environment of the spacecraft.
Astronaut Kevin P. Chilton uses helmet to bail water during bailout training
1993-12-22
S93-50705 (22 Dec 1993) --- Astronaut Kevin P. Chilton, pilot, uses his helmet to bail water from his life raft during emergency bailout training at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Chilton and five other NASA astronauts are scheduled to fly aboard the Space Shuttle Endeavour next year.
STS-59 crewmembers during WETF bailouts
1993-12-02
S93-50711 (22 Dec 1993) --- Astronauts Kevin P. Chilton (right), pilot, and Linda M. Godwin, payload commander, are assisted by SCUBA-equipped divers during emergency bailout training at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Godwin, Chilton and four other NASA astronauts are scheduled to fly aboard the Space Shuttle Endeavour next year.
Astronaut Bonnie Dunbar watches crewmates during training
1994-10-13
S94-47256 (13 Oct 1994) --- Astronaut Bonnie J. Dunbar, STS-71 mission specialist, smiles as she watches a crew mate (out of frame) make a simulated parachute landing in nearby water. The action came as part of an emergency bailout training session in the Johnson Space Center's (JSC) Weightless Environment Training Facility's (WET-F) 25-feet-deep pool.
Astronaut Mary Ellen Weber deploys life raft during bailout training
1995-02-16
S95-03501 (16 FEB 1995) --- Astronaut Mary Ellen Weber prepares to deploy a life raft during a training session at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Training as a mission specialist for the STS-70 mission, Weber was joined by four crew mates in the emergency bailout rehearsal.
Astronaut Story Musgrave during final stages of exercise in the WETF
NASA Technical Reports Server (NTRS)
1982-01-01
Astronaut Story Musgrave, STS-6 mission specialist, checks a sequence list on his spacesuit during the final stages of suit-donning exercise in the weightless environment test facility (WETF). He is wearing the full extravehicular mobility unit (EMU), including helmet and gloves and is strapped in to the platform for movement into the water.
STS-35 MS Hoffman is suspended above pool during JSC water egress exercises
NASA Technical Reports Server (NTRS)
1990-01-01
STS-35 Mission Specialist (MS) Jeffrey A. Hoffman is suspended above pool during launch emergency egress procedures conducted in JSC's Weightless Environmental Training Facility Bldg 29. Hoffman, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), adjusts flotation device (life jacket) as he is raised above the pool.