Sample records for weld heat-affected-zone haz

  1. An Investigation of TIG welding parameters on microhardness and microstructure of heat affected zone of HSLA steel

    NASA Astrophysics Data System (ADS)

    Musa, M. H. A.; Maleque, M. A.; Ali, M. Y.

    2018-01-01

    Nowadays a wide variety of metal joining methods are used in fabrication industries. In this study, the effect of various welding parameters of the TIG welding process on microhardness, depth, and microstructure of the heat-affected zone (HAZ) of L450 HSLA steel and optimizing these process parameters following Taguchi experimental design was investigated. The microhardness tended to increase significantly with the increase of welding speed from 1.0 to 2.5 mm/s whereas the width of HAZ decreased. The current and arc voltage was found to be less significant in relative comparison. Microstructures of the welded samples were also studied to analyze the changes in the microstructure of the material in terms of ferrite, pearlite, bainite, and martensite formations. Welding speed was found to be the most significant factors leading to changes in microhardness and metallurgical properties. The increase of welding heat input caused an increase in width (depth) of HAZ and the growth of prior austenite grains and then enlarged the grain size of coarse grain heat affected zone (CGHAZ). However, the amount of martensite in the HAZ decreased accompanied by an opposite change of paint. It was observed that the hardness properties and the microstructural feature of HAZ area was strongly affected by the welding parameters.

  2. Corrosion behavior in high heat input welded heat-affected zone of Ni-free high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Joonoh, E-mail: mjo99@kims.re.kr; Ha, Heon-Young; Lee, Tae-Ho

    2013-08-15

    The pitting corrosion and interphase corrosion behaviors in high heat input welded heat-affected zone (HAZ) of a metastable high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel were explored through electrochemical tests. The HAZs were simulated using Gleeble simulator with high heat input welding condition of 300 kJ/cm and the peak temperature of the HAZs was changed from 1200 °C to 1350 °C, aiming to examine the effect of δ-ferrite formation on corrosion behavior. The electrochemical test results show that both pitting corrosion resistance and interphase corrosion resistance were seriously deteriorated by δ-ferrite formation in the HAZ and their aspects were different with increasingmore » δ-ferrite fraction. The pitting corrosion resistance was decreased by the formation of Cr-depleted zone along δ-ferrite/austenite (γ) interphase resulting from δ-ferrite formation; however it didn't depend on δ-ferrite fraction. The interphase corrosion resistance depends on the total amount of Cr-depleted zone as well as ferrite area and thus continuously decreased with increasing δ-ferrite fraction. The different effects of δ-ferrite fraction on pitting corrosion and interphase corrosion were carefully discussed in terms of alloying elements partitioning in the HAZ based on thermodynamic consideration. - Highlights: • Corrosion behavior in the weld HAZ of high-nitrogen austenitic alloy was studied. • Cr{sub 2}N particle was not precipitated in high heat input welded HAZ of tested alloy. • Pitting corrosion and interphase corrosion show a different behavior. • Pitting corrosion resistance was affected by whether or not δ-ferrite forms. • Interphase corrosion resistance was affected by the total amount of δ-ferrite.« less

  3. Effect of Water Cooling on the Performances of Friction Stir Welding Heat-Affected Zone

    NASA Astrophysics Data System (ADS)

    Zhang, H. J.; Liu, H. J.; Yu, L.

    2012-07-01

    The heat-affected zone (HAZ) is generally the intrinsic weakest location of the normal friction stir welded precipitate hardened aluminum alloys. In order to improve the mechanical properties of the HAZ by controlling the temperature level, underwater friction stir welding (FSW) of an Al-Cu aluminum alloy was conducted in the present study. The results indicate that the hardness of the HAZ can be improved through underwater FSW. Microstructural analysis reveals that the hardness improvement is attributed to the lowering of precipitate coarsening level and the narrowing of precipitate free zone, which are essentially induced by the variations of welding thermal cycles under the cooling effect of water.

  4. On post-weld heat treatment cracking in tig welded superalloy ATI 718Plus

    NASA Astrophysics Data System (ADS)

    Asala, G.; Ojo, O. A.

    The susceptibility of heat affected zone (HAZ) to cracking in Tungsten Inert Gas (TIG) welded Allvac 718Plus superalloy during post-weld heat treatment (PWHT) was studied. Contrary to the previously reported case of low heat input electron beam welded Allvac 718Plus, where HAZ cracking occurred during PWHT, the TIG welded alloy is crack-free after PWHT, notwithstanding the presence of similar micro-constituents that caused cracking in the low input weld. Accordingly, the formation of brittle HAZ intergranular micro-constituents may not be a sufficient factor to determine cracking propensity, the extent of heat input during welding may be another major factor that influences HAZ cracking during PWHT of the aerospace superalloy Allvac 718Plus.

  5. Effect of Heat Input on Microstructure Evolution and Mechanical Properties in the Weld Heat-Affected Zone of 9Cr-2W-VTa Reduced Activation Ferritic-Martensitic Steel for Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Moon, Joonoh; Lee, Chang-Hoon; Lee, Tae-Ho; Kim, Hyoung Chan

    2015-01-01

    The phase transformation and mechanical properties in the weld heat-affected zone (HAZ) of a reduced activation ferritic/martensitic steel were explored. The samples for HAZs were prepared using a Gleeble simulator at different heat inputs. The base steel consisted of tempered martensite and carbides through quenching and tempering treatment, whereas the HAZs consisted of martensite, δ-ferrite, and a small volume of autotempered martensite. The prior austenite grain size, lath width of martensite, and δ-ferrite fraction in the HAZs increased with increase in the heat input. The mechanical properties were evaluated using Vickers hardness and Charpy V-notch impact test. The Vickers hardness in the HAZs was higher than that in the base steel but did not change noticeably with increase in the heat input. The HAZs showed poor impact property due to the formation of martensite and δ-ferrite as compared to the base steel. In addition, the impact property of the HAZs deteriorated more with the increase in the heat input. Post weld heat treatment contributed to improve the impact property of the HAZs through the formation of tempered martensite, but the impact property of the HAZs remained lower than that of base steel.

  6. Investigation of the Microstructure of Laser-Arc Hybrid Welded Boron Steel

    NASA Astrophysics Data System (ADS)

    Son, Seungwoo; Lee, Young Ho; Choi, Dong-Won; Cho, Kuk-Rae; Shin, Seung Man; Lee, Youngseog; Kang, Seong-Hoon; Lee, Zonghoon

    2018-05-01

    The microstructure of boron steel for automotive driving shaft manufacturing after laser-arc hybrid welding was investigated. Laser-arc hybrid welding technology was applied to 3-mm-thick plates of boron steel, ST35MnB. The temperature distribution of the welding pool was analyzed using the finite element method, and the microstructure of the welded boron steel was characterized using optical microscopy and scanning and transmission electron microscopies. The microstructure of the weld joint was classified into the fusion zone, the heat-affected zone (HAZ), and the base material. At the fusion zone, the bainite grains exist in the martensite matrix and show directionality because of heat input from the welding. The HAZ is composed of smaller grains, and the hardness of the HAZ is greater than that of the fusion zone. We discuss that the measured grain size and the hardness of the HAZ originate from undissolved precipitates that retard the grain growth of austenite.

  7. Microstructures and Mechanical Properties of Weld Metal and Heat-Affected Zone of Electron Beam-Welded Joints of HG785D Steel

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Han, Jianmin; Tan, Caiwang; Yang, Zhiyong; Wang, Junqiang

    2016-12-01

    Vacuum electron beam welding (EBW) process was employed to butt weld 10-mm-thick HG785D high-strength steels. The penetration into the steel was adjusted by beam current. Microstructures at weld metal and heat-affected zone (HAZ) regions were comparatively observed. Mechanical properties of the EBWed joints including Vickers hardness, tensile and Charpy impact tests were evaluated. The results indicated that microstructures at the weld metal consisted of coarse lath martensite and a small amount of acicular martensite, while that in the HAZ was tempered sorbite and martensite. The grain size in the weld metal was found to be larger than that in the HAZ, and its proportion in weld metal was higher. The hardness in the weld metal was higher than the HAZ and base metal. The tensile strength and impact toughness in the HAZ was higher than that in the weld metal. All the behaviors were related to microstructure evolution caused by higher cooling rates and state of base metal. The fracture surfaces of tensile and impact tests on the optimized joint were characterized by uniform and ductile dimples. The results differed significantly from that obtained using arc welding process.

  8. Microstructural Characterization of the Heat-Affected Zones in Grade 92 Steel Welds: Double-Pass and Multipass Welds

    NASA Astrophysics Data System (ADS)

    Xu, X.; West, G. D.; Siefert, J. A.; Parker, J. D.; Thomson, R. C.

    2018-04-01

    The microstructure in the heat-affected zone (HAZ) of multipass welds typical of those used in power plants and made from 9 wt pct chromium martensitic Grade 92 steel is complex. Therefore, there is a need for systematic microstructural investigations to define the different regions of the microstructure across the HAZ of Grade 92 steel welds manufactured using the traditional arc welding processes in order to understand possible failure mechanisms after long-term service. In this study, the microstructure in the HAZ of an as-fabricated two-pass bead-on-plate weld on a parent metal of Grade 92 steel has been systematically investigated and compared to a complex, multipass thick section weldment using an extensive range of electron and ion-microscopy-based techniques. A dilatometer has been used to apply controlled thermal cycles to simulate the microstructures in distinctly different regions in a multipass HAZ using sequential thermal cycles. A wide range of microstructural properties in the simulated materials were characterized and compared with the experimental observations from the weld HAZ. It has been found that the microstructure in the HAZ can be categorized by a combination of sequential thermal cycles experienced by the different zones within the complex weld metal, using the terminology developed for these regions based on a simpler, single-pass bead-on-plate weld, categorized as complete transformation, partial transformation, and overtempered.

  9. Effect of Groove Design and Post-Weld Heat Treatment on Microstructure and Mechanical Properties of P91 Steel Weld

    NASA Astrophysics Data System (ADS)

    Pandey, C.; Mahapatra, M. M.

    2016-07-01

    The martensitic creep-resistant steel designated as ASTM A335 for plate and as P91 for pipe is primarily used for high-temperature and high-pressure applications in steam power plants due to its excellent high-temperature properties such as high creep strength, high thermal conductivity, low thermal expansion, and so on. However, in the case of welded joints of such steels, the presence of an inter-critical heat-affected zone (IC-HAZ) can cause the joint to have lower creep strength than the base metal. In the present study, the effect of post-welding heat treatment (PWHT) and weld groove designs on the overall microstructure and mechanical properties of P91 steel pipe welds produced by the gas tungsten arc welding process was studied. Various regions of welded joints were characterized in detail for hardness and metallographic and tensile properties. Sub-size tensile samples were also tested to evaluate the mechanical properties of the weld metal and heat-affected zone (HAZ) with respect to PWHT. After PWHT, a homogenous microstructure was observed in the HAZ and tensile test fracture samples revealed shifting of the fracture location from the IC-HAZ to the fine-grained heat-affected zone. Before PWHT, the conventional V-grooved welded joints exhibited higher tensile strength compared to the narrow-grooved joints. However, after PWHT, both narrow- and V-grooved joints exhibited similar strength. Fractography of the samples indicates the presence of carbide precipitates such as Cr23C6, VC, and NbC on the fracture surface.

  10. Effect of Heat Treatment on Microstructure and Hot Impact Toughness of Various Zones of P91 Welded Pipes

    NASA Astrophysics Data System (ADS)

    Pandey, C.; Mahapatra, M. M.

    2016-06-01

    The new generation super critical thermal power plants are required to operate at enhanced thermal efficiency of over 50% to reduce the fuel consumption and environmental pollution. Creep strength-enhanced ferritic steels, commonly known as Cr-Mo alloys such as P91 (X10CrMoVNb 9-1) are such material of choice for the next generation power plants. The operating requirement of these next generation power plants is that steam temperature of around 650 °C is maintained. For such high-temperature application, creep strength of material is the primary consideration together with adequate weld heat-affected zone (HAZ) toughness. Present work deals with the effect of high service temperature on impact toughness of P91 (X10CrMoVNb 9-1) base material, weld fusion zone, and HAZ. The impact toughness of HAZ for conventional weld groove design and narrow weld groove design has been evaluated experimentally in as-welded and at different post-weld heat treatment conditions. Fractography of the impact toughness specimens of base metal, weld fusion zone, and HAZ was carried out using scanning electron microscope. The effects of heat treatment schemes on the percentage of element present at the fracture surface were also studied.

  11. Hot Ductility Behaviors in the Weld Heat-Affected Zone of Nitrogen-Alloyed Fe-18Cr-10Mn Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Moon, Joonoh; Lee, Tae-Ho; Hong, Hyun-Uk

    2015-04-01

    Hot ductility behaviors in the weld heat-affected zone (HAZ) of nitrogen-alloyed Fe-18Cr-10Mn austenitic stainless steels with different nitrogen contents were evaluated through hot tension tests using Gleeble simulator. The results of Gleeble simulations indicated that hot ductility in the HAZs deteriorated due to the formation of δ-ferrite and intergranular Cr2N particles. In addition, the amount of hot ductility degradation was strongly affected by the fraction of δ-ferrite.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yiyu; Kannan, Rangasayee; Li, Leijun, E-mail

    Non-equilibrium microstructure of the heat-affected zone (HAZ) in the as-welded modified 9Cr–1Mo–V–Nb pipe steel (P91) weldment deposited by gas tungsten arc welding (GTAW) and flux core arc welding (FCAW) has been characterized by field-emission scanning electron microscope (FESEM) and electron backscatter diffraction (EBSD). The heterogeneous structures in the sub-layers of the as-welded HAZ are attributable to phase transformations caused by the welding thermal cycles and the local structure variations in the as-received base metal. Coarse-grained heat-affected zone (CGHAZ) has a prior austenite grain (PAG) size of 20 μm. Fine uniformly-distributed precipitates and a higher fraction of MX carbonitrides are observedmore » in the CGHAZ. Fine-grained heat-affected zone (FGHAZ) consists of the finest grains (1.22 μm measured by EBSD, 5 μm PAG size), coarse undissolved M{sub 23}C{sub 6} carbides within the PAG boundaries and fine nucleated M{sub 23}C{sub 6} particles within the martensite laths. Inter-critical heat-affected zone (ICHAZ) consists of partially austenitized grains and over-tempered martensite laths. EBSD kernel average misorientation (KAM) map in the FGHAZ close to the ICHAZ illustrates the greatest local strain variations with a moderate normalized KAM value of 0.92°. The majority (88.1%) of the matrix grains in the CGHAZ are classified as deformed grains by EBSD grain average misorientation (GAM) evaluation. The FGHAZ close to the ICHAZ has the most recrystallized grains with an area fraction of 14.4%. The highest density variation of precipitates within grains in the FGHAZ originates from the inhomogeneous chemistry in the base metal. - Highlights: •A comprehensive characterization of the as-welded HAZ of P91 weldment is conducted. •Structural features in the each layer of the HAZ are quantified by EBSD. •Structural heterogenities in HAZ are due to welding cycle and base metal structure. •FGHAZ contains the finest grain structure and largest precipitate density variation.« less

  13. Evaluation of flow properties in the weldments of vanadium alloys using a novel indentation technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubbi, A.N.; Rowcliffe, A.F.; Lee, E.H.

    1996-10-01

    Automated Ball Indentation (ABI) testing, was successfully employed to determine the flow properties of the fusion zone, heat affected zone (HAZ), and base metal of the gas tungsten arc (GTA) and electron beam (EB) welds of the V-4Cr-4Ti (large heat no. 832665) and the V-5Cr-5Ti (heat 832394) alloys. ABI test results showed a clear distinction among the properties of the fusion zone, HAZ, and base metal in both GTA and EB welds of the two alloys. GTA and EB welds of both V-4Cr-4Ti and V-5Cr-5Ti alloys show strengthening of both the fusion zone and the HAZ (compared to base metal)more » with the fusion zone having higher strength than the HAZ. These data correlate well with the Brinell hardness. On the other hand, GTA welds of both alloys, after a post-weld heat treatment of 950{degrees}C for 2 h, show a recovery of the properties to base metal values with V-5Cr-5Ti showing a higher degree of recovery compared to V-4Cr-4Ti. These measurements correlate with the reported recovery of the Charpy impact properties.« less

  14. HAZ and Structural Defects Control in Key-Hole Welding of Titanium Using a Reptitively-Pulsed Nd: Yag Laser

    NASA Astrophysics Data System (ADS)

    Hamudi, Walid K.

    1996-12-01

    HAZ, porosity and cracks were investigated when welding 0.9 mm thick titanium sheets using a 10 J pulsed Nd: Yag laser. The effects of welding speed, joints fit-up, shielding gas, and laser parameters are presented. For optimum welding quality, 0.25 m/min scanning speed, 10 ℓ/min gas flow rate and 72 Watt average power were used. Welds of narrow heat affected zone (HAZ) with small level of porosity were obtained.

  15. Effects of heat input on mechanical properties of metal inert gas welded 1.6 mm thick galvanized steel sheet

    NASA Astrophysics Data System (ADS)

    Rafiqul, M. I.; Ishak, M.; Rahman, M. M.

    2012-09-01

    It is usually a lot easier and less expensive to galvanize steel before it is welded into useful products. Galvanizing afterwards is almost impossible. In this research work, Galvanized Steel was welded by using the ER 308L stainless steel filler material. This work was done to find out an alternative way of welding and investigate the effects of heat input on the mechanical properties of butt welded joints of Galvanized Steel. A 13.7 kW maximum capacity MIG welding machine was used to join 1.6 mm thick sheet of galvanized steel with V groove and no gap between mm. Heat inputs was gradually increased from 21.06 to 25.07 joules/mm in this study. The result shows almost macro defects free welding and with increasing heat input the ultimate tensile strength and welding efficiency decrease. The Vickers hardness also decreases at HAZ with increasing heat input and for each individual specimen; hardness was lowest in heat affected zone (HAZ), intermediate in base metal and maximum in welded zone. The fracture for all specimens was in the heat affected zone while testing in the universal testing machine.

  16. Effect of heat input on dissimilar welds of ultra high strength steel and duplex stainless steel: Microstructural and compositional analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasalloti, H., E-mail: hamed.tasalloti.kashani@stu

    The effect of heat input on the microstructure and compositional heterogeneity of welds of direct-quenched ultra high strength steel (Optim 960 QC) and duplex stainless steel (UNS S32205) was studied. The dissimilar welds were made using GMAW with a fully austenitic filler wire. In addition to grain coarsening in the heat affected zone (HAZ) of the ferritic side, it was found that an increase in heat input correlatively increased the proportional volume of bainitic to martensitic phases. Coarse ferritic grains were observed in the duplex HAZ. Higher heat input, however, had a beneficial effect on the nucleation of austenite inmore » the HAZ. Heat input had a regulatory effect on grain growth within the austenitic weld and more favorable equiaxed austenite was obtained with higher heat input. On the ferritic side of the welds, macrosegregation in the form of a martensitic intermediate zone was observed for all the cooling rates studied. However, on the duplex side, macrosegregation in the fusion boundary was only noticed with higher cooling rates. Microstructural observations and compositional analysis suggest that higher heat input could be beneficial for the structural integrity of the weld despite higher heat input increasing the extent of adverse coarse grains in the HAZ, especially on the ferritic side. - Highlights: •The effect of heat input on dissimilar welds of UHSS and DSS was studied. •Transmutation of the microstructure was discussed in detail. •The influence of heat input on compositional heterogeneity of welds was described. •Higher heat input enhanced bainitic transformation on the ferritic side. •Macrosegregation was affected by the amount of heat input on the DSS side.« less

  17. Microstructural Characterization of Thermomechanical and Heat-Affected Zones of an Inertia Friction Welded Astroloy

    NASA Astrophysics Data System (ADS)

    Oluwasegun, K. M.; Olawale, J. O.; Ige, O. O.; Shittu, M. D.; Adeleke, A. A.; Malomo, B. O.

    2014-08-01

    The behaviour of γ' phase to thermal and mechanical effects during rapid heating of Astroloy, a powder metallurgy nickel-based superalloy has been investigated. The thermo-mechanical-affected zone (TMAZ) and heat-affected zone (HAZ) microstructures of an inertia friction welded (IFW) Astroloy were simulated using a Gleeble thermo-mechanical simulation system. Detailed microstructural examination of the simulated TMAZ and HAZ and those present in actual IFW specimens showed that γ' particles persisted during rapid heating up to a temperature where the formation of liquid is thermodynamically favored and subsequently re-solidified eutectically. The result obtained showed that forging during the thermo-mechanical simulation significantly enhanced resistance to weld liquation cracking of the alloy. This is attributable to strain-induced rapid isothermal dissolution of the constitutional liquation products within 150 μm from the center of the forged sample. This was not observed in purely thermally simulated samples. The microstructure within the TMAZ of the as-welded alloy is similar to the microstructure in the forged Gleeble specimens.

  18. Twin-spot laser welding of advanced high-strength multiphase microstructure steel

    NASA Astrophysics Data System (ADS)

    Grajcar, Adam; Morawiec, Mateusz; Różański, Maciej; Stano, Sebastian

    2017-07-01

    The study addresses the results concerning the laser welding of TRIP (TRansformation Induced Plasticity) steel using a beam focused at two spots (also referred to as twin-spot laser welding). The analysis involved the effect of variable welding thermal cycles on the properties and microstructure of welded joints. The tests were performed using a linear energy of 0.048 and 0.060 kJ/mm and the laser beam power distribution of 50%:50%, 60%:40% and 70%:30%. The tests also involved welding performed using a linear energy of 0.150 kJ/mm and the laser beam power distribution of 70%:30%. In addition, the research included observations of the microstructure of the fusion zone, heat affected zone and the transition zone using light microscopy and scanning electron microscopy. The fusion zone was composed of blocky-lath martensite whereas the HAZ (heat-affected zone) was characterised by the lath microstructure containing martensite, bainite and retained austenite. The distribution of twin-spot laser beam power significantly affected the microstructure and hardness profiles of welded joints. The highest hardness (480-505 HV), regardless of welding variants used, was observed in the HAZ.

  19. Welding-Induced Microstructure Evolution of a Cu-Bearing High-Strength Blast-Resistant Steel

    NASA Astrophysics Data System (ADS)

    Caron, Jeremy L.; Babu, Sudarsanam Suresh; Lippold, John C.

    2011-12-01

    A new high strength, high toughness steel containing Cu for precipitation strengthening was recently developed for naval, blast-resistant structural applications. This steel, known as BlastAlloy160 (BA-160), is of nominal composition Fe-0.05C-3.65Cu-6.5Ni-1.84Cr-0.6Mo-0.1V (wt pct). The evident solidification substructure of an autogenous gas tungsten arc (GTA) weld suggested fcc austenite as the primary solidification phase. The heat-affected zone (HAZ) hardness ranged from a minimum of 353 HV in the coarse-grained HAZ (CGHAZ) to a maximum of 448 HV in the intercritical HAZ (ICHAZ). After postweld heat treatment (PWHT) of the spot weld, hardness increases were observed in the fusion zone (FZ), CGHAZ, and fine-grained HAZ (FGHAZ) regions. Phase transformation and metallographic analyses of simulated single-pass HAZ regions revealed lath martensite to be the only austenitic transformation product in the HAZ. Single-pass HAZ simulations revealed a similar hardness profile for low heat-input (LHI) and high heat-input (HHI) conditions, with higher hardness values being measured for the LHI samples. The measured hardness values were in good agreement with those from the GTA weld. Single-pass HAZ regions exhibited higher Charpy V-notch impact toughness than the BM at both test temperatures of 293 K and 223 K (20 °C and -50 °C). Hardness increases were observed for multipass HAZ simulations employing an initial CGHAZ simulation.

  20. Microstructural response to heat affected zone cracking of prewelding heat-treated Inconel 939 superalloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, M.A., E-mail: mgonzalez@comimsa.com.mx; Martinez, D.I., E-mail: dorairma@yahoo.com; Perez, A., E-mail: betinperez@hotmail.com

    2011-12-15

    The microstructural response to cracking in the heat-affected zone (HAZ) of a nickel-based IN 939 superalloy after prewelding heat treatments (PWHT) was investigated. The PWHT specimens showed two different microstructures: 1) spherical ordered {gamma} Prime precipitates (357-442 nm), with blocky MC and discreet M{sub 23}C{sub 6} carbides dispersed within the coarse dendrites and in the interdendritic regions; and 2) ordered {gamma} Prime precipitates in 'ogdoadically' diced cube shapes and coarse MC carbides within the dendrites and in the interdendritic regions. After being tungsten inert gas welded (TIG) applying low heat input, welding speed and using a more ductile filler alloy,more » specimens with microstructures consisting of spherical {gamma} Prime precipitate particles and dispersed discreet MC carbides along the grain boundaries, displayed a considerably improved weldability due to a strong reduction of the intergranular HAZ cracking associated with the liquation microfissuring phenomena. - Highlights: Black-Right-Pointing-Pointer Homogeneous microstructures of {gamma} Prime spheroids and discreet MC carbides of Ni base superalloys through preweld heat treatments. Black-Right-Pointing-Pointer {gamma} Prime spheroids and discreet MC carbides reduce the intergranular HAZ liquation and microfissuring of Nickel base superalloys. Black-Right-Pointing-Pointer Microstructure {gamma} Prime spheroids and discreet blocky type MC carbides, capable to relax the stress generated during weld cooling. Black-Right-Pointing-Pointer Low welding heat input welding speeds and ductile filler alloys reduce the HAZ cracking susceptibility.« less

  1. Effect of Heat-Affected Zone on Spot Weldability in Automotive Ultra High Strength Steel Sheet

    NASA Astrophysics Data System (ADS)

    Nagasaka, Akihiko; Naito, Junya; Chinzei, Shota; Hojo, Tomohiko; Horiguchi, Katsumi; Shimizu, Yuki; Furusawa, Takuro; Kitahara, Yu

    Effect of heat-affected zone (HAZ) on spot weldability in automotive hot stamping (HS) steel sheet was investigated for automotive applications. Tensile test was performed on a tensile testing machine at a crosshead speed of 3 mm/min, using spot welded test specimen (Parallel length: 60 mm, Width: 20 mm, Thickness: 1.4 mm, Tab: 20×20 mm). The spot welding test was carried out using spot welded test specimen with welding current (I) of 6.3 kA to 9.5 kA. Hardness was measured with the dynamic ultra micro Vickers hardness tester. In HS steel, has very high strength of 1 500 MPa, tensile strength (TS) and total elongation (TEl) of the spot welded test specimen of HS steel were lower than those of base metal test specimen. The spot welded test specimen broke in the weld. The Vickers hardnesses (HVs) of base metal and fusion zone of hot stamping steel were around HV500. In addition, the hardness of HAZ was under HV300. The difference of hardness between fusion zone and HAZ was around HV200. The hardness distribution acted as a notch. On the other hand, in dual phase (DP) steel, has low strength of 590 MPa, the TS of spot welded test specimen of DP steel was the same as the base metal test specimen because of the breaking of base metal. The TEl of the spot welded test specimen of DP steel was smaller than that of base metal test specimen. In the spot welded test specimen of DP steel, the hardness of base metal was around HV200 and the fusion zone was around HV500. The hardness distribution did not act as a notch. The difference in hardness between base metal and HAZ acted on a crack initiation at HAZ softening.

  2. Thermographic Assessment of the HAZ Properties and Structure of Thermomechanically Treated Steel

    NASA Astrophysics Data System (ADS)

    Górka, Jacek; Janicki, Damian; Fidali, Marek; Jamrozik, Wojciech

    2017-12-01

    Thermomechanically processed steels are materials of great mechanical properties connected with more than good weldability. This mixture makes them interesting for different types of industrial applications. When creating welded joints, a specified amount of heat is introduced into the welding area and a so called heat-affected zone (HAZ) is formed. The key issue is to reduce the width of the HAZ, because properties of the material in the HAZ are worse than in the base material. In the paper, thermographic measurements of HAZ temperatures were presented as a potential tool for quality assuring the welding process in terms of monitoring and control. The main issue solved was the precise temperature measurement in terms of varying emissivity during a welding thermal cycle. A model of emissivity changes was elaborated and successfully applied. Additionally, material in the HAZ was tested to reveal its properties and connect changes of those properties with heating parameters. The obtained results prove that correctly modeled emissivity allows measurement of temperature, which is a valuable tool for welding process monitoring.

  3. Improved simulation method of automotive spot weld failure with an account of the mechanical properties of spot welds

    NASA Astrophysics Data System (ADS)

    Wu, H.; Meng, X. M.; Fang, R.; Huang, Y. F.; Zhan, S.

    2017-12-01

    In this paper, the microstructure and mechanical properties of spot weld were studied, the hardness of nugget and heat affected zone (HAZ) were also tested by metallographic microscope and microhardness tester. The strength of the spot weld with the different parts' area has been characterized. According to the experiments result, CAE model of spot weld with HAZ structure was established, and simulation results of different lap-shear CAE models were analyzed. The results show that the spot weld model which contained the HAZ has good performance and more suitable for engineering application in spot weld simulation.

  4. Effects of aging treatment and heat input on the microstructures and mechanical properties of TIG-welded 6061-T6 alloy joints

    NASA Astrophysics Data System (ADS)

    Peng, Dong; Shen, Jun; Tang, Qin; Wu, Cui-ping; Zhou, Yan-bing

    2013-03-01

    Aging treatment and various heat input conditions were adopted to investigate the microstructural evolution and mechanical properties of TIG welded 6061-T6 alloy joints by microstructural observations, microhardness tests, and tensile tests. With an increase in heat input, the width of the heat-affected zone (HAZ) increases and grains in the fusion zone (FZ) coarsen. Moreover, the hardness of the HAZ decreases, whereas that of the FZ decreases initially and then increases with an increase in heat input. Low heat input results in the low ultimate tensile strength of the welded joints due to the presence of partial penetrations and pores in the welded joints. After a simple artificial aging treatment at 175°C for 8 h, the microstructure of the welded joints changes slightly. The mechanical properties of the welded joints enhance significantly after the aging process as few precipitates distribute in the welded seam.

  5. Microstructure and Mechanical Properties of Laser Welded Joints of DZ125L and IN718 Nickel Base Superalloys

    NASA Astrophysics Data System (ADS)

    Liang, Taosha; Wang, Lei; Liu, Yang; Song, Xiu

    2018-05-01

    The microstructure and mechanical properties of the laser welded joint of DZ125L and IN718 nickel base superalloys were investigated. The results show that the fusion zone (FZ) mainly consists of fine dendrite structure with fine γ', Laves phases and MC carbides inhomogeneously distributed. The high welding temperature induces the partial dissolution of γ' in the heat-affected zone (HAZ) of DZ125L and liquation of grain boundaries in both of the HAZs. After post-weld heat treatment (PWHT), fine γ″ and γ' phases precipitate in the FZ, IN718 HAZ and IN718 base metal (BM), and fine γ' precipitate in the γ channel of the HAZ and BM of DZ125L. With tensile testing, the joints after PWHT show higher strengths than that of the weaker DZ125L alloy. Plastic deformation mainly concentrates in the weaker DZ125L and the joint finally fails in the DZ125L BM.

  6. Method and apparatus for welding precipitation hardenable materials

    DOEpatents

    Murray, Jr., Holt; Harris, Ian D.; Ratka, John O.; Spiegelberg, William D.

    1994-01-01

    A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined.

  7. Method and apparatus for welding precipitation hardenable materials

    DOEpatents

    Murray, H. Jr.; Harris, I.D.; Ratka, J.O.; Spiegelberg, W.D.

    1994-06-28

    A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined. 5 figures.

  8. PWSCC Susceptibility in Heat Affected Zones of Alloy 600

    NASA Astrophysics Data System (ADS)

    Couvant, Thierry; Brossier, Thomas; Cossange, Christian

    The recent field experience and several experimental results have shown the possible deleterious effect of a heat affected zone (HAZ) induced by welding on the susceptibility to the stress corrosion cracking (SCC) of Alloy 600 of bottom penetrations exposed to primary water of PWRs. This work tried to quantify the increasing susceptibility to initiation and crack propagation in 600/182 HAZ. The rolled plate did not exhibit any susceptibility to SCC except for a cold work higher than 10% typically. By contrast, the weld metal was well known for its high susceptibility to SCC. Metallurgical and mechanical characterizations of the HAZ indicated a slight gradient of Vickers micro hardness close to the fusion line (up to few mm) and a lack of intergranular precipitates up to 500 µm from the fusion line. SCC tests clearly demonstrated that a non-susceptible plate may exhibit a significant susceptibility to SCC propagation in the HAZ. Results of initiation tests did not allow to observe any SCC in the base metal, due to the high susceptibility to SCC of the weld.

  9. Effect of electromagnetic interaction during fusion welding of AISI 2205 duplex stainless steel on the corrosion resistance

    NASA Astrophysics Data System (ADS)

    García-Rentería, M. A.; López-Morelos, V. H.; González-Sánchez, J.; García-Hernández, R.; Dzib-Pérez, L.; Curiel-López, F. F.

    2017-02-01

    The effect of electromagnetic interaction of low intensity (EMILI) applied during fusion welding of AISI 2205 duplex stainless steel on the resistance to localised corrosion in natural seawater was investigated. The heat affected zone (HAZ) of samples welded under EMILI showed a higher temperature for pitting initiation and lower dissolution under anodic polarisation in chloride containing solutions than samples welded without EMILI. The EMILI assisted welding process developed in the present work enhanced the resistance to localised corrosion due to a modification on the microstructural evolution in the HAZ and the fusion zone during the thermal cycle involved in fusion welding. The application of EMILI reduced the size of the HAZ, limited coarsening of the ferrite grains and promoted regeneration of austenite in this zone, inducing a homogeneous passive condition of the surface. EMILI can be applied during fusion welding of structural or functional components of diverse size manufactured with duplex stainless steel designed to withstand aggressive environments such as natural seawater or marine atmospheres.

  10. Corrosion Behavior of Metal Active Gas Welded Joints of a High-Strength Steel for Automotive Application

    NASA Astrophysics Data System (ADS)

    Garcia, Mainã Portella; Mantovani, Gerson Luiz; Vasant Kumar, R.; Antunes, Renato Altobelli

    2017-10-01

    In this work, the corrosion behavior of metal active gas-welded joints of a high-strength steel with tensile yield strength of 900 MPa was investigated. The welded joints were obtained using two different heat inputs. The corrosion behavior has been studied in a 3.5 wt.% NaCl aqueous solution using electrochemical impedance spectroscopy and potentiodynamic polarization tests. Optical microscopy images, scanning electron microscopy and transmission electron microscopy with energy-dispersive x-ray revealed different microstructural features in the heat-affected zone (HAZ) and the weld metal (WM). Before and after the corrosion process, the sample was evaluated by confocal laser scanning microscopy to measure the depth difference between HAZ and WM. The results showed that the heat input did not play an important role on corrosion behavior of HSLA steel. The anodic and cathodic areas of the welded joints could be associated with depth differences. The HAZ was found to be the anodic area, while the WM was cathodic with respect to the HAZ. The corrosion behavior was related to the amount and orientation nature of carbides in the HAZ. The microstructure of the HAZ consisted of martensite and bainite, whereas acicular ferrite was observed in the weld metal.

  11. An Atom-Probe Tomographic Study of Arc Welds in a Multi-Component High-Strength Low-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Hunter, Allen H.; Farren, Jeffrey D.; DuPont, John N.; Seidman, David N.

    2013-04-01

    An experimental plate steel with the composition Fe-1.39Cu-2.7Ni-0.58Al-0.48Mn-0.48Si-0.065Nb-0.05C (wt pct) or alternatively Fe-1.43Cu-2.61Ni-1.21Al-0.48Mn-0.98Si-0.039Nb-0.23C at. pct has been recently produced at Northwestern University for use in Naval hull and deck applications—it is designated NUCu-140. To understand the microstructural changes occurring in NUCu-140 steel after gas-metal arc welding (GMAW), a detailed study of the heat-affected and fusion zones was performed throughout the weld cross section using microhardness, metallographic, chemical, and atom-probe tomographic analyses. Local-electrode atom-probe (LEAP) tomography was employed to measure the morphology and compositions of Cu-rich precipitates from each region. The mean radius, number density, volume fraction, and compositions of the precipitates, as well as the interfacial concentration profiles, are measured. The Cu precipitates dissolve partially from the heat-affected zone (HAZ) thermal cycle, and freshly formed sub-nanometer radius Cu-rich precipitates nucleate in both the HAZ and fusion zone (FZ) during cooling; however, the precipitation of Cu during cooling in the HAZ and FZ is not sufficient to restore the lost strength. The precipitation in the FZ is reduced compared to the HAZ due to a mismatched Cu composition of the weld. Multi-pass welding is suggested to restore strength in the GMAW sample by promoting Cu precipitate nucleation and growth in the HAZ and FZ.

  12. Fusion welding of a modern borated stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robino, C.V.; Cieslak, M.J.

    1997-01-01

    Experiments designed to assess the fabrication and service weldability of 304B4A borated stainless steel were conducted. Welding procedures and parameters for manual gas tungsten arc (GTA) welding, autogenous electron beam (EB) welding and filler-added EB welding were developed and found to be similar to those for austenitic stainless steels. Following the procedure development, four test welds were produced and evaluated by microstructural analysis and Charpy impact testing. Further samples were used for determination of the postweld heat treatment (PWHT) response of the welds. The fusion zone structure of welds in this alloy consists of primary austenite dendrites with an interdendriticmore » eutectic-like austenite/boride constituent. Welds also show an appreciable partially molten zone that consists of the austenite/boride eutectic surrounding unmelted austenite islands. The microstructure of the EB welds was substantially finer than that of the GTA welds, and boride coarsening was not observed in the solid state heat-affected zone (HAZ) of either weld type. The impact toughness of as-welded samples was found to be relatively poor, averaging less than 10 J for both GTA and EB welds. For fusion zone notched GTA and EB samples and centerline notched EB samples, fracture generally occurred along the boundary between the partially molten and solid-state regions of the HAZ. The results of the PWHT study were very encouraging, with typical values of the impact energy for HAZ notched samples approaching 40 J, or twice the minimum code-acceptable value.« less

  13. Vanadium and columbium additions in pressure vessel steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, P.; Somers, B.R.; Pense, A.W.

    1994-09-01

    A statistically designed series of vanadium and columbium microalloyed C-Mn HSLA steels was used for an investigation of heat-affected zone (HAZ) toughness in post weld heat treated (PWHT) multi-pass welds. The vanadium additions were in the range 0.005 to 0.097 Wt.% and the columbium additions were in the range 0.004 to 0.06 Wt.% GMAW processes with welding heat inputs of 3kJ/mm and 5kJ/mm and post-weld heat treatments at 620 C for 2 10 hours were employed. A degradation of the HAZ toughness with additions of microalloy elements V and Cb in the as-welded and PWHT conditions was revealed. The 50more » Joule (37 ft-lb) transition temperature (TT50J) for HAZs in all weld conditions correlated with maximum HAZ hardness. Increases in HAZ hardness and TT50J caused by PWHT were observed. Hence PWHT in some situations may not beneficial for V/Cb microalloyed HLSA steels. The randomly distributed precipitation of V and Cb carbides (V, Cb)C, including dislocation precipitation and matrix precipitation with particle sizes of 5--15 nm, is the predominant alloy carbide precipitate morphology in these steels. The crack initiation sites in Charpy specimens of HAZs tested at the approximate transition temperature are shifted from the highest stress triaxiality, mid-specimen location to an off center higher hardness location. This is found to be characteristic of fracture in the multipass HAZ of the microalloyed steel.« less

  14. Welding processes for Inconel 718- A brief review

    NASA Astrophysics Data System (ADS)

    Tharappel, Jose Tom; Babu, Jalumedi

    2018-03-01

    Inconel 718 is being extensively used for high-temperature applications, rocket engines, gas turbines, etc. due to its ability to maintain high strength at temperatures range 450-700°C complimented by excellent oxidation and corrosion resistance and its outstanding weldability in either the age hardened or annealed condition. Though alloy 718 is reputed to possess good weldability in the context of their resistance to post weld heat treatment cracking, heat affected zone (HAZ) and weld metal cracking problems persist. This paper presents a brief review on welding processes for Inconel 718 and the weld defects, such as strain cracking during post weld heat treatment, solidification cracking, and liquation cracking. The effect of alloy chemistry, primary and secondary processing on the HAZ cracking susceptibility, influence of post/pre weld heat treatments on precipitation, segregation reactions, and effect of grain size etc. discussed and concluded with future scope for research.

  15. Nugget formation and its mechanism of resistance spot welded joints in DP600 dual-phase and DC54D ultralow carbon steel

    NASA Astrophysics Data System (ADS)

    Li, Ci; Yuan, Xinjian; Wu, Kanglong; Wang, Haodong; Hu, Zhan; Pan, Xueyu

    2017-05-01

    Resistance spot welded joints in different configurations of DP600 and DC54D were investigated to elucidate the nugget formation process and mechanical properties of the resultant joints. Results show that, when the welding time was less than 4 cycles, the fusion zone (FZ) was not formed, but the heat-affected zone (HAZ) occurred with a "butterfly" shape. In 4 cycles, the FZ in dissimilar sheets occurred with an "abnormal butterfly" shape because of nugget shift. When the welding time increased to 14 cycles, the FZ exhibited a "bread loaf" shape and the weld shifted to "dog bones." The nugget can be divided into three regions, namely, FZ, HAZ1, and HAZ2, and the FZ consisted of lath martensite. The micro hardness of DP600 FZ was lower than that of HAZ because of the dilution of DC54D. The failure mode of B changed from interfacial failure to plug failure during the nugget formation process. The tensile-shear load of sound weld is 6.375, 6.016, and 19.131 kN.

  16. Welding High Strength Modern Line Pipe Steel

    NASA Astrophysics Data System (ADS)

    Goodall, Graeme Robertson

    The effect of modern mechanized girth welding on high strength line pipe has been investigated. The single cycle grain coarsened heat affected zone in three grade 690 line pipe steels and a grade 550 steel has been simulated using a Gleeble thermo-mechanical simulator. The continuous cooling transformation diagrams applicable to the grain coarsened heat affected zone resulting from a range of heat inputs applicable to modern mechanized welding have been established by dilatometry and metallography. The coarse grained heat affected zone was found to transform to lath martensite, bainite, and granular bainite depending on the cooling rate. The impact toughness of the steels was measured using Charpy impact toughness and compared to the toughness of the grain coarsened heat affected zone corresponding to a welding thermal cycle. The ductile to brittle transition temperature was found to be lowest for the steel with the highest hardenability. The toughness resulting from three different thermal cycles including a novel interrupted intercritically reheated grain coarsened (NTR ICR GC HAZ) that can result from dual torch welding at fast travel speed and close torch spacing have been investigated. All of the thermally HAZ regions showed reduced toughness that was attributed to bainitic microstructure and large effective grain sizes. Continuous cooling transformation diagrams for five weld metal chemistries applicable to mechanized pulsed gas metal arc welding of modern high strength pipe steel (SMYS>550 MPa) have been constructed. Welds at heat inputs of 1.5 kJmm-1 and 0.5 kJmm-1 have been created for simulation and analysis. Dilatometric analysis was performed on weld metal specimens cut from single pass 1.5 kJmm-1 as deposited beads. The resulting microstructures were found to range from martensite to polygonal ferrite. There is excellent agreement between the simulated and as deposited weld metal regions. Toughness testing indicates improved energy absorption at -20 °C with increased cooling time.

  17. Tungsten Inert Gas and Friction Stir Welding Characteristics of 4-mm-Thick 2219-T87 Plates at Room Temperature and -196 °C

    NASA Astrophysics Data System (ADS)

    Lei, Xuefeng; Deng, Ying; Yin, Zhimin; Xu, Guofu

    2014-06-01

    2219-T87 aluminum alloy is widely used for fabricating liquid rocket propellant storage tank, due to its admirable cryogenic property. Welding is the dominant joining method in the manufacturing process of aerospace components. In this study, the tungsten inert gas welding and friction stir welding (FSW) characteristics of 4-mm-thick 2219-T87 alloy plate at room temperature (25 °C) and deep cryogenic temperature (-196 °C) were investigated by property measurements and microscopy methods. The studied 2219 base alloy exhibits a low strength plane anisotropy and excellent room temperature and cryogenic mechanical properties. The ultimate tensile strength values of TIG and FSW welding joints can reach 265 and 353 MPa at room temperature, and 342 and 438 MPa at -196 °C, respectively. The base metal consists of elongated deformed grains and many nano-scaled θ (Al2Cu) aging precipitates. Fusion zone and heat-affected zone (HAZ) of the TIG joint are characterized by coarsening dendritic grains and equiaxed recrystallized grains, respectively. The FSW-welded joint consists of the weld nugget zone, thermo-mechanically affected zone (TMAZ), and HAZ. In the weld nugget zone, a micro-scaled sub-grain structure is the main microstructure characteristic. The TMAZ and HAZ are both characterized by coarsened aging precipitates and elongated deformed grains. The excellent FSW welding properties are attributed to the preservation of the working structures and homogenous chemical compositions.

  18. Prediction of Microstructure in HAZ of Welds

    NASA Astrophysics Data System (ADS)

    Khurana, S. P.; Yancey, R.; Jung, G.

    2004-06-01

    A modeling technique for predicting microstructure in the heat-affected zone (HAZ) of the hypoeutectoid steels is presented. This technique aims at predicting the phase fractions of ferrite, pearlite, bainite and martensite present in the HAZ after the cool down of a weld. The austenite formation kinetics and austenite decomposition kinetics are calculated using the transient temperature profile. The thermal profile in the weld and the HAZ is calculated by finite-element analysis (FEA). Two kinds of austenite decomposition models are included. The final phase fractions are predicted with the help of a continuous cooling transformation (CCT) diagram of the material. In the calculation of phase fractions either the experimental CCT diagram or the mathematically calculated CCT diagram can be used.

  19. Softening Behavior of a New Al-Zn-Mg-Cu Alloy Due to TIG Welding

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Li, Xiaoyan; Nie, Zuoren; Huang, Hui; Sun, Jiantong

    2016-05-01

    A new Al-Zn-Mg-Cu alloy with T6 temper was welded by TIG welding, and the softening behavior of the joint was evaluated. Results show that the ultimate tensile strength of the joint is 436.2 ± 26.4 MPa which is about 64.5% of that of the base metal (BM). Fusion zone (FZ) is the weakest region even though its microhardness increases from 107.6 to 131.3 HV within 90 days after welding. Microhardness of the heat-affected zone (HAZ) adjacent to FZ increases from 125.2 to 162.3 HV within 90 days. However, a valley value of microhardness appears in the rest of the HAZ that increases from 112.1 to 128.1 HV within 90 days. The variation of grain size and precipitates is regarded as the main cause of softening in both FZ and HAZ. The grain size of FZ is about 33.9 μm, whereas 8.7 and 8.4 μm for HAZ and BM, respectively. A large number of η' phases distribute dispersively in BM, whereas precipitates in FZ identified as GPI zones are finer and fewer. Besides, precipitates in HAZ adjacent to FZ are also GPI zones. Precipitates in HAZ far away from FZ are coarser and fewer than those in BM and η phases begin to emerge.

  20. Investigation on microstructure and properties of narrow-gap laser welding on reduced activation ferritic/martensitic steel CLF-1 with a thickness of 35 mm

    NASA Astrophysics Data System (ADS)

    Wu, Shikai; Zhang, Jianchao; Yang, Jiaoxi; Lu, Junxia; Liao, Hongbin; Wang, Xiaoyu

    2018-05-01

    Reduced activation ferritic martensitic (RAFM) steel is chosen as a structural material for test blanket modules (TBMs) to be constructed in International Thermonuclear Experimental Reactor (ITER) and China Fusion Engineering Test Reactor (CFETR). Chinese specific RAFM steel named with CLF-1 has been developed for CFETR. In this paper, a narrow-gap groove laser multi-pass welding of CLF-1 steel with thickness of 35 mm is conduced by YLS-15000 fiber laser. Further, the microstructures of different regions in the weld joint were characterized, and tensile impact and micro-hardness tests were carried out for evaluating the mecharical properties. The results show that the butt weld joint of CLF-1 steel with a thickness of 35 mm was well-formed using the optimal narrow-gap laser filler wire welding and no obvious defects was found such as incomplete fusion cracks and pores. The microstructures of backing layer is dominated by lath martensites and the Heat-Affected Zone (HAZ) was mainly filled with two-phase hybrid structures of secondary-tempering sorbites and martensites. The filler layer is similar to the backing layer in microstructures. In tensile tests, the tensile samples from different parts of the joint all fractured at base metal (BM). The micro-hardness of weld metal (WM) was found to be higher than that of BM and the Heat-Affected Zone (HAZ) exhibited no obvious softening. After post weld heat treatment (PWHT), it can be observed that the fusion zone of the autogenous welding bead and the upper filling beads mainly consist of lath martensites which caused the lower impact absorbing energy. The HAZ mainly included two-phase hybrid structures of secondary-tempering sorbites and martensites and exhibited favorable impact toughness.

  1. Effect of long-term aging on microstructure and local behavior in the heat-affected zone of a Ni–Cr–Mo–V steel welded joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Ming-Liang, E-mail: mlzhu@ecust.edu.cn; Wang, De-Qiang; Xuan, Fu-Zhen

    2014-01-15

    Evolution of microstructure, micro-hardness and micro-tensile strength behavior was investigated in the heat-affected zone of a Ni–Cr–Mo–V steel welded joint after the artificial aging at 350 °C for 3000 h. After detailed characterization of microstructures in optical microscopy, scanning electron microscopy and transmission electron microscopy, it is revealed that the change of martensite–bainite constituent promotes more homogeneous microstructure distribution. The aging treatment facilitates redistribution of carbon and chromium elements along the welded joint, and the micro-hardness is increased slightly through the welds due to enrichment of carbon. The types of precipitates in the weldment mainly include M{sub 3}C, MC, M{submore » 2}C and M{sub 23}C{sub 6}. The carbides in base metal, weld metal and coarse-grained heat-affected zone are prone to change from ellipsoidal to platelet form whereas more uniform spherical carbides are observed in the fine-grained zone. Precipitation and coarsening of M{sub 23}C{sub 6} near the fusion line, and formation of MC and M{sub 2}C, are responsible for the tensile strength decrease and its smooth distribution in the aged heat-affected zone. This implies that the thermal aging can relieve strength mismatch in the weldments. - Highlights: • Microstructure homogeneity improved in HAZ after long-term aging. • Tensile strength decreased in HAZ due to precipitation and coarsening of M{sub 23}C{sub 6}. • Strength mismatch in NiCrMoV steel welds was relieved after aging at 350 °C × 3000 h.« less

  2. The influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes in seawater

    NASA Astrophysics Data System (ADS)

    Bai, Qiang; Zou, Yan; Kong, Xiangfeng; Gao, Yang; Dong, Sheng; Zhang, Wei

    2017-02-01

    The high strength low-alloy steels are welded by underwater wet welding with stainless steel electrodes. The micro-structural and electrochemical corrosion study of base metal (BM), weld zone (WZ) and heat affected zone (HAZ) are carried out to understand the influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes, methods used including, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM). The results indicate that the WZ acts as a cathode and there is no corrosion product on it throughout the immersion period in seawater. The HAZ and BM acts as anodes. The corrosion rates of the HAZ and BM change with the immersion time increasing. In the initial immersion period, the HAZ has the highest corrosion rate because it has a coarse tempered martensite structure and the BM exhibites a microstructure with very fine grains of ferrite and pearlite. After a period of immersion, the BM has the highest corrosion rate. The reason is that the corrosion product layer on the HAZ is dense and has a better protective property while that on the BM is loose and can not inhibit the diffusion of oxygen.

  3. Development of Chromium-Free Welding Consumables for Stainless Steels

    DTIC Science & Technology

    2009-02-01

    FINAL REPORT Development of Chromium -Free Welding Consumables for Stainless Steels SERDP Project WP-1415 FEBRUARY 2009 J.C. Lippold...NUMBER 4. TITLE AND SUBTITLE Development of Chromium -Free Welding Consumables for Stainless Steels 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Energy dispersive spectroscopy FGR Fume generation rate GMAW Gas metal arc welding GTAW Gas tungsten arc welding HAZ Heat affected zone LTE Long

  4. Microstructure, Tensile Properties and Work Hardening Behavior of GTA-Welded Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Ashrafi, H.; Shamanian, M.; Emadi, R.; Saeidi, N.

    2017-03-01

    In the present study, microstructure, tensile properties and work hardening behavior of a DP700 steel after gas tungsten arc welding were investigated. Formation of bainite in the fusion zone resulted in a hardness increase compared to that for the base metal (BM), whereas tempering of the pre-existing martensite in the subcritical heat-affected zone (HAZ) led to softening. The GTA-welded joint exhibited a continuous yielding behavior and a yield strength close to that for the BM, while its ultimate tensile strength and total elongation were lower than those for the BM owing to the formation of soft zone in the HAZ. A joint efficiency of about 81% was obtained for the GTA-welded joint, and it failed in the softened HAZ. Analysis of work hardening based on the Kocks-Mecking approach showed one stage of hardening behavior corresponding to the stage III for both the DP700 BM and welded sample. It was also revealed that the DP700 BM has larger values of work hardening exponent and magnitude of work hardening compared with the welded sample. Analysis of fractured surfaces showed that the dominant fracture mode for both the DP700 BM and welded joint was ductile.

  5. The structural significance of HAZ sigma phase formation in welded 25%Cr super duplex pipework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiesner, C.S.; Garwood, S.J.; Bowden, P.L.

    1993-12-31

    The welding of 25%Cr duplex stainless steel can lead to the formation of sigma phase in both weld metal and heat affected zone (HAZ) regions. It has generally been accepted that this can be avoided by the adoption of appropriate welding procedure controls, generally aimed at reducing heat input and promoting rapid cooling rates. However, experience during pipe spool fabrication for the Marathon East Brae Project has shown that it is extremely difficult to satisfy a welding specification requiring sigma free HAZs. This has proved a particular problem with thin wall pipe welds made in the 2G/5G or 6G fixedmore » positions, where the joint geometry reduces heat flow away from the weld and welding conditions tend to result in the use of higher heat inputs. This paper examines the effect of sigma phase on the fracture toughness of 25%Cr super duplex steel (UNS S32760). It is shown that the CTOD toughness at {minus}20 C decreases as soon as any sigma phase is present and continues to decrease with increasing sigma levels. The toughness of the sigmatized specimens produced by heat treatment was shown to be conservative compared to the toughness measured in the HAZ of 14.2mm and 7.1mm thick pipe weldments, made with welding parameters chosen to enhance HAZ sigma phase formation. Based on the CTOD versus percent sigma level relationship derived from the laboratory specimens, fracture assessment calculations of tolerable flaw sizes were performed. These demonstrated that under the severest design conditions, assuming the maximum flaw sizes which could remain undetected in the pipework, sigma levels up to 2.5% can be tolerated safely. The conservatism of the fracture assessments for predicting the performance of weldments was demonstrated by full scale tensile testing of 2 inch nominal bore x 2.77 mm wall thickness pipe butt welds containing through-thickness circumferential fatigue cracks located in the sigmatized HAZ.« less

  6. Microhardness Testing of Aluminum Alloy Welds

    NASA Technical Reports Server (NTRS)

    Bohanon, Catherine

    2009-01-01

    A weld is made when two pieces of metal are united or fused together using heat or pressure, and sometimes both. There are several different types of welds, each having their own unique properties and microstructure. Strength is a property normally used in deciding which kind of weld is suitable for a certain metal or joint. Depending on the weld process used and the heat required for that process, the weld and the heat-affected zone undergo microstructural changes resulting in stronger or weaker areas. The heat-affected zone (HAZ) is the region that has experienced enough heat to cause solid-state microstructural changes, but not enough to melt the material. This area is located between the parent material and the weld, with the grain structure growing as it progresses respectively. The optimal weld would have a short HAZ and a small fluctuation in strength from parent metal to weld. To determine the strength of the weld and decide whether it is suitable for the specific joint certain properties are looked at, among these are ultimate tensile strength, 0.2% offset yield strength and hardness. Ultimate tensile strength gives the maximum load the metal can stand while the offset yield strength gives the amount of stress the metal can take before it is 0.2% longer than it was originally. Both of these are good tests, but they both require breaking or deforming the sample in some way. Hardness testing, however, provides an objective evaluation of weld strengths, and also the difference or variation in strength across the weld and HAZ which is difficult to do with tensile testing. Hardness is the resistance to permanent or plastic deformation and can be taken at any desired point on the specimen. With hardness testing, it is possible to test from parent metal to weld and see the difference in strength as you progress from parent material to weld. Hardness around grain boundaries and flaws in the material will show how these affect the strength of the metal while still retaining the sample. This makes hardness testing a good test for identifying grain size and microstructure.

  7. Atom-Probe Tomographic Investigation of Austenite Stability and Carbide Precipitation in a TRIP-Assisted 10 Wt Pct Ni Steel and Its Weld Heat-Affected Zones

    NASA Astrophysics Data System (ADS)

    Jain, Divya; Seidman, David N.; Barrick, Erin J.; DuPont, John N.

    2018-04-01

    Newly developed low-carbon 10 wt pct Ni-Mo-Cr-V martensitic steels rely on the Ni-enriched, thermally stable austenite [formed via multistep intercritical Quench-Lamellarization-Tempering ( QLT)-treatment] for their superior mechanical properties, specifically ballistic resistance. Critical to the thermal stability of austenite is its composition, which can be severely affected in the weld heat-affected zones (HAZs) and thus needs investigations. This article represents the first study of the nanoscale redistributions of C, Ni, and Mn in single-pass HAZ microstructures of QLT-treated 10 wt pct Ni steels. Local compositions of Ni-rich regions (representative of austenite compositions) in the HAZs are determined using site-specific 3-D atom-probe tomography (APT). Martensite-start temperatures are then calculated for these compositions, employing the Ghosh-Olson thermodynamic and kinetics approach. These calculations predict that austenite (present at high temperatures) in the HAZs is susceptible to a martensitic transformation upon cooling to room temperature, unlike the austenite in the QLT-treated base-metal. While C in the QLT-treated base-metal is consumed primarily in MC and M2C-type carbide precipitates (M is Mo, Cr, V), its higher concentration in the Ni-rich regions in the HAZs indicates the dissolution of carbide precipitates, particularly M2C carbide precipitates. The role of M2C carbide precipitates and austenite stability is discussed in relation to the increase in microhardness values observed in the HAZs, relative to the QLT-treated base-metal. Insights gained from this research on austenite stability and carbide precipitation in the single-pass HAZ microstructures will assist in designing multiple weld cycles for these novel 10 wt pct Ni steels.

  8. The use of supercomputer modelling of high-temperature failure in pipe weldments to optimize weld and heat affected zone materials property selection

    NASA Astrophysics Data System (ADS)

    Wang, Z. P.; Hayhurst, D. R.

    1994-07-01

    The creep deformation and damage evolution in a pipe weldment has been modeled by using the finite-element continuum damage mechanics (CDM) method. The finite-element CDM computer program DAMAGE XX has been adapted to run with increased speed on a Cray XMP/416 supercomputer. Run times are sufficiently short (20 min) to permit many parametric studies to be carried out on vessel lifetimes for different weld and heat affected zone (HAZ) materials. Finite-element mesh sensitivity was studied first in order to select a mesh capable of correctly predicting experimentally observed results using at least possible computer time. A study was then made of the effect on the lifetime of a butt welded vessel of each of the commomly measured material parameters for the weld and HAZ materials. Forty different ferritic steel welded vessels were analyzed for a constant internal pressure of 45.5 MPa at a temperature of 565 C; each vessel having the same parent pipe material but different weld and HAZ materials. A lifetime improvement has been demonstrated of 30% over that obtained for the initial materials property data. A methodology for weldment design has been established which uses supercomputer-based CDM analysis techniques; it is quick to use, provides accurate results, and is a viable design tool.

  9. Heat-affected zone and phase composition of 0.09 C-2 Mn-1 Si-Fe steel depending on welding technique

    NASA Astrophysics Data System (ADS)

    Popova, Natalya; Ozhiganov, Eugeniy; Nikonenko, Elena; Ababkov, Nikolay; Smirnov, Aleksander; Koneva, Nina

    2017-11-01

    The paper presents the transmission electron microscopy (TEM) investigations of the structure and phase composition of the heat-affected zone (HAZ) in welded joint modified by four types of welding, namely: electrode welding and electropercussive welding both with and without the introduction of artificial flaws. Artificial flows are aluminum pieces. TEM investigations are carried out within HAZ between the deposited and base metal at 1 mm distance to the latter. The type 0.09C-2Mn-1Si-Fe steel is used as weld material. It is shown that the welding process has an effect on the material morphology, phase composition, faulted structure and its parameters. Long-range stresses are divided into plastic and elastic components. It is demonstrated that the type of welding does not change the structural quality of welded joint represented by perlite and ferrite as contrasted with their volume fraction. According to observations, any type of welding with the introduction of artificial flaws results in the destruction of perlite. Polarization of the dislocation structure occurs. The amplitude of mean internal stresses does not practically depend on the welding type. It is shown that the introduction of artificial flaws both during electrode and electropercussive welding reduce the quantitative parameters of the faulted structure.

  10. Microstructural Response of Directionally Solidified René 80 Superalloy to Gas-Tungsten Arc Welding

    NASA Astrophysics Data System (ADS)

    Sidhu, R. K.; Ojo, O. A.; Chaturvedi, M. C.

    2009-01-01

    The microstructural response of directionally solidified René 80 (DS René 80) superalloy to gas-tungsten-arc (GTA) welding was investigated. Rapid heating during welding resulted in a significant grain-boundary liquation of solid-state reaction product γ' precipitates, intergranular elemental segregation induced M5B3 borides, and secondary solidification constituents MC carbides and sulfocarbides, which were all present in the preweld heat-treated alloy. Liquation of these particles embrittled the grain boundaries in the heat-affected zone (HAZ) and caused microfissuring along the liquated grain boundaries. Nevertheless, contrary to the generally observed increase in HAZ cracking in superalloys with an increase in Ti and Al concentration, due to increase in the alloy’s hardness, significantly reduced cracking was observed in DS René 80 compared to the conventionally cast IN738 welded under the same conditions, despite its hardness being higher than that of IN738. This was related to the nature of base-metal grain- boundary intersections at the fusion-zone boundary in these materials.

  11. Microstructural and Mechanical Properties of Welded High Strength Steel Plate Using SMAW and SAW Method for LPG Storage Tanks

    NASA Astrophysics Data System (ADS)

    Winarto, Winarto; Riastuti, Rini; Kumeidi, Nur

    2018-03-01

    Indonesian government policy to convert energy consumption for domestic household from kerosene to liquefied petroleum gas (LPG) may lead to the increasing demand for LPG storage tank. LPG storage tank with a large capacity generally used the HSLA steel material of ASTM A516 Grade 70 joined by SMAW or combination between SMAW and SAW method. The heat input can affect the microstructure and mechanical properties of the weld area. The input heat is proportional to the welding current and the arc voltage, but inversely proportional to its welding speed. The result shows that the combination of SMAW-SAW process yield the lower hardness in the HAZ and the fusion zone compared to the singe SMAW process. PWHT mainly applied to reduce residual stress of welded joint. The result shows that PWHT can reduce the hardness in the HAZ and the fusion zone in comparing with the singe SMAW process. The microstructure of weld joint shows a coarser structure in the combined welding process (SMAW-SAW) comparing with the single welding process (SMAW).

  12. Evaluation of AISI 4140 Steel Repair Without Post-Weld Heat Treatment

    NASA Astrophysics Data System (ADS)

    Silva, Cleiton C.; de Albuquerque, Victor H. C.; Moura, Cícero R. O.; Aguiar, Willys M.; Farias, Jesualdo P.

    2009-04-01

    The present work evaluates the two-layer technique on the heat affected zone (HAZ) of AISI 4140 steel welded with different heat input levels between the first and second layer. The weld heat input levels selected by the Higuchi test were 5/5, 5/10, and 15/5 kJ/cm. The evaluation of the refining and/or tempering of the coarsened grain HAZ of the first layer was carried out using metallographic tests, microhardness measurements, and the Charpy-V impact test. The tempering of the first layer was only reached when the weld heat input ratio was 5/5 kJ/cm. The results of the Charpy-V impact test showed that the two-layer technique was efficient, from the point of view of toughness, since the toughness values reached were greater than the base metal for all weld heat input ratios applied. The results obtained indicate that the best performance of the two-layer deposition technique was for the weld heat input ratio 5/5 kJ/cm employing low heat input.

  13. Intelligent Modeling Combining Adaptive Neuro Fuzzy Inference System and Genetic Algorithm for Optimizing Welding Process Parameters

    NASA Astrophysics Data System (ADS)

    Gowtham, K. N.; Vasudevan, M.; Maduraimuthu, V.; Jayakumar, T.

    2011-04-01

    Modified 9Cr-1Mo ferritic steel is used as a structural material for steam generator components of power plants. Generally, tungsten inert gas (TIG) welding is preferred for welding of these steels in which the depth of penetration achievable during autogenous welding is limited. Therefore, activated flux TIG (A-TIG) welding, a novel welding technique, has been developed in-house to increase the depth of penetration. In modified 9Cr-1Mo steel joints produced by the A-TIG welding process, weld bead width, depth of penetration, and heat-affected zone (HAZ) width play an important role in determining the mechanical properties as well as the performance of the weld joints during service. To obtain the desired weld bead geometry and HAZ width, it becomes important to set the welding process parameters. In this work, adaptative neuro fuzzy inference system is used to develop independent models correlating the welding process parameters like current, voltage, and torch speed with weld bead shape parameters like depth of penetration, bead width, and HAZ width. Then a genetic algorithm is employed to determine the optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width.

  14. The relationship between corrosion protection and hydrogen embrittlement properties of HAZ in flux cored are welding

    NASA Astrophysics Data System (ADS)

    Kim, Seong-Jong; Moon, Kyung-Man

    2002-07-01

    The cathodic protection method is being widely used in marine structural steel. However, a high tensile steel such as RE 36 steel used for marine structural steel is easily susceptible to hydrogen embrittlement due to overprotection as well as the preferential corrosion of the heat affected zone (HAZ). In this paper, corrosion resistance and mechanical properties were investigated from the electrochemical view and mechanical view in as-wedded and post-weld heat treated specimens. Fracture surface was analyzed by SEM. The corrosion resistance in post-weld heat treated at 550°C was superior to that at other post-weld heat treatment (PWHT) temperature. On the other hand, elongation was decreased with a shift to the low potential direction which may cause hydrogen embrittlement. And a quasi-cleavage (Q.C) fracture mode was also observed significantly with a potential increase to the active direction.

  15. Isothermal Calorimetric Observations of the Affect of Welding on Compatibility of Stainless Steels with High-Test Hydrogen Peroxide Propellant

    NASA Technical Reports Server (NTRS)

    Gostowski, Rudy C.

    2002-01-01

    Compatibility is determined by the surface area, the chemical constituency and the surface finish of a material. In this investigation exposed area is obviously not a factor as the welded samples had a slightly smaller surface than the unwelded, but were more reactive. The chemical makeup of welded CRES 316L and welded CRES 304L have been observed in the literature to change from the parent material as chromium and iron are segregated in zones. In particular, the ratio of chromium to iron in CRES 316L increased from 0.260 to 0.79 in the heat affected zone (HAZ) of the weld and to 1.52 in the weld bead itself. In CRES 304L the ratio of chromium to iron increased from 0.280 to 0.44 in the HAZ and to 0.33 in the weld bead. It is possible that the increased reactivity of the welded samples and of those welded without purge gas is due to this segregation phenomenon. Likewise the reactivity increased in keeping with the greater roughness of the welded and welded without purge gas samples. Therefore enhanced roughness may also be responsible for the increased reactivity.

  16. STRESS CORROSION CRACK GROWTH RESPONSE FOR ALLOY 152/52 DISSIMILAR METAL WELDS IN PWR PRIMARY WATER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toloczko, Mychailo B.; Olszta, Matthew J.; Overman, Nicole R.

    2015-08-15

    As part of ongoing research into primary water stress corrosion cracking (PWSCC) susceptibility of alloy 690 and its welds, SCC tests have been conducted on alloy 152/52 dissimilar metal (DM) welds with cracks positioned with the goal to assess weld dilution and fusion line effects on SCC susceptibility. No increased crack growth rate was found when evaluating a 20% Cr dilution zone in alloy 152M joined to carbon steel (CS) that had not undergone a post-weld heat treatment (PWHT). However, high SCC crack growth rates were observed when the crack reached the fusion line of that material where it propagatedmore » both on the fusion line and in the heat affected zone (HAZ) of the carbon steel. Crack surface and crack profile examinations of the specimen revealed that cracking in the weld region was transgranular (TG) with weld grain boundaries not aligned with the geometric crack growth plane of the specimen. The application of a typical pressure vessel PWHT on a second set of alloy 152/52 – carbon steel DM weld specimens was found to eliminate the high SCC susceptibility in the fusion line and carbon steel HAZ regions. PWSCC tests were also performed on alloy 152-304SS DM weld specimens. Constant K crack growth rates did not exceed 5x10-9 mm/s in this material with post-test examinations revealing cracking primarily on the fusion line and slightly into the 304SS HAZ.« less

  17. Mechanical Properties and Microstructural Evolution of Welded Eglin Steel

    NASA Astrophysics Data System (ADS)

    Leister, Brett M.

    Eglin steel is a new ultra-high strength steel that has been developed at Eglin Air Force Base in the early 2000s. This steel could be subjected to a variety of processing steps during fabrication, each with its own thermal history. This article presents a continuous cooling transformation diagram developed for Eglin steel to be used as a guideline during processing. Dilatometry techniques performed on a Gleeble thermo-mechanical simulator were combined with microhardness results and microstructural characterization to develop the diagram. The results show that four distinct microstructures form within Eglin steel depending on the cooling rate. At cooling rates above about 1 °C/s, a predominately martensitic microstructure is formed with hardness of ˜520 HV. Intermediate cooling rates of 1 °C/s to 0.2 °C/s produce a mixed martensitic/bainitic microstructure with a hardness that ranges from 520 - 420 HV. Slower cooling rates of 0.1 °C/s to 0.03 °C/s lead to the formation of a bainitic microstructure with a hardness of ˜420 HV. The slowest cooling rate of 0.01 °C/s formed a bainitic microstructure with pearlite at the prior austenite grain boundaries. A comprehensive study was performed to correlate the mechanical properties and the microstructural evolution in the heat affected zone of thermally simulated Eglin steel. A Gleeble 3500 thermo-mechanical simulator was used to resistively heat samples of wrought Eglin steel according to calculated thermal cycles with different peak temperatures at a heat input of 1500 J/mm. These samples underwent mechanical testing to determine strength and toughness, in both the `as-simulated' condition and also following post-weld heat treatments. Mechanical testing has shown that the inter-critical heat affected zone (HAZ) has the lowest strength following thermal simulation, and the fine-grain and coarse-grain heat affected zone having an increased strength when compared to the inter-critical HAZ. The toughness of the heat affected zone in the as-simulated condition is lower than that of the base metal. Post-weld heat treatments (PWHT) have been shown to increase the toughness of the HAZ, but at the expense of strength. In addition, certain combinations of PWHTs within specific HAZ regions have exhibited low toughness caused by tempered martensite embrittlement or intergranular failure. Synchrotron X-ray diffraction data has shown that Eglin steel has retained austenite in the fine-grain HAZ in the as-simulated condition. In addition, alloy carbides (M23C 6, M2C, M7C3) have been observed in the diffraction spectra for the fine-grain and coarse-grain HAZ following a PWHT of 700 °C / 4 hours. A first attempt at thermodynamic modeling has been undertaken using MatCalc to try to predict the evolution of carbides in the HAZ following thermal cycling and PWHT.

  18. Local mechanical properties of Alloy 82/182 dissimilar weld joint between SA508 Gr.1a and F316 SS at RT and 320 °C

    NASA Astrophysics Data System (ADS)

    Kim, Jin Weon; Lee, Kyoungsoo; Kim, Jong Sung; Byun, Thak Sang

    2009-02-01

    The distributions of mechanical and microstructural properties were investigated for the dissimilar metal weld joints between SA508 Gr.1a ferritic steel and F316 austenitic stainless steel with Alloy 82/182 filler metal using small-size tensile specimens. The material properties varied significantly in different zones while those were relatively uniform within each material. In particular, significant gradient of the mechanical properties were observed near the both heat-affected zones (HAZs) of F316 SS and SA508 Gr.1a. Thus, the yield stress (YS) was under-matched with respect to the both HAZs, although, the YS of the weld metal was over-matched with respect to both base metals. The minimum ductility occurred in the HAZ of SA508 Gr.1a at both test temperatures. The plastic instability stress also varied considerably across the weld joints, with minimum values occurring in the SA508 Gr.1a base metal at RT and in the HAZ of F316 SS at 320 °C. The transmission electron micrographs showed that the strengthening in the HAZ of F316 SS was attributed to the strain hardening, induced by a strain mismatch between the weldment and the base metal, which was evidenced by high dislocation density in the HAZ of F316 SS.

  19. Butt Welding of 2205/X65 Bimetallic Sheet and Study on the Inhomogeneity of the Properties of the Welded Joint

    NASA Astrophysics Data System (ADS)

    Gou, Ning-Nian; Zhang, Jian-Xun; Wang, Jian-Long; Bi, Zong-Yue

    2017-04-01

    The explosively welded 2205 duplex stainless steel/X65 pipe steel bimetallic sheets were butt jointed by multilayer and multi-pass welding (gas tungsten arc welding for the flyer and gas metal arc welding for the transition and parent layers of the bimetallic sheets). The microstructure and mechanical properties of the welded joint were investigated. The results showed that in the thickness direction, microstructure and mechanical properties of the welded joint exhibited obvious inhomogeneity. The microstructures of parent filler layers consisted of acicular ferrite, widmanstatten ferrite, and a small amount of blocky ferrite. The microstructure of the transition layer and flyer layer consisted of both austenite and ferrite structures; however, the transition layer of weld had a higher volume fraction of austenite. The results of the microhardness test showed that in both weld metal (WM) and heat-affected zone (HAZ) of the parent filler layers, the average hardness decreased with the increasing (from parent filler layer 1 to parent filler layer 3) welding heat input. The results of hardness test also indicated that the hardness of the WM and the HAZ for the flyer and transition layers was equivalent. The tensile test combined with Digital Specklegram Processing Technology demonstrated that the fracturing of the welded joint started at the HAZ of the flyer, and then the fracture grew toward the base metal of the parent flyer near the parent HAZ. The stratified impact test at -5 °C showed that the WM and HAZ of the flyer exhibited lower impact toughness, and the fracture mode was ductile and brittle mixed fracture.

  20. Experimental Characterization of Electron Beam Welded SAE 5137H Thick Steel Plate

    NASA Astrophysics Data System (ADS)

    Kattire, Prakash; Bhawar, Valmik; Thakare, Sandeep; Patil, Sachin; Mane, Santosh; Singh, Rajkumar, Dr.

    2017-09-01

    Electron beam welding is known for its narrow weld zone with high depth to width ratio, less heat affected zone, less distortion and contamination. Electron beam welding is fusion welding process, where high velocity electrons impinge on material joint to be welded and kinetic energy of this electron is transformed into heat upon impact to fuse the material. In the present work electron beam welding of 60 mm thick SAE 5137H steel is studied. Mechanical and metallurgical properties of electron beam welded joint of SAE 5137H were evaluated. Mechanical properties are analysed by tensile, impact and hardness test. Metallurgical properties are investigated through optical and scanning electron microscope. The hardness traverse across weld zone shows HV 370-380, about 18% increase in the tensile strength and very low toughness of weld joint compared to parent metal. Microstructural observation shows equiaxed dendrite in the fusion zone and partial grain refinement was found in the HAZ.

  1. Microstructural dependence of Barkhausen noise and magnetic relaxation in the weld HAZ of an RPV steel

    NASA Astrophysics Data System (ADS)

    Park, Duck-Gun; Kim, Cheol Gi; Hong, Jun-Hwa

    2000-06-01

    Magnetic Barkhausen noise and permeability spectra have been measured to characterize different microstructure regions such as coarse-grain region, fine-grain region, intercritical structure (composed of tempered martensite and bainite) within the heat-affected zone (HAZ) of SA508-3 steel weldments using simulated HAZ microstructure sample. The intercritical region and coarse-grained region can be distinguished from the BNE and relaxation frequency. The BNE was decreased in the martensite regions and increased in the bainite regions by the post-weld heat treatment (PWHT). The change of relaxation frequency also showed similar trends, but the rate of change was less than that of BNE. The behavior of BNE and permeability spectra on the corresponding microstructure can be explained in terms of carbide morphology and residual stress related with domain wall motion.

  2. HP9-4-.30 weld properties and microstructure

    NASA Technical Reports Server (NTRS)

    Watt, George W.

    1991-01-01

    HP9-4-.30, ultra high strength steel, the case material for the Advanced Solid Rocket Motor (ASRM), must exhibit acceptable strength, ductility, toughness, and stress corrosion cracking (SCC) resistance after welding and a local post weld heat treatment (PWHT). Testing, to date, shows that the base metal (BM) properties are more than adequate for the anticipated launch loads. Tensile tests of test specimens taken transverse to the weld show that the weld metal overmatches the BM even in the PWHT condition. However, that is still some question about the toughness and SCC resistance of the weld metal in the as welded and post weld heat treated condition. To help clarify the as welded and post weld heat treated mechanical behavior of the alloy, subsize tensile specimens from the BM, the fusion zone (FZ) with and without PWHT, and the heat affected zone (HAZ) with and without PWHT were tested to failure and the fracture surfaces subsequently examined with a scanning electron microscope. Results are given and briefly discussed.

  3. Evaluation of Heat-affected Zone Hydrogen-induced Cracking in High-strength Steels

    NASA Astrophysics Data System (ADS)

    Yue, Xin

    Shipbuilding is heavily reliant on welding as a primary fabrication technique. Any high performance naval steel must also possess good weldability. It is therefore of great practical importance to conduct weldability testing of naval steels. Among various weldability issues of high-strength steels, hydrogen-induced cracking (HIC) in the heat-affected zone (HAZ) following welding is one of the biggest concerns. As a result, in the present work, research was conducted to study the HAZ HIC susceptibility of several naval steels. Since the coarse-grained heat-affected zone (CGHAZ) is generally known to be the most susceptible to HIC in the HAZ region, the continuous cooling transformation (CCT) behavior of the CGHAZ of naval steels HSLA-65, HSLA-100, and HY-100 was investigated. The CGHAZ microstructure over a range of cooling rates was characterized, and corresponding CCT diagrams were constructed. It was found that depending on the cooling rate, martensite, bainite, ferrite and pearlite can form in the CGHAZ of HSLA-65. For HSLA-100 and HY-100, only martensite and bainite formed over the range of cooling rates that were simulated. The constructed CCT diagrams can be used as a reference to select welding parameters to avoid the formation of high-hardness martensite in the CGHAZ, in order to ensure resistance to hydrogen-induced cracking. Implant testing was conducted on the naval steels to evaluate their susceptibility to HAZ HIC. Stress vs. time to failure curves were plotted, and the lower critical stress (LCS), normalized critical stress ratio (NCSR) and embrittlement index (EI) for each steel were determined, which were used to quantitatively compare HIC susceptibility. The CGHAZ microstructure of the naval steels was characterized, and the HIC fracture behavior was studied. Intergranular (IG), quasi-cleavage (QC) and microvoid coalescence (MVC) fracture modes were found to occur in sequence during the crack initiation and propagation process. This was rationalized using Beachem's model. Based on the implant test results, it can be concluded that with respect to HAZ HIC susceptibility, the four steels from the most susceptible to the least, are HY-100, BA-160, HSLA-100 and HSLA-65. Increasing diffusible hydrogen content showed that HSLA-100 has better tolerance to the increase in hydrogen levels than BA-160 and HY-100, with HY-100 exhibiting the least tolerance to hydrogen increase in weld joint. For the BA-160 steel, the effect of welding parameters on HAZ HIC susceptibility was investigated. It was shown that both increasing heat input and using preheat can improve the HAZ HIC resistance of BA-160. It was also found that using a PWHT at 650°C for 1 hour to reduce HIC susceptibility of BA-160 steel is also beneficial for the strength recovery in the softened as-welded CGHAZ. This is attributed to the re-precipitation of strengthening phases during the PWHT process that are dissolved in the CGHAZ during heating to the high temperature and do not re-precipitate completely during cooling.

  4. Microstructure, Composition, and Impact Toughness Across the Fusion Line of High-Strength Bainitic Steel Weldments

    NASA Astrophysics Data System (ADS)

    Lan, Liangyun; Kong, Xiangwei; Chang, Zhiyuan; Qiu, Chunlin; Zhao, Dewen

    2017-09-01

    This paper analyzed the evolution of microstructure, composition, and impact toughness across the fusion line of high-strength bainitic steel weldments with different heat inputs. The main purpose was to develop a convenient method to evaluate the HAZ toughness quickly. The compositions of HAZ were insensitive to higher contents of alloy elements ( e.g., Ni, Mo) in the weld metal because their diffusion distance is very short into the HAZ. The weld metal contained predominantly acicular ferrite at any a heat input, whereas the main microstructures in the HAZ changed from lath martensite/bainite to upper bainite with the increasing heat input. The evolution of HAZ toughness in relation to microstructural changes can be revealed clearly combined with the impact load curve and fracture morphology, although the results of impact tests do not show an obvious change with heat input because the position of Charpy V notch contains the weld metal, HAZ as well as a part of base metal. As a result, based on the bead-on-plate welding tests, the welding parameter affecting the HAZ toughness can be evaluated rapidly.

  5. Development of High Heat Input Welding Offshore Steel as Normalized Condition

    NASA Astrophysics Data System (ADS)

    Deng, Wei; Qin, Xiaomei

    The heavy plate used for offshore structure is one of the important strategic products. In recent years, there is an increasing demand for heavy shipbuilding steel plate with excellent weldability in high heat input welding. During the thermal cycle, the microstructure of the heat affected zone (HAZ) of plates was damaged, and this markedly reduced toughness of HAZ. So, how to improve the toughness of HAZ has been a key subject in the fields of steel research. Oxide metallurgy is considered as an effective way to improve toughness of HAZ, because it could be used to retard grain growth by fine particles, which are stable at the high temperature.The high strength steel plate, which satisfies the low temperature specification, has been applied to offshore structure. Excellent properties of the plates and welded joints were obtained by oxide metallurgy technology, latest controlled rolling and accelerated cooling technology using Ultra-Fast Cooling (an on-line accelerated cooling system). The 355MPa-grade high strength steel plates with normalizing condition were obtained, and the steels have excellent weldability with heat input energy of 79 287kJ/cm, and the nil ductility transition (NDT) temperature was -70°C, which can satisfy the construction of offshore structure in cold regions.

  6. Local mechanical properties of Alloy 82/182 dissimilar weld joint between SA508 Gr.1a and F316 SS at RT and 320C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byun, Thak Sang; Kim, Jin Weon

    2009-01-01

    This paper presents the variations of local mechanical and microstructural properties in dissimilar metal weld joints consisting of the SA508 Gr.1a ferritic steel, Alloy 82/182 filler metal, and F316 austenitic stainless steel. Flat or round tensile specimens and transmission electron microscopy disks were taken from the base metals, welds, and heat-affected zones (HAZ) of the joints and tested at room temperature (RT) and/or at 320 C. The tensile test results indicated that the mechanical property was relatively uniform within each material zone, but varied considerably between different zones. Further, significant variations were observed both in the austenitic HAZ of F316more » SS and in the ferritic HAZ of SA508 Gr.1a. The yield stress (YS) of the weld metal was under-matched with respect to the HAZs of SA508 Gr.1a and F316 SS by 0.78 to 0.92, although the YS was over-matched with respect to both base metals. The minimum ductility occurred in the HAZ of SA508 Gr.1 at both test temperatures. The plastic instability stress also varied considerably in the weld joints, with minimum values occurring in the SA508 Gr.1a base metal at RT and in the HAZ of F316 SS at 320 C, suggesting that the probability of ductile failure caused by a unstable deformation at the Alloy 82/182 buttering layer is low. Within the HAZ of SA508 Gr.1a, the gradient of the YS and ultimate tensile strength (UTS) was significant, primarily because of the different microstructures produced by the phase transformation during the welding process. The increment of YS was unexpectedly high in the HAZ of F316 SS, which was explained by the strain hardening induced by a strain mismatch between the weldment and the base metal. This was confirmed by the transmission electron micrographs showing high dislocation density in the HAZ.« less

  7. Comparing Reactivation Behavior of TIG and Laser Beam Welded Alloy 690

    NASA Astrophysics Data System (ADS)

    Abraham, Geogy J.; Bhambroo, Rajan; Kain, V.; Dey, G. K.; Raja, V. S.

    2013-02-01

    The nickel base Alloy 690 was subjected to simulated autogenous welding treatment employing two different techniques, laser beam welding (LBW) and tungsten inert gas (TIG) welding. The resultant weld fusion zone (WFZ) and heat-affected zone (HAZ) were compared by studying the reactivation behavior. The chromium depletion effect was assessed by measuring the degree of sensitization (DOS) from the electrochemical potentiodynamic reactivation (EPR) test. A double-loop EPR test for Alloy 690 was employed to measure the DOS at different regions of weldments by masking the remaining regions. The results clearly demonstrated that Alloy 690 showed no sensitization in the parent material and the WFZ region of both TIG and laser weldments. However, it exhibited reactivation in the HAZ region of both the weldments. The DOS values measured for Alloy 690 were very low for all the regions of the LBW weldment as compared to that in the TIG weldment. The HAZ region of the LBW weldment showed the highest DOS value in any region of the weldment but even this value was quite low indicating absence of sensitization in LBW weldment. The attack along the grain boundaries for the weldments after EPR experiments were studied using optical and scanning electron microscopy.

  8. High-Speed Friction Stir Welding of AA7075-T6 Sheet: Microstructure, Mechanical Properties, Micro-texture, and Thermal History

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyi; Upadhyay, Piyush; Hovanski, Yuri; Field, David P.

    2018-01-01

    Friction stir welding (FSW) is a cost-effective and high-quality joining process for aluminum alloys (especially heat-treatable alloys) that is historically operated at lower joining speeds (up to hundreds of millimeters per minute). In this study, we present a microstructural analysis of friction stir welded AA7075-T6 blanks with high welding speeds up to 3 M/min. Textures, microstructures, mechanical properties, and weld quality are analyzed using TEM, EBSD, metallographic imaging, and Vickers hardness. The higher welding speed results in narrower, stronger heat-affected zones (HAZs) and also higher hardness in the nugget zones. The material flow direction in the nugget zone is found to be leaning towards the welding direction as the welding speed increases. Results are coupled with welding parameters and thermal history to aid in the understanding of the complex material flow and texture gradients within the welds in an effort to optimize welding parameters for high-speed processing.

  9. Effect of Pipe Body Alloy on Weldability of X80 Steel

    NASA Astrophysics Data System (ADS)

    Kong, Xianglei; Huang, Guojian; Fu, Kuijun; Liu, Fangfang; Huang, Minghao; Zhang, Yinghui

    Effect of Mo, Ni, and Cr on impact property of pipe seam and heat-affected zone (HAZ) of X80 steel was investigated by thermal simulation test and butt welding test. The results showed that, there was an obvious relationship between strip's composition and the toughness of weld and HAZ, the more content of Mo, Ni and less of Cr in the strip matrix, the better of impact toughness of weld and HAZ. Metallographic microscope was used to compare microstructures of welding specimens, every welded seam microstructure was mainly acicular ferrite (AF) and a little volume of proeutectoid ferrite (PF), and with some granular precipitations on original austenite grain boundary, the difference was that there were more PF and less precipitations of the specimen with more content of Mo, Ni and less of Cr in the strip matrix. Because of the high price of Mo and Ni, alloy design must be considered comprehensively with the cost and property requirements in the production.

  10. Microstructure and Microhardness of 17-4PH Deposited with Co-based Alloy Hardfacing Coating

    NASA Astrophysics Data System (ADS)

    Deng, D. W.; Zhang, C. P.; Chen, R.; Xia, H. F.

    Hardfacing is widely used to improve the performance of components exposed to severe service conditions. In this paper, the surface modification was evaluated for precipitation hardening martensitic stainless steel 17-4PH deposited with Co-based alloy stellite12 by the plasma-transferred arc welding (PTAW). The microstructure and microhardness of coating and heat affected zone(HAZ) of base metal were characterized by optical microscope (OM), scanning electron scanning microscope (SEM), X-ray diffractometer and hardness tester. The results show that the interface between weld metal and base metal is favorable without pore and crack, at the same time elements diffusion is observed in the fusion area. However, as the distance from the interface increases, HAZ comprises three different microstructural zones, namely, zones of coarse overheated structures, quenching martensite and martensite, ferrite. The microhardness decreases gradually from the HAZ near interface to the base metal, except the zone of coarse overheated structures. The microhardness of the coating improves a lot and fluctuates in a definitive range, and microstructural gradient is observed including the fusion area (the planar region and the bulky dendrite in a direction perpendicular to the weld interface), the transition zone (the dendrite in a multi-direction way) and the fine grain zone near the surface in the coating (fine equiaxial structure).

  11. Weldability and Strength Recovery of NUCu-140 Advanced Naval Steel

    NASA Astrophysics Data System (ADS)

    Bono, Jason T.

    NUCu-140 is a ferritic copper-precipitation strengthened steel that is a candidate material for use in many naval and structural applications. Previous work has shown that the heat-affected zone (HAZ) and fusion zone (FZ) of NUCu-140 exhibit softening that is due to dissolution of the copper-rich precipitates. This study aims to recover the FZ and HAZ strength by re-precipitation of the copper-rich precipitates through either multiple weld passes or an isothermal post-weld heat treatment (PWHT). The potential use of multiple thermal cycles was investigated with HAZ simulations using a Gleeble thermomechanical simulator. The HAZ simulations represented two weld thermal cycles with different combinations of peak temperatures during the initial and secondary weld passes. To investigate the potential for a PWHT for strength recovery, gas tungsten arc weld (GTAW) samples were isothermally heated for various times and temperatures. Microhardness measurements revealed no strength recovery in the multipass HAZ samples. The time dependent precipitate characteristics were modeled under the HAZ thermal cycle conditions, and the results showed that the lack of strength recovery could be attributed to insufficient time for re-precipitation during the secondary weld pass. Conversely, full strength recovery in the HAZ was observed in the isothermally heat treated samples. Atom-probe tomography (APT) analysis correlated this strength recovery to re-precipitation of the copper-rich precipitates during the isothermal PWHT. The experimental naval steel known as NUCu-140 and an established naval steel HSLA-100 were subjected to stress-relief cracking (SRC) and hot-ductility testing to assess their relative cracking susceptibilities during the welding process and post weld heat treatment. NUCu-140 exhibited a longer time-to-failure (TTF) and a lower temperature of minimum TTF during SRC testing when compared to HSLA-100, indicating better resistance to SRC for the NUCu-140 steel. The lowest TTF for NUCu-140 occurred in the temperature range of 500-550°C (932-1022°F), and was contributed to the achievement of maximum hardness as a result of ageing of Cu-rich precipitates at this temperature. HSLA-100 exhibited a minimum TTF at 650°C (1202°F), and this was attributed to the formation of austenite at this temperature. HSLA-100 and NUCu-140 exhibited a relatively narrow liquation cracking temperature ranges (LCTR) of 32°C (90°F) and 36°C (97°), respectively. The low susceptibility of both alloys was attributed to the formation of delta-ferrite within the same temperature range as incipient melting. Ineffective wetting and liquid film discontinuity in both alloys was established through metallographic and fractographic analysis.

  12. Thermal Behavior of an HSLA Steel and the Impact in Phase Transformation: Submerged Arc Welding (SAW) Process Approach to Pipelines

    NASA Astrophysics Data System (ADS)

    Costa, P. S.; Reyes-Valdés, F. A.; Saldaña-Garcés, R.; Delgado, E. R.; Salinas-Rodríguez, A.

    Heat input during welding metal fusion generates different transformations, such as grain growth, hydrogen cracking, and the formation of brittle structures, generally associated with the heat-affected zone (HAZ). For this reason, it is very important to know the behavior of this area before welding. This paper presents a study of the thermal behavior and its effect on phase transformations in the HAZ, depending on cooling rates (0.1-200 °C/s) to obtain continuous cooling transformation (CCT) curves for an high-strength low-alloy (HSLA) steel. In order to determine the formed phases, optical microscopy and Vickers microhardness measurement were used. The experimental CCT curve was obtained from an HSLA steel, and the results showed that, with the used cooling conditions, the steel did not provide formation of brittle structures. Therefore, it is unlikely that welds made by submerged arc welding (SAW) may lead to hydrogen embrittlement in the HAZ, which is one of the biggest problems of cracking in gas conduction pipelines. In addition, with these results, it will be possible to control the microstructure to optimize the pipe fabrication with SAW process in industrial plants.

  13. Investigation of Hydrogen Embrittlement Susceptibility of X80 Weld Joints by Thermal Simulation

    NASA Astrophysics Data System (ADS)

    Peng, Huangtao; An, Teng; Zheng, Shuqi; Luo, Bingwei; Wang, Siyu; Zhang, Shuai

    2018-05-01

    The objective of this study was to investigate the hydrogen embrittlement (HE) susceptibility and influence mechanism of X80 weld joints. Slow strain rate testing (SSRT) under in situ H-charging, combined with microstructure and fracture analysis, was performed on the base metal (BM), weld metal (WM), thermally simulated fine-grained heat-affected zone (FGHAZ) and coarse-grained heat-affected zone (CGHAZ). Results showed that the WM and simulated HAZ had a greater degree of high local strain distribution than the BM; compared to the CGHAZ, the FGHAZ had lower microhardness and more uniformly distributed stress. SSRT results showed that the weld joint was highly sensitive to HE; the HE index decreased in the following sequence: FGHAZ, WM, CGHAZ and BM. The effect of the microstructure on HE was mainly reflected in microstructure, local stress distribution and microhardness.

  14. Mechanical Properties of Heat Affected Zone of High Strength Steels

    NASA Astrophysics Data System (ADS)

    Sefcikova, K.; Brtnik, T.; Dolejs, J.; Keltamaki, K.; Topilla, R.

    2015-11-01

    High Strength Steels became more popular as a construction material during last decade because of their increased availability and affordability. On the other hand, even though general use of Advanced High Strength Steels (AHSS) is expanding, the wide utilization is limited because of insufficient information about their behaviour in structures. The most widely used technique for joining steels is fusion welding. The welding process has an influence not only on the welded connection but on the area near this connection, the so-called heat affected zone, as well. For that reason it is very important to be able to determine the properties in the heat affected zone (HAZ). This area of investigation is being continuously developed in dependence on significant progress in material production, especially regarding new types of steels available. There are currently several types of AHSS on the world market. Two most widely used processes for AHSS production are Thermo-Mechanically Controlled Processing (TMCP) and Quenching in connection with Tempering. In the presented study, TMCP and QC steels grade S960 were investigated. The study is focused on the changes of strength, ductility, hardness and impact strength in heat affected zone based on the used amount of heat input.

  15. In-Situ Phase Mapping and Direct Observations of Phase Transformations During Arc Welding of 1045 Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmer, J; Palmer, T

    2005-09-13

    In-situ Spatially Resolved X-Ray Diffraction (SRXRD) experiments were performed during gas tungsten arc (GTA) welding of AISI 1045 C-Mn steel. Ferrite ({alpha}) and austenite ({gamma}) phases were identified and quantified in the weld heat-affected zone (HAZ) from the real time x-ray diffraction data. The results were compiled along with weld temperatures calculated using a coupled thermal fluids weld model to create a phase map of the HAZ. This map shows the {alpha} {yields} {gamma} transformation taking place during weld heating and the reverse {gamma} {yields} {alpha} transformation taking place during weld cooling. Superheating is required to complete the {alpha} {yields}more » {gamma} phase transformation, and the amount of superheat above the A3 temperature was shown to vary with distance from the centerline of the weld. Superheat values as high as 250 C above the A3 temperature were observed at heating rates of 80 C/s. The SRXRD experiments also revealed details about the {gamma} phase not observable by conventional techniques, showing that {gamma} is present with two distinct lattice parameters as a result of inhomogeneous distribution of carbon and manganese in the starting pearlitic/ferritic microstructure. During cooling, the reverse {gamma} {yields} {alpha} phase transformation was shown to depend on the HAZ location. In the fine grained region of the HAZ, at distances greater than 2 mm from the fusion line, the {gamma} {yields} {alpha} transformation begins near the A3 temperature and ends near the A1 temperature. In this region of the HAZ where the cooling rates are below 40 C/s, the transformation occurs by nucleation and growth of pearlite. For HAZ locations closer to the fusion line, undercoolings of 200 C or more below the A1 temperature are required to complete the {gamma} {yields} {alpha} transformation. In this region of the HAZ, grain growth coupled with cooling rates in excess of 50 C/s causes the transformation to occur by a bainitic mechanism.« less

  16. A simple 2-d thermal model for GMA welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matteson, M.A.; Franke, G.L.; Vassilaros, M.G.

    1996-12-31

    The Rosenthal model of heat distribution from a moving source has been used in many applications to predict the temperature distribution during welding. The equation has performed well in its original form or as modified. The expression has a significant limitation for application to gas metal arc welds (GMAW) that have a papilla extending from the root of the weld bead. The shape of the fusion line between the papilla and the plate surface has a concave shape rather than the expected convex shape. However, at some distance from the fusion line the heat affected zone (HAZ) made visible bymore » etching has the expected convex shape predicted by the Rosenthal expression. This anomaly creates a limitation to the use of the Rosenthal expression for predicting GMAW bead shapes or HAZ temperature histories. Current research at the Naval Surface Warfare Center--Carderock Division (NSWC--CD) to develop a computer based model to predict the microstructure of multi-pass GMAW requires a simple expression to predict the fusion line and temperature history of the HAZ for each weld pass. The solution employed for the NSWC--CD research is a modified Rosenthal expression that has a dual heat source. One heat source is a disk source above the plate surface supplying the majority of the heat. The second heat source is smaller and below the surface of the plate. This second heat source helps simulate the penetration power of many GMAW welds that produces the papilla. The assumptions, strengths and limitations of the model are presented along with some applications.« less

  17. Structure and phase composition of welded joints modified by different welding techniques

    NASA Astrophysics Data System (ADS)

    Smirnov, Aleksander; Popova, Natalya; Nikonenko, Elena; Ozhiganov, Eugeniy; Ababkov, Nikolay; Koneva, Nina

    2017-12-01

    The paper presents the results of transmission electron microscopy (TEM) during the study of structure and phase composition of heat-affected zone (HAZ) of welded joints modified via four welding techniques, namely: electrode welding and electropercussive welding both with and without artificial flaws. The artificial flows represent aluminum pieces. TEM studies are carried out within the heat-affected zone, i.e. between the deposited and base metal, at 0.5 mm distance to the former. The 0.09C-2Mn-1Si-Fe steel type is used for welding. It is shown how the type of welding affects steel morphology, phase composition, defect structure and its parameters. The type of carbide phase is detected as well as the shape and location of particles. Volume fractions are estimated for the structural steel components, alongside with such parameters as the size of α-phase fragments, scalar and excess dislocation densities, and bending-torsion amplitude of the crystal lattice. Based on these results, we determine the welding technique and the structural component thus launching a mechanism of microcrack nucleation.

  18. Weld repair of carbon-moly coke drums without postweld heat treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, D.E.

    1996-06-01

    Investigations to evaluate weld repair of C-{1/2}Mo coke drums without postweld heat treatment (PWHT) are discussed in this paper. These investigations showed that shielded metal-arc welding (SMAW) without PWHT produced heat-affected zones (HAZ) and weld deposits with Charpy V-notch (CVN) impact toughness that exceeded the toughness of ex-service plate material. PWHT de-embrittles strain age-embrittled ex-service plate material. However, warming of drums to 200 F before putting in feed compensates for the omission of the de-embrittling PWHT. Additional testing showed that the de-embrittling PWHT did not significantly improve the fatigue properties of the ex-service plate material. As-welded SMAW repairs were foundmore » to be feasible for coke drums, and repairs have now been in service successfully for up to 2 years. The as-welded SMAW repairs were qualified on the basis of a 300 F preheat using small diameter electrodes for the first pass followed by larger diameter electrodes to temper the HAZ of the first pass. A half-bead technique was not used. Heat input is not precisely controlled as would be required for controlled deposition welding. Following the implementation of SMAW repairs without PWHT, the author extended the work to include as-welded repairs with automatic gas metal-arc welding (GMAW).« less

  19. The Effect of Oscillating Traverse Welding on Performance of Cr-Fe-C Hardfacing Alloys

    NASA Astrophysics Data System (ADS)

    Lai, Hsuan-Han; Hsieh, Chih-Chun; Wang, Jia-Siang; Lin, Chi-Ming; Wu, Weite

    2015-11-01

    In this study, a series of experiments involving Cr-Fe-C hardfacing alloys is conducted to evaluate the effect of oscillating traverse welding on microstructure and performance of clad alloys. The alloys are designed to exhibit hypoeutectic, eutectic, and hypereutectic morphology. The morphology of the heat-affected zone (HAZ) of the unmelted metal, the solidified remelted metal, and the fusion boundary exhibited distinct characteristics. In the hypoeutectic and the eutectic alloys, the same lamellar eutectic structure can be observed as the solidified structure, and they also showed the same evolution in the HAZ. In the hypereutectic alloy, the incomplete weld pool blending results in a eutectic morphology instead of a fully hypereutectic morphology. The hardness result reveals that, for the hypereutectic alloy, the eutectic region, instead of the HAZ, is the weak point. The wear test shows that the hypoeutectic alloy exhibits the same wear behaviors in both the remelted metal and the HAZ, and so is the hypereutectic alloy; the eutectic alloy remelted metal and the HAZ have different wear morphologies.

  20. Study of localized corrosion in aluminum alloys by the scanning reference electrode technique

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1995-01-01

    Localized corrosion in 2219-T87 aluminum (Al) alloy, 2195 aluminum-lithium (Al-Li) alloy, and welded 2195 Al-Li alloy (4043 filler) have been investigated using the relatively new scanning reference electrode technique (SRET). Anodic sites are more frequent and of greater strength in the 2195 Al-Li alloy than in the 2219-T87 Al alloy, indicating a greater tendency toward pitting for the latter. However, the overall corrosion rates are about the same for these two alloys, as determined using the polarization resistance technique. In the welded 2195 Al-Li alloy, the weld bean is entirely cathodic, with rather strongly anodic heat affected zones (HAZ) bordering both sides, indicating a high probability of corrosion in the HAZ parallel to the weld bead.

  1. A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part II. Application to electron beam welding

    NASA Astrophysics Data System (ADS)

    Hemmer, H.; Grong, Ø.; Klokkehaug, S.

    2000-03-01

    In the present investigation, a process model for electron beam (EB) welding of different grades of duplex stainless steels (i.e. SAF 2205 and 2507) has been developed. A number of attractive features are built into the original finite element code, including (1) a separate module for prediction of the penetration depth and distribution of the heat source into the plate, (2) adaptive refinement of the three-dimensional (3-D) element mesh for quick and reliable solution of the differential heat flow equation, and (3) special subroutines for calculation of the heat-affected zone (HAZ) microstructure evolution. The process model has been validated by comparison with experimental data obtained from in situ thermocouple measurements and optical microscope examinations. Subsequently, its aptness to alloy design and optimization of welding conditions for duplex stainless steels is illustrated in different numerical examples and case studies pertaining to EB welding of tubular joints.

  2. Microstructural Evolution and Mechanical Properties of Simulated Heat-Affected Zones in Cast Precipitation-Hardened Stainless Steels 17-4 and 13-8+Mo

    NASA Astrophysics Data System (ADS)

    Hamlin, Robert J.; DuPont, John N.

    2017-01-01

    Cast precipitation-hardened (PH) stainless steels 17-4 and 13-8+Mo are used in applications that require a combination of high strength and moderate corrosion resistance. Many such applications require fabrication and/or casting repair by fusion welding. The purpose of this work is to develop an understanding of microstructural evolution and resultant mechanical properties of these materials when subjected to weld thermal cycles. Samples of each material were subjected to heat-affected zone (HAZ) thermal cycles in the solution-treated and aged condition (S-A-W condition) and solution-treated condition with a postweld thermal cycle age (S-W-A condition). Dilatometry was used to establish the onset of various phase transformation temperatures. Light optical microscopy (LOM), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS) were used to characterize the microstructures, and comparisons were made to gas metal arc welds that were heat treated in the same conditions. Tensile testing was also performed. MatCalc thermodynamic and kinetic modeling software was used to predict the evolution of copper (Cu)-rich body center cubic precipitates in 17-4 and β-NiAl precipitates in 13-8+Mo. The yield strength was lower in the simulated HAZ samples of both materials prepared in the S-A-W condition when compared to their respective base metals. Samples prepared in the S-W-A condition had higher and more uniform yield strengths for both materials. Significant changes were observed in the matrix microstructure of various HAZ regions depending on the peak temperature, and these microstructural changes were interpreted with the aid of dilatometry results, LOM, SEM, and EDS. Despite these significant changes to the matrix microstructure, the changes in mechanical properties appear to be governed primarily by the precipitation behavior. The decrease in strength in the HAZ samples prepared in the S-A-W condition was attributed to the dissolution of precipitates, which was supported by the MatCalc modeling results. MatCalc modeling results for samples in the S-W-A condition predicted uniform size of precipitates across all regions of the HAZ, and these predictions were supported by the observed trends in mechanical properties. Cross-weld tensile tests performed on GMA welds showed the same trends in mechanical behavior as the simulated HAZ samples. Welding in the S-W-A condition resulted in over 90 pct retention in yield strength when compared to base metal strengths. These findings indicate that welding these PH stainless steels in the solution-treated condition and using a postweld age will provide better and more uniform mechanical properties in the HAZ that are more consistent with the base metal properties.

  3. Ductility dip cracking susceptibility of Inconel Filler Metal 52 and Inconel Alloy 690

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikel, J.M.; Parker, D.M.

    1998-06-01

    Alloy 690 and Filler Metal 52 have become the materials of choice for commercial nuclear steam generator applications in recent years. Filler Metal 52 exhibits improved resistance to weld solidification and weld-metal liquation cracking as compared to other nickel-based filler metals. However, recently published work indicates that Filler Metal 52 is susceptible to ductility dip cracking (DDC) in highly restrained applications. Susceptibility to fusion zone DDC was evaluated using the transverse varestraint test method, while heat affected zone (HAZ) DDC susceptibility was evaluated using a newly developed spot-on-spot varestraint test method. Alloy 690 and Filler Metal 52 cracking susceptibility wasmore » compared to the DDC susceptibility of Alloy 600, Filler Metal 52, and Filler Metal 625. In addition, the effect of grain size and orientation on cracking susceptibility was also included in this study. Alloy 690, Filler Metal 82, Filler Metal 52, and Filler Metal 625 were found more susceptible to fusion zone DDC than Alloy 600. Filler Metal 52 and Alloy 690 were found more susceptible to HAZ DDC when compared to wrought Alloy 600, Filler Metal 82 and Filler Metal 625. Filler Metal 52 exhibited the greatest susceptibility to HAZ DDC of all the weld metals evaluated. The base materials were found much more resistant to HAZ DDC in the wrought condition than when autogenously welded. A smaller grain size was found to offer greater resistance to DDC. For weld metal where grain size is difficult to control, a change in grain orientation was found to improve resistance to DDC.« less

  4. Study of the stability of electrode metal melting and transfer in the process of consumable electrode welding powered by supplies with differing dynamic characteristics

    NASA Astrophysics Data System (ADS)

    Saraev, Y. N.; Chinakhov, D. A.; Il'yashchenko, D. P.; Kiselev, A. S.; Gardiner, A. S.; Raev, I. V.

    2016-11-01

    In the paper we present the results of the study of the power supply characteristics effect upon the stability of electrode metal melting and transfer into the weld pool in the process of consumable electrode welding. It was shown that application of inverter type welding power supplies of the new generation results in changing the characteristics of the heat and mass transfer which has a decisive impact upon the heat content of the weld pool, reduction of residual stresses in the heat-affected zone (HAZ). The authors also substantiate the tendency to the reduction of the structural constituents in the area of the permanent joint.

  5. Effect of Heat Input on Inclusion Evolution Behavior in Heat-Affected Zone of EH36 Shipbuilding Steel

    NASA Astrophysics Data System (ADS)

    Sun, Jincheng; Zou, Xiaodong; Matsuura, Hiroyuki; Wang, Cong

    2018-03-01

    The effects of heat input parameters on inclusion and microstructure characteristics have been investigated using welding thermal simulations. Inclusion features from heat-affected zones (HAZs) were profiled. It was found that, under heat input of 120 kJ/cm, Al-Mg-Ti-O-(Mn-S) composite inclusions can act effectively as nucleation sites for acicular ferrites. However, this ability disappears when the heat input is increased to 210 kJ/cm. In addition, confocal scanning laser microscopy (CSLM) was used to document possible inclusion-microstructure interactions, shedding light on how inclusions assist beneficial transformations toward property enhancement.

  6. Effect of Heat Input on Inclusion Evolution Behavior in Heat-Affected Zone of EH36 Shipbuilding Steel

    NASA Astrophysics Data System (ADS)

    Sun, Jincheng; Zou, Xiaodong; Matsuura, Hiroyuki; Wang, Cong

    2018-06-01

    The effects of heat input parameters on inclusion and microstructure characteristics have been investigated using welding thermal simulations. Inclusion features from heat-affected zones (HAZs) were profiled. It was found that, under heat input of 120 kJ/cm, Al-Mg-Ti-O-(Mn-S) composite inclusions can act effectively as nucleation sites for acicular ferrites. However, this ability disappears when the heat input is increased to 210 kJ/cm. In addition, confocal scanning laser microscopy (CSLM) was used to document possible inclusion-microstructure interactions, shedding light on how inclusions assist beneficial transformations toward property enhancement.

  7. Characterization of complex carbide–silicide precipitates in a Ni–Cr–Mo–Fe–Si alloy modified by welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, D., E-mail: dhb@ansto.gov.au; Davis, J.; Drew, M.

    2015-07-15

    Nickel based alloys of the type Hastelloy-N™ are ideal candidate materials for molten salt reactors, as well as for applications such as pressure vessels, due to their excellent resistance to creep, oxidation and corrosion. In this work, the authors have attempted to understand the effects of welding on the morphology, chemistry and crystal structure of the precipitates in the heat affected zone (HAZ) and the weld zone of a Ni–Cr–Mo–Fe–Si alloy similar to Hastelloy-N™ in composition, by using characterization techniques such as scanning and transmission electron microscopy. Two plates of a Ni–Cr–Mo–Fe–Si alloy GH-3535 were welded together using a TiGmore » welding process without filler material to achieve a joint with a curved molten zone with dendritic structure. It is evident that the primary precipitates have melted in the HAZ and re-solidified in a eutectic-like morphology, with a chemistry and crystal structure only slightly different from the pre-existing precipitates, while the surrounding matrix grains remained unmelted, except for the zones immediately adjacent to the precipitates. In the molten zone, the primary precipitates were fully melted and dissolved in the matrix, and there was enrichment of Mo and Si in the dendrite boundaries after solidification, and re-precipitation of the complex carbides/silicides at some grain boundaries and triple points. The nature of the precipitates in the molten zone varied according to the local chemical composition. - Graphical abstract: Display Omitted - Highlights: • Ni-based alloy with Cr, Mo, Si, Fe and C was welded, examined with SEM, EBSD, and TEM. • Original Ni{sub 2}(Mo,Cr){sub 4}(Si,C) carbides changed from equiaxed to lamellar shape in HAZ. • Composition and crystal structure remained almost unchanged in HAZ. • Original carbides changed to lamellar Ni{sub 3}(Mo,Cr){sub 3}(Si,C) in some cases in weld metal. • Precipitates were mostly incoherent, but semi-coherent in some cases in weld metal.« less

  8. Influence of Tool Rotational Speed and Post-Weld Heat Treatments on Friction Stir Welded Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Manugula, Vijaya L.; Rajulapati, Koteswararao V.; Reddy, G. Madhusudhan; Mythili, R.; Bhanu Sankara Rao, K.

    2017-08-01

    The effects of tool rotational speed (200 and 700 rpm) on evolving microstructure during friction stir welding (FSW) of a reduced activation ferritic-martensitic steel (RAFMS) in the stir zone (SZ), thermo-mechanically affected zone (TMAZ), and heat-affected zone (HAZ) have been explored in detail. The influence of post-weld direct tempering (PWDT: 1033 K (760 °C)/ 90 minutes + air cooling) and post-weld normalizing and tempering (PWNT: 1253 K (980 °C)/30 minutes + air cooling + tempering 1033 K (760 °C)/90 minutes + air cooling) treatments on microstructure and mechanical properties has also been assessed. The base metal (BM) microstructure was tempered martensite comprising Cr-rich M23C6 on prior austenite grain and lath boundaries with intra-lath precipitation of V- and Ta-rich MC precipitates. The tool rotational speed exerted profound influence on evolving microstructure in SZ, TMAZ, and HAZ in the as-welded and post-weld heat-treated states. Very high proportion of prior austenitic grains and martensite lath boundaries in SZ and TMAZ in the as-welded state showed lack of strengthening precipitates, though very high hardness was recorded in SZ irrespective of the tool speed. Very fine-needle-like Fe3C precipitates were found at both the rotational speeds in SZ. The Fe3C was dissolved and fresh precipitation of strengthening precipitates occurred on both prior austenite grain and sub-grain boundaries in SZ during PWNT and PWDT. The post-weld direct tempering caused coarsening and coalescence of strengthening precipitates, in both matrix and grain boundary regions of TMAZ and HAZ, which led to inhomogeneous distribution of hardness across the weld joint. The PWNT heat treatment has shown fresh precipitation of M23C6 on lath and grain boundaries and very fine V-rich MC precipitates in the intragranular regions, which is very much similar to that prevailed in BM prior to FSW. Both the PWDT and PWNT treatments caused considerable reduction in the hardness of SZ. In the as-welded state, the 200 rpm joints have shown room temperature impact toughness close to that of BM, whereas 700 rpm joints exhibited very poor impact toughness. The best combination of microstructure and mechanical properties could be obtained by employing low rotational speed of 200 rpm followed by PWNT cycle. The type and size of various precipitates, grain size, and evolving dislocation substructure have been presented and comprehensively discussed.

  9. Metallurgy and mechanical properties variation with heat input,during dissimilar metal welding between stainless and carbon steel

    NASA Astrophysics Data System (ADS)

    Ramdan, RD; Koswara, AL; Surasno; Wirawan, R.; Faturohman, F.; Widyanto, B.; Suratman, R.

    2018-02-01

    The present research focus on the metallurgy and mechanical aspect of dissimilar metal welding.One of the common parameters that significantly contribute to the metallurgical aspect on the metal during welding is heat input. Regarding this point, in the present research, voltage, current and the welding speed has been varied in order to observe the effect of heat input on the metallurgical and mechanical aspect of both welded metals. Welding was conducted by Gas Metal Arc Welding (GMAW) on stainless and carbon steel with filler metal of ER 309. After welding, hardness test (micro-Vickers), tensile test, macro and micro-structure characterization and Energy Dispersive Spectroscopy (EDS) characterization were performed. It was observed no brittle martensite observed at HAZ of carbon steel, whereas sensitization was observed at the HAZ of stainless steel for all heat input variation at the present research. Generally, both HAZ at carbon steel and stainless steel did not affect tensile test result, however the formation of chromium carbide at the grain boundary of HAZ structure (sensitization) of stainless steel, indicate that better process and control of welding is required for dissimilar metal welding, especially to overcome this issue.

  10. The Influence of the Heat-Affected Zone Mechanical Properties on the Behaviour of the Welding in Transverse Plate-to-Tube Joints.

    PubMed

    Lozano, Miguel; Serrano, Miguel A; López-Colina, Carlos; Gayarre, Fernando L; Suárez, Jesús

    2018-02-09

    Eurocode 3 establishes the component method to analytically characterize the structural joints between beam and columns. When one of the members involved in the joint is a hollow section (i.e., a tube) there is a lack of information for the specific components present in the joint. There are two different ways to bridge the gap: experimental testing on the actual beam column joints involving tubular sections; or numerical modelization, typically by means of finite element analysis. For this second option, it is necessary to know the actual mechanical properties of the material. As long as the joint implies a welding process, there is a concern related to how the mechanical properties in the heat-affected zone (HAZ) influence the behavior of the joint. In this work, some coupons were extracted from the HAZ of the beam-column joint. The coupons were tested and the results were implemented in the numerical model of the joint, in an attempt to bring it closer to the experimental results of the tested joints.

  11. Heat-Affected Zone Liquation Cracking Resistance of Friction Stir Processed Aluminum-Copper Alloy AA 2219

    NASA Astrophysics Data System (ADS)

    Karthik, G. M.; Janaki Ram, G. D.; Kottada, Ravi Sankar

    2017-04-01

    In the current work, the effect of friction stir processing on heat-affected zone (HAZ) liquation cracking resistance of aluminum-copper alloy AA 2219 was evaluated. In Gleeble hot-ductility tests and longitudinal Varestraint tests, the FSPed material, despite its very fine dynamically recrystallized equiaxed grain structure, showed considerably higher susceptibility to HAZ liquation cracking when compared to the base material. Detailed microstructural studies showed that the increased cracking susceptibility of the FSPed material is due to (i) increase in the amount of liquating θ phase (equilibrium Al2Cu) and (ii) increase in the population of grain boundary θ particles. An important learning from the current work is that, in certain materials like alloy 2219, the use of FSP as a pretreatment to fusion welding can be counterproductive.

  12. Evaluation of the Low Heat Input Process for Weld Repair of Nickel-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Durocher, J.; Richards, N. L.

    2011-10-01

    The repair of turbine blades and vanes commonly involves gas tungsten arc welding or an equivalent process, but unfortunately these components are often susceptible to heat-affected zone (HAZ) cracking during the weld repair process. This is a major problem especially in cast alloys due to their coarse-grain size and where the (Al + Ti) contents is in excess of 3-4%; vacuum brazing is also used but mainly on low stress non-rotating components such as vanes. Micro-welding has the potential to deposit small amounts of filler at low heat input levels with minimum HAZ and thus is an attractive process for depositing a quality weld. As with conventional fusion processes, the filler alloy is deposited by the generation of a low power arc between a consumable electrode and the substrate. The low heat input of this process offers unique advantages over more common welding processes such as gas tungsten arc, plasma arc, laser, and electron beam welding. In this study, the low heat input characteristic of micro-welding has been used to simulate weld repair using Inconel (IN) (Inconel and IN are trademarks of INCO Alloys International) 625, Rene (Rene is a trademark of General Electric Company) 41, Nimonic (Nimonic is a trademark of INCO Alloys International) 105 and Inconel 738LC filler alloys, to a cast Inconel 738LC substrate. The effect of micro-welding process parameters on the deposition rate, coating quality, and substrate has been investigated.

  13. Numerical simulation and experimental investigation of laser dissimilar welding of carbon steel and austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Nekouie Esfahani, M. R.; Coupland, J.; Marimuthu, S.

    2015-07-01

    This study reports an experimental and numerical investigation on controlling the microstructure and brittle phase formation during laser dissimilar welding of carbon steel to austenitic stainless steel. The significance of alloying composition and cooling rate were experimentally investigated. The investigation revealed that above a certain specific point energy the material within the melt pool is well mixed and the laser beam position can be used to control the mechanical properties of the joint. The heat-affected zone within the high-carbon steel has significantly higher hardness than the weld area, which severely undermines the weld quality. A sequentially coupled thermo-metallurgical model was developed to investigate various heat-treatment methodology and subsequently control the microstructure of the HAZ. Strategies to control the composition leading to dramatic changes in hardness, microstructure and service performance of the dissimilar laser welded fusion zone are discussed.

  14. Stripe-PZT Sensor-Based Baseline-Free Crack Diagnosis in a Structure with a Welded Stiffener.

    PubMed

    An, Yun-Kyu; Shen, Zhiqi; Wu, Zhishen

    2016-09-16

    This paper proposes a stripe-PZT sensor-based baseline-free crack diagnosis technique in the heat affected zone (HAZ) of a structure with a welded stiffener. The proposed technique enables one to identify and localize a crack in the HAZ using only current data measured using a stripe-PZT sensor. The use of the stripe-PZT sensor makes it possible to significantly improve the applicability to real structures and minimize man-made errors associated with the installation process by embedding multiple piezoelectric sensors onto a printed circuit board. Moreover, a new frequency-wavenumber analysis-based baseline-free crack diagnosis algorithm minimizes false alarms caused by environmental variations by avoiding simple comparison with the baseline data accumulated from the pristine condition of a target structure. The proposed technique is numerically as well as experimentally validated using a plate-like structure with a welded stiffener, reveling that it successfully identifies and localizes a crack in HAZ.

  15. Stripe-PZT Sensor-Based Baseline-Free Crack Diagnosis in a Structure with a Welded Stiffener

    PubMed Central

    An, Yun-Kyu; Shen, Zhiqi; Wu, Zhishen

    2016-01-01

    This paper proposes a stripe-PZT sensor-based baseline-free crack diagnosis technique in the heat affected zone (HAZ) of a structure with a welded stiffener. The proposed technique enables one to identify and localize a crack in the HAZ using only current data measured using a stripe-PZT sensor. The use of the stripe-PZT sensor makes it possible to significantly improve the applicability to real structures and minimize man-made errors associated with the installation process by embedding multiple piezoelectric sensors onto a printed circuit board. Moreover, a new frequency-wavenumber analysis-based baseline-free crack diagnosis algorithm minimizes false alarms caused by environmental variations by avoiding simple comparison with the baseline data accumulated from the pristine condition of a target structure. The proposed technique is numerically as well as experimentally validated using a plate-like structure with a welded stiffener, reveling that it successfully identifies and localizes a crack in HAZ. PMID:27649200

  16. Effect of laser beam offset on microstructure and mechanical properties of pulsed laser welded BTi-6431S/TA15 dissimilar titanium alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Hu, Shengsun; Shen, Junqi; Li, Dalong; Bu, Xianzheng

    2015-11-01

    Laser beam welding was used to weld dissimilar joints in BTi-6431S/TA15 titanium alloys. The effect of laser beam offset on microstructural characterizations and mechanical properties of the joints were investigated. Microstructural evolution of the joints was characterized by optical microscopy (OM) and X-ray diffraction (XRD). Tensile testing was conducted at room temperature and at 550 °C. The results demonstrated that with the exception of some porosity, a good quality joint could be achieved. Martensite α' and acicular α structures were present in the fusion zone (FZ). The amount of martensite α' present with the -0.2 mm beam offset was less than that with the 0.2 mm beam offset. Acicular α and martensite α' transformations occurred in the high temperature heat-affected zone (HT-HAZ) of both the BTi-6431S and TA15 alloys. In the low-temperature heat-affected zone (LT-HAZ), the BTi-6431S and TA15 alloy microstructures exhibited a mixture of secondary α, primary α, and prior β phases. The microhardness values in the FZ followed the order: -0.2 mm> 0 mm> 0.2 mm. Tensile testing at room temperature and at 550 °C resulted in fracture of the TA15 alloy base metal. The fracture morphology exhibited a ductile dimple feature.

  17. Characterization of the Microstructures and the Cryogenic Mechanical Properties of Electron Beam Welded Inconel 718

    NASA Astrophysics Data System (ADS)

    Kwon, Soon Il; Bae, Sang Hyun; Do, Jeong Hyeon; Jo, Chang Yong; Hong, Hyun Uk

    2016-02-01

    The microstructures and the cryogenic mechanical properties of electron beam (EB) welds between cast and forged Inconel 718 superalloys with a thickness of 10 mm were investigated in comparison with gas tungsten arc (GTA) welds. EB welding with a heat input lower than 250 J/mm caused the formation of liquation microfissuring in the cast-side heat-affected-zone (HAZ) of the EB welds. HAZ liquation microfissuring appeared to be associated with the constitutional liquation of primary NbC carbides at the grain boundaries. Compared with the GTA welding process, the EB welding produced welds with superior microstructure, exhibiting fine dendritic structure associated with the reduction in size and fraction of the Laves phase due to the rapid cooling rate. This result was responsible for the superior mechanical properties of the EB welds at 77 K (-196 °C). Laves particles in both welds were found to provide the preferential site for the crack initiation and propagation, leading to a significant decrease in the Charpy impact toughness at 77 K (-196 °C). Crack initiation and propagation induced by Charpy impact testing were discussed in terms of the dendrite arm spacing, the Laves size and the dislocation structure ahead of the crack arisen from the fractured Laves phase in the two welds.

  18. Cyclic and SCC Behavior of Alloy 690 HAZ in a PWR Environment

    NASA Astrophysics Data System (ADS)

    Alexandreanu, Bogdan; Chen, Yiren; Natesan, Ken; Shack, Bill

    The objective of this work is to determine the cyclic and stress corrosion cracking (SCC) crack growth rates (CGRs) in a simulated PWR water environment for Alloy 690 heat affected zone (HAZ). In order to meet the objective, an Alloy 152 J-weld was produced on a piece of Alloy 690 tubing, and the test specimens were aligned with the HAZ. The environmental enhancement of cyclic CGRs for Alloy 690 HAZ was comparable to that measured for the same alloy in the as-received condition. The two Alloy 690 HAZ samples tested exhibited maximum SCC CGR rates of 10-11 m/s in the simulated PWR environment at 320°C, however, on average, these rates are similar or only slightly higher than those for the as-received alloy.

  19. Filler Wire Development for 2195 Aluminum-Lithium. Pt. 2

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerald W.; Cho, Alex

    1998-01-01

    The objective of the research was to determine the susceptibility of submitted welded 2195 plate in an AI (Alternate Immersion) environment. Forty-day AI exposure was completed on 8 welded 2195 stress corrosion samples. No stress corrosion cracking (SCC) was found on any of the samples tested. All 8 samples experienced exfoliation corrosion attack in the heat-affected zone (HAZ) adjacent to the weld. All samples were examined metallographically and showed varying degrees of intergranular corrosion (IG). The filler metal on all samples showed moderate to heavy pitting.

  20. Process Parameter Optimization for Wobbling Laser Spot Welding of Ti6Al4V Alloy

    NASA Astrophysics Data System (ADS)

    Vakili-Farahani, F.; Lungershausen, J.; Wasmer, K.

    Laser beam welding (LBW) coupled with "wobble effect" (fast oscillation of the laser beam) is very promising for high precision micro-joining industry. For this process, similarly to the conventional LBW, the laser welding process parameters play a very significant role in determining the quality of a weld joint. Consequently, four process parameters (laser power, wobble frequency, number of rotations within a single laser pulse and focused position) and 5 responses (penetration, width, heat affected zone (HAZ), area of the fusion zone, area of HAZ and hardness) were investigated for spot welding of Ti6Al4V alloy (grade 5) using a design of experiments (DoE) approach. This paper presents experimental results showing the effects of variating the considered most important process parameters on the spot weld quality of Ti6Al4V alloy. Semi-empirical mathematical models were developed to correlate laser welding parameters to each of the measured weld responses. Adequacies of the models were then examined by various methods such as ANOVA. These models not only allows a better understanding of the wobble laser welding process and predict the process performance but also determines optimal process parameters. Therefore, optimal combination of process parameters was determined considering certain quality criteria set.

  1. Alloy Design of Martensitic 9Cr-Boron Steel for A-USC Boiler at 650 °C — Beyond Grades 91, 92 and 122

    NASA Astrophysics Data System (ADS)

    Abe, Fujio; Tabuchi, M.; Tsukamoto, S.

    Boundary hardening is shown to be the most important strengthening mechanism in creep of tempered martensitic 9% Cr steel base metal and welded joints at 650 °C. The enrichment of soluble boron near prior austenite grain boundaries (PAGBs) by the GB segregation is essential for the reduction of coarsening rate of M23C6 carbides near PAGBs, enhancing the boundary and sub-boundary hardening near PAGBs, and also for the change in α/γ transformation behavior in heat-affected-zone (HAZ) of welded joints during heating of welding, producing the same microstructure in HAZ as in the base metal. Excess addition of nitrogen to the 9Cr-boron steel promotes the formation of boron nitrides during normalizing heat treatment, which consumes most of soluble boron and degrades the creep strength. A NIMS 9Cr steel (MARBN; Martensitic 9Cr steel strengthened by boron and MX nitrides) with 120-150 ppm boron and 60-90 ppm nitrogen, where no boron nitride forms during normalizing heat treatment, exhibits not only much higher creep strength of base metal than Grades 91, 92 and 122 but also substantially no degradation in creep strength due to Type IV fracture in HAZ of welded joints at 650°C. The protective Cr2O3-rich scale forms on the surface of 9Cr steel by pre-oxidation treatment in Ar gas, which significantly improves the oxidation resistance in steam at 650°C.

  2. Electron Beam Welding of IN792 DS: Effects of Pass Speed and PWHT on Microstructure and Hardness.

    PubMed

    Angella, Giuliano; Barbieri, Giuseppe; Donnini, Riccardo; Montanari, Roberto; Richetta, Maria; Varone, Alessandra

    2017-09-05

    Electron Beam (EB) welding has been used to realize seams on 2 mm-thick plates of directionally solidified (DS) IN792 superalloy. The first part of this work evidenced the importance of pre-heating the workpiece to avoid the formation of long cracks in the seam. The comparison of different pre-heating temperatures (PHT) and pass speeds ( v ) allowed the identification of optimal process parameters, namely PHT = 300 °C and v = 2.5 m/min. The microstructural features of the melted zone (MZ); the heat affected zone (HAZ), and base material (BM) were investigated by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), electron back-scattered diffraction (EBSD), X-ray diffraction (XRD), and micro-hardness tests. In the as-welded condition; the structure of directionally oriented grains was completely lost in MZ. The γ' phase in MZ consisted of small (20-40 nm) round shaped particles and its total amount depended on both PHT and welding pass speed, whereas in HAZ, it was the same BM. Even if the amount of γ' phase in MZ was lower than that of the as-received material, the nanometric size of the particles induced an increase in hardness. EDS examinations did not show relevant composition changes in the γ' and γ phases. Post-welding heat treatments (PWHT) at 700 and 750 °C for two hours were performed on the best samples. After PWHTs, the amount of the ordered phase increased, and the effect was more pronounced at 750 °C, while the size of γ' particles in MZ remained almost the same. The hardness profiles measured across the joints showed an upward shift, but peak-valley height was a little lower, indicating more homogeneous features in the different zones.

  3. Friction Stir Welding of Al Alloy 2219-T8: Part I-Evolution of Precipitates and Formation of Abnormal Al2Cu Agglomerates

    NASA Astrophysics Data System (ADS)

    Kang, Ju; Feng, Zhi-Cao; Frankel, G. S.; Huang, I. Wen; Wang, Guo-Qing; Wu, Ai-Ping

    2016-09-01

    Friction stir welding was performed on AA2219-T8 plates with 6.31 wt pct Cu. The thermal cycles were measured in different regions of the joint during welding. Differential scanning calorimetry and transmission electron microscopy were utilized to analyze the evolution of precipitates in the joint. The relationships between welding peak temperature, precipitate evolution, and microhardness distribution are discussed. The temperature in the heat-affected zone (HAZ) ranged from 453 K to 653 K (180 °C to 380 °C). The θ″ and some θ' phases redissolved into the HAZ matrix, while the rest of the θ' phases coarsened. In the thermomechanically affected zone (TMAZ), the temperature range was from 653 K to 673 K (380 °C to 400 °C), causing both θ″ phase and θ' phase to redissolve. In the weld nugget zone (WNZ), all the θ″, θ', and some of the θ phase (Al2Cu) redissolved. Abnormal θ particles were observed in the WNZ, including agglomerated θ with sizes around 100 to 1000 µm and a ring-shaped distribution of normal size θ particles. The formation of abnormal θ particles resulted from metal plastic flow during welding and the high content of Cu in AA2219. No abnormal θ particles were observed in joints of another AA2219 plate, which had a lower Cu content of 5.83 wt pct.

  4. Microstructure and Corrosion Resistance of Laser-Welded Crossed Nitinol Wires.

    PubMed

    Dong, Peng; Yao, Runhua; Yan, Zheng; Yan, Zhifeng; Wang, Wenxian; He, Xiuli; Zhou, Jun

    2018-05-18

    Laser welding has been considered to be one of the most promising joining processes for Nitinol medical device manufacturing. Presently, there is still a limited understanding about how laser welding affects the microstructure and the resultant corrosion behaviors. This work aimed to reveal the microstructural factors that influence the corrosion resistance of laser-welded crossed Nitinol joints. The microstructures within various zones of the joints were characterized by using transmission electron microscopy (TEM), and the corrosion behaviors of the joints in 0.9% NaCl and Hank's solutions were studied. The base metal exhibits a single austenite (B2) phase and the highest corrosion resistance. The phase constituent of the fusion zone is the coexistence of the B2 matrix and some precipitates (T₂Ni, TiNi 3, and Ti₃Ni₄ particles), resulting in a slight decrease in corrosion resistance. The heat affected zone (HAZ) shows the austenite matrix but with the precipitation of R-phase, which considerably reduces the corrosion potential, making it the weakest zone.

  5. Modeling macro-and microstructures of Gas-Metal-Arc Welded HSLA-100 steel

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Debroy, T.

    1999-06-01

    Fluid flow and heat transfer during gas-metal-arc welding (GMAW) of HSLA-100 steel were studied using a transient, three-dimensional, turbulent heat transfer and fluid flow model. The temperature and velocity fields, cooling rates, and shape and size of the fusion and heat-affected zones (HAZs) were calculated. A continuous-cooling-transformation (CCT) diagram was computed to aid in the understanding of the observed weld metal microstructure. The computed results demonstrate that the dissipation of heat and momentum in the weld pool is significantly aided by turbulence, thus suggesting that previous modeling results based on laminar flow need to be re-examined. A comparison of the calculated fusion and HAZ geometries with their corresponding measured values showed good agreement. Furthermore, “finger” penetration, a unique geometric characteristic of gas-metal-arc weld pools, could be satisfactorily predicted from the model. The ability to predict these geometric variables and the agreement between the calculated and the measured cooling rates indicate the appropriateness of using a turbulence model for accurate calculations. The microstructure of the weld metal consisted mainly of acicular ferrite with small amounts of bainite. At high heat inputs, small amounts of allotriomorphic and Widmanstätten ferrite were also observed. The observed microstructures are consistent with those expected from the computed CCT diagram and the cooling rates. The results presented here demonstrate significant promise for understanding both macro-and microstructures of steel welds from the combination of the fundamental principles from both transport phenomena and phase transformation theory.

  6. Effect of Heat Treatment on Liquation Cracking in Continuous Fiber and Pulsed Nd:YAG Laser Welding of HASTELLOY X Alloy

    NASA Astrophysics Data System (ADS)

    Pakniat, M.; Ghaini, F. Malek; Torkamany, M. J.

    2017-11-01

    Laser welding of HASTELLOY X is highly feasible; however, hot cracking can be a matter of concern. The objective of this study is to assess the effect of solution heat treatment on susceptibility to liquation cracking in welding of a 2-mm-thick HASTELLOY X plate. In addition, Nd-YAG pulsed laser (400 W) and continuous wave (CW) fiber laser (600 W) were compared with each other in this respect. Results revealed that performing the prewelding solution heat treatment reduces the tendency for occurrence of liquation cracking. Furthermore, it was established that by increasing pulse frequency, there was a significant reduction in the tendency for liquation cracking. With CW laser welding of HASTELLOY X in the solution-heat-treated condition, the tendency for heat-affected zone (HAZ) cracking was found to be minimized.

  7. Influence of Mode of Metal Transfer on Microstructure and Mechanical Properties of Gas Metal Arc-Welded Modified Ferritic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mukherjee, Manidipto; Pal, Tapan Kumar

    2012-06-01

    This article describes in detail the effect of the modes of metal transfer on the microstructure and mechanical properties of gas metal arc-welded modified ferritic stainless steel (SSP 409M) sheets (as received) of 4 mm thickness. The welded joints were prepared under three modes of metal transfer, i.e., short-circuit (SC), spray (S), transfer, and mix (M) mode transfer using two different austenitic filler wires (308L and 316L) and shielding gas composition of Ar + 5 pct CO2. The welded joints were evaluated by means of microstructural, hardness, notched tensile strength, Charpy impact toughness, and high cycle fatigue. The dependence of weld metal microstructure on modes of metal transfer and filler wires has been determined by dilution calculation, WRC-1992 diagram, Creq/Nieq ratio, stacking fault energy (SFE), optical microscopy (OM), and transmission electron microscopy (TEM). It was observed that the microstructure as well as the tensile, Charpy impact, and high cycle fatigue of weld metal is significantly affected by the mode of metal transfer and filler wire used. However, the heat-affected zone (HAZ) is affected only by the modes of metal transfer. The results have been correlated with the microstructures of weld and HAZ developed under different modes of metal transfer.

  8. Microstructure of a safe-end dissimilar metal weld joint (SA508-52-316L) prepared by narrow-gap GTAW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming, Hongliang

    The microstructure, residual strain and interfacial chemical composition distribution of a safe-end dissimilar metal weld joint (DMWJ, SA508-52-316L) prepared by narrow-gap gas-tungsten arc welding (NG-GTAW) were studied by optical microscope (OM) and scanning electron microscope equipped with an energy dispersive X-ray microanalysis (SEM/EDX) and an electron back scattering diffraction (EBSD) system. Complex microstructure and chemical composition distribution are found, especially at the SA508-52 interface and the 52-316L interface. In brief, a complicated microstructure transition exists within the SA508 heat affected zone (HAZ); the residual strain, the fraction of high angle random grain boundaries and low angle boundaries decrease with increasingmore » the distance from the fusion boundary in 316L HAZ; neither typical type II boundary nor obvious carbon-depleted zone is found near the SA508-52 interface; dramatic and complicated changes of the contents of the main elements, Fe, Cr and Ni, are observed at the distinct interfaces, especially at the SA508-52 interface. No carbon concentration is found at the SA508-52 interface. - Highlights: •Residual strain and GBCD change as a function of the distance from FB in 316L HAZ. •Neither type II boundary nor obvious carbon-depleted zone is found in SA508 HAZ. •No carbon concentration is found at the SA508-52 interface. •The middle part of the DMWJ has the highest residual strain.« less

  9. Microstructural evolution and precipitation behavior in heat affected zone of Inconel 625 and AISI 904L dissimilar welds

    NASA Astrophysics Data System (ADS)

    Senthur Prabu, S.; Devendranath Ramkumar, K.; Arivazhagan, N.

    2017-11-01

    In the present investigation an attempt has been made to join the dissimilar combination of Inconel 625 super alloy and super austenitic stainless steel (AISI 904L) using manual multi-pass continuous current gas tungsten arc (CCGTA) welding processes. Two different filler wires such as ERNiCrMo-4 and ERNiCrCoMo-1 have been used to compare the metallurgical properties of these welded joints. Both optical microscopy and scanning electron microscopy techniques were adopted to disseminate the microstructure traits of these weldments. Formation of secondary phases at the HAZ and weld interface of AISI 904L was witnessed while using the ERNiCrCoMo-1 filler, along with Solidification Grain Boundary (SGB) and Migrated Grain Boundary (MGB) were also observed at the weld zone.

  10. Effects of cooling time and alloying elements on the microstructure of the gleeble-simulated heat-affected zone of 22% Cr duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Hsieh, Rong-Iuan; Liou, Horng-Yih; Pan, Yeong-Tsuen

    2001-10-01

    The effects of austenite stabilizers, such as nitrogen, nickel, and manganese, and cooling time on the microstructure of the Gleeble simulated heat-affected zone (HAZ) of 22% Cr duplex stainless steels were investigated. The submerged are welding was performed for comparison purposes. Optical microscopy (OM) and transmission electron microscopy (TEM) were used for microscopic studies. The amount of Cr2N precipitates in the simulated HAZ was determined using the potentiostatic electrolysis method. The experimental results indicate that an increase in the nitrogen and nickel contents raised the δ to transformation temperature and also markedly increased the amount of austenite in the HAZ. The lengthened cooling time promotes the reformation of austenite. An increase in the austenite content reduces the supersaturation of nitrogen in ferrite matrix as well as the precipitation tendency of Cr2N. The optimum cooling time from 800 to 500 °C (Δ t 8/5) obtained from the Gleeble simulation is between 30 and 60 s, which ensures the austenite content in HAZ not falling below 25% and superior pitting and stress corrosion cracking resistance for the steels. The effect of manganese on the formation of austenite can be negligible.

  11. Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unnikrishnan, Rahul, E-mail: rahulunnikrishnannair@gmail.com; Idury, K.S.N. Satish, E-mail: satishidury@gmail.com; Ismail, T.P., E-mail: tpisma@gmail.com

    Austenitic stainless steels are widely used in high performance pressure vessels, nuclear, chemical, process and medical industry due to their very good corrosion resistance and superior mechanical properties. However, austenitic stainless steels are prone to sensitization when subjected to higher temperatures (673 K to 1173 K) during the manufacturing process (e.g. welding) and/or certain applications (e.g. pressure vessels). During sensitization, chromium in the matrix precipitates out as carbides and intermetallic compounds (sigma, chi and Laves phases) decreasing the corrosion resistance and mechanical properties. In the present investigation, 304L austenitic stainless steel was subjected to different heat inputs by shielded metalmore » arc welding process using a standard 308L electrode. The microstructural developments were characterized by using optical microscopy and electron backscattered diffraction, while the residual stresses were measured by X-ray diffraction using the sin{sup 2}ψ method. It was observed that even at the highest heat input, shielded metal arc welding process does not result in significant precipitation of carbides or intermetallic phases. The ferrite content and grain size increased with increase in heat input. The grain size variation in the fusion zone/heat affected zone was not effectively captured by optical microscopy. This study shows that electron backscattered diffraction is necessary to bring out changes in the grain size quantitatively in the fusion zone/heat affected zone as it can consider twin boundaries as a part of grain in the calculation of grain size. The residual stresses were compressive in nature for the lowest heat input, while they were tensile at the highest heat input near the weld bead. The significant feature of the welded region and the base metal was the presence of a very strong texture. The texture in the heat affected zone was almost random. - Highlights: • Effect of heat input on microstructure, residual stresses and corrosion is studied. • HAZ and width of dendrite in the welded region increase with heat input. • Residual stresses are tensile near the welded region after the highest heat input. • Welded region has the highest pit density after highest heat input. • Dendrites and δ-ferrite were highly oriented in the welded region.« less

  12. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eghlimi, Abbas, E-mail: a.eghlimi@ma.iut.ac.ir; Shamanian, Morteza; Eskandarian, Masoomeh

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientationmore » relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld metal. • Weld metal had the lowest texture intensity and ratio of low angle and CSL boundaries.« less

  13. Study of MA Effect on Yield Strength and Ductility of X80 Linepipe Steels Weld

    NASA Astrophysics Data System (ADS)

    Huda, Nazmul; Lazor, Robert; Gerlich, Adrian P.

    2017-09-01

    Multipass GMAW (Gas Metal Arc Welding) welding was used to join X80 linepipe materials using two weld metals of slightly different compositions. Welding wires with diameters of 0.984 and 0.909 mm were used while applying the same heat input in each pass. The slight difference in the wire diameters resulted in different HAZ microstructures. The microstructures in the doubly reheated HAZ of both welds were found to contain bainite-ferrite. However, etching also revealed a difference in martensite-austenite (MA) fraction in these reheated zones. The MA exhibited twice the hardness of ferrite when measured by nanoindentation. Tensile testing from the reheated zone of both welds revealed a difference in yield strength, tensile strength and elongation of the transverse weld specimens. In the reheated zone of weld A, (produced with a 0.984 mm wire) a higher fraction of MA was observed, which resulted in higher strength but lower elongation compared to weld B. The ductility of weld A was found severely impaired (to nearly half of weld B) due to formation of closely spaced voids around the MA, along with debonding of MA from the matrix, which occurs just above the yield stress.

  14. Microstructural Study of 17-4PH Stainless Steel after Plasma-Transferred Arc Welding.

    PubMed

    Deng, Dewei; Chen, Rui; Sun, Qi; Li, Xiaona

    2015-01-29

    The improvement of the surface qualities and surface hardening of precipitation hardened martensitic stainless steel 17-4PH was achieved by the plasma-transferred arc welding (PTAW) process deposited with Co-based alloy. The microstructure of the heat affected zone (HAZ) and base metal were characterized by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results show that there are obvious microstructural differences between the base metal and HAZ. For example, base material is transformed from lath martensite to austenite due to the heateffect of the welding process. On the other hand, the precipitate in the matrix (bar-like shape Cr₇C₃ phase with a width of about one hundred nanometres and a length of hundreds of nanometres) grows to a rectangular appearance with a width of about two hundred nanometres and a length of about one micron. Stacking fault could also be observed in the Cr₇C₃ after PTAW. The above means that welding can obviously improve the surface qualities.

  15. Modeling macro-and microstructures of gas-metal-arc welded HSLA-100 steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Z.; Debroy, T.

    1999-06-01

    Fluid flow and heat transfer during gas-metal-arc welding (GMAW) of HSLA-100 steel were studied using a transient, three-dimensional, turbulent heat transfer and fluid flow model. The temperature and velocity fields, cooling rates, and shape and size of the fusion and heat-affected zones (HAZs) were calculated. A continuous-cooling-transformation (CCT) diagram was computed to aid in the understanding of the observed weld metal microstructure. The computed results demonstrate that the dissipation of heat and momentum in the weld pool is significantly aided by turbulence,m thus suggesting that previous modeling results based on laminar flow need to be re-examined. A comparison of themore » calculated fusion and HAZ geometries with their corresponding measured values showed good agreement. Furthermore, finger penetration, a unique geometric characteristic of gas-metal-arc weld pools, could be satisfactorily predicted from the model. The ability to predict these geometric variables and the agreement between the calculated and the measured cooling rates indicate the appropriateness of using a turbulence model for accurate calculations. The microstructure of the weld metal consisted mainly of acicular ferrite with small amounts of bainite. At high heat inputs, small amounts of allotriomorphic and Widmanstaetten ferrite were also observed. The observed microstructures are consistent with those expected from the computed CCT diagram and the cooling rates. The results presented here demonstrate significant promise for understanding both macro-and microstructures of steel welds from the combination of the fundamental principles from both transport phenomena and phase transformation theory.« less

  16. Microstructural and hardness investigations on a dissimilar metal weld between low alloy steel and Alloy 82 weld metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.R., E-mail: raymix@aliyun.com

    The investigation on microstructure and hardness at the fusion boundary (FB) region of a dissimilar metal weld (DMW) between low alloy steel (LAS) A508-III and Alloy 82 weld metal (WM) was carried out. The results indicated that there were two kinds of FBs, martensite FB and sharp FB, with obvious different microstructures, alternately distributed in the same FB. The martensite FB region had a gradual change of elemental concentration across FB, columnar WM grains with high length/width ratios, a thick martensite layer and a wide heat affected zone (HAZ) with large prior austenite grains. By comparison, the sharp FB regionmore » had a relatively sharp change of elemental concentration across the FB, WM grains with low length/width ratios and a narrow HAZ with smaller prior austenite grains. The martensite possessed a K-S orientation relationship with WM grains, while no orientation relationship was found between the HAZ grains and WM grains at the sharp FB. Compared with sharp FB there were much more Σ3 boundaries in the HAZ beside martensite FB. The hardness maximum of the martensite FB was much higher than that of the sharp FB, which was attributed to the martensite layer at the martensite FB. - Highlights: •Martensite and sharp FBs with different microstructures were found in the same FB. •There were high length/width-ratio WM grains and a wide HAZ beside martensite FB. •There were low length/width-ratio WM grains and a narrow HAZ beside sharp FB. •Compared with sharp FB, there were much more Σ3 boundaries in HAZ of martensite FB. •Hardness maximium of martensite FB was much higher than that of sharp FB.« less

  17. Comparison of microstructure and mechanical properties of ultra-narrow gap laser and gas-metal-arc welded S960 high strength steel

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Li, Lin; Dong, Shiyun; Crowther, Dave; Thompson, Alan

    2017-04-01

    The microstructural characteristics and mechanical properties, including micro-hardness, tensile properties, three-point bending properties and Charpy impact toughness at different test temperatures of 8 mm thick S960 high strength steel plates were investigated following their joining by multi-pass ultra-narrow gap laser welding (NGLW) and gas metal arc welding (GMAW) techniques. It was found that the microstructure in the fusion zone (FZ) for the ultra-NGLW joint was predominantly martensite mixed with some tempered martensite, while the FZ for the GMAW joint was mainly consisted of ferrite with some martensite. The strength of the ultra-NGLW specimens was comparable to that of the base material (BM), with all welded specimens failed in the BM in the tensile tests. The tensile strength of the GMAW specimens was reduced approximately by 100 MPa when compared with the base material by a broad and soft heat affected zone (HAZ) with failure located in the soft HAZ. Both the ultra-NGLW and GMAW specimens performed well in three-point bending tests. The GMAW joints exhibited better impact toughness than the ultra-NGLW joints.

  18. Observation of changes in the metallurgical characteristics of Ni-Cr alloys using Nd:YAG laser welding

    PubMed Central

    Choi, SM

    2014-01-01

    This study aimed to determine the effect of hardness change according to penetration depth in the laser fusing zone and observed the correlation of the microstructure as an Nd:YAG laser was irradiated to Ni-Cr alloy for dental use by setting the spot diameter size to various conditions. In all groups, the hardness depth profiles in the laser fusing zone and heat-affected zone (HAZ) had larger values than those of the base metal. In addition, the hardness values in places beyond the fusing zone and the HAZ were measured as being quantitatively lower. The observation result of the diffusion of the constituent elements and microstructure using field emission scanning electron microscopy, energy-dispersive spectroscopy, and electron probe microanalyzer showed that the fusing zone revealed a much finer dendritic form than the base metal due to the self-quenching effect after welding, while no change in constituent elements was found although some evaporation of the main elements was observed. In addition, Mo- and Si-combined intermetallic compounds were formed on the interdendritic area. Through this study, the laser fusing zone had better hardenability due to the intermetallic compound and grain refinement effect. PMID:25342985

  19. Constitutive model of friction stir weld with consideration of its inhomogeneous mechanical properties

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Min, Junying; Wang, Bin; Lin, Jianping; Li, Fangfang; Liu, Jing

    2016-03-01

    In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis, in particular, for friction stir welded(FSW) blanks due to the large width and good formability of its weld seam. The inhomogeneous mechanical properties across weld seam need to be well characterized for an accurate FE analysis. Based on a similar AA5182 FSW blank, the metallographic observation and micro-Vickers hardness analysis upon the weld cross-section are performed to identify the interfaces of different sub-zones, i.e., heat affected zone(HAZ), thermal-mechanically affected zone(TMAZ) and weld nugget(WN). Based on the rule of mixture and hardness distribution, a constitutive model is established for each sub-zone to characterize the inhomogeneous mechanical properties across the weld seam. Uniaxial tensile tests of the AA5182 FSW blank are performed with the aid of digital image correlation(DIC) techniques. Experimental local stress-strain curves are obtained for different weld sub-zones. The experimental results show good agreement with those derived from the constitutive models, which demonstrates the feasibility and accuracy of these models. The proposed research gives an accurate characterization of inhomogeneous mechanical properties across the weld seam produced by FSW, which provides solutions for improving the FE simulation accuracy of FSW sheet forming.

  20. Room temperature mechanical properties of electron beam welded zircaloy-4 sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parga, C. J.; Rooyen, I. J.; Coryell, B. D.

    Room temperature mechanical properties of electron beam welded and plain Zircaloy-4 sheet (1.6mm thick) have been measured and compared. Various welding parameters were utilized to join sheet material. Electron beam welded specimens and as-received sheet specimens show comparable mechanical properties. Zr-4 sheet displays anisotropy; tensile properties measured for transverse display higher elastic modulus, yield strength, reduction of area and slightly lower ductility than for the longitudinal (rolling direction). Higher welding power increases the alloy’s hardness, elastic modulus and yield strength, with a corresponding decrease in tensile strength and ductility. The hardness measured at weld is comparable to the parent metalmore » hardness. Hardness at heat-affected-zone is slightly higher. Electron microscopic examination shows distinct microstructure morphology and grain size at the weld zone, HAZ and parent metal. A correlation between welding parameters, mechanical properties and microstructural features was established for electron beam welded Zircaloy-4 sheet material.« less

  1. Room temperature mechanical properties of electron beam welded zircaloy-4 sheet

    DOE PAGES

    Parga, C. J.; Rooyen, I. J.; Coryell, B. D.; ...

    2017-11-04

    Room temperature mechanical properties of electron beam welded and plain Zircaloy-4 sheet (1.6mm thick) have been measured and compared. Various welding parameters were utilized to join sheet material. Electron beam welded specimens and as-received sheet specimens show comparable mechanical properties. Zr-4 sheet displays anisotropy; tensile properties measured for transverse display higher elastic modulus, yield strength, reduction of area and slightly lower ductility than for the longitudinal (rolling direction). Higher welding power increases the alloy’s hardness, elastic modulus and yield strength, with a corresponding decrease in tensile strength and ductility. The hardness measured at weld is comparable to the parent metalmore » hardness. Hardness at heat-affected-zone is slightly higher. Electron microscopic examination shows distinct microstructure morphology and grain size at the weld zone, HAZ and parent metal. A correlation between welding parameters, mechanical properties and microstructural features was established for electron beam welded Zircaloy-4 sheet material.« less

  2. Remote reactor repair: GTA (gas tungsten Arc) weld cracking caused by entrapped helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanne, Jr, W R

    1988-01-01

    A repair patch was welded to the wall of a nuclear reactor tank using remotely controlled thirty-foot long robot arms. Further repair was halted when gas tungsten arc (GTA) welds joining type 304L stainless steel patches to the 304 stainless steel wall developed toe cracks in the heat-affected zone (HAZ). The role of helium in cracking was investigated using material with entrapped helium from tritium decay. As a result of this investigation, and of an extensive array of diagnostic tests performed on reactor tank wall material, helium embrittlement was shown to be the cause of the toe cracks.

  3. Microstructure and Low-Temperature Mechanical Properties of 304 Stainless Steel Joints by PAW + GTAW Combined Welding

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Li, Yajiang; Wang, Juan

    2016-10-01

    The combined double-pass process of plasma arc welding (PAW) + gas tungsten arc welding (GTAW) was performed on 304 austenitic stainless steel with the thickness of 12 mm. Results indicated that two different morphologies of ferrite (e.g., lathy δ-ferrite and skeletal δ-ferrite) were formed within the austenite matrix in PAW weld metal (PAW-WM). GTAW weld metal (GTAW-WM) was mainly composed of fine austenite and skeletal δ-ferrite. In transition zone between PAW-WM and GTAW-WM, epitaxial growth contributed to cellular dendritic crystals transforming into columnar crystals. The tensile strength of joint is about 700 MPa. The impact toughness of WM varied from 281 J (20 °C) to 122 (-196 °C), while the impact toughness of heat-affected zone (HAZ) varied from 205 J (20 °C) to 112 J (-196 °C).

  4. Parametric optimisation and microstructural analysis on high power Yb-fibre laser welding of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Ahn, J.; Chen, L.; Davies, C. M.; Dear, J. P.

    2016-11-01

    In this work thin sheets of Ti-6Al-4V were full penetration welded using a 5 kW fibre laser in order to evaluate the effectiveness of high power fibre laser as a welding processing tool for welding Ti-6Al-4V with the requirements of the aircraft industry and to determine the effect of welding parameters including laser power, welding speed and beam focal position on the weld microstructure, bead profile and weld quality. It involved establishing an understanding of the influence of welding parameters on microstructural change, welding defects, and the characteristics of heat affected zone (HAZ) and weld metal (WM) of fibre laser welded joints. The optimum range of welding parameters which produced welds without cracking and porosity were identified. The influence of the welding parameters on the weld joint heterogeneity was characterised by conducting detailed microstructural analysis.

  5. Electron Beam Welding of IN792 DS: Effects of Pass Speed and PWHT on Microstructure and Hardness

    PubMed Central

    Angella, Giuliano; Montanari, Roberto; Richetta, Maria; Varone, Alessandra

    2017-01-01

    Electron Beam (EB) welding has been used to realize seams on 2 mm-thick plates of directionally solidified (DS) IN792 superalloy. The first part of this work evidenced the importance of pre-heating the workpiece to avoid the formation of long cracks in the seam. The comparison of different pre-heating temperatures (PHT) and pass speeds (v) allowed the identification of optimal process parameters, namely PHT = 300 °C and v = 2.5 m/min. The microstructural features of the melted zone (MZ); the heat affected zone (HAZ), and base material (BM) were investigated by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), electron back-scattered diffraction (EBSD), X-ray diffraction (XRD), and micro-hardness tests. In the as-welded condition; the structure of directionally oriented grains was completely lost in MZ. The γ’ phase in MZ consisted of small (20–40 nm) round shaped particles and its total amount depended on both PHT and welding pass speed, whereas in HAZ, it was the same BM. Even if the amount of γ’ phase in MZ was lower than that of the as-received material, the nanometric size of the particles induced an increase in hardness. EDS examinations did not show relevant composition changes in the γ’ and γ phases. Post-welding heat treatments (PWHT) at 700 and 750 °C for two hours were performed on the best samples. After PWHTs, the amount of the ordered phase increased, and the effect was more pronounced at 750 °C, while the size of γ’ particles in MZ remained almost the same. The hardness profiles measured across the joints showed an upward shift, but peak-valley height was a little lower, indicating more homogeneous features in the different zones. PMID:28872620

  6. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by super duplex filler metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eghlimi, Abbas, E-mail: a.eghlimi@ma.iut.ac.ir; Shamanian, Morteza; Eskandarian, Masoomeh

    In the present paper, microstructural changes across an as-welded dissimilar austenitic/duplex stainless steel couple welded by a super duplex stainless steel filler metal using gas tungsten arc welding process is characterized with optical microscopy and electron back-scattered diffraction techniques. Accordingly, variations of microstructure, texture, and grain boundary character distribution of base metals, heat affected zones, and weld metal were investigated. The results showed that the weld metal, which was composed of Widmanstätten austenite side-plates and allotriomorphic grain boundary austenite morphologies, had the weakest texture and was dominated by low angle boundaries. The welding process increased the ferrite content but decreasedmore » the texture intensity at the heat affected zone of the super duplex stainless steel base metal. In addition, through partial ferritization, it changed the morphology of elongated grains of the rolled microstructure to twinned partially transformed austenite plateaus scattered between ferrite textured colonies. However, the texture of the austenitic stainless steel heat affected zone was strengthened via encouraging recrystallization and formation of annealing twins. At both interfaces, an increase in the special character coincident site lattice boundaries of the primary phase as well as a strong texture with <100> orientation, mainly of Goss component, was observed. - Graphical abstract: Display Omitted - Highlights: • Weld metal showed local orientation at microscale but random texture at macroscale. • Intensification of <100> orientated grains was observed adjacent to the fusion lines. • The austenite texture was weaker than that of the ferrite in all duplex regions. • Welding caused twinned partially transformed austenites to form at SDSS HAZ. • At both interfaces, the ratio of special CSL boundaries of the primary phase increased.« less

  7. Identification of the Quality Spot Welding used Non Destructive Test-Ultrasonic Testing: (Effect of Welding Time)

    NASA Astrophysics Data System (ADS)

    Sifa, A.; Endramawan, T.; Badruzzaman

    2017-03-01

    Resistance Spot Welding (RSW) is frequently used as one way of welding is used in the manufacturing process, especially in the automotive industry [4][5][6][7]. Several parameters influence the process of welding points. To determine the quality of a welding job needs to be tested, either by damaging or testing without damage, in this study conducted experimental testing the quality of welding or identify quality of the nugget by using Non-Destructive Test (NDT) -Ultrasonic Testing (UT), in which the identification of the quality of the welding is done with parameter thickness of worksheet after welding using NDT-UT with use same material worksheet and have more thickness of worksheet, the thickness of the worksheet single plate 1mm, with the capability of propagation Ultrasonic Testing (UT) standard limited> 3 mm [1], welding process parameters such as the time difference between 1-10s and the welding current of 8 KV, visually Heat Affected Zone ( HAZ ) have different results due to the length of time of welding. UT uses a probe that is used with a frequency of 4 MHz, diameter 10 mm, range 100 and the couplant used is oil. Identification techniques using drop 6dB, with sound velocity 2267 m / s of Fe, with the result that the effect of the Welding time affect the size of the HAZ, identification with the lowest time 1s show results capable identified joined through NDT - UT.

  8. Recovery of Mechanical Properties of a 6061-T6 Aluminum Weld by Heat Treatment After Welding

    NASA Astrophysics Data System (ADS)

    Pérez, Javier Serrano; Ambriz, Ricardo Rafael; López, Francisco Fernando Curiel; Vigueras, David Jaramillo

    2016-07-01

    The dilution effects in welds of a 6061-T6 (Al-Si-Mg) alloy obtained by the modified indirect electric arc (MIEA), using an ER4043 filler metal (Al-Si), and postweld heat treatment (PWHT) were analyzed. The soft zone (55 to 70 HV0.1) formed by the microstructural transformation in the heat-affected zone (HAZ) was eliminated. The hardness measurements were presented on a traditional microhardness profile and mapping representation. A hardening effect of the fusion zone was observed; the hardness values were above 120 HV0.1 and tended to be uniform. This behavior could be attributed to the chemical composition of the filler metal, the Mg migration from the base to the weld metal, and the reversible process of the PWHT, which promotes precipitation hardening. Improvement for yield (260 MPa) and tensile strength (310 MPa) of the MIEA joints was observed; these values were similar to those obtained for the base metal. However, the presence of porosity in the fusion zone limits the ductility of the joints (4.3 pct). Even though the yield and tensile strengths of the base metal and welded joints were similar, the stress concentration due to porosity in the weld metal generated data dispersion in fatigue life. As a consequence, the high-cycle fatigue life decreases with respect to the base metal. In contrast, when the crack propagates under elastic conditions, the crack-tip singularity is affected by the porosity in the weld metal (stress liberator). This aspect, in conjunction with the hardening effect in joints subjected to PWHT, improves the fatigue crack growth rate when compared to the as-welded condition.

  9. An Evaluation of Global and Local Tensile Properties of Friction-Stir Welded DP980 Dual-Phase Steel Joints Using a Digital Image Correlation Method

    PubMed Central

    Lee, Hyoungwook; Kim, Cheolhee; Song, Jung Han

    2015-01-01

    The effect of the microstructure heterogeneity on the tensile plastic deformation characteristic of friction-stir-welded (FSW) dual-phase (DP) steel was investigated for the potential applications on the lightweight design of vehicles. Friction-stir-welded specimens with a butt joint configuration were prepared, and quasi-static tensile tests were conducted, to evaluate the tensile properties of DP980 dual-phase steels. The friction-stir welding led to the formation of martensite and a significant hardness rise in the stir zone (SZ), but the presence of a soft zone in the heat-affected zone (HAZ) was caused by tempering of the pre-existing martensite. Owing to the appearance of severe soft zone, DP980 FSW joint showed almost 93% joint efficiency with the view-point of ultimate tensile strength and relatively low ductility than the base metal (BM). The local tensile deformation characteristic of the FSW joints was also examined using the digital image correlation (DIC) methodology by mapping the global and local strain distribution, and was subsequently analyzed by mechanics calculation. It is found that the tensile deformation of the FSW joints is highly heterogeneous, leading to a significant decrease in global ductility. The HAZ of the joints is the weakest region where the strain localizes early, and this localization extends until fracture with a strain near 30%, while the strain in the SZ and BM is only 1% and 4%, respectively. Local constitutive properties in different heterogeneous regions through the friction-stir-welded joint was also briefly evaluated by assuming iso-stress conditions. The local stress-strain curves of individual weld zones provide a clear indication of the heterogeneity of the local mechanical properties. PMID:28793720

  10. An Evaluation of Global and Local Tensile Properties of Friction-Stir Welded DP980 Dual-Phase Steel Joints Using a Digital Image Correlation Method.

    PubMed

    Lee, Hyoungwook; Kim, Cheolhee; Song, Jung Han

    2015-12-04

    The effect of the microstructure heterogeneity on the tensile plastic deformation characteristic of friction-stir-welded (FSW) dual-phase (DP) steel was investigated for the potential applications on the lightweight design of vehicles. Friction-stir-welded specimens with a butt joint configuration were prepared, and quasi-static tensile tests were conducted, to evaluate the tensile properties of DP980 dual-phase steels. The friction-stir welding led to the formation of martensite and a significant hardness rise in the stir zone (SZ), but the presence of a soft zone in the heat-affected zone (HAZ) was caused by tempering of the pre-existing martensite. Owing to the appearance of severe soft zone, DP980 FSW joint showed almost 93% joint efficiency with the view-point of ultimate tensile strength and relatively low ductility than the base metal (BM). The local tensile deformation characteristic of the FSW joints was also examined using the digital image correlation (DIC) methodology by mapping the global and local strain distribution, and was subsequently analyzed by mechanics calculation. It is found that the tensile deformation of the FSW joints is highly heterogeneous, leading to a significant decrease in global ductility. The HAZ of the joints is the weakest region where the strain localizes early, and this localization extends until fracture with a strain near 30%, while the strain in the SZ and BM is only 1% and 4%, respectively. Local constitutive properties in different heterogeneous regions through the friction-stir-welded joint was also briefly evaluated by assuming iso-stress conditions. The local stress-strain curves of individual weld zones provide a clear indication of the heterogeneity of the local mechanical properties.

  11. Microstructure and fatigue resistance of high strength dual phase steel welded with gas metal arc welding and plasma arc welding processes

    NASA Astrophysics Data System (ADS)

    Ahiale, Godwin Kwame; Oh, Yong-Jun; Choi, Won-Doo; Lee, Kwang-Bok; Jung, Jae-Gyu; Nam, Soo Woo

    2013-09-01

    This study presents the microstructure and high cycle fatigue performance of lap shear joints of dual phase steel (DP590) welded using gas metal arc welding (GMAW) and plasma arc welding (PAW) processes. High cycle fatigue tests were conducted on single and double lap joints under a load ratio of 0.1 and a frequency of 20 Hz. In order to establish a basis for comparison, both weldments were fabricated to have the same weld depth in the plate thickness. The PAW specimens exhibited a higher fatigue life, a gentle S-N slope, and a higher fatigue limit than the GMAW specimens. The improvement in the fatigue life of the PAW specimens was primarily attributed to the geometry effect that exhibited lower and wider beads resulting in a lower stress concentration at the weld toe where cracks initiate and propagate. Furthermore, the microstructural constituents in the heat-affected zone (HAZ) of the PAW specimens contributed to the improvement. The higher volume fraction of acicular ferrite in the HAZ beneath the weld toe enhanced the PAW specimen's resistance to fatigue crack growth. The double lap joints displayed a higher fatigue life than the single lap joints without changing the S-N slope.

  12. Furniture Rack Corrosion Coupon Surveillance - 2012 Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J. I.; Murphy, T. R.; Berry, C. J.

    Under the L Basin corrosion surveillance program furniture rack coupons immersed for 14 years (FY2009 coupons) and 16 years (FY2011 coupons) were analyzed and the results trended with coupons exposed for shorter times. In addition, a section harvested from an actual furniture rack that was immersed for 14 years was analyzed for pitting in the weld and heat-affected-zone (HAZ) regions. The L Basin operations maintained very good water quality over the entire immersion period for these samples. These results for FY2009 and FY2011 coupons showed that the average pit depths for the 6061 and 6063 base metal are 1 andmore » 2 mils, respectively, while those for the weld and HAZ are 3 and 4 mils, respectively. The results for the weld and HAZ regions are similar to coupons removed during the period of FY2003 to FY2007. These similarities indicate that the pit development occurred quickly followed by slow kinetics of increase in pit depth. For the actual furniture rack sample average pits of 5 and 2 mils were measured for the HAZ and weld, respectively. These results demonstrate that pitting corrosion of the aluminum furniture racks used to support the spent fuel occurs in waters of good quality. The corrosion kinetics or pit depth growth rate is much less that 1 mil/year, and would not impact long-term use of this material system for fuel storage racks in L Basin if good water quality is maintained.« less

  13. Effect of zirconium addition on welding of aluminum grain refined by titanium plus boron

    NASA Astrophysics Data System (ADS)

    Zaid, A. I. O.

    2014-06-01

    Aluminum oxidizes freely in ordinary atmosphere which makes its welding difficult and weak, particularly it solidifies in columnar structure with large grains. Therefore, it is anticipated that the effect of addition of some grain refiners to its melt before solidification is worth while investigating as it may enhance its weldabilty and improve its mechanical strength. In this paper, the effect of addition of zirconium at a weight of 0.1% (which corresponds to the peretictic limit on the aluminum-zirconium base phase diagram) to commercially pure aluminum, grain refined by Ti+B on its weldability, using gas tungsten arc welding, GTAW, method which was formerly known as TIG. A constant current level of 30 AC Ampere was used because it removes the oxides during the welding process. Metallographic examination of the weldments of the different combinations of Al with Al and Al with its microalloys: in the heat affected zone, HAZ, and away from it was carried out and examined for HAZ width, porosity, cracks and microhardness. It was found that grain refining by Ti+B or Zr resulted in enhancement of the weldment.

  14. Microstructural Study of 17-4PH Stainless Steel after Plasma-Transferred Arc Welding

    PubMed Central

    Deng, Dewei; Chen, Rui; Sun, Qi; Li, Xiaona

    2015-01-01

    The improvement of the surface qualities and surface hardening of precipitation hardened martensitic stainless steel 17-4PH was achieved by the plasma-transferred arc welding (PTAW) process deposited with Co-based alloy. The microstructure of the heat affected zone (HAZ) and base metal were characterized by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results show that there are obvious microstructural differences between the base metal and HAZ. For example, base material is transformed from lath martensite to austenite due to the heateffect of the welding process. On the other hand, the precipitate in the matrix (bar-like shape Cr7C3 phase with a width of about one hundred nanometres and a length of hundreds of nanometres) grows to a rectangular appearance with a width of about two hundred nanometres and a length of about one micron. Stacking fault could also be observed in the Cr7C3 after PTAW. The above means that welding can obviously improve the surface qualities. PMID:28787947

  15. Microstructural characterisation of friction stir welding joints of mild steel to Ni-based alloy 625

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, J.; University of Campinas; Ramirez, A.J., E-mail: ramirezlondono.1@osu.edu

    2015-12-15

    In this study, 6-mm-thick mild steel and Ni-based alloy 625 plates were friction stir welded using a tool rotational speed of 300 rpm and a travel speed of 100 mm·min{sup −1}. A microstructural characterisation of the dissimilar butt joint was performed using optical microscopy, scanning and transmission electron microscopy, and energy dispersive X-ray spectroscopy (XEDS). Six different weld zones were found. In the steel, the heat-affected zone (HAZ) was divided into three zones and was composed of ferrite, pearlite colonies with different morphologies, degenerated regions of pearlite and allotriomorphic and Widmanstätten ferrite. The stir zone (SZ) of the steel showedmore » a coarse microstructure consisting of allotriomorphic and Widmanstätten ferrite, degenerate pearlite and MA constituents. In the Ni-based alloy 625, the thermo-mechanically affected zone (TMAZ) showed deformed grains and redistribution of precipitates. In the SZ, the high deformation and temperature produced a recrystallised microstructure, as well as fracture and redistribution of MC precipitates. The M{sub 23}C{sub 6} precipitates, present in the base material, were also redistributed in the stir zone of the Ni-based alloy. TMAZ in the steel and HAZ in the Ni-based alloy could not be identified. The main restorative mechanisms were discontinuous dynamic recrystallisation in the steel, and discontinuous and continuous dynamic recrystallisation in the Ni-based alloy. The interface region between the steel and the Ni-based alloy showed a fcc microstructure with NbC carbides and an average length of 2.0 μm. - Highlights: • Comprehensive microstructural characterisation of dissimilar joints of mild steel to Ni-based alloy • Friction stir welding of joints of mild steel to Ni-based alloy 625 produces sound welds. • The interface region showed deformed and recrystallised fcc grains with NbC carbides and a length of 2.0 μm.« less

  16. Intergranular Corrosion Behavior of 304LN Stainless Steel Heat Treated at 623 K (350 °C)

    NASA Astrophysics Data System (ADS)

    Singh, Raghuvir; Kumar, Mukesh; Ghosh, Mainak; Das, Gautam; Singh, P. K.; Chattoraj, I.

    2013-01-01

    Low temperature sensitization of 304LN stainless steel from the two pipes, differing slightly in chemical composition, has been investigated; specimens were aged at 623 K (350 °C) for 20,000 hours and evaluated for intergranular corrosion and degree of sensitization. The base and heat-affected zone (HAZ) of the 304LN-1 appear resistant to sensitization, while 304LN-2 revealed a "dual" type microstructure at the transverse section and HAZ. The microstructure at 5.0-mm distance from the fusion line indicates qualitatively less sensitization as compared to that at 2.0 mm. The 304LN-2 base alloy shows overall lower degree of sensitization values as compared to the 304LN-1. A similar trend of degree of sensitization was observed in the HAZ where it was higher in the 304LN-1 as compared to the 304LN-2. The weld zone of both the stainless steels suffered from cracking during ASTM A262 practice E, while the parent metals and HAZs did not show such fissures. A mottled image within the ferrite lamella showed spinodal decomposition. The practice E test and transmission electron microscopy results indicate that the interdendritic regions may suffer from failure due to carbide precipitation and due to the evolution of brittle phase from spinodal decomposition.

  17. Impact Toughness of Subzones in the Intercritical Heat-Affected Zone of Low-Carbon Bainitic Steel.

    PubMed

    Li, Zhenshun; Zhao, Xuemin; Shan, Dongri

    2018-06-06

    The subzones of the intercritical heat-affected zone (IC HAZ) of low-carbon bainitic steel were simulated by using a Gleeble-3500 simulator to study the impact toughness. The results showed that the IC HAZ is not entirely brittle and can be further divided into three subzones according to the impact toughness or peak welding temperature; the invariant subzone heated between the critical transformation start temperature ( A c1 ) and 770 °C exhibited unchanged high impact toughness. Furthermore, an extremely low impact toughness was found in the embrittlement subzone, heated between 770 and 830 °C, and the reduction subzone heated between 830 °C and the critical transformation finish temperature ( A c3 ) exhibited toughness below that of the original metal. The size of the blocky martensite-austenite (M-A) constituents was found to have a remarkable level of influence on the impact toughness when heated below 830 °C. Additionally, it was found that, once the constituent size exceeds a critical value of 3.0 µm at a peak temperature of 770 °C, the IC HAZ becomes brittle regardless of lath or twinned martensite constitution in the M-A constituent. Essentially, embrittlement was observed to occur when the resolved length of initial cracks (in the direction of the overall fracture) formed as a result of the debonding of M-A constituents exceeding the critical Griffith size. Furthermore, when the heating temperature exceeded 830 °C, the M-A constituents formed a slender shape, and the impact toughness increased as the area fraction of the slender M-A constituents decreased.

  18. Automated GMA welding of austenitic stainless steel pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahash, G.J.

    1996-12-31

    The study focused on reducing weld cycle times of rotatable subassemblies (spools) using automated welding equipment. A unique automatic Gas Metal Arc Welding (GMAW) system was used to produce a series of pipe to pipe welds on 141 mm (5 in.) schedule 80 seamless stainless steel pipe. After manual tack welding, the adaptive control system welded the root pass of the argon gas backed open vee groove circumferential butt joints in the IG rotated position with short circuiting transfer GMAW. The fill and cover passes were welded automatically with spray transfer GMAW. Automatic welding cycle times were found to bemore » 50--80 percent shorter than the current techniques of roll welding with Shielded Metal Arc Welding and manual Gas Tungsten Arc Welding. Weld costs ({Brit_pounds}/m), including amortization, for the various systems were compared. The cost of automated GMA welds was virtually equivalent to the most competitive methods while depositing 75% more filler metal per year. Also investigated were metallurgical effects generated by weld thermal cycling, and the associated effects on mechanical properties of the weld joint. Mechanical properties of the welds met or exceeded those of the base metal. Sensitization of the pipe did not occur in the heat affected zone (HAZ), based on the absence of evidence of intergranular attack in modified Strauss corrosion tests and despite the fact of interpass temperatures well above recommended maximums. Cooling rates of 3--5 C/s in the heat affected zone of the four pass welds were measured by thermocouple technique and found to be within the non-sensitizing range for this alloy.« less

  19. Microstructure Evolution during Dissimilar Friction Stir Welding of AA7003-T4 and AA6060-T4.

    PubMed

    Dong, Jialiang; Zhang, Datong; Zhang, Weiwen; Zhang, Wen; Qiu, Cheng

    2018-02-27

    In this work, the dissimilar joint of AA7003-T4 and 6060-T4 alloy has been produced by friction stir welding (FSW). The microstructure was examined by optical microscope (OM), electron back scattered diffraction (EBSD), transmission electron microscopy (TEM), and the mechanical properties of the joint were investigated. It is demonstrated that sound dissimilar joint can be produced through FSW. In the nugget; precipitations dissolve into the matrix and η' reprecipitate subsequently; and the elongated aluminum grains are replaced by fine and equiaxed grains due to dynamic recrystallization (DRX). In the heat affected zone (HAZ), coarse β' and η precipitates are formed and the aluminum grains are coarser as compared to the base materials. In the thermo-mechanical affected zone (TMAZ), equiaxed and elongated grains coexist due to incomplete DRX. The ultimate tensile strength of the dissimilar joint is 159.2 MPa and its elongation is 10.4%. The weak area exists in the HAZ of 6060 alloy, which is placed in the retreating side during FSW. The correlations between the microstucture and mechanical properties of the dissimilar joint are discussed.

  20. Microstructure Evolution during Dissimilar Friction Stir Welding of AA7003-T4 and AA6060-T4

    PubMed Central

    Dong, Jialiang; Zhang, Datong; Zhang, Weiwen; Zhang, Wen; Qiu, Cheng

    2018-01-01

    In this work, the dissimilar joint of AA7003-T4 and 6060-T4 alloy has been produced by friction stir welding (FSW). The microstructure was examined by optical microscope (OM), electron back scattered diffraction (EBSD), transmission electron microscopy (TEM), and the mechanical properties of the joint were investigated. It is demonstrated that sound dissimilar joint can be produced through FSW. In the nugget; precipitations dissolve into the matrix and η′ reprecipitate subsequently; and the elongated aluminum grains are replaced by fine and equiaxed grains due to dynamic recrystallization (DRX). In the heat affected zone (HAZ), coarse β′ and η precipitates are formed and the aluminum grains are coarser as compared to the base materials. In the thermo-mechanical affected zone (TMAZ), equiaxed and elongated grains coexist due to incomplete DRX. The ultimate tensile strength of the dissimilar joint is 159.2 MPa and its elongation is 10.4%. The weak area exists in the HAZ of 6060 alloy, which is placed in the retreating side during FSW. The correlations between the microstucture and mechanical properties of the dissimilar joint are discussed. PMID:29495463

  1. Microstructure-Property Correlations in Fiber Laser Welded Nb-Ti Microalloyed C-Mn Steel

    NASA Astrophysics Data System (ADS)

    Sun, Qian; Nie, Xiao-Kang; Li, Yang; Di, Hong-Shuang

    2018-02-01

    Mechanical Performance of traditional gas-shielded arc welded joints of 700 MPa grade microalloyed C-Mn steel cannot meet service requirements. Laser welding, with its characteristic high energy density, is known to improve the welding performance of experimental steels. In the present study, Nb-Ti microalloyed steel with a thickness of 4.5 mm was welded using a 4 kW fiber laser. The microstructure, precipitation, and mechanical properties of the welded joints were studied. The hardness and tensile strength of the welded joints were higher than those of the base metal (BM). The microstructure of the fusion zone (FZ) and coarse grain heat affected zone (CGHAZ) was lath martensite (LM), while the microstructure of the fine grain HAZ and mixed grain HAZ consisted of ferrite and martensite/austenite islands. Although LM was observed in both the FZ and CGHAZ, the hardness and calculated tensile strength of the FZ were lower than those of the CGHAZ, due to a reduction in solid solution strengthening by element loss and the dissolution of high-hardness precipitates in FZ. Most precipitates such as [(Nb,Ti)C and (Nb,Ti)(C,N)] that were present in the BM were dissolved, which led to an increase in C and N in solid solution in the FZ. Thus, the elastic modulus of the FZ was higher than that of the BM. Similarly, the elastic modulus of the CGHAZ was higher than that of the BM due to the segregation of C and N atoms during the welding process. The toughness of the FZ was superior to that of the BM, and the toughness of the HAZ approached 91% of that of the BM. The change in toughness primarily depended on the microstructural refinement, the increase in the fraction of grains with high misorientation, the residual austenite in the FZ and CGHAZ, and the dissolution of coarse precipitates.

  2. Material Interactions in a Novel Pinless Tool Approach to Friction Stir Spot Welding Thin Aluminum Sheet

    NASA Astrophysics Data System (ADS)

    Bakavos, Dimitrios; Chen, Yingchun; Babout, Laurent; Prangnell, Phil

    2011-05-01

    The requirement for a probe, or pin, in friction stir spot welding (FSSW) leads to an undesirable keyhole and "hooking," which can influence the fracture path and weld strength. Furthermore, the full weld cycle for FSSW is typically longer than ideal for the automotive industry, being 2 to 5 seconds. Here, it is shown that using a novel pinless tool design it is possible to achieve high lap shear strength (~3.4 kN) in thin aluminum sheet (~1 mm thick), with short weld cycle times (<1 second). Several techniques have been exploited to study the material flow and mechanisms of weld formation in pinless FSSW, including high-resolution X-ray tomography, to understand the role of the tool design and weld parameters. Despite the "simple" nature of a pinless tool, material flow in the weld zone was found to be surprisingly complex and strongly influenced by surface features on the tool, which greatly increased the penetration of the plastic zone into the bottom sheet. Because of the rapid thermal cycle and high level of grain refinement, the weld zone was found to develop a higher strength than the parent material with little evidence of a heat affected zone (HAZ) after postweld natural aging.

  3. Electrochemical Investigation of the Corrosion of Different Microstructural Phases of X65 Pipeline Steel under Saturated Carbon Dioxide Conditions

    PubMed Central

    Yang, Yuanfeng; Joshi, Gaurav R.; Akid, Robert

    2015-01-01

    The aim of this research was to investigate the influence of metallurgy on the corrosion behaviour of separate weld zone (WZ) and parent plate (PP) regions of X65 pipeline steel in a solution of deionised water saturated with CO2, at two different temperatures (55 °C and 80 °C) and at initial pH~4.0. In addition, a non-electrochemical immersion experiment was also performed at 80 °C in CO2, on a sample portion of X65 pipeline containing part of a weld section, together with adjacent heat affected zones (HAZ) and parent material. Electrochemical impedance spectroscopy (EIS) was used to evaluate the corrosion behaviour of the separate weld and parent plate samples. This study seeks to understand the significance of the different microstructures within the different zones of the welded X65 pipe in CO2 environments on corrosion performance; with particular attention given to the formation of surface scales; and their composition/significance. The results obtained from grazing incidence X-ray diffraction (GIXRD) measurements suggest that, post immersion, the parent plate substrate is scale free, with only features arising from ferrite (α-Fe) and cementite (Fe3C) apparent. In contrast, at 80 °C, GIXRD from the weld zone substrate, and weld zone/heat affected zone of the non-electrochemical sample indicates the presence of siderite (FeCO3) and chukanovite (Fe2CO3(OH)2) phases. Scanning Electron Microscopy (SEM) on this surface confirmed the presence of characteristic discrete cube-shaped crystallites of siderite together with plate-like clusters of chukanovite.

  4. Characteristics of AZ31 Mg alloy joint using automatic TIG welding

    NASA Astrophysics Data System (ADS)

    Liu, Hong-tao; Zhou, Ji-xue; Zhao, Dong-qing; Liu, Yun-teng; Wu, Jian-hua; Yang, Yuan-sheng; Ma, Bai-chang; Zhuang, Hai-hua

    2017-01-01

    The automatic tungsten-inert gas welding (ATIGW) of AZ31 Mg alloys was performed using a six-axis robot. The evolution of the microstructure and texture of the AZ31 auto-welded joints was studied by optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction. The ATIGW process resulted in coarse recrystallized grains in the heat affected zone (HAZ) and epitaxial growth of columnar grains in the fusion zone (FZ). Substantial changes of texture between the base material (BM) and the FZ were detected. The {0002} basal plane in the BM was largely parallel to the sheet rolling plane, whereas the c-axis of the crystal lattice in the FZ inclined approximately 25° with respect to the welding direction. The maximum pole density increased from 9.45 in the BM to 12.9 in the FZ. The microhardness distribution, tensile properties, and fracture features of the AZ31 auto-welded joints were also investigated.

  5. Automated Weld Characterization Using the Thermoelectric Method

    NASA Technical Reports Server (NTRS)

    Fulton, J. P.; Wincheski, B.; Namkung, M.

    1992-01-01

    The effective assessment of the integrity of welds is a complicated NDE problem that continues to be a challenge. To be able to completely characterize a weld, detailed knowledge of its tensile strength, ductility, hardness, microstructure, macrostructure, and chemical composition is needed. NDE techniques which can provide information on any of these features are extremely important. In this paper, we examine a seldom used approach based on the thermoelectric (TE) effect for characterizing welds and their associated heat affected zone (HAZ). The thermoelectric method monitors the thermoelectric power which is sensitive to small changes in the kinetics of the conduction electrons near the Fermi surface that can be caused by changes in the local microstructure. The technique has been applied to metal sorting, quality testing, flaw detection, thickness gauging of layers, and microscopic structural analysis. To demonstrate the effectiveness of the technique for characterizing welds, a series of tungsten-inert-gas welded Inconel-718 samples were scanned with a computer controlled TE probe. The samples were then analyzed using a scanning electron microscope and Rockwell hardness tests to characterize the weld and the associated HAZ. We then correlated the results with the TE measurements to provide quantitative information on the size of the HAZ and the degree of hardness of the material in the weld region. This provides potentially valuable information on the strength and fatigue life of the weld. We begin the paper by providing a brief review of the TE technique and then highlight some of the factors that can effect the measurements. Next, we provide an overview of the experimental procedure and discuss the results. Finally, we summarize our findings and consider areas for future research.

  6. Characterization of microstructure of A508III/309L/308L weld and oxide films formed in deaerated high-temperature water

    NASA Astrophysics Data System (ADS)

    Xiong, Qi; Li, Hongjuan; Lu, Zhanpeng; Chen, Junjie; Xiao, Qian; Ma, Jiarong; Ru, Xiangkun

    2018-01-01

    The microstructure of A508III/309L/308L weld clad and the properties of the oxide films formed in simulated pressurized water reactor primary water at 290 °C were characterized. The A508III heat-affected zone (HAZ) consisted primarily of a decarburization zone with ferrite near the fusion line and a following pearlite structure with fine grains. A high hardness region in the HAZ could be the result of C-enrichment. M23C6 and M7C3 precipitates were observed in element transition zone. 308L stainless steel (SS) containing ∼ 12% ferrites exhibited both ferritic-austenitic solidification mode (FA mode, δ→γ) and austenitic-ferritic solidification mode (AF mode, γ→δ), whereas 309L SS containing ∼ 9% ferrites exhibited only FA mode. The A508III surface oxide film was mainly Fe3O4 in deaerated high-temperature water. The coarse grain zone covered with few oxide particles was different from other types of film on the other region of HAZ and the bulk zone. More pitting appears on 309L SS after immersion in deaerated high-temperature water due to the dissolution of inclusions. SS surface oxide films consisted primarily of spinels. The oxide film on SS was divided into two layers. Ni was concentrated mainly at the oxide/substrate interface. The oxide film formed on 309L was thicker than that on the 308L. The ferrite in the stainless steel could improve the oxidation resistance.

  7. Metallurgical and mechanical properties of laser welded high strength low alloy steel

    PubMed Central

    Oyyaravelu, Ramachandran; Kuppan, Palaniyandi; Arivazhagan, Natarajan

    2016-01-01

    The study aimed at investigating the microstructure and mechanical properties of Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) laser welded high strength low alloy (HSLA) SA516 grade 70 boiler steel. The weld joint for a 4 mm thick plate was successfully produced using minimum laser power of 2 kW by employing a single pass without any weld preheat treatment. The micrographs revealed the presence of martensite phase in the weld fusion zone which could be due to faster cooling rate of the laser weldment. A good correlation was found between the microstructural features of the weld joints and their mechanical properties. The highest hardness was found to be in the fusion zone of cap region due to formation of martensite and also enrichment of carbon. The hardness results also showed a narrow soft zone at the heat affected zone (HAZ) adjacent to the weld interface, which has no effect on the weld tensile strength. The yield strength and ultimate tensile strength of the welded joints were 338 MPa and 549 MPa, respectively, which were higher than the candidate metal. These tensile results suggested that the laser welding process had improved the weld strength even without any weld preheat treatment and also the fractography of the tensile fractured samples showed the ductile mode of failure. PMID:27222751

  8. Hydrogen effects in duplex stainless steel welded joints - electrochemical studies

    NASA Astrophysics Data System (ADS)

    Michalska, J.; Łabanowski, J.; Ćwiek, J.

    2012-05-01

    In this work results on the influence of hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel (DSS) welded joints are described. The results were discussed by taking into account three different areas on the welded joint: weld metal (WM), heat-affected zone (HAZ) and parent metal. The corrosion resistance was qualified with the polarization curves registered in a synthetic sea water. The conclusion is that, hydrogen may seriously deteriorate the passive film stability and corrosion resistance to pitting of 2205 DSS welded joints. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen degradation was dependent on the hydrogen charging conditions. WM region has been revealed as the most sensitive to hydrogen action.

  9. Probing heat transfer, fluid flow and microstructural evolution during fusion welding of alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Wei

    The composition, geometry, structure and properties of the welded joints are affected by the various physical processes that take place during fusion welding. Understanding these processes has been an important goal in the contemporary welding research to achieve structurally sound and reliable welds. In the present thesis research, several important physical processes including the heat transfer, fluid flow and microstructural evolution in fusion welding were modeled based on the fundamentals of transport phenomena and phase transformation theory. The heat transfer and fluid flow calculation is focused on the predictions of the liquid metal convection in the weld pool, the temperature distribution in the entire weldment, and the shape and size of the fusion zone (FZ) and heat affected zone (HAZ). The modeling of microstructural evolution is focused on the quantitative understanding of phase transformation kinetics during welding of several important alloys under both low and high heating and cooling conditions. Three numerical models were developed in the present thesis work: (1) a three-dimensional heat transfer and free surface flow model for the gas metal arc (GMA) fillet welding considering the complex weld joint geometry, (2) a phase transformation model based on the Johnson-Mehl-Avrami (JMA) theory, and (3) a one-dimensional numerical diffusion model considering multiple moving interfaces. To check the capabilities of the developed models, several cases were investigated, in which the predictions from the models were compared with the experimental results. The cases studied are the follows. For the modeling of heat transfer and fluid flow, the welding processes studied included gas tungsten arc (GTA) linear welding, GTA transient spot welding, and GMA fillet welding. The calculated weldment geometry and thermal cycles was validated against the experimental data under various welding conditions. For the modeling of microstructural evolution, the welded materials investigated included AISI 1005 low-carbon steel, 1045 medium-carbon steel, 2205 duplex stainless steel (DSS) and Ti-6Al-4V alloy. The calculated phase transformation kinetics were compared with the experimental results obtained using an x-ray diffraction technique by Dr. John W. Elmer of Lawrence Livermore National Laboratory. (Abstract shortened by UMI.)

  10. Effect of pin tool design on the material flow of dissimilar AA7075-AA6061 friction stir welds

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammed M.; Ishak, M.; Rejab, M. R. M.

    2017-10-01

    Tool design is the most influential aspect in the friction stir welding (FSW) technology. Influence of pin tool geometry on material flow pattern are studied in this work during the FSW of dissimilar AA7075 and AA6061 aluminium alloys. Three truncated pin tool profiles (threaded, threaded with single flat, and unthreaded with single flat) were used to prepare the weldments. The workpieces were joined using a custom-made clamping system under 1100 rpm of spindle speed, 300 mm/min of traverse rate and 3° of tilt angle. The metallographic analysis showed that defect-free welds can be produced using the three pin tools with significant changes in the mixing stir zone structure. The results declared that the introducing of the flat on the cone of the probe deviates the pattern of the onion rings without changing the chemical composition of the created layers. This in turn improves the hardness distribution and tensile strength of the welded joint. It was also noted that both heat affected zone (HAZ) and thermal-mechanical affected zone (TMAZ) are similar in composition to their corresponding base materials (BM).

  11. Effect of micromorphology at the fatigue crack tip on the crack growth in electron beam welded Ti-6Al-4V joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Junhui; Hu, Shubing, E-mail: 187352581@qq.com

    In this paper, we describe experiments on welded joints of Ti-6Al-4V alloy specimens exhibiting fatigue characteristics in the base metal (BM), hot affected zone (HAZ) and fuse zone (FZ). The effect of micromorphology on crack propagation at the tip of the fatigue crack in joints formed by electron beam welding was investigated using an optical microscope, transmission electron microscope and other methodologies. The results demonstrated that the fatigue crack originated in and propagated along α/β boundaries in the BM. In the HAZ, the fatigue crack occurred at the boundary between martensite laths, and propagated through most irregular-equiaxed α phases andmore » a few martensite laths. In the FZ, the fatigue crack originated at the boundaries between the fine crushing phases among martensite laths, and propagated along a majority of α/β boundaries and several narrow martensite laths. The electron beam welded joint of Ti-6Al-4V alloy showed instances of zigzag fatigue cracks that increased in degree from lowest in the HAZ, moderate in the FZ to greatest in the BM. Conversely, fatigue crack growth rate (FCGR) was greatest in the HAZ, less in the FZ and slowest in the BM. - Highlights: •Ti-6Al-4V welded joint exhibits different fatigue characteristics. •The fatigue crack propagates along α/β boundaries in the BM. •The fatigue crack propagates through α phases and martensite laths in the HAZ. •The fatigue crack propagates along α/β boundaries and martensite laths in the FZ. •Fatigue crack growth rate is fastest in the HAZ, less in the FZ, slowest in the BM.« less

  12. PWHT effect on the mechanical properties of borated stainless steel GTA weldments for nuclear shield

    NASA Astrophysics Data System (ADS)

    Park, T.-D.; Baek, K.-K.; Kim, D.-S.

    1997-02-01

    To improve ductility of the welded joint of B-added austenitic stainless steels, postweld annealing effect has been studied. Gas Tungsten Arc (GTA) welds of AlSI 304-B3 stainless steel plates were annealed either at 700 1100°C for 1 hour or at 1100°C and 1200°C, for 1 7 hours. Bending test of the welds in as-welded and annealed conditions resulted in cracks propagated along the welds' fusion line except the one annealed at 1200°C, which revealed no cracks. Tensile elongations of the as-welded and annealed welds at the temperature up to 1000°C were only a half value of the base metal, whereas the welds annealed at 1200°C had fully recovered the original elongation of the base metal. Charpy impact test result exhibited the same tendency with annealing temperature. Elongated and accicular morphology of Y-(Cr, Fe)2B eutectic phase at the Partially Melted Heat Affected Zone (P.M.HAZ) of welds seemed to be responsible for the poor ductility of the welds. The welds annealed at 1200°C for various durations, on the other hand, showed fully spheroidized eutectic phases at the P.M.HAZ with its size increased with annealing durations, suggesting that postweld annealing at the temperature as high as 1200°C is required for the welds to have ductility matching that of base metal.

  13. Prediction of laser cutting heat affected zone by extreme learning machine

    NASA Astrophysics Data System (ADS)

    Anicic, Obrad; Jović, Srđan; Skrijelj, Hivzo; Nedić, Bogdan

    2017-01-01

    Heat affected zone (HAZ) of the laser cutting process may be developed based on combination of different factors. In this investigation the HAZ forecasting, based on the different laser cutting parameters, was analyzed. The main goal was to predict the HAZ according to three inputs. The purpose of this research was to develop and apply the Extreme Learning Machine (ELM) to predict the HAZ. The ELM results were compared with genetic programming (GP) and artificial neural network (ANN). The reliability of the computational models were accessed based on simulation results and by using several statistical indicators. Based upon simulation results, it was demonstrated that ELM can be utilized effectively in applications of HAZ forecasting.

  14. Effect of heat input on microstructure and properties of hybrid fiber laser-arc weld joints of the 800 MPa hot-rolled Nb-Ti-Mo microalloyed steels

    NASA Astrophysics Data System (ADS)

    Wang, X.-N.; Zhang, S.-H.; Zhou, J.; Zhang, M.; Chen, C.-J.; Misra, R. D. K.

    2017-04-01

    Hybrid fiber laser-arc welding (HLAW) process was applied to a novel hot-rolled Nb-Ti-Mo microalloyed steels of 8 mm thickness. The steel is primarily used to manufacture automotive and construction machinery components, etc. To elucidate the effect of heat input on geometry, microstructure and mechanical properties, different heat inputs (3.90, 5.20 and 7.75 kJ/cm) were used by changing the welding speeds. With increased heat input, the depth/width of penetration was decreased, and the geometry of fusion zone (FZ) changed to "wine cup-like" shape. In regard to the microstructural constituents, the martensite content was decreased, but granular bainite (GB) content was increased. The main microstructural difference was in the FZ cross-section at 7.75 kJ/cm because of the effect of thermal source on the top and bottom. The microstructure of the top part consisted of GB, grain boundary ferrite, and acicular ferrite, while the bottom part was primarily lath martensite. The hardness distribution was similar for different heat inputs. Hardness in FZ, coarse-grained HAZ and mixed-grained HAZ was higher than the base metal (BM), but for the fine-grained HAZ was similar or marginally less than the base metal (BM). Tensile strain was concentrated in the BM such that the fracture occurred in this region. In summary, the geometry, microstructure, and mechanical properties of weld joints were superior at heat input of 5.20 kJ/cm.

  15. Nanoparticle-induced unusual melting and solidification behaviours of metals

    PubMed Central

    Ma, Chao; Chen, Lianyi; Cao, Chezheng; Li, Xiaochun

    2017-01-01

    Effective control of melting and solidification behaviours of materials is significant for numerous applications. It has been a long-standing challenge to increase the melted zone (MZ) depth while shrinking the heat-affected zone (HAZ) size during local melting and solidification of materials. In this paper, nanoparticle-induced unusual melting and solidification behaviours of metals are reported that effectively solve this long-time dilemma. By introduction of Al2O3 nanoparticles, the MZ depth of Ni is increased by 68%, while the corresponding HAZ size is decreased by 67% in laser melting at a pulse energy of 0.18 mJ. The addition of SiC nanoparticles shows similar results. The discovery of the unusual melting and solidification of materials that contain nanoparticles will not only have impacts on existing melting and solidification manufacturing processes, such as laser welding and additive manufacturing, but also on other applications such as pharmaceutical processing and energy storage. PMID:28098147

  16. The effect of particle size on the heat affected zone during laser cladding of Ni-Cr-Si-B alloy on C45 carbon steel

    NASA Astrophysics Data System (ADS)

    Tanigawa, Daichi; Abe, Nobuyuki; Tsukamoto, Masahiro; Hayashi, Yoshihiko; Yamazaki, Hiroyuki; Tatsumi, Yoshihiro; Yoneyama, Mikio

    2018-02-01

    Laser cladding is one of the most useful surface coating methods for improving the wear and corrosion resistance of material surfaces. Although the heat input associated with laser cladding is small, a heat affected zone (HAZ) is still generated within the substrate because this is a thermal process. In order to reduce the area of the HAZ, the heat input must therefore be reduced. In the present study, we examined the effects of the powdered raw material particle size on the heat input and the extent of the HAZ during powder bed laser cladding. Ni-Cr-Si-B alloy layers were produced on C45 carbon steel substrates in conjunction with alloy powders having average particle sizes of 30, 40 and 55 μm, while measuring the HAZ area by optical microscopy. The heat input required for layer formation was found to decrease as smaller particles were used, such that the HAZ area was also reduced.

  17. Microstructural and strain rate effects on plastic deformation in aluminum 2219-T87

    NASA Astrophysics Data System (ADS)

    Rincon, Carlos D.

    A fundamental investigation has been conducted on the effects of microstructure and strain rate on the plastic deformation of theta-prime-strengthened 2219 aluminum. The motivation for this work is based upon a previous study which showed inhomogeneous and locally extreme work hardening in the HAZ regions in VPPA 2219-T87 butt welds. This strongly suggests that the HAZ microstructure plays a major role in the deformation and fracture process in precipitation hardened aluminum alloy 2219. Tensile specimens of the weld joint exhibited more rapid work hardening in the heat-affected-zone (HAZ) at higher strain levels. Microhardness contour maps for these welds illustrated that late stage deformation was concentrated in two crossing bands at about 45sp° to the tensile axis. The width of the deformation bands and the ultimate tensile strength seemed to be dictated by the amount of work hardening in the HAZ. In this study, three different heat treatments were used to produce samples with different particle sizes and particle spacings, but all hardened by copper aluminide precipitates of the thetasp' structure. The heat treatments were categorized as being (A) as-received T87 condition, (B) T87 condition aged at approximately 204sp°C for 3 hours and (C) T87 over-aged at 204sp°C for 7 days. Uniaxial tensile tests consisted of two sets of experiments: (1) three heat treatments (A, B, and C) at two strain rates (0.02 minsp{-1} and 0.2 minsp{-1}) and (2) three heat treatments that were interrupted at select stress-strain levels (0.8% and 2% total strain) during the tensile tests at strain rate equal to 0.02 minsp{-1} at room temperature. Furthermore, a detailed transmission electron microscopy (TEM) study demonstrates the microstructural development during tensile deformation. The Voce equation of strain-hardening provides a slightly better fit to the tensile curves than the Ludwik-Hollomon equation. At higher strains, localized areas showed strain fields around thetasp' platelets had diminished. Lastly, in every treatment, both the yield and tensile strength were slightly higher for the higher strain rate, but only by 0.5 to 2.0 ksi.

  18. Dynamic fracture toughness of ASME SA508 Class 2a ASME SA533 grade A Class 2 base and heat affected zone material and applicable weld metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logsdon, W.A.; Begley, J.A.; Gottshall, C.L.

    1978-03-01

    The ASME Boiler and Pressure Vessel Code, Section III, Article G-2000, requires that dynamic fracture toughness data be developed for materials with specified minimum yield strengths greater than 50 ksi to provide verification and utilization of the ASME specified minimum reference toughness K/sub IR/ curve. In order to qualify ASME SA508 Class 2a and ASME SA533 Grade A Class 2 pressure vessel steels (minimum yield strengths equal 65 kip/in./sup 2/ and 70 kip/in./sup 2/, respectively) per this requirement, dynamic fracture toughness tests were performed on these materials. All dynamic fracture toughness values of SA508 Class 2a base and HAZ material,more » SA533 Grade A Class 2 base and HAZ material, and applicable weld metals exceeded the ASME specified minimum reference toughness K/sub IR/ curve.« less

  19. Fusion zone microstructure and porosity in electron beam welds of an α+β titanium alloy

    NASA Astrophysics Data System (ADS)

    Mohandas, T.; Banerjee, D.; Kutumba Rao, V. V.

    1999-03-01

    The effect of electron beam welding parameters on fusion zone (FZ) microstructure and porosity in a Ti -6.8 Al -3.42 Mo -1.9 Zr -0.21 Si alloy (Russian designation VT 9) has been investigated. It has been observed that the FZ grain width increased continuously with increase in heat input when the base metal was in the β heat-treated condition, while in the α+β heat-treated base metal welds, the FZ grain width increased only after a threshold energy input. The difference is attributed to both the weld thermal cycle and the pinning effect of equiaxed primary alpha on grain growth in the heat-affected zone (HAZ) of α+β heat-treated base metal. Postweld heat treatment (PWHT) in the subtransus and supertransus regions did not alter the columnar grain morphology in the FZ, possibly due to the lack of enough driving force for the formation of new grains by the breaking up of the columnar grains and grain boundary movement for grain growth. As the PWHTs were conducted in a furnace, the role of thermal gradients can be ruled out. Intragranular microstructure in the aswelded condition consisted of hexagonal martensite. The scale of the martensite laths depended on welding speed. The highest porosity was observed at intermediate welding speeds. At low speeds, a majority of pores formed at the fusion boundary, while at high speeds, occurrence of porosity was maximum at the weld center. The trends on porosity can be explained on the basis of solubility of hydrogen in titanium as a function of temperature and the influence of weld thermal cycle on nucleation, growth, and escape of hydrogen gas bubbles. The porosity at slow welding speeds is low because sufficient time exists for the nucleation, growth, and escape of hydrogen gas bubbles, while insufficient time exists for the nucleation of gas bubbles at high welding speeds. The effect of pickling of joint surface, vacuum annealing of the base metal, and successive remelting of the weld metal has also been investigated.

  20. Resistance spot welding of ultra-fine grained steel sheets produced by constrained groove pressing: Optimization and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodabakhshi, F.; Kazeminezhad, M., E-mail: mkazemi@sharif.edu; Kokabi, A.H.

    2012-07-15

    Constrained groove pressing as a severe plastic deformation method is utilized to produce ultra-fine grained low carbon steel sheets. The ultra-fine grained sheets are joined via resistance spot welding process and the characteristics of spot welds are investigated. Resistance spot welding process is optimized for welding of the sheets with different severe deformations and their results are compared with those of as-received samples. The effects of failure mode and expulsion on the performance of ultra-fine grained sheet spot welds have been investigated in the present paper and the welding current and time of resistance spot welding process according to thesemore » subjects are optimized. Failure mode and failure load obtained in tensile-shear test, microhardness, X-ray diffraction, transmission electron microscope and scanning electron microscope images have been used to describe the performance of spot welds. The region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. The results show that optimum welding parameters (welding current and welding time) for ultra-fine grained sheets are shifted to lower values with respect to those for as-received specimens. In ultra-fine grained sheets, one new region is formed named recrystallized zone in addition to fusion zone, heat affected zone and base metal. It is shown that microstructures of different zones in ultra-fine grained sheets are finer than those of as-received sheets. - Highlights: Black-Right-Pointing-Pointer Resistance spot welding process is optimized for joining of UFG steel sheets. Black-Right-Pointing-Pointer Optimum welding current and time are decreased with increasing the CGP pass number. Black-Right-Pointing-Pointer Microhardness at BM, HAZ, FZ and recrystallized zone is enhanced due to CGP.« less

  1. Study on the Toughness of X100 Pipeline Steel Heat Affected Zone

    NASA Astrophysics Data System (ADS)

    Li, Xueda; Shang, Chengjia; Ma, Xiaoping; Subramanian, S. V.

    Microstructure-property correlation of heat affected zone (HAZ) in X100 longitudinal submerged arc welding (LSAW) real weld joint was studied in this paper. Coarse grained (CG) HAZ and intercritically reheated coarse grained (ICCG) HAZ were characterized by optical microscope (OM), electron backscattered diffraction (EBSD). The microstructure of CGHAZ is mostly composed of granular bainite with low density of high angle boundaries (HAB). Prior austenite grain size is 80μm. In ICCGHAZ, coarse prior austenite grains were decorated by coarse necklacing martensite-austenite (M-A) constituents. Different layers were observed within M-A constituent, which may be martensite and austenite layers. Charpy absorbed energy of two different HAZ regions (ICCGHAZ containing and non-containing regions) was recorded using instrumental Charpy impact test machine. The results showed that the existence of ICCGHAZ resulted in the sharp drop of Charpy absorbed energy from 180J to 50J, while the existence of only CGHAZ could still lead to good toughness. The fracture surface was 60% brittle in the absence of ICCGHAZ, and 100% brittle in the presence of ICCGHAZ in the impact tested samples. The underlying reason is the microstructure of ICCGHAZ consisted of granular bainite and upper bainite with necklace-type M-A constituent along the grain boundaries. Cleavage fracture initiated from M-A constituent, either through cracking of M-A or debonding from the matrix, was observed at the fracture surface of ICCGHAZ. The presence of necklace type M-A constituent in ICCGHAZ notably increases the susceptibility of cleavage microcrack nucleation. Furthermore, the study of secondary microcracks beneath the CGHAZ and the ICCGHAZ through EBSD suggested that the fracture mechanism changes from nucleation-controlled in the CGHAZ to propagation-controlled in the ICCGHAZ because of the presence of necklace-type M-A constituent in the ICCGHAZ region. Both fracture mechanism contribute to the poor toughness of the sample contained ICCGHAZ. In conclusion, big prior austenite grains with low density of HAB plus coarse necklacing M-A products along grain boundary is the dominant factor resulting in low toughness.

  2. Increasing Weldability of Service-Aged Reformer Tubes by Partial Solution Annealing

    NASA Astrophysics Data System (ADS)

    Mostafaei, M.; Shamanian, M.; Purmohamad, H.; Amini, M.

    2016-04-01

    A dissimilar joint of 25Cr-35Ni/30Cr-48Ni (HP/HV) heat-resistant steels was evaluated. The investigations indicated that the as-cast HP alloy contained M7C3, M23C6, and NbC carbides and HV alloy with 5 wt.% tungsten, contained M23C6 and M6C carbides embedded in an austenitic matrix. After 8 years of ex-service aging at 1050 °C, the ductility of HP/HV reformer tubes was decreased dramatically, and thus, the repair welding of the aged HP/HV dissimilar joint was at a risk. In order to repair the aged reformer tubes and increase weldability properties, a new partial solution annealing treatment was designed. Mechanical testing results showed that partial solution annealing at 1200 °C for 6 h increased the elongation and toughness of the aged HP and HV alloys drastically. Also, a mechanism for constitutional liquation cracking in the heat-affected zones (HAZ) of the HP/HV dissimilar joint was proposed. In the HAZ of the aged HP/HV welded joint, the cracks around the locally melted carbides were initiated and propagated during carbides solidification at the cooling cycle of welding associated with the decrease in the ductility of the aged HP and HV alloys. In addition, Varestraint weldability test showed that the susceptibility to hot cracking was decreased with partial solution annealing.

  3. Microstructural characterization of an SA508–309L/308L–316L domestic dissimilar metal welded safe-end joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming, Hongliang; Zhang, Zhiming; Wang, Jianqiu, E-mail: wangjianqiu@imr.ac.cn

    2014-11-15

    The microstructure of an SA508–309L/308L–316L domestic dissimilar metal welded safe-end joint was characterized in this work by optical microscopy, scanning electron microscopy (with electron back scattering diffraction) and micro-hardness testing. Epitaxial growth and competitive growth are evident in the 308L–316L fusion boundary regions. A martensite layer, carbon-depleted zones, and type-II and type-I boundaries are found in the SA508–309L fusion boundary regions, while only martensite and austenite mixed zones are observed in the SA508–308L fusion boundary regions. The microstructure near the fusion boundary and the microstructure transition in the SA508 heat affected zone are quite complex. Both for SA508–309L/308L and 308L–316L,more » the highest residual strain is located on the outside of the weldment. The residual strain and the grain boundary character distribution change with increasing distance from the fusion boundary in the heat affected zone of 316L. Micro-hardness measurements also reveal non-uniform mechanical properties across the weldment. - Highlights: • The microstructure of SA508 HAZ, especially near the FB, is very complex. • The outside of the dissimilar metal welded joint has the highest residual. • The micro-hardness distributions along the DMWJ are non-uniform.« less

  4. Creep Rupture of the Simulated HAZ of T92 Steel Compared to that of a T91 Steel

    PubMed Central

    Peng, Yu-Quan; Chen, Tai-Cheng; Chung, Tien-Jung; Jeng, Sheng-Long; Huang, Rong-Tan; Tsay, Leu-Wen

    2017-01-01

    The increased thermal efficiency of fossil power plants calls for the development of advanced creep-resistant alloy steels like T92. In this study, microstructures found in the heat-affected zone (HAZ) of a T92 steel weld were simulated to evaluate their creep-rupture-life at elevated temperatures. An infrared heating system was used to heat the samples to 860 °C (around AC1), 900 °C (slightly below AC3), and 940 °C (moderately above AC3) for one minute, before cooling to room temperature. The simulated specimens were then subjected to a conventional post-weld heat treatment (PWHT) at 750 °C for two hours, where both the 900 °C and 940 °C simulated specimens had fine grain sizes. In the as-treated condition, the 900 °C simulated specimen consisted of fine lath martensite, ferrite subgrains, and undissolved carbides, while residual carbides and fresh martensite were found in the 940 °C simulated specimen. The results of short-term creep tests indicated that the creep resistance of the 900 °C and 940 °C simulated specimens was poorer than that of the 860 °C simulated specimens and the base metal. Moreover, simulated T92 steel samples had higher creep strength than the T91 counterpart specimens. PMID:28772500

  5. Creep Rupture of the Simulated HAZ of T92 Steel Compared to that of a T91 Steel.

    PubMed

    Peng, Yu-Quan; Chen, Tai-Cheng; Chung, Tien-Jung; Jeng, Sheng-Long; Huang, Rong-Tan; Tsay, Leu-Wen

    2017-02-08

    The increased thermal efficiency of fossil power plants calls for the development of advanced creep-resistant alloy steels like T92. In this study, microstructures found in the heat-affected zone (HAZ) of a T92 steel weld were simulated to evaluate their creep-rupture-life at elevated temperatures. An infrared heating system was used to heat the samples to 860 °C (around A C1 ), 900 °C (slightly below A C3 ), and 940 °C (moderately above A C3 ) for one minute, before cooling to room temperature. The simulated specimens were then subjected to a conventional post-weld heat treatment (PWHT) at 750 °C for two hours, where both the 900 °C and 940 °C simulated specimens had fine grain sizes. In the as-treated condition, the 900 °C simulated specimen consisted of fine lath martensite, ferrite subgrains, and undissolved carbides, while residual carbides and fresh martensite were found in the 940 °C simulated specimen. The results of short-term creep tests indicated that the creep resistance of the 900 °C and 940 °C simulated specimens was poorer than that of the 860 °C simulated specimens and the base metal. Moreover, simulated T92 steel samples had higher creep strength than the T91 counterpart specimens.

  6. Atmosphere

    NASA Astrophysics Data System (ADS)

    Ghosh, D.; Mitra, S. K.

    2014-05-01

    This paper investigates the high-temperature corrosion behavior of microstructurally different regions of the weldment of 9 Cr-1 Mo steel used in thermal power plant boiler in SO2 + O2 environment. The weldment is produced by tungsten inert gas welding method, and the different regions of the weldment (weld metal, heat-affected zone, and base metal) are exposed in SO2 + O2 (ratio 2:1) environment at 973 K for 120 h. The reaction kinetics and corrosion growth rate of different regions of weldment in isothermal condition are evaluated. The post corroded scales of the different specimens are studied in SEM, EDS, and XRD. The results indicate that the weld metal shows higher corrosion rate followed by HAZ and base metal. The higher rate of corrosion of weldmetal is mainly attributed to the least protective inner scale of Cr2O3 with minimum Cr Content. This is due to the formation of delta ferrite, which leads to the precipitation of the Cr-based secondary phases and depletes the free Cr from the matrix. The thermal cycles during welding at high temperature are favorable for the formation of delta ferrite. On the other hand, in absence of delta ferrite, the base metal and HAZ regions of the weldment show lower corrosion rate than weld metal. The difference in corrosion rate in the three regions of the weldment is supplemented by post-corroded scale characterizations.

  7. Geometry and Material Constraint Effects on Creep Crack Growth Behavior in Welded Joints

    NASA Astrophysics Data System (ADS)

    Li, Y.; Wang, G. Z.; Xuan, F. Z.; Tu, S. T.

    2017-02-01

    In this work, the geometry and material constraint effects on creep crack growth (CCG) and behavior in welded joints were investigated. The CCG paths and rates of two kinds of specimen geometry (C(T) and M(T)) with initial cracks located at soft HAZ (heat-affected zone with lower creep strength) and different material mismatches were simulated. The effect of constraint on creep crack initiation (CCI) time was discussed. The results show that there exists interaction between geometry and material constraints in terms of their effects on CCG rate and CCI time of welded joints. Under the condition of low geometry constraint, the effect of material constraint on CCG rate and CCI time becomes more obvious. Higher material constraint can promote CCG due to the formation of higher stress triaxiality around crack tip. Higher geometry constraint can increase CCG rate and reduce CCI time of welded joints. Both geometry and material constraints should be considered in creep life assessment and design for high-temperature welded components.

  8. Prevention of weld-decay in austenitic stainless steel by using surface mechanical attrition treatment

    NASA Astrophysics Data System (ADS)

    Laleh, Majid; Kargar, Farzad; Rouhaghdam, Alireza Sabour

    2012-11-01

    Surface mechanical attrition treatment (SMAT) was applied to the samples of a type AISI 304 stainless steel in order to induce grain refinement as well as formation of twins. Transmission electron microscopy and X-ray diffraction analysis results showed that the average grain size at the surface of the SMATed sample was about 10 nm. The untreated and SMATed samples were then welded using a one-pass gas tungsten arc procedure. The heat-affected zone (HAZ) of the samples was examined by optical microscopy and corrosion tests. Results of the double loop electrochemical potentiokinetic reactivation tests showed that the degree of sensitization in the HAZ for the SMATed sample was very low as compared to that of the untreated one. The pre-SMATed sample was resistant to intergranular corrosion. This is mainly due to the formation of high density of twins which are not prone to carbide precipitation because of their regular and coherent atomic structure and extreme low grain boundary energy as compared with those of other grain boundaries.

  9. Creep Strength of Dissimilar Welded Joints Using High B-9Cr Steel for Advanced USC Boiler

    NASA Astrophysics Data System (ADS)

    Tabuchi, Masaaki; Hongo, Hiromichi; Abe, Fujio

    2014-10-01

    The commercialization of a 973 K (700 °C) class pulverized coal power system, advanced ultra-supercritical (A-USC) pressure power generation, is the target of an ongoing research project initiated in Japan in 2008. In the A-USC boiler, Ni or Ni-Fe base alloys are used for high-temperature parts at 923 K to 973 K (650 °C to 700 °C), and advanced high-Cr ferritic steels are planned to be used at temperatures lower than 923 K (650 °C). In the dissimilar welds between Ni base alloys and high-Cr ferritic steels, Type IV failure in the heat-affected zone (HAZ) is a concern. Thus, the high B-9Cr steel developed at the National Institute for Materials Science, which has improved creep strength in weldments, is a candidate material for the Japanese A-USC boiler. In the present study, creep tests were conducted on the dissimilar welded joints between Ni base alloys and high B-9Cr steels. Microstructures and creep damage in the dissimilar welded joints were investigated. In the HAZ of the high B-9Cr steels, fine-grained microstructures were not formed and the grain size of the base metal was retained. Consequently, the creep rupture life of the dissimilar welded joints using high B-9Cr steel was 5 to 10 times longer than that of the conventional 9Cr steel welded joints at 923 K (650 °C).

  10. Evaluation between residual stresses obtained by neutron diffraction and simulation for dual phase steel welded by laser process

    NASA Astrophysics Data System (ADS)

    Kouadri-Henni, Afia; Malard, Benoit

    2018-05-01

    This study aimed at characterizing the residual stresses (RS) distribution of a Dual Phase Steel (DP600) undergoing a Laser Beam Welding (LBW) with two different laser parameters. The RS in the ferritic phase have been experimentally determined by the use of the neutrons diffraction technique. The results confirmed a gradient of RS among different zones both on the top and below surfaces but also through the thickness of the fusion zone. Low compressive stresses were observed in the Base Metal (BM) close to the Heat Affected Zone (HAZ) whereas high tensile stresses were observed in the Fusion Zone (FZ). Numerical results showed a difference in the RS distribution depending on the model used. In the end, it appears that the high temperature gradient, specific to the laser beam, is the main factor governing the RS. Our results suggest as well that the approach regarding the RS should consider not only the temperature but also process parameters. When comparing simulation results with experimental data, the values converge well in some zones, in particular the FZ and the others less.

  11. Metallurgy and deformation of electron beam welded similar titanium alloys

    NASA Astrophysics Data System (ADS)

    Pasang, T.; Sabol, J. C.; Misiolek, W. Z.; Mitchell, R.; Short, A. B.; Littlefair, G.

    2012-04-01

    Butt welded joins were produced between commercially pure titanium and various titanium alloys using an electron beam welding technique. The materials used represent commercially pure grade, α-β alloy and β alloy. They were CP Ti, Ti-6Al-4V (Ti64) and Ti-5Al-5V-5Mo-3Cr (Ti5553), respectively. Grains were largest in the FZs of the different weldments, decreasing in size towards the heat affected zones (HAZs) and base metals. Hardness measurements taken across the traverse cross-sections of the weldments were constant from base metal-to-weld-to-base metal for CP Ti/CP Ti and Ti64/Ti64 welds, while the FZ of Ti5553/Ti5553 had a lower hardness compared with the base metal. During tensile testing the CP Ti/CP Ti weldments fractured at the base metal, whereas both the Ti64/Ti64 and Ti5553/Ti5553 broke at the weld zones. Fracture surface analysis suggested microvoid coalescence as the failure mechanism. The compositional analysis showed a relatively uniform distribution of solute elements from base metal-to-weld-to-base metal. CP Ti has always been known for its excellent weldability, Ti64 has good weldability and, preliminary results indicated that Ti5553 alloy is also weldable.

  12. The Simulation of Precipitation Evolutions and Mechanical Properties in Friction Stir Welding with Post-Weld Heat Treatments

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Wan, Z. Y.; Lindgren, L.-E.; Tan, Z. J.; Zhou, X.

    2017-12-01

    A finite element model of friction stir welding capable of re-meshing is used to simulate the temperature variations. Re-meshing of the finite element model is used to maintain a fine mesh resolving the gradients of the solution. The Kampmann-Wagner numerical model for precipitation is then used to study the relation between friction stir welds with post-weld heat treatment (PWHT) and the changes in mechanical properties. Results indicate that the PWHT holding time and PWHT holding temperature need to be optimally designed to obtain FSW with better mechanical properties. Higher precipitate number with lower precipitate sizes gives higher strength in the stirring zone after PWHT. The coarsening of precipitates in HAZ are the main reason to hinder the improvement of mechanical property when PWHT is used.

  13. Significance of reheat cracks to the integrity of pressure vessels for light-water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canonico, D.A.

    1979-05-01

    Reheat cracks manifest themselves as macroscopic defects detectable by nondestructive testing (NDT) procedures or as microscopic grain boundary decohesions (GBD) that are beyond the limit of detection by NDT. The significance of the microscopic cracks that may go undetected are discussed. The probability that GBD exist in the heat-affected zones (HAZ) of weldments of pressure vessel steels is high; particularly in SA508 Class 2 weldments. GBD reside in the coarse-grained region of the HAZ. The microstructure of this region tends to be a tempered martensite or lower bainite, a structure whose fracture toughness is superior to that of a highermore » temperature transformation product. This region should be less sensitive to irradiation embrittlement. Toughness data for this region in either the unirradiated or irradiated condition are sparse; however, those data that are available indicate that this area is superior in toughness to the base metal. A sample of the HAZ from the prolongation-weldment from the Heavy Section Steel Technology program Intermediate Test Vessel (ITV) No. 4 was examined by the Staatliche Materialpruefungsanstalt (MPA). They reported GBD 5 mm (0.2 in.) long. This prompted an examination of the HAZ from the ITV vessel that had been tested to failure at 24 C (75 F). During testing, the region of the weld which contained the flaw that initiated the failure was strained up to 0.5%. A metallographic examination of this region of the weldment revealed GBD, but none of the size reported by the MPA. Further, there was no evidence that the GBD had extended as a consequence of the tests. Fracture toughness tests were made of the HAZ of welds from ITV-4. The electron-beam welding procedure, which permits more accurate siting of the crack, was used. Fracture toughness values in excess of 220 MPa/m (200 ksi/in.) were obtained at -18 C (O F).« less

  14. Corrosion of 2205 Duplex Stainless Steel Weldment in Chloride Medium Containing Sulfate-Reducing Bacteria

    NASA Astrophysics Data System (ADS)

    Antony, P. J.; Singh Raman, R. K.; Kumar, Pradeep; Raman, R.

    2008-11-01

    Influence of changes in microstructure caused due to welding on microbiologically influenced corrosion of a duplex stainless steel was studied by exposing the weldment and parent metal to chloride medium containing sulfate-reducing bacteria (SRB). Identically prepared coupons (same area and surface finish) exposed to sterile medium were used as the control. Etching-type attack was observed in the presence of SRB, which was predominant in the heat-affected zone (HAZ) of the weldment. The anodic polarization studies indicated an increase in current density for coupon exposed to SRB-containing medium as compared to that obtained for coupon exposed to sterile medium. The scanning electron microscopy (SEM) observations after anodic polarization revealed that the attack was preferentially in the ferrite phase of HAZ of the weldment, whereas it was restricted to the austenite phase of the parent metal.

  15. Friction Stir Weld Inspection Through Conductivity Imaging Using Shaped Field MWM(Registered Trademark) - Arrays

    NASA Technical Reports Server (NTRS)

    Goldfine, Neil; Grundy, David; Zilberstein, Vladimir; Kinchen, David G.; McCool, Alex (Technical Monitor)

    2002-01-01

    Friction Stir Welds (FSW) of Al 2195-T8 and Al 2219-T8, provided by Lockheed Martin Michoud Operations, were inspected for lack-of-penetration (LOP) defects using a custom designed MWM-Array, a multi-element eddy-current sensor. MWM (registered trademark) electrical conductivity mapping demonstrated high sensitivity to LOP as small as 0.75 mm (0.03 in.), as confirmed by metallographic data that characterized the extent of LOP defects. High sensitivity and high spatial resolution was achieved via a 37-element custom designed MWM-Array allowing LOP detection using the normalized longitudinal component of the MWM measured conductivity. This permitted both LOP detection and correlation of MWM conductivity features with the LOP defect size, as changes in conductivity were apparently associated with metallurgical features within the near-surface layer of the LOP defect zone. MWM conductivity mapping reveals information similar to macro-etching as the MWM-Array is sensitive to small changes in conductivity due to changes in microstructure associated with material thermal processing, in this case welding. The electrical conductivity measured on the root side of FSWs varies across the weld due to microstructural differences introduced by the FSW process, as well as those caused by planar flaws. Weld metal, i.e., dynamically recrystallized zone (DXZ), thermomechanically affected zone (TMZ), heat-affected zone (HAZ), and parent metal (PM) are all evident in the conductivity maps. While prior efforts had met with limited success for NDE (Nondestructive Evaluation) of dissimilar alloy, Al2219 to Al2195 FSW, the new custom designed multi-element MWM-Array achieved detection of all LOP defects even in dissimilar metal welds.

  16. Microstructure characteristics and mechanical properties of laser-TIG hybrid welded dissimilar joints of Ti-22Al-27Nb and TA15

    NASA Astrophysics Data System (ADS)

    Zhang, Kezhao; Lei, Zhenglong; Chen, Yanbin; Liu, Ming; Liu, Yang

    2015-10-01

    Laser-TIG-hybrid-welding (TIG - tungsten inert gas) process was successfully applied to investigate the microstructure and tensile properties of Ti-22Al-27Nb/TA15 dissimilar joints. The HAZ of the arc zone in Ti-22Al-27Nb was characterized by three different regions: single B2, B2+α2 and B2+α2+O, while the single B2 phase region was absent in the HAZ of the laser zone. As for the HAZ in TA15 alloy, the microstructure mainly contained acicular α‧ martensites near the fusion line and partially remained the lamellar structure near the base metal. The fusion zone consisted of B2 phase due to the relatively high content of β phase stabilizing elements and fast cooling rate during the welding process. The tensile strength of the welds was higher than that of TA15 alloy because of the fully B2 microstructure in the fusion zone, and the fracture preferentially occurred on the base metal of TA15 alloy during the tensile tests at room temperature and 650 °C.

  17. Crystallographic texture and microstructural changes in fusion welds of recrystallized Zry-4 rolled plates

    NASA Astrophysics Data System (ADS)

    Moya Riffo, A.; Vicente Alvarez, M. A.; Santisteban, J. R.; Vizcaino, P.; Limandri, S.; Daymond, M. R.; Kerr, D.; Okasinski, J.; Almer, J.; Vogel, S. C.

    2017-05-01

    This work presents a detailed characterization of the microstructural and crystallographic texture changes observed in the transition region in a weld between two Zircaloy-4 cold rolled and recrystallized plates. The microstructural study was performed by optical microscopy under polarized light and scanning electron microscopy (SEM). Texture changes were characterized at different lengthscales: in the micrometric size, orientation imaging maps (OIM) were constructed by electron backscatter diffraction (EBSD), in the millimetre scale, high energy XRD experiments were done at the Advanced Photon Source (USA) and compared to neutron diffraction texture determinations performed in the HIPPO instrument at Los Alamos National Laboratory. In the heat affected zone (HAZ) we observed the development of Widmanstätten microstructures, typical of the α(hcp) to β(bcc) phase transformation. Associated with these changes a rotation of the c-poles is found in the HAZ and fusion zone. While the base material shows the typical texture of a cold rolled plate, with their c-poles pointing 35° apart from the normal direction of the plate in the normal-transversal line, in the HAZ, c-poles align along the transversal direction of the plate and then re-orient along different directions, all of these changes occurring within a lengthscale in the order of mm. The evolution of texture in this narrow region was captured by both OIM and XRD, and is consistent with previous measurements done by Neutron Diffraction in the HIPPO diffractometer at Los Alamos National Laboratory, USA. The microstructural and texture changes along the HAZ were interpreted as arising due to the effect of differences in the cooling rate and β grain size on the progress of the different α variants during transformation. Fast cooling rates and large β grains are associated to weak variant selection during the β->α transformation, while slow cooling rates and fine β grains result in strong variant selection.

  18. Crystallographic texture and microstructural changes in fusion welds of recrystallized Zry-4 rolled plates

    DOE PAGES

    Riffo, A. Moya; Vicente Alvarez, M. A.; Santisteban, J. R.; ...

    2017-02-08

    This study presents a detailed characterization of the microstructural and crystallographic texture changes observed in the transition region in a weld between two Zircaloy-4 cold rolled and recrystallized plates. The microstructural study was performed by optical microscopy under polarized light and scanning electron microscopy (SEM). Texture changes were characterized at different lengthscales: in the micrometric size, orientation imaging maps (OIM) were constructed by electron backscatter diffraction (EBSD), in the millimetre scale, high energy XRD experiments were done at the Advanced Photon Source (USA) and compared to neutron diffraction texture determinations performed in the HIPPO instrument at Los Alamos National Laboratory.more » In the heat affected zone (HAZ) we observed the development of Widmanstätten microstructures, typical of the α( hcp) to β( bcc) phase transformation. Associated with these changes a rotation of the c-poles is found in the HAZ and fusion zone. While the base material shows the typical texture of a cold rolled plate, with their c-poles pointing 35° apart from the normal direction of the plate in the normal-transversal line, in the HAZ, c-poles align along the transversal direction of the plate and then re-orient along different directions, all of these changes occurring within a lengthscale in the order of mm. The evolution of texture in this narrow region was captured by both OIM and XRD, and is consistent with previous measurements done by Neutron Diffraction in the HIPPO diffractometer at Los Alamos National Laboratory, USA. The microstructural and texture changes along the HAZ were interpreted as arising due to the effect of differences in the cooling rate and β grain size on the progress of the different α variants during transformation. Fast cooling rates and large β grains are associated to weak variant selection during the β–>α transformation, while slow cooling rates and fine β grains result in strong variant selection.« less

  19. Crystallographic texture and microstructural changes in fusion welds of recrystallized Zry-4 rolled plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riffo, A. Moya; Vicente Alvarez, M. A.; Santisteban, J. R.

    This study presents a detailed characterization of the microstructural and crystallographic texture changes observed in the transition region in a weld between two Zircaloy-4 cold rolled and recrystallized plates. The microstructural study was performed by optical microscopy under polarized light and scanning electron microscopy (SEM). Texture changes were characterized at different lengthscales: in the micrometric size, orientation imaging maps (OIM) were constructed by electron backscatter diffraction (EBSD), in the millimetre scale, high energy XRD experiments were done at the Advanced Photon Source (USA) and compared to neutron diffraction texture determinations performed in the HIPPO instrument at Los Alamos National Laboratory.more » In the heat affected zone (HAZ) we observed the development of Widmanstätten microstructures, typical of the α( hcp) to β( bcc) phase transformation. Associated with these changes a rotation of the c-poles is found in the HAZ and fusion zone. While the base material shows the typical texture of a cold rolled plate, with their c-poles pointing 35° apart from the normal direction of the plate in the normal-transversal line, in the HAZ, c-poles align along the transversal direction of the plate and then re-orient along different directions, all of these changes occurring within a lengthscale in the order of mm. The evolution of texture in this narrow region was captured by both OIM and XRD, and is consistent with previous measurements done by Neutron Diffraction in the HIPPO diffractometer at Los Alamos National Laboratory, USA. The microstructural and texture changes along the HAZ were interpreted as arising due to the effect of differences in the cooling rate and β grain size on the progress of the different α variants during transformation. Fast cooling rates and large β grains are associated to weak variant selection during the β–>α transformation, while slow cooling rates and fine β grains result in strong variant selection.« less

  20. Time Temperature-Precipitation Behavior in An Al-Cu-Li Alloy 2195

    NASA Technical Reports Server (NTRS)

    Chen, P. S.; Bhat, B. N.

    1999-01-01

    Al-Cu-Li alloy 2195, with its combination of good cryogenic properties, low density, and high modulus, has been selected by NASA to be the main structural alloy of the Super Light Weight Tank (SLWT) for the Space Shuttle. Alloy 2195 is strengthened by an aging treatment that precipitates a particular precipitate, labeled as T1(Al2CuLi). Other phases, such as GP zone, (theta)', (theta)", theta, (delta)', S' are also present in this alloy when artificially aged. Cryogenic strength and fracture toughness are critical to the -SLWT application, since the SLWT will house liquid oxygen and hydrogen. Motivation for the Time-Temperature-Precipitation (TTP) study at lower temperature (lower than 350 F) comes in part from a recent study by Chen, The study found that the cryogenic fracture toughness of alloy 2195 is greatly influenced by the phases present in the matrix and subgrain boundaries. Therefore, the understanding of TTP behavior can help develop a guideline to select appropriate heat treatment conditions for the desirable applications. The study of TTP behavior at higher temperature (400 to 1000 F) was prompted by the fact that the SLWT requires a welded construction. Heat conduction from the weld pool affects the microstructure in the heat-affected zone (HAZ), which leads to changes in the mechanical properties. Furthermore, the SLWT may need repair welding for more than one time and any additional thermal cycles will increase precipitate instability and promote phase transformation. As a result considerable changes in HAZ microstructure and mechanical properties are expected during the construction of the SLWT. Therefore, the TTP diagrams can serve to understand the thermal history of the alloy by analyzing the welded microstructure. In the case welding, the effects of thermal cycles on the microstructure and mechanical properties can be predicted with the aid of the TTP diagrams. The 2195 alloy (nominally Al + 4 pct Cu + 1 pct Li + 0.3 pct Ag + 0.3 pct Mg + 0.1 pct Zr) used in this study was received in the form of 1.7 inch thick rolled plates. In brief goal of this study is to develop TTR diagram for the solutiontreated and stretched alloy 2195 from which the precipitation sequence at any service or aging conditions can be preducted.A subgrain boundary TTR diagram is also presented since precipitations at subgrain boundary can control and/or modify a wide veriety of material properties, such as cryogenic fracture toughness.

  1. Microstructure Evolution and Selective Corrosion Resistance in Underwater Multi-pass 2101 Duplex Stainless Steel Welding Joints

    NASA Astrophysics Data System (ADS)

    Hu, Yu; Shi, Yonghua; Shen, Xiaoqin; Wang, Zhongmin

    2018-05-01

    A recently developed promising material, 2101 lean duplex stainless steel, represents an alternative to 304 austenite stainless steel. In this work, multi-pass 2101 weld joints were fabricated using the flux-cored arc welding method in a hyperbaric chamber. The pressure varied from 0 to 0.75 MPa. The evolution of the welding process and microstructure was investigated. γ 2 formation in the reheated zones of the WM and HAZ was not uniform. The closer the reheated zone is to the subsequent heat source, the greater the γ 2 formation in the reheated zone. Sufficient primary austenite transformation inhibited Cr2N precipitation and the subsequent intragranular γ 2 formation in the reheated weld passes of the 0.45 MPa weld metal. The localized corrosion resistance of each zone of the 0.45 MPa DSS joint was measured using non-destructive double-loop electrochemical potentiokinetic reactivation tests. The localized corrosion was induced by γ 2 and Cr2N. The root region of the 0.45 MPa weld metal underwent two subsequent welding thermal cycles, which induced increased γ 2 formation and lower resistance to corrosion because of the decreased pitting resistance value of γ 2. The correlation between microstructure evolution and the distribution of selective corrosion was determined.

  2. CHARACTERIZATION OF DEFECTS IN ALLOY 152, 52 AND 52M WELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruemmer, Stephen M.; Toloczko, Mychailo B.; Olszta, Matthew J.

    2009-08-27

    Defect distributions have been documented by optical metallography, scanning electron microscopy and electron backscatter diffraction in alloy 152 and 52 mockups welds, alloy 52 and 52M overlay mockups and an alloy 52M inlay. Primary defects were small cracks at grain boundaries except for more extensive cracking in the dilution zone of an alloy 52 overlay on 304SS. Detailed characterizations of the dilution zone cracks were performed by analytical transmission electron microscopy identifying grain boundary titanium-nitride precipitation associated with the intergranular separations. I. INTRODUCTION Weldments continue to be a primary location of stress-corrosion cracking (SCC) in light-water reactor systems. While problemsmore » related to heat-affected-zone (HAZ) sensitization and intergranular (IG) SCC of austenitic stainless alloys in boiling-water reactors (BWRs) have been significantly reduced, SCC has now been observed in HAZs of non-sensitized materials and in dissimilar metal welds where Ni-base alloy weld metals are used. IGSCC in weld metals has been observed in both BWRs and pressurized water reactors (PWRs) with recent examples for PWR pressure vessel penetrations producing the most concern. This has led to the replacement of alloy 600/182/82 welds with higher Cr, more corrosion-resistant replacement materials (alloy 690/152/52/52M). Complicating this issue has been a known susceptibility to cracking during welding [1-7] of these weld metals. There is a critical need for an improved understanding of the weld metal metallurgy and defect formation in Ni-base alloy welds to effectively assess long-term performance. A series of macroscopic to microscopic examinations were performed on available mockup welds made with alloy 52 or alloy 152 plus selected overlay and inlay mockups. The intent was to expand our understanding of weld metal structures in simulated LWR service components with a focus on as-welded defects. Microstructural features, defect distributions, defect characteristics and weld residual strains were examined by optical metallography, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Industry-supplied mock-up welds were characterized including alloy 52 and 152 weldments, alloy 52M overlay and inlay welds, and an alloy 52 overlay. II. WELDMENTS II.A. Alloy 52 and 152 Weld Mockups The alloy 52 and 152 weld mockups were fabricated by MHI for the Kewaunee reactor and were obtained from the EPRI NDE Center. The mockups were U-groove welds joining two plates of 304SS as shown in Figure 1. Alloy 152 butter (heat 307380) was placed on the U-groove surface for both mockups by shielded metal arc welding (SMAW). For the alloy 152 weld mockup, the alloy 152 fill (heat 307380) was also applied using SMAW while for the alloy 52 weld mockup, the alloy 52 fill (heat NX2686JK) was applied using gas tungsten arc welding (GTAW). Welding parameters for the fill materials were substantially different with the alloy 152 SMAW having a deposition speed of 4-25 cm/min with a current of 95-145 A and the alloy 52 GTAW having a deposition speed of 4-10 cm/min with a current of 150-300 A. One prominent feature in these mockup welds is the presence of a crack starting at the 304SS butt joint at the bottom of the U-groove and extending up into the weld. It appears that the 304SS plate on either side of the butt joint acted as an anchor for the weld resulting in a stress rise across the slit that drove crack formation and extension up into the fill weld. As will be shown in the next section, the extent of the cracking around this stress riser was much greater in the MHI 52 weld mockup.« less

  3. Effect of adding powder on joint properties of laser penetration welding for dual phase steel and aluminum alloy

    NASA Astrophysics Data System (ADS)

    Zhou, D. W.; Liu, J. S.; Lu, Y. Z.; Xu, S. H.

    2017-09-01

    The experiments of laser penetration welding for dual phase steel and aluminum alloy were carried out, and the effect of adding Mn or Si powder on mechanical properties and microstructure of the weld was investigated. Some defects, such as spatter, inclusion, cracks and softening in heat affected zone (HAZ), can be avoided in welding joints, and the increased penetration depth is obtained by adding Mn or Si powder. The average tensile-shear strength of Si-added joint is 3.84% higher than that of Mn-added joint, and the strength of both joints exceeds that of no-added joint. In the case of adding Mn powder, small amount of liquid Al is mixed into steel molten pool, and the Al content increases in both sides of the weld, which leads to the increased weld width in aluminum molten pool. Thus, transverse area increases in jointing steel to aluminum, which is significant for the improved tensile-shear strength of joints. As far as adding Si powder is concerned, it is not the case, the enhancement of the joint properties benefits from improvement of metallurgical reaction.

  4. Joining dissimilar stainless steels for pressure vessel components

    NASA Astrophysics Data System (ADS)

    Sun, Zheng; Han, Huai-Yue

    1994-03-01

    A series of studies was carried out to examine the weldability and properties of dissimilar steel joints between martensitic and austenitic stainless steels - F6NM (OCr13Ni4Mo) and AISI 347, respectively. Such joints are important parts in, e.g. the primary circuit of a pressurized water reactor (PWR). This kind of joint requires both good mechanical properties, corrosion resistance and a stable magnetic permeability besides good weldability. The weldability tests included weld thermal simulation of the martensitic steel for investigating the influence of weld thermal cycles and post-weld heat treatment (PWHT) on the mechanical properties of the heat-affected zone (HAZ); implant testing for examining the tendency for cold cracking of martensitic steel; rigid restraint testing for determining hot crack susceptibility of the multi-pass dissimilar steel joints. The joints were subjected to various mechanical tests including a tensile test, bending test and impact test at various temperatures, as well as slow strain-rate test for examining the stress corrosion cracking tendency in the simulated environment of a primary circuit of a PWR. The results of various tests indicated that the quality of the tube/tube joints is satisfactory for meeting all the design requirements.

  5. Repair welding of cast iron coated electrodes

    NASA Astrophysics Data System (ADS)

    Żuk, M.; Górka, J.; Dojka, R.; Czupryński, A.

    2017-08-01

    Welding cast iron is a complex production procedure. Repair welding was used to repair damaged or poorly made castings. This is due to a tendency to cracking of the material during welding as well as after it. Welding cast iron can be carried out on hot or on cold. Hot welding requires high heat material and the use of welding material in the form of cast iron. In the case of cold welding, it is possible to use different materials. Mostly used filler metals are nickel and copper based. The work shows the course of research concerning repairmen of ductile iron with arc welding method. For the reparation process four types of ESAB company coated electrodes dedicated for cast iron were used with diameter 3.2 and 4 mm: ES 18-8-6B (4mm), EB 150 (4mm), OK NiCl, EŻM. In the cast iron examined during the testing grooves were made using plasma methods, in order to simulate the removed casting flaws. Then the welding process with coated electrodes was executed. The process utilized low welding current row of 100A, so there would only be a small amount of heat delivered to the heat affected zone (HAZ). Short stitches were made, after welding it was hammered, in order to remove stresses. After the repair welding the part of studies commenced which purpose was finding surface defects using visual testing (VT) and penetration testing (PT). In the second part, a series of macro and microscopic studies were executed witch the purpose of disclosuring the structure. Then the hardness tests for welds cross sections were performed. An important aspect of welding cast iron is the colour of the padding weld after welding, more precisely the difference between the base material and padding weld, the use of different materials extra gives the extra ability to select the best variant. The research of four types of coated electrode was executed, based on the demands the best option in terms of aesthetic, strength and hardness.

  6. Multi-Objective Optimization of Friction Stir Welding Process Parameters of AA6061-T6 and AA7075-T6 Using a Biogeography Based Optimization Algorithm

    PubMed Central

    Tamjidy, Mehran; Baharudin, B. T. Hang Tuah; Paslar, Shahla; Matori, Khamirul Amin; Sulaiman, Shamsuddin; Fadaeifard, Firouz

    2017-01-01

    The development of Friction Stir Welding (FSW) has provided an alternative approach for producing high-quality welds, in a fast and reliable manner. This study focuses on the mechanical properties of the dissimilar friction stir welding of AA6061-T6 and AA7075-T6 aluminum alloys. The FSW process parameters such as tool rotational speed, tool traverse speed, tilt angle, and tool offset influence the mechanical properties of the friction stir welded joints significantly. A mathematical regression model is developed to determine the empirical relationship between the FSW process parameters and mechanical properties, and the results are validated. In order to obtain the optimal values of process parameters that simultaneously optimize the ultimate tensile strength, elongation, and minimum hardness in the heat affected zone (HAZ), a metaheuristic, multi objective algorithm based on biogeography based optimization is proposed. The Pareto optimal frontiers for triple and dual objective functions are obtained and the best optimal solution is selected through using two different decision making techniques, technique for order of preference by similarity to ideal solution (TOPSIS) and Shannon’s entropy. PMID:28772893

  7. Multi-Objective Optimization of Friction Stir Welding Process Parameters of AA6061-T6 and AA7075-T6 Using a Biogeography Based Optimization Algorithm.

    PubMed

    Tamjidy, Mehran; Baharudin, B T Hang Tuah; Paslar, Shahla; Matori, Khamirul Amin; Sulaiman, Shamsuddin; Fadaeifard, Firouz

    2017-05-15

    The development of Friction Stir Welding (FSW) has provided an alternative approach for producing high-quality welds, in a fast and reliable manner. This study focuses on the mechanical properties of the dissimilar friction stir welding of AA6061-T6 and AA7075-T6 aluminum alloys. The FSW process parameters such as tool rotational speed, tool traverse speed, tilt angle, and tool offset influence the mechanical properties of the friction stir welded joints significantly. A mathematical regression model is developed to determine the empirical relationship between the FSW process parameters and mechanical properties, and the results are validated. In order to obtain the optimal values of process parameters that simultaneously optimize the ultimate tensile strength, elongation, and minimum hardness in the heat affected zone (HAZ), a metaheuristic, multi objective algorithm based on biogeography based optimization is proposed. The Pareto optimal frontiers for triple and dual objective functions are obtained and the best optimal solution is selected through using two different decision making techniques, technique for order of preference by similarity to ideal solution (TOPSIS) and Shannon's entropy.

  8. Effects of the weld thermal cycle on the microstructure of alloy 690

    NASA Astrophysics Data System (ADS)

    Tuttle, James R.

    Alloy 690 has been introduced as a material for use as the heat exchanger tubes in the steam generators (SGs) of pressurised water reactor (PWR) nuclear power plant. Its immediate predecessor, alloy 600, suffered from a number of degradation modes and another alternative, alloy 800, has also had in-service problems. In laboratory tests, alloy 690 in both mill annealed (MA) and special thermally treated (STT) condition has shown a high degree of resistance to degradation in simulated PWR primary side environments and other test media.Limited research has previously been undertaken to investigate the effects of welding on alloy 690, when the material is used in SG applications. It was deemed important to increase knowledge in this area since fabrication of PWR SGs involves gas tungsten arc welding (GTAW) of the heat exchanger tubes to a clad tubeplate. For this research investigation welded samples of alloy 690 have been produced in the laboratory using a range of thermal cycles based around recommended weld parameters for SG fabrication. These samples have been compared with archive welds from PWR SG manufacturers. A number of welds incorporating alloy 600 and a number using alloy 800 tubing material have also been fabricated in the laboratory for comparative purposes. Two experimental melts have been produced to study the effects of Nb substitution for Ti in alloy 690 type materials.Welded and unwelded specimens have been studied, analysed and tested using a variety of methods and techniques. A method of metallographic sample preparation for transmission electron microscope (TEM) thin foil specimens has been developed and documented which ensures foil perforation in a specific region. The effects of Nb substitution for Ti have been discussed. Chemical balances and microstructures in the fusion zone of welds manufactured from alloy 690 tubing incorporating alloy 82 weld consumable have been shown to be non-ideal. Within the heat affected zone (HAZ) of both laboratory produced and archive welds the microstructures have been identified as detrimentally altered from the STT condition original tubing material(s). A number of conclusions have been drawn and recommendations have been made for future work.

  9. [Mechanical properties of weld area soldered by lasers and structural changes in hot reaction zone].

    PubMed

    Wu, H; Cui, Y; Mu, W

    2001-05-01

    To analyse and measure the welding depths and strengths of three kinds of welding materials under different laser welding conditions as well as the structural changes of the heat affected zone. Under different voltages and pulse duration three kinds of measuring sticks, including Co-Cr alloy, Ni-Cr alloy and pure titanium were welded and their strengths were compared with that of control group. At the same time, the structure of the heat-affected zone was analysed by means of the gold-phase method. The welding depth and strength of Co-Cr alloy were in direct proportion to the setting voltage, with averages of 335MPa (250V) to 573MPa(330V). At the heat-affected zone, the crystal particle was small and the end point of welding by laser bean presented the shape of the mountain peak and the interval of finger shape. The center of measuring sticks had a black zone with the circle shape. The setting voltage was in direct proportion to the welding depth of pure titanium and in inverse proportion to the welding strength with averages of 221MPa(250V) to 154MPa (330V). The crystal particle in the heat affected zone grew large and the solid phase expanded, the interval of the crystal oxidised, and the structure showed honeycomb changes. The laser welding is favourable to the welding properties of Co-Cr and Ni-Cr alloys, but its effect on the welding properties of pure titanium needs further discussion.

  10. Creep Strength Behavior of Boron Added P91 Steel and its Weld in the Temperature Range of 600-650°C

    NASA Astrophysics Data System (ADS)

    Swaminathan, J.; Das, C. R.; Baral, Jayashree; Phaniraj, C.; Ghosh, R. N.; Albert, S. K.; Bhaduri, A. K.

    One of the promising ways for mitigation of Type IV cracking — a failure by cracking at the intercritical /fine grained heat affected zone, a life limiting problem in advanced 9-12 Cr ferritic steel weld like that of P91 is through modification of alloy composition by addition of boron. Addition of boron was observed to improve the microstructure at the weld zone and hence the creep strength. In the present work, boron (100 ppm with controlled nitrogen) added P91 steel after normalizing at 1050°C and 1150°C and tempered at 760°C were studied for the creep behavior in the base metal and welded condition in the temperature range of 600-650°C. Creep strength was characterized in terms of stress and temperature dependence of creep rate and rupture time. Weld creep life was reduced compared to the base metal with rupture occurring at the ICHAZ (Type IV crack). However at longer time (at lower stress levels) exposure creep crack moves from weld metal to HAZ (Type II crack). Rupture life was found to superior for the base and weld in the boron containing steel when higher normalizing temperature is used. Estimation of 105 h was attempted based on short term rupture data available and weld strength factors were calculated. Observed values are better for P91BH condition than the values for P91BLcondition as well as those available for P91 in open literature

  11. Effect of Inverter Power Source Characteristics on Welding Stability and Heat Affected Zone Dimensions

    NASA Astrophysics Data System (ADS)

    Il'yaschenko, D. P.; Chinakhov, D. A.; Mamadaliev, R. A.

    2018-01-01

    The paper presents results the research in the effect of power sources dynamic characteristics on stability of melting and electrode metal transfer to the weld pool shielded metal arc welding. It is proved that when applying inverter-type welding power sources, heat and mass transfer characteristics change, arc gap short-circuit time and drop generation time are reduced. This leads to reduction of weld pool heat content and contraction of the heat-affected zone by 36% in comparison the same parameters obtained using a diode rectifier.

  12. Thick SS316 materials TIG welding development activities towards advanced fusion reactor vacuum vessel applications

    NASA Astrophysics Data System (ADS)

    Kumar, B. Ramesh; Gangradey, R.

    2012-11-01

    Advanced fusion reactors like ITER and up coming Indian DEMO devices are having challenges in terms of their materials design and fabrication procedures. The operation of these devices is having various loads like structural, thermo-mechanical and neutron irradiation effects on major systems like vacuum vessel, divertor, magnets and blanket modules. The concept of double wall vacuum vessel (VV) is proposed in view of protecting of major reactor subsystems like super conducting magnets, diagnostic systems and other critical components from high energy 14 MeV neutrons generated from fusion plasma produced by D-T reactions. The double walled vacuum vessel is used in combination with pressurized water circulation and some special grade borated steel blocks to shield these high energy neutrons effectively. The fabrication of sub components in VV are mainly used with high thickness SS materials in range of 20 mm- 60 mm of various grades based on the required protocols. The structural components of double wall vacuum vessel uses various parts like shields, ribs, shells and diagnostic vacuum ports. These components are to be developed with various welding techniques like TIG welding, Narrow gap TIG welding, Laser welding, Hybrid TIG laser welding, Electron beam welding based on requirement. In the present paper the samples of 20 mm and 40 mm thick SS 316 materials are developed with TIG welding process and their mechanical properties characterization with Tensile, Bend tests and Impact tests are carried out. In addition Vickers hardness tests and microstructural properties of Base metal, Heat Affected Zone (HAZ) and Weld Zone are done. TIG welding application with high thick SS materials in connection with vacuum vessel requirements and involved criticalities towards welding process are highlighted.

  13. In situ laser-induced breakdown spectroscopy measurements of chemical compositions in stainless steels during tungsten inert gas welding

    NASA Astrophysics Data System (ADS)

    Taparli, Ugur Alp; Jacobsen, Lars; Griesche, Axel; Michalik, Katarzyna; Mory, David; Kannengiesser, Thomas

    2018-01-01

    A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding. Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence of weld defects and changes in the chemical composition in the weld pool or in the two-phase region where solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and Mn II characteristic emissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observed with the termination of the welding plume due to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels, Mn accumulations on both sides of the weld could be detected between the heat affected zone (HAZ) and the base material.

  14. Nanoindentation of Electropolished FeCrAl Alloy Welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Jordan; Aydogan, Eda; Mara, Nathan Allan

    The present report summarizes Berkovich nanoindentation modulus and hardness measurements on two candidate FeCrAl alloys (C35M and C37M) on as-received (AR) and welded samples. In addition, spherical nanoindentation stress-strain measurements were performed on individual grains to provide further information and demonstrate the applicability of these protocols to mechanically characterizing welds in FeCrAl alloys. The indentation results are compared against the reported tensile properties for these alloys to provide relationships between nanoindentation and tensile tests and insight into weldsoftening for these FeCrAl alloys. Hardness measurements revealed weld-softening for both alloys in good agreement with tensile test results. C35M showed a largermore » reduction in hardness at the weld center from the AR material compared to C37M; this is also consistent with tensile tests. In general, nanohardness was shown to be a good predictor of tensile yield strength and ultimate tensile stress for FeCrAl alloys. Spherical nanoindentation measurements revealed that the fusion zone (FZ) + heat affected zone (HAZ) has a very low defect density typical of well-annealed metals as indicated by the frequent pop-in events. Spherical nanoindentation yield strength, Berkovich hardness, and tensile yield strength measurements on the welded material all show that the C37M welded material has a higher strength than C35M welded material. From the comparison of nanoindentation and tensile tests, EBSD microstructure analysis, and information on the processing history, it can be deduced that the primary driver for weld-softening is a change in the defect structure at the grain-scale between the AR and welded material. These measurements serve as baseline data for utilizing nanoindentation for studying the effects of radiation damage on these alloys.« less

  15. Studying heat-affected zone deformations of electric arc welding

    NASA Astrophysics Data System (ADS)

    Suleimanov, R. I.; Zainagalina, L. Z.; Khabibullin, M. Ya; Zaripova, L. M.; Kovalev, N. O.

    2018-03-01

    The paper studies the influence of the most common defects in permanent electric arc welds made during the welding butt joints in infield oil pipelines, onto the strength characteristics of the welded pipe material around the heat-affected zone. A specimen of a butt weld with an obvious defect was used as a subject of the study. The changes in the geometric parameters of the weld were measured with the standard means; Rockwell hardness in the heat-affected zone was determined in certain areas with justification for the weld process modes. The cause of softening was found to be an increased width of the hot spot on the one side of the weld, where an enlarged crystalline structure appears as a result of the pipe material recrystallization under the influence of heat. Changes in the geometry of the thermal action area are determined by accumulation of molten filler on the one side of the weld when the welding rate is decreased. Some recommendations are given to prevent destruction of the welded structures and appearance of emergencies in infield oil pipelines.

  16. Multilayer Pressure Vessel Materials Testing and Analysis Phase 2

    NASA Technical Reports Server (NTRS)

    Popelar, Carl F.; Cardinal, Joseph W.

    2014-01-01

    To provide NASA with a suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for the vessels described above, Southwest Research Institute® (SwRI®) was contracted in two phases to obtain relevant material property data from a representative vessel. An initial characterization of the strength, fracture and fatigue crack growth properties was performed in Phase 1. Based on the results and recommendations of Phase 1, a more extensive material property characterization effort was developed in this Phase 2 effort. This Phase 2 characterization included additional strength, fracture and fatigue crack growth of the multilayer vessel and head materials. In addition, some more limited characterization of the welds and heat affected zones (HAZs) were performed. This report

  17. Numerical and experimental analysis for solidification and residual stress in the GMAW process for AISI 304 stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, J.; Mazumder, J.

    1996-12-31

    Networking three fields of welding--thermal, microstructure, and stress--was attempted and produced a reliable model using a numerical method with the finite element analysis technique. Model prediction was compared with experimental data in order to validate the model. The effects of welding process parameters on these welding fields were analyzed and reported. The effort to correlate the residual stress and solidification was initiated, with some valuable results. The solidification process was simulated using the formulation based on the Hunt-Trivedi model. Based on the temperature history, solidification speed and primary dendrite arm spacing were predicted at given nodes of interest. Results showmore » that the variation during solidification is usually within an order of magnitude. The temperature gradient was generally in the range of 10{sup 4}--10{sup 5} K/m for the given welding conditions (welding power = 6 kW and welding speed = 3.3867 to 7.62 mm/sec), while solidification speed appeared to slow down from an order of 10{sup {minus}1} to 10{sup {minus}2} m/sec during solidification. SEM images revealed that the primary dendrite arm spacing (PDAS) fell in the range of 10{sup 1}--10{sup 2} {micro}m. For grain growth at the heat affected zone (HAZ), Ashby`s model was employed. The prediction was in agreement with experimental results. For the residual stress calculation, the same mesh generation used in the heat transfer analysis was applied to make the simulation consistent. The analysis consisted of a transient heat analysis followed by a thermal stress analysis. An experimentally measured strain history was compared with the simulated result. The relationship between microstructure and the stress/strain field of welding was also obtained. 64 refs., 18 figs., 9 tabs.« less

  18. Research on the microstructure and properties of laser-MIG hybrid welded joint of Invar alloy

    NASA Astrophysics Data System (ADS)

    Zhan, Xiaohong; Zhang, Dan; Wei, Yanhong; Wang, Yuhua

    2017-12-01

    In order to solve the problem of large deformation, low production efficiency and high tendency of hot cracking in welding 19.05 mm thick plates of Fe36Ni Invar alloy, laser-MIG hybrid multi-layer welding technique (LMHMW) has been developed. To investigate the influence of different welding parameters on the joint properties, optical microscope observation, SEM, EDS and microhardness measurement were conducted. Experimental results illustrated that different matching of welding parameters significantly affected the depth-to-width ratio, formation of defects and HAZ width. Besides, weld zone were consisted of two regions according to the different grain shape. The region near center of weld seam (region 1) was columnar dendrite induced by laser, while the region far away from weld seam center (region 2) was cellular dendrite which was mainly caused by MIG arc. The peak value of microhardness appeared at the center of weld seam since the grains in region 1 were relatively fine, and the lowest hardness value was obtained in HAZ. In addition, results showed that the sheets can be welded at optimum process parameters, with few defects such as, surface oxidation, porosity, cracks and lack of penetration in the welding seam: laser power of backing weld P = 5500 W, welding current I = 240 A, welding speed v = 1 m/min. laser power of filling weld P = 2000 W, welding current I = 220 A, welding speed v = 0.35 m/min. laser power of cosmetic weld P = 2000 W, welding current I = 300 A, welding speed v = 0.35 m/min.

  19. Friction Stir Spot Welding (FSSW) of Advanced High Strength Steel (AHSS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santella, M. L.; Hovanski, Yuri; Pan, Tsung-Yu

    Friction stir spot welding (FSSW) is applied to join advanced high strength steels (AHSS): galvannealed dual phase 780 MPa steel (DP780GA), transformation induced plasticity 780 MPa steel (TRIP780), and hot-stamped boron steel (HSBS). A low-cost Si3N4 ceramic tool was developed and used for making welds in this study instead of polycrystalline cubic boron nitride (PCBN) material used in earlier studies. FSSW has the advantages of solid-state, low-temperature process, and the ability of joining dissimilar grade of steels and thicknesses. Two different tool shoulder geometries, concave with smooth surface and convex with spiral pattern, were used in the study. Welds weremore » made by a 2-step displacement control process with weld time of 4, 6, and 10 seconds. Static tensile lap-shear strength achieved 16.4 kN for DP780GA-HSBS and 13.2kN for TRIP780-HSBS, above the spot weld strength requirements by AWS. Nugget pull-out was the failure mode of the joint. The joining mechanism was illustrated from the cross-section micrographs. Microhardness measurement showed hardening in the upper sheet steel (DP780GA or TRIP780) in the weld, but softening of HSBS in the heat-affect zone (HAZ). The study demonstrated the feasibility of making high-strength AHSS spot welds with low-cost tools.« less

  20. The Influence of Pd-Doped Au Wire Bonding on HAZ Microstructure and Looping Profile in Micro-Electromechanical Systems (MEMS) Packaging

    NASA Astrophysics Data System (ADS)

    Ismail, Roslina; Omar, Ghazali; Jalar, Azman; Majlis, Burhanuddin Yeop

    2015-07-01

    Wire bonding processes has been widely adopted in micro-electromechanical systems (MEMS) packaging especially in biomedical devices for the integration of components. In the first process sequence in wire bonding, the zone along the wire near the melted tips is called the heat-affected zone (HAZ). The HAZ plays an important factor that influenced the looping profiles of wire bonding process. This paper investigates the effect of dopants on microstructures in the HAZ. One precent palladium (Pd) was added to the as-drawn 4N gold wire and annealed at 600°C. The addition of Pd was able to moderate the grain growth in the HAZ by retarding the heat propagation to the wire. In the formation of the looping profile, the first bending point of the looping is highly associated with the length of the HAZ. The alloyed gold wire (2N gold) has a sharp angle at a distance of about 30 m from the neck of the wire with a measured bending radius of about 40 mm and bending angle of about 40° clockwise from vertical axis, while the 4N gold wire bends at a longer distance. It also shows that the HAZ for 4N gold is longer than 2N gold wire.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jianbin

    The microstructure and mechanical properties of resistance-spot-welded A5052 aluminum alloy and DP 600 dual-phase steel joint were studied. The fusion zone (FZ) and heat-affected zone (HAZ) of DP 600 exhibited lath martensite and ferrite-martensite structures, respectively. The microstructure of FZ and HAZ in the A5052 side was composed of cellular crystals and the boundary region of FZ exhibited a columnar crystal morphology. A Fe{sub 2}Al{sub 5} intermetallic compound (IMC) layer with 3.3 μm thickness was found adjacent to the DP 600 side, whereas a needle-shaped Fe{sub 4}Al{sub 13} IMC layer with length of 0.67 μm to 15.8 μm was foundmore » adjacent to the aluminum alloy side. The maximum tensile shear load of the A5052/DP 600 joint was 5.5 KN, with a corresponding molten nugget diameter of 6.3 mm. The fracture morphology of the optimized A5052/DP 600 joint was mainly an elongated dimple fracture accompanied by cleavage fracture. - Highlights: •A5052 and DP 600 with large gaps in properties were investigated by RSW. •The microstructures of RSW joints in DP 600/A5052 were examined detailedly. •The micro/macro-characteristics and strength relations of joints were analyzed.« less

  2. 46 CFR 54.05-16 - Production toughness testing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... tests, the V-notch is to be centered between the fusion lines. For the heat affected zone tests, the... material shall be taken from one of the heats of material used in the vessel, and both the electrodes and... successive tests between the weld metal and heat affected zone. Thus, approximately half of all weld...

  3. 46 CFR 54.05-16 - Production toughness testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... tests, the V-notch is to be centered between the fusion lines. For the heat affected zone tests, the... material shall be taken from one of the heats of material used in the vessel, and both the electrodes and... successive tests between the weld metal and heat affected zone. Thus, approximately half of all weld...

  4. 46 CFR 54.05-16 - Production toughness testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tests, the V-notch is to be centered between the fusion lines. For the heat affected zone tests, the... material shall be taken from one of the heats of material used in the vessel, and both the electrodes and... successive tests between the weld metal and heat affected zone. Thus, approximately half of all weld...

  5. 46 CFR 54.05-16 - Production toughness testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... tests, the V-notch is to be centered between the fusion lines. For the heat affected zone tests, the... material shall be taken from one of the heats of material used in the vessel, and both the electrodes and... successive tests between the weld metal and heat affected zone. Thus, approximately half of all weld...

  6. Analysing the Friction Stir Welded Joints of AA2219 Al-Cu Alloy in Different Heat-Treated-State

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, D.; Cheepu, Muralimohan; Kranthi kumar, B.; Mahapatra, M. M.

    2018-03-01

    Aluminium alloy AA2219 is widely used in light weight structural applications where the good corrosion resistance and specific weight required. The fabrication of this alloy using friction stir welding process is gaining interest towards finding the characteristics of the weld metal properties, since this process involved in the welded materials does not melt and recast. In the present investigation, friction stir welding process was used for different heat treated conditions of 2219-T87 and 2219-T62 aluminium alloys to find the influence of base metal on characteristics of the joints. The experimental output results exhibited that, mechanical properties, weld metal characteristics and joint failure locations are significantly affected by the different heat treatment conditions of the substrate. The joints tensile and yield strength of the 2219-T87 welds was higher than the 2219-T62 welds. Hardness distribution in the stir zone was significantly varied between two different heat treaded material conditions. The microstructural features of the 2219-T62 welds reveal the coarse grains formation in the thermo-mechanically affected zone and heat affected zone. The joint efficiency of the 2219- T82 welds is 59.87%, while that of 2219-T62 welds is 39.10%. In addition, the elongation of the joint also varied and the joints failure location characteristics are different for two different types heat treated condition joints.

  7. Multi-component Cu-Strengthened Steel Welding Simulations: Atom Probe Tomography and Synchrotron X-ray Diffraction Analyses

    NASA Astrophysics Data System (ADS)

    Hunter, Allen H.; Farren, Jeffrey D.; DuPont, John N.; Seidman, David N.

    2015-07-01

    An experimental steel with the composition Fe-1.39Cu-2.70Ni-0.58Al-0.48Mn-0.48Si-0.065Nb-0.05C (wt pct) or alternatively Fe-1.43Cu-2.61Ni-1.21Al-0.48Mn-0.98Si-0.039Nb-0.23C (at. pct) has been developed at Northwestern University, which has both high toughness and high strength after quenching and aging treatments. Simulated heat-affected zone (HAZ) samples are utilized to analyze the microstructures typically obtained after gas metal arc welding (GMAW). Dissolution within the HAZ of cementite (Fe3C) and NbC (F.C.C.) is revealed using synchrotron X-ray diffraction, while dissolution of Cu precipitates is measured employing local electrode atom probe tomography. The results are compared to Thermo-Calc equilibrium calculations. Comparison of measured Cu precipitate radii, number density, and volume fraction with similar measurements from a GMAW sample suggests that the cooling rate in the simulations is faster than in the experimental GMAW sample, resulting in significantly less Cu precipitate nucleation and growth during the cooling part of the weld thermal cycle. The few Cu precipitates detected in the simulated samples are primarily located on grain boundaries resulting from heterogeneous nucleation. The dissolution of NbC precipitates and the resultant austenite coarsening in the highest-temperature sample, coupled with a rapid cooling rate, results in the growth of bainite, and an increase in the strength of the matrix in the absence of significant Cu precipitation.

  8. Hardening Potential of an Al-Cu-Li Friction Stir Weld

    NASA Astrophysics Data System (ADS)

    Ivanov, Rosen; Boselli, Julien; Denzer, Diana; Larouche, Daniel; Gauvin, Raynald; Brochu, Mathieu

    The evolution of the microstructure during friction stir welding of a third generation AA2199 Al-Li alloy has been described and related to the mechanical properties of welds. The coupling of electron microscopy and micro-hardness have helped generate an understanding of the relationship between grain structure, precipitate density and morphology behind the observed changes in mechanical properties during post weld artificial ageing. The ability of welds to recover hardness and strength during post weld heat treatment was linked to the limited formation of large scale precipitates which act as sinks for alloying elements. Welds obtained with high tool rotation speed (within parameters studied) showed ultimate tensile strength levels of about 93% of the base metal, an elongation of 6% at fracture, and hardness values ranging between 120-140 HV in the stir zone, thermo-mechanically affected zone, and heat affected zone upon post weld heat treatment.

  9. Modeling of sheet metal fracture via cohesive zone model and application to spot welds

    NASA Astrophysics Data System (ADS)

    Wu, Joseph Z.

    Even though the cohesive zone model (CZM) has been widely used to analyze ductile fracture, it is not yet clearly understood how to calibrate the cohesive parameters including the specific work of separation (the work of separation per unit crack area) and the peak stress. A systematic approach is presented to first determine the cohesive values for sheet metal and then apply the calibrated model to various structure problems including the failure of spot welds. Al5754-0 was chosen for this study since it is not sensitive to heat treatment so the effect of heat-affected-zone (HAZ) can be ignored. The CZM has been applied to successfully model both mode-I and mode-III fracture for various geometries including Kahn specimens, single-notch specimens, and deep double-notch specimens for mode-I and trouser specimens for mode-III. The mode-I fracture of coach-peel spot-weld nugget and the mixed-mode fracture of nugget pull-out have also been well simulated by the CZM. Using the mode-I average specific work of separation of 13 kJ/m2 identified in a previous work and the mode-III specific work of separation of 38 kJ/m 2 found in this thesis, the cohesive peak stress has been determined to range from 285 MPa to 600 MPa for mode-I and from 165 MPa to 280 MPa for mode-III, depending on the degree of plastic deformation. The uncertainty of these cohesive values has also been examined. It is concluded that, if the specific work of separation is a material constant, the peak stress changes with the degree of plastic deformation and is therefore geometry-dependent.

  10. Modelisation numerique des phenomenes physiques du soudage par friction-malaxage et comportement en fatigue de joints soudes en aluminium 7075-T6

    NASA Astrophysics Data System (ADS)

    Gemme, Frederic

    The aim of the present research project is to increase the amount of fundamental knowledge regarding the process by getting a better understanding of the physical phenomena involved in friction stir welding (FSW). Such knowledge is required to improve the process in the context of industrial applications. In order to do so, the first part of the project is dedicated to a theoretical study of the process, while the microstructure and the mechanical properties of welded joints obtained in different welding conditions are measured and analyzed in the second part. The combination of the tool rotating and translating movements induces plastic deformation and heat generation of the welded material. The material thermomechanical history is responsible for metallurgical phenomena occurring during FSW such as recrystallization and precipitate dissolution and coarsening. Process modelling is used to reproduce this thermomechanical history in order to predict the influence of welding on the material microstructure. It is helpful to study heat generation and heat conduction mechanisms and to understand how joint properties are related to them. In the current work, a finite element numerical model based on solid mechanics has been developed to compute the thermomechanical history of the welded material. The computation results were compared to reference experimental data in order to validate the model and to calibrate unknown physical parameters. The model was used to study the effect of the friction coefficient on the thermomechanical history. Results showed that contact conditions at the workpiece/tool interface have a strong effect on relative amounts of heat generated by friction and by plastic deformation. The comparison with the experimental torque applied by the tool for different rotational speeds has shown that the friction coefficient decreases when the rotational speed increases. Consequently, heat generation is far more important near the material/tool interface and the material deformation is shallower, increasing the lack of penetration probability. The variation of thermomechanical conditions with regards to the rotational speed is responsible for the variation of the nugget shape, as recrystallization conditions are not reached in the same volume of material. The second part of the research project was dedicated to a characterization of the welded joints microstructure and mechanical properties. Sound joints were obtained by using a manufacturing procedure involving process parameters optimization and quality control of the joint integrity. Five different combinations of rotational and advancing speeds were studied. Microstructure observations have shown that the rotational speed has an effect on recrystallization conditions because of the variation of the contact conditions at the material/tool interface. On the other hand, the advancing speed has a strong effect on the precipitation state in the heat affected zone (HAZ). The heat input increases when the advancing speed decreases. The material softening in the HAZ is then more pronounced. Mechanical testing of the welded joints showed that the fatigue resistance increases when the rotational speed increases and the advancing speed decreases. The fatigue resistance of FSW joints mainly depends on the ratio of the advancing speed on the rotational speed, called the welding pitch k. When the welding pitch is high (k ≥ 0,66 mm/rev), the fatigue resistance depends on crack initiation at the root of circular grooves left by the tool on the weld surface. The size of these grooves is directly related to the welding pitch. When the welding pitch is low (k ≤ 0,2 mm/rev), the heat input is high and the fatigue resistance is limited by the HAZ softening. The fatigue resistance is optimized when k stands in the 0,25-0,30 mm/rev range. Outside that range, the presence of small lateral lips is critical. The results of the characterization part of the project showed that the effects of the applied vertical force on the formation of lateral lips should be submitted to further investigations. The elimination of the lateral lip, which could be achieved with a more precise adjustment of the vertical force, could lead to an improved fatigue resistance. The elimination of lateral lips, but also the circular grooves left by the tool, may be obtained by developing an appropriate surfacing technique and could lead to an improved fatigue resistance without reducing the advancing speed. (Abstract shortened by UMI.)

  11. Fiber Laser Welded AZ31 Magnesium Alloy: The Effect of Welding Speed on Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Chowdhury, S. H.; Chen, D. L.; Bhole, S. D.; Powidajko, E.; Weckman, D. C.; Zhou, Y.

    2012-06-01

    This study was aimed at characterizing microstructural change and evaluating tensile and fatigue properties of fiber laser welded AZ31B-H24 Mg alloy with special attention to the effect of welding speed. Laser welding led to the formation of equiaxed dendrites in the fusion zone and columnar dendrites near the fusion zone boundary along with divorced eutectic Mg17Al12 particles and recrystallized grains in the heat-affected zone. The lowest hardness across the weld appeared in the fusion zone. Although the yield strength, ductility, and fatigue life decreased, the hardening capacity increased after laser welding, with a joint efficiency reaching about 90 pct. A higher welding speed resulted in a narrower fusion zone, smaller grain size, higher yield strength, and longer fatigue life, as well as a slightly lower strain-hardening capacity mainly because of the smaller grain sizes. Tensile fracture occurred in the fusion zone, whereas fatigue failure appeared essentially in between the heat-affected zone and the fusion zone. Fatigue cracks initiated from the near-surface welding defects and propagated by the formation of fatigue striations together with secondary cracks.

  12. The Influence of TIG Welding Thermal Cycles on HSLA-100 Steel Plate

    DTIC Science & Technology

    1993-11-01

    8217 1.0’ 1,i 1.0’ 10’ TZ•ME. Secznas Figure 15. CCT diagram for a HSLA-100 steel with composition similar to that of the present work from Wilson...cooling rate through the transformation and ends up with a HAZ hardness of 345 HV which indicates a predominantly martensitic structure, on the CCT ... diagram . This is confirmed by the TEM micrograph of the HAZ taken close to fusion boundary, figure 14. On the other hand, the high heat input weld 1, with

  13. Pulsed Laser Beam Welding of Pd43Cu27Ni10P20 Bulk Metallic Glass.

    PubMed

    Shao, Ling; Datye, Amit; Huang, Jiankang; Ketkaew, Jittisa; Woo Sohn, Sung; Zhao, Shaofan; Wu, Sujun; Zhang, Yuming; Schwarz, Udo D; Schroers, Jan

    2017-08-11

    We used pulsed laser beam welding method to join Pd 43 Cu 27 Ni 10 P 20 (at.%) bulk metallic glass and characterized the properties of the joint. Fusion zone and heat-affected zone in the weld joint can be maintained completely amorphous as confirmed by X-ray diffraction and differential scanning calorimetry. No visible defects were observed in the weld joint. Nanoindentation and bend tests were carried out to determine the mechanical properties of the weld joint. Fusion zone and heat-affected zone exhibit very similar elastic moduli and hardness when compared to the base material, and the weld joint shows high ductility in bending which is accomplished through the operation of multiple shear bands. Our results reveal that pulsed laser beam welding under appropriate processing parameters provides a practical viable method to join bulk metallic glasses.

  14. Microstructural evolution in the HAZ of Inconel 718 and correlation with the hot ductility test

    NASA Technical Reports Server (NTRS)

    Thompson, R. G.; Genculu, S.

    1983-01-01

    The nickel-base alloy 718 was evaluated to study the role of preweld heat treatment in reducing or eliminating heat-affected zone hot cracking. Three heat treatments were studied using the Gleeble hot ductility test. A modified hot ductility test was also used to follow the evolution of microstructure during simulated welding thermal cycles. The microstructural evolution was correlated with the hot ductility data in order to evaluate the mechanism of hot cracking in alloy 718. The correlation of hot ductility with microstructure showed that recrystallization, grain growth, and dissolution of precipitates did not in themselves cause any loss of ductility during cooling. Ductility loss during cooling was not initiated until the constitutional liquation of NbC particles was observed in the microstructure. Laves-type phases were found precipitated in the solidified grain boundaries but were not found to correlate with any ductility loss parameter. Mechanisms are reviewed which help to explain how heat treatment controls the hot crack susceptibility of alloy 718 as measured in the hot ductility test.

  15. A study on corrosion resistance of dissimilar welds between Monel 400 and 316L austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Mani, Cherish; Karthikeyan, R.; Vincent, S.

    2018-04-01

    An attempt has been made to study the corrosion resistance of bi-metal weld joints of Monel 400 tube to stainless steel 316 tube by GTAW process. The present research paper contributes to the ongoing research work on the use of Monel400 and 316L austenitic stainless steel in industrial environments. Potentiodynamic method is used to investigate the corrosion behavior of Monel 400 and 316L austenitic stainless steel welded joints. The analysis has been performed on the base metal, heat affected zone and weld zone after post weld heat treatment. Optical microscopy was also performed to correlate the results. The heat affected zone of Monel 400 alloy seems to have the lowest corrosion resistance whereas 316L stainless steel base metal has the highest corrosion resistance.

  16. S-N Fatigue and Fatigue Crack Propagation Behaviors of X80 Steel at Room and Low Temperatures

    NASA Astrophysics Data System (ADS)

    Jung, Dae-Ho; Kwon, Jae-Ki; Woo, Nam-Sub; Kim, Young-Ju; Goto, Masahiro; Kim, Sangshik

    2014-02-01

    In the present study, the S-N fatigue and the fatigue crack propagation (FCP) behaviors of American Petroleum Institute X80 steel were examined in the different locations of the base metal (BM), weld metal (WM), and heat-affected zone (HAZ) at 298 K, 223 K, and 193 K (25 °C, -50 °C, and -80 °C). The resistance to S-N fatigue of X80 BM specimen increased greatly with decreasing temperature from 298 K to 193 K (25 °C to -80 °C) and showed a strong dependency on the flow strength (½(yield strength + tensile strength)). The FCP rates of X80 BM specimen were substantially reduced with decreasing temperature from 298 K to 223 K (25 °C to -50 °C) over the entire ∆ K regime, while further reduction in FCP rates was not significant with temperature from 223 K to 193 K (-50 °C to -80 °C). The FCP rates of the X80 BM and the WM specimens were comparable with each other, while the HAZ specimen showed slightly better FCP resistance than the BM and the WM specimens over the entire ∆K regime at 298 K (25 °C). Despite the varying microstructural characteristics of each weld location, the residual stress appeared to be a controlling factor to determine the FCP behavior. The FCP behaviors of high strength X80 steel were discussed based on the microstructural and the fractographic observations.

  17. Fabrication of thick multilayered steel structure using A516 Grade 70 by multipass friction stir welding †

    DOE PAGES

    Lim, Y. C.; Sanderson, S.; Mahoney, M.; ...

    2016-04-06

    Here, we fabricated a thick-sectioned multilayered steel structure by multipass friction stir welding on A516 Grade 70 steel. Tensile strength of the multilayered samples was comparable to that of the base metal. Failure was located in the base metal when a defect-free sample was tested. Charpy impact toughness was higher in the stir zone and heat affected zone than in the base metal. For higher microhardness values were found in the stir zone and heat affected zone than the base metal due to grain refinement and modification of the microstructures. As a result, improved mechanical properties compared to the basemore » metal were found in the weld zones of friction stir welded A516 Grade 70 steel.« less

  18. Heat-affected zone microstructure and mechanical properties evolution for laser remanufacturing 35CrMoA axle steel

    NASA Astrophysics Data System (ADS)

    Feng, Xiangyi; Dong, Shiyun; Yan, Shixing; Liu, Xiaoting; Xu, Binshi; Pan, Fusheng

    2018-03-01

    In this article, by using orthogonal test the technological test was conducted and the optimum processing of the remanufacturing35CrMoA axle were obtained. The evolution of microstructure and mechanical property of HAZ were investigated. The microstructure of HAZ was characterized by means of OM and SEM. Meanwhile hardness distribution in HAZ and tensile property of cladding-HAZ-substrate samples were measured. The microstructure of cladding and HAZ were observed. The microsturcture evoltion and the mechanism of harden in the HAZ was discussed and revealed. The results indicated that the remanufacturing part has excellent strength due to grain refining and dispersive distribution of nanoscale cementite. The remanufacturing part will have uniform microstructure and hardness matching with that of 35CrMoA axle by using stress-relieving annealing at 580°.

  19. A three-dimensional thermal finite element analysis of AISI 304 stainless steel and copper dissimilar weldment

    NASA Astrophysics Data System (ADS)

    Singh, Gurdeep; Saxena, Ravindra K.; Pandey, Sunil

    2018-04-01

    The aim of this study to developed a 3-D thermal finite element model for dissimilar material welding of AISI-304 stainless steel and copper. Welding of similar material is widely studied using experimental and numerical methods but the problem becomes trivial for the welding of dissimilar materials especially in ferrous and nonferrous materials. Finite element analysis of dissimilar material welding is a cost-effective method for the understanding and analysis of the process. The finite element analysis has been performed to predict the heat affected zone and temperature distribution in AISI-304 stainless steel and copper dissimilar weldment using MSC Marc 2017®. Due to the difference in physical properties of these materials the behavior of heat affected zone and temperature distribution are perceived to be different. To verify the accuracy of the thermal finite element model, the welding process was simulated with butt-welded joints having same dimensions and parameters from Attarha and Far [1]. It is found from the study that the heat affected zone is larger in copper weld pads than in AISI 304 stainless steel due to large difference in thermal conductivity of these two weld pads.

  20. A Physical Metallurgical Basis for Heat-Affected Zone and Base-Plate Properties of a Microalloyed HSLA Steel.

    DTIC Science & Technology

    1986-12-01

    system.(a) Schematic diagram.(b) Equipment ...... 64 x * T-3136 FIGURE PAGE 13 Details of subsize charpy specimen and Gleeble HAZ microstructural...simulation specimen ......................................... 71 14 Macrograph profile of subsize charpy specimen illustrating notch location. (a) Specimen...shelf impact energy for subsize charpy specimens as a function of distance from the fusion zone boundary for various nominal heat inputs of both

  1. Influence of Oxides on Microstructures and Mechanical Properties of High-Strength Steel Weld Joint

    NASA Astrophysics Data System (ADS)

    Cai, Yangchuan; Luo, Zhen; Huang, Zunyue; Zeng, Yida

    2016-11-01

    A comprehensive investigation was conducted into the effect of oxides on penetrations, microstructures and mechanical properties of BS700MC super steel weld bead. Boron oxide changed the penetration of weld bead by changing the Marangoni convection in the weld pool and contracting the welding arc. Chromium oxide only changed the Marangoni convection in the weld pool to increase the penetration of super steel. Thus, the super steel weld bead has higher penetration coated with flux boron oxide than that coated with chromium oxide. In other words, the activating flux TIG (A-TIG) welding with flux boron oxide has less welding heat input than the A-TIG welding with flux chromium oxide. As a result, on the one hand, there existed more fine and homogeneous acicular ferrites in the microstructure of welding heat-affected zone when the super steel was welded by A-TIG with flux boron oxide. Thus, the weld beads have higher value of low-temperature impact toughness. On the other hand, the softening degree of welding heat-affected zone, welded by A-TIG with flux boron oxide, will be decreased for the minimum value of welding heat input.

  2. Influence of Alloy Content and Prior Microstructure on Evolution of Secondary Phases in Weldments of 9Cr-Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Thomas Paul, V.; Sudha, C.; Saroja, S.

    2015-08-01

    9Cr-Reduced Activation Ferritic-Martensitic steels with 1 and 1.4 wt pct tungsten are materials of choice for the test blanket module in fusion reactors. The steels possess a tempered martensite microstructure with a decoration of inter- and intra-lath carbides, which undergoes extensive modification on application of heat. The change in substructure and precipitation behavior on welding and subsequent thermal exposure has been studied using both experimental and computational techniques. Changes i.e., formation of various phases, their volume fraction, size, and morphology in different regions of the weldment due to prolonged thermal exposure was influenced not only by the time and temperature of exposure but also the prior microstructure. Laves phase of type Fe2W was formed in the high tungsten steel, on aging the weldment at 823 K (550 °C). It formed in the fine-grained heat-affected zone (HAZ) at much shorter durations than in the base metal. The accelerated kinetics has been understood in terms of enhanced precipitation of carbides at lath/grain boundaries during aging and the concomitant depletion of carbon and chromium and enrichment of tungsten in the vicinity of the carbides. Therefore, the fine-grained HAZ in the weldment was identified as a region susceptible for failure during service.

  3. Prediction of temperature and HAZ in thermal-based processes with Gaussian heat source by a hybrid GA-ANN model

    NASA Astrophysics Data System (ADS)

    Fazli Shahri, Hamid Reza; Mahdavinejad, Ramezanali

    2018-02-01

    Thermal-based processes with Gaussian heat source often produce excessive temperature which can impose thermally-affected layers in specimens. Therefore, the temperature distribution and Heat Affected Zone (HAZ) of materials are two critical factors which are influenced by different process parameters. Measurement of the HAZ thickness and temperature distribution within the processes are not only difficult but also expensive. This research aims at finding a valuable knowledge on these factors by prediction of the process through a novel combinatory model. In this study, an integrated Artificial Neural Network (ANN) and genetic algorithm (GA) was used to predict the HAZ and temperature distribution of the specimens. To end this, a series of full factorial design of experiments were conducted by applying a Gaussian heat flux on Ti-6Al-4 V at first, then the temperature of the specimen was measured by Infrared thermography. The HAZ width of each sample was investigated through measuring the microhardness. Secondly, the experimental data was used to create a GA-ANN model. The efficiency of GA in design and optimization of the architecture of ANN was investigated. The GA was used to determine the optimal number of neurons in hidden layer, learning rate and momentum coefficient of both output and hidden layers of ANN. Finally, the reliability of models was assessed according to the experimental results and statistical indicators. The results demonstrated that the combinatory model predicted the HAZ and temperature more effective than a trial-and-error ANN model.

  4. High power laser welding of thick steel plates in a horizontal butt joint configuration

    NASA Astrophysics Data System (ADS)

    Atabaki, M. Mazar; Yazdian, N.; Ma, J.; Kovacevic, R.

    2016-09-01

    In this investigation, two laser-based welding techniques, autogenous laser welding (ALW) and laser welding assisted with a cold wire (LWACW), were applied to join thick plates of a structural steel (A36) in a horizontal narrow gap butt joint configuration. The main practical parameters including welding method and laser power were varied to get the sound weld with a requirement to achieve a full penetration with the reinforcement at the back side of weld in just one pass. The weld-bead shape, cross-section and mechanical properties were evaluated by profilometer, micro-hardness test and optical microscope. In order to investigate the stability of laser-induced plasma plume, the emitted optical spectra was detected and analyzed by the spectroscopy analysis. It was found that at the laser power of 7 kW a fully penetrated weld with a convex back side of weld could be obtained by the LWACW. The microstructural examinations showed that for the ALW the acicular ferrite and for the LWACW the pearlite were formed in the heat affected zone (HAZ). The prediction of microstructure based on continuous cooling transformation (CCT) diagram and cooling curves obtained by thermocouple measurement were in good agreement with each other. According to the plasma ionization values obtained from the spectroscopy analysis the plume for both processes was recognized as dominated weakly ionized plasma including the main vaporized elemental composition. At the optimum welding condition (LWACW at the laser power of 7 kW) the fluctuation of the electron temperature was reduced. The spectroscopy analysis demonstrated that at the higher laser power more of the elemental compositions such as Mn and Fe were evaporated.

  5. Molten Pool Behavior and Mechanical Properties of Pulsed Current Double-Sided Synchronization GTA Welded Fe-18Cr-17Mn-Ni-N

    NASA Astrophysics Data System (ADS)

    Qiang, Wei; Wang, Kehong; Feng, Yuehai; Chen, Jiahe

    2017-02-01

    Double-sided synchronization vertical gas tungsten arc welding (DSSVW) procedure was used to weld high-nitrogen low-nickel stainless steel Fe-18Cr-17Mn-Ni-N without groove and filler wire. First, the molten pool behaviors and appearances of pulsed current DSSVW (PC-DSSVW) and constant current DSSVW (CC-DSSVW) were comparatively analyzed. The periodic variation occurs in the width of both the anode region of the arc and the molten pool tail during PC-DSSVW, while the contact angle first increases and then decreases, and both the width of the anode region and the length of arc plume increase progressively in CC-DSSVW. It is found that the weld appearance of PC-DSSVW is superior to that of CC-DSSVW. Second, the forces of the DSSVW molten pool were analyzed. The result indicates that the molten pool of the DSSVW procedure is in a state of unstable equilibrium, and it will easily lose balance after being disturbed, resulting in the asymmetrical weld or hump bead. Third, the PC-DSSVW experiments at various welding speeds were conducted to study the influence of welding speed on the weld profile, microstructure, tensile strength and impact toughness. Furthermore, the solidification mode of Fe-18Cr-17Mn-Ni-N was predicted to help determine the microstructure of the welded joint. Results indicate that the weld width, weld reinforcement and melting area all increase with decreasing welding speed, and Fe-18Cr-17Mn-Ni-N solidifies as A mode. The microstructure of the base metal (BM) and heat-affected zone (HAZ) is equiaxed austenite and that of the fusion zone (FZ) is austenite dendrite with some chromium carbides dispersed in the grain boundary; with decreasing welding speed, grains become coarse. The maximum tensile strength (UTS) and elongation of PC-DSSVW joint are 860 MPa and 8.1%, and the elongation decreases dramatically with decreasing welding speed. The impact toughness decreases substantially compared to the BM, achieving 48.2% of the BM.

  6. Effect of Alloy 625 Buffer Layer on Hardfacing of Modified 9Cr-1Mo Steel Using Nickel Base Hardfacing Alloy

    NASA Astrophysics Data System (ADS)

    Chakraborty, Gopa; Das, C. R.; Albert, S. K.; Bhaduri, A. K.; Murugesan, S.; Dasgupta, Arup

    2016-04-01

    Dashpot piston, made up of modified 9Cr-1Mo steel, is a part of diverse safety rod used for safe shutdown of a nuclear reactor. This component was hardfaced using nickel base AWS ER NiCr-B alloy and extensive cracking was experienced during direct deposition of this alloy on dashpot piston. Cracking reduced considerably and the component was successfully hardfaced by application of Inconel 625 as buffer layer prior to hardface deposition. Hence, a separate study was undertaken to investigate the role of buffer layer in reducing the cracking and on the microstructure of the hardfaced deposit. Results indicate that in the direct deposition of hardfacing alloy on modified 9Cr-1Mo steel, both heat-affected zone (HAZ) formed and the deposit layer are hard making the thickness of the hard layer formed equal to combined thickness of both HAZ and deposit. This hard layer is unable to absorb thermal stresses resulting in the cracking of the deposit. By providing a buffer layer of Alloy 625 followed by a post-weld heat treatment, HAZ formed in the modified 9Cr-1Mo steel is effectively tempered, and HAZ formed during the subsequent deposition of the hardfacing alloy over the Alloy 625 buffer layer is almost completely confined to Alloy 625, which does not harden. This reduces the cracking susceptibility of the deposit. Further, unlike in the case of direct deposition on modified 9Cr-1Mo steel, dilution of the deposit by Ni-base buffer layer does not alter the hardness of the deposit and desired hardness on the deposit surface could be achieved even with lower thickness of the deposit. This gives an option for reducing the recommended thickness of the deposit, which can also reduce the risk of cracking.

  7. Hardening characteristics of CO2 laser welds in advanced high strength steel

    NASA Astrophysics Data System (ADS)

    Han, Tae-Kyo; Park, Bong-Gyu; Kang, Chung-Yun

    2012-06-01

    When the CO2 laser welder with 6 kW output was used to weld 4 TRIP steels, 2 DP steels and a precipitation-hardened steel, which have the tensile strength in the range of 600-1000 MPa, the effect of welding speed on hardening characteristics was investigated. In the weld of TRIP steels and DP steels, the maximum hardness was shown in the fusion zone and the HAZ near the bond line, and the hardness was decreased from the HAZ to the base metal. Only in the PH600 steel, the maximum hardness was shown in the fusion zone and the hardness was decreased from bond line to the base metal. The maximum hardness value was not changed due to the variation of the welding speed within a given range of the welding speed. When the correlation with maximum hardness value using 6 known carbon equivalents was examined, those of CEL (=C+Si/50+Mn/25+P/2+Cr/25) and PL (=C+Mn/22+14B) were 0.96 and 0.95 respectively, and CEL was better because it could reflect the contribution of Si and Cr added to AHSS. The maximum hardness value could be calculated by the equation "Hmax=701CEL+281". The phase transformation analysis indicated that only martensitic transformation was expected in the given range of the welding conditions. Therefore, the maximum hardness of the weld was the same as that of water cooled steel and not changed with the variation of the welding speed

  8. Full-Field Strain Measurement On Titanium Welds And Local Elasto-Plastic Identification With The Virtual Fields Method

    NASA Astrophysics Data System (ADS)

    Tattoli, F.; Pierron, F.; Rotinat, R.; Casavola, C.; Pappalettere, C.

    2011-01-01

    One of the main problems in welding is the microstructural transformation within the area affected by the thermal history. The resulting heterogeneous microstructure within the weld nugget and the heat affected zones is often associated with changes in local material properties. The present work deals with the identification of material parameters governing the elasto—plastic behaviour of the fused and heat affected zones as well as the base material for titanium hybrid welded joints (Ti6Al4V alloy). The material parameters are identified from heterogeneous strain fields with the Virtual Fields Method. This method is based on a relevant use of the principle of virtual work and it has been shown to be useful and much less time consuming than classical finite element model updating approaches applied to similar problems. The paper will present results and discuss the problem of selection of the weld zones for the identification.

  9. Fundamental Studies of Phase Transformations and Mechanical Properties in the Heat Affected Zone of 10 wt% Nickel Steel

    NASA Astrophysics Data System (ADS)

    Barrick, Erin J.

    United States naval applications require the use of steels with high strength and resistance to fracture at low temperatures to provide good ballistic properties. In recent years, 10 wt% Ni steel has been developed with strength and toughness values exceeding those of steels currently used, and is now being considered as a candidate material to replace existing high-strength, low alloy steels. This steel has excellent toughness from the mechanically induced transformation of interlath austenite films to martensite. These austenite films are formed via a carefully developed quenching, lamellarizing, and tempering heat treatment. However, before 10 wt% Ni steel can be implemented for full-scale applications, the effects of the rapid heating and cooling rates associated with welding thermal cycles on phase transformations and mechanical properties must be understood. In this research, a fundamental understanding of phase transformations and mechanical properties in the heat-affected zone of fusion welds in 10 wt% Ni steel was developed through heating and cooling rate dilatometry experiments, gas tungsten arc welding, and simulation of gas metal arc welding. First, an investigation into the effects of heating and cooling rate on the phase transformations in 10 wt% Ni steel was performed. The Ac1 and Ac3 temperatures during heating were determined as a function of heating rate, and sluggish transformation during fast heating rates manifested itself as a high Ac3 temperature of 1050°C as opposed to a temperature of 850°C at slow heating rates. A continuous cooling transformation diagram produced for 10 wt% Ni steel reveals that martensite will form over a very wide range of cooling rates, which reflects a very high hardenability of this alloy. This is significant because the range of cooling rates for which the diagram was constructed over easily covers the range associated with fusion welding, so there would not be the need for precise control over the weld processing conditions. The microstructures observed in a single pass gas tungsten arc weld were rationalized with the observations from the heating and cooling rate experiments. The microhardness of gas tungsten arc weld is highest in the intercritical heat affected zone, which is unexpected based on the usual behavior of quench and tempered steels. The hardness of the heat affected zone is always higher than the base metal which is a promising outcome. Having understood the overall effects of heating and cooling on the phase transformations in 10 wt% Ni steel, the microstructure and mechanical property evolution through the heat affected zone was investigated. A Gleeble 3500 thermo-mechanical simulator was used to replicate microstructures observed in the gas-tungsten arc weld, and the microstructural factors influencing the strength and toughness in the simulated heat affected zone samples were correlated to mechanical property results. The strength is the highest in the intercritical heat-affected zone, mostly attributed to microstructural refinement. With increasing peak temperature of the thermal cycle, the volume fraction of retained austenite decreases. The local atom probe tomography results suggest this is due to the destabilization of the austenite brought on by the diffusion of Ni out of the austenite. There is a local low toughness region in the intercritical heat-affected zone, corresponding to a low retained austenite content. However, the retained austenite is similarly low in higher peak temperature regions but the toughness is high. This suggests that while 10 wt% Ni steel is a TRIP-assisted steel and thus obtains high toughness from the plasticity-induced martensite to austenite transformation, the toughness of the steel is also based on other microstructural factors. Overall, the results presented in this work have established, for the first time, the effects of rapid heating and cooling on the phase transformations and mechanical properties in 10 wt% Ni steel, and have started to identify the microstructural features influencing the strength and toughness of this alloy.

  10. An Atom Probe Tomographic Investigation of High-Strength, High-Toughness Precipitation Strengthened Steels for Naval Applications

    NASA Astrophysics Data System (ADS)

    Hunter, Allen H.

    Novel high-strength high-toughness alloys strengthened by precipitation are investigated for use in naval applications. The mechanical properties of an experimental steel alloy, NUCu-140, are evaluated and are not suitable for the naval requirements due to poor impact toughness at -40°C. An investigation is conducted to determine optimum processing conditions to restore toughness. A detailed aging study is conducted at 450, 500, and 550°C to determine the evolution of the microstructure and mechanical properties. A combination of transmission electron microscopy (TEM), synchrotron X-ray Diffraction (XRD), and Local electrode atom probe (LEAP) tomography are used to measure the evolution of the Cu precipitates, austenite, NbC, and cementite phases during aging. The evolution of the Cu precipitates significantly affects the yield strength of the steel, but low temperature toughness is controlled by the cementite precipitates. Extended aging is effective at improving the impact toughness but the yield strength is also decreased due to coarsening of the Cu precipitates. To provide a foundation for successful welding of NUCu-140 steel, an investigation of the effects of gas metal arc welding (GMAW) are performed. The microstructures in the base metal (BM), heat affected zone (HAZ), and fusion zone (FZ) of a GMAW sample are analyzed to determine the effects of the welding thermal cycle. Weld simulation samples with known thermal histories are prepared and analyzed by XRD and LEAP tomography. A significant loss in microhardness is observed as a result of dissolution of the Cu precipitates after the weld thermal cycle. The cooling time is too rapid to allow significant precipitation of Cu. In addition to the NUCu-140 alloy, a production HSLA-115 steel alloy is investigated using TEM, XRD, and LEAP tomography. The strength of the HSLA-115 is found to be derived primarily from Cu precipitates. The volume fractions of cementite, austenite, and NbC are measured by XRD. Austenite precipitates are observed at martensite lath boundaries using TEM.

  11. Double-Sided Single-Pass Submerged Arc Welding for 2205 Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Luo, Jian; Yuan, Yi; Wang, Xiaoming; Yao, Zongxiang

    2013-09-01

    The duplex stainless steel (DSS), which combines the characteristics of ferritic steel and austenitic steel, is used widely. The submerged arc welding (SAW) method is usually applied to join thick plates of DSS. However, an effective welding procedure is needed in order to obtain ideal DSS welds with an appropriate proportion of ferrite (δ) and austenite (γ) in the weld zone, particularly in the melted zone and heat-affected zone. This study evaluated the effectiveness of a high efficiency double-sided single-pass (DSSP) SAW joining method for thick DSS plates. The effectiveness of the converse welding procedure, characterizations of weld zone, and mechanical properties of welded joint are analyzed. The results show an increasing appearance and continuous distribution feature of the σ phase in the fusion zone of the leading welded seam. The converse welding procedure promotes the σ phase to precipitate in the fusion zone of leading welded side. The microhardness appears to significantly increase in the center of leading welded side. Ductile fracture mode is observed in the weld zone. A mixture fracture feature appears with a shear lip and tears in the fusion zone near the fusion line. The ductility, plasticity, and microhardness of the joints have a significant relationship with σ phase and heat treatment effect influenced by the converse welding step. An available heat input controlling technology of the DSSP formation method is discussed for SAW of thick DSS plates.

  12. Femtosecond fiber laser additive manufacturing and welding for 3D manufacturing

    NASA Astrophysics Data System (ADS)

    Huang, Huan; Nie, Bai; Wan, Peng; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2015-03-01

    Due to the unique ultra-short pulse duration and high peak power, femtosecond (fs) laser has emerged as a powerful tool for many applications but has rarely been studied for 3D printing. In this paper, welding of both bulk and powder materials is demonstrated for the first time by using high energy and high repetition rate fs fiber lasers. It opens up new scenarios and opportunities for 3D printing with the following advantages - greater range of materials especially with high melting temperature, greater-than-ever level of precision (sub-micron) and less heat-affected-zone (HAZ). Mechanical properties (strength and hardness) and micro-structures (grain size) of the fabricated parts are investigated. For dissimilar materials bulk welding, good welding quality with over 210 MPa tensile strength is obtained. Also full melting of the micron-sized refractory powders with high melting temperature (above 3000 degree C) is achieved for the first time. 3D parts with shapes like ring and cube are fabricated. Not only does this study explore the feasibility of melting dissimilar and high melting temperature materials using fs lasers, but it also lays out a solid foundation for 3D printing of complex structure with designed compositions, microstructures and properties. This can greatly benefit the applications in automobile, aerospace and biomedical industries, by producing parts like nozzles, engines and miniaturized biomedical devices.

  13. Microstructural Evolution of AerMet100 Steel Coating on 300M Steel Fabricated by Laser Cladding Technique

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Li, Jia; Cheng, Xu; Wang, Huaming

    2018-02-01

    In this paper, the process of coating AerMet100 steel on forged 300M steel with laser cladding was investigated, with a thorough analysis of the chemical composition, microstructure, and hardness of the substrate and the cladding layer as well as the transition zone. Results show that the composition and microhardness of the cladding layer are macroscopically homogenous with the uniformly distributed bainite and a small amount of retained austenite in martensite matrix. The transition zone, which spans approximately 100 μm, yields a gradual change of composition from the cladding layer to 300M steel matrix. The heat-affected zone (HAZ) can be divided into three zones: the sufficiently quenched zone (SQZ), the insufficiently quenched zone (IQZ), and the high tempered zone (HTZ). The SQZ consists of martensitic matrix and bainite, as for the IQZ and the HTZ the microstructures are martensite + tempered martensite and tempered martensite + ferrite, respectively. These complicated microstructures in the HAZ are caused by different peak heating temperatures and heterogeneous microstructures of the as-received 300M steel.

  14. Study of issues in difficult-to-weld thick materials by hybrid laser arc welding

    NASA Astrophysics Data System (ADS)

    Mazar Atabaki, Mehdi

    There is a high interest for the high strength-to-weight ratio with good ductility for the welds of advanced alloys. The concern about the welding of thick materials (Advanced high strength steels (AHSS) and 5xxx and 6xxx series of aluminum alloys) has stimulated the development of manufacturing processes to overcome the associated issues. The need to weld the dissimilar materials (AHSS and aluminum alloys) is also required for some specific applications in different industries. Hence, the requirement in the development of a state-of-the-art welding procedure can be helpful to fulfill the constraints. Among the welding methods hybrid laser/arc welding (HLAW) has shown to be an effective method to join thick and difficult-to-weld materials. This process benefits from both advantages of the gas metal arc welding (GMAW) and laser welding processes. The interaction of the arc and laser can help to have enough penetration of weld in thick plates. However, as the welding of dissimilar aluminum alloys and steels is very difficult because of the formation of brittle intermetallics the present work proposed a procedure to effectively join the alloys. The reports showed that the explosively welded aluminum alloys to steels have the highest toughness, and that could be used as an "insert" (TRICLAD) for welding the thick plates of AHSS to aluminum alloys. Therefore, the HLAW of the TRICLAD-Flange side (Aluminum alloy (AA 5456)) to the Web side (Aluminum alloys (AA 6061 and AA 5456)) and the TRICLAD-Flange side (ASTM A516) to the Web side (AHSS) was studied in the present work. However, there are many issues related to HLAW of the dissimilar steels as well as dissimilar aluminum alloys that have to be resolved in order to obtain sound welds. To address the challenges, the most recent welding methods for joining aluminum alloys to steels were studied and the microstructural development, mechanical properties, and on-line monitoring of the welding processes were discussed as well. The heat and mass transfer and the issues in joining of dissimilar alloys by the hybrid laser/arc welding process (HLAW) were explicitly explained in details. A finite element model was developed to simulate the heat transfer in HLAW of the aluminum alloys. Two double-ellipsoidal heat source models were considered to describe the heat input of the gas metal arc welding and laser welding processes. An experimental procedure was also developed for joining thick advanced high strength steel plates by using the HLAW, by taking into consideration different butt joint configurations. The geometry of the weld groove was optimized according to the requirements of ballistic test, where the length of the softened heat affected zone should be less than 15.9 mm measured from the weld centerline. Since the main issue in HLAW of the AHSS was the formation of the pores, the possible mechanisms of the pores formation and their mitigation methods during the welding process were investigated. Mitigation methods were proposed to reduce the pores inside in the weld area and the influence of each method on the process stability was investigated by an on-line monitoring system of the HLAW process. The groove angle was optimized for the welding process based on the allowed amount of heat input along the TRICLADRTM interface generated by an explosive welding. The weld was fractured in the heat affected zone of the aluminum side in the tensile test. The microharness was shown that the temperature variation caused minor softening in the heat affected zone satisfying the requirement that the width of the softened heat affected zone in the steel side falls within 15.9 mm far away from the weld centerline. The microstructure analysis showed the presence of tempered martensite at the vicinity of the weld area, which it was a cause of softening in the heat affected zone.

  15. Microwave facilities for welding thermoplastic composites and preliminary results.

    PubMed

    Ku, H S; Siores, E; Ball, J A

    1999-01-01

    The wide range of applications of microwave technology in manufacturing industries has been well documented (NRC, 1994; Thuery, 1992). In this paper, a new way of joining fibre reinforced thermoplastic composites with or without primers is presented. The microwave facility used is also discussed. The effect of power input and cycle time on the heat affected zone (HAZ) is detailed together with the underlying principles of test piece material interactions with the electromagnetic field. The process of autogenous joining of 33% by weight of random glass fibre reinforced Nylon 66, polystyrene (PS) and low density polyethylene (LDPE) as well as 23.3% by weight of carbon fibre reinforced PS thermoplastic composites is discussed together with developments using filler materials, or primers in the heterogenous joining mode. The weldability dependence on the dielectric loss tangent of these materials at elevated temperatures is also described.

  16. Physical Nature of the Processes in Structure Forming, Phase and Chemical Composition of pipe Permanent Joints when MMA Welding

    NASA Astrophysics Data System (ADS)

    Il'yaschenko, D. P.; Chinakhov, D. A.; Danilov, V. I.; Sadykov, I. D.

    2016-04-01

    The paper outlines peculiarities of structure formation, phase and chemical composition in regard to heat content in molten electrode metal beads when pipe steel (steel 09G2S) welding using power sources with various energy characteristics. Mathematical calculations indicate an inverter power source provides minor heat content into the bead of electrode metal when welding. Experimental research has pointed at 4-9 % increase in impact strength of joints produced using an inverter power source in comparison with samples produced applying a diode rectifier. The following factors can possibly give rise to the increasing impact strength: difference in microstructures of weld joints, up to 50% shortening ferritic plates in metal of weld joint, change in dimensions of ferritic grains in the heat-affected zone by as much as 17.5 %, and decrease in the extent of heat-affected zone by 50%.

  17. Nonlinear ultrasonic assessment of stress corrosion cracking damage in sensitized 304 stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morlock, Florian, E-mail: fmorlock3@gatech.edu; Jacobs, Laurence J., E-mail: fmorlock3@gatech.edu; Kim, Jin-Yeon, E-mail: fmorlock3@gatech.edu

    2015-03-31

    This research uses nonlinear Rayleigh surface waves to characterize stress corrosion cracking (SCC) damage in welded 304 Stainless Steel (304 SS). 304 SS is widely used in reactor pressure vessels, where a corrosive environment in combination with applied stress due to high internal pressures can cause SCC. Welds and the nearby heat affected zones (HAZ) in the vessel material are especially sensitive to SCC damage. SCC damage results in microstructural changes such as dislocation formation and microcrack initiation that in the long term lead to reduced structural integrity and material failure. Therefore, the early detection of SCC is crucial tomore » ensure safe operation. It has been shown that the microstructural changes caused by SCC can generate higher harmonic waves when excited harmonically. This research considers different levels of SCC damage induced in samples of welded 304 SS by applying stress to a specimen held in a corrosive medium (Sodium Thiosulfate). A nonlinear Rayleigh surface wave is introduced in the material and the fundamental and the second harmonic waves are measured using wedge detection. The nonlinearity parameter that relates the fundamental and the second harmonic amplitudes, is computed to quantify the SCC damage in each sample. These results are used to demonstrate the feasibility of using nonlinear Rayleigh waves to characterize SCC damage.« less

  18. Quantitative Analysis of Microstructural Constituents in Welded Transformation-Induced-Plasticity Steels

    NASA Astrophysics Data System (ADS)

    Amirthalingam, M.; Hermans, M. J. M.; Zhao, L.; Richardson, I. M.

    2010-02-01

    A quantitative analysis of retained austenite and nonmetallic inclusions in gas tungsten arc (GTA)-welded aluminum-containing transformation-induced-plasticity (TRIP) steels is presented. The amount of retained austenite in the heat-affected and fusion zones of welded aluminum-containing TRIP steel with different base metal austenite fractions has been measured by magnetic saturation measurements, to study the effect of weld thermal cycles on the stabilization of austenite. It is found that for base metals containing 3 to 14 pct of austenite, 4 to 13 pct of austenite is found in the heat-affected zones and 6 to 10 pct in the fusion zones. The decomposition kinetics of retained austenite in the base metal and welded samples was also studied by thermomagnetic measurements. The decomposition kinetics of the austenite in the fusion zone is found to be slower compared to that in the base metal. Thermomagnetic measurements indicated the formation of ferromagnetic ɛ carbides above 290 °C and paramagnetic η( ɛ') transient iron carbides at approximately 400 °C due to the decomposition of austenite during heating.

  19. Mechanical Properties of Steel P92 Welded Joints Obtained By TIG Technology

    NASA Astrophysics Data System (ADS)

    Mohyla, P.; Havelka, L.; Schmidová, E.; Vontorová, J.

    2017-11-01

    Mechanical properties of P92 steel welded joints obtained using the TIG (141) technology have been studied upon post-welding heat treatment (PWHT). The microhardness, tensile strength, and impact toughness of metal in the weld and heat-affected zone are determined. The PWHT is shown to be obligatory.

  20. Characterization of microstructure, local deformation and microchemistry in Alloy 690 heat-affected zone and stress corrosion cracking in high temperature water

    NASA Astrophysics Data System (ADS)

    Lu, Zhanpeng; Chen, Junjie; Shoji, Tetsuo; Takeda, Yoichi; Yamazaki, Seiya

    2015-10-01

    With increasing the distance from the weld fusion line in an Alloy 690 heat-affected zone, micro-hardness decreases, kernel average misorientation decreases and the fraction of Σ3 boundaries increases. Chromium depletion at grain boundaries in the Alloy 690 heat-affected zone is less significant than that in an Alloy 600 heat-affected zone. Alloy 690 heat-affected zone exhibits much higher IGSCC resistance than Alloy 600 heat-affected zone in simulated pressurized water reactor primary water. Heavily cold worked Alloy 690 exhibits localized intergranular stress corrosion cracking. The effects of metallurgical and mechanical properties on stress corrosion cracking in Alloy 690 are discussed.

  1. Corrosion behavior of stainless steel weldments in physiological solutions

    NASA Astrophysics Data System (ADS)

    Farooq, A.; Azam, M.; Deen, K. M.

    2018-01-01

    In this study corrosion behavior of TIG welded 316L stainless steel plates in simulated biological solutions is investigated. The mechanical testing results showed slight decrease in ductility after welding and the fracture surface represented mixed cleavage and inclusions containing dimple structure. The heat affected and weld zone (WZ) demonstrated higher corrosion potential and relatively large pitting tendency than base metal (BM) in both Hank’s and Ringer’s solution. The formation of delta (δ) ferrite in the heat affected and WZ decreased the corrosion resistance as confirmed from potentiodynamic Tafel scans. The decrease in pitting resistance and lower protection tendency of the WZ compared to BM and heat affected zone was also quantified from the cyclic polarization trends.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimenov, V. A., E-mail: klimenov@tpu.ru; National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050; Kurgan, K. A., E-mail: kirill-k2.777@mail.ru

    The structure of weld joints of the titanium alloy Ti-6Al-4V in the initial ultrafine-grained state, obtained by resistance spot welding, is studied using the optical and scanning electron microscopy method and the X-ray structure analysis. The carried out studies show the relationship of the metal structure in the weld zone with main joint zones. The structure in the core zone and the heat affected zone is represented by finely dispersed grains of needle-shaped martensite, differently oriented in these zones. The change in the microhardness in the longitudinal section of the weld joint clearly correlates with structural changes during welding.

  3. Fracture Toughness and Strength in a New Class of Bainitic Chromium-Tungsten Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, S. X.; Sikka, V. K.

    This project dealt with developing an understanding of the toughening and stengthening mechanisms for a new class of Fe-3Cr-W(V) steels developed at Oak Ridge National Laboratory (ORNL) in collaboration with Nooter Corporation and other industrial partners. The new steele had 50% higher tensile strength up to 650 degrees Celsius than currently used steels and the potential for not requiring any postweld heat treatment (PWHT) and for reducing equipment weight by 25%. This project was closely related to the Nooter project described in the report Development of a New Class of Fe-3Cr-W(V) Ferritic steels for Industrial Process Applications (ORNL/TM-2005/82). The projectmore » was carried out jointly by the University of Pittsburgh and ORNL. The University of Pittsburgh carried out fracture toughness measurements and microstructural analysis on base metal and welded plates prepared at ORNL. The project focused on three areas. The first dealt with detailed microstructural analysis of base compositions of 3Cr-3WV and 3Cr-3WBV(Ta) in both normalized (N) and normalized and tempered (NT) conditions. The second aspect of the prject dealt with determining tensile properties and fracture toughness values of K{subIC} at room temperature for both 3Cr-3Wv and 3Cr-3WV(Ta) compositions. The third focus of the project was to measure the fracture toughness values of the base metal and the heat-affectged zone (HAZ) of a plate of Fe-3Cr-W(Mo)V steel plate welded by the gas tungsten are (GTA) process. The HAZ toughness was measured in both the as-welded and the PWHT condition.« less

  4. The effect of welding line heat-affected-zone on the formability of tube hydroforming process

    NASA Astrophysics Data System (ADS)

    ChiuHuang, Cheng-Kai; Hsu, Cheng-En; Lee, Ping-Kun

    2016-08-01

    Tube hydroforming has been used as a lightweight design approach to reduce CO2 emission for the automotive industry. For the high strength steel tube, the strength and quality of the welding line is very important for a successful tube hydroforming process. This paper aims to investigate the effect of the welding line's strength and the width of the heat-affected zone on the tube thinning during the hydroforming process. The simulation results show that both factors play an important role on the thickness distribution during the tube expansion.

  5. Correlation Between Intercritical Heat-Affected Zone and Type IV Creep Damage Zone in Grade 91 Steel

    NASA Astrophysics Data System (ADS)

    Wang, Yiyu; Kannan, Rangasayee; Li, Leijun

    2018-04-01

    A soft zone in Cr-Mo steel weldments has been reported to accompany the infamous Type IV cracking, the highly localized creep damage in the heat-affected zone of creep-resistant steels. However, the microstructural features and formation mechanism of this soft zone are not well understood. In this study, using microhardness profiling and microstructural verification, the initial soft zone in the as-welded condition was identified to be located in the intercritical heat-affected zone of P91 steel weldments. It has a mixed structure, consisting of Cr-rich re-austenitized prior austenite grains and fine Cr-depleted, tempered martensite grains retained from the base metal. The presence of these further-tempered retained grains, originating from the base metal, is directly responsible for the hardness reduction of the identified soft zone in the as-welded condition. The identified soft zone exhibits a high location consistency at three thermal stages. Local chemistry analysis and thermodynamic calculation show that the lower chromium concentrations inside these retained grains thermodynamically decrease their potentials for austenitic transformation during welding. Heterogeneous grain growth is observed in the soft zone during postweld heat treatment. The mismatch of strengths between the weak Cr-depleted grains and strong Cr-rich grains enhances the creep damage. Local deformation of the weaker Cr-depleted grains accelerates the formation of creep cavities.

  6. Final summary report for 1989 inservice inspection (ISI) of SRS (Savannah River Site) 100-P Reactor tank

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, J.M.; Loibl, M.W.

    1989-12-15

    The integrity of the SRS reactor tanks is a key factor affecting their suitability for continued service since, unlike the external piping system and components, the tanks are virtually irreplaceable. Cracking in various areas of the process water piping systems has occurred beginning in 1960 as a result of several degradation mechanisms, chiefly intergranular stress corrosion cracking (IGSCC) and chloride-induced transgranular cracking. IGSCC, currently the primary degradation mechanism, also occurred in the knuckle'' region (tank wall-to-bottom tube sheet transition piece) unique to C Reactor and was eventually responsible for that reactor being deactivated in 1985. A program of visual examinationsmore » of the SRS reactor tanks was initiated in 1968, which used a specially designed immersible periscope. Under that program the condition of the accessible tank welds and associated heat affected zones (HAZ) was evaluated on a five-year frequency. Prior to 1986, the scope of these inspections comprised approximately 20 percent of the accessible weld area. In late 1986 and early 1987 the scope of the inspections was expanded and a 100 percent visual inspection of accessible welds was performed of the P-, L-, and K-Reactor tanks. Supplemental dye penetrant examinations were performed in L Reactor on selected areas which showed visual indications. No evidence of cracking was detected in any of these inspections of the P-, L-, and K-Reactor tanks. 17 refs., 7 figs.« less

  7. Effect of welding speed on butt joint quality of Ti-6Al-4V alloy welded using a high-power Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Cao, X.; Jahazi, M.

    2009-11-01

    Annealed Ti-6Al-4V alloy sheets with 1 and 2 mm thickness are welded using a 4 kW Nd:YAG laser system. The effects of welding speed on surface morphology and shape, welding defects, microstructure, hardness and tensile properties are investigated. Weld joints without or with minor cracks, porosity and shape defects were obtained indicating that high-power Nd:YAG laser welding is a suitable method for Ti-6Al-4V alloy. The fusion zone consists mainly of acicular α' martensite leading to an increase of approximately 20% in hardness compared with that in the base metal. The heat-affected zone consists of a mixture of α' martensite and primary α phases. Significant gradients of microstructures and hardness are obtained over the narrow heat-affected zone. The laser welded joints have similar or slightly higher joint strength but there is a significant decrease in ductility. The loss of ductility is related to the presence of micropores and aluminum oxide inclusions.

  8. The effect of axial external magnetic field on tungsten inert gas welding of magnesium alloy

    NASA Astrophysics Data System (ADS)

    Li, Caixia; Zhang, Xiaofeng; Wang, Jing

    2018-04-01

    The influences of axial external magnetic field on the microstructure and mechanical property of the AZ31 magnesium (Mg) alloy joints were studied. The microstructure of Mg alloy joint consisted of the weld seam, heat affected zone and base metal zone. The average grain size of weld seam welded with magnetic field is 39 μm, which is 38% smaller than that of the joint welded with absence of magnetic field. And the microhardness of weld seam increases with the help of magnetic field treatment, owing to the coarse grain refinement. With coil current of 2.0A, the maximum mechanical property of joint increases 6.7% to 255 MPa over the specimen without magnetic field treatment. Furthermore, fracture location is near heat affected area and the fracture surface is characterized with ductile fracture.

  9. A Metallurgical Investigation of the Direct Energy Deposition Surface Repair of Ferrous Alloys

    NASA Astrophysics Data System (ADS)

    Marya, Manuel; Singh, Virendra; Hascoet, Jean-Yves; Marya, Surendar

    2018-02-01

    Among additive manufacturing (AM) processes, the direct energy deposition (DED) by laser is explored to establish its applicability for the repair of ferrous alloys such as UNS G41400 low-alloy steel, UNS S41000 martensitic stainless steel, UNS S17400 precipitation-strengthened martensitic stainless steel, and UNS S32750 super-duplex stainless steel. Unlike plating, thermal spray, and conventional cladding weld, DED laser powder deposition offers potential advantages, e.g., thin deposits, limited dilutions, narrow heat-affected zones (HAZ), potentially improved surface properties. In this investigation, all AM deposits were completed with an IREPA CLAD™ system using a powder feed of UNS N06625, an alloy largely selected for its outstanding corrosion resistance. This investigation first addresses topological aspects of AM deposits (including visual imperfections) before focusing on changes in microstructure, microhardness, chemical composition across AM deposits and base materials. It has been established that dense, uniform, hard ( 300 HVN), crack-free UNS N06625-compliant AM deposits of fine dendritic microstructures are reliably produced. However, except for the UNS S32750 steel, a significant martensitic hardening was observed in the HAZs of UNS G41400 ( 650 HVN), UNS S41000 ( 500 HVN), and UNS S17400 ( 370 HVN). In summary, this investigation demonstrates that the DED laser repair of ferrous parts with UNS N06625 may restore damaged surfaces, but it also calls for cautions and complementary investigations for alloys experiencing a high HAZ hardening, for which industry standard recommendations are exceeded and lead to an increased risk of delayed cracking in corrosive environments.

  10. Identification and Characterization of Intercritical Heat-Affected Zone in As-Welded Grade 91 Weldment

    NASA Astrophysics Data System (ADS)

    Wang, Yiyu; Kannan, Rangasayee; Li, Leijun

    2016-12-01

    A metallurgical method is proposed for locating the intercritical heat-affected zone in the as-welded Grade 91 steel. New austenitic grains, preferentially formed along the original prior austenite grain boundaries, are characterized to contain finer M23C6 carbides and higher strain levels than the original prior austenite grains. Kurdjumov-Sachs Group 1 variant pairs, with a low misorientation of 7 deg within a martensitic block, are identified as the dominant variants in the new PAGs.

  11. Dissimilar Arc Welding of Advanced High-Strength Car-Body Steel Sheets

    NASA Astrophysics Data System (ADS)

    Russo Spena, P.; D'Aiuto, F.; Matteis, P.; Scavino, G.

    2014-11-01

    A widespread usage of new advanced TWIP steel grades for the fabrication of car-body parts is conditional on the employment of appropriate welding methods, especially if dissimilar welding must be performed with other automotive steel grades. Therefore, the microstructural features and the mechanical response of dissimilar butt weld seams of TWIP and 22MnB5 steel sheets after metal-active-gas arc welding are examined. The microstructural and mechanical characterization of the welded joints was carried out by optical metallography, microhardness and tensile testing, and fractographic examination. The heat-affected zone on the TWIP side was fully austenitic and the only detectable effect was grain coarsening, while on the 22MnB5 side it exhibited newly formed martensite and tempered martensite. The welded tensile specimens exhibited a much larger deformation on the TWIP steel side than on the 22MnB5. The fracture generally occurred at the interface between the fusion zone and the heat-affected zones, with the fractures surfaces being predominantly ductile. The ultimate tensile strength of the butt joints was about 25% lower than that of the TWIP steel.

  12. The Development and Microstructure Analysis of High Strength Steel Plate NVE36 for Large Heat Input Welding

    NASA Astrophysics Data System (ADS)

    Peng, Zhang; Liangfa, Xie; Ming, Wei; Jianli, Li

    In the shipbuilding industry, the welding efficiency of the ship plate not only has a great effect on the construction cost of the ship, but also affects the construction speed and determines the delivery cycle. The steel plate used for large heat input welding was developed sufficiently. In this paper, the composition of the steel with a small amount of Nb, Ti and large amount of Mn had been designed in micro-alloyed route. The content of C and the carbon equivalent were also designed to a low level. The technology of oxide metallurgy was used during the smelting process of the steel. The rolling technology of TMCP was controlled at a low rolling temperature and ultra-fast cooling technology was used, for the purpose of controlling the transformation of the microstructure. The microstructure of the steel plate was controlled to be the mixed microstructure of low carbon bainite and ferrite. Large amount of oxide particles dispersed in the microstructure of steel, which had a positive effects on the mechanical property and welding performance of the steel. The mechanical property of the steel plate was excellent and the value of longitudinal Akv at -60 °C is more than 200 J. The toughness of WM and HAZ were excellent after the steel plate was welded with a large heat input of 100-250 kJ/cm. The steel plate processed by mentioned above can meet the requirement of large heat input welding.

  13. Microstructural Evolution of HSLA ISO 3183 X80M (API 5L X80) Friction Stir Welded Joints

    NASA Astrophysics Data System (ADS)

    Hermenegildo, Tahiana F. C.; Santos, Tiago F. A.; Torres, Edwar A.; Afonso, Conrado R. M.; Ramirez, Antonio J.

    2018-03-01

    Evaluation was made of friction stir welded joints, identifying conditions that resulted in satisfactory welded joints free from defects and with microstructural characteristics that provided good mechanical properties. Microstructural characterization and cooling curve analysis of the joints with lower and higher heat inputs evidenced deformation below and above the non-recrystallization temperature (Tnr) and dynamic recrystallization during microstructural evolution. Microscopy analyses showed acicular ferrite, bainitic ferrite, and coalesced bainite microstructures in the stir zone of the cold weld (lower heat input), while the stir zone of the hot weld (higher heat input) contained bainitic ferrite, acicular ferrite, coalesced bainite, martensite, and dispersed carbides. Granular bainite and dispersed carbides were observed in all the heat affected zones. Analysis of the microstructural transformations, together with the thermal history of the joints, showed that the variable that had the greatest influence on the morphology of the bainite (granular bainite/bainitic ferrite) was the deformation temperature.

  14. Mechanical properties of weldments in experimental Fe-12Mn-0.2Ti and Fe-12Mn-1Mo-0.2Ti alloys for cryogenic service

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.; Devletian, J. H.

    1981-01-01

    Mechanical properties of weldments in two Fe-12Mn experimental alloys designed for cryogenic service were evaluated. Weldments were made using the GTA welding process. Tests to evaluate the weldments were conducted at -196 C and included: equivalent energy fracture toughness tests; autogenous transverse weld, notched transverse weld, and longitudinal weld tensile tests; and all-weld-metal tensile tests. The Fe-12Mn-0.2Ti and Fe-12Mn-1Mo-0.2Ti alloys proved weldable for cryogenic service, with weld metal and heat-affected zone properties comparable with those of the base metal. Optimum properties were achieved in the base alloys, weld metals, and heat-affected zones after a two-step heat treatment consisting of austenitizing at 900 C followed by tempering at 500 C. The Mo-containing alloy offered a marked improvement in cryogenic properties over those of the Mo-free alloy. Molybdenum increased the amount of retained austenite and reduced the amount of epsilon martensite observed in the microstructure of the two alloys.

  15. Weldability evaluation of high tensile plates using GMAW process

    NASA Astrophysics Data System (ADS)

    Datta, R.; Mukerjee, D.; Rohira, K. L.; Veeraraghavan, R.

    1999-08-01

    High tensile plates, SAILMA-450 high impact (HI) (yield strength, 45 kg/mm2 minimum; ultimate tensile strength, 57 kg/mm2 minimum; elongation, 19% minimum; Charpy impact energy 2.0 kg.m at -20 °C minimum) were successfully developed at the Steel Authority of India Ltd., up to 32 mm plate thickness. Since then the steel has been extensively used for the fabrication of impellers, bridges, excavators, and mining machineries, where welding is an important processing step. The present study deals with the weldability properties of SAILMA-450 HI plates employing the gas metal arc welding process and carbon dioxide gas. Implant and elastic restraint cracking tests were conducted to assess the cold cracking resistance of the weld joint under different welding conditions. The static fatigue limit values were found to be in excess of minimum specified yield strength at higher heat input levels (9.4 and 13.0 kJ/cm), indicating adequate cold cracking resistance. The critical restraint intensities, K cr, were found to vary between 720 and 1280 kg/mm2, indicating that the process can be utilized for fabrication of structures involving moderate to low restraint intensities (200 to 1000 kg/mm2). Lamellar tear tests conducted using full thickness plates at heat input levels ranging from 10 to 27 kJ/cm showed no incidence of lamellar tear upon visual, ultrasonic, and four-section macroexamination. These tests were repeated using machined plates, such that the midthickness of the plates (segregated zone) corresponded to the heat affected zone of the weld. No cracks were observed, indicating good lamellar tear resistance of the weld joint. Optimized welding conditions were formulated based on these tests. The weld joint was subjected to extensive tests to assess the physical properties and soundness of the weld joint. The weld joint exhibited good strength (64.7 kg/mm2) and impact toughness (5.7 and 3.5 kg.m at -20 °C for weld metal and heat affected zone properties. Crack tip opening displacement (CTOD) tests carried out for parent metal, heat-affected zone, and weld metal resulted in δm values of 0.41, 0.40, and 0.34 mm, respectively, which indicates adequate resistance to cleavage fracture. It was concluded that the weld joint conforms to the requirements of SAILMA-450 HI specification and ensures a high integrity of the fabricated products.

  16. Low temperature heat treatments of AA5754-Ti6Al4V dissimilar laser welds: Microstructure evolution and mechanical properties

    NASA Astrophysics Data System (ADS)

    Leo, P.; D'Ostuni, S.; Casalino, G.

    2018-03-01

    This paper presents the effects of the post welding heat treatments (PWHT) performed at 350 °C and 450 °C on the microstructure evolution and mechanical properties of AA5754 and Ti6Al4V dissimilar laser welds. The microstructure and tensile properties of the welds before and after low temperature treatment were analyzed. The off-set welding technique was applied to limit the formation of brittle intermetallic compounds during the welding process. The laser beam was directed onto the titanium side at a small distance from the aluminum edge. The keyhole formed and the full penetration was reached in the titanium side of the weld. Thereafter, the aluminum side melted as the heat that formed the keyhole transferred from the titanium fused zone. Two different energy lines (32 J/mm and 76 J/mm) were used. In this manner, a fused and a heat affected zones was revealed on both sides of the weld. Several intermetallic compounds formed in the intermetallic layer between the two metals. The thickness and the composition of the intermetallic layer depended on the welding parameters and the post welding heat treatment. The hardness and tensile properties of the welds before and after the post welding heat treatment were measured and analyzed.

  17. Design of Boiler Welding for Improvement of Lifetime and Cost Control.

    PubMed

    Thong-On, Atcharawadi; Boonruang, Chatdanai

    2016-11-03

    Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG) welding of Fe-2.25Cr-1Mo tube to carbon steel pipe with chromium-containing filler. The cost of production could be reduced by the use of low cost material such as carbon steel pipe for boiler header. The effect of chromium content on corrosion behavior of the weld was greater than that of the microstructure. The lifetime of the welded boiler can be increased by improvement of mechanical properties and corrosion behavior of the heat affected zone.

  18. Design of Boiler Welding for Improvement of Lifetime and Cost Control

    PubMed Central

    Thong-On, Atcharawadi; Boonruang, Chatdanai

    2016-01-01

    Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG) welding of Fe-2.25Cr-1Mo tube to carbon steel pipe with chromium-containing filler. The cost of production could be reduced by the use of low cost material such as carbon steel pipe for boiler header. The effect of chromium content on corrosion behavior of the weld was greater than that of the microstructure. The lifetime of the welded boiler can be increased by improvement of mechanical properties and corrosion behavior of the heat affected zone. PMID:28774014

  19. Effect of FSW welding speed on microstructure and microhardness of Al-0.84Mg-0.69Si-0.76Fe alloy at moderate rotational tool velocity

    NASA Astrophysics Data System (ADS)

    Chand, Suresh; Vineetha, S.; Madhusudhan, D.; Sai Krishna, CH; Kusuma Devi, G.; Bhawani; Hemarao, K.; Ganesh Naidu, G.

    2018-03-01

    The plate of 7.0 mm thickness was double side welded using friction stir welding is investigated. The rotational velocity of friction stir welding tool is used 1400 rpm. The influence of welding speed on the microstructure and microhardness values of Al-0.84Mg-0.69Si-0.76Fe aluminum alloy is presented. Two welding speeds 25 mm/min and 31.5 mm/min are used. The microhardness values of friction stir weld are measured at various locations from the weld interface. The microhardness values in stir zone of weld are found larger than lower welding speed at constant rotational velocity of 1400 rpm of friction stir welding tool. The similar effects on microhardness values are found in the thermo-mechanically affected zone and heat affected zone. The fine microstructure is observed at 31.5 mm/min welding speed compared to the 25 mm/min welding speed at 1400 rpm.

  20. On the Mechanisms for Martensite Formation in YAG Laser Welded Austenitic NiTi

    NASA Astrophysics Data System (ADS)

    Oliveira, J. P.; Braz Fernandes, F. M.; Miranda, R. M.; Schell, N.

    2016-03-01

    Extensive work has been reported on the microstructure of laser-welded NiTi alloys either superelastic or with shape memory effect, motivated by the fact that the microstructure affects the functional properties. However, some effects of laser beam/material interaction with these alloys have not yet been discussed. This paper aims to discuss the mechanisms for the occurrence of martensite in the heat-affected zone and in the fusion zone at room temperature, while the base material is fully austenitic. For this purpose, synchrotron radiation was used together with a simple thermal analytic mathematical model. Two distinct mechanisms are proposed for the presence of martensite in different zones of a weld, which affects the mechanical and functional behavior of a welded component.

  1. Analysis of High-Power Diode Laser Heating Effects on HY-80 Steel for Laser Assisted Friction Stir Welding Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiechec, Maxwell; Baker, Brad; McNelley, Terry

    In this research, several conditions of high power diode laser heated HY-80 steel were characterized to determine the viability of using such lasers as a preheating source before friction stir welding in order to reduce frictional forces thereby reducing tool wear and increasing welding speeds. Differences in microstructures within heat affected zones were identified at specific laser powers and traverse speeds. Vickers hardness values were recorded and analyzed to validate the formation of additional martensite in diode laser heated regions of HY-80 steel. Conditions that produced little to no additional martensite were identified and relationships among high power diode lasermore » power, traverse speed, and martensite formation were determined. The development of heat affected zones, change in grain structure, and creation of additional martensite in HY-80 can be prevented through the optimization of laser amperage and transverse speed.« less

  2. Microhardness and Stress Analysis of Laser-Cladded AISI 420 Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Alam, Mohammad K.; Edrisy, Afsaneh; Urbanic, Jill; Pineault, James

    2017-03-01

    Laser cladding is a surface treatment process which is starting to be employed as a novel additive manufacturing. Rapid cooling during the non-equilibrium solidification process generates non-equilibrium microstructures and significant amounts of internal residual stresses. This paper investigates the laser cladding of 420 martensitic stainless steel of two single beads produced by different process parameters (e.g., laser power, laser speed, and powder feed rate). Metallographic sample preparation from the cross section revealed three distinct zones: the bead zone, the dilution zone, and the heat-affected zone (HAZ). The tensile residual stresses were in the range of 310-486 MPa on the surface and the upper part of the bead zone. The compressive stresses were in the range of 420-1000 MPa for the rest of the bead zone and the dilution zone. The HAZ also showed tensile residual stresses in the range of 140-320 MPa for both samples. The post-cladding heat treatment performed at 565 °C for an hour had significantly reduced the tensile stresses at the surface and in the subsurface and homogenized the compressive stress throughout the bead and dilution zones. The microstructures, residual stresses, and microhardness profiles were correlated for better understanding of the laser-cladding process.

  3. A Monte Carlo model for 3D grain evolution during welding

    NASA Astrophysics Data System (ADS)

    Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena

    2017-09-01

    Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bézier curves, which allow for the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. The model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.

  4. Microstructural features of friction stir welded dissimilar Aluminium alloys AA2219-AA7475

    NASA Astrophysics Data System (ADS)

    Zaman Khan, Noor; Ubaid, Mohammed; Siddiquee, Arshad Noor; Khan, Zahid A.; Al-Ahmari, Abdulrahman; Chen, Xizhang; Haider Abidi, Mustufa

    2018-05-01

    High strength, good corrosion resistance, light weight make aluminium alloys a material of choice in many industrial sectors like aerospace, marine etc. Problems associated with welding of these alloys by fusion welding processes restricted their use in various industries. Friction stir welding (FSW), a clean solid-state joining process, easily overcomes various difficulties encountered during conventional fusion welding processes. In the present work, the effect of rotational speed (710 rpm, 900 rpm and 1120 rpm) on micro-hardness distribution and microstructure of FSWed dissimilar aluminium alloy joints were analyzed. Plates of AA7475-T761 and AA2219-O having thickness of 2.5 mm were welded by fixing AA7475 on retreating side (RS) and AA2219 on advancing side (AS). Welded joints were characterized by Vickers micro-hardness testing, scanning electron microscopy (SEM) and optical microscopy (OM). Results revealed that rotational speed significantly affects the micro-hardness due to increase in grain size, coarsening and dissolution of strengthening precipitates and re-precipitation. Higher micro-hardness values were observed in stir zone due to grain refinement and re-precipitation. Minimum micro-hardness value was observed at the TMAZ/HAZ of advancing side due to thermal softening.

  5. Effect of sulfur content on the microstructure and toughness of simulated heat-affected zone in Ti-killed steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jyelong Lee; Yeongtsuen Pan

    1993-06-01

    Four Ti-killed steels were made to study the specific influence of sulfur on the inclusion, microstructure, and toughness of a simulated heat-affected zone (HAZ). The HAZ toughness was mainly determined by the volume fraction of intragranular acicular ferrite (IAF) which was closely related to the supercooling required to initiate austenite to ferrite transformation. The extent of supercooling was strongly influenced by the composition of grain boundary and inclusions. Sulfur addition up to 102 ppm caused a segregation of sulfur to the grain boundaries and a change of inclusion phase from predominantly Ti-oxides to Ti-oxysulphides and MnS. This behavior, in turn,more » suppressed the formation of IAF polygonal ferrite and promoted the formation of IAF. Further addition of sulfur elevated transformation temperature and promoted the formation of polygonal ferrite due to the refinement of grain size and the increase of grain boundary associated inclusions. A methodology was proposed to evaluate the intragranular nucleation potential of inclusions, and the results showed that Ti-oxysulphides possessed better nucleation potential for IAF than Ti-oxides and MnS. With the lowest transformation temperature and most effective nuclei, the best HAZ toughness can be obtained at sulfur content of 102 ppm due to the achievement of the maximum volume fraction of IAF.« less

  6. Local zone-wise elastic-plastic constitutive parameters of Laser-welded aluminium alloy 6061 using digital image correlation

    NASA Astrophysics Data System (ADS)

    Bai, Ruixiang; Wei, Yuepeng; Lei, Zhenkun; Jiang, Hao; Tao, Wang; Yan, Cheng; Li, Xiaolei

    2018-02-01

    The mechanical properties of aluminium alloys can be affected by the local high temperature in laser welding. In this paper, an inversion identification method of local zone-wise elastic-plastic constitutive parameters for laser welding of aluminium alloy 6061 was proposed based on full-field optical measurement data using digital image correlation (DIC). Three regions, i.e., the fusion zone, heat-affected zone, and base zone, of the laser-welded joint were distinguished by means of microstructure optical observation and micrometer hardness measurement. The stress data were obtained using a laser-welded specimen via a uniaxial tensile test. Meanwhile, the local strain data of the laser-welded specimen were obtained by the DIC technique. Thus, the stress-strain relationship for different local regions was established. Finally, the constitutive parameters of the Ramberg-Osgood model were identified by least-square fitting to the experimental stress-strain data. Experimental results revealed that the mechanical properties of the local zones of the welded joints clearly weakened, and these results are consistent with the results of the hardness measurement.

  7. Characteristics of GTA fusion zones and heat affected zones in superalloy 713C

    NASA Astrophysics Data System (ADS)

    Lachowicz, M. B.; Dudziński, W.

    2012-09-01

    In this paper, metallographic examinations, characterising microstructural changes in the 713C superalloy subjected to remelting by GTA method, are presented. In the fusion zone, precipitation of M23C6 or M6C carbides based on chromium and molybdenum was observed. Eutectic mixtures of ( γ- gg')-M x C y type with highly developed morphology were also perceived. It was found that, in the matrix areas with non-homogeneous chemical composition, the eutectic reaction γ-γ' can occur at the temperature close to that of the precipitation of the M x C y carbides. The presence of silicon in the carbide phases can be conducive to lowering their solidification point by creating low-melting compound NbSi. Both in the fusion zone (FZ) and in the heat-affected zone (HAZ), the secondary precipitates of the Ni3(AlTi)- γ' phase, varying in size from 50 to 100 nm, were found. The lattice mismatch factor of the γ and γ' particles was +0.48 % to +0.71 %, which is characteristic of the coherent precipitates of the Ni3Al phase enriched with titanium. No dislocations or stacking faults were observed in the microstructure of the FZ. In the HAZ, some primary undissolved γ' precipitates, with a part of aluminium probably replaced with niobium were observed, which raised their melting point.

  8. An investigation of reheat cracking in the weld heat affected zone of type 347 stainless steel

    NASA Astrophysics Data System (ADS)

    Phung-On, Isaratat

    2007-12-01

    Reheat cracking has been a persistent problem for welding of many alloys such as the stabilized stainless steels: Types 321 and 347 as well as Cr-Mo-V steels. Similar problem occurs in Ni-base superalloys termed "strain-age cracking". Cracking occurs during the post weld heat treatment. The HAZ is the most susceptible area due to metallurgical reactions in solid state during both heating and cooling thermal cycle. Many investigations have been conducted to understand the RHC mechanism. There is still no comprehensive mechanism to explain its underlying mechanism. In this study, there were two proposed cracking mechanisms. The first is the formation of a PFZ resulting in local weakening and strain localization. The second is the creep-like grain boundary sliding that causes microvoid formation at the grain boundaries and the triple point junctions. Cracking occurs due to the coalescence of the microvoids that form. In this study, stabilized grade stainless steel, Type 347, was selected for investigation of reheat cracking mechanism due to the simplicity of its microstructure and understanding of its metallurgical behavior. The Gleeble(TM) 3800 system was employed due to its capability for precise control of both thermal and mechanical simulation. Cylindrical samples were subjected to thermal cycles for the HAZ simulation followed by PWHT as the reheat cracking test. "Susceptibility C-curves" were plotted as a function of PWHT temperatures and time to failure at applied stress levels of 70% and 80% yield strength. These C-curves show the possible relationship of the reheat cracking susceptibility and carbide precipitation behavior. To identify the mechanism, the sample shape was modified containing two flat surfaces at the center section. These flat surfaces were electro-polished and subjected to the HAZ simulation followed by the placement of the micro-indentation arrays. Then, the reheat cracking test was performed. The cracking mechanism was identified by tracing the shifting of the micro-indentations compared to their original locations. At the 80% stress level, the cracking mechanism was identified as the PFZ weakening, while at the 70% stress as the creep-like grain boundary sliding. A design of experiment (DOE) using a D-optimal design was successfully employed in this study to investigate the effects of microstructures on the reheat cracking susceptibility. The microstructures were modified by heat treatment prior to the reheat cracking test. The grain size and cooling rate were found to have moderate effects on cracking susceptibility. The amount (volume fraction) of MC carbide (NbC) had a significant effect on time to failure. The more NbC formed prior to test, the longer time to failure, and the more resistance to reheat cracking. On the other hand, the amount of GB carbide (M23C6) had an insignificant effect. The statistical interaction between MC carbide with other testing parameters also had strong effect. The PWHT temperature also had significant effect as can be predicted from the susceptibility C-curves. The heat treatment schedules, during cooling and during heating schedules, were also investigated. During cooling schedule was the same schedule done earlier in this study. On the other hand, during heating schedule allowed the sample cool to room temperature prior microstructure modification followed by the reheat cracking test. During heating schedule showed an improvement in resistance to reheat cracking. Microstructure of the crack samples showed the intergranular cracking path and wedge shapes along cracking boundaries. There was also the evidence of grain boundary sliding as a result of the creep-like grain boundary sliding cracking mechanism. SEM showed the intergranular cracking and grain separation with precipitates decorated on the fracture surfaces. The precipitates were identified as Nb-rich, MC carbide (NbC). The fracture surfaces showed micro-ductility and microvoid coalescence. The size of microvoid corresponds to the size of precipitate that forms. In addition, there was intragranular cracking in some location indicating that another failure mechanism may also be possible. It was believed that failure may occur along a precipitate free zone. However, the distinct PFZ could not be detected. A SS-DTA technique was also implemented in order to determine precipitation temperatures of the material. The results showed the possible precipitation temperatures in the range of 850°C to 650°C. However, the results were not confidently reliable due to the small amount of carbide formed that affects the sensitivity of the SS-DTA. A simple grain boundary sliding model was generated proposing that the sliding is operated by the shear stress resulting from the formation of precipitate in the grain interior. Then, the sliding results in the microvoid formation and coalescence followed by cracking. In addition, a simple finite element model was generated to provide the illustration of the shear stress built up by the formation of precipitate. The model showed that shear stress can cause the grain boundary movement/sliding. Based on the results from this study, the recommendation for the selection of post weld heat treatment schedule as well as welding procedures can be determined for the prevention of the reheat cracking. A residual stress should be kept below the critical value during welding and post weld heat treating. The testing procedures used in this study can be applied as the guidelines to conduct the reheat cracking susceptibility test for material selection.

  9. Microstructure and Mechanical Characterization of Friction-Stir-Welded Dual-Phase Brass

    NASA Astrophysics Data System (ADS)

    Ramesh, R.; Dinaharan, I.; Akinlabi, E. T.; Murugan, N.

    2018-03-01

    Friction stir welding (FSW) is an ideal process to join brass to avoid the evaporation of zinc. In the present investigation, 6-mm-thick dual-phase brass plates were joined efficiently using FSW at various tool rotational speeds. The microstructures were studied using optical microscopy, electron backscattered diffraction and transmission electron microscopy. The optical micrographs revealed the evolution of various zones across the joint line. The microstructure of the heat-affected zone was similar to that of base metal. The weld zone exhibited finer grains due to dynamic recrystallization. The recrystallization was inhomogeneous and the inhomogeneity reduced with increased tool rotational speed. The dual phase was preserved in the weld zone due to the retention of zinc. The severe plastic deformation created a lot of dislocations in the weld zone. The weld zone was strengthened after welding. The role of tool rotational speed on the joint strength is further reported.

  10. Resistance Spot Welding of AA5052 Sheet Metal of Dissimilar Thickness

    NASA Astrophysics Data System (ADS)

    Mat Din, N. A.; Zuhailawati, H.; Anasyida, A. S.

    2016-02-01

    Resistance spot welding of dissimilar thickness of AA5052 aluminum alloy was performed in order to investigate the effect of metal thickness on the weldment strength. Resistance spot welding was done using a spot welder machine available in Coraza Systems Sdn Bhd using a hemispherical of chromium copper electrode tip with radius of 6.00 mm under 14 kA of current and 0.02 bar of pressure for all thickness combinations. Lap joint configuration was produced between 2.0 mm thick sheet and 1.2 - 3.2 mm thick sheet, respectively. Microstructure of joint showed asymmetrical nugget shape that was larger on the thicker side indicating larger molten metal volume. Joint 2.0 mm x 3.2 mm sheets has the lowest hardness in both transverse direction and through thickness direction because less heat left in the weld nugget. The microstructure shows that this joint has coarse grains of HAZ. As thickness of sheet metal increased, the failure load of the joints increased. However, there was no linear correlation established between joint strength and metal thickness due to different shape of fusion zone in dissimilar thickness sheet metal.

  11. Materials Design for Joinable, High Performance Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Glamm, Ryan James

    An aluminum alloy compatible with friction stir welding is designed for automotive and aerospace structural applications. Current weldable automotive aluminum alloys do not possess the necessary strength to meet safety standards and therefore are not able to replace steel in the automotive body. Significant weight savings could be achieved if steel components are replaced with aluminum. Current aerospace alloys are not weldable, requiring machining of large pieces that are then riveted together. If an aerospace alloy could be friction stir welded, smaller pieces could be welded, reducing material waste. Using a systems approach for materials design, property goals are set from performance objectives. From previous research and computational predictions, a structure is designed for a prototype alloy containing dynamic precipitates to readily dissolve and re-precipitate and high stability precipitates to resist dissolution and coarsening in the weld region. It is found that a Ag modified Al-3.9Mg-0.04Cu (at. %) alloy enhanced the rate and magnitude of hardening during ageing, both beneficial effects for dynamic precipitation. In the same alloy, ageing at 350°C results in hardening from Al 3(Sc,Zr) precipitates. Efforts to effectively precipitate both populations simultaneously are unsuccessful. The Al3(Sc,Zr) precipitation hardened prototype is friction stir processed and no weak zones are found in the weld hardness profile. An aerospace alloy design is proposed, utilizing the dual precipitate structure shown in the prototype. The automotive alloy is designed using a basic strength model with parameters determined from the initial prototype alloy analysis. After ageing to different conditions, the alloy is put through a simulated heat affected zone thermal cycle with a computer controlled induction heater. The aged samples lose hardness from the weld cycle but recover hardness from a post weld heat treatment. Atom probe tomography and transmission electron microscopy are used to characterize the composition, size, and phase fraction evolution for the automotive alloy strengthening precipitates. It is determined that the dominant precipitate at peak hardness is a metastable T' phase. The automotive alloy is friction stir processed and found to lose hardness in the heat affected zones surrounding the nugget. A post weld heat treatment nearly recovers the heat affected zones to base hardness. The post weld heat treatment is compatible with the current automotive paint bake step, showing design for processability. Tensile tests confirm the base alloy strength meets the automotive strength goal.

  12. Assessment of Stress Corrosion Cracking Resistance of Activated Tungsten Inert Gas-Welded Duplex Stainless Steel Joints

    NASA Astrophysics Data System (ADS)

    Alwin, B.; Lakshminarayanan, A. K.; Vasudevan, M.; Vasantharaja, P.

    2017-12-01

    The stress corrosion cracking behavior of duplex stainless steel (DSS) weld joint largely depends on the ferrite-austenite phase microstructure balance. This phase balance is decided by the welding process used, heat input, welding conditions and the weld metal chemistry. In this investigation, the influence of activated tungsten inert gas (ATIG) and tungsten inert gas (TIG) welding processes on the stress corrosion cracking (SCC) resistance of DSS joints was evaluated and compared. Boiling magnesium chloride (45 wt.%) environment maintained at 155 °C was used. The microstructure and ferrite content of different weld zones are correlated with the outcome of sustained load, SCC test. Irrespective of the welding processes used, SCC resistance of weld joints was inferior to that of the base metal. However, ATIG weld joint exhibited superior resistance to SCC than the TIG weld joint. The crack initiation and final failure were in the weld metal for the ATIG weld joint; they were in the heat-affected zone for the TIG weld joint.

  13. Weldability of high toughness Fe-12% Ni alloys containing Ti, Al or Nb

    NASA Technical Reports Server (NTRS)

    Devletian, J. H.; Stephens, J. R.; Witzke, W. R.

    1977-01-01

    Three exceptionally high-toughness Fe-12%Ni alloys designed for cryogenic service were welded using the GTA welding process. Evaluation of weldability included equivalent energy (KIed) fracture toughness tests, transverse-weld tensile tests at -196 and 25 C and weld crack sensitivity tests. The Fe-12%Ni-0.25%Ti alloy proved extremely weldable for cryogenic applications, having weld and HAZ properties comparable with those of the wrought base alloy. The Fe-12%Ni-0.5%Al had good weld properties only after the weld joint was heat treated. The Fe-12%Ni-0.25%Nb alloy was not considered weldable for cryogenic use because of its poor weld joint properties at -196 C and its susceptibility to hot cracking.

  14. Microstructure characterization of heat affected zone after welding in Mod.9Cr–1Mo steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, K., E-mail: sawada.kota@nims.go.jp; Hara, T.; Tabuchi, M.

    2015-03-15

    The microstructure of the heat affected zone after welding was investigated in Mod.9Cr–1Mo steel, using TEM and STEM-EDX. The microstructure of thin foil was observed at the fusion line, and at the positions of 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm and 3.5 mm to the base metal side of the fusion line. Martensite structure with very fine lath and high dislocation density was confirmed at all positions. Twins with a twin plane of (112) were locally observed at all positions. Elemental mapping was obtained for all positions by means of STEM-EDX. Inclusions of mainlymore » Si were formed at the fusion line but not at the other positions. No precipitates could be detected at the fusion line or at the position of 0.5 mm. On the other hand, MX particles were observed at the positions of 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm and 3.5 mm even after welding. M{sub 23}C{sub 6} particles were also confirmed at the positions of 2.0 mm, 2.5 mm, 3.0 mm and 3.5 mm. Very fine equiaxed grains were locally observed at the positions of 2.0 mm and 2.5 mm. The Cr content of the equiaxed grains was about 12 mass%, although the martensite area included about 8 mass% Cr. - Graphical abstract: Display Omitted - Highlights: • Nonequilibrium microstructure of heat affected zone was observed after welding in Mod.9Cr–1Mo steel. • Inclusions containing Si were detected at the fusion line. • Undissolved M{sub 23}C{sub 6} and MX particles were confirmed in heat affected zone. • Twins with a twin plane of (112) were locally observed at all positions. • Very fine ferrite grains with high Cr content were observed in fine grained heat affected zone.« less

  15. Microstructure and Hardness Profiles of Bifocal Laser-Welded DP-HSLA Steel Overlap Joints

    NASA Astrophysics Data System (ADS)

    Grajcar, A.; Matter, P.; Stano, S.; Wilk, Z.; Różański, M.

    2017-04-01

    The article presents results related to the bifocal laser welding of overlap joints made of HSLA and DP high-strength steels. The joints were made using a disk laser and a head enabling the 50-50% distribution of laser power. The effects of the laser welding rates and the distance between laser spots on morphological features and hardness profiles were analyzed. It was established that the positioning of beams at angles of 0° or 90° determined the hardness of the individual zones of the joints, without causing significant differences in microstructures of the steels. Microstructural features were inspected using scanning electron microscopy. Both steels revealed primarily martensitic-bainitic microstructures in the fusion zone and in the heat-affected zone. Mixed multiphase microstructures were revealed in the inter-critical heat-affected zone of the joint. The research involved the determination of parameters making it possible to reduce the hardness of joints and prevent the formation of the soft zone in the dual-phase steel.

  16. Effect of welding on creep damage evolution in P91B steel

    NASA Astrophysics Data System (ADS)

    Baral, J.; Swaminathan, J.; Chakrabarti, D.; Ghosh, R. N.

    2017-07-01

    Study of creep behavior of base metal (without weld) and welded specimens of P91B steel over a range of temperatures (600-650 °C) and stresses (50-180 MPa) showed similar values of minimum creep-rates for both specimens at higher stress regime (>100 MPa) whilst, significantly higher creep rates in the case of welded specimens at lower stress regime. Considering that welded specimen is comprised of two distinct structural regimes, i.e. weld affected zone and base metal, a method has been proposed for estimating the material parameters describing creep behavior of those regimes. Stress-strain distribution across welded specimen predicted from finite element analysis based on material parameters revealed preferential accumulation of stress and creep strain at the interface between weld zone and base metal. This is in-line with the experimental finding that creep rupture preferentially occurs at inter-critical heat affected zone in welded specimens owing to ferrite-martensite structure with coarse Cr23C6 particles.

  17. 46 CFR 54.05-17 - Weld toughness test acceptance criteria.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Weld toughness test acceptance criteria. 54.05-17 Section 54.05-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING... impact tests the energy absorbed in both the weld metal and heat affected zone impact tests in weld...

  18. 46 CFR 54.05-17 - Weld toughness test acceptance criteria.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Weld toughness test acceptance criteria. 54.05-17 Section 54.05-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING... impact tests the energy absorbed in both the weld metal and heat affected zone impact tests in weld...

  19. 46 CFR 54.05-17 - Weld toughness test acceptance criteria.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Weld toughness test acceptance criteria. 54.05-17 Section 54.05-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING... impact tests the energy absorbed in both the weld metal and heat affected zone impact tests in weld...

  20. 46 CFR 54.05-17 - Weld toughness test acceptance criteria.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Weld toughness test acceptance criteria. 54.05-17 Section 54.05-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING... impact tests the energy absorbed in both the weld metal and heat affected zone impact tests in weld...

  1. 46 CFR 54.05-17 - Weld toughness test acceptance criteria.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Weld toughness test acceptance criteria. 54.05-17 Section 54.05-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING... impact tests the energy absorbed in both the weld metal and heat affected zone impact tests in weld...

  2. Fiber laser welding of dual-phase galvanized sheet steel (DP590): traditional analysis and new quality assessment techniques

    NASA Astrophysics Data System (ADS)

    Miller, Stephanie; Pfeif, Erik; Kazakov, Andrei; Baumann, Esther; Dowell, Marla

    2016-03-01

    Laser welding has many advantages over traditional joining methods, yet remains underutilized. NIST has undertaken an ambitious initiative to improve predictions of weldability, reliability, and performance of laser welds. This study investigates butt welding of galvanized and ungalvanized dual-phase automotive sheet steels (DP 590) using a 10 kW commercial fiber laser system. Parameter development work, hardness profiles, microstructural characterization, and optical profilometry results are presented. Sound welding was accomplished in a laser power range of 2.0 kW to 4.5 kW and travel speed of 2000 mm/min to 5000 mm/min. Vickers hardness ranged from approximately 2 GPa to 4 GPa across the welds, with limited evidence of heat affected zone softening. Decreased hardness across the heat affected zone directly correlated to the appearance of ferrite. A technique was developed to non-destructively evaluate weld quality based on geometrical criteria. Weld face profilometry data were compared between light optical, metallographic sample, and frequency-modulated continuous-wave laser detection and ranging (FMCW LADAR) methods.

  3. Development of Heat-Affected Zone Hardness Limits for In-Service Welding

    DOT National Transportation Integrated Search

    2009-09-29

    Welding onto in-service pipelines is frequently required to facilitate a repair or to install a branch connection using the "hot tapping" technique. Welds made in-service cool at an accelerated rate as the result of the ability of the flowing content...

  4. Tensile Properties of Friction Stir Welded Joints of AA 2024-T6 Alloy at Different Welding Speeds

    NASA Astrophysics Data System (ADS)

    Avula, Dhananjayulu; Devuri, Venkateswarlu; Cheepu, Muralimohan; Dwivedi, Dheerendra Kumar

    2018-03-01

    The influence of welding speed on the friction stir welded joint properties of hardness, tensile properties, defects and microstructure characterization are studied in the present study. The friction stir welding was conducted on AA2014-T6 heat treated alloy with 5 mm thickness plate in butt joint configuration. The welding speed was varied from 8 mm/min to 120 mm/min at the fixed travel speed and load conditions. It is observed that the welding speeds at higher rate with wide range can be possible to weld this alloy at higher rates of tool revolution suggesting that the inherent capability of friction stir welding technique for aluminum 2014 alloys. The strength of the joints gradually increases with enhancing of welding speed. The micro structural observations exhibited the formation of equiaxed grains in the stir zone and slightly in the thermo-mechanically affected zone. In addition, the size of the grains decreases with increase in welding speed owing to the presence of low heat input. Hence the hardness of the joints slightly increased in the stir zones over the other zones of the weld nugget. The joint strength initially increases with the welding speed and starts to decreases after reaching to the maximum value. The relationship between the welding conditions and friction stir welded joint properties has been discussed.

  5. Picosecond laser bonding of highly dissimilar materials

    NASA Astrophysics Data System (ADS)

    Carter, Richard M.; Troughton, Michael; Chen, Jianyong; Elder, Ian; Thomson, Robert R.; Lamb, Robert A.; Esser, M. J. Daniel; Hand, Duncan P.

    2016-10-01

    We report on recent progress in developing an industrially relevant, robust technique to bond dissimilar materials through ultra-fast microwelding. This technique is based on the use of a 5.9ps, 400kHz Trumpf laser operating at 1030nm. Tight focusing of the laser radiation at, or around, the interface between two materials allows for simultaneous absorption in both. This absorption rapidly, and locally, heats the material forming plasma from both materials. With suitable surface preparation this plasma can be confined to the interface region where it mixes, cools and forms a weld between the two materials. The use of ps pulses results in a short interaction time. This enables a bond to form whilst limiting the heat affected zone (HAZ) to a region of only a few hundred micrometres across. This small scale allows for the bonding of materials with highly dissimilar thermal properties, and in particular coefficients of thermal expansion e.g. glass-metal bonding. We report on our results for a range of material combinations including, Al-Bk7, Al-SiO2 and Nd:YAG-AlSi. Emphasis will be laid on the technical requirements for bonding including the required surface preparation of the two materials and on the laser parameters required. The quality of the resultant bonds are characterized through shear force measurements (where strengths equal to and exceeding equivalent adhesives will be presented). The lifetime of the welds is also discussed, paying particular attention to the results of thermal cycling tests.

  6. A Monte Carlo model for 3D grain evolution during welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena

    Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bezier curves, which allow formore » the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. Furthermore, the model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.« less

  7. A Monte Carlo model for 3D grain evolution during welding

    DOE PAGES

    Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena

    2017-08-04

    Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bezier curves, which allow formore » the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. Furthermore, the model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.« less

  8. Effect of laser welding parameters on the austenite and martensite phase fractions of NiTi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, J.P., E-mail: jp.oliveira@campus.fct.unl

    Although laser welding is probably the most used joining technique for NiTi shape memory alloys there is still a lack of understanding about the effects of laser welding parameters on the microstructural induced changes: in both the heat affected and fusion zones martensite may be present, while the base material is fully austenitic. Synchrotron X-ray diffraction was used for fine probing laser welded NiTi joints. Through Rietveld refinement the martensite and austenite phase fractions were determined and it was observed that the martensite content increases towards the weld centreline. This is related to a change of the local transformation temperaturesmore » on these regions, which occurs due to compositional variation in those regions. The martensite phase fraction in the thermally affected regions may have significant implications on functional properties on these joints. - Highlights: •Synchrotron X-ray diffraction was used for fine probing of the microstructure in laser welded NiTi joints. •Rietveld refinement allowed to determine the content of martensite along the heat affected and fusion zones. •The martensite content increases from the base material towards the weld centreline.« less

  9. Hot-cracking studies of Inconel 718 weld- heat-affected zones

    NASA Technical Reports Server (NTRS)

    Thompson, E. G.

    1969-01-01

    Hot ductility tests, gas-tungsten-arc fillerless fusion tests, and circle patch-weld-restraint tests were conducted on Inconel 718 to better understand and correlate the weldability /resistance to hot cracking/ of the alloy. A correlation of the test results with composition, heat-treat condition, grain size, and microstructure was made.

  10. Effect of the overlapping factor on the microstructure and mechanical properties of pulsed Nd:YAG laser welded Ti6Al4V sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xiao-Long; Liu, Jing; Zhang, Lin-Jie, E-mail: zhanglinjie@mail.xjtu.edu.cn

    2014-07-01

    The effect of the overlapping factor on the microstructures and mechanical properties of pulsed Nd:YAG laser welded Ti6Al4V alloy sheets was investigated by microstructural observations, microhardness tests, tensile tests and fatigue tests. A microstructural examination shows that by increasing the overlapping factor, the grains in the fusion zone become coarser, and the width of the heat affected zone increases. As overlapping factor increases, the width of region composed completely of martensite α′ and the secondary α phase in the heat affected zone increases, consequently the gradient of microstructure along the direction from the fusion zone to base metal decreases, somore » does the gradient of microhardness. The results of tensile and fatigue tests reveal that the joints made using medium overlapping factor exhibit better mechanical properties than those welded with low and high overlapping factors. Based on the experimental results, it can be stated that a sound weld of Ti6Al4V alloy can be obtained if an appropriate overlapping factor is used. - Highlights: • The weld quality of Ti6Al4V alloy under various overlapping factors was assessed. • Tensile and fatigue tests were conducted with as-welded specimen. • Localized strain across the weld was measured using DIC photogrammetry system. • A sound weld of Ti6Al4V alloy is obtained by using right overlapping factor.« less

  11. New Analysis Method Application in Metallographic Images through the Construction of Mosaics Via Speeded Up Robust Features and Scale Invariant Feature Transform

    PubMed Central

    Rebouças Filho, Pedro Pedrosa; Moreira, Francisco Diego Lima; Xavier, Francisco Geilson de Lima; Gomes, Samuel Luz; dos Santos, José Ciro; Freitas, Francisco Nélio Costa; Freitas, Rodrigo Guimarães

    2015-01-01

    In many applications in metallography and analysis, many regions need to be considered and not only the current region. In cases where there are analyses with multiple images, the specialist should also evaluate neighboring areas. For example, in metallurgy, welding technology is derived from conventional testing and metallographic analysis. In welding, these tests allow us to know the features of the metal, especially in the Heat-Affected Zone (HAZ); the region most likely for natural metallurgical problems to occur in welding. The expanse of the Heat-Affected Zone exceeds the size of the area observed through a microscope and typically requires multiple images to be mounted on a larger picture surface to allow for the study of the entire heat affected zone. This image stitching process is performed manually and is subject to all the inherent flaws of the human being due to results of fatigue and distraction. The analyzing of grain growth is also necessary in the examination of multiple regions, although not necessarily neighboring regions, but this analysis would be a useful tool to aid a specialist. In areas such as microscopic metallography, which study metallurgical products with the aid of a microscope, the assembly of mosaics is done manually, which consumes a lot of time and is also subject to failures due to human limitations. The mosaic technique is used in the construct of environment or scenes with corresponding characteristics between themselves. Through several small images, and with corresponding characteristics between themselves, a new model is generated in a larger size. This article proposes the use of Digital Image Processing for the automatization of the construction of these mosaics in metallographic images. The use of this proposed method is meant to significantly reduce the time required to build the mosaic and reduce the possibility of failures in assembling the final image; therefore increasing efficiency in obtaining results and expediting the decision making process. Two different methods are proposed: One using the transformed Scale Invariant Feature Transform (SIFT), and the second using features extractor Speeded Up Robust Features (SURF). Although slower, the SIFT method is more stable and has a better performance than the SURF method and can be applied to real applications. The best results were obtained using SIFT with Peak Signal-to-Noise Ratio = 61.38, Mean squared error = 0.048 and mean-structural-similarity = 0.999, and processing time of 4.91 seconds for mosaic building. The methodology proposed shows be more promissory in aiding specialists during analysis of metallographic images. PMID:28793412

  12. Evaluation of Microstructure and Mechanical Properties in Dissimilar Austenitic/Super Duplex Stainless Steel Joint

    NASA Astrophysics Data System (ADS)

    Rahmani, Mehdi; Eghlimi, Abbas; Shamanian, Morteza

    2014-10-01

    To study the effect of chemical composition on microstructural features and mechanical properties of dissimilar joints between super duplex and austenitic stainless steels, welding was attempted by gas tungsten arc welding process with a super duplex (ER2594) and an austenitic (ER309LMo) stainless steel filler metal. While the austenitic weld metal had vermicular delta ferrite within austenitic matrix, super duplex stainless steel was mainly comprised of allotriomorphic grain boundary and Widmanstätten side plate austenite morphologies in the ferrite matrix. Also the heat-affected zone of austenitic base metal comprised of large austenite grains with little amounts of ferrite, whereas a coarse-grained ferritic region was observed in the heat-affected zone of super duplex base metal. Although both welded joints showed acceptable mechanical properties, the hardness and impact strength of the weld metal produced using super duplex filler metal were found to be better than that obtained by austenitic filler metal.

  13. The Effect of Cu Powder During Friction Stir Welding on Microstructure and Mechanical Properties of AA3003-H18

    NASA Astrophysics Data System (ADS)

    Abnar, B.; Kazeminezhad, M.; Kokabi, A. H.

    2014-08-01

    Friction stir welding (FSW) was used to join 3003-H18 non-heat-treatable aluminum alloy plates by adding copper powder. The copper powder was first added to the gap (0.1 and 0.2 mm) between two plates and then the FSW was performed. The specimens were joined at various rotational speeds of 800, 1000, and 1200 rpm at traveling speeds of 70 and 100 mm/min. The effects of rotational speed, second pass of FSW, and direction of second pass also were studied on copper particle distribution and formation of Al-Cu intermetallic compounds in the stir zone. The second pass of FSW was carried out in two ways; in line with the first pass direction (2F) and in the reverse direction of the first pass (FB). The microstructure, mechanical properties, and formation of intermetallic compounds type were investigated. In high copper powder compaction into the gap, large clusters were formed in the stir zone, while fine clusters and sound copper particles distribution were obtained in low powder compaction. The copper particle distribution and amount of Al-Cu intermetallic compounds were increased in the stir zone with increasing the rotational speed and applying the second pass. Al2Cu and AlCu intermetallic phases were formed in the stir zone and consequently the hardness was significantly increased. The copper particles and in situ intermetallic compounds were symmetrically distributed in both advancing and retreating sides of weld zone after FB passes. Thus, the wider area was reinforced by the intermetallic compounds. Also, the tensile test specimens tend to fracture from the coarse copper aggregation at the low rotational speeds. At high rotational speeds, the fracture locations are placed in HAZ and TMAZ.

  14. Microstructure and Mechanical Properties of 21-6-9 Stainless Steel Electron Beam Welds

    NASA Astrophysics Data System (ADS)

    Elmer, John W.; Ellsworth, G. Fred; Florando, Jeffrey N.; Golosker, Ilya V.; Mulay, Rupalee P.

    2017-04-01

    Welds can either be stronger or weaker than the base metals that they join depending on the microstructures that form in the fusion and heat-affected zones of the weld. In this paper, weld strengthening in the fusion zone of annealed 21-6-9 stainless steel is investigated using cross-weld tensile samples, hardness testing, and microstructural characterization. Due to the stronger nature of the weld, the cross-weld tensile tests failed in the base metal and were not able to generate true fusion zone mechanical properties. Nanoindentation with a spherical indenter was instead used to predict the tensile behavior for the weld metal. Extrapolation of the nanoindentation results to higher strains was performed using the Steinberg-Guinan and Johnson-Cook strength models, and the results can be used for weld strength modeling purposes. The results illustrate how microstructural refinement and residual ferrite formation in the weld fusion zone can be an effective strengthener for 21-6-9 stainless steel.

  15. Application of YAG Laser TIG Arc Hybrid Welding to Thin AZ31B Magnesium Alloy Sheet

    NASA Astrophysics Data System (ADS)

    Kim, Taewon; Kim, Jongcheol; Hasegawa, Yu; Suga, Yasuo

    A magnesium alloy is said to be an ecological material with high ability of recycling and lightweight property. Especially, magnesium alloys are in great demand on account of outstanding material property as a structural material. Under these circumstances, research and development of welding process to join magnesium alloy plates are of great significance for wide industrial application of magnesium. In order to use it as a structure material, the welding technology is very important. TIG arc welding process is the most ordinary process to weld magnesium alloy plates. However, since the heat source by the arc welding process affects the magnesium alloy plates, HAZ of welded joint becomes wide and large distortion often occurs. On the other hand, a laser welding process that has small diameter of heat source seems to be one of the possible means to weld magnesium alloy in view of the qualitative improvement. However, the low boiling point of magnesium generates some weld defects, including porosity and solidification cracking. Furthermore, precise edge preparation is very important in butt-welding by the laser welding process, due to the small laser beam diameter. Laser/arc hybrid welding process that combines the laser beam and the arc is an effective welding process in which these two heat sources influence and assist each other. Using the hybrid welding, a synegistic effect is achievable and the disadvantages of the respective processes can be compensated. In this study, YAG laser/TIG arc hybrid welding of thin magnesium alloy (AZ31B) sheets was investigated. First of all, the effect of the irradiation point and the focal position of laser beam on the quality of a weld were discussed in hybrid welding. Then, it was confirmed that a sound weld bead with sufficient penetration is obtained using appropriate welding conditions. Furthermore, it was made clear that the heat absorption efficiency is improved with the hybrid welding process. Finally, the tensile tests of welded joints were performed, and it was confirmed that they have sufficient mechanical properties. As a result of this study, it is confirmed that, if the appropriate welding conditions are selected, sound welded joints of AZ31B magnesium alloy are obtainable by the YAG laser/TIG arc hybrid welding process.

  16. Computational Modeling of Microstructural-Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Arakere, A.; Yen, C.-F.; Cheeseman, B. A.

    2013-05-01

    A fully coupled (two-way), transient, thermal-mechanical finite-element procedure is developed to model conventional gas metal arc welding (GMAW) butt-joining process. Two-way thermal-mechanical coupling is achieved by making the mechanical material model of the workpiece and the weld temperature-dependent and by allowing the potential work of plastic deformation resulting from large thermal gradients to be dissipated in the form of heat. To account for the heat losses from the weld into the surroundings, heat transfer effects associated with natural convection and radiation to the environment and thermal-heat conduction to the adjacent workpiece material are considered. The procedure is next combined with the basic physical-metallurgy concepts and principles and applied to a prototypical (plain) low-carbon steel (AISI 1005) to predict the distribution of various crystalline phases within the as-welded material microstructure in different fusion zone and heat-affected zone locations, under given GMAW-process parameters. The results obtained are compared with available open-literature experimental data to provide validation/verification for the proposed GMAW modeling effort.

  17. Microstructure and Fatigue Properties of Laser Welded DP590 Dual-Phase Steel Joints

    NASA Astrophysics Data System (ADS)

    Xie, Chaojie; Yang, Shanglei; Liu, Haobo; Zhang, Qi; Cao, Yaming; Wang, Yuan

    2017-08-01

    In this paper, cold-rolled DP590 dual-phase steel sheets with 1.5 mm thickness were butt-welded by a fiber laser, and the evolution and effect on microhardness, tensile property and fatigue property of the welded joint microstructure were studied. The results showed that the base metal is composed of ferrite and martensite, with the martensite dispersed in the ferrite matrix in an island manner. The microstructure of the weld zone was lath-shaped martensite that can be refined further by increasing the welding speed, while the heat-affected zone was composed of ferrite and tempered martensite. The microhardness increased with increasing welding speed, and the hardness reached its highest value—393.8 HV—when the welding speed was 5 m/min. Static tensile fracture of the welded joints always occurred in the base metal, and the elongation at break was more than 16%. The conditional fatigue limits of the base metal and the weld joints were 354.2 and 233.6 MPa, respectively, under tension-tension fatigue tests with a stress rate of 0.1. After observation of the fatigue fracture morphology, it was evident that the fatigue crack of the base metal had sprouted into the surface pits and that its expansion would be accelerated under the action of a secondary crack. The fatigue source of the welded joint was generated in the weld zone and expanded along the martensite, forming a large number of fatigue striations. Transient breaking, which occurred in the heat-affected zone of the joint as a result of the formation of a large number of dimples, reflected the obvious characteristics of ductile fracture.

  18. Microhardness, strength and strain field characterization of self-reacting friction stir and plug welds of dissimilar aluminum alloys

    NASA Astrophysics Data System (ADS)

    Horton, Karla Renee

    Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. Friction plug welding is used to seal the exit hole that remains in a circumferential SR-FSW. This work reports on material properties and strain patterns developed in a SR-FSW with a friction plug weld. Specifically, this study examines the behavior of a SR-FSW formed between an AA2014-T6 plate on the advancing side and an AA2219-T87 plate on the retreating side and a SR-FSW (AA2014-T6 to AA2219-T87) with a 2219-T87 plug weld. This study presents the results of a characterization of the micro-hardness, joint strength, and strain field characterization of SR-FSW and FPW joints tested at room temperature and cryogenic temperatures. The initial weld microstructure analysis showed a nugget region with fine grains and a displaced weld seam from the advancing side past the thermo-mechanical affected zone (TMAZ) into the nugget region. The displaced material shared the same hardness as the parent material. Dynamic recrystallization was observed in the SR-FSW zone and the displaced weld seam region. The welds revealed a fine grain structure in the SR-FSW zone with a sharp demarcation seen on the advancing side and fairly diffuse flow observed on the retreating side. The parent material hardness is 145 HV700g with a drop in hardness starting at the HAZ to 130 HV700g. The hardness further drops in the TMAZ to118 HV700g with an increase representing a dispersed interface of AA2014-T6 material to 135 HV700g. The hardness then drops significantly within the nugget region to 85 HV700g followed by an increase through the retreating side TMAZ into the HAZ to 135 HV 700g. There was a sharp increase in the hardness value within the nugget region with the samples that were PWHT showing an increase of 58%. The welded joints were tested for ultimate strength. The testing variations included two specimen widths, two plug sizes (M3 and M5), room temperature and cryogenic testing, and post weld heat treated (PWHT) samples. Initial welds had an average ultimate strength of 370 MPa. There was a slight drop from initial weld strength to plug weld strength of approximately 13.8 MPa was observed with M3 plug strength approximately equal to M5 plug strength. The PWHT strengths at room temperature were slightly higher than non-PWHT of 13.8--20.7 MPa and PWHT strengths were equal to non-PWHT at cryogenic temperature. Non-PWHT had a cryogenic strength enhancement approximately 59.2 MPa and PWHT had a cryogenic strength enhancement of approximately 57.2 MPa in the M3 and M5 plugs. Within the subsets of data collected no major statistical significance in strength behavior was observed between the samples tested at room temperature or between the subsets tested at LN2. In almost all cases, failure occurred on the retreating side of the weld which corresponds to the softer material (AA2219-T87). Exceptions were characterized with flaws (weld defects) in the sample. In these cases, failure occurred on the advancing side, the side where flaws were detected. Ductile fracture was noted in most all samples. Digital image correlation using the ARAMIS system was used to define strain patterns in the weld joint. Strain accumulation was observed in the weld along the retreating side and around the plug. ARAMIS data in comparison to extensometer data shows a very reasonable comparison. The ARAMIS strain gage data showed the retreating side of the major diameter has a greater yield than the advancing side. This behavior is identical to the external electrical resistance strain gages.

  19. Finite element modeling of residual stresses in electroslag butt welds

    DOT National Transportation Integrated Search

    2000-03-01

    Shop fabricated electroslag (ES) welds used in bridge construction have had a history of low toughness in the fusion and heat affected zones. In addition, conventional inspection of ES weldments under shop fabrication conditions fail to consistently ...

  20. Assessment of Ductile-to-Brittle Transition Behavior of Localized Microstructural Regions in a Friction-Stir Welded X80 Pipeline Steel with Miniaturized Charpy V-Notch Testing

    NASA Astrophysics Data System (ADS)

    Avila, Julian A.; Lucon, Enrico; Sowards, Jeffrey; Mei, Paulo Roberto; Ramirez, Antonio J.

    2016-06-01

    Friction-stir welding (FSW) is an alternative welding process for pipelines. This technology offers sound welds, good repeatability, and excellent mechanical properties. However, it is of paramount importance to determine the toughness of the welds at low temperatures in order to establish the limits of this technology. Ductile-to-brittle transition curves were generated in the present study by using a small-scale instrumented Charpy machine and miniaturized V-notch specimens (Kleinstprobe, KLST); notches were located in base metal, heat-affected, stirred, and hard zones within a FSW joint of API-5L X80 Pipeline Steel. Specimens were tested at temperatures between 77 K (-196 °C) and 298 K (25 °C). Based on the results obtained, the transition temperatures for the base material and heat-affected zone were below 173 K (-100 °C); conversely, for the stirred and hard zones, it was located around 213 K (-60 °C). Fracture surfaces were characterized and showed a ductile fracture mechanism at high impact energies and a mixture of ductile and brittle mechanisms at low impact energies.

  1. Microstructure Characterization of Fiber Laser Welds of S690QL High-Strength Steels

    NASA Astrophysics Data System (ADS)

    Li, Baoming; Xu, Peiquan; Lu, Fenggui; Gong, Hongying; Cui, Haichao; Liu, Chuangen

    2018-02-01

    The use of fiber laser welding to join S690QL steels has attracted interest in the field of construction and assembly. Herein, 13-mm-thick S690QL welded joints were obtained without filler materials using the fiber laser. The as-welded microstructures and the impact energies of the joints were characterized and measured using electron microscopy in conjunction with high-resolution transmission electron images, X-ray diffraction, and impact tests. The results indicated that a single-sided welding technique could be used to join S690QL steels up to a thickness of 12 mm (fail to fuse the joint in the root) when the laser power is equal to 12 kW (scan speed 1 m/min). Double-side welding technique allows better weld penetration and better control of heat distribution. Observation of the samples showed that the fusion zone exhibited bainitic and martensitic microstructures with increased amounts of martensites (Ms) compared with the base materials. Also, the grains in the fusion zone increased in coarseness as the heat input was increased. The fusion zone exhibited increased hardness (397 HV0.2) while exhibiting a simultaneous decrease in the impact toughness. The maximum impact energy value of 26 J was obtained from the single-side-welded sample, which is greater than those obtained from the double-side-welded samples (maximum of 18 J). Many more dislocations and plastic deformations were found in the fusion zone than the heat-affected zone in the joint, which hardened the joints and lowered the impact toughness. The microstructures characterized by FTEM-energy-dispersive X-ray spectrometer also exhibited laths of M, as well as stacking faults and dislocations featuring high-density, interfacial structure ledges that occur between the high-angle grain boundaries and the M and bainite.

  2. Evaluating the SCC resistance of underwater welds in sodium tetrathionate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R.A.; Angeliu, T.M.

    1997-12-01

    The susceptibility of welds to stress corrosion cracking (SCC) is enhanced by the surface residual tensile stresses generated by the typical welding process. However, underwater plasma transferred arc (PTA) welding has been shown to produce compressive surface residual stresses, an encouraging result if repairs of cracked boiling water reactor (BWR) components are to be made without further endangering them to SCC. This program was designed to verify that underwater PTA welds are resistant to SCC and to determine if underwater PTA welding could mitigate SCC in potentially susceptible welds. This was achieved by exposing various welds on solution annealed (SA)more » and SA + thermally sensitized 304 stainless steel at 25 C in a solution of 1.5 gm/liter of sodium sulfide added to 0.05M sodium tetrathionate, titrated to a pH of 1.25 with H{sub 2}SO{sub 4}. The autogeneous welds were produced using gas tungsten arc (GTA) and plasma transferred arc (PTA) welding under atmospheric conditions, and PTA welding underwater. After 1 hour of sodium tetrathionate exposure, GTA and air PTA welds exhibited SCC while the underwater PTA weld heat affected zones were more resistant. Underwater PTA welds bisecting a GTA weld eliminated the cracking in the GTA weld heat affected zone under certain conditions. The lack of IG cracking in the region influenced by the underwater PTA weld is consistent with the measurement of compressive surface residual stresses inherent to the underwater welding process.« less

  3. Mechanical properties and microstructures of a magnesium alloy gas tungsten arc welded with a cadmium chloride flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.D.; Liu, L.M.; Shen, Y.

    2008-01-15

    Gas tungsten arc (GTA) welds were prepared on 5-mm thick plates of wrought magnesium AZ31B alloy, using an activated flux. The microstructural characteristics of the weld joint were investigated using optical and scanning microscopy, and the fusion zone microstructure was compared with that of the base metal. The elemental distribution was also investigated by electron probe microanalysis (EPMA). Mechanical properties were determined by standard tensile tests on small-scale specimens. The as-welded fusion zone prepared using a CdCl{sub 2} flux exhibited a larger grain size than that prepared without flux; the microstructure consisted of matrix {alpha}-Mg, eutectic {alpha}-Mg and {beta}-Al{sub 12}Mg{submore » 17}. The HAZ was observed to be slightly wider for the weld prepared with a CdCl{sub 2} flux compared to that prepared without flux; thus the tensile strength was lower for the flux-prepared weld. The fact that neither Cd nor Cl was detected in the weld seam by EPMA indicates that the CdCl{sub 2} flux has a small effect on convection in the weld pool.« less

  4. Northwest Manufacturing Initiative

    DTIC Science & Technology

    2013-03-26

    Testing of Metallic Materials] specifications. For high temperature tests, a heated water bath was use while for low temperature testing down to...Weld metal and heat affected zones were evaluated using Charpy and E399 fracture toughness methods. The influence of temperature , loading rate, CVN...determine the influence of fracture test methods and welding procedures on toughness. Room temperature E399 tests, (CTS) were carried out under

  5. An investigation on capability of hybrid Nd:YAG laser-TIG welding technology for AA2198 Al-Li alloy

    NASA Astrophysics Data System (ADS)

    Faraji, Amir Hosein; Moradi, Mahmoud; Goodarzi, Massoud; Colucci, Pietro; Maletta, Carmine

    2017-09-01

    This paper surveys the capability of the hybrid laser-arc welding in comparison with lone laser welding for AA2198 aluminum alloy experimentally. In the present research, a continuous Nd:YAG laser with a maximum power of 2000 W and a 350 A electric arc were used as two combined welding heat sources. In addition to the lone laser welding experiments, two strategies were examined for hybrid welding; the first one was low laser power (100 W) accompanied by high arc energy, and the second one was high laser power (2000 W) with low arc energy. Welding speed and arc current varied in the experiments. The influence of heat input on weld pool geometry was surveyed. The macrosection, microhardness profile and microstructure of the welded joints were studied and compared. The results indicated that in lone laser welding, conduction mode occurred and keyhole was not formed even in low welding speeds and thus the penetration depth was so low. It was also found that the second approach (high laser power accompanied with low arc energy) is superior to the first one (low laser power accompanied with high arc energy) in hybrid laser-arc welding of Al2198, since lower heat input was needed for full penetration weld and as a result a smaller HAZ was created.

  6. Modeling of the fracture behavior of spot welds using advanced micro-mechanical damage models

    NASA Astrophysics Data System (ADS)

    Sommer, Silke

    2010-06-01

    This paper presents the modeling of deformation and fracture behavior of resistance spot welded joints in DP600 steel sheets. Spot welding is still the most commonly used joining technique in automotive engineering. In overloading situations like crash joints are often the weakest link in a structure. For those reasons, crash simulations need reliable and applicable tools to predict the load bearing capacity of spot welded components. Two series of component tests with different spot weld diameters have shown that the diameter of the weld nugget is the main influencing factor affecting fracture mode (interfacial or pull-out fracture), load bearing capacity and energy absorption. In order to find a correlation between nugget diameter, load bearing capacity and fracture mode, the spot welds are simulated with detailed finite element models containing base metal, heat affected zone and weld metal in lap-shear loading conditions. The change in fracture mode from interfacial to pull-out or peel-out fracture with growing nugget diameter under lap-shear loading was successfully modeled using the Gologanu-Leblond model in combination with the fracture criteria of Thomason and Embury. A small nugget diameter is identified to be the main cause for interfacial fracture. In good agreement with experimental observations, the calculated pull-out fracture initiates in the base metal at the boundary to the heat affected zone.

  7. Thermal Recovery of Plastic Deformation in Dissimilar Metal Weld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Dongxiao; Yu, Xinghua; Zhang, Wei

    Stainless steel has been widely used in challenging environments typical to nuclear power plant structures, due its excellent corrosion resistance. Nickel filler metals containing high chromium concentration, including Alloy 82/182, are used for joining stainless steel to carbon steel components to achieve similar high resistance to stress corrosion cracking. However, the joint usually experience weld metal stress corrosion cracking (SCC), which affects the safety and structural integrity of light water nuclear reactor systems. A primary driving force for SCC is the high tensile residual stress in these welds. Due to large dimension of pressure vessel and limitations in the field,more » non-destructive residual stress measurement is difficult. As a result, finite element modeling has been the de facto method to evaluate the weld residual stresses. Recent studies on this subject from researchers worldwide report different residual stress value in the weldments [5]. The discrepancy is due to the fact that most of investigations ignore or underestimate the thermal recovery in the heat-affect zone or reheated region in the weld. In this paper, the effect of heat treatment on thermal recovery and microhardness is investigated for materials used in dissimilar metal joint. It is found that high equivalent plastic strains are predominately accumulated in the buttering layer, the root pass, and the heat affected zone, which experience multiple welding thermal cycles. The final cap passes, experiencing only one or two welding thermal cycles, exhibit less plastic strain accumulation. Moreover, the experimental residual plastic strains are compared with those predicted using an existing weld thermo-mechanical model with two different strain hardening rules. The importance of considering the dynamic strain hardening recovery due to high temperature exposure in welding is discussed for the accurate simulation of weld residual stresses and plastic strains. In conclsuion, the experimental result reveals that the typical post-buttering heat treatment for residual stress relief may not be adequate to completely eliminate the residual plastic strains in the buttering layer.« less

  8. Experimental study of cyclic creep and high-cycle fatigue of welded joints of St3 steel by the DIC technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kibitkin, Vladimir V., E-mail: vvk@ispms.tsc.ru; Solodushkin, Andrey I., E-mail: s.ai@sibmail.com; Pleshanov, Vasily S., E-mail: vsp@ispms.tsc.ru

    In the paper the mechanisms of plastic deformation and fracture of welded joints of steel St3 were investigated at high-cycle fatigue and cyclic creep by the digital image correlation (DIC) technique. The evolution of strain rate is studied for the following regions: base metal, HAZ, and fusion zone. This strain rate evolution can be considered as a mechanical response of material. Three stages of deformation evolution are shown: deformation hardening (I), fatigue crack initiation (II), and the last stage is related to main crack (III). Two criteria are offered to evaluate the current mechanical state of welded joints.

  9. Microstructural and mechanical properties on friction welding of dissimilar metals used in motor vehicles

    NASA Astrophysics Data System (ADS)

    Jesudoss Hynes, N. Rajesh; Shenbaga Velu, P.

    2018-02-01

    In the last two decades, major car manufacturing companies are exploring the possibilities of joining magnesium with aluminium, via friction welding technique for many crucial automotive applications. Our primary objective, is to carry out an experimental investigation in order to study the behaviour of dissimilar joints. The microscopic structure at the welded joint interface was analysed using an optical microscopy and scanning electron microscope. It was found that, by increasing the value of friction time, the value of the tensile strength increases and the result of tensile strength is found to be 120 MPa at a friction time of 10 s. Micro hardness was found to be higher at the interface of the weldment due to the development of a brittle intermetallic compound. Micro structural studies using SEM reveals, distinct zones such as an unaffected parent metal zone, the heat affected zone, a thermo-mechanically affected zone and a fully deformed plasticised zone.

  10. Effects of high frequency current in welding aluminum alloy 6061

    NASA Technical Reports Server (NTRS)

    Fish, R. E.

    1968-01-01

    Uncontrolled high frequency current causes cracking in the heat-affected zone of aluminum alloy 6061 weldments during tungsten inert gas ac welding. Cracking developed when an improperly adjusted superimposed high frequency current was agitating the semimolten metal in the areas of grain boundary.

  11. Investigation of precipitation and hardening response of maraging stainless steels 17-4 and 13-8+Mo during multi-pass welding

    NASA Astrophysics Data System (ADS)

    Hamlin, Robert J.

    Martensitic precipitation strengthened stainless steels 17-4 and 13-8+Mo are candidate alloys for high strength military applications. These applications will require joining by fusion welding processes thus, it is necessary to develop an understanding of microstructural and mechanical property changes that occur during welding. Previous investigations on these materials have demonstrated that significant softening occurs in the heat affected zone (HAZ) during welding, due to dissolution of the strengthen precipitates. It was also observed that post weld heat treatments (PWHT's) were required to restore the properties. However, PWHT's are expensive and cannot be applied when welding on a large scale or making a repair in the field. Thus, the purpose of the current work is to gain a fundamental understanding of the precipitation kinetics in these systems so that optimized welding procedures can be developed that do not require a PWHT. Multi-pass welding provides an opportunity to restore the strengthening precipitates that dissolve during primary weld passes using the heat from secondary weld passes. Thus, a preliminary investigation was performed to determine whether the times and temperatures associated with welding thermal cycles were sufficient to restore the strength in these systems. A Gleeble thermo-mechanical simulator was used to perform multi-pass welding simulations on samples of each material using a 1000 J/mm and 2000 J/mm heat input. Additionally, base metal and weld metal samples were used as starting conditions to evaluate the difference in precipitation response between each. Hardness measurements were used to estimate the extent of precipitate dissolution and growth. Microstructures were characterized using light optical microscopy (LOM), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS). It was determined that precipitate dissolution occurred during primary welding thermal cycles and that significant hardening could be achieved using secondary welding thermal cycles for both heat inputs. Additionally, it was observed that the weld metal and base metal had similar precipitation responses. The preliminary multi-pass welding simulations demonstrated that the times and temperatures associated with welding thermal cycles were sufficient to promote precipitation in each system. Furthermore, these findings indicate that controlled weld metal deposition may be a viable method for optimizing welding procedures and eliminating the need for a PWHT. Next, an in-depth Gleeble study was performed to develop a fundamental understanding of the reactions that occur in 17-4 and 13-8+Mo during exposure to times and temperatures representative of multi-pass welding. Samples of each material were subjected to a series of short isothermal holds at high temperatures and hardness measurements were recorded to investigate the dissolution behavior of each alloy. Additional secondary isothermal experiments were performed on samples that had been subjected to a high temperature primary thermal cycle and hardness measurements were recorded. Matrix microstructures were characterized by LOM and reverted austenite measurements were recorded using X-ray diffraction techniques. The hardness data from the secondary heating tests was used in combination with Avrami kinetics equations to develop a relationship between the hardness and fraction transformed of the strengthening precipitates. It was determined that the Avrami relationships provide a useful approximation of the precipitation behavior at times and temperatures representative of welding thermal cycles. Finally, an autogenous gas tungsten arc (GTA) welding study was performed to demonstrate the utility of multi-pass welding for strength restoration in these alloys. Dual-pass welds were made on samples of each material using a range of heat inputs and secondary weld pass overlap percentages. Hardness mapping was then performed to estimate the extent of precipitate growth and dissolution. It was determined that significant softening occurs after primary weld passes and that secondary weld passes, using a high heat input, restored much of the strength. Furthermore, optimal weld overlap percentages were approximated. It was concluded that controlled weld metal deposition can significantly improve the properties of 17-4 and 13-8+Mo and potentially eliminate the need for costly PWHT's.

  12. Use of Friction Stir Processing for Improving Heat-Affected Zone Liquation Cracking Resistance of a Cast Magnesium Alloy AZ91D

    NASA Astrophysics Data System (ADS)

    Karthik, G. M.; Janaki Ram, G. D.; Kottada, Ravi Sankar

    2017-12-01

    In this work, a cast magnesium alloy AZ91D was friction stir processed. Detailed microstructural studies and Gleeble hot ductility tests were conducted on the as-cast and the FSPed samples to comparatively assess their heat-affected zone liquation cracking behavior. The results show that the use of FSP as a pretreatment to fusion welding can strikingly improve the heat-affected zone liquation cracking resistance of alloy AZ91D by reducing the amount and size of the low-melting eutectic β (Mg17Al12) as well as by refining the matrix grain size.

  13. Effect of Pulse Parameters on Weld Quality in Pulsed Gas Metal Arc Welding: A Review

    NASA Astrophysics Data System (ADS)

    Pal, Kamal; Pal, Surjya K.

    2011-08-01

    The weld quality comprises bead geometry and its microstructure, which influence the mechanical properties of the weld. The coarse-grained weld microstructure, higher heat-affected zone, and lower penetration together with higher reinforcement reduce the weld service life in continuous mode gas metal arc welding (GMAW). Pulsed GMAW (P-GMAW) is an alternative method providing a better way for overcoming these afore mentioned problems. It uses a higher peak current to allow one molten droplet per pulse, and a lower background current to maintain the arc stability. Current pulsing refines the grains in weld fusion zone with increasing depth of penetration due to arc oscillations. Optimum weld joint characteristics can be achieved by controlling the pulse parameters. The process is versatile and easily automated. This brief review illustrates the effect of pulse parameters on weld quality.

  14. Three-dimensional numerical simulation during laser processing of CFRP

    NASA Astrophysics Data System (ADS)

    Ohkubo, Tomomasa; Sato, Yuji; Matsunaga, Ei-ichi; Tsukamoto, Masahiro

    2017-09-01

    We performed three-dimensional numerical simulation about laser processing of carbon-fiber-reinforced plastic (CFRP) using OpenFOAM as libraries of finite volume method (FVM). Although a little theoretical or numerical studies about heat affected zone (HAZ) formation were performed, there is no research discussing how HAZ is generated considering time development about removal of each material. It is important to understand difference of removal speed of carbon fiber and resin in order to improve quality of cut surface of CFRP. We demonstrated how the carbon fiber and resin are removed by heat of ablation plume by our simulation. We found that carbon fiber is removed faster than resin at first stage because of the difference of thermal conductivity, and after that, the resin is removed faster because of its low combustion temperature. This result suggests the existence of optimal contacting time of the laser ablation and kerf of the target.

  15. An investigation of laser cutting quality of 22MnB5 ultra high strength steel using response surface methodology

    NASA Astrophysics Data System (ADS)

    Tahir, Abdul Fattah Mohd; Aqida, Syarifah Nur

    2017-07-01

    In hot press forming, changes of mechanical properties in boron steel blanks have been a setback in trimming the final shape components. This paper presents investigation of kerf width and heat affected zone (HAZ) of ultra high strength 22MnB5 steel cutting. Sample cutting was conducted using a 4 kW Carbon Dioxide (CO2) laser machine with 10.6 μm wavelength with the laser spot size of 0.2 mm. A response surface methodology (RSM) using three level Box-Behnken design of experiment was developed with three factors of peak power, cutting speed and duty cycle. The parameters were optimised for minimum kerf width and HAZ formation. Optical evaluation using MITUTOYO TM 505 were conducted to measure the kerf width and HAZ region. From the findings, laser duty cycle was crucial to determine cutting quality of ultra-high strength steel; followed by cutting speed and laser power. Meanwhile, low power intensity with continuous wave contributes the narrowest kerf width formation and least HAZ region.

  16. SNL/SRNL Joint Project on degradation of mechanical properties in structural metals and welds for GTS reservoirs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronevich, Joseph Allen; Balch, Dorian K.; San Marchi, Christopher W.

    2015-12-01

    This project was intended to enable SNL-CA to produce appropriate specimens of relevant stainless steels for testing and perform baseline testing of weld heat-affected zone and weld fusion zone. One of the key deliverables in this project was to establish a procedure for fracture testing stainless steel weld fusion zone and heat affected zones that were pre-charged with hydrogen. Following the establishment of the procedure, a round robin was planned between SNL-CA and SRNL to ensure testing consistency between laboratories. SNL-CA and SRNL would then develop a comprehensive test plan, which would include tritium exposures of several years at SRNLmore » on samples delivered by SNL-CA. Testing would follow the procedures developed at SNL-CA. SRNL will also purchase tritium charging vessels to perform the tritium exposures. Although comprehensive understanding of isotope-induced fracture in GTS reservoir materials is a several year effort, the FY15 work would enabled us to jump-start the tests and initiate long-term tritium exposures to aid comprehensive future investigations. Development of a procedure and laboratory testing consistency between SNL-CA and SNRL ensures reliability in results as future evaluations are performed on aluminum alloys and potentially additively-manufactured components.« less

  17. Performance of repair welds on aged Cr-Mo piping girth welds

    NASA Astrophysics Data System (ADS)

    Viswanathan, R.; Gandy, D. W.

    1999-10-01

    This article documents the results of an industry survey of weld repair practices and describes the results of experimental evaluations performed on service-aged 21/4 Cr-1Mo steel piping using SMAW with both conventional postweld heat treatments and temper bead repair techniques. The overall results of this program provide substantial evidence that service-aged piping systems can be successfully weld repaired with and without postweld heat treatments and that life extension by several decades is achievable under the right design and repair conditions. Weld repairs performed on degraded exservice welds resulted in restoration or improvement of tensile and creep properties. Microhardness test results within the heat-affected zone of each weldment indicated that the temper bead weld repairs produced only slightly higher peak hardness values than those measured for the fully postweld heat treated repairs. Finally, in terms of toughness, temper bead weld repairs consistently produced higher impact properties than those measured for the postweld heat treated weldments. Gas tungsten arc weld repairs with postweld heat treatment resulted in the best combination of tensile strength, uniform microhardness distribution across the weld, Charpy toughness, and creep rupture life.

  18. Metallurgical Effects of Shunting Current on Resistance Spot-Welded Joints of AA2219 Sheets

    NASA Astrophysics Data System (ADS)

    Jafari Vardanjani, M.; Araee, A.; Senkara, J.; Jakubowski, J.; Godek, J.

    2016-08-01

    Shunting effect is the loss of electrical current via the secondary circuit provided due to the existence of previous nugget in a series of welding spots. This phenomenon influences on metallurgical aspects of resistance spot-welded (RSW) joints in terms of quality and performance. In this paper RSW joints of AA2219 sheets with 1 mm thickness are investigated metallurgically for shunted and single spots. An electro-thermal finite element analysis is performed on the RSW process of shunted spot and temperature distribution and variation are obtained. These predictions are then compared with experimental micrographs. Three values of 5 mm, 20 mm, and infinite (i.e., single spot) are assumed for welding distance. Numerical and experimental results are matching each other in terms of nugget and HAZ geometry as increasing distance raised nugget size and symmetry of HAZ. In addition, important effect of shunting current on nugget thickness, microstructure, and Copper segregation on HAZ grain boundaries were discovered. A quantitative analysis is also performed about the influence of welding distance on important properties including ratio of nugget thickness and diameter ( r t), ratio of HAZ area on shunted and free side of nugget ( r HA), and ratio of equivalent segregated and total amount of Copper, measured in sample ( r Cu) on HAZ. Increasing distance from 5 mm to infinite, indicated a gain of 111.04, -45.55, and -75.15% in r t, r HA, and r Cu, respectively, while obtained ratios for 20 mm welding distance was suitable compared to single spot.

  19. Microstructure and hydrogen induced failure mechanisms in iron-nickel weldments

    NASA Astrophysics Data System (ADS)

    Fenske, Jamey Alan

    A recent series of inexplicable catastrophic failures of specific subsea dissimilar metal Fe-Ni butter welds has illuminated a fundamental lack of understanding of both the microstructure created along the fusion line as well as its impact on the hydrogen susceptibility of these interfaces. In order to remedy this, the present work compares and contrasts the microstructure and hydrogen-induced fracture morphology of AISI 8630-IN 625 and F22-IN 625 dissimilar metal weld interfaces as a function of post-weld heat treatment duration. A variety of techniques were used to study details of both the microstructure and fracture morphology including optical microscopy, scanning electron microscopy, secondary ion mass spectrometry, transmission electron microscopy, electron backscatter diffraction, and energy dispersive x-ray spectroscopy. For both systems, the microstructure along the weld interface consisted of a coarse grain heat-affected zone in the Fe-base metal followed by discontinuous martensitic partially-mixed zones and a continuous partially-mixed zone on the Ni-side of the fusion line. Within the partially mixed zone on the Ni-side there exists a 200 nm-wide transition zone within a 20 mum-wide planar solidification region followed by a cellular dendritic region with Nb-Mo rich carbides decorating the dendrite boundaries. The size, area fraction and composition of the discontinuous PMZ were determined to be controlled by uneven mixing in the liquid weld pool influenced by convection currents produced from the welding procedure. The virgin martensitic microstructure produced in these regions is formed as consequence of a both the local composition and the post-weld heat treatment. The local higher Ni content results in these regions being retransformed into austenite during the post-weld heat treatment and then virgin martensite while cooling to room temperature. Although there were differences in the volume of the discontinuous partially mixed-zones, the major difference in the weld metal interfaces was the presence of M 7C3 precipitates in the planar solidification region. The formation of these precipitates, which were found in what was previously referred to as the "featureless-zone," were determined to be dependent on the carbon content of the Fe-base metal and the duration of the post-weld heat treatment. A high density of these ordered 100 nm-long by 10 nm-wide needle-like precipitates were found in the AISI 8630-IN 625 weldment in the 10 hour post-weld heat treatment condition while only the initial stages of their nucleation were evident in the F22-IN 625 15 hour post-weld heat treatment specimen. The study of the fractured specimens revealed that the M7C 3 carbides play a key role in the susceptibility to hydrogen embrittlement of the Fe-Ni butter weldments. The fractures initially nucleate along the isolated Fe-base metal -- discontinuous partially mixed zone interfaces. The M7C3 carbides accumulate hydrogen and then provide a low energy fracture path between the discontinuous partially mixed zones leading to catastrophic failure. The result is a fracture morphology that alternates between flat regions produced by fracture along the discontinuous partially mixed zones and cleavage-like fracture regions produced by fracture along the ordered carbide matrix interfaces.

  20. The Microstructure and Pitting Resistance of Weld Joints of 2205 Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Wu, Mingfang; Liu, Fei; Pu, Juan; Anderson, Neil E.; Li, Leijun; Liu, Dashuang

    2017-11-01

    2205 duplex stainless steel (DSS) was welded by submerged arc welding. The effects of both heat input and groove type on the ferrite/austenite ratio and elemental diffusion of weld joints were investigated. The relationships among welding joint preparation, ferrite/austenite ratio, elemental diffusion, and pitting corrosion resistance of weld joints were analyzed. When the Ni content of the weld wire deposit was at minimum 2-4% higher than that of 2205 DSS base metal, the desired ratio of ferrite/austenite and elemental partitioning between the austenite and ferrite phases were obtained. While the pitting sensitivity of weld metal was higher than that of base metal, the self-healing capability of the passive film of weld metal was better than that of the base metal when a single V-type groove was used. Furthermore, the heat input should be carefully controlled since pitting corrosion occurred readily in the coarse-grained heat-affected zone near the fusion line of welded joints.

  1. Hot cracking of Structural Steel during Laser Welding

    NASA Astrophysics Data System (ADS)

    Pineda Huitron, Rosa M.; Vuorinen, Esa

    2017-10-01

    Laser welding is an important technique in many industries due to its high precision in operation, its local and fast processing, narrow welds and its good weld surface quality. However, the process can involve some complications due to the rapid heating and cooling of the material processed, resulting in physical and metallurgical effects as thermal contraction during solidification, giving as a result the presence of residual stresses in the narrow weld. Formation of defects during the process is an important topic to be evaluated in order to achieve better performance of the steels in use. In the present work, defects formed during laser welding of a structural steel have been investigated. The defects formed have been identified and the causes of the defects are discussed. Possible strategies for improvement of the welding procedure and final weld result are proposed. The defects were analysed by optical and scanning electron microscopy and hardness measurement. Cracks were located in the middle of the fusion zone and followed both inter-granular and trans-granular paths. Impurities as manganese sulphides were found along the welding direction, and could act as sites for crack formation. The cracks formed during solidification of the weld are identified as solidification cracks. This kind of cracks is usually caused by solidification shrinkage and thermal contractions during the process, which appear in the fusion zone and sometimes in the heat affected zone.

  2. Influence of structure on static cracking resistance and fracture of welded joints of pipe steels of strength class K60

    NASA Astrophysics Data System (ADS)

    Tereshchenko, N. A.; Tabatchikova, T. I.; Yakovleva, I. L.; Makovetskii, A. N.; Shander, S. V.

    2017-07-01

    The static cracking resistance of a number of welded joints made from pipe steels of K60 strength class has been determined. It has been established that the deformation parameter CTOD varies significantly at identical parameters of weldability of steels. The character of fracture has been investigated and the zone of local brittleness of welded joints has been studied. It has been shown that the ability of a metal to resist cracking is determined by the austenite grain size and by the bainite morphology in the region of overheating in the heat-affected zone of a welded joint.

  3. Sensitization of Laser-beam Welded Martensitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Rajendran, Kousika Dhasanur; Lindner, Stefan

    Ferritic and martensitic stainless steels are an attractive alternative in vehicle production due to their inherent corrosion resistance. By the opportunity of press hardening, their strength can be increased to up to 2000 MPa, making them competitors for unalloyed ultra-high strength steels. Welding, nevertheless, requires special care, especially when it comes to joining of high strength heat treated materials. With an adopted in-line heat treatment of the welds in as-rolled as well as press hardened condition, materials with sufficient fatigue strength and acceptable structural behavior can be produced. Because of microstructural transformations in the base material such as grain coarsening and forced carbide precipitation, the corrosion resistance of the weld zone may be locally impaired. Typically the material in the heat-affected zone becomes sensitive to intergranular cracking in the form of knife-edge corrosion besides the fusion line. The current study comprises of two text scenarios. By an alternating climate test, general response in a corroding environment is screened. In order to understand the corrosion mechanisms and to localize the sensitive zones, sensitisation tests were undertaken. Furthermore, the applicability of a standard test according to ASTM 763-83 was examined. It was found that the alternative climate test does not reveal any corrosion effects. Testing by the oxalic acid test revealed clearly the effect of welding, weld heat treatment and state of thermal processing. Also application of the standard which originally suited for testing ferritic stainless steels could have been justified.

  4. Effect of Heat Exposure on the Fatigue Properties of AA7050 Friction Stir Welds

    NASA Astrophysics Data System (ADS)

    White, B. C.; Rodriguez, R. I.; Cisko, A.; Jordon, J. B.; Allison, P. G.; Rushing, T.; Garcia, L.

    2018-05-01

    This work examines the effect of heat exposure on the subsequent monotonic and fatigue properties of friction stir-welded AA7050. Mechanical characterization tests were conducted on friction stir-welded specimens as-welded (AW) and specimens heated to 315 °C in air for 20 min. Monotonic testing revealed high joint efficiencies of 98% (UTS) in the AW specimens and 60% in the heat-damaged (HD) specimens. Experimental results of strain-controlled fatigue testing revealed shorter fatigue lives for the HD coupons by nearly a factor of four, except for the highest strain amplitude tested. Postmortem fractography analysis found similar crack initiation or propagation behavior between the AW and HD specimens; however, the failure locations for the AW were predominantly in the heat-affected zone, while the HD specimens also failed in the stir zone. Microhardness measurements revealed a relatively uniform strength profile in the HD group, accounting for the variety of failure locations observed. The differences in both monotonic and cyclic properties observed between the AW and HD specimens support the conclusion that the heat damage (315 °C at 20 min) acts as an over-aging and a quasi-annealing treatment.

  5. Effect of Post Weld Heat Treatment on Corrosion Behavior of AA2014 Aluminum – Copper Alloy Electron Beam Welds

    NASA Astrophysics Data System (ADS)

    Venkata Ramana, V. S. N.; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    The present work pertains to the study of corrosion behavior of aluminum alloy electron beam welds. The aluminium alloy used in the present study is copper containing AA2014 alloy. Electron Beam Welding (EBW) was used to weld the alloys in annealed (O) condition. Microstructural changes across the welds were recorded and the effect of post weld heat treatment (PWHT) in T4 (Solutionized and naturally aged) condition on pitting corrosion resistance was studied. A software based PAR basic electrochemical system was used for potentio-dynamic polarization tests. From the study it is observed that weld in O condition is prone to more liquation than that of PWHT condition. This may be attributed to re-melting and solidification of excess eutectic present in the O condition of the base metal. It was also observed that slightly higher hardness values are recorded in O condition than that of PWHT condition. The pitting corrosion resistance of the PMZ/HAZ in PWHT condition is better than that of O condition. This is attributed to copper segregation at the grain boundaries of PMZ in O condition.

  6. The effect of electron beam welding on the creep rupture properties of a Nb-Zr-C alloy

    NASA Technical Reports Server (NTRS)

    Moore, T. J.; Titran, R. H.; Grobstein, T. L.

    1986-01-01

    Creep rupture tests of electron beam welded PWC-11 sheet were conducted at 1350 K. Full penetration, single pass welds were oriented transverse to the testing direction in 1 mm thick sheet. With this orientation, stress was imposed equally on the base metal, weld metal, and heat-affected zone. Tests were conducted in both the postweld annealed and aged conditions. Unwelded specimens with similar heat treatments were tested for comparative purposes. It was found that the weld region is stronger than the base metal for both the annealed and aged conditions and that the PWC-11 material is stronger in the annealed condition than in the aged condition.

  7. Study on fibre laser machining quality of plain woven CFRP laminates

    NASA Astrophysics Data System (ADS)

    Li, Maojun; Li, Shuo; Yang, Xujing; Zhang, Yi; Liang, Zhichao

    2018-03-01

    Laser cutting is suitable for large-scale and high-efficiency production with relatively high cutting speed, while machining of CFRP composite using lasers is challenging with severe thermal damage due to different material properties and sensitivity to heat. In this paper, surface morphology of cutting plain woven carbon fibre-reinforced plastics (CFRP) by fibre laser and the influence of cutting parameters on machined quality were investigated. A full factorial experimental design was employed involving three variable factors, which included laser pulse frequency at three levels together with laser power and cutting speed at two levels. Heat-affected zone (HAZ), kerf depth and kerf angle were quantified to understand the interactions with cutting parameters. Observations of machined surface were analysed relating to various damages using optical microscope and scanning electron microscopy (SEM), which included HAZ, matrix recession, fibre protruding, striations, fibre-end swelling, collapses, cavities and delamination. Based on ANOVA analysis, it was found that both cutting speed and laser power were significant factors for HAZ and kerf depth, while laser power was the only significant factor for kerf angle. Besides, HAZ and the kerf depth showed similar sensitivity to the pulse energy and energy per unit length, which was opposite for kerf angle. This paper presented the feasibility and experimental results of cutting CFRP laminates using fibre laser, which is possibly the efficient and high-quality process to promote the development of CFRPs.

  8. Evaluation of material homogeniety as a function of thickness of low-alloy ferritic steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, T.L.; Lambert, M.A.

    1989-11-01

    A series of Charpy and nil-ductility transition temperature (NDTT) tests were performed on 8 in. and 12 in. thick forgings of A508-4A, A508-4B, and A350-LF3 steels. Three different positions in thickness were tested in the 12 in. forgings, while two locations in the forging were analyzed. Chemical analysis and metallographic examination were also performed on each material and in each thickness location. The material toughness tended to be lower in the thicker forgings and in the center of a given forging. Low relative toughness coincided with well tempered microstructures, where equiaxed ferrite grains had begun to form. These grains aremore » coarser than the packet structure that existed at earlier stages of tempering. Low quench rates (associated with thick sections and central regions of a given thickness) apparently accelerated the structural changes during tempering, which led to microstructures with low toughness. The NDTT results were suspect because most arrests occurred in the heat affected zones (HAZs) of the welds rather than in the parent metal. The measured NDTT values were lower than expected, based on published empirical correlations with Charpy energy. This was particularly true for the A508-4A steel. This provided further evidence that the drop weight tests were actually measuring the arrest properties of the HAZ in most cases. The fact that NDTT values were lower than expected is particularly surprising since the anvil test fixture was machined with a deflection stop 25 percent higher than the standard value.« less

  9. Numerical calculation and experimental research on crack arrest by detour effect and joule heating of high pulsed current in remanufacturing

    NASA Astrophysics Data System (ADS)

    Yu, Jing; Zhang, Hongchao; Deng, Dewei; Hao, Shengzhi; Iqbal, Asif

    2014-07-01

    The remanufacturing blanks with cracks were considered as irreparable. With utilization of detour effect and Joule heating of pulsed current, a technique to arrest the crack in martensitic stainless steel FV520B is developed. According to finite element theory, the finite element(FE) model of the cracked rectangular specimen is established firstly. Then, based on electro-thermo-structure coupled theory, the distributions of current density, temperature field, and stress field are calculated for the instant of energizing. Furthermore, the simulation results are verified by some corresponding experiments performed on high pulsed current discharge device of type HCPD-I. Morphology and microstructure around the crack tip before and after electro pulsing treatment are observed by optical microscope(OM) and scanning electron microscope(SEM), and then the diameters of fusion zone and heat affected zone(HAZ) are measured in order to contrast with numerical calculation results. Element distribution, nano-indentation hardness and residual stress in the vicinity of the crack tip are surveyed by energy dispersive spectrometer(EDS), scanning probe microscopy(SPM) and X-ray stress gauge, respectively. The results show that the obvious partition and refined grain around the crack tip can be observed due to the violent temperature change. The contents of carbon and oxygen in fusion zone and HAZ are higher than those in matrix, and however the hardness around the crack tip decreases. Large residual compressive stress is induced in the vicinity of the crack tip and it has the same order of magnitude for measured results and numerical calculation results that is 100 MPa. The relational curves between discharge energies and diameters of the fusion zone and HAZ are obtained by experiments. The difference of diameter of fusion zone between measured and calculated results is less than 18.3%. Numerical calculation is very useful to define the experimental parameters. An effective method to prevent further extension of the crack is presented and can provide a reference for the compressor rotor blade remanufacturing.

  10. Embrittlement of Intercritically Reheated Coarse Grain Heat-Affected Zone of ASTM4130 Steel

    NASA Astrophysics Data System (ADS)

    Li, Liying; Han, Tao; Han, Bin

    2018-04-01

    In this investigation, a thermal welding simulation technique was used to investigate the microstructures and mechanical properties of the intercritically reheated coarse grain heat-affected zone (IR CGHAZ) of ASTM4130 steel. The effect of post weld heat treatment (PWHT) on the toughness of IR CGHAZ was also analyzed. The toughness of IR CGHAZ was measured by means of Charpy impact, and it is found that IR CGHAZ has the lowest toughness which is much lower than that of the base metal regardless of whether PWHT is applied or not. The as-welded IR CGHAZ is mainly composed of ferrite, martensite, and many blocky M-A constituents distributing along grain boundaries and subgrain boundaries in a near-connected network. Also, the prior austenite grains are still as coarse as those in the coarse grain heat-affected zone (CGHAZ). The presence of the blocky M-A constituents and the coarsened austenite grains result in the toughness deterioration of the as-welded IR CGHAZ. Most of the blocky M-A constituents are decomposed to granular bainite due to the effect of the PWHT. However, PWHT cannot refine the prior austenite grains. Thus, the low toughness of IR CGHAZ after PWHT can be attributed to two factors, i.e., the coarsened austenite grains, and the presence of the remaining M-A constituents and granular bainite, which are located at grain boundaries and subgrain boundaries in a near-connected network. The absorbed energy of the IR CGHAZ was increased by about 3.75 times, which means that the PWHT can effectively improve the toughness but it cannot be recovered to the level of base metal.

  11. Thermal regulation in multiple-source arc welding involving material transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doumanidis, C.C.

    1995-06-01

    This article addresses regulation of the thermal field generated during arc welding, as the cause of solidification, heat-affected zone and cooling rate related metallurgical transformations affecting the final microstructure and mechanical properties of various welded materials. This temperature field is described by a dynamic real-time process model, consisting of an analytical composite conduction expression for the solid region, and a lumped-state, double-stream circulation model in the weld pool, integrated with a Gaussian heat input and calibrated experimentally through butt joint GMAW tests on plain steel plates. This model serves as the basis of an in-process thermal control system employing feedbackmore » of part surface temperatures measured by infrared pyrometry; and real-time identification of the model parameters with a multivariable adaptive control strategy. Multiple heat inputs and continuous power distributions are implemented by a single time-multiplexed torch, scanning the weld surface to ensure independent, decoupled control of several thermal characteristics. Their regulation is experimentally obtained in longitudinal GTAW of stainless steel pipes, despite the presence of several geometrical, thermal and process condition disturbances of arc welding.« less

  12. Effect of Heat Input on the Tensile Damage Evolution in Pulsed Laser Welded Ti6Al4V Titanium Sheets

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Gao, Xiaolong; Zhang, Jianxun

    2016-11-01

    The present paper is focused on studying the effect of heat input on the tensile damage evolution of pulsed Nd:YAG laser welding of Ti6Al4V alloy under monotonic loading. To analyze the reasons that the tensile fracture site of the pulsed-laser-welded Ti6Al4V sheet joints changes with the heat input under monotonic loading, the microstructure of the sample with different nominal strain values was investigated by in situ observation. Experiment results show that the tensile ductility and fatigue life of welded joints with low heat input are higher than that of welded joints with high heat input. Under tensile loads, the critical engineering strain for crack initiation is much lower in the welded joint with high heat input than in the welded joints with low and medium heat input. And the microstructural damage accumulation is much faster in the fusion zone than in the base metal for the welded joints with high input, whereas the microstructural damage accumulation is much faster in the base metal than in the fusion zone for the welded joints with low input. Consequently, the welded joints fractured in the fusion zone for the welds with high heat input, whereas the welded joints ruptured in the base metal for the welds with low heat input. It is proved that the fine grain microstructure produced by low heat input can improve the critical nominal strain for crack initiation and the resistance ability of microstructural damage.

  13. The effect of laser pulse tailored welding of Inconel 718

    NASA Technical Reports Server (NTRS)

    Mccay, T. Dwayne; Mccay, Mary Helen; Sharp, C. Michael; Womack, Michael G.

    1990-01-01

    Pulse tailored laser welding has been applied to wrought, wrought grain grown, and cast Inconel 718 using a CO2 laser. Prior to welding, the material was characterized metallographically and the solid state transformation regions were identified using Differential Scanning Calorimetry and high temperature x-ray diffraction. Bead on plate welds (restrained and unrestrained) were then produced using a matrix of pulse duty cycles and pulsed average power. Subsequent characterization included heat affected zone width, penetration and underbead width, the presence of cracks, microfissures and porosity, fusion zone curvature, and precipitation and liquated region width. Pedigree welding on three selected processing conditions was shown by microstructural and dye penetrant analysis to produce no microfissures, a result which strongly indicates the viability of pulse tailored welding for microfissure free IN 718.

  14. Weldability of high-toughness iron - 12 percent-nickel alloys with reactive metal additions of titanium, aluminum, or niobium

    NASA Technical Reports Server (NTRS)

    Delvetian, J. H.; Stephens, J. R.; Witzke, W. R.

    1977-01-01

    Three exceptionally high toughness Fe-12Ni alloys designed for cryogenic service were welded by using the gas tungsten arc welding process. Evaluation of their weldability included equivalent energy fracture toughness tests, transverse weld tensile tests at -196 and 25 C, and weld crack sensitivity tests. The Fe-12Ni-0.25Ti alloy proved extremely weldable for cryogenic applications, having weld and heat affected zone properties comparable to those of the wrought base alloy. The Fe-12Ni-0.5Al alloy had good weld properties only after the weld joint was heat treated. The Fe-12Ni-0.25Nb alloy was not considered weldable for cryogenic use because of its poor weld joint properties at -196 C and its susceptibility to hot cracking.

  15. Thermal effect of laser ablation on the surface of carbon fiber reinforced plastic during laser processing

    NASA Astrophysics Data System (ADS)

    Ohkubo, Tomomasa; Sato, Yuji; Matsunaga, Ei-ichi; Tsukamoto, Masahiro

    2018-02-01

    Although laser processing is widely used for many applications, the cutting quality of carbon fiber reinforced plastic (CFRP) decreases around the heat-affected zone (HAZ) during laser processing. Carbon fibers are exposed around the HAZ, and tensile strength decreases with increasing length of the HAZ. Some theoretical studies of thermal conductions that do not consider fluid dynamics have been performed; however, theoretical considerations that include the dynamics of laser ablation are scarce. Using removed mass and depth observed from experiments, the dynamics of laser ablation of CFRP with high-temperature and high-pressure of compressive gas is simulated herein. In this calculation, the mushroom-like shape of laser ablation is qualitatively simulated compared with experiments using a high-speed camera. Considering the removal temperature of the resin and the temperature distribution at each point on the surface, the simulation results suggest that a wide area of the resin is removed when the processing depth is shallow, and a rounded kerf is generated as the processing depth increases.

  16. Deformation behavior of laser welds in high temperature oxidation resistant Fe-Cr-Al alloys for fuel cladding applications

    NASA Astrophysics Data System (ADS)

    Field, Kevin G.; Gussev, Maxim N.; Yamamoto, Yukinori; Snead, Lance L.

    2014-11-01

    Ferritic-structured Fe-Cr-Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability and post-weld mechanical behavior of three model alloys in a range of Fe-(13-17.5)Cr-(3-4.4)Al (wt.%) with a minor addition of yttrium using modern laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds using sub-sized, flat dog-bone tensile specimens and digital image correlation (DIC) has been carried out to determine the performance of welds as a function of alloy composition. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. For all proposed alloys, laser welding resulted in a defect free weld devoid of cracking or inclusions.

  17. Laser welding of fused quartz

    DOEpatents

    Piltch, Martin S.; Carpenter, Robert W.; Archer, III, McIlwaine

    2003-06-10

    Refractory materials, such as fused quartz plates and rods are welded using a heat source, such as a high power continuous wave carbon dioxide laser. The radiation is optimized through a process of varying the power, the focus, and the feed rates of the laser such that full penetration welds may be accomplished. The process of optimization varies the characteristic wavelengths of the laser until the radiation is almost completely absorbed by the refractory material, thereby leading to a very rapid heating of the material to the melting point. This optimization naturally occurs when a carbon dioxide laser is used to weld quartz. As such this method of quartz welding creates a minimum sized heat-affected zone. Furthermore, the welding apparatus and process requires a ventilation system to carry away the silicon oxides that are produced during the welding process to avoid the deposition of the silicon oxides on the surface of the quartz plates or the contamination of the welds with the silicon oxides.

  18. Validation of Temperature Histories for Structural Steel Welds Using Estimated Heat-Affected-Zone Edges

    DTIC Science & Technology

    2016-10-12

    used parametrically for inverse thermal analysis of welds corresponding to other welding processes whose process conditions are within similar...regimes. The present study applies an inverse thermal analysis procedure that uses three-dimensional constraint conditions whose two-dimensional...Memorandum Report 63-0000-00 Office of Naval Research One Liberty Center 875 North Randolph Street, Suite 1425 Arlington, VA 22203-1995 ONR Inverse

  19. Microstructure and Porosity of Laser Welds in Cast Ti-6Al-4V with Addition of Boron

    NASA Astrophysics Data System (ADS)

    Tolvanen, Sakari; Pederson, Robert; Klement, Uta

    2018-03-01

    Addition of small amounts of boron to cast Ti-6Al-4V alloy has shown to render a finer microstructure and improved mechanical properties. For such an improved alloy to be widely applicable for large aerospace structural components, successful welding of such castings is essential. In the present work, the microstructure and porosity of laser welds in a standard grade cast Ti-6Al-4V alloy as well as two modified alloy versions with different boron concentrations have been investigated. Prior-β grain reconstruction revealed the prior-β grain structure in the weld zones. In fusion zones of the welds, boron was found to refine the grain size significantly and rendered narrow elongated grains. TiB particles in the prior-β grain boundaries in the cast base material restricted grain growth in the heat-affected zone. The TiB particles that existed in the as cast alloys decreased in size in the fusion zones of welds. The hardness in the weld zones was higher than in the base material and boron did not have a significant effect on hardness of the weld zones. The fusion zones were smaller in the boron-modified alloys as compared with Ti-6Al-4V without boron. Computed tomography X-ray investigations of the laser welds showed that pores in the FZ of the boron modified alloys were confined to the lower part of the welds, suggesting that boron addition influences melt pool flow.

  20. Novel Process Revolutionizes Welding Industry

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Glenn Research Center, Delphi Corporation, and the Michigan Research Institute entered into a research project to study the use of Deformation Resistance Welding (DRW) in the construction and repair of stationary structures with multiple geometries and dissimilar materials, such as those NASA might use on the Moon or Mars. Traditional welding technologies are burdened by significant business and engineering challenges, including high costs of equipment and labor, heat-affected zones, limited automation, and inconsistent quality. DRW addresses each of those issues, while drastically reducing welding, manufacturing, and maintenance costs.

  1. Study of the structure and properties of laser-welded joints of the Al-Mg-Li alloy

    NASA Astrophysics Data System (ADS)

    Pugacheva, N. B.; Antenorova, N. P.; Senaeva, E. I.

    2015-12-01

    The macro- and microstructures, the distribution of chemical elements and of the values of the microhardness over the width of the zones of remelting and heat-affected zone have been studied after the laser welding of sheets of an Al-Mg-Li alloy. It has been shown that the material of the zone of remelting (1.2 mm thick) represents in itself finely dispersed misoriented dendrites, in the primary branches of which particles of the strengthening δ' phase (Al3Li) with dimensions of no more than 10 nm and in the interdendrite spaces, dispersed particles of the S phase (Al2MgLi and FeAl2) have been revealed. The hardness of the material of the zone of remelting was 108-123 HV 0.05; the hardness of the basic alloy, 150-162 HV 0.05. In the heat-affected zones of thickness 2 mm, the primary recrystallization occurred only in a narrow zone directly at the boundary with the weld. The strength of the welded junction was 470-490 MPa, which corresponds to the regulated degree of strength of the aluminum alloys of this class. The relative elongation of the material of the weld proved to be considerably less than that in the alloy matrix because of the microporosity of the weld material. It is shown that the convective stirring of the melt in the welding pool upon the laser welding made it possible to avoid the appearance of macroscopic defects, but on the microlevel there are observed micropores in the form of spheres with dimensions of 5-50 μm. The solidification of the alloy occurred in such a way that the dendrites had time to grow around the gas bubbles prior to their collapse, forming a sufficiently strong carcass. Inside the dendritic carcass, there have been revealed coarse inclusions (to 200 μm) that consist of oxides (Al2O3, Fe2O3, MgO, SiO2, CaO), of an iron-based alloy, and of the host aluminum alloy.

  2. Effects of heat input on the pitting resistance of Inconel 625 welds by overlay welding

    NASA Astrophysics Data System (ADS)

    Kim, Jun Seok; Park, Young IL; Lee, Hae Woo

    2015-03-01

    The objective of this study was to establish the relationship between the dilution ratio of the weld zone and pitting resistance depending on the heat input to welding of the Inconel alloy. Each specimen was produced by electroslag welding using Inconel 625 as the filler metal. In the weld zone of each specimen, dendrite grains were observed near the fusion line and equiaxed grains were observed on the surface. It was also observed that a melted zone with a high Fe content was formed around the fusion line, which became wider as the welding heat input increased. In order to evaluate the pitting resistance, potentiodynamic polarization tests and CPT tests were conducted. The results of these tests confirmed that there is no difference between the pitting resistances of each specimen, as the structures of the surfaces were identical despite the effect of the differences in the welding heat input for each specimen and the minor dilution effect on the surface.

  3. Microstructure and Hydrogen-Induced Failure Mechanisms in Fe and Ni Alloy Weldments

    NASA Astrophysics Data System (ADS)

    Fenske, J. A.; Robertson, I. M.; Ayer, Raghavan; Hukle, Martin; Lillig, Dan; Newbury, Brian

    2012-09-01

    The microstructure and fracture morphology of AISI 8630-IN625 and ASTM A182-F22-IN625 dissimilar metal weld interfaces were compared and contrasted as a function of postweld heat treatment (PWHT) duration. For both systems, the microstructure along the weld interface consisted of a coarse grain heat-affected zone in the Fe-base metal followed by discontinuous martensitic partially mixed zones and a continuous partially mixed zone on the Ni side of the fusion line. Within the partially mixed zone on the Ni side, there exists a 200-nm-wide transition zone within a 20- μm-wide planar solidification region followed by a cellular dendritic region with Nb-Mo-rich carbides decorating the dendrite boundaries. Although there were differences in the volume of the partially mixed zones, the major difference in the metal weld interfaces was the presence of M7C3 precipitates in the planar solidification region, which had formed in AISI 8630-IN625 but not in ASTM A182-F22-IN625. These precipitates make the weldment more susceptible to hydrogen embrittlement and provide a low energy fracture path between the discontinuous partially mixed zones.

  4. Calculation and experimental determination of the geometric parameters of the coatings by laser cladding

    NASA Astrophysics Data System (ADS)

    Birukov, V. P.; Fichkov, A. A.

    2017-12-01

    In the present work the experiments on laser cladding of powder Fe-B-Cr-6-2 on samples of steel 20. Metallographic studies of geometric parameters of deposited layers and the depth of the heat affected zone (HAZ). Using is the method of full factorial experiment (FFE) mathematical dependences of the geometrical sizes of the deposited layers of processing modes. Deviation of calculated values from experimental data is not more than 3%.

  5. Microstructure and Mechanical Property Change During FSW and GTAW of Al6061 Alloy

    NASA Astrophysics Data System (ADS)

    Fahimpour, V.; Sadrnezhaad, S. K.; Karimzadeh, F.

    2013-05-01

    The variation of morphology and mechanical properties of Al6061 automotive aluminum alloy due to friction stir welding (FSW) and gas tungsten arc welding (GTAW) was investigated by optical metallography, scanning electron microscopy, microhardness measurement, X-ray diffraction, tensile testing, and fractography. The center-line dendrite emergence and microhardness reduction in the heat-affected zone were observed in the GTAW process. Although similar microhardness reduction with respect to the base metal was observed in the FSW samples, higher HVs were obtained for the FSW rather than the GTAW process at almost all heat-affected locations. Ultimate tensile strengths of the FSW and the GTAW samples in the transverse direction were ~0.57 and ~0.35 of the base metal, respectively. Post-weld aging improved the strength, but reduced the ductility of the welding.

  6. Superconducting accelerator cavity with a heat affected zone having a higher RRR

    DOEpatents

    Brawley, John; Phillips, H. Lawrence

    2000-01-01

    An improved method for welding accelerator cavities without the need for time consuming and expensive faying surface treatments comprising electron beam welding such cavities in a vacuum welding chamber within a vacuum envelope and using the following welding parameters: a beam voltage of between about 45 KV and 55 KV; a beam current between about 38 ma and 47 ma; a weld speed of about 15 cm/min; and a sharp focus and a rhombic raster of between about 9 KHz and 10 Khz. A welded cavity made according to the method of the present invention is also described.

  7. Penetration in GTA welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiple, C.R.; Burgardt, P.

    1990-01-01

    The size and shape of the weld bead produced in GTA welding depends on the magnitude and distribution of the energy incident on the workpiece surfaces as well as the dissipation of that energy in the workpiece. The input energy is largely controllable through the welding parameters selected, however the dissipation of that energy in the workpiece is less subject to control. Changes in energy dissipation can produce large changes in weld shape or penetration. Heat transport away from the weld pool is almost entirely by conduction, but heat transport in the weld pool is more complicated. Heat conduction throughmore » the liquid is an important component, but heat transport by convection (mass transport) is often the dominant mechanism. Convective heat transport is directional and changes the weld pool shape from that produced by conduction alone. Surface tension gradients are often the dominant forces driving fluid flow in GTA weld pools. These gradients are sensitive functions of weld pool chemistry and the energy input distribution to the weld. Experimental and theoretical work conducted primarily in the past decade has greatly enhanced our understanding of weld pool fluid flow, the forces which drive it, and its effects on weld pool shape. This work is reviewed here. While less common, changes in energy dissipation through the unmelted portion of the workpiece can also affect fusion zone shape or penetration. These effects are also described. 41 refs., 9 figs.« less

  8. 46 CFR 54.05-15 - Weldment toughness tests-procedure qualifications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the weld metal. (2) Three specimens with the notch centered on the fusion line between parent plate and weld. (The fusion line may be identified by etching the specimen with a mild reagent.) (3) Three specimens with the notch centered in the heat affected zone, 1 mm from the fusion line. (4) Same as...

  9. 46 CFR 54.05-15 - Weldment toughness tests-procedure qualifications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the weld metal. (2) Three specimens with the notch centered on the fusion line between parent plate and weld. (The fusion line may be identified by etching the specimen with a mild reagent.) (3) Three specimens with the notch centered in the heat affected zone, 1 mm from the fusion line. (4) Same as...

  10. 46 CFR 54.05-15 - Weldment toughness tests-procedure qualifications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the weld metal. (2) Three specimens with the notch centered on the fusion line between parent plate and weld. (The fusion line may be identified by etching the specimen with a mild reagent.) (3) Three specimens with the notch centered in the heat affected zone, 1 mm from the fusion line. (4) Same as...

  11. 46 CFR 54.05-15 - Weldment toughness tests-procedure qualifications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the weld metal. (2) Three specimens with the notch centered on the fusion line between parent plate and weld. (The fusion line may be identified by etching the specimen with a mild reagent.) (3) Three specimens with the notch centered in the heat affected zone, 1 mm from the fusion line. (4) Same as...

  12. Alternative welding reconditioning solutions without post welding heat treatment of pressure vessel

    NASA Astrophysics Data System (ADS)

    Cicic, D. T.; Rontescu, C.; Bogatu, A. M.; Dijmărescu, M. C.

    2017-08-01

    In pressure vessels, working on high temperature and high pressure may appear some defects, cracks for example, which may lead to failure in operation. When these nonconformities are identified, after certain examination, testing and result interpretation, the decision taken is to repair or to replace the deteriorate component. In the current legislation it’s stipulated that any repair, alteration or modification to an item of pressurised equipment that was originally post-weld heat treated after welding (PWHT) should be post-weld heat treated again after repair, requirement that cannot always be respected. For that reason, worldwide, there were developed various welding repair techniques without PWHT, among we find the Half Bead Technique (HBT) and Controlled Deposition Technique (CDT). The paper presents the experimental results obtained by applying the welding reconditioning techniques HBT and CDT in order to restore as quickly as possible the pressure vessels made of 13CrMo4-5. The effects of these techniques upon the heat affected zone are analysed, the graphics of the hardness variation are drawn and the resulted structures are compared in the two cases.

  13. Improvement of localised corrosion resistance of AISI 2205 Duplex Stainless Steel joints made by gas metal arc welding under electromagnetic interaction of low intensity

    NASA Astrophysics Data System (ADS)

    García-Rentería, M. A.; López-Morelos, V. H.; García-Hernández, R.; Dzib-Pérez, L.; García-Ochoa, E. M.; González-Sánchez, J.

    2014-12-01

    The resistance to localised corrosion of AISI 2205 duplex stainless steel plates joined by Gas Metal Arc Welding (GMAW) under the effect of electromagnetic interaction of low intensity (EMILI) was evaluated with sensitive electrochemical methods. Welds were made using two shielding gas mixtures: 98% Ar + 2% O2 (M1) and 97% Ar + 3% N2 (M2). Plates were welded under EMILI using the M1 gas with constant welding parameters. The modified microstructural evolution in the high temperature heat affected zone and at the fusion zone induced by application of EMILI during welding is associated with the increase of resistance to localised corrosion of the welded joints. Joints made by GMAW using the shielding gas M2 without the application of magnetic field presented high resistance to general corrosion but high susceptibility to undergo localised attack.

  14. Weldability and Impact Energy Properties of High-Hardness Armor Steel

    NASA Astrophysics Data System (ADS)

    Cabrilo, Aleksandar; Geric, Katarina; Jovanovic, Milos; Vukic, Lazic

    2018-03-01

    In this study, the weldability of high-hardness armor steel by the gas metal arc welding method has been investigated. The study was aimed at determining the weakness points of manual welding compared to automated welding through microhardness testing, the cooling rate, tensile characteristics and nondestructive analysis. Detailed studies were performed for automated welding on the impact energy and microhardness in the fusion line, as the most sensitive zone of the armor steel weld joint. It was demonstrated that the selection of the preheating and interpass temperature is important in terms of the cooling rate and quantity of diffusible and retained hydrogen in the weld joint. The tensile strength was higher than 800 MPa. The width of the heat-affected zone did not exceed 15.9 mm, measured from the weld centerline, while the impact energy results were 74 and 39 J at 20 and - 40 °C, respectively.

  15. Investigation on Microstructure and Impact Toughness of Different Zones in Duplex Stainless Steel Welding Joint

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Li, Guolu; Zhao, Lei

    2017-01-01

    This paper investigated on microstructure and impact toughness of different zones in duplex stainless steel welding joint. High-temperature heat-affected zone (HTHAZ) contained coarse ferrite grains and secondary precipitates such as secondary austenite, Cr2N, and sigma. Intergranular secondary austenite was prone to precipitation in low-temperature heat-affected zone (LTHAZ). Both in weld metal (WM) and in HTHAZ, the austenite consisted of different primary and secondary austenite. The ferrite grains in base metal (BM) presented typical rolling texture, while the austenite grains showed random orientation. Both in the HTHAZ and in the LTHAZ, the ferrite grains maintained same texture as the ferrite in the BM. The secondary austenite had higher Ni but lower Cr and Mo than the primary austenite. Furthermore, the WM exhibited the highest toughness because of sufficient ductile austenite and unapparent ferrite texture. The HTHAZ had the lowest toughness because of insufficient austenite formation in addition to brittle sigma and Cr2N precipitation. The LTHAZ toughness was higher than the BM due to secondary austenite precipitation. In addition, the WM fracture was dominated by the dimple, while the cleavage was main fracture mode of the HTHAZ. Both BM and LTHAZ exhibited a mixed fracture mode of the dimple and quasi-cleavage.

  16. Accelerated Post-Weld Natural Ageing in Ultrasonic Welding Aluminium 6111-T4 Automotive Sheet

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Chun; Prangnell, Phil

    In contrast to previously published reports, it is shown that there is an observable HAZ when ultrasonic spot welding (USW) automotive alloys, like AA6111-T4, the severity of which depends on the welding energy. Immediately after welding, softening is seen relative to the T4 condition, but this is rapidly recovered by natural ageing, which masks the presence of a HAZ, and the weld strength eventually exceeds that of the parent material. This behaviour is caused by dissolution of the solute clusters/GPZs in the T4 sheet, due to the high weld temperatures (> 400 °C), combined with accelerated post-weld natural ageing to a more advanced state than in the parent material. Modelling has demonstrated that this accelerated natural ageing behaviour can be attributed to an excess vacancy concentration generated by the USW process.

  17. Weld bead profile of laser welding dissimilar joints stainless steel

    NASA Astrophysics Data System (ADS)

    Mohammed, Ghusoon R.; Ishak, M.; Aqida, S. N.; Abdulhadi, Hassan A.

    2017-10-01

    During the process of laser welding, the material consecutively melts and solidifies by a laser beam with a peak high power. Several parameters such as the laser energy, pulse frequency, pulse duration, welding power and welding speed govern the mode of the welding process. The aim of this paper is to investigate the effect of peak power, incident angle, and welding speed on the weld bead geometry. The first investigation in this context was conducted using 2205-316L stainless steel plates through the varying of the welding speed from 1.3 mm/s to 2.1 mm/s. The second investigation was conducted by varying the peak power from 1100 W to 1500 W. From the results of the experiments, the welding speed and laser power had a significant effect on the geometry of the weld bead, and the variation in the diameter of the bead pulse-size. Due to the decrease in the heat input, welding speed affected penetration depth more than bead width, and a narrow width of heat affected zone was achieved ranging from 0.2 to 0.5 mm. Conclusively, weld bead geometry dimensions increase as a function of peak power; at over 1350 W peak power, the dimensions lie within 30 μm.

  18. Effect of Heat Input on Microstructural Changes and Corrosion Behavior of Commercially Pure Titanium Welds in Nitric Acid Medium

    NASA Astrophysics Data System (ADS)

    Ravi Shankar, A.; Gopalakrishnan, G.; Balusamy, V.; Kamachi Mudali, U.

    2009-11-01

    Commercially pure titanium (Ti) has been selected for the fabrication of dissolver for the proposed fast reactor fuel reprocessing plant at Kalpakkam, India. In the present investigation, microstructural changes and corrosion behavior of tungsten inert gas (TIG) welds of Ti grade-1 and grade-2 with different heat inputs were carried out. A wider heat affected zone was observed with higher heat inputs and coarse grains were observed from base metal toward the weld zone with increasing heat input. Fine and more equiaxed prior β grains were observed at lower heat input and the grain size increased toward fusion zone. The results indicated that Ti grade-1 and grade-2 with different heat inputs and different microstructures were insensitive to corrosion in liquid, vapor, and condensate phases of 11.5 M nitric acid tested up to 240 h. The corrosion rate in boiling liquid phase (0.60-0.76 mm/year) was higher than that in vapor (0.012-0.039 mm/year) and condensate phases (0.04-0.12 mm/year) of nitric acid for Ti grade-1 and grade-2, as well as for base metal for all heat inputs. Potentiodynamic polarization experiment carried out at room temperature indicated higher current densities and better passivation in 11.5 M nitric acid. SEM examination of Ti grade-1 welds for all heat inputs exposed to liquid phase after 240 h showed corrosion attack on the surface, exposing Widmanstatten microstructure containing acicular alpha. The continuous dissolution of the liquid-exposed samples was attributed to the heterogeneous microstructure and non-protective passive film formation.

  19. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    DOE PAGES

    Mazumder, Baishakhi; Yu, Xinghua; Edmondson, Philip D.; ...

    2015-12-08

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygenenriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the sizemore » of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.« less

  20. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazumder, Baishakhi; Yu, Xinghua; Edmondson, Philip D.

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygenenriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the sizemore » of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.« less

  1. New Possibilities in the Fabrication of Hybrid Components with Big Dimensions by Means of Selective Laser Melting (SLM)

    NASA Astrophysics Data System (ADS)

    Ascari, A.; Fortunato, A.; Liverani, E.; Gamberoni, A.; Tomesani, L.

    The application of laser technology to welding of dissimilar AISI316 stainless steel components manufactured with selective laser melting (SLM) and traditional methods has been investigated. The role of laser parameters on weld bead formation has been studied experimentally, with particular attention placed on effects occurring at the interface between the two parts. In order to assess weld bead characteristics, standardised tensile tests were carried out on suitable specimens and the fracture zone was analysed. The results highlighted the possibility of exploiting suitable process parameters to appropriately shape the heat affected and fusion zones in order to maximise the mechanical performance of the component and minimise interactions between the two parent metals in the weld bead.

  2. Factors Affecting Impact Toughness in Stabilized Intermediate Purity 21Cr Ferritic Stainless Steels and Their Simulated Heat-Affected Zones

    NASA Astrophysics Data System (ADS)

    Anttila, Severi; Alatarvas, Tuomas; Porter, David A.

    2017-12-01

    The correlation between simulated weld heat-affected zone microstructures and toughness parameters has been investigated in four intermediate purity 21Cr ferritic stainless steels stabilized with titanium and niobium either separately or in combination. Extensive Charpy V impact toughness testing was carried out followed by metallography including particle analysis using electron microscopy. The results confirmed that the grain size and the number density of particle clusters rich in titanium nitride and carbide with an equivalent circular diameter of 2 µm or more are statistically the most critical factors influencing the ductile-to-brittle transition temperature. Other inclusions and particle clusters, as well as grain boundary precipitates, are shown to be relatively harmless. Stabilization with niobium avoids large titanium-rich inclusions and also suppresses excessive grain growth in the heat-affected zone when reasonable heat inputs are used. Thus, in order to maximize the limited heat-affected zone impact toughness of 21Cr ferritic stainless steels containing 380 to 450 mass ppm of interstitials, the stabilization should be either titanium free or the levels of titanium and nitrogen should be moderated.

  3. Upgrading weld quality of a friction stir welded aluminum alloys AMG6

    NASA Astrophysics Data System (ADS)

    Chernykh, I. K.; Vasil'ev, E. V.; Matuzko, E. N.; Krivonos, E. V.

    2018-01-01

    In the course of introduction of FSW technology into the industry there is a keen interest in this process; there are issues such as how does joining take place, what is the structure of the joint, and where there are dangerous zones. The objective of this research is to obtain information about the structure of the joint, what are the temperatures that arise during the joining, what strength is apply to the tool when joining the material, what tensile strength of joint, and where fracture tended to occur. Specimens were produced at different modes of welding at a tool rotation speed of 315 to 625 rpm and tool travel speed of 40 to 125 mm/min. During the experiment, the strength applied to the tool was measured, which reached 800016000 N (Fz) and 400-1400 N (Fx) and the temperature on the surface of the tool, which is in the range 250-400°C. Before the welding process the tool was heated to a temperature in the range of 100-250 degrees, but the tensile strength is not had a tangible impact. The tensile strength is about 80 % of that of the aluminum alloy base metal tensile strength, and fracture tended is occur not at the line of joint but follow the shape of the tool. In the transverse cross section of a FSW material there is a microstructural regions such as weld nugget, thermomechanically affected zone and heat-affected zone with parent material.

  4. Microstructures and Mechanical Properties of Friction Tapered Stud Overlap Welding for X65 Pipeline Steel Under Wet Conditions

    NASA Astrophysics Data System (ADS)

    Xu, Y. C.; Jing, H. Y.; Han, Y. D.; Xu, L. Y.

    2017-08-01

    This paper exhibits a novel in situ remediation technique named friction tapered stud overlap welding (FTSOW) to repair a through crack in structures and components in extremely harsh environments. Furthermore, this paper presents variations in process data, including rotational speed, stud displacement, welding force, and torque for a typical FTSOW weld. In the present study, the effects of welding parameters on the microstructures and mechanical properties of the welding joints were investigated. Inapposite welding parameters consisted of low rotational speeds and welding forces, and when utilized, they increased the occurrence of a lack of bonding and unfilled defects within the weld. The microstructures with a welding zone and heat-affected zone mainly consisted of upper bainite. The hardness value was highest in the welding zone and lowest in the base material. During the pull-out tests, all the welds failed in the stud. Moreover, the defect-free welds broke at the interface of the lap plate and substrate during the cruciform uniaxial tensile test. The best tensile test results at different depths and shear tests were 721.6 MPa and 581.9 MPa, respectively. The favorable Charpy impact-absorbed energy was 68.64 J at 0 °C. The Charpy impact tests revealed a brittle fracture characteristic with a large area of cleavage.

  5. Effects of welding heat and travel speed on the impact property and microstructure of FC welds

    NASA Astrophysics Data System (ADS)

    Lee, Jeong Soo; Jeong, Sang Hoon; Lim, Dong Yong; Yun, Jin Oh; Kim, Myung Hyun

    2010-10-01

    This paper is concerned with the effects of welding heat (current x voltage = W) and travel speed (v) on the impact property and microstructure of FC (flux cored) welds. Two sets of plate were welded under different welding conditions such as higher W, v and lower W, v, while maintaining identical heat input. We evaluated the effects of each factor by Charpy impact test and observation of the microstructure, and then compared these data with the results of the numerical temperature analysis. The size of the re-heated zone was increased as the v value decreased, and the results of numerical analysis also revealed the same tendency. Cooling rate of welds (both of as-welded and re-heated zones) decreased as the W value increased. Despite identical heat input conditions, the use of lower W and v made the microstructure finer and increased the volume fraction of AF, thereby leading to a substantial improvement of the impact property.

  6. Effect of Heat Input and Post-Weld Heat Treatment on the Mechanical and Metallurgical Characteristics of Laser-Welded Maraging Steel Joints

    NASA Astrophysics Data System (ADS)

    Karthikeyan, R.; Saravanan, M.; Singaravel, B.; Sathiya, P.

    This paper investigates the impact of heat input and post-weld aging behavior at different temperatures on the laser paper welded maraging steel grade 250. Three different levels of heat inputs were chosen and CO2 laser welding was performed. Aging was done at six different temperatures: 360∘C, 400∘C, 440∘C, 480∘C, 520∘C and 560∘C. The macrostructure and microstructure of the fusion zone were obtained using optical microscope. The microhardness test was performed on the weld zone. Tensile tests and impact tests were carried out for the weld samples and different age-treated weld samples. Fracture surfaces were investigated by scanning electron microscopy (SEM). Microhardness values of the fusion zone increased with increasing aging temperature, while the base metal microhardness value decreased. Tensile properties increased with aging temperature up to 480∘C and reduced for 520∘C and 560∘C. This was mainly due to the formation of reverted austenite beyond 500∘C. XRD analysis confirmed the formation of reverted austenite.

  7. Effect of laser treatment on the attachment and viability of mesenchymal stem cell responses on shape memory NiTi alloy.

    PubMed

    Chan, C W; Hussain, I; Waugh, D G; Lawrence, J; Man, H C

    2014-09-01

    The objectives of this study were to investigate the effect of laser-induced surface features on the morphology, attachment and viability of mesenchymal stem cells (MSCs) at different periods of time, and to evaluate the biocompatibility of different zones: laser-melted zone (MZ), heat-affected zone (HAZ) and base metal (BM) in laser-treated NiTi alloy. The surface morphology and composition were studied by scanning electron microscope (SEM) and X-ray photoemission spectroscopy (XPS), respectively. The cell morphology was examined by SEM while the cell counting and viability measurements were done by hemocytometer and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. The results indicated that the laser-induced surface features, such as surface roughening, presence of anisotropic dendritic pattern and complete surface Ni oxidation were beneficial to improve the biocompatibility of NiTi as evidenced by the highest cell attachment (4 days of culture) and viability (7 days of culture) found in the MZ. The biocompatibility of the MZ was the best, followed by the BM with the HAZ being the worst. The defective and porous oxide layer as well as the coarse grained structure might attribute to the inferior cell attachment (4 days of culture) and viability (7 days of culture) on the HAZ compared with the BM which has similar surface morphology. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Nanosecond pulsed laser welding of high carbon steels

    NASA Astrophysics Data System (ADS)

    Ascari, Alessandro; Fortunato, Alessandro

    2014-03-01

    The present paper deals with the possibility to exploit low-cost, near infra-red, nanosecond pulsed laser sources in welding of high carbon content thin sheets. The exploitation of these very common sources allows to achieve sound weld beads with a good depth-to-width ratio and very small heat affected zones when the proper process parameters are involved. In particular the role of pulse frequency, pulse duration, peak power and welding speed on the characteristics of the weld beads is studied and the advantage of the application of short-pulse laser sources over traditional long-pulse or continuous wave one is assessed.

  9. Use of eddy current mixes to solve a weld examination application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, R.C.; LaBoissonniere, A.

    1995-12-31

    The augmentation of typical nondestructive (i.e., ultrasound) weld inspection techniques by the use of eddy current tools may significantly enhance the quality and reliability of weld inspections. One recent example is the development of an eddy current technique for use in the examination of BWR core shroud welds, where multi-frequency mixes are used to eliminate signals coming from the weld material so that the examination of the heat affected zone is enhanced. An analysis tool most commonly associated with ultrasound examinations, the C-Scan based on gated information, may be implemented with eddy current data to enhance analysis.

  10. Microstructural and Electrochemical Evaluation of Fusion Welded Low-Nickel and 304 SS at Different Heat Input

    NASA Astrophysics Data System (ADS)

    Bansod, Ankur V.; Patil, Awanikumar P.; Moon, Abhijeet P.; Shukla, Sourabh

    2017-12-01

    The present research study investigates the effect of heat input using E 308 electrode (controlled by welding current, i.e., 70, 85 and 100 A) on microstructure, mechanical properties and corrosion behavior of low-nickel and 304 stainless steel (SS) weldments produced by shielded metal arc welding technique. SEM investigation shows that with the higher heat input, δ-ferrite content was reduced. Dendrite and inter-dendritic length is also reduced by lowering the heat input. For all the heat inputs, it is observed that δ-ferrite content was higher in 304 stainless steel (SS) as compared to that of low-nickel austenitic stainless steel (Cr-Mn SS). Considering the heat input for Cr-Mn SS, coarse grains were observed in the heat-affected zone region. For low heat input (LHI), tensile fracture surface has exhibited river-like pattern with dimple appearance. Corrosion studies show better pitting resistance for low heat input (LHI) samples due to higher δ-ferrite present in the weld region. Similarly, higher interphase corrosion resistance is observed in both the SS grades causing more dissolution in the LHI samples.

  11. Abnormal macropore formation during double-sided gas tungsten arc welding of magnesium AZ91D alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen Jun; You Guoqiang; Long Siyuan

    2008-08-15

    One of the major concerns during gas tungsten arc (GTA) welding of cast magnesium alloys is the presence of large macroporosity in weldments, normally thought to occur from the presence of gas in the castings. In this study, a double-sided GTA welding process was adopted to join wrought magnesium AZ91D alloy plates. Micropores were formed in the weld zone of the first side that was welded, due to precipitation of H{sub 2} as the mushy zone freezes. When the reverse side was welded, the heat generated caused the mushy zone in the initial weld to reform. The micropores in themore » initial weld then coalesced and expanded to form macropores by means of gas expansion through small holes that are present at the grain boundaries in the partially melted zone. Macropores in the partially melted zone increase with increased heat input, so that when a filler metal is used the macropores are smaller in number and in size.« less

  12. Interfacial Microstructure and Mechanical Properties of Friction Stir Welded Joints of Commercially Pure Aluminum and 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Murugan, Balamagendiravarman; Thirunavukarasu, Gopinath; Kundu, Sukumar; Kailas, Satish V.; Chatterjee, Subrata

    2018-05-01

    In the present investigation, friction stir welding of commercially pure aluminum and 304 stainless steel was carried out at varying tool rotational speeds from 200 to 1000 rpm in steps of 200 rpm using 60 mm/min traverse speed at 2 (degree) tool tilt angle. Microstructural characterization of the interfacial zone was carried out using optical microscope and scanning electron microscope. Energy-dispersive spectroscopy indicated the presence of FeAl3 intermetallic phase. Thickness of the intermetallic layer increased with the increase in tool rotational speed. X-ray diffraction studies indicated the formation of intermetallic phases like FeAl2, Fe4Al13, Fe2Al5, and FeAl3. A maximum tensile strength of 90% that of aluminum along with 4.5% elongation was achieved with the welded sample at tool rotational speed of 400 rpm. The stir zone showed higher hardness as compared to base metals, heat affected zone, and thermo-mechanically affected zone due to the presence of intermetallics. The maximum hardness value at the stir zone was achieved at 1000 rpm tool rotational speed.

  13. 2014/2219 Tri-Point Crack Analysis

    NASA Technical Reports Server (NTRS)

    Horton, Karla Renee

    2011-01-01

    Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. Friction plug welding is used to seal the exit hole that remains in a circumferential SR-FSW. The objective of this study was to evaluate the deformation response at the tips of cracks located in the heat affected zone of friction plug welds and to study the fracture behavior of welds with defects in the form of fatigue cracks. The study used existing 2014-T6 to 2219-T87 self-reacting friction stir weld panels with 2219-T87 friction plug welds. Electro-discharge machined (EDM) notches were machined into the heat affected zone of the plug at the plug-to-base metal interface. Samples were then cycled to generate a fatigue crack emanating from the notch. After the fatigue crack reached a pre-defined length, a speckle pattern was applied and the ARAMIS system (a three dimensional imaging correlation system) was used to measure the deformations at the crack tip under a sequence of loads. Testing was conducted at ambient laboratory conditions. Fracture data from the testing was analyzed to evaluate residual strength capability of the panel as a function of flaw size. ARAMIS strain data was evaluated to examine strain and deformation patterns that develop around the crack tip and at the plug/weld interfaces. Four samples were used in this study, with three samples in a post-weld heat treated condition. Three samples contained large diameter plugs (M5) and one sample contained a small diameter plug (M3). Two samples were 4 inches in width and two samples were 8.5 inches in width. All samples failed through the precrack with residual strengths ranging from 37 ksi to 42 ksi.

  14. Properties of the welded joints of manganese steel made by low-frequency pulsed arc welding

    NASA Astrophysics Data System (ADS)

    Saraev, Yu. N.; Bezborodov, V. P.; Gladovskii, S. V.; Golikov, N. I.

    2017-04-01

    The structure, the mechanical properties, the impact toughness, and the fracture mechanisms of the welded joints made of steel 09G2S plates by direct current welding and pulsed arc welding with a modulated arc current in the frequency range 0.25-5.0 Hz are studied. The application of low-frequency pulsed arc welding allowed us to form welded joints with a fine-grained structure in the weld metal and the heat-affected zone and to achieve a higher impact toughness and a longer cyclic fatigue life as compared to the welded joints fabricated by direct current welding. The achieved effect manifests itself over the entire testing range from 20 to-60°C.

  15. A hot-cracking mitigation technique for welding high-strength aluminum alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y.P.; Dong, P.; Zhang, J.

    2000-01-01

    A hot-cracking mitigation technique for gas tungsten arc welding (GTAW) of high-strength aluminum alloy 2024 is presented. The proposed welding technique incorporates a trailing heat sink (an intense cooling source) with respect to the welding torch. The development of the mitigation technique was based on both detailed welding process simulation using advanced finite element techniques and systematic laboratory experiments. The finite element methods were used to investigate the detailed thermomechanical behavior of the weld metal that undergoes the brittle temperature range (BTR) during welding. As expected, a tensile deformation zone within the material BTR region was identified behind the weldmore » pool under conventional GTA welding process conventional GTA welding process conditions for the aluminum alloy studied. To mitigate hot cracking, the tensile zone behind the weld pool must be eliminated or reduce to a satisfactory level if the weld metal hot ductility cannot be further improved. With detailed computational modeling, it was found that by the introduction of a trailing heat sink at some distance behind the welding arc, the tensile strain rate with respect to temperature in the zone encompassing the BTR region can be significantly reduced. A series of parametric studies were also conducted to derive optimal process parameters for the trailing heat sink. The experimental results confirmed the effectiveness of the trailing heat sink technique. With a proper implementation of the trailing heat sink method, hot cracking can be completely eliminated in welding aluminum alloy 2024 (AA 2024).« less

  16. Fatigue Behavior of Inconel 718 TIG Welds

    NASA Astrophysics Data System (ADS)

    Alexopoulos, Nikolaos D.; Argyriou, Nikolaos; Stergiou, Vasillis; Kourkoulis, Stavros K.

    2014-08-01

    Mechanical behavior of reference and TIG-welded Inconel 718 specimens was examined in the present work. Tensile, constant amplitude fatigue, and fracture toughness tests were performed in ambient temperature for both, reference and welded specimens. Microstructure revealed the presence of coarse and fine-grained heat-affected zones. It has been shown that without any post-weld heat treatment, welded specimens maintained their tensile strength properties while their ductility decreased by more than 40%. It was found that the welded specimens had lower fatigue life and this decrease was a function of the applied fatigue maximum stress. A 30% fatigue life decrease was noticed in the high cycle fatigue regime for the welded specimens while this decrease exceeded 50% in the low cycle fatigue regime. Cyclic stress-strain curves showed that Inconel 718 experiences a short period of hardening followed by softening for all fatigue lives. Cyclic fatigue response of welded specimens' exhibited cyclically stable behavior. Finally, a marginal decrease was noticed in the Mode I fracture toughness of the welded specimens.

  17. Characterization of Microstructure and Texture of 13Cr4Ni Martensitic Stainless Steel Weld Before and After Tempering =

    NASA Astrophysics Data System (ADS)

    Mokhtabad Amrei, Mohsen

    13Cr4Ni martensitic stainless steels are known for their outstanding performances in the hydroelectric industry, where they are mainly used in the construction of turbine components. Considering the size and geometry of turbine runners and blades, multi-pass welding procedures are commonly used in the fabrication and repair of such turbines. The final microstructure and mechanical properties of the weld are sensitive to the welding process parameters and thermal history. In the case of 13Cr4Ni steel, the thermal cycles imposed by the multi-pass welding operation have significant effects on the complex weld microstructure. Additionally, post-weld heat treatments are commonly used to reduce weld heterogeneity and improve the material's mechanical properties by tempering the microstructure and by forming a "room-temperature-stable austenite." In the first phase of this research, the microstructures and crystallographic textures of aswelded single-pass and double-pass welds were studied as a basis to studying the more complex multi-pass weld microstructure. This study found that the maximum hardness is obtained in high temperature heat affected zone inside the base metal. In particular, the results showed that the heat cycle exposed by the second pass increases the hardness of the previous pass because it produces a finer martensite microstructure. In areas of heat affected zone, a tempering effect is reported from 3 up to 6 millimeters far from the fusion line. Finding austenite phase in these areas are matter of interest and it can be indicative of the microstructure complexity of multi-pass welds. In the second phase of research, the microstructure of multi-pass welds was found to be more heterogeneous than that of single- and double-pass welds. Any individual pass in a multi-pass weld consists of several regions formed by adjacent weld passes heat cycle. Results showed that former austenite grains modification occurred in areas close to the subsequent weld passes. Furthermore, low angle interface laths were observed inside martensite sub-blocks over different regions. The hardness profile of a multi-pass weld was explained by the overlaying heat effects of surrounding passes. In some regions, a tempered matrix was observed, while in other regions a double-quenched microstructure was found. The final aspect of this study focused on the effects of post-weld heat treatments on reformed austenite and carbide formations, and evolution of hardness. The effects of tempering duration and temperature on microstructure were investigated. The study found that nanometer-sized carbides form at martensite lath interfaces and sub-block boundaries. Additionally, it was determined that for any holding duration, the maximum austenite percentage is achievable by tempering at 610 °C. Similarly, the maximum softening was reported for tempering at 610 °C, for any given holding period.

  18. Characterization and Strain-Hardening Behavior of Friction Stir-Welded Ferritic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sharma, Gaurav; Dwivedi, Dheerendra Kumar; Jain, Pramod Kumar

    2017-12-01

    In this study, friction stir-welded joint of 3-mm-thick plates of 409 ferritic stainless steel (FSS) was characterized in light of microstructure, x-ray diffraction analysis, hardness, tensile strength, ductility, corrosion and work hardening properties. The FSW joint made of ferritic stainless steel comprises of three distinct regions including the base metal. In stir zone highly refined ferrite grains with martensite and some carbide precipitates at the grain boundaries were observed. X-ray diffraction analysis also revealed precipitation of Cr23C6 and martensite formation in heat-affected zone and stir zone. In tensile testing of the transverse weld samples, the failure eventuated within the gauge length of the specimen from the base metal region having tensile properties overmatched to the as-received base metal. The tensile strength and elongation of the longitudinal (all weld) sample were found to be 1014 MPa and 9.47%, respectively. However, in potentiodynamic polarization test, the corrosion current density of the stir zone was highest among all the three zones. The strain-hardening exponent for base metal, transverse and longitudinal (all weld) weld samples was calculated using various equations. Both the transverse and longitudinal weld samples exhibited higher strain-hardening exponents as compared to the as-received base metal. In Kocks-Mecking plots for the base metal and weld samples at least two stages of strain hardening were observed.

  19. Annual report, FY 1979 Spent fuel and fuel pool component integrity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, A.B. Jr.; Bailey, W.J.; Schreiber, R.E.

    International meetings under the BEFAST program and under INFCE Working Group No. 6 during 1978 and 1979 continue to indicate that no cases of fuel cladding degradation have developed on pool-stored fuel from water reactors. A section from a spent fuel rack stand, exposed for 1.5 y in the Yankee Rowe (PWR) pool had 0.001- to 0.003-in.-deep (25- to 75-..mu..m) intergranular corrosion in weld heat-affected zones but no evidence of stress corrosion cracking. A section of a 304 stainless steel spent fuel storage rack exposed 6.67 y in the Point Beach reactor (PWR) spent fuel pool showed no significant corrosion.more » A section of 304 stainless steel 8-in.-dia pipe from the Three Mile Island No. 1 (PWR) spent fuel pool heat exchanger plumbing developed a through-wall crack. The crack was intergranular, initiating from the inside surface in a weld heat-affected zone. The zone where the crack occurred was severely sensitized during field welding. The Kraftwerk Union (Erlangen, GFR) disassembled a stainless-steel fuel-handling machine that operated for 12 y in a PWR (boric acid) spent fuel pool. There was no evidence of deterioration, and the fuel-handling machine was reassembled for further use. A spent fuel pool at a Swedish PWR was decontaminated. The procedure is outlined in this report.« less

  20. Effect of thermal and thermo-mechanical cycling on the boron segregation behavior in the coarse-grained heat-affected zone of low-alloy steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sanghoon; Kang, Yongjoon; Lee, Changhee, E-mail: chlee@hanyang.ac.kr

    The boron segregation behavior in the coarse-grained heat-affected zone (CGHAZ) of 10 ppm boron-added low-alloy steel during the welding cycle was investigated by taking the changes in the microstructure and hardness into account. Various CGHAZs were simulated with a Gleeble system as a function of the heat input and external stress, and the boron segregation behavior was analyzed by secondary ion mass spectrometry (SIMS) and particle tracking autoradiography (PTA). The segregation of boron was found to initially increase, and then decrease with an increase in the heat input. This is believed to be due to the back-diffusion of boron withmore » an increase in the exposure time at high temperature after non-equilibrium grain boundary segregation. The grain boundary segregation of boron could be decreased by an external stress applied during the welding cycle. Such behavior may be due to an increase in the grain boundary area as a result of the grain size reduction induced by the external stress. - Highlights: • Boron segregation behavior in the CGHAZ of low-alloy steel during a welding cycle was investigated. • Various CGHAZs were simulated with a Gleeble system as a function of the heat input and external stress. • Boron segregation behavior was analyzed using SIMS and PTA techniques.« less

  1. A comparative evaluation of laser and GTA welds in a high-strength titanium alloy -- Ti-6-22-22S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baeslack, W.A. III; Hurley, J.; Paskell, T.

    1994-12-31

    Titanium alloy Ti-6Al-2Sn-2Zr-2Mo-2Cr-025Si (hereafter designated Ti-6-22-22S)is an alpha-beta titanium alloy developed for deep hardenability, high strength, intermediate temperature creep resistance, and moderate toughness. As a potential structural material for next-generation aircraft and aerospace systems, the weldability of Ti-6-22-22S has recently become a subject of increasing importance and concern. In the welding of titanium sheet, achieving satisfactory ductility is the principal limitation to alloy weldability, with poor ductility promoted by a coarse beta grain structure in the weld fusion and near-heat-affected zones. Square-butt welds were produced in 1.6 mm thick Ti-6-22-22S sheet using automatic GTA and CO{sub 2} laser welding systems.more » Microstructure analysis and DPH hardness traverses were performed on mounted. polished and etched specimens. Three-point bend and tensile tests were performed on transverse-weld and longitudinal-weld oriented specimens. Microstructure analysis of the laser welds revealed a fine, columnar fusion zone beta grain macrostructure and a fully-martensitic transformed-beta microstructure. Consistent with the microstructural similarities, fusion zone hardnesses of the laser welds were comparable (385 and 390 DPG, respectively) and greater than that of the base metal (330 DPH). In general, laser welds did not exhibit markedly superior ductilities relative to the GTAW, which was attributed to differences in the nature of the intragranular transformed-beta microstructures, being coarser and softer for the GTAW, the response of these as-welded microstructures to heat treatment, and interactions between the transformed-beta microstructure and the beta grain macrostructure.« less

  2. A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part I. the model

    NASA Astrophysics Data System (ADS)

    Hemmer, H.; Grong, Ø.

    1999-11-01

    The present investigation is concerned with modeling of the microstructure evolution in duplex stainless steels under thermal conditions applicable to welding. The important reactions that have been modeled are the dissolution of austenite during heating, subsequent grain growth in the delta ferrite regime, and finally, the decomposition of the delta ferrite to austenite during cooling. As a starting point, a differential formulation of the underlying diffusion problem is presented, based on the internal-state variable approach. These solutions are later manipulated and expressed in terms of the Scheil integral in the cases where the evolution equation is separable or can be made separable by a simple change of variables. The models have then been applied to describe the heat-affected zone microstructure evolution during both thick-plate and thin-plate welding of three commercial duplex stainless steel grades: 2205, 2304, and 2507. The results may conveniently be presented in the form of novel process diagrams, which display contours of constant delta ferrite grain size along with information about dissolution and reprecipitation of austenite for different combinations of weld input energy and peak temperature. These diagrams are well suited for quantitative readings and illustrate, in a condensed manner, the competition between the different variables that lead to structural changes during welding of duplex stainless steels.

  3. Crack Resistance of Welded Joints of Pipe Steels of Strength Class K60 of Different Alloying Systems

    NASA Astrophysics Data System (ADS)

    Tabatchikova, T. I.; Tereshchenko, N. A.; Yakovleva, I. L.; Makovetskii, A. N.; Shander, S. V.

    2018-03-01

    The crack resistance of welded joints of pipe steels of strength class K60 and different alloying systems is studied. The parameter of the crack tip opening displacement (CTOD) is shown to be dependent on the size of the austenite grains and on the morphology of bainite in the superheated region of the heat-affected zone of the weld. The crack resistance is shown to be controllable due to optimization of the alloying system.

  4. Characterization of Multilayered Multipass Friction Stir Weld on ASTM A572 G50 Steel

    DOE PAGES

    Lim, Yong Chae; Sanderson, Samuel; Mahoney, Murray; ...

    2014-01-01

    A multilayered multipass friction stir weld (MM-FSW) on ASTM A572 Grade 50 steel was characterized to understand its potential application for thick-section structures. The 15-mm-thick section was fabricated by stacking up three steel plates and then friction stir welding the plates together in a total of 5 passes. The unique butt/lap joint configuration encountered in the multilayer weld was examined to understand the effect of tool rotation direction on the joint quality especially the formation of hooking defect. Charpy V-notch impact toughness tests showed generally higher impact toughness energy for the stir zone than the base metal with a ductilemore » fracture mode. The microhardness value was measured from 195 to 220 HV in the stir zone, while the base metal showed an average value of 170 HV. The microstructure in the stir zone and the adjacent heat affected zone was quantified using Optical and Scanning Electron Microscopy (SEM) including Electron Backscatter Diffraction (EBSD). The increased toughness and hardness were correlated with the refined microstructure in stir zone, resulting from severe plastic deformation and subsequent dynamic recrystallization during friction stir welding.« less

  5. WRC bulletin. A review of underclad cracking in pressure-vessel components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinckier, A.G.; Pense, A.W.

    1974-01-01

    This review of cracking underneath the weld cladding is to determine what factors contribute to this condition, and to outline means for alleviating or eliminating this condition. Considerable data on manufacture, heat treatment, and cladding of heavy-section pressure-vessel steels for nuclear service are also included. Three factors in combination that promote underclad cracking are susceptible microstructure, favorable residual-stress pattern, and a thermal treatment bringing the steel into a critical temperature region (600-650/sup 0/C) where creep ductility is low. High-heat-input weld-overlay cladding produces the susceptible microstructure and residual-stress pattern and postweld heat treatment produces the critical temperature. Most underclad cracking wasmore » found in SA508 Class 2 steel forgings clad with one-layer submerged-arc strip electrodes or multi-electrode processes. It was not produced in SA533 Grade B plate or when multilayer overlay processes were used. Underclad cracking can be reduced or eliminated by a two-layer cladding technique, by controlling welding process variables (low heat input), renormalizing the sensitive HAZ region prior to heat treatment, by use of nonsusceptible materials, or by eliminating the postweld heat treatment. Results of a questionnaire survey are also included. 50 references. (DLC)« less

  6. Detailed Microstructural Characterization and Restoration Mechanisms of Duplex and Superduplex Stainless Steel Friction-Stir-Welded Joints

    NASA Astrophysics Data System (ADS)

    Santos, T. F. A.; Torres, E. A.; Lippold, J. C.; Ramirez, A. J.

    2016-12-01

    Duplex stainless steels are successfully used in a wide variety of applications in areas such as the food industry, petrochemical installations, and sea water desalination plants, where high corrosion resistance and high mechanical strength are required. However, during fusion welding operations, there can be changes to the favorable microstructure of these materials that compromise their performance. Friction stir welding with a non-consumable pin enables welded joints to be obtained in the solid state, which avoids typical problems associated with solidification of the molten pool, such as segregation of alloying elements and the formation of solidification and liquefaction cracks. In the case of superduplex stainless steels, use of the technique can avoid unbalanced proportions of ferrite and austenite, formation of deleterious second phases, or growth of ferritic grains in the heat-affected zone. Consolidated joints with full penetration were obtained for 6-mm-thick plates of UNS S32101 and S32205 duplex stainless steels, and S32750 and S32760 superduplex steels. The welding heat cycles employed avoided the conditions required for formation of deleterious phases, except in the case of the welded joint of the S32760 steel, where SEM images indicated the formation of secondary phases, as corroborated by decreased mechanical performance. Analysis using EBSD and transmission electron microscopy revealed continuous dynamic recrystallization by the formation of cellular arrays of dislocations in the ferrite and discontinuous dynamic recrystallization in the austenite. Microtexture evaluation indicated the presence of fibers typical of shear in the thermomechanically affected zone. These fibers were not obviously present in the stir zone, probably due to the intensity of microstructural reformulation to which this region was subjected.

  7. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafarzadegan, M.; State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin; Feng, A.H.

    2012-12-15

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure withmore » some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: Black-Right-Pointing-Pointer FSW produced sound welds between st37 low carbon steel and 304 stainless steel. Black-Right-Pointing-Pointer The SZ of the st37 steel contained some products of allotropic transformation. Black-Right-Pointing-Pointer The material in the SZ of the 304 steel showed features of dynamic recrystallization. Black-Right-Pointing-Pointer The finer microstructure in the SZ increased the hardness and tensile strength.« less

  8. Evaluation of Surface Roughness by Image Processing of a Shot-Peened, TIG-Welded Aluminum 6061-T6 Alloy: An Experimental Case Study

    PubMed Central

    Rawashdeh, Nathir A.

    2018-01-01

    Visual inspection through image processing of welding and shot-peened surfaces is necessary to overcome equipment limitations, avoid measurement errors, and accelerate processing to gain certain surface properties such as surface roughness. Therefore, it is important to design an algorithm to quantify surface properties, which enables us to overcome the aforementioned limitations. In this study, a proposed systematic algorithm is utilized to generate and compare the surface roughness of Tungsten Inert Gas (TIG) welded aluminum 6061-T6 alloy treated by two levels of shot-peening, high-intensity and low-intensity. This project is industrial in nature, and the proposed solution was originally requested by local industry to overcome equipment capabilities and limitations. In particular, surface roughness measurements are usually only possible on flat surfaces but not on other areas treated by shot-peening after welding, as in the heat-affected zone and weld beads. Therefore, those critical areas are outside of the measurement limitations. Using the proposed technique, the surface roughness measurements were possible to obtain for weld beads, high-intensity and low-intensity shot-peened surfaces. In addition, a 3D surface topography was generated and dimple size distributions were calculated for the three tested scenarios: control sample (TIG-welded only), high-intensity shot-peened, and low-intensity shot-peened TIG-welded Al6065-T6 samples. Finally, cross-sectional hardness profiles were measured for the three scenarios; in all scenarios, lower hardness measurements were obtained compared to the base metal alloy in the heat-affected zone and in the weld beads even after shot-peening treatments. PMID:29748520

  9. Evaluation of Surface Roughness by Image Processing of a Shot-Peened, TIG-Welded Aluminum 6061-T6 Alloy: An Experimental Case Study.

    PubMed

    Atieh, Anas M; Rawashdeh, Nathir A; AlHazaa, Abdulaziz N

    2018-05-10

    Visual inspection through image processing of welding and shot-peened surfaces is necessary to overcome equipment limitations, avoid measurement errors, and accelerate processing to gain certain surface properties such as surface roughness. Therefore, it is important to design an algorithm to quantify surface properties, which enables us to overcome the aforementioned limitations. In this study, a proposed systematic algorithm is utilized to generate and compare the surface roughness of Tungsten Inert Gas (TIG) welded aluminum 6061-T6 alloy treated by two levels of shot-peening, high-intensity and low-intensity. This project is industrial in nature, and the proposed solution was originally requested by local industry to overcome equipment capabilities and limitations. In particular, surface roughness measurements are usually only possible on flat surfaces but not on other areas treated by shot-peening after welding, as in the heat-affected zone and weld beads. Therefore, those critical areas are outside of the measurement limitations. Using the proposed technique, the surface roughness measurements were possible to obtain for weld beads, high-intensity and low-intensity shot-peened surfaces. In addition, a 3D surface topography was generated and dimple size distributions were calculated for the three tested scenarios: control sample (TIG-welded only), high-intensity shot-peened, and low-intensity shot-peened TIG-welded Al6065-T6 samples. Finally, cross-sectional hardness profiles were measured for the three scenarios; in all scenarios, lower hardness measurements were obtained compared to the base metal alloy in the heat-affected zone and in the weld beads even after shot-peening treatments.

  10. Microstructural characterization and electron backscatter diffraction analysis across the welded interface of duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Gao, Zhanqi; Zhao, Lei; Zhang, Jianli

    2017-08-01

    The microstructural evolution, orientation relationships, boundary characteristics, grain type, local deformation, and microhardness across the welded interface of duplex stainless steel (DSS) were investigated. The DSS welded joint consisted of four typical zones: base metal (BM), low-temperature heat-affected zone (LTHAZ), high-temperature heat-affected zone (HTHAZ), and weld metal (WM). The apparent microstructural changes in the HTHAZ and LTHAZ were secondary austenite and Cr2N precipitation. A modified cooperative precipitation mechanism of secondary austenite and Cr2N at the interface was proposed. Furthermore, the ferrite in both the HTHAZ and LTHAZ maintained the same distribution as the ferrite texture in the BM, while this ferrite texture disappeared completely in the WM. Different austenite grains in the different zones exhibited different orientation relationships with the ferrite matrix. Special grain boundaries were mainly distributed between the austenite grains, while the ferrite grains primarily contained random grain boundaries. Austenite twins constituted the largest proportion of the special boundaries. The special austenite grain boundaries in the BM and LTHAZ were higher in relative frequency than those in the HTHAZ and WM. The ferrite grains in the HTHAZ and WM mainly consisted of substructured grains. In the BM, the recrystallization degree of ferrite was significantly lower than that of austenite grains. The local deformations were mainly generated in the grain boundaries and within the deformed grains. The HTHAZ exhibited the highest hardness, while the BM had the lowest hardness. The LTHAZ had a lower hardness than the HTHAZ and higher hardness than the BM.

  11. Construction of continuous cooling transformation (CCT) diagram using Gleeble for coarse grained heat affected zone of SA106 grade B steel

    NASA Astrophysics Data System (ADS)

    Vimalan, G.; Muthupandi, V.; Ravichandran, G.

    2018-05-01

    A continuous cooling transformation diagram is constructed for simulated coarse grain heat affected zone (CGHAZ) of SA106 grade B carbon steel. Samples are heated to a peak temperature of 1200°C in the Gleeble thermo mechanical simulator and then cooled at different cooling rates varying from 0.1°C/s to 100°C/s. Microstructure of the specimens simulated at different cooling rates were characterised by optical microscopy and hardness was assessed by Vicker's hardness test and micro-hardness test. Transformation temperatures and the corresponding phase fields were identified from dilatometric curves and the same could be confirmed by correlating with the microstructures at room temperature. These data were used to construct the CCT diagram. Phase fields were found to have ferrite, pearlite, bainite and martensite or their combinations. With the help of this CCT diagram it is possible to predict the microstructure and hardness of coarse grain HAZ experiencing different cooling rates. The constructed CCT diagram becomes an important tool in evaluating the weldability of SA106 grade B carbon steel.

  12. Assessment of the Sensitivity of Welded Joints of Al -Mg - Si Alloys to Liquation Cracks Under Laser Welding

    NASA Astrophysics Data System (ADS)

    Ivanov, S. Yu.; Karkhin, V. A.; Mikhailov, V. G.; Martikainen, J.; Hiltunen, E.

    2018-03-01

    The microstructure and the distribution of chemical elements in laser-welded joints of Al - Mg - Si alloy 6005-T6 are studied. Segregations of chemical elements are detected over grain boundaries in the heat-affected zones of the welded joints. The joints fracture by the intergrain mechanism. A Gleeble 3800 device is used to determine the temperature dependences of the mechanical properties of the alloy with allowance for the special features of the welding cycle. Amethod for evaluating the sensitivity of welded joints of aluminum alloys to formation of liquation cracks with allowance for the local properties of the metal, the welding conditions, and the rigidity of the construction is suggested.

  13. Femtosecond fiber laser welding of dissimilar metals.

    PubMed

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2014-10-01

    In this paper, welding of dissimilar metals was demonstrated for the first time, to the best of our knowledge, by using a high-energy high-repetition-rate femtosecond fiber laser. Metallurgical and mechanical properties were investigated and analyzed under various processing parameters (pulse energy, repetition rate, and welding speed). Results showed that the formation of intermetallic brittle phases and welding defects could be effectively reduced. Strong welding quality with more than 210 MPa tensile strength for stainless steel-aluminum and 175 MPa tensile strength for stainless steel-magnesium has been demonstrated. A minimal heat affected zone and uniform and homogenous phase transformation in the welding region have been demonstrated. This laser-welding technique can be extended for various applications in semiconductor, automobile, aerospace, and biomedical industries.

  14. Microstructures and mechanical properties of bonding layers between low carbon steel and alloy 625 processed by gas tungsten arc welding

    NASA Astrophysics Data System (ADS)

    Lou, Shuai; Lee, Seul Bi; Nam, Dae-Geun; Choi, Yoon Suk

    2017-11-01

    A filler metal wire, Alloy 625, was cladded on a plate of a low carbon streel, SS400, by gas tungsten arc welding, and the morphology of the weld bead and resulting dilution ratio were investigated under different welding parameter values (the input current, weld speed and wire feed speed). The wire feed speed was found to be most influential in controlling the dilution ratio of the weld bead, and seemed to limit the influence of other welding parameters. Two extreme welding conditions (with the minimum and maximum dilution ratios) were identified, and the corresponding microstructures, hardness and tensile properties near the bond line were compared between the two cases. The weld bead with the minimum dilution ratio showed superior hardness and tensile properties, while the formation lath martensite (due to relatively fast cooling) affected mechanical properties in the heat affected zone of the base metal with the maximum dilution ratio.

  15. Dye penetrant indications caused by superficial surface defects in 2014 aluminum alloy welds.

    NASA Technical Reports Server (NTRS)

    Hocker, R. G.; Wilson, K. R.

    1971-01-01

    Demonstration that dye penetrant indications on the heat-affected zone of 2014-T6 aluminum GMA weldments are frequently caused by superficial surface conditions and are less than 0.007 in. deep. The following methods are suggested for minimization of these surface defects: stabilization of the arc, application of dc ?GTA' welding procedures, reduction of the caustic etch time, and use of fine grain materials.

  16. Integrated optical sensor

    DOEpatents

    Watkins, Arthur D.; Smartt, Herschel B.; Taylor, Paul L.

    1994-01-01

    An integrated optical sensor for arc welding having multifunction feedback control. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties.

  17. Integrated optical sensor

    DOEpatents

    Watkins, A.D.; Smartt, H.B.; Taylor, P.L.

    1994-01-04

    An integrated optical sensor for arc welding having multifunction feedback control is described. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties. 6 figures.

  18. Remote detection of stress corrosion cracking: Surface composition and crack detection

    NASA Astrophysics Data System (ADS)

    Lissenden, Cliff J.; Jovanovic, Igor; Motta, Arthur T.; Xiao, Xuan; Le Berre, Samuel; Fobar, David; Cho, Hwanjeong; Choi, Sungho

    2018-04-01

    Chloride induced stress corrosion cracking (SCC) of austenitic stainless steel is a potential issue in long term dry storage of spent nuclear fuel canisters. In order for SCC to occur there must be a corrosive environment, a susceptible material, and a driving force. Because it is likely that the material in the heat affected zone (HAZ) of welded stainless steel structures has been sensitized as a result of chromium depletion at the grain boundaries and a thermal residual stress driving force is likely present if solution annealing is not performed, two issues are critical. Is the environment corrosive, i.e., are chlorides present in solution on the surface? And then, are there cracks that could propagate? Remote detection of chlorides on the surface can be accomplished by laser induced breakdown spectroscopy (LIBS), while cracks can be detected by shear horizontal guided waves generated by electromagnetic acoustic transducers (EMATs). Both are noncontact methods that are amenable to robotic delivery systems and harsh environments. The sensitivity to chlorine on stainless steel of a LIBS system that employs optical fiber for pulse delivery is demonstrated. Likewise, the ability of the EMAT system to detect cracks of a prescribed size and orientation is shown. These results show the potential for remote detection of Cl and cracks in dry storage spent fuel canisters.

  19. Effect of process parameters on microstructure and mechanical properties of friction stir welded joints: A review

    NASA Astrophysics Data System (ADS)

    Wanare, S. P.; Kalyankar, V. D.

    2018-04-01

    Friction stir welding is emerging as a promising technique for joining of lighter metal alloys due to its several advantages over conventional fusion welding processes such as low thermal distortion, good mechanical properties, fine weld joint microstructure, etc. This review article mainly focuses on analysis of microstructure and mechanical properties of friction stir welded joints. Various microstructure characterization techniques used by previous researchers such as optical microscopes, x-ray diffraction, electron probe microscope, transmission electron microscope, scanning electron microscopes with electron back scattered diffraction, electron dispersive microscopy, etc. are thoroughly overviewed and their results are discussed. The effects of friction stir welding process parameters such as tool rotational speed, welding speed, tool plunge depth, axial force, tool shoulder diameter to tool pin diameter ratio, tool geometry etc. on microstructure and mechanical properties of welded joints are studied and critical observations are noted down. The microstructure examination carried out by previous researchers on various zones of welded joints such as weld zone, heat affected zone and base metal are studied and critical remarks have been presented. Mechanical performances of friction stir welded joints based on tensile test, micro-hardness test, etc. are discussed. This article includes exhaustive literature review of standard research articles which may become ready information for subsequent researchers to establish their line of action.

  20. Effects of Heating and Cooling Rates on Phase Transformations in 10 Wt Pct Ni Steel and Their Application to Gas Tungsten Arc Welding

    NASA Astrophysics Data System (ADS)

    Barrick, Erin J.; Jain, Divya; DuPont, John N.; Seidman, David N.

    2017-12-01

    10 wt pct Ni steel is a high-strength steel that possesses good ballistic resistance from the deformation induced transformation of austenite to martensite, known as the transformation-induced-plasticity effect. The effects of rapid heating and cooling rates associated with welding thermal cycles on the phase transformations and microstructures, specifically in the heat-affected zone, were determined using dilatometry, microhardness, and microstructural characterization. Heating rate experiments demonstrate that the Ac3 temperature is dependent on heating rate, varying from 1094 K (821 °C) at a heating rate of 1 °C/s to 1324 K (1051 °C) at a heating rate of 1830 °C/s. A continuous cooling transformation diagram produced for 10 wt pct Ni steel reveals that martensite will form over a wide range of cooling rates, which reflects a very high hardenability of this alloy. These results were applied to a single pass, autogenous, gas tungsten arc weld. The diffusion of nickel from regions of austenite to martensite during the welding thermal cycle manifests itself in a muddled, rod-like lath martensitic microstructure. The results of these studies show that the nickel enrichment of the austenite in 10 wt pct Ni steel plays a critical role in phase transformations during welding.

  1. Laser-Assisted Stir Welding of 25-mm-Thick HSLA-65 Plate

    NASA Astrophysics Data System (ADS)

    Williamson, Keith M.

    2002-12-01

    Laser-assisted stir welding is a hybrid process that combines energy from a laser with functional heating and mechanical energy to join materials in the solid state. The technology is an adaptation of friction stir welding which is particularly suited for joining thick plates. Aluminum plates up to 75 mm thick have been successfully joined using friction stir welding. Since joining occurs in the solid state, stir technology offers the capability for fabricating full penetration joints in thick plates with better mechanical properties and less weld distortion than is possible by fusion processes. Currently friction stir welding is being used in several industries to improve productivity, reduce weight, and increase the strength of welded structures. Examples include: (a) the aircraft/aerospace industry where stir technology is currently being used to fabricate the space shuttle's external tank as well as components of the Delta family of rockets; (b) the shipping industry where container manufacturers are using stir technology to produce lighter containers with more payload capacity; and (c) the oil industry where offshore platform manufactures are using automated stir welding plants to fabricate large panels and structures up to 16 meters long with widths as required. In all these cases, stir technology has been restricted to aluminum alloys; however, stainless and HSLA 65 steels have been recently stir welded with friction as the primary heat source. One of the difficulties in adapting stir welding to steel is tool wear aggravated by the high tool rubbing velocities needed to provide frictional heat input into the material. Early work showed that the tool shoulder reached temperatures above 1000 C and the weld seam behind the tool stayed within this temperature range for up to 25 mm behind the tool. Cross sections of stir welded samples showed that the heat-affected zone is relatively wide and follows the profile of the tool shoulder. Besides minimizing the tool wear by increasing the energy into the material, another benefit of the proposed Laser Assisted Stir Welding (LASW is to reduce the width of the heat affected zone which typically has the lowest hardness in the weld region. Additionally, thermal modeling of the friction stir process shows that the heat input is asymmetric and suggests that the degree of asymmetry could improve the efficiency of the process. These asymmetries occur because the leading edge of the tool supplies heat to cold material while the trailing edge provides heat to material already preheated by the leading edge. As a result, flow stresses on the advancing side of the joint are lower than corresponding values on the retreating side. The proposed LASW process enhances these asymmetries by providing directional heating to increase the differential in flow stress across the joint and improve the stir tool efficiency. Theoretically the LASW process can provide the energy input to allow the flow stresses on the advancing side to approach zero and the stir efficiency to approach 100 percent. Reducing the flow stresses on the advancing side of the weld creates the greatest pressure differential across the stir weld and eliminates the possibility of voids on the advancing side of the joint. Small pressure differentials result in poor stir welds because voids on the advancing side are not filled by the plastic flow of material from the retreating side.

  2. Detection and Sizing of Fatigue Cracks in Steel Welds with Advanced Eddy Current Techniques

    NASA Astrophysics Data System (ADS)

    Todorov, E. I.; Mohr, W. C.; Lozev, M. G.

    2008-02-01

    Butt-welded specimens were fatigued to produce cracks in the weld heat-affected zone. Advanced eddy current (AEC) techniques were used to detect and size the cracks through a coating. AEC results were compared with magnetic particle and phased-array ultrasonic techniques. Validation through destructive crack measurements was also conducted. Factors such as geometry, surface treatment, and crack tightness interfered with depth sizing. AEC inspection techniques have the potential of providing more accurate and complete sizing flaw data for manufacturing and in-service inspections.

  3. Formation of intermetallics at the interface of explosively welded Ni-Al multilayered composites during annealing

    NASA Astrophysics Data System (ADS)

    Ogneva, T. S.; Lazurenko, D. V.; Bataev, I. A.; Mali, V. I.; Esikov, M. A.; Bataev, A. A.

    2016-04-01

    The Ni-Al multilayer composite was fabricated using explosive welding. The zones of mixing of Ni and Al are observed at the composite interfaces after the welding. The composition of these zones is inhomogeneous. Continuous homogeneous intermetallic layers are formed at the interface after heat treatment at 620 °C during 5 h These intermetallic layers consist of NiAl3 and Ni2Al3 phases. The presence of mixed zones significantly accelerates the growth rate of intermetallic phases at the initial stages of heating.

  4. Welding induced residual stress evaluation using laser-generated Rayleigh waves

    NASA Astrophysics Data System (ADS)

    Ye, Chong; Zhou, Yuanlai; Reddy, Vishnu V. B.; Mebane, Aaron; Ume, I. Charles

    2018-04-01

    Welding induced residual stress could affect the dimensional stability, fatigue life, and chemical resistance of the weld joints. Ultrasonic method serves as an important non-destructive tool for the residual stress evaluation due to its easy implementation, low cost and wide application to different materials. Residual stress would result in the ultrasonic wave velocity variation, which is the so called acoustoelastic effect. In this paper, Laser/EMAT ultrasonic technique was proposed to experimentally study the relative velocity variation ΔV/V of Rayleigh wave, which has the potential to evaluate surface/subsurface longitudinal residual stress developed during the Gas Metal Arc Welding process. Broad band ultrasonic waves were excited by pulsed Q-Switched Nd: YAG laser. An electromagnetic acoustic transducer (EMAT) attached to the welded plates was used to capture the Rayleigh wave signals propagating along the weld seam direction. Different time of flight measurements were conducted by varying the distance between the weld seam and Rayleigh wave propagating path in the range of 0 to 45 mm. The maximum relative velocity difference was found on the weld seam. With the increasing distance away from the weld seam, the relative velocity difference sharply decreased to negative value. With further increase in distance, the relative velocity difference slowly increased and approached zero. The distribution of relative velocity variations indicates that tensile stress appears in the melted zone as it becomes compressive near the heat-affected zone.

  5. Room temperature crack growth rates and -20 deg F fracture toughness of welded 1 1/4 inch A-285 steel plate

    NASA Technical Reports Server (NTRS)

    Shannon, J. L., Jr.; Rzasnicki, W.

    1977-01-01

    Data are presented which were developed in support of a structural assessment of NASA-LEWIS' 10-foot by 10-foot supersonic wind tunnel, critical portions of which are fabricated from rolled and welded 1 1/4 inch thick A-285 steel plate. Test material was flame cut from the tunnel wall and included longitudinal and circumferential weld joints. Parent metal, welds, and weld heat affected zone were tested. Tensile strength and fracture toughness were determined at -20 F, the estimated lowest tunnel operating temperature. Crack growth rates were measured at room temperature, where growth rates in service are expected to be highest.

  6. Influences of post weld heat treatment on tensile strength and microstructure characteristics of friction stir welded butt joints of AA2014-T6 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Rajendran, C.; Srinivasan, K.; Balasubramanian, V.; Balaji, H.; Selvaraj, P.

    2016-08-01

    Friction stir welded (FSWed) joints of aluminum alloys exhibited a hardness drop in both the advancing side (AS) and retreating side (RS) of the thermo-mechanically affected zone (TMAZ) due to the thermal cycle involved in the FSW process. In this investigation, an attempt has been made to overcome this problem by post weld heat treatment (PWHT) methods. FSW butt (FSWB) joints of Al-Cu (AA2014-T6) alloy were PWHT by two methods such as simple artificial aging (AA) and solution treatment followed by artificial aging (STA). Of these two treatments, STA was found to be more beneficial than the simple aging treatment to improve the tensile properties of the FSW joints of AA2014 aluminum alloy.

  7. Effect of Welding Heat Input on Microstructure and Texture of Inconel 625 Weld Overlay Studied Using the Electron Backscatter Diffraction Method

    NASA Astrophysics Data System (ADS)

    Kim, Joon-Suk; Lee, Hae-Woo

    2016-12-01

    The grain size and the texture of three specimens prepared at different heat inputs were determined using optical microscopy and the electron backscatter diffraction method of scanning electron microscopy. Each specimen was equally divided into fusion line zone (FLZ), columnar dendrite zone (CDZ), and surface zone (SZ), according to the location of the weld. Fine dendrites were observed in the FLZ, coarse dendrites in the CDZ, and dendrites grew perpendicular to the FLZ and CDZ. As the heat input increased, the melted zone in the vicinity of the FLZ widened due to the higher Fe content. A lower image quality value was observed for the FLZ compared to the other zones. The results of grain size measurement in each zone showed that the grain size of the SZ became larger as the heat input increased. From the inverse pole figure (IPF) map in the normal direction (ND) and the rolling direction (RD), as the heat input increased, a specific orientation was formed. However, a dominant [001] direction was observed in the RD IPF map.

  8. Experiments and simulation for 6061-T6 aluminum alloy resistance spot welded lap joints

    NASA Astrophysics Data System (ADS)

    Florea, Radu Stefanel

    This comprehensive study is the first to quantify the fatigue performance, failure loads, and microstructure of resistance spot welding (RSW) in 6061-T6 aluminum (Al) alloy according to welding parameters and process sensitivity. The extensive experimental, theoretical and simulated analyses will provide a framework to optimize the welding of lightweight structures for more fuel-efficient automotive and military applications. The research was executed in four primary components. The first section involved using electron back scatter diffraction (EBSD) scanning, tensile testing, laser beam profilometry (LBP) measurements, and optical microscopy(OM) images to experimentally investigate failure loads and deformation of the Al-alloy resistance spot welded joints. Three welding conditions, as well as nugget and microstructure characteristics, were quantified according to predefined process parameters. Quasi-static tensile tests were used to characterize the failure loads in specimens based upon these same process parameters. Profilometer results showed that increasing the applied welding current deepened the weld imprints. The EBSD scans revealed the strong dependency between the grain sizes and orientation function on the process parameters. For the second section, the fatigue behavior of the RSW'ed joints was experimentally investigated. The process optimization included consideration of the forces, currents, and times for both the main weld and post-heating. Load control cyclic tests were conducted on single weld lap-shear joint coupons to characterize the fatigue behavior in spot welded specimens. Results demonstrate that welding parameters do indeed significantly affect the microstructure and fatigue performance for these welds. The third section comprised residual strains of resistance spot welded joints measured in three different directions, denoted as in-plane longitudinal, in-plane transversal, and normal, and captured on the fusion zone, heat affected zone and base metal of the joints. Neutron diffraction results showed residual stresses in the weld are approximately 40% lower than the yield strength of the parent material, with maximum variation occurring in the vertical position of the specimen because of the orientation of electrode clamping forces that produce a non-uniform solidification pattern. In the final section a theoretical continuum modeling framework for 6061-T6 aluminum resistance spot welded joints is presented.

  9. Effect of Welding Processes on the Microstructure, Mechanical Properties and Residual Stresses of Plain 9Cr-1Mo Steel Weld Joints

    NASA Astrophysics Data System (ADS)

    Nagaraju, S.; Vasantharaja, P.; Brahadees, G.; Vasudevan, M.; Mahadevan, S.

    2017-12-01

    9Cr-1Mo steel designated as P9 is widely used in the construction of power plants and high-temperature applications. It is chosen for fabricating hexcan fuel subassembly wrapper components of fast breeder reactors. Arc welding processes are generally used for fabricating 9Cr-1Mo steel weld joints. A-TIG welding process is increasingly being adopted by the industries. In the present study, shielded metal arc (SMA), tungsten inert gas (TIG) and A-TIG welding processes are used for fabricating the 9Cr-1Mo steel weld joints of 10 mm thickness. Effect of the above welding processes on the microstructure evolution, mechanical properties and residual stresses of the weld joints has been studied in detail. All the three weld joints exhibited comparable strength and ductility values. 9Cr-1Mo steel weld joint fabricated by SMAW process exhibited lower impact toughness values caused by coarser grain size and inclusions. 9Cr-1Mo steel weld joint fabricated by TIG welding exhibited higher toughness due to finer grain size, while the weld joint fabricated by A-TIG welding process exhibited adequate toughness values. SMA steel weld joint exhibited compressive residual stresses in the weld metal and HAZ, while TIG and A-TIG weld joint exhibited tensile residual stresses in the weld metal and HAZ.

  10. Modeling aluminum-lithium alloy welding characteristics

    NASA Technical Reports Server (NTRS)

    Bernstein, Edward L.

    1996-01-01

    The purpose of this project was to develop a finite element model of the heat-affected zone in the vicinity of a weld line on a plate in order to determine an accurate plastic strain history. The resulting plastic strain increments calculated by the finite element program were then to be used to calculate the measure of damage D. It was hoped to determine the effects of varying welding parameters, such as beam power, efficiency, and weld speed, and the effect of different material properties on the occurrence of microfissuring. The results were to be compared first to the previous analysis of Inconel 718, and then extended to aluminum 2195.

  11. Effect of Segregation of Secondary Phase Particles and "S" Line on Tensile Fracture Behavior of Friction Stir-Welded 2024Al-T351 Joints

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Xiao, B. L.; Ma, Z. Y.

    2013-09-01

    A 5-mm-thick 2024Al-T351 plate was friction stir welded (FSWed) at welding speeds of 100, 200, and 400 mm min-1 with a constant rotation rate of 800 rpm, and the microstructure and tensile fracture behavior of the joints were investigated in detail. FSW resulted in the redistribution of secondary phase particles along the recrystallized grain boundaries at the nugget zone (NZ), forming linear segregation bands consisting of secondary phase particles. The segregation bands, mainly present in the shoulder-driven zone, were believed to result from periodic material flow, with the average band spacing on the longitudinal and horizontal cross sections equal to the tool advancement per revolution. At a low welding speed of 100 mm min-1, in spite of the highest density of segregation bands, the FSWed 2024Al-T351 joint fractured along the low hardness zone (LHZ) of the heat-affected zone because of large hardness gap between NZ and LHZ. Increasing the welding speed to 200 and 400 mm min-1 reduced both the hardness gap between NZ and LHZ and the density of segregation bands. In this case, the segregation bands played a role, resulting in unusual fracture of the joints along the segregation bands. The "S" line originated from the oxide film on the initial butting surfaces and did not affect the fracture behavior of the FSWed 2024Al-T351 joints.

  12. A new procedure for refurbishment of power plant Superalloy 617 by pulsed Nd:YAG laser process

    NASA Astrophysics Data System (ADS)

    Taheri, Naser; Naffakh-Moosavy, Homam; Ghaini, Farshid Malek

    2017-06-01

    The present study has evaluated the surface rejuvenation of aged Inconel 617 superalloy by both GTAW and pulsed Nd:YAG laser techniques. The gas tungsten arc welding (GTAW) by heat input per unit length [Q/V(J/mm)] of 280, 291.67, 309.74 and 225.48 (J/mm), and the pulse Nd:YAG laser process by the 15.71, 19.43 and 22.32 (J/mm), were employed. The Rosenthal equation was used for calculation of mushy zone (MZ) and partially-melted zone (PMZ). Size of MZ and PMZ in GTAW are more than 31 and 6 times than that of formed in pulsed Nd:YAG laser. According to the characterizations, solidification and liquation cracks were observed in these areas produced by GTAW whereas no cracks were identified in laser treated samples. Also, line scan EDS analyses demonstrated the interdendritic chromium and molybdenum segregation, which facilitated formation of hot cracks. With reduction in heat input per unit length, the hardness increased and the size of solidified metal microstructure reduced in pulse Nd:YAG laser. These comparative results showed that pulse Nd:YAG laser can easily be utilized as a new rejuvenation technique for aged Alloy 617 in comparison to the conventional processes due to extremely narrow MZ and HAZ and better surface soundness and mechanical properties.

  13. Research and Development of Ultra-High Strength X100 Welded Pipe

    NASA Astrophysics Data System (ADS)

    Chuanguo, Zhang; Lei, Zheng; Ping, Hu; Bei, Zhang; Kougen, Wu; Weifeng, Huang

    Ultra-high strength X100 welded pipe can be used in the construction of long distance oil and gas pipeline to improve transmission capacity and reduce operation cost. By using the way of thermo-simulation and pilot rolling, the CCT (Continuous Cooling Transformation) diagram and the relationship between ACC (Accelerated Cooling) parameters, microstructure and mechanical properties were studied for the designed X100 pipeline steel with low carbon, high manganese and niobium micro-alloyed composition in lab. The analysis of CCT diagram indicates that the suitable hardness and microstructure can be obtained in the cooling rate of 20 80°C/sec. The pilot rolling results show that the ACC cooling start temperature below Ar3 phase transformation point is beneficial to increase uniform elongation, and the cooling stop temperature of 150 350°C is helpful to obtain high strength and toughness combination. Based on the research conclusions, the X100 plate and UOE pipe with dimension in O.D.1219×W.T.14.8mm, O.D.1219×W.T.17.8mm, designed for the natural gas transmission pipeline, were trial produced. The manufactured pipe body impact absorbed energy at -10°C is over 250J. The DWTT shear area ratio at 0°C is over 85%. The transverse strength meets the X100 grade requirement, and uniform elongation is over 4%. The X100 plate and UOE pipe with dimension in O.D.711×W.T.20.0mm, O.D.711×W.T.12.5mm, designed for an offshore engineering, were also trial produced. The average impact absorbed energy of pipe body at -30°C is over 200J. The average impact absorbed energy of HAZ (Heat-affected zone) and WM (Welded Seam) at -30°C is over 100J. And the good pipe shapes were obtained

  14. Thermal Modeling of Resistance Spot Welding and Prediction of Weld Microstructure

    NASA Astrophysics Data System (ADS)

    Sheikhi, M.; Valaee Tale, M.; Usefifar, GH. R.; Fattah-Alhosseini, Arash

    2017-11-01

    The microstructure of nuggets in resistance spot welding can be influenced by the many variables involved. This study aimed at examining such a relationship and, consequently, put forward an analytical model to predict the thermal history and microstructure of the nugget zone. Accordingly, a number of numerical simulations and experiments were conducted and the accuracy of the model was assessed. The results of this assessment revealed that the proposed analytical model could accurately predict the cooling rate in the nugget and heat-affected zones. Moreover, both analytical and numerical models confirmed that sheet thickness and electrode-sheet interface temperature were the most important factors influencing the cooling rate at temperatures lower than about T l/2. Decomposition of austenite is one of the most important transformations in steels occurring over this temperature range. Therefore, an easy-to-use map was designed against these parameters to predict the weld microstructure.

  15. Spatially resolved positron annihilation spectroscopy on friction stir weld induced defects.

    PubMed

    Hain, Karin; Hugenschmidt, Christoph; Pikart, Philip; Böni, Peter

    2010-04-01

    A friction stir welded (FSW) Al alloy sample was investigated by Doppler broadening spectroscopy (DBS) of the positron annihilation line. The spatially resolved defect distribution showed that the material in the joint zone becomes completely annealed during the welding process at the shoulder of the FSW tool, whereas at the tip, annealing is prevailed by the deterioration of the material due to the tool movement. This might be responsible for the increased probability of cracking in the heat affected zone of friction stir welds. Examination of a material pairing of steel S235 and the Al alloy Silafont36 by coincident Doppler broadening spectroscopy (CDBS) indicates the formation of annealed steel clusters in the Al alloy component of the sample. The clear visibility of Fe in the CDB spectra is explained by the very efficient trapping at the interface between steel cluster and bulk.

  16. Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, A.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.; Montgomery, J. S.

    2013-06-01

    A conventional gas metal arc welding (GMAW) butt-joining process has been modeled using a two-way fully coupled, transient, thermal-mechanical finite-element procedure. To achieve two-way thermal-mechanical coupling, the work of plastic deformation resulting from potentially high thermal stresses is allowed to be dissipated in the form of heat, and the mechanical material model of the workpiece and the weld is made temperature dependent. Heat losses from the deposited filler-metal are accounted for by considering conduction to the adjoining workpieces as well as natural convection and radiation to the surroundings. The newly constructed GMAW process model is then applied, in conjunction with the basic material physical-metallurgy, to a prototypical high-hardness armor martensitic steel (MIL A46100). The main outcome of this procedure is the prediction of the spatial distribution of various crystalline phases within the weld and the heat-affected zone regions, as a function of the GMAW process parameters. The newly developed GMAW process model is validated by comparing its predictions with available open-literature experimental and computational data.

  17. Microstructure and mechanical properties of China low activation martensitic steel joint by TIG multi-pass welding with a new filler wire

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Zhang, Junyu; Wu, Qingsheng

    2017-07-01

    Tungsten Inner Gas (TIG) welding is employed for joining of China low activation martensitic (CLAM) steel. A new filler wire was proposed, and the investigation on welding with various heat input and welding passes were conducted to lower the tendency towards the residual of δ ferrite in the joint. With the optimized welding parameters, a butt joint by multi-pass welding with the new filler wire was prepared to investigate the microstructure and mechanical properties. The microstructure of the joint was observed by optical microscope (OM) and scanning electron microscope (SEM). The hardness, Charpy impact and tensile tests of the joint were implemented at room temperature (25 °C). The results revealed that almost full martensite free from ferrite in the joints were obtained by multipass welding with the heat input of 2.26 kJ/mm. A certain degree of softening occurred at the heat affected zone of the joint according to the results of tensile and hardness tests. The as welded joints showed brittle fracture in the impact tests. However, the joints showed toughness fracture after tempering and relatively better comprehensive performance were achieved when the joints were tempered at 740 °C for 2 h.

  18. Section 3: Optimization of a 550/690-MPa high-performance bridge steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magee, A.B.; Gross, J.H.; Stout, R.D.

    1997-04-01

    This project to develop a high-performance bridge steel was intended to avoid susceptibility of the steel to weld heat-affected-zone cracking and therefore minimize the requirement for preheat, and to increase its fracture toughness at service temperatures. Previous studies by the Lehigh University Center for Advanced Technology for Large Structural Systems have suggested that a Cu-Ni steels with the following composition was an excellent candidate for such a bridge steel: C/0.070; Mn/1.50; P/0.009; S/0.005; Si/0.25; Cu/1.00; Ni/0.75; Cr/0.50; Mo/0.50; V/0.06; Cb/0.010. To confirm that observation, 227-kg heats of the candidate steel were melted and processed to 25- and 50-mm-thick plate bymore » various thermomechanical practices, and the weldability and mechanical properties determined. To evaluate the feasibility of reduced alloy content, two 227-kg heats of a lower hardenability steel were melted with C reduced to 0.06, Mn to 1.25, and Mo to 0.25 and similarly processed and tested. The results indicate that the steels were not susceptible to hydrogen-induced weld-heat-affected-zone cracking when welded without preheat. Jominy end-quench tests of the higher-hardenability steel indicate that a minimum yield-strength of 690 MPa should be readily attainable in thicknesses through 50 mm and marginally at 100 mm. The toughness of the steel readily met AASHTO specifications for Zone 3 in all conditions and thicknesses, and may be sufficiently tough so that the critical crack size will minimize fatigue-crack-extension problems.« less

  19. Low-Temperature Friction-Stir Welding of 2024 Aluminum

    NASA Technical Reports Server (NTRS)

    Benavides, S.; Li, Y.; Murr, L. E.; Brown, D.; McClure, J. C.

    1998-01-01

    Solid state friction-stir welding (FSW) has been demonstrated to involve dynamic recrystallization producing ultra-fine, equiaxed grain structures to facilitate superplastic deformation as the welding or joining mechanism. However, the average residual, equiaxed, grain size in the weld zone has ranged from roughly 0.5 micron to slightly more than 10 micron, and the larger weld zone grain sizes have been characterized as residual or static grain growth as a consequence of the temperatures in the weld zone (where center-line temperatures in the FSW of 6061 Al have been shown to be as high as 480C or -0.8 T(sub M) where T(sub M) is the absolute melting temperature)). In addition, the average residual weld zone grain size has been observed to increase near the top of the weld, and to decrease with distance on either side of the weld-zone centerline, an d this corresponds roughly to temperature variations within the weld zone. The residual grain size also generally decreases with decreasing FSW tool rotation speed. These observations are consistent with the general rules for recrystallization where the recrystallized grain size decreases with increasing strain (or deformation) at constant strain rate, or with increasing strain-rate, or with increasing strain rate at constant strain; especially at lower ambient temperatures, (or annealing temperatures). Since the recrystallization temperature also decreases with increasing strain rate, the FSW process is somewhat complicated because the ambient temperature, the frictional heating fraction, and the adiabatic heating fraction )proportional to the product of strain and strain-rate) will all influence both the recrystallization and growth within the FSW zone. Significantly reducing the ambient temperature of the base metal or work pieces to be welded would be expected to reduce the residual weld-zone grain size. The practical consequences of this temperature reduction would be the achievement of low temperature welding. This study compares the residual grain sizes and microstructures in 2024 Al friction-stir welded at room temperature (about 30C and low temperature (-30C).

  20. Analysis of properties laser welded RAK 40/70 steel sheets

    NASA Astrophysics Data System (ADS)

    Evin, E.; Tomáš, M.; Fujda, M.

    2017-11-01

    Both, the ecological production and operation of vehicles demand using such materials for deformation zones’ structural parts, which show some specific properties and use innovative technologies to process them. Specific requirements for functionality (strength, stiffness, deformation work, fatigue properties) are closely linked to processability (formability). In the paper are presented results for multiphase TRIP steel RAK40/70 when welded by pulse solid-state fiber laser YLS-5000. Based on microstructure analysis in the fusion zone and heat affected zone the welding parameters were optimised. The influence of laser welding on the strength and deformation properties was verified by characteristics of strength, stiffness and deformation work, as they were calculated from mechanical properties measured by tensile test and three-point bending test. The knowledge gathered in the field of laser welding influence on the strength and deformation properties of multiphase TRIP steel RAK40/70 should help designers when design the lightweight structural parts of the car body.

  1. Hydrogen-Induced Cold Cracking in High-Frequency Induction Welded Steel Tubes

    NASA Astrophysics Data System (ADS)

    Banerjee, Kumkum

    2016-04-01

    Detailed investigation was carried out on 0.4C steel tubes used for the telescopic front fork of two-wheelers to establish the root cause for the occurrence of transverse cracks at the weld heat-affected zone of the tubes. Fractographic and microstructural observations provide evidences of delayed hydrogen-induced cracking. The beneficial microstructure for avoiding the transverse cracks was found to be the bainitic-martensitic, while martensitic structure was noted to be deleterious.

  2. Weldability of Advanced High Strength Steels using Ytterbium:Yttrium Aluminium Garnet high power laser for Tailor-Welded Blank applications

    NASA Astrophysics Data System (ADS)

    Sharma, Rajashekhar Shivaram

    Use of a high power Yb:YAG laser is investigated for joining advanced high strength steel materials for use in tailor-welded blank (TWB) applications. TWB's are materials of different chemistry, coating or thicknesses that are joined before metal forming and other operations such as trimming, assembly and painting are carried out. TWB is becoming an important design tool in the automotive industry for reducing weight, improving fuel economy and passenger safety, while reducing the overall costs for the customer. Three advanced high strength steels, TRIP780, DP980 and USIBOR, which have many unique properties that are conducive to achieving these objectives, along with mild steel, are used in this work. The objective of this work is to ensure that high quality welds can be obtained using Yb:YAG lasers which are also becoming popular for metal joining operations, since they produce high quality laser beams that suffer minimal distortion when transported via fiber optic cables. Various power levels and speeds for the laser beam were used during the investigation. Argon gas was consistently used for shielding purposes during the welding process. After the samples were welded, metallographic examination of the fusion and heat-affected zones using optical and scanning electron microscopes were carried out to determine the microstructures as well as weld defects. Optical and scanning electron microscopes were also used to examine the top of welds as well as fracture surfaces. Additionally, cross-weld microhardness evaluations, tensile tests using Instron tester, limited fatigue tests as well as formability evaluations using OSU plane strain evaluation were carried out. The examinations included a 2-factor full factorial design of experiments to determine the impact of coatings on the surface roughness on the top of the welds. Tensile strengths of DP980, TRIP780 and mild steel materials as well as DP980 welded to TRIP780 and mild steel in the rolling direction as well as transverse direction were evaluated. Metallographic examinations determined that most of the fusion zone is martensitic with small regions of bainite and ferrite. High microhardness values of the order of 550--600 Hv were noted in most joints, which are attributed to high alloy content of the fusion zone as well as high rates of cooling typical of laser welds. During tensile, fatigue and formability tests, no fractures in the fusion or heat affected zones were observed. Geometric variability evaluations indicated that coatings such as aluminum (in the case of USIBOR) and galvanized zinc (TRIP780) can affect the variability of the weld zone and the surface roughness on the top of the weld. Excessive variability in the form of weld concavity in the weld zones can lead to fractures in the weld region, even though higher hardness can, to some extent, compensate for these surface irregularities. The 2-factor design of experiments further confirmed that coatings adversely affect the surface roughness on the top of the welds. Although thickness differentials alone do not make a significant impact on surface roughness, together with coatings, they can have an adverse effect on roughness. Tensile tests in the direction of rolling as well as in the transverse direction indicate that TRIP780 seems weaker in the direction of rolling when compared to transverse direction while mild steel is stronger in the direction of rolling. Weldability analyses revealed that the typical melting efficiency is on the order of 50--70% for full penetration welding. Formability tests showed that TR/MS joints fractured in a direction parallel to the weld line when tested with the loads perpendicular to the weld line. Tests have also confirmed that weld speed and power have no impact on the outcome of formability results. Overall, this work conclusively proves that high power Yb:YAG lasers can effectively join high strength materials such as DP980, TRIP780, USIBOR, as well as mild steel, for use in tailor-welded blank applications, contributing to lighter, more fuel-efficient and safer vehicles.

  3. Evaluation of the AISI 904L Alloy Weld Overlays Obtained by GMAW and Electro-Slag Welding Processes

    NASA Astrophysics Data System (ADS)

    Jorge, Jorge C. F.; Meira, O. G.; Madalena, F. C. A.; de Souza, L. F. G.; Araujo, L. S.; Mendes, M. C.

    2017-05-01

    The use of superaustenitic stainless steels (SASS) as an overlay replacement for nickel-based alloys can be an interesting alternative for the oil and gas industries, due to its lower cost, when compared to superalloys. Usually, the deposition is made with several welding passes by using conventional arc welding processes, such as gas tungsten arc welding (GTAW) or gas metal arc welding (GMAW) processes. In this respect, electro-slag welding (ESW), which promotes high heat inputs and low dilution of the welds, can also be attractive for this application, as it provides a higher productivity, once only one layer is needed for the deposition of the minimum thickness required. The present work evaluates the behavior of an AISI 904L SASS weld overlay deposited on a carbon steel ASTM A516 Grade 70 by ESW and GMAW processes. Both as-welded and heat-treated conditions were evaluated and compared. A multipass welding by GMAW process with three layers and 48 passes was performed on 12.5 × 200 × 250 mm steel plates with average welding energy of 1.0 kJ/mm. For ESW process, only one layer was deposited on 50 × 400 × 400 mm steel plates with average welding energy of 11.7 kJ/mm. After welding, a post-weld heat treatment (PWHT) at 620 °C for 10 h was performed in half of the steel plate, in order to allow the comparison between this condition and the as-welded one. For both processes, the austenitic microstructure of the weld deposits was characterized by optical microscopy and scanning electron microscopy with electron backscatter diffraction. A low proportion of secondary phases were observed in all conditions, and the PWHT did not promote significant changes on the hardness profile. Martensite for GMAW process and bainite for ESW process were the microstructural constituents observed at the coarse grain heat-affected zone, due to the different cooling rates. For ESW process, no evidences of partially diluted zones were found. As a consequence of the microstructural findings, the hardness results for ESW were lower than those usually observed for other electric arc welding processes. In addition, specimens subject to bending tests performed in accordance with the current standards used for qualification of welding procedures were approved. These evidences allow the conclusion that the ESW process can provide deposits with high quality despite the high welding energy levels, in order to achieve the desired productivity, being an interesting alternative for AISI 904L weld overlays.

  4. Formation of Gradient Structures in the Zone of Joining a Deformable Nickel Alloy and a Single-Crystal Intermetallic Alloy during Thermodiffusion Pressure Welding and Subsequent Heat Treatment

    NASA Astrophysics Data System (ADS)

    Povarova, K. B.; Valitov, V. A.; Drozdov, A. A.; Bazyleva, O. A.; Galieva, E. V.; Arginbaeva, E. G.

    2018-01-01

    The possibility of formation of a high-quality solid-phase joint of an Ni3Al-based single-crystal intermetallic VKNA-25 blade alloy with a high-temperature deformable EP975 disk alloy by pressure welding is studied to create high-performance one-piece blisk unit for the next-generation aviation gas turbine engines and to decrease the unit mass. The influence of the conditions of thermodiffusion pressure welding under the hightemperature superplasticity of the disk alloy and the influence of heat treatment of welded joints on the gradient structures in the welded joint zone and the structure at the periphery of the welded samples are investigated.

  5. Microstructural studies on failure mechanisms in thermo-mechanical fatigue of repaired DS R80 and IN 738 Superalloys

    NASA Astrophysics Data System (ADS)

    Abrokwah, Emmanuel Otchere

    Directionally solidified Rene 80 (DS R80) and polycrystalline Inconel 738(IN 738) Superalloys were tested in thermo-mechanical fatigue (TMF) over the temperature range of 500-900°C and plastic strain range from 0.1 to 0.8% using a DSI Gleeble thermal simulator. Thermo-mechanical testing was carried out on the parent material (baseline) in the conventional solution treated and aged condition (STA), as well as gas tungsten arc welded (GTAW) with an IN-738 filler, followed by solution treatment and ageing. Comparison of the baseline alloy microstructure with that of the welded and heat treated alloy showed that varying crack initiation mechanisms, notably oxidation by stress assisted grain boundary oxidation, grain boundary MC carbides fatigue crack initiation, fatigue crack initiation from sample surfaces, crack initiation from weld defects and creep deformation were operating, leading to different “weakest link” and failure initiation points. The observations from this study show that the repaired samples had extra crack initiation sites not present in the baseline, which accounted for their occasional poor fatigue life. These defects include lack of fusion between the weld and the base metal, fusion zone cracking, and heat affected zone microfissures.

  6. Characterization of lap joints laser beam welding of thin AA 2024 sheets with Yb:YAG disk-laser

    NASA Astrophysics Data System (ADS)

    Caiazzo, Fabrizia; Alfieri, Vittorio; Cardaropoli, Francesco; Sergi, Vincenzo

    2012-06-01

    Lap joints obtained by overlapping two plates are widely diffused in aerospace industry. Nevertheless, because of natural aging, adhesively bonded and riveted aircraft lap joints may be affected by cracks from rivets, voids or corrosion. Friction stir welding has been proposed as a valid alternative, although large heat affected zones are produced both in the top and the bottom plate due to the pin diameter. Interest has therefore been shown in studying laser lap welding as the laser beam has been proved to be competitive since it allows to concentrate the thermal input and increases productivity and quality. Some challenges arise as a consequence of aluminum low absorptance and high thermal conductivity; furthermore, issues are due to metallurgical challenges such as both micro and macro porosity formation and softening in the fused zone. Welding of AA 2024 thin sheets in a lap joint configuration is discussed in this paper: tests are carried out using a recently developed Trumpf TruDisk 2002 Yb:YAG disk-laser with high beam quality which allows to produce beads with low plates distortion and better penetration. The influence of the processing parameters is discussed considering the fused zone extent and the bead shape. The porosity content as well as the morphological features of the beads have been examined.

  7. Effect of Local Post Weld Heat Treatment on Tensile Properties in Friction Stir Welded 2219-O Al Alloy

    NASA Astrophysics Data System (ADS)

    Chu, Guannan; Sun, Lei; Lin, Caiyuan; Lin, Yanli

    2017-11-01

    To improve the formability of the aluminum alloy welds and overcome the size limitation of the bulk post weld heat treatment (BPWHT) on large size friction stir welded joints, a local post weld heat treatment method (LPWHT) was proposed. In this method, the resistance heating as the moving heat source is adopted to only heat the weld seam. The temperature field of LPWHT and its influence on the mechanical properties and formability of FSW 2219-O Al alloy joints was investigated. The evaluation of the tensile properties of FSW samples was also examined by mapping the global and local strain distribution using the digital image correlation methodology. The results indicated that the formability was improved greatly after LPWHT, while the hardness distribution of the FSW joint was homogenized. The maximum elongation can reach 1.4 times that of as-welded joints with increase the strength and the strain of the nugget zone increased from 3 to 8% when annealing at 300 °C. The heterogeneity on the tensile deformation of the as-welded joints was improved by the nugget zone showing large local strain value and the reason was given according to the dimple fracture characteristics at different annealing temperatures. The tensile strength and elongation of LPWHT can reach 93.3 and 96.1% of the BPWHT, respectively. Thus, the LPWHT can be advantageous compared to the BPWHT for large size welds.

  8. The numerical simulation of heat transfer during a hybrid laser-MIG welding using equivalent heat source approach

    NASA Astrophysics Data System (ADS)

    Bendaoud, Issam; Matteï, Simone; Cicala, Eugen; Tomashchuk, Iryna; Andrzejewski, Henri; Sallamand, Pierre; Mathieu, Alexandre; Bouchaud, Fréderic

    2014-03-01

    The present study is dedicated to the numerical simulation of an industrial case of hybrid laser-MIG welding of high thickness duplex steel UR2507Cu with Y-shaped chamfer geometry. It consists in simulation of heat transfer phenomena using heat equivalent source approach and implementing in finite element software COMSOL Multiphysics. A numerical exploratory designs method is used to identify the heat sources parameters in order to obtain a minimal required difference between the numerical results and the experiment which are the shape of the welded zone and the temperature evolution in different locations. The obtained results were found in good correspondence with experiment, both for melted zone shape and thermal history.

  9. Low activation steels welding with PWHT and coating for ITER test blanket modules and DEMO

    NASA Astrophysics Data System (ADS)

    Aubert, P.; Tavassoli, F.; Rieth, M.; Diegele, E.; Poitevin, Y.

    2011-02-01

    EUROFER weldability is investigated in support of the European material properties database and TBM manufacturing. Electron Beam, Hybrid, laser and narrow gap TIG processes have been carried out on the EUROFER-97 steel (thickness up to 40 mm), a reduced activation ferritic-martensitic steel developed in Europe. These welding processes produce similar welding results with high joint coefficients and are well adapted for minimizing residual distortions. The fusion zones are typically composed of martensite laths, with small grain sizes. In the heat-affected zones, martensite grains contain carbide precipitates. High hardness values are measured in all these zones that if not tempered would degrade toughness and creep resistance. PWHT developments have driven to a one-step PWHT (750 °C/3 h), successfully applied to joints restoring good material performances. It will produce less distortion levels than a full austenitization PWHT process, not really applicable to a complex welded structure such as the TBM. Different tungsten coatings have been successfully processed on EUROFER material. It has shown no really effect on the EUROFER base material microstructure.

  10. Research on Microstructure and Properties of Welded Joint of High Strength Steel

    NASA Astrophysics Data System (ADS)

    Zhu, Pengxiao; Li, Yi; Chen, Bo; Ma, Xuejiao; Zhang, Dongya; Tang, Cai

    2018-01-01

    BS960 steel plates were welded by Laser-MAG and MAG. The microstructure and properties of the welded joints were investigated by optical microscope, micro-hardness tester, universal tensile testing machine, impact tester, scanning electron microscope (SEM) and fatigue tester. By a series of experiments, the following results were obtained: The grain size of the coarse grain zone with Laser-MAG welded joint is 20μm, and that with MAG welded joint is about 32μm, both of the fine grain region are composed of fine lath martensite and granular bainite; the width of the heat affected region with Laser-MAG is lower than that with MAG. The strength and impact energy of welded joints with Laser-MAG is higher than that with MAG. The conditioned fatigue limit of welded joint with Laser-MAG is 280MPa; however, the conditioned fatigue limit of welded joint with MAG is 250MPa.

  11. CRADA Final Report: Weld Predictor App

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billings, Jay Jay

    Welding is an important manufacturing process used in a broad range of industries and market sectors, including automotive, aerospace, heavy manufacturing, medical, and defense. During welded fabrication, high localized heat input and subsequent rapid cooling result in the creation of residual stresses and distortion. These residual stresses can significantly affect the fatigue resistance, cracking behavior, and load-carrying capacity of welded structures during service. Further, additional fitting and tacking time is often required to fit distorted subassemblies together, resulting in non-value added cost. Using trial-and-error methods to determine which welding parameters, welding sequences, and fixture designs will most effectively reduce distortionmore » is a time-consuming and expensive process. For complex structures with many welds, this approach can take several months. For this reason, efficient and accurate methods of mitigating distortion are in-demand across all industries where welding is used. Analytical and computational methods and commercial software tools have been developed to predict welding-induced residual stresses and distortion. Welding process parameters, fixtures, and tooling can be optimized to reduce the HAZ softening and minimize weld residual stress and distortion, improving performance and reducing design, fabrication and testing costs. However, weld modeling technology tools are currently accessible only to engineers and designers with a background in finite element analysis (FEA) who work with large manufacturers, research institutes, and universities with access to high-performance computing (HPC) resources. Small and medium enterprises (SMEs) in the US do not typically have the human and computational resources needed to adopt and utilize weld modeling technology. To allow an engineer with no background in FEA and SMEs to gain access to this important design tool, EWI and the Ohio Supercomputer Center (OSC) developed the online weld application software tool “WeldPredictor” ( https://eweldpredictor.ewi.org ). About 1400 users have tested this application. This project marked the beginning of development on the next version of WeldPredictor that addresses many outstanding features of the original, including 3D models, allow more material hardening laws, model material phase transformation, and uses open source finite element solvers to quickly solve problems (as opposed to expensive commercial tools).« less

  12. Modern fiber laser beam welding of the newly-designed precipitation-strengthened nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Naffakh Moosavy, Homam; Aboutalebi, Mohammad-Reza; Seyedein, Seyed Hossein; Goodarzi, Massoud; Khodabakhshi, Meisam; Mapelli, Carlo; Barella, Silvia

    2014-04-01

    In the present research, the modern fiber laser beam welding of newly-designed precipitation-strengthened nickel-base superalloys using various welding parameters in constant heat input has been investigated. Five nickel-base superalloys with various Ti and Nb contents were designed and produced by Vacuum Induction Melting furnace. The fiber laser beam welding operations were performed in constant heat input (100 J mm-2) and different welding powers (400 and 1000 W) and velocities (40 and 100 mm s-1) using 6-axis anthropomorphic robot. The macro- and micro-structural features, weld defects, chemical composition and mechanical property of 3.2 mm weldments were assessed utilizing optical and scanning electron microscopes equipped with EDS analysis and microhardness tester. The results showed that welding with higher powers can create higher penetration-to-width ratios. The porosity formation was increased when the welding powers and velocities were increased. None of the welds displayed hot solidification and liquation cracks in 400 and 1000 W welding powers, but liquation phenomenon was observed in all the heat-affected zones. With increasing the Nb content of the superalloys the liquation length was increased. The changing of the welding power and velocity did not alter the hardness property of the welds. The hardness of welds decreased when the Ti content declined in the composition of superalloys. Finally, the 400 and 1000 W fiber laser powers with velocity of 40 and 100 m ms-1 have been offered for hot crack-free welding of the thin sheet of newly-designed precipitation-strengthened nickel-base superalloys.

  13. Relationship between crystallographic structure of the Ti{sub 2}O{sub 3}/MnS complex inclusion and microstructure in the heat-affected zone (HAZ) in steel processed by oxide metallurgy route and impact toughness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Zhihui; Liu, Shilong; Wang, Xuemin, E-mail: wxm@mater.ustb.edu.cn

    2015-08-15

    A new method based on electron back scattered diffraction (EBSD) is proposed to determine the structure of titanium oxide/MnS complex inclusion which induced the formation of intragranular acicular ferrite (IAF) in heat-affected zone (HAZ) in steel processed by oxide metallurgy route. It was found that the complex inclusion was Ti{sub 2}O{sub 3}/MnS, the orientation relationship between Ti{sub 2}O{sub 3} and MnS was also examined, and the crystallographic orientation relationship among IAF, Ti{sub 2}O{sub 3}/MnS complex inclusion, austenite, bainite formed at lower temperature is researched systematically. It was observed that MnS precipitated on Ti{sub 2}O{sub 3} at specific habit plane andmore » direction and MnS had a specific orientation relationship ((0001) Ti{sub 2}O{sub 3}//(111) MnS), <10–10> Ti{sub 2}O{sub 3}//<110> MnS) with respect to Ti{sub 2}O{sub 3}. Intragranular acicular ferrite (IAF) nucleated on MnS part of the Ti{sub 2}O{sub 3}/MnS complex inclusion had no specific orientation relationship with MnS. IAF and the surrounding bainite had different Bain groups, so that there was an increase in high angle boundaries, which was beneficial for the toughness of HAZ. - Highlights: • The inclusion of TiO{sub x}/MnS that induced IAF formation is identified to be Ti{sub 2}O{sub 3}/MnS. • The inclusion is identified based on electron back scattered diffraction (EBSD). • MnS and Ti{sub 2}O{sub 3} had specific orientation relationship of Ti{sub 2}O{sub 3}/MnS complex inclusion. • The IAFs formed on the same inclusion tend to be in one Bain group. • IAF and the surrounding bainite tend to be in different Bain groups.« less

  14. Effect of different filler wires on weld formation for fiber laser welding 6A02 Aluminum alloy

    NASA Astrophysics Data System (ADS)

    Xu, F.; Chen, L.; Lu, W.; He, E. G.

    2017-12-01

    6A02 aluminum alloy was welded by fibre laser welding with two different filler wires (ER4043 and ER5356). The weld apperance, microstructure and mechanical properties were analysed. The results show the welding course with ER4043 is more stable than that with ER5356, and the welding spatters of the former are smaller than that of the latter. The microsturtrue of the weld zone, including columnar-grains near the fusion zone and mixed microstructures (columnar grains and equiaxed grains) in the weld center zone, is finer with ER5356 than that with ER4043. So the average microhardness value of the former is higher than the latter. A great number of low melting point eutectic phases disperse in grains boundary. Due to the eutectic phases distributing more in two zones (overheat zone near the fusion zone and the weld center zone) than other zones, the welded joints have these two low hardness and weak strength zones. The ultimate strength and the elongations after fracture of the welded joints with ER4043 are lower than that with ER5356 slihgtly. However, the former are improved obviously and higher than the latter after heat treatment. The tensile properties of all joints can reach to the base material level. And the tensile fractures always occur near the fusion zone.

  15. Hybrid/Tandem Laser-Arc Welding of Thick Low Carbon Martensitic Stainless Steel Plates =

    NASA Astrophysics Data System (ADS)

    Mirakhorli, Fatemeh

    High efficiency and long-term life of hydraulic turbines and their assemblies are of utmost importance for the hydropower industry. Usually, hydroelectric turbine components are made of thick-walled low carbon martensitic stainless steels. The assembly of large hydroelectric turbine components has been a great challenge. The use of conventional welding processes involves typical large groove design and multi-pass welding to fill the groove which exposes the weld to a high heat input creating relatively large fusion zone and heat affected zone. The newly-developed hybrid/tandem laser-arc welding technique is believed to offer a highly competitive solution to improve the overall hydro-turbine performance by combining the high energy density and fast welding speed of the laser welding technology with the good gap bridging and feeding ability of the gas metal arc welding process to increase the productivity and reduce the consumable material. The main objective of this research work is to understand different challenges appearing during hybrid laser-arc welding (HLAW) of thick gauge assemblies of low carbon 13%Cr- 4%Ni martensitic stainless steel and find a practical solution by adapting and optimizing this relatively new welding process in order to reduce the number of welding passes necessary to fill the groove gap. The joint integrity was evaluated in terms of microstructure, defects and mechanical properties in both as-welded and post-welded conditions. A special focus was given to the hybrid and tandem laser-arc welding technique for the root pass. Based on the thickness of the low carbon martensitic stainless steel plates, this work is mainly focused on the following two tasks: • Single pass hybrid laser-arc welding of 10-mm thick low carbon martensitic stainless steel. • Multi-pass hybrid/tandem laser-arc welding of 25-mm thick martensitic stainless steel.

  16. 49 CFR 179.102-4 - Vinyl fluoride, stabilized.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Include impact specimens of weld metal and heat affected zone prepared and tested in accordance with AAR.... (b) Insulation must be of approved material. (c) Excess flow valves must be installed under all... capacity stencil, MINIMUM OPERATING TEMPERATURE _ °F. (i) The tank car and insulation must be designed to...

  17. 49 CFR 180.417 - Reporting and record retention requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... other service that may cause stress corrosion cracking, must make a written report containing the... stress relieved after fabrication; (v) Name and address of the person performing the test and the date of... must be furnished to indicate the location of defects detected, such as in weld, heat-affected zone...

  18. 49 CFR 180.417 - Reporting and record retention requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... other service that may cause stress corrosion cracking, must make a written report containing the... stress relieved after fabrication; (v) Name and address of the person performing the test and the date of... must be furnished to indicate the location of defects detected, such as in weld, heat-affected zone...

  19. 49 CFR 180.417 - Reporting and record retention requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... other service that may cause stress corrosion cracking, must make a written report containing the... stress relieved after fabrication; (v) Name and address of the person performing the test and the date of... must be furnished to indicate the location of defects detected, such as in weld, heat-affected zone...

  20. Multiple-objective optimization in precision laser cutting of different thermoplastics

    NASA Astrophysics Data System (ADS)

    Tamrin, K. F.; Nukman, Y.; Choudhury, I. A.; Shirley, S.

    2015-04-01

    Thermoplastics are increasingly being used in biomedical, automotive and electronics industries due to their excellent physical and chemical properties. Due to the localized and non-contact process, use of lasers for cutting could result in precise cut with small heat-affected zone (HAZ). Precision laser cutting involving various materials is important in high-volume manufacturing processes to minimize operational cost, error reduction and improve product quality. This study uses grey relational analysis to determine a single optimized set of cutting parameters for three different thermoplastics. The set of the optimized processing parameters is determined based on the highest relational grade and was found at low laser power (200 W), high cutting speed (0.4 m/min) and low compressed air pressure (2.5 bar). The result matches with the objective set in the present study. Analysis of variance (ANOVA) is then carried out to ascertain the relative influence of process parameters on the cutting characteristics. It was found that the laser power has dominant effect on HAZ for all thermoplastics.

  1. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 1: Aft Skirt analysis

    NASA Technical Reports Server (NTRS)

    Berry, David M.; Stansberry, Mark

    1989-01-01

    Using the ANSYS finite element program, a global model of the aft skirt and a detailed nonlinear model of the failure region was made. The analysis confirmed the area of failure in both STA-2B and STA-3 tests as the forging heat affected zone (HAZ) at the aft ring centerline. The highest hoop strain in the HAZ occurs in this area. However, the analysis does not predict failure as defined by ultimate elongation of the material equal to 3.5 percent total strain. The analysis correlates well with the strain gage data from both the Wyle influence test of the original design aft sjirt and the STA-3 test of the redesigned aft skirt. it is suggested that the sensitivity of the failure area material strength and stress/strain state to material properties and therefore to small manufacturing or processing variables is the most likely cause of failure below the expected material ultimate properties.

  2. Tensile Behavior of Electron Beam-Welded and Post-Weld Vacuum-Annealed Nb-10% Hf-1% Ti Refractory Alloy Weldments

    NASA Astrophysics Data System (ADS)

    Anil Kumar, V.; Gupta, R. K.; Venkateswaran, T.; Ram Kumar, P.

    2018-02-01

    Nb-10% Hf-1% Ti refractory alloy is a high performance material extensively used for high temperature applications. Electron beam welding is one of the most widely used techniques to join refractory and reactive alloys. Bigger sizes of nozzles for rocket propulsion applications can be either made through deep drawing and flow turning route or by roll bending and welding route both using sheets/plates as input material for fabrication. The latter is a more economical option for mass production of the hardware using such exotic and expensive alloys. In view of this, both as-welded (AW) coupon and weld plus post-weld vacuum-annealed (AW + VA) coupon have been prepared to study their mechanical behavior. It has been observed that tensile strength and ductility have not been reduced in both these conditions vis-à-vis the base metal, confirming weld efficiency of the alloy to be 100%. Microhardness is found to be 150-160 VHN in the base metal and 200-225 VHN in the weld fusion zone in AW condition, which became uniform (145-155 VHN) throughout the weldment in AW + VA condition. Microstructure of the weldment in AW condition is found to be consisting of grains solidified by epitaxial mode from base metal toward the weld centre. In AW + VA condition, improvement in tensile elongation is observed, which is found to be due to the presence of homogenized grains/more uniform microstructure near the heat-affected zone as compared to the steep gradient in grain size in different zones in the weld in AW condition.

  3. Research on Wheel Steel Welding Cracks Caused by Quenching Stress

    NASA Astrophysics Data System (ADS)

    Guan-nan, Li

    Wheel steel products of Han Steel occurred welding cracking when using in a wheel factory, by analyzing the crack in the wheel steel weld cracking with microstructure analysis and spectrum analysis, test results showed the grain in heat affect zone serious grow, and the user at the end of the flash-butt quenched from a high temperature to room temperature at welding seam, larger cooling rate to generate sufficiently large quenching stress, increased the risk of cracking along the grain boundary. When the stress reaches a certain level, there will be a greater area of the grain cracks at the location of welding seam, eventually leading to weld cracking. We develop measures for improvement to solving this problem, we suggest that the cooling mode at welding seam should be slow cooling or air cooling after the rim welding process, welding current range is 7800 9500 amps, upsetting time is 0.2 seconds, these measures can improve the welding quality of wheel steel products and reduce the risk of welding cracks.

  4. Phase structures and morphologies of tempered CA6NM stainless steel welded by hybrid laser-arc process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirakhorli, F., E-mail: Fatemeh.mirakhorli.1@ens.e

    The post-weld tempered microstructure of hybrid laser-arc welded CA6NM, a cast low carbon martensitic stainless steel, was investigated. The microstructural evolutions from the fusion zone to the base metal were characterized in detail using optical microscopy, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), X-ray diffraction (XRD) and microhardness techniques. The fusion zone, in its post-weld tempered condition, consisted of tempered lath martensite, residual delta-ferrite with various morphologies, reversed austenite and chromium carbides. The reversed austenite, which can be detected through both EBSD and XRD techniques, was found to be finely dispersed along the martensite lath boundaries, particularly at triplemore » junctions. Based on the EBSD analysis, the orientation relationship between the reversed austenite and the adjacent martensite laths seemed to follow the Kurdjumov-Sachs (K-S) model. The results also revealed the presence of the reversed austenite in the different regions of the heat affected zone after post-weld tempering. The microindentation hardness distribution was measured, and correlated to the evolution of the corresponding microstructure across the welds. - Highlights: •The EBSD analysis was performed on hybrid laser-arc welded CA6NM. •The FZ consisted of tempered lath martensite, reversed austenite, carbides and δ ferrite after tempering. •The reversed γ was formed along the α′ lath boundaries, particularly at triple junctions.« less

  5. Hybrid Laser-Arc Welding of 10-mm-Thick Cast Martensitic Stainless Steel CA6NM: As-Welded Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Mirakhorli, Fatemeh; Cao, Xinjin; Pham, Xuan-Tan; Wanjara, Priti; Fihey, Jean-Luc

    2016-07-01

    Cast CA6NM martensitic stainless steel plates, 10 mm in thickness, were welded using hybrid laser-arc welding. The effect of different welding speeds on the as-welded joint integrity was characterized in terms of the weld bead geometry, defects, microstructure, hardness, ultimate tensile strength, and impact energy. Significant defects such as porosity, root humping, underfill, and excessive penetration were observed at a low welding speed (0.5 m/min). However, the underfill depth and excessive penetration in the joints manufactured at welding speeds above 0.75 m/min met the specifications of ISO 12932. Characterization of the as-welded microstructure revealed untempered martensite and residual delta ferrite dispersed at prior-austenite grain boundaries in the fusion zone. In addition, four different heat-affected zones in the weldments were differentiated through hardness mapping and inference from the Fe-Cr-Ni ternary phase diagram. The tensile fracture occurred in the base metal for all the samples and fractographic analysis showed that the crack path is within the martensite matrix, along primary delta ferrite-martensite interfaces and within the primary delta ferrite. Additionally, Charpy impact testing demonstrated slightly higher fracture energy values and deeper dimples on the fracture surface of the welds manufactured at higher welding speeds due to grain refinement and/or lower porosity.

  6. Continuous cooling transformation behavior and impact toughness in heat-affected zone of Nb-containing fire-resistant steel

    NASA Astrophysics Data System (ADS)

    Wang, Hong Hong; Qin, Zhan Peng; Wan, Xiang Liang; Wei, Ran; Wu, Kai Ming; Misra, Devesh

    2017-09-01

    Simulated heat-affected zone continuous cooling transformation diagram was developed for advanced fireresistant steel. Over a wide range of cooling rates, corresponding to t8/5 from 6 s to 150 s, granular bainite was the dominant transformation constituent, while the morphology of less dominant martensite-austenite (M-A) constituent changed from film-like to block-type constituent; but the hardness remained similar to the average value of 190-205 HV (0.2). The start and finish transformation temperature was high at 700 °C and 500 °C, and is different from the conventional high strength low alloy steels. It is believed that the high-content (0.09 wt%) of Nb may promote bainite transformation at relatively high temperatures. Martenistic matrix was not observed at high cooling rate and the film-like M-A constituent and blocky M-A constituent with thin film of retained austenite and lath martensite were observed on slow cooling. Excellent impact toughness was obtained in the heat-affected zone with 15-75 kJ/cm welding heat input.

  7. Evaluation Of Four Welding Arc Processes Applied To 6061 Aluminium Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benoit, A.; Laboratoire de Genie des Materiaux et Procedes Associes; Paillard, P.

    At a time when greenhouse gas emissions must be reduced, the use of the aluminium alloys is expanding, in particular in the transportation industry. In order to extend the possibilities of aluminium assembly design, new Metal Inert Gas (MIG) welding processes have been conceived. They work at lower temperatures than usual arc processes (classic MIG or Tungsten Inert Gas). This study compares four arc welding processes, applied to the 6061 aluminium alloy. These four weld processes have been studied through the metallurgical analysis of the weld beads. Metallography, micro-hardness testings, X Ray radiography have been carried out on the producedmore » weld beads. The processes are classified according to the quality of the beads like geometry of beads, size of the heat affected zone and presence of defects.« less

  8. Reviews on laser cutting technology for industrial applications

    NASA Astrophysics Data System (ADS)

    Muangpool, T.; Pullteap, S.

    2018-03-01

    In this paper, an overview of the laser technology applied for the industrial has been reviewed. In general, this technology was used in several engineering applications such as industrial, medical, science, research sectors, etc. Focusing on the laser technology in the industrial section, it was, normally, employed for many purposes i.e. target marking, welding, drilling, and also cutting. Consequently, the laser cutting technology was, however, divided into three classifications YAG, CO2, and fiber laser, respectively. Each laser types have different advantages and disadvantages depending on the material type. The advantages by using laser cutting compared with the general cutting machines were exploited in terms of narrow kerf, high cutting speed, low heat-affected zone (HAZ), improve efficiency of the cutting process, high accuracy, etc. However, the main objectives from the technology used were increasing of the products and also decreasing the production cost. In the opposite way, some disadvantages of the technology were summarized by complexity to operate, high maintenance cost, and also high power consumption. In Thailand industry, there were many factories used this technology as a cutting process. Unfortunately, only few researches were published. It might explains that this technology were difficulty to develop, high investment, and also easy to import from aboard. For becoming to the Thailand 4.0 community, the Thailand industry might awareness to reduce the importing machine and boosting some policies to create novel innovative / know-how from the own country.

  9. Weld Repair of Thin Aluminum Sheet

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Mitchell, M. J.

    1986-01-01

    Weld repairing of thin aluminum sheets now possible, using niobium shield and copper heat sinks. Refractory niobium shield protects aluminum adjacent to hole, while copper heat sinks help conduct heat away from repair site. Technique limits tungsten/inert-gas (TIG) welding bombardment zone to melt area, leaving surrounding areas around weld unaffected. Used successfully to repair aluminum cold plates on Space Shuttle, Commercial applications, especially in sealing fractures, dents, and holes in thin aluminum face sheets or clad brazing sheet in cold plates, heat exchangers, coolers, and Solar panels. While particularly suited to thin aluminum sheet, this process also used in thicker aluminum material to prevent surface damage near weld area.

  10. GTA welding and heat treating of high purity aluminum. [-452/sup 0/F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voigt, R.C.; Loper, C.R. Jr.

    1979-01-01

    Gas tungsten arc welding is a suitable way to join high purity aluminum with only small increases in the electrical resistivity at 4.2 K (i.e., -269 C or -452 F) if proper welding procedures are used. High purity aluminum weld zone properties, useful for the design of cryogenic superconducting devices, are now available. The additional electrical resistivity caused by welding is independent of original base metal resistivity and can be decreased significantly by heat treatments as low as 260 C (500 F) for 30 minutes. Tungsten contamination caused from welding is small (on the order of 0.2 ppM) but itmore » is a significant contribution to weld zone resistivity. This suggests that other welding techniques such as laser welding or electron beam welding may be successful alternatives. Additional GTA welding tests for various welding conditions and welding procedures would lead to a greater understanding of the tungsten emission levels during welding. Perturbations during GTA welding such as electrode spitting or electrode contact with the weld metal must be eliminated to successfully weld high purity aluminum. Improper welding techniques causing arc instabilities, for any reason, cause highly resistive welds that must be properly repaired.« less

  11. HEAT INPUT AND POST WELD HEAT TREATMENT EFFECTS ON REDUCED-ACTIVATION FERRITIC/MARTENSITIC STEEL FRICTION STIR WELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Wei; Chen, Gaoqiang; Chen, Jian

    Reduced-activation ferritic/martensitic (RAFM) steels are an important class of structural materials for fusion reactor internals developed in recent years because of their improved irradiation resistance. However, they can suffer from welding induced property degradations. In this paper, a solid phase joining technology friction stir welding (FSW) was adopted to join a RAFM steel Eurofer 97 and different FSW parameters/heat input were chosen to produce welds. FSW response parameters, joint microstructures and microhardness were investigated to reveal relationships among welding heat input, weld structure characterization and mechanical properties. In general, FSW heat input results in high hardness inside the stir zonemore » mostly due to a martensitic transformation. It is possible to produce friction stir welds similar to but not with exactly the same base metal hardness when using low power input because of other hardening mechanisms. Further, post weld heat treatment (PWHT) is a very effective way to reduce FSW stir zone hardness values.« less

  12. High power x-ray welding of metal-matrix composites

    DOEpatents

    Rosenberg, Richard A.; Goeppner, George A.; Noonan, John R.; Farrell, William J.; Ma, Qing

    1999-01-01

    A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10.sup.4 watts/cm.sup.2 and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.

  13. Use of photostress and strain gages to analyze behavior of weldments

    NASA Astrophysics Data System (ADS)

    Gambrell, S. C., Jr.

    1993-09-01

    Tensile and pure bending tests were conducted on specimens having welded joints made from 2219-T87 aluminum alloy and 2319 filler. Data were collected using photoelastic coatings and strain gages. Stress-strain relationships and contraction ratios were determined at several points in a grid covering the weld material and heat affected zone. Material behavior was nonlinear and nonuniform at all points in the grid and contraction ratios did not conform to those predicted by Chakrabarty's plasticity theory. Yielding in joints made using four new welding procedures was examined. None of the new procedures produced more uniform yielding in the joint.

  14. The defects and microstructure in the fusion zone of multipass laser welded joints with Inconel 52M filler wire for nuclear power plants

    NASA Astrophysics Data System (ADS)

    Li, Gang; Lu, Xiaofeng; Zhu, Xiaolei; Huang, Jian; Liu, Luwei; Wu, Yixiong

    2017-09-01

    The defects and microstructure in the fusion zone of multipass laser welded joints with Inconel 52M filler wire are investigated for nuclear power plants. Experimental results indicate that the incomplete fusion forms as the deposited metals do not completely cover the groove during multipass laser welding. The dendritic morphologies are observed on the inner surface of the porosity in the fusion zone. Many small cellular are found in the zones near the fusion boundary. With solidification preceding, cellular gradually turn into columnar dendrites and symmetrical columnar dendrites are exhibited in the weld center of the fusion zone. The fine equiaxed grains form and columnar dendrites disappear in the remelted zone of two passes. The dendrite arm spacing in the fusion zone becomes widened with increasing welding heat input. Nb-rich carbides/carbonitrides are preferentially precipitated in the fusion zone of multipass laser welded joints. In respect to high cooling rate during multipass laser welding, element segregation could be insufficient to achieve the component of Laves phase.

  15. Damage Tolerance Assessment of Friction Pull Plug Welds in an Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of cryogenic propellant tanks. Self-reacting friction stir welding is one variation of the friction stir weld process being developed for manufacturing tanks. Friction pull plug welding is used to seal the exit hole that remains in a circumferential self-reacting friction stir weld. A friction plug weld placed in a self-reacting friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data relating residual strength capability to flaw size in an aluminum alloy friction plug weld will be presented.

  16. Molecular dynamics modeling of bonding two materials by atomic scale friction stir welding

    NASA Astrophysics Data System (ADS)

    Konovalenko S., Iv.; Konovalenko, Ig. S.; Psakhie, S. G.

    2017-12-01

    Molecular dynamics model of atomic scale friction stir welding has been developed. Formation of a butt joint between two crystallites was modeled by means of rotating rigid conical tool traveling along the butt joint line. The formed joint had an intermixed atomic structure composed of atoms initially belonged to the opposite mated piece of metal. Heat removal was modeled by adding the extra viscous force to peripheral atomic layers. This technique provides the temperature control in the tool-affected zone during welding. Auxiliary vibration action was added to the rotating tool. The model provides the variation of the tool's angular velocity, amplitude, frequency and direction of the auxiliary vibration action to provide modeling different welding modes.

  17. Welding abilities of UFG metals

    NASA Astrophysics Data System (ADS)

    Morawiński, Łukasz; Chmielewski, Tomasz; Olejnik, Lech; Buffa, Gianluca; Campanella, Davide; Fratini, Livan

    2018-05-01

    Ultrafine Grained (UFG) metals are characterized by an average grain size of <1 µm and mostly high angle grain boundaries. These materials exhibit exceptional improvements in strength, superplastic behaviour and in some cases enhanced biocompatibility. UFG metals barstock can be fabricated effectively by means of Severe Plastic Deformation (SPD) methods. However, the obtained welded joints with similar properties to the base of UFG material are crucial for the production of finished engineering components. Conventional welding methods based on local melting of the joined edges cannot be used due to the UFG microstructure degradation caused by the heat occurrence in the heat affected zone. Therefore, the possibility of obtaining UFG materials joints with different shearing plane (SP) positions by means of friction welded processes, which do not exceed the melting temperature during the process, should be investigated. The article focuses on the Linear Friction Welding (LFW) method, which belongs to innovative welding processes based on mixing of the friction-heated material in the solid state. LFW is a welding process used to joint bulk components. In the process, the friction forces work due to the high frequency oscillation and the pressure between the specimens is converted in thermal energy. Character and range of recrystallization can be controlled by changing LFW parameters. Experimental study on the welded UFG 1070 aluminum alloy by means of FLW method, indicates the possibility of reducing the UFG structure degradation in the obtained joint. A laboratory designed LFW machine has been used to weld the specimens with different contact pressure and oscillation frequency.

  18. 49 CFR 179.102-4 - Vinyl fluoride, stabilized.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... weld metal and heat affected zone prepared and tested in accordance with AAR Specifications for Tank...) Insulation must be of approved material. (c) Excess flow valves must be installed under all liquid and vapor... OPERATING TEMPERATURE _ °F. (i) The tank car and insulation must be designed to prevent the vapor pressure...

  19. 49 CFR 179.102-4 - Vinyl fluoride, stabilized.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... weld metal and heat affected zone prepared and tested in accordance with AAR Specifications for Tank...) Insulation must be of approved material. (c) Excess flow valves must be installed under all liquid and vapor... OPERATING TEMPERATURE _ °F. (i) The tank car and insulation must be designed to prevent the vapor pressure...

  20. 49 CFR 179.102-4 - Vinyl fluoride, stabilized.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... weld metal and heat affected zone prepared and tested in accordance with AAR Specifications for Tank...) Insulation must be of approved material. (c) Excess flow valves must be installed under all liquid and vapor... OPERATING TEMPERATURE _ °F. (i) The tank car and insulation must be designed to prevent the vapor pressure...

  1. 49 CFR 179.102-4 - Vinyl fluoride, stabilized.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... weld metal and heat affected zone prepared and tested in accordance with AAR Specifications for Tank...) Insulation must be of approved material. (c) Excess flow valves must be installed under all liquid and vapor... OPERATING TEMPERATURE _ °F. (i) The tank car and insulation must be designed to prevent the vapor pressure...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhili; Bunn, Jeffrey R; Tzelepis, Demetrios A

    Hydrogen induced cracking (HIC) has been a persistent issue in welding of high-strength steels. Mitigating residual stresses is one of the most efficient ways to control HIC. The current study develops a proactive in-process weld residual stress mitigation technique, which manipulates the thermal expansion and contraction sequence in the weldments during welding process. When the steel weld is cooled after welding, martensitic transformation will occur at a temperature below 400 C. Volume expansion in the weld due to the martensitic transformation will reduce tensile stresses in the weld and heat affected zone and in some cases produce compressive residual stressesmore » in the weld. Based on this concept, a customized filler wire which undergoes a martensitic phase transformation during cooling was developed. The new filler wire shows significant improvement in terms of reducing the tendency of HIC in high strength steels. Bulk residual stress mapping using neutron diffraction revealed reduced tensile and compressive residual stresses in the welds made by the new filler wire.« less

  3. Post-weld Tempered Microstructure and Mechanical Properties of Hybrid Laser-Arc Welded Cast Martensitic Stainless Steel CA6NM

    NASA Astrophysics Data System (ADS)

    Mirakhorli, Fatemeh; Cao, Xinjin; Pham, Xuan-Tan; Wanjara, Priti; Fihey, Jean-Luc

    2016-12-01

    Manufacturing of hydroelectric turbine components involves the assembly of thick-walled stainless steels using conventional multi-pass arc welding processes. By contrast, hybrid laser-arc welding may be an attractive process for assembly of such materials to realize deeper penetration depths, higher production rates, narrower fusion, and heat-affected zones, and lower distortion. In the present work, single-pass hybrid laser-arc welding of 10-mm thick CA6NM, a low carbon martensitic stainless steel, was carried out in the butt joint configuration using a continuous wave fiber laser at its maximum power of 5.2 kW over welding speeds ranging from 0.75 to 1.2 m/minute. The microstructures across the weldment were characterized after post-weld tempering at 873 K (600 °C) for 1 hour. From microscopic examinations, the fusion zone was observed to mainly consist of tempered lath martensite and some residual delta-ferrite. The mechanical properties were evaluated in the post-weld tempered condition and correlated to the microstructures and defects. The ultimate tensile strength and Charpy impact energy values of the fully penetrated welds in the tempered condition were acceptable according to ASTM, ASME, and industrial specifications, which bodes well for the introduction of hybrid laser-arc welding technology for the manufacturing of next generation hydroelectric turbine components.

  4. Optimization of laser welding thin-gage galvanized steel via response surface methodology

    NASA Astrophysics Data System (ADS)

    Zhao, Yangyang; Zhang, Yansong; Hu, Wei; Lai, Xinmin

    2012-09-01

    The increasing demand of light weight and durability makes thin-gage galvanized steels (<0.6 mm) attractive for future automotive applications. Laser welding, well known for its deep penetration, high speed and small heat affected zone, provides a potential solution for welding thin-gage galvanized steels in automotive industry. In this study, the effect of the laser welding parameters (i.e. laser power, welding speed, gap and focal position) on the weld bead geometry (i.e. weld depth, weld width and surface concave) of 0.4 mm-thick galvanized SAE1004 steel in a lap joint configuration has been investigated by experiments. The process windows of the concerned process parameters were therefore determined. Then, response surface methodology (RSM) was used to develop models to predict the relationship between the processing parameters and the laser weld bead profile and identify the correct and optimal combination of the laser welding input variables to obtain superior weld joint. Under the optimal welding parameters, defect-free weld were produced, and the average aspect ratio increased about 30%, from 0.62 to 0.83.

  5. Microstructural and mechanical characterization of CO{sub 2} laser and gas tungsten arc welds of an Al-Li-Cu alloy 2195

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, K.H.; Baeslack, W.A. III; Szabo, A.

    1994-12-31

    Lithium-containing aluminum alloys offer an attractive combination of low density and high strength and stiffness and have been the focus of vigorous research for their promising aerospace applications. To achieve the full potential advantages in using these alloys, the integrity of welded joints, both n the fusion zone and the heat-affected zone, must be ensured. In the present study, Weldalite{sup TM} 049 (designated as alloy 2195) with nominal composition of Al-1.0Li-4.0Cu-0.4Mg0.4Ag-0.14Zr (wt%) was welded autogenously using the gas tungsten-arc (GTA) and CO{sub 2} laser beam (LB) welding processes. The average ultimate tensile strengths for as-welded, 160{degrees}C/16 h-aged, and 190{degrees}C/16 h-agedmore » GTA welds were 296.4 MPa, 304.6 MPa, and 336.8 MPa, and corresponded to joint efficiencies of 61.4%, 48.1% and 56.0%, respectively. Porosity was found occasionally in the laser welds and slightly affected the performance of the aluminum weldments. For laser welds, average ultimate tensile strengths and corresponding joint efficiencies for a-welded, 160{degrees}C/16 h-aged, and 190{degrees}C/16 h-aged weldments were 293.2 MPa (60.8%) 305.9 MPa (48.3%), and 331.0 MPa (55.0%), respectively. Scanning electron fractography revealed that failure of the GTA and LB tensile specimens occurred either within the weld metal or along the fusion boundary. The latter was related to the existence of an equiaxed band along the fusion boundary.« less

  6. Effects of Heat Treatment on Interface Microstructure and Mechanical Properties of Explosively Welded Ck60/St37 Plates

    NASA Astrophysics Data System (ADS)

    Yazdani, Majid; Toroghinejad, Mohammad Reza; Hashemi, Seyyed Mohammad

    2016-12-01

    This study explores the effects of heat treatment on the microstructure and mechanical properties of explosively welded Ck60 steel/St37 steel. The objective is to find an economical way for manufacturing bimetallic plates that can be used in the rolling stand of hot rolling mill units. The explosive ratio and stand-off distance are set at 1.7 and 1.5 t ( t = flyer thickness), respectively. Since explosive welding is accompanied by such undesirable metallurgical effects as remarkable hardening, severe plastic deformation, and even formation of local melted zones near the interface, heat treatment is required to overcome or alleviate these adverse effects. For this purpose, the composites are subjected to heat treatment in a temperature range of 600-700 °C at a rate of 90 °C/h for 1 h. Results demonstrate well-bonded composite plates with a wavy interface. In the as-welded case, vortex zones are formed along the interface; however, they are transformed into fine grains upon heat treatment. Microhardness is also observed to be maximum near the interface in the welded case before it decreases with increasing temperature. Shear strength is the highest in the as-welded specimen, which later decreases as a result of heat treatment. Moreover, the energy absorbed by the heat-treated specimens is observed to increase with increasing temperature so that the lowest value of absorbed energy belongs to the as-welded specimen. Finally, fractography is carried out using the scanning electron microscope to examine the specimens subjected to shear and impact tests. As a result of heat treatment, fracture surfaces exhibit dimpled ruptures and fail in the mixed mode, while failure in the as-welded specimens predominantly occurs in the brittle mode.

  7. M551 metals melting experiment

    NASA Technical Reports Server (NTRS)

    Busch, G.

    1977-01-01

    Electron beam welding studies were conducted in the Skylab M551 metals melting experiment, on three different materials; namely 2219-T87 aluminum alloy, 304L stainless steel, and commercially pure tantalum (0.5 wt % columbium). Welds were made in both one gravity and zero gravity (Skylab) environments. Segments from each of the welds were investigated by microhardness, optical microscopy, scanning microscopy, and electron probe techniques. In the 2219-T87 aluminum alloy samples, macroscopic banding and the presence of an eutectic phase in the grain boundaries of the heat affected zone were observed. The stainless steel samples exhibited a sharp weld interface and macroscopic bands. The primary microstructural features found in the tantalum were the presence of either columnar grains (ground base) or equiaxed grains (Skylab). The factors contributing to these effects are discussed and the role of reduced gravity in welding is considered.

  8. Mechanical Properties and Wear Behavior of AA5182/WC Nanocomposite Fabricated by Friction Stir Welding at Different Tool Traverse Speeds

    NASA Astrophysics Data System (ADS)

    Paidar, Moslem; Asgari, Ali; Ojo, Olatunji Oladimeji; Saberi, Abbas

    2018-03-01

    Grain growth inhibition at the heat-affected zone, improved weld strength and superior tribological properties of welds are desirable attributes of modern manufacturing. With the focused on these attributes, tungsten carbide (WC) nanoparticles were employed as reinforcements for the friction stir welding of 5-mm-thick AA5182 aluminum alloy by varying tool traverse speeds. The microstructure, microhardness, ultimate tensile strength, fracture and wear behavior of the resultant WC-reinforced welds were investigated, while unreinforced AA5182 welds were employed as controls for the study. The result shows that the addition of WC nanoparticles causes substantial grain refinement within the weld nugget. A decrease in traverse speed caused additional particle fragmentation, improved hardness value and enhanced weld strength in the reinforced welds. Improved wear rate and friction coefficient of welds were attained at a reduced traverse speed of 100 mm/min in the WC-reinforced welds. This improvement is attributed to the effects of reduced grain size/grain fragmentation and homogeneous dispersion of WC nanoparticles within the WC-reinforced weld nugget.

  9. Microstructure characterization and charpy toughness of P91 weldment for as-welded, post-weld heat treatment and normalizing & tempering heat treatment

    NASA Astrophysics Data System (ADS)

    Pandey, Chandan; Mahapatra, M. M.; Kumar, Pradeep; Giri, A.

    2017-09-01

    The effect of weld groove design and heat treatment on microstructure evolution and Charpy toughness of P91 pipe weldments was studied. The P91 pipe weldments were subjected to subcritical post weld heat treatment (760 °C-2 h) and normalizing/tempering conditions (normalized-1040 °C/40 min, air cooled; tempered 760 °C/2 h, air cooled) were employed. The influence of subsequent PWHT and N&T treatment on the microstructure of various zone of P91 pipe weldments were also investigated. The present investigation also described the effect of PWHT and N&T treatment on hardness, grain size, precipitate size, inter-particle spacing and fraction area of precipitates present in each zone of P91 pipe weldments. The result indicated great impact of heat treatment on the Charpy toughness and microstructure evolution of P91 weldments. The N&T treatment was found to be more effective heat treatment compared to subsequent PWHT. Charpy toughness value was found to be higher for narrow-groove design as compared to conventional V-groove design.

  10. Effect of Multiple Local Repairs on Microstructure and Mechanical Properties of T24 Steel Welded Joint

    NASA Astrophysics Data System (ADS)

    Chaus, Alexander S.; Kuhajdová, Andrea; Marônek, Milan; Dománková, Mária

    2018-05-01

    The effect of multiple local repairs on the microstructure and mechanical properties of the T24 steel welded joints was studied. T24 steel tubes were butt-welded by the GTAW method. Peripheral welded joints were made in four locations of the tube. In order to simulate the repair procedure, the welds were cut off from the root and the first local repair was performed. Other two local repairs were carried out in the same way. After each local repair, the microstructure and mechanical properties of the joints were evaluated. The results of the mechanical tests demonstrate that only two local repairs can be performed on the T24 steel peripheral welded joint. After the third local repair, impact energy of the welded joint was lower than required value, which is attributed to the coarser martensite and the coarser carbide precipitates formed in the heat-affected zone, compared with the weld metal.

  11. Optimization of Gas Metal Arc Welding Process Parameters

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Khurana, M. K.; Yadav, Pradeep K.

    2016-09-01

    This study presents the application of Taguchi method combined with grey relational analysis to optimize the process parameters of gas metal arc welding (GMAW) of AISI 1020 carbon steels for multiple quality characteristics (bead width, bead height, weld penetration and heat affected zone). An orthogonal array of L9 has been implemented to fabrication of joints. The experiments have been conducted according to the combination of voltage (V), current (A) and welding speed (Ws). The results revealed that the welding speed is most significant process parameter. By analyzing the grey relational grades, optimal parameters are obtained and significant factors are known using ANOVA analysis. The welding parameters such as speed, welding current and voltage have been optimized for material AISI 1020 using GMAW process. To fortify the robustness of experimental design, a confirmation test was performed at selected optimal process parameter setting. Observations from this method may be useful for automotive sub-assemblies, shipbuilding and vessel fabricators and operators to obtain optimal welding conditions.

  12. Thermo-Mechanical Modeling of Laser-Mig Hybrid Welding (lmhw)

    NASA Astrophysics Data System (ADS)

    Kounde, Ludovic; Engel, Thierry; Bergheau, Jean-Michel; Boisselier, Didier

    2011-01-01

    Hybrid welding is a combination of two different technologies such as laser (Nd: YAG, CO2…) and electric arc welding (MIG, MAG / TIG …) developed to assemble thick metal sheets (over 3 mm) in order to reduce the required laser power. As a matter of fact, hybrid welding is a lso used in the welding of thin materials to benefit from process, deep penetration and gap limit. But the thermo-mechanical behaviour of thin parts assembled by LMHW technology for railway cars production is far from being controlled the modeling and simulation contribute to the assessment of the causes and effects of the thermo mechanical behaviour in the assembled parts. In order to reproduce the morphology of melted and heat-affected zones, two analytic functions were combined to model the heat source of LMHW. On one hand, we applied a so-called "diaboloïd" (DB) which is a modified hyperboloid, based on experimental parameters and the analysis of the macrographs of the welds. On the other hand, we used a so-called "double ellipsoïd" (DE) which takes the MIG only contribution including the bead into account. The comparison between experimental result and numerical result shows a good agreement.

  13. Dissimilar Joining of Stainless Steel and 5083 Aluminum Alloy Sheets by Gas Tungsten Arc Welding-Brazing Process

    NASA Astrophysics Data System (ADS)

    Cheepu, Muralimohan; Srinivas, B.; Abhishek, Nalluri; Ramachandraiah, T.; Karna, Sivaji; Venkateswarlu, D.; Alapati, Suresh; Che, Woo Seong

    2018-03-01

    The dissimilar joining using gas tungsten arc welding - brazing of 304 stainless steel to 5083 Al alloy had been conducted with the addition of Al-Cu eutectic filler metal. The interface microstructure formation between filler metal and substrates, and spreading of the filler metal were studied. The interface microstructure between filler metal and aluminum alloy characterized that the formation of pores and elongated grains with the initiation of micro cracks. The spreading of the liquid braze filler on stainless steel side packed the edges and appeared as convex shape, whereas a concave shape has been formed on aluminum side. The major compounds formed at the fusion zone interface were determined by using X-ray diffraction techniques and energy-dispersive X-ray spectroscopy analysis. The micro hardness at the weld interfaces found to be higher than the substrates owing to the presence of Fe2Al5 and CuAl2 intermetallic compounds. The maximum tensile strength of the weld joints was about 95 MPa, and the tensile fracture occurred at heat affected zone on weak material of the aluminum side and/or at stainless steel/weld seam interface along intermetallic layer. The interface formation and its effect on mechanical properties of the welds during gas tungsten arc welding-brazing has been discussed.

  14. Microstructure and Mechanical Properties of Fiber-Laser-Welded and Diode-Laser-Welded AZ31 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Chowdhury, S. M.; Chen, D. L.; Bhole, S. D.; Powidajko, E.; Weckman, D. C.; Zhou, Y.

    2011-07-01

    The microstructures, tensile properties, strain hardening, and fatigue strength of fiber-laser-welded (FLW) and diode-laser-welded (DLW) AZ31B-H24 magnesium alloys were studied. Columnar dendrites near the fusion zone (FZ) boundary and equiaxed dendrites at the center of FZ, with divorced eutectic β-Mg17Al12 particles, were observed. The FLW joints had smaller dendrite cell sizes with a narrower FZ than the DLW joints. The heat-affected zone consisted of recrystallized grains. Although the DLW joints fractured at the center of FZ and exhibited lower yield strength (YS), ultimate tensile strength (UTS), and fatigue strength, the FLW joints failed at the fusion boundary and displayed only moderate reduction in the YS, UTS, and fatigue strength with a joint efficiency of ~91 pct. After welding, the strain rate sensitivity basically vanished, and the DLW joints exhibited higher strain-hardening capacity. Stage III hardening occurred after yielding in both base metal (BM) and welded samples. Dimple-like ductile fracture characteristics appeared in the BM, whereas some cleavage-like flat facets together with dimples and river marking were observed in the welded samples. Fatigue crack initiated from the specimen surface or near-surface defects, and crack propagation was characterized by the formation of fatigue striations along with secondary cracks.

  15. Effects of Post-Weld Heat Treatment on the Microstructure and Toughness of Flash Butt Welded High-Strength Low-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Shajan, Nikhil; Arora, Kanwer Singh; Asati, Brajesh; Sharma, Vikram; Shome, Mahadev

    2018-04-01

    Effect of post-weld heat treatment on the weld microstructure, texture, and its correlation to the toughness of flash butt welded joints were investigated. Upon flash butt welding, the α and γ-fiber in the parent material converted to Goss (110)[001], rotated Goss (110)[1 \\bar{1} 0], and rotated cube (001)[1 \\bar{1} 0], (001)[ \\overline{11} 0] textures along the fracture plane. Formation of these detrimental texture components was a result of shear deformation and recrystallization of austenite at temperatures above T nr resulting in a drop of toughness at the weld zone. Inter-critical and sub-critical annealing cycles proved to be less effective in reducing the Goss (110)[001], rotated Goss (110)[1 \\bar{1} 0], and rotated cube (001)[1 \\bar{1} 0], (001)[ \\overline{11} 0] texture components, and therefore, toughness values remained unaffected. Post-weld heat treatment in the austenite phase field at 1000 °C for 5 seconds resulted in the formation of new grains with different orientations leading to a reduction in the texture intensities of both Goss and rotated Goss components and therefore improved weld zone toughness. Prolonged annealing time was found to be ineffective in improving the toughness due to grain growth.

  16. Process-Structure-Property Relationships for 316L Stainless Steel Fabricated by Additive Manufacturing and Its Implication for Component Engineering

    NASA Astrophysics Data System (ADS)

    Yang, Nancy; Yee, J.; Zheng, B.; Gaiser, K.; Reynolds, T.; Clemon, L.; Lu, W. Y.; Schoenung, J. M.; Lavernia, E. J.

    2017-04-01

    We investigate the process-structure-property relationships for 316L stainless steel prototyping utilizing 3-D laser engineered net shaping (LENS), a commercial direct energy deposition additive manufacturing process. The study concluded that the resultant physical metallurgy of 3-D LENS 316L prototypes is dictated by the interactive metallurgical reactions, during instantaneous powder feeding/melting, molten metal flow and liquid metal solidification. The study also showed 3-D LENS manufacturing is capable of building high strength and ductile 316L prototypes due to its fine cellular spacing from fast solidification cooling, and the well-fused epitaxial interfaces at metal flow trails and interpass boundaries. However, without further LENS process control and optimization, the deposits are vulnerable to localized hardness variation attributed to heterogeneous microstructure, i.e., the interpass heat-affected zone (HAZ) from repetitive thermal heating during successive layer depositions. Most significantly, the current deposits exhibit anisotropic tensile behavior, i.e., lower strain and/or premature interpass delamination parallel to build direction (axial). This anisotropic behavior is attributed to the presence of interpass HAZ, which coexists with flying feedstock inclusions and porosity from incomplete molten metal fusion. The current observations and findings contribute to the scientific basis for future process control and optimization necessary for material property control and defect mitigation.

  17. Fiber Laser Weldability of Austenitic Nickel Alloys

    NASA Astrophysics Data System (ADS)

    Watson, Jonathan

    Recent developments of fiber lasers allow for easier beam delivery facilitating greater applications for laser welding in industry. Welding with high energy density heat sources allows for faster travel speeds, faster cooling rates, and smaller heat affected zones. However, there is a still a lack of knowledge base on how laser welding process parameters affect the weldability of austenitic nickel alloys. In this work, laser welds were made on several austenitic nickel alloys from different alloy families: HAYNESRTM 214RTM alloy, HAYNESRTM 282RTM alloy, HAYNESRTM 230RTM alloy, HAYNESRTM HR-120RTM alloy, HAYNESRTM HR-160 RTM alloy, HAYNESRTM 188 alloy, HAYNESRTM 718 alloy. Welds were made at 25 mm/s at laser powers ranging from 400 to 600 Watts. Solidification cracking was observed in cross-sections of the fusion zone of HR-160RTM alloy and HR-120RTM alloy. Dendritic solidification was found in all alloys, and partitioning within the dendritic structure compared well with Scheil calculations performed using ThermoCalc software. A eutectic liquid rich in carbide forming elements was found at the interdendritic regions in 188, 230RTM, 282 RTM, and 718 alloys and was quantified by processing backscatter electron images of the fusion zone. This interdendritic liquid was found to back fill solidification cracks that formed in the fusion zone during weldability testing. Transverse Varestraint and Sigma-Jig testing were performed to rank the weldability of alloys. During Transvarestraint testing, the ram drop timing was recorded in relation to the laser output, and a type R thermocouple was also placed in the laser path, and the approximate cooling rate of the fusion zone was recorded and used to calculate the solidification cracking temperature range. Rankings of the weldability compared well between Sigma-Jig and Transvarestraint testing, with the exception of 214 alloy and HR-120 alloy, which ranked much better and worse, respectively in Sigma-Jig tests. A possible explanation for this difference is the higher thermal conductivity and lower yields strength of 214 alloy and high temperatures, allowing it to accommodate more stress in the Sigma-Jig test. The final ranking of alloys from more weldable to less weldable by Sigma-Jig testing is 188, 214, 282, 718, 230, HR-120, and HR-160. The final ranking by maximum crack length in Transvarestraint specimens listed from more weldable to less weldable is: 188, 282, HR-120, 718, 230, 214, and HR-160.

  18. Optimization of operator and physical parameters for laser welding of dental materials.

    PubMed

    Bertrand, C; le Petitcorps, Y; Albingre, L; Dupuis, V

    2004-04-10

    Interactions between lasers and materials are very complex phenomena. The success of laser welding procedures in dental metals depends on the operator's control of many parameters. The aims of this study were to evaluate factors relating to the operator's dexterity and the choice of the welding parameters (power, pulse duration and therefore energy), which are recognized determinants of weld quality. In vitro laboratory study. FeNiCr dental drawn wires were chosen for these experiments because their properties are well known. Different diameters of wires were laser welded, then tested in tension and compared to the control material as extruded, in order to evaluate the quality of the welding. Scanning electron microscopy of the fractured zone and micrograph observations perpendicular and parallel to the wire axis were also conducted in order to analyse the depth penetration and the quality of the microstructure. Additionally, the micro-hardness (Vickers type) was measured both in the welded and the heat-affected zones and then compared to the non-welded alloy. Adequate combination of energy and pulse duration with the power set in the range between 0.8 to 1 kW appears to improve penetration depth of the laser beam and success of the welding procedure. Operator skill is also an important variable. The variation in laser weld quality in dental FeNiCr wires attributable to operator skill can be minimized by optimization of the physical welding parameters.

  19. Sustained load crack growth design data for Ti-6Al-4V titanium alloy tanks containing hydrazine

    NASA Technical Reports Server (NTRS)

    Lewis, J. C.; Kenny, J. T.

    1976-01-01

    Sustained load crack growth data for Ti-6Al-4V titanium alloy in hydrazine per MIL-P-26536 and refined hydrazine are presented. Fracture mechanics data on crack growth thresholds for heat-treated forgings, aged and unaged welds, and aged and unaged heat-affected zones are reported. Fracture mechanics design curves of crack growth threshold stress intensity versus temperature are generated from 40 to 71 C.

  20. A Study to Increase Weld Penetration in P91 Steel During TIG Welding by using Activating Fluxes

    NASA Astrophysics Data System (ADS)

    Singh, Akhilesh Kumar; Kumar, Mayank; Dey, Vidyut; Naresh Rai, Ram

    2017-08-01

    Activated Flux TIG (ATIG) welding is a unique joining process, invented at Paton Institute of electric welding in 1960. ATIG welding process is also known as flux zoned TIG (FZTIG). In this process, a thin layer of activating flux is applied along the line on the surface of the material where the welding is to be carries out. The ATIG process aids to increase the weld penetration in thick materials. Activating fluxes used in the literature show the use of oxides like TiO2, SiO2, Cr2O3, ZnO, CaO, Fe2O3, and MnO2 during welding of steels. In the present study, ATIG was carried out on P-91 steel. Though, Tungsten Inert Gas welding gives excellent quality welds, but the penetration obtained in such welding is still demanding. P91 steel which is ferritic steel is used in high temperature applications. As this steel is, generally, used in thick sections, fabrication of such structures with TIG welding is limited, due to its low depth of penetration. To increase the depth of penetration in P91while welding with ATIG, the role of various oxides were investigated. Apart from the oxides mentioned above, in the present study the role of B2O3, V2O5 and MgO, during ATIG welding of P91 was investigated. It was seen that, compared to TIG welding, there was phenomenal increase in weld penetration during ATIG welding. Amongst all the oxides used in this study, maximum penetration was achieved in case of B2O3. The measurements of weld penetration, bead width and heat affected zone of the weldings were carried out using an image analysis technique.

  1. Flaw Stability Considering Residual Stress for Aging Management of Spent Nuclear Fuel Multiple-Purpose Canisters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Poh-Sang; Sindelar, Robert L.

    A typical multipurpose canister (MPC) is made of austenitic stainless steel and is loaded with spent nuclear fuel assemblies. Because heat treatment for stress relief is not required for the construction of the MPC, the canister is susceptible to stress corrosion cracking in the weld or heat affected zone regions under long-term storage conditions. Logic for flaw acceptance is developed should crack-like flaws be detected by Inservice Inspection. The procedure recommended by API 579-1/ASME FFS-1, Fitness-for-Service, is used to calculate the instability crack length or depth by failure assessment diagram. It is demonstrated that the welding residual stress has amore » strong influence on the results.« less

  2. Flaw Stability Considering Residual Stress for Aging Management of Spent Nuclear Fuel Multiple-Purpose Canisters

    DOE PAGES

    Lam, Poh-Sang; Sindelar, Robert L.

    2016-04-28

    A typical multipurpose canister (MPC) is made of austenitic stainless steel and is loaded with spent nuclear fuel assemblies. Because heat treatment for stress relief is not required for the construction of the MPC, the canister is susceptible to stress corrosion cracking in the weld or heat affected zone regions under long-term storage conditions. Logic for flaw acceptance is developed should crack-like flaws be detected by Inservice Inspection. The procedure recommended by API 579-1/ASME FFS-1, Fitness-for-Service, is used to calculate the instability crack length or depth by failure assessment diagram. It is demonstrated that the welding residual stress has amore » strong influence on the results.« less

  3. Finite Element Creep-Fatigue Analysis of a Welded Furnace Roll for Identifying Failure Root Cause

    NASA Astrophysics Data System (ADS)

    Yang, Y. P.; Mohr, W. C.

    2015-11-01

    Creep-fatigue induced failures are often observed in engineering components operating under high temperature and cyclic loading. Understanding the creep-fatigue damage process and identifying failure root cause are very important for preventing such failures and improving the lifetime of engineering components. Finite element analyses including a heat transfer analysis and a creep-fatigue analysis were conducted to model the cyclic thermal and mechanical process of a furnace roll in a continuous hot-dip coating line. Typically, the roll has a short life, <1 year, which has been a problem for a long time. The failure occurred in the weld joining an end bell to a roll shell and resulted in the complete 360° separation of the end bell from the roll shell. The heat transfer analysis was conducted to predict the temperature history of the roll by modeling heat convection from hot air inside the furnace. The creep-fatigue analysis was performed by inputting the predicted temperature history and applying mechanical loads. The analysis results showed that the failure was resulted from a creep-fatigue mechanism rather than a creep mechanism. The difference of material properties between the filler metal and the base metal is the root cause for the roll failure, which induces higher creep strain and stress in the interface between the weld and the HAZ.

  4. The Quantitative Microstructural Characterization of Multipass TIG Ultra Low Carbon Bainitic Steel Weldments and Correlation with Mechanical Properties

    DTIC Science & Technology

    1993-09-01

    in TIG weldments. The alloying elements used in ULCB steels are; Carbon (C), Manganese (Mn), Molybdenum (Mo), Nickel (Ni), Niobium (Nb), Chromium (Cr...process. 7 C. WELDING PROCESSES 1. Tungsten Inert Gas (TIG) Welding Tungsten Inert Gas (TIG) Welding (or Gas Tungsten Arc Welding ( GTAW )), produces... chromium (Cr), molybdenum (Mo), and sometimes vanadium (V). Reheat cracking occurs in the HAZ during postweld stress relieving, especially in thick

  5. Development of Weld Metal Microstructures in Pulsed Laser Welding of Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mirakhorli, F.; Malek Ghaini, F.; Torkamany, M. J.

    2012-10-01

    The microstructure of the weld metal of a duplex stainless steel made with Nd:YAG pulsed laser is investigated at different travel speeds and pulse frequencies. In terms of the solidification pattern, the weld microstructure is shown to be composed of two distinct zones. The presence of two competing heat transfer channels to the relatively cooler base metal and the relatively hotter previous weld spot is proposed to develop two zones. At high overlapping factors, an array of continuous axial grains at the weld centerline is formed. At low overlapping factors, in the zone of higher cooling rate, a higher percentage of ferrite is transformed to austenite. This is shown to be because with extreme cooling rates involved in pulsed laser welding with low overlapping, the ferrite-to-austenite transformation can be limited only to the grain boundaries.

  6. An integrated optical sensor for GMAW feedback control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, P.L.; Watkins, A.D.; Larsen, E.D.

    1992-08-01

    The integrated optical sensor (IOS) is a multifunction feedback control sensor for arc welding, that is computer automated and independent of significant operator interaction. It is based on three major ``off-the-shelf`` components: a charged coupled device (CCD) camera, a diode laser, and a processing computer. The sensor head is compact and lightweight to avoid interference with weld head mobility, hardened to survive the harsh operating environment, and free of specialized cooling and power requirements. The sensor is positioned behind the GMAW torch and measures weld pool position and width, standoff distance, and postweld centerline cooling rate. Weld pool position andmore » width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint, thus allowing compensation for such phenomena as arc blow. Sensor stand off distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to infer the final metallurgical state of the weld bead and heat affected zone, thereby providing a means of controlling post weld mechanical properties.« less

  7. An integrated optical sensor for GMAW feedback control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, P.L.; Watkins, A.D.; Larsen, E.D.

    1992-01-01

    The integrated optical sensor (IOS) is a multifunction feedback control sensor for arc welding, that is computer automated and independent of significant operator interaction. It is based on three major off-the-shelf'' components: a charged coupled device (CCD) camera, a diode laser, and a processing computer. The sensor head is compact and lightweight to avoid interference with weld head mobility, hardened to survive the harsh operating environment, and free of specialized cooling and power requirements. The sensor is positioned behind the GMAW torch and measures weld pool position and width, standoff distance, and postweld centerline cooling rate. Weld pool position andmore » width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint, thus allowing compensation for such phenomena as arc blow. Sensor stand off distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to infer the final metallurgical state of the weld bead and heat affected zone, thereby providing a means of controlling post weld mechanical properties.« less

  8. Recent Aspects on the Effect of Inclusion Characteristics on the Intragranular Ferrite Formation in Low Alloy Steels: A Review

    NASA Astrophysics Data System (ADS)

    Mu, Wangzhong; Jönsson, Pär Göran; Nakajima, Keiji

    2017-04-01

    Intragranular ferrite (IGF), which nucleates from specific inclusion surfaces in low alloy steels, is the desired microstructure to improve mechanical properties of steel such as the toughness. This microstructure is especially important in the coarse grain heat affected zone (CGHAZ) of weldments. The latest review paper focusing on the role of non-metallic inclusions in the IGF formation in steels has been reported by Sarma et al. in 2009 (ISIJ int., 49(2009), 1063-1074). In recent years, large amount of papers have been presented to investigate different issues of this topic. This paper mainly highlights the frontiers of experimental and theoretical investigations on the effects of inclusion characteristics, such as the composition, size distribution and number density, on the IGF formation in low carbon low-alloyed steels, undertaken by the group of Applied Process Metallurgy, KTH Royal Institute of Technology. Related results reported in previous studies are also introduced. Also, plausible future work regarding various items of IGF formation is mentioned in each section. This work aims to give a better control of improving the steel quality during casting and in the heat affected zone (HAZ) of weldment, according to the concept of oxide metallurgy.

  9. Relationships between microstructure and microfissuring in alloy 718

    NASA Technical Reports Server (NTRS)

    Thompson, R. G.

    1985-01-01

    Microfissures which occur in the weld heat affected zone of alloy 718 can be a limiting factor in the material's weldability. Several studies have attempted to relate microfissuring susceptibility to processing conditions, microstructure, and/or heat-to-heat chemistry differences. The present investigation studies the relationships between microstructure and microfissuring by isolating a particular microstructural feature and measuring microfissuring as a function of that feature. Results to date include the identification of a microstructure-microfissure sequence, microfissuring susceptibility as a function of grain size, and microfissuring susceptibility as a function of solution annealing time.

  10. The Effect of Constant and Pulsed Current Gas Tungsten Arc Welding on Joint Properties of 2205 Duplex Stainless Steel to 316L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Neissi, R.; Shamanian, M.; Hajihashemi, M.

    2016-05-01

    In this study, dissimilar 316L austenitic stainless steel/2205 duplex stainless steel (DSS) joints were fabricated by constant and pulsed current gas tungsten arc welding process using ER2209 DSS as a filler metal. Microstructures and joint properties were characterized using optical and electron scanning microscopy, tensile, Charpy V-notch impact and micro-hardness tests, and cyclic polarization measurements. Microstructural observations confirmed the presence of chromium nitride and delta ferrite in the heat-affected zone of DSS and 316L, respectively. In addition, there was some deviation in the austenite/ferrite ratio of the surface welding pass in comparison to the root welding pass. Besides having lower pitting potential, welded joints produced by constant current gas tungsten arc welding process, consisted of some brittle sigma phase precipitates, which resulted in some impact energy reduction. The tensile tests showed high tensile strength for the weld joints in which all the specimens were broken in 316L base metal.

  11. Experimental Investigation of Mechanical Properties of Welded Corten Steel A588 Grade Plate Using ER70S - 6 Filler Material for Construction Application

    NASA Astrophysics Data System (ADS)

    Deepak, J. R.; Bupesh Raja, V. K.; Janardhan Guptha, Mittapalli; Durga Prasad, Palaparthi Hari; Sriram, V.

    2017-05-01

    ASTM A588 Grade A steel plate is a high strength, low alloy structural steel with 0.19 % of carbon content. When exposed to the atmosphere, A588 Grade A is suitable for construction in the bare (paint - free) condition. The main problems are lack of fusion, lack of penetration and corrosion on heat affected zone. In this research work Corten ASTM A588 Grade steel of 3mm thickness is electroplated with copper and then both raw and copper electroplated are welded by GMAW welding process with ER70S-6 as a filler material. The welded ASTM A588 is cut according to ASTM size for further testing of mechanical properties. Considering its welding strength after the process of electroplating, this research clearly states the metal can be utilized for better results in any given field. Here both the tensile and hardness are higher in copper electroplated welded when compare to raw welded.

  12. Investigation of Carbon Fiber Reinforced Plastics Machining Using 355 nm Picosecond Pulsed Laser

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Zhu, Dezhi

    2018-06-01

    Carbon fiber reinforced plastics (CFRP) has been widely used in the aircraft industry and automobile industry owing to its superior properties. In this paper, a Nd:YVO4 picosecond pulsed system emitting at 355 nm has been used for CFRP machining experiments to determine optimum milling conditions. Milling parameters including laser power, milling speed and hatch distance were optimized by using box-behnken design of response surface methodology (RSM). Material removal rate was influenced by laser beam overlap ratio which affects mechanical denudation. The results in heat affected zones (HAZ) and milling quality were discussed through the machined surface observed with scanning electron microscope. A re-focusing technique based on the experiment with different focal planes was proposed and milling mechanism was also analyzed in details.

  13. Experimental characterization of fatigue strength in butt welded joint considering the geometry and the effect of cooling rate of the weld

    NASA Astrophysics Data System (ADS)

    Arzola, Nelson; Hernández, Edgar

    2017-05-01

    In this work the experimental characterization of fatigue strength in butt welded joints considering the geometry and the post-weld cooling cycle was performed. ASTM A-36 structural steel was used as the base metal for the shielded metal arc welding process, with welding electrode E6013. Two experimental factors were established: weld bead geometry and the post-weld cooling rate. Two levels for each factor, the welding reinforcement (1 and 3 mm), and the rate of cooling, slow (quiet air) and fast (immersion in water) are evaluated respectively. For the uniaxial fatigue tests, 8 samples were selected for each treatment for a total of 32 specimens. The mechanical and fractomechanical properties of fusion zone, heat affected zone and base metal in relation to the analysis of failure mechanisms were analysed. The fatigue crack growth rates were estimated based on the counting of microstrations. Furthermore, experimental tests, such as uniaxial tension, microindentation hardness, Charpy impact and metallographic analysis, were made to know the influence of the experimental factors in the fatigue strength. On this research, about the 78.13% of the samples obtained a resistance higher than the recommended one by class FAT 100. The results showed that the geometry of the joint is the factor of greatest influence on fatigue strength for butt welded joints; the greater the weld reinforcement the lower the fatigue strength of the joint. Although it is also important to consider other geometric factors of less impact as it is the weld toe radius and the welding chord width.

  14. TEA CO2 laser machining of CFRP composite

    NASA Astrophysics Data System (ADS)

    Salama, A.; Li, L.; Mativenga, P.; Whitehead, D.

    2016-05-01

    Carbon fibre-reinforced polymer (CFRP) composites have found wide applications in the aerospace, marine, sports and automotive industries owing to their lightweight and acceptable mechanical properties compared to the commonly used metallic materials. Machining of CFRP composites using lasers can be challenging due to inhomogeneity in the material properties and structures, which can lead to thermal damages during laser processing. In the previous studies, Nd:YAG, diode-pumped solid-state, CO2 (continuous wave), disc and fibre lasers were used in cutting CFRP composites and the control of damages such as the size of heat-affected zones (HAZs) remains a challenge. In this paper, a short-pulsed (8 μs) transversely excited atmospheric pressure CO2 laser was used, for the first time, to machine CFRP composites. The laser has high peak powers (up to 250 kW) and excellent absorption by both the carbon fibre and the epoxy binder. Design of experiment and statistical modelling, based on response surface methodology, was used to understand the interactions between the process parameters such as laser fluence, repetition rate and cutting speed and their effects on the cut quality characteristics including size of HAZ, machining depth and material removal rate (MRR). Based on this study, process parameter optimization was carried out to minimize the HAZ and maximize the MRR. A discussion is given on the potential applications and comparisons to other lasers in machining CFRP.

  15. Direct Write Processing of Multi-micron Thickness Copper Nano-particle Paste on Flexible Substrates with 532 nm Laser Wavelength

    NASA Astrophysics Data System (ADS)

    Lopez-Espiricueta, Dunia; Fearon, Eamonn; Edwardson, Stuart; Dearden, Geoffrey

    The Laser Assisted Direct Write (LA-DW) method has been implemented in the development of different markets and material processing, recently also used for creating Printed Circuit Boards (PCB) or electrical circuitry. The process consists in the deposition of metallic nano-particle (NP) inks, which are afterwards cured or sintered by laser irradiation, thus creating conductive pathways; advantages are speed, accuracy and the protection of the heat affected zone (HAZ). This research will study the behaviour of the heat dissipation relatively within the Nano-particle Copper paste after being irradiated with 1064 nm and 532 nm wavelengths, research will be developed on different widths and depths deposited onto flat surfaces such as flexible PET. Comparisons to be made between resistivity results obtained from different wavelengths.

  16. Simulated HAZ continuous cooling transformation diagram of a bogie steel of high-speed railway

    NASA Astrophysics Data System (ADS)

    Liu, Yue; Chen, Hui; Liu, Yan; Hang, Zongqiu

    2017-07-01

    Simulated HAZ continuous cooling transformation (SH-CCT) diagram presents the start and end points of phase transformation and the relationships of the microstructures of HAZ, temperature and cooling rates. It is often used to assess the weldability of materials. In this paper, a weathering steel Q345C which is widely used in the bogies manufacturing was studied. The cooling times from 800∘C to 500∘C (t8/5) were from 3 s to 6000 s, aiming to study the microstructures under different cooling rates. Different methods such as color metallography were used to obtain the metallography images. The results show that ferrite nucleates preferentially at the prior austenite grain boundaries and grows along the grain boundaries with a lath-like distribution when t8/5 is 300 s. Austenite transforms into ferrite, pearlite and bainite with decreasing t8/5. Pearlite disappears completely when t8/5 = 150 s. Martensite gradually appears when t8/5 decreases to 30 s. The hardness increases with decreasing t8/5. The SH-CCT diagram indicates that the welding input and t8/5 should be taken into consideration when welding. This work provides the relationships of welding parameters and microstructures.

  17. Creep Deformation, Rupture Analysis, Heat Treatment and Residual Stress Measurement of Monolithic and Welded Grade 91 Steel for Power Plant Components

    NASA Astrophysics Data System (ADS)

    Shrestha, Triratna

    Modified 9Cr-1 Mo (Grade 91) steel is currently considered as a candidate material for reactor pressure vessels (RPVs) and reactor internals for the Very High Temperature Reactor (VHTR), and in fossil-fuel fired power plants at higher temperatures and stresses. The tensile creep behavior of Grade 91 steel was studied in the temperature range of 600°C to 750°C and stresses between 35 MPa and 350 MPa. Heat treatment of Grade 91 steel was studied by normalizing and tempering the steel at various temperatures and times. Moreover, Thermo-Ca1c(TM) calculation was used to predict the precipitate stability and their evolution, and construct carbon isopleths of Grade 91 steel. Residual stress distribution across gas tungsten arc welds (GTAW) in Grade 91 steel was measured by the time-of-flight neutron diffraction using the Spectrometer for Materials Research at Temperature and Stress (SMARTS) diffractometer at Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, NM, USA. Analysis of creep results yielded stress exponents of ˜9-11 in the higher stress regime and ˜1 in the lower stress regime. The creep behavior of Grade 91 steel was described by the modified Bird-Mukherjee-Dorn relation. The rate-controlling creep deformation mechanism in the high stress regime was identified as the edge dislocation climb with a stress exponent of n = 5. On the other hand, the deformation mechanism in the Newtonian viscous creep regime (n = 1) was identified as the Nabarro-Herring creep. Creep rupture data were analyzed in terms of Monkman-Grant relation and Larson-Miller parameter. Creep damage tolerance factor and stress exponent were used to identify the cause of creep damage. The fracture surface morphology of the ruptured specimens was studied by scanning electron microscopy to elucidate the failure mechanisms. Fracture mechanism map for Grade 91 steel was developed based on the available material parameters and experimental observations. The microstructural evolution of heat treated steel was correlated with the differential scanning calorimetric study. The combination of microstructural studies with optical microscopy, scanning and transmission electron microscopy, microhardness profiles, and calorimetric plots helped in the understanding of the evolution of microstructure and precipitates in Grade 91 steel. The residual stresses were determined at the mid-thickness of the plate, 4.35 mm and 2.35 mm below the surface of the as-welded and post-weld heat treated plate. The residual stresses of the as-welded plate were compared with the post-weld heat treated plate. The post-weld heat treatment significantly reduced the residual stress in the base metal, heat affected zone, and the weld zone. Vickers microhardness profiles of the as-welded, and post-weld heat treated specimens were also determined and correlated with the observed residual stress profile and microstructure.

  18. Effect of Heat Treatment on the Structure and Properties of Explosion Welded Bimetal Kh20N80 + AD1

    NASA Astrophysics Data System (ADS)

    Shmorgun, V. G.; Arisova, V. N.; Slautin, O. V.; Taube, A. O.; Bakuntseva, V. M.

    2017-05-01

    Results of a study of the effect of heat treatment on the microhardness, structure and phase composition of diffusion zone in explosion-welded `refractory nickel alloy Kh20N80 + aluminum alloy AD1' bimetal are presented.

  19. Characterization of disk-laser dissimilar welding of titanium alloy Ti-6Al-4V to aluminum alloy 2024

    NASA Astrophysics Data System (ADS)

    Caiazzo, Fabrizia; Alfieri, Vittorio; Cardaropoli, Francesco; Corrado, Gaetano; Sergi, Vincenzo

    2013-02-01

    Both technical and economic reasons suggest to join dissimilar metals, benefiting from the specific properties of each material in order to perform flexible design. Adhesive bonding and mechanical joining have been traditionally used although adhesives fail to be effective in high-temperature environments and mechanical joining are not adequate for leak-tight joints. Friction stir welding is a valid alternative, even being difficult to perform for specific joint geometries and thin plates. The attention has therefore been shifted to laser welding. Interest has been shown in welding titanium to aluminum, especially in the aviation industry, in order to benefit from both corrosive resistance and strength properties of the former, and low weight and cost of the latter. Titanium alloy Ti-6Al-4V and aluminum alloy 2024 are considered in this work, being them among the most common ones in aerospace and automotive industries. Laser welding is thought to be particularly useful in reducing the heat affected zones and providing deep penetrative beads. Nevertheless, many challenges arise in welding dissimilar metals and the aim is further complicated considering the specific features of the alloys in exam, being them susceptible to oxidation on the upper surface and porosity formation in the fused zone. As many variables are involved, a systematic approach is used to perform the process and to characterize the beads referring to their shape and mechanical features, since a mixture of phases and structures is formed in the fused zone after recrystallization.

  20. Weld pool development during GTA and laser beam welding of Type 304 stainless steel; Part II-experimental correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacharia, T.; David, S.A.; Vitek, J.M.

    1989-12-01

    In part I of the paper, the results of the heat flow and the fluid flow analysis were presented. Here, in Part II of the paper, predictions of the computational model are verified by comparing the numerically predicted and experimentally observed fusion zone size and shape. Stationary gas tungsten arc and laser beam welds were made on Type 304 stainless steel for different times to provide a variety of solidification conditions such as cooling rate and temperature gradient. Calculated temperatures and cooling rates are correlated with the experimentally observed fusion zone structure. In addition, the effect of sulfur on GTAmore » weld penetration was quantitatively evaluated by considering two heats of 304 stainless steel containing 90 and 240 ppm sulfur. Sulfur, as expected, increased the depth/width ratio by altering the surface tension gradient driven flow in the weld pool.« less

Top