Science.gov

Sample records for weld pool size

  1. Determination of a temperature sensor location for monitoring weld pool size in GMAW

    SciTech Connect

    Boo, K.S.; Cho, H.S. . Dept. of Precision Engineering and Mechatronics)

    1994-11-01

    This paper describes a method of determining the optimal sensor location to measure weldment surface temperature, which has a close correlation with weld pool size in the gas metal arc (GMA) welding process. Due to the inherent complexity and nonlinearity in the GMA welding process, the relationship between the weldment surface temperature and the weld pool size varies with the point of measurement. This necessitates an optimal selection of the measurement point to minimize the process nonlinearity effect in estimating the weld pool size from the measured temperature. To determine the optimal sensor location on the top surface of the weldment, the correlation between the measured temperature and the weld pool size is analyzed. The analysis is done by calculating the correlation function, which is based upon an analytical temperature distribution model. To validate the optimal sensor location, a series of GMA bead-on-plate welds are performed on a medium-carbon steel under various welding conditions. A comparison study is given in detail based upon the simulation and experimental results.

  2. Weld pool phenomena

    SciTech Connect

    David, S.A.; Vitek, J.M.; Zacharia, T.; DebRoy, T.

    1994-09-01

    During welding, the composition, structure and properties of the welded structure are affected by the interaction of the heat source with the metal. The interaction affects the fluid flow, heat transfer and mass transfer in the weld pool, and the solidification behavior of the weld metal. In recent years, there has been a growing recognition of the importance of the weld pool transport processes and the solid state transformation reactions in determining the composition, structure and properties of the welded structure. The relation between the weld pool transport processes and the composition and structure is reviewed. Recent applications of various solidification theories to welding are examined to understand the special problems of weld metal solidification. The discussion is focussed on the important problems and issues related to weld pool transport phenomena and solidification. Resolution of these problems would be an important step towards a science based control of composition, structure and properties of the weld metal.

  3. Weld pool oscillation during pulsed GTA welding

    SciTech Connect

    Aendenroomer, A.J.R.; Ouden, G. den

    1996-12-31

    This paper deals with weld pool oscillation during pulsed GTA welding and with the possibility to use this oscillation for in-process control of weld penetration. Welding experiments were carried out under different welding conditions. During welding the weld pool was triggered into oscillation by the normal welding pulses or by extra current pulses. The oscillation frequency was measured both during the pulse time and during the base time by analyzing the arc voltage variation using a Fast Fourier Transformation program. Optimal results are obtained when full penetration occurs during the pulse time and partial penetration during the base time. Under these conditions elliptical overlapping spot welds are formed. In the case of full penetration the weld pool oscillates in a low frequency mode (membrane oscillation), whereas in the case of partial penetration the weld pool oscillates in a high frequency mode (surface oscillation). Deviation from the optimal welding conditions occurs when high frequency oscillation is observed during both pulse time and base time (underpenetration) or when low frequency oscillation is observed during both pulse time and base time (overpenetration). In line with these results a penetration sensing system with feedback control was designed, based on the criterion that optimal weld penetration is achieved when two peaks are observed in the frequency distribution. The feasibility of this sensing system for orbital tube welding was confirmed by the results of experiments carried out under various welding conditions.

  4. Camera Would Monitor Weld-Pool Contours

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S.; Gutow, David A.

    1990-01-01

    Weld pool illuminated and viewed coaxially along welding torch. Proposed monitoring subsystem for arc welder provides image in which horizontal portions of surface of weld pool highlighted. Monitoring and analyzing subsystems integrated into overall control system of robotic welder. Control system sets welding parameters to adapt to changing conditions, maintaining surface contour giving desired pattern of reflections.

  5. Visualization of Gas Tungsten Arc Weld Pools

    DTIC Science & Technology

    1991-09-01

    flow visualization of Gas Tungsten Arc weld pools for HY-80 steel is presented using a pulsed laser light source and a conventional night~vision...visualization of Gas Tungsten Arc weld pools for HY-80 steel is presented using a pulsed laser light source and a conventional night-vision image-intensifier...effects of electromagnetic stirring on GTA welds in austenitic stainless steel . Changes in shape and solidification structure of welds observed

  6. Weld pool oscillation during GTA welding of mild steel

    SciTech Connect

    Xiao, Y.H.; Ouden, G. den . Dept. of Materials Science and Engineering)

    1993-08-01

    In this paper the results are reported of a study dealing with the oscillation behavior of weld pools in the case of GTA bead-on-plate welding of mild steel, Fe 360. During welding, the weld pool was brought into oscillation by applying short current pulses, and the oscillation frequency and amplitude were measured by monitoring the arc voltage. It was found that the oscillation of the partially penetrated weld pool is dominated by one of two different oscillation modes (Mode 1 and Mode 2) depending on the welding conditions, whereas the oscillation of the fully penetrated weld pool is characterized by a third oscillation mode (Mode 3). It is possible to maintain partially penetrated weld pool oscillation in Mode 1 by choosing appropriate welding conditions. Under these conditions, an abrupt decrease in oscillation frequency occurs when the weld pool transfers from partial penetration to full penetration. Thus, weld penetration can be in-process controlled by monitoring the oscillation frequency during welding.

  7. Control of Gas Tungsten Arc welding pool shape by trace element addition to the weld pool

    DOEpatents

    Heiple, C.R.; Burgardt, P.

    1984-03-13

    An improved process for Gas Tungsten Arc welding maximizes the depth/width ratio of the weld pool by adding a sufficient amount of a surface active element to insure inward fluid flow, resulting in deep, narrow welds. The process is especially useful to eliminate variable weld penetration and shape in GTA welding of steels and stainless steels, particularly by using a sulfur-doped weld wire in a cold wire feed technique.

  8. Neural Network Modeling of Weld Pool Shape in Pulsed-Laser Aluminum Welds

    SciTech Connect

    Iskander, Y.S.; Oblow, E.M.; Vitek, J.M.

    1998-11-16

    A neural network model was developed to predict the weld pool shape for pulsed-laser aluminum welds. Several different network architectures were examined and the optimum architecture was identified. The neural network was then trained and, in spite of the small size of the training data set, the network accurately predicted the weld pool shape profiles. The neural network output was in the form of four weld pool shape parameters (depth, width, half-width, and area) and these were converted into predicted weld pool profiles with the use of the actual experimental poo1 profiles as templates. It was also shown that the neural network model could reliably predict the change from conduction-mode type shapes to keyhole-mode shapes.

  9. Weld Pool Stability in the Flat Position

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Coan, B.

    1999-01-01

    The Soft Plasma Arc (SPA) process was devised to avoid interactions between backshield and full penetration mode plasma jet in welding 2195 aluminum-lithium alloy. Occasional sudden and mysterious losses in penetration were encountered in flat position SPA welding. To understand what was happening a model of the dynamics of the molten metal meniscus at the root of the weld was worked out. When the power input to the weld P(sub in) exceeds the power leakage P(sub out) the difference in power is absorbed by an increase in the molten weld pool volume V, Rho X L(SUB m) X (d(V)/dt)) = P(sub in) - P(sub out) where rho is the density and L(sub m) the specific heat of the weld metal.

  10. Numerical Study for Gta Weld Shape Variation by Coupling Welding Arc and Weld Pool

    NASA Astrophysics Data System (ADS)

    Dong, Wenchao; Lu, Shanping; Li, Dianzhong; Li, Yiyi

    A numerical modeling of the welding arc and weld pool is studied for moving GTA welding to investigate the effect of the surface active element oxygen and the plasma drag force on the weld shape. Based on the 2D axisymmetric numerical modeling of the argon arc, the heat flux, current density and plasma drag force are obtained under different welding currents. Numerical calculations to the weld pool development are carried out for moving GTA welding on SUS304 stainless steel with different oxygen contents 30 ppm and 220 ppm, respectively. The results show that the plasma drag force is another dominating driving force affecting the liquid pool flow pattern, except for the Marangoni force. The different welding currents will change the temperature distribution and plasma drag force on the pool surface, and affect the strength of Marangoni convection and the weld shape. The weld D/W ratio initially increases, followed by a constant value around 0.5 with the increasing welding current under high oxygen content. The weld D/W ratio under the low oxygen content slightly decreases with the increasing welding current. The predicted weld shape by simulation agrees well with experimental results.

  11. Computerized radiographic weld penetration control with feedback on weld pool depression

    SciTech Connect

    Guu, A.C.; Rokhlin, S.I. )

    1989-10-01

    Welding pool depression depends on plasma pressure and heat input to the pool and therefore is related to weld penetration. On the basis of information on pool depression received from radiographic images in real time during welding, the possibility of using automated weld penetration control to maintain the required weld penetration has been studied. The experimental system developed includes an arc welding unit, a welding manipulator, a real-time x-ray system, an image processing unit, and a system controller. By analyzing the radiographic information together with metallographs of the appropriate weld cross section, the depth of the liquid metal in the pool has been determined at different levels of current and weld penetration.

  12. Modeling of the Weld Shape Development During the Autogenous Welding Process by Coupling Welding Arc with Weld Pool

    NASA Astrophysics Data System (ADS)

    Dong, Wenchao; Lu, Shanping; Li, Dianzhong; Li, Yiyi

    2010-10-01

    A numerical model of the welding arc is coupled to a model for the heat transfer and fluid flow in the weld pool of a SUS304 stainless steel during a moving GTA welding process. The described model avoids the use of the assumption of the empirical Gaussian boundary conditions, and at the same time, provides reliable boundary conditions to analyze the weld pool. Based on the two-dimensional axisymmetric numerical modeling of the argon arc, the heat flux to workpiece, the input current density, and the plasma drag stress are obtained. The arc temperature contours, the distributions of heat flux, and current density at the anode are in fair agreement with the reported experimental results. Numerical simulation and experimental studies to the weld pool development are carried out for a moving GTA welding on SUS304 stainless steel with different oxygen content from 30 to 220 ppm. The calculated result show that the oxygen can change the Marangoni convection from outward to inward direction on the liquid pool surface and make the wide shallow weld shape become narrow deep one. The calculated result for the weld shape and weld D/W ratio agrees well with the experimental one.

  13. Molten pool characterization of laser lap welded copper and aluminum

    NASA Astrophysics Data System (ADS)

    Xue, Zhiqing; Hu, Shengsun; Zuo, Di; Cai, Wayne; Lee, Dongkyun; Elijah, Kannatey-Asibu, Jr.

    2013-12-01

    A 3D finite volume simulation model for laser welding of a Cu-Al lap joint was developed using ANSYS FLUENT to predict the weld pool temperature distribution, velocity field, geometry, alloying element distribution and transition layer thickness—all key attributes and performance characteristics for a laser-welded joint. Melting and solidification of the weld pool was simulated with an enthalpy-porosity formulation. Laser welding experiments and metallographic examination by SEM and EDX were performed to investigate the weld pool features and validate the simulated results. A bowl-shaped temperature field and molten pool, and a unique maximum fusion zone width were observed near the Cu-Al interface. Both the numerical simulation and experimental results indicate an arch-shaped intermediate layer of Cu and Al, and a gradual transition of Cu concentration from the aluminum plate to the copper plate with high composition gradient. For the conditions used, welding with Cu on top was found to result in a better weld joint.

  14. High Power Laser Beam Welding of Thick-walled Ferromagnetic Steels with Electromagnetic Weld Pool Support

    NASA Astrophysics Data System (ADS)

    Fritzsche, André; Avilov, Vjaceslav; Gumenyuk, Andrey; Hilgenberg, Kai; Rethmeier, Michael

    The development of modern high power laser systems allows single pass welding of thick-walled components with minimal distortion. Besides the high demands on the joint preparation, the hydrostatic pressure in the melt pool increases with higher plate thicknesses. Reaching or exceeding the Laplace pressure, drop-out or melt sagging are caused. A contactless electromagnetic weld support system was used for laser beam welding of thick ferromagnetic steel plates compensating these effects. An oscillating magnetic field induces eddy currents in the weld pool which generate Lorentz forces counteracting the gravity forces. Hysteresis effects of ferromagnetic steels are considered as well as the loss of magnetization in zones exceeding the Curie temperature. These phenomena reduce the effective Lorentz forces within the weld pool. The successful compensation of the hydrostatic pressure was demonstrated on up to 20 mm thick plates of duplex and mild steel by a variation of the electromagnetic power level and the oscillation frequency.

  15. Neural network modeling of pulsed-laser weld pool shapes in aluminum alloy welds

    SciTech Connect

    Vitek, J.M.; Iskander, Y.S.; Oblow, E.M.; Babu, S.S.; David, S.A.; Fuerschbach, P.W.; Smartt, H.B.; Pace, D.P. Tolle, C.R.

    1998-11-01

    A model was developed to predict the weld pool shape in pulsed Nd:YAG laser welds of aluminum alloy 5754. The model utilized neural network analysis to relate the weld process conditions to four pool shape parameters: penetration, width, width at half-penetration, and cross-sectional area. The model development involved the identification of the input (process) variables, the desired output (shape) variables, and the optimal neural network architecture. The latter was influenced by the number of defined inputs and outputs as well as the amount of data that was available for training the network. After appropriate training, the best network was identified and was used to predict the weld shape. A routine to convert the shape parameters into predicted weld profiles was also developed. This routine was based on the actual experimental weld profiles and did not impose an artificial analytical function to describe the weld profile. The neural network model was tested on experimental welds. The model predictions were excellent. It was found that the predicted shapes were within the experimental variations that were found along the length of the welds (due to the pulsed nature of the weld power) and the reproducibility of welds made under nominally identical conditions.

  16. Neural network modeling of pulsed-laser weld pool shapes in aluminum alloy welds

    SciTech Connect

    Vitek, J.M.; Iskander, Y.S.; Oblow, E.M.; Babu, S.S.; David, S.A.; Fuerschbach, P.W.; Smartt, H.B.

    1998-09-01

    A model was developed to predict the weld pool shape in pulsed Nd:YAG laser welds of aluminum alloy 5754. The model utilized neural network analysis to relate the weld process conditions to four pool shape parameters: (1) penetration width, (2) width at half-penetration, and (3) cross-sectional area. The model development involved the identification of the input (process) variables, the desired output (shape) variables, and the optimal neural network architecture. The latter was influenced by the number of defined inputs and outputs as well as the amount of data that was available for training the network. After appropriate training, die best network was identified and was used to predict the weld shape. A routine to convert the shape parameters into predicted weld profiles was also developed. This routine was based on the actual experimental weld profiles and did not impose an artificial analytical function to describe the weld profile. The neural network model was tested on experimental welds. The model predictions were excellent. It was found that the predicted shapes were within the experimental variations that were found along the length of the welds (due to the pulsed nature of the weld power) and the reproducibility of welds made under nominally identical conditions.

  17. Stability of Full Penetration, Flat Position Weld Pools

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.; Coan, Al. B.

    1999-01-01

    The dynamics of the dropthrough distance of a full penetration, flat position weld pool is described. Close to incipient root side penetration the dropthrough is metastable, so that a small drop in power can cause a loss of penetration if not followed soon enough by a compensating rise in power. The SPA (Soft Plasma Arc) process with higher pressure on top of the weld pool loses penetration more quickly than the GTA (Gas Tungsten Arc) process. 2195 aluminum-lithium alloy with a lower surface tension loses penetration more quickly than 2219 aluminum alloy. An instance of loss of penetration of a SPA weld in 2195 aluminum-lithium alloy is discussed in the light of the model.

  18. Welding pool measurement using thermal array sensor

    NASA Astrophysics Data System (ADS)

    Cho, Chia-Hung; Hsieh, Yi-Chen; Chen, Hsin-Yi

    2015-08-01

    Selective laser melting (SLM) is an additive manufacturing (AM) technology that uses a high-power laser beam to melt metal powder in chamber of inert gas. The process starts by slicing the 3D CAD data as a digital information source into layers to create a 2D image of each layer. Melting pool was formed by using laser irradiation on metal powders which then solidified to consolidated structure. In a selective laser melting process, the variation of melt pool affects the yield of a printed three-dimensional product. For three dimensional parts, the border conditions of the conductive heat transport have a very large influence on the melt pool dimensions. Therefore, melting pool is an important behavior that affects the final quality of the 3D object. To meet the temperature and geometry of the melting pool for monitoring in additive manufacturing technology. In this paper, we proposed the temperature sensing system which is composed of infrared photodiode, high speed camera, band-pass filter, dichroic beam splitter and focus lens. Since the infrared photodiode and high speed camera look at the process through the 2D galvanometer scanner and f-theta lens, the temperature sensing system can be used to observe the melting pool at any time, regardless of the movement of the laser spot. In order to obtain a wide temperature detecting range, 500 °C to 2500 °C, the radiation from the melting pool to be measured is filtered into a plurality of radiation portions, and since the intensity ratio distribution of the radiation portions is calculated by using black-body radiation. The experimental result shows that the system is suitable for melting pool to measure temperature.

  19. Automatic Welding System of Aluminum Pipe by Monitoring Backside Image of Molten Pool Using Vision Sensor

    NASA Astrophysics Data System (ADS)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    An automatic welding system using Tungsten Inert Gas (TIG) welding with vision sensor for welding of aluminum pipe was constructed. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position and moving welding torch with the AC welding machine. The monitoring system consists of a vision sensor using a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Neural network model for welding speed control were constructed to perform the process automatically. From the experimental results it shows the effectiveness of the control system confirmed by good detection of molten pool and sound weld of experimental result.

  20. Detectability of penetration depth based on weld pool geometry and process emission spectrum in laser welding of copper

    NASA Astrophysics Data System (ADS)

    Özmert, Alp; Neisser-Deiters, Paul; Drenker, Alexander

    2014-05-01

    Laser welding is a promising joining process for copper interconnections. A key criterion of quality for these welds is the penetration depth. The penetration depth is subject to intrinsic variation, i.e. by the nature of the welding process. Online detection of penetration depth enables quality assurance and furthermore welding of joint configurations with tighter tolerances via closed-loop control. Weld pool geometry and keyhole optical emission in the wavelength interval of 400-1100 nm are investigated with regard to how suitable they are for the detection of penetration depth in laser welding of copper Cu-ETP. Different penetration depths were induced by stepwise modulation of laser power in bead-on-plate welds. The welds have been monitored with illuminated high-speed videography of the work piece surface and spectrometry. Increase of the weld pool length (in direction of travel) corresponding to increase in penetration depth has been observed while no noticeable change was observed of the weld pool width (transverse to the direction of travel). No significant lines were observed in the spectrum. The radiant power in VIS-spectrum was observed to increase with increasing penetration depth as well. As future work, with increasing understanding and experimental data, online monitoring by indirectly measuring the penetration depth would be possible. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no 260153 (QCOALA: Quality Control for Aluminium Laser-Welded Assemblies).

  1. Use of Aria to simulate laser weld pool dynamics for neutron generator production.

    SciTech Connect

    Noble, David R.; Notz, Patrick K.; Martinez, Mario J.; Kraynik, Andrew Michael

    2007-09-01

    This report documents the results for the FY07 ASC Integrated Codes Level 2 Milestone number 2354. The description for this milestone is, 'Demonstrate level set free surface tracking capabilities in ARIA to simulate the dynamics of the formation and time evolution of a weld pool in laser welding applications for neutron generator production'. The specialized boundary conditions and material properties for the laser welding application were implemented and verified by comparison with existing, two-dimensional applications. Analyses of stationary spot welds and traveling line welds were performed and the accuracy of the three-dimensional (3D) level set algorithm is assessed by comparison with 3D moving mesh calculations.

  2. Welding deviation detection algorithm based on extremum of molten pool image contour

    NASA Astrophysics Data System (ADS)

    Zou, Yong; Jiang, Lipei; Li, Yunhua; Xue, Long; Huang, Junfen; Huang, Jiqiang

    2016-01-01

    The welding deviation detection is the basis of robotic tracking welding, but the on-line real-time measurement of welding deviation is still not well solved by the existing methods. There is plenty of information in the gas metal arc welding(GMAW) molten pool images that is very important for the control of welding seam tracking. The physical meaning for the curvature extremum of molten pool contour is revealed by researching the molten pool images, that is, the deviation information points of welding wire center and the molten tip center are the maxima and the local maxima of the contour curvature, and the horizontal welding deviation is the position difference of these two extremum points. A new method of weld deviation detection is presented, including the process of preprocessing molten pool images, extracting and segmenting the contours, obtaining the contour extremum points, and calculating the welding deviation, etc. Extracting the contours is the premise, segmenting the contour lines is the foundation, and obtaining the contour extremum points is the key. The contour images can be extracted with the method of discrete dyadic wavelet transform, which is divided into two sub contours including welding wire and molten tip separately. The curvature value of each point of the two sub contour lines is calculated based on the approximate curvature formula of multi-points for plane curve, and the two points of the curvature extremum are the characteristics needed for the welding deviation calculation. The results of the tests and analyses show that the maximum error of the obtained on-line welding deviation is 2 pixels(0.16 mm), and the algorithm is stable enough to meet the requirements of the pipeline in real-time control at a speed of less than 500 mm/min. The method can be applied to the on-line automatic welding deviation detection.

  3. Residual Stresses and Critical Initial Flaw Size Analyses of Welds

    NASA Technical Reports Server (NTRS)

    Brust, Frederick W.; Raju, Ivatury, S.; Dawocke, David S.; Cheston, Derrick

    2009-01-01

    An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). A series of weld analyses are performed to determine the residual stresses in a critical region of the USS. Weld residual stresses both increase constraint and mean stress thereby having an important effect on the fatigue life. The purpose of the weld analyses was to model the weld process using a variety of sequences to determine the 'best' sequence in terms of weld residual stresses and distortions. The many factors examined in this study include weld design (single-V, double-V groove), weld sequence, boundary conditions, and material properties, among others. The results of this weld analysis are included with service loads to perform a fatigue and critical initial flaw size evaluation.

  4. Weld pool surface depth measurement using a calibrated camera and structured light

    NASA Astrophysics Data System (ADS)

    Saeed, G.; Zhang, Y. M.

    2007-08-01

    Automated monitoring and control of the weld pool surface has been one of the goals of the welding industry. This paper presents a technique which uses a calibrated charge-coupled device (CCD) sensor and structured light to extract the surface information as depth of pool from captured images. It projects a laser line from a pre-determined position onto the specular weld pool surface. A reflected laser beam from the specular surface is captured by a calibrated CCD sensor to form the image. The image is then processed based on the ray-tracing technique to calculate the depth of the weld pool surface using the position of the laser and its fan angle along with the intrinsic parameters and extrinsic parameters of the CCD sensor.

  5. Gravitational effects on the weld pool shape and microstructural evolution during gas tungsten arc and laser beam welding of 304 stainless steel and Al-4 wt% Cu alloy.

    PubMed

    Kang, Namhyun; Singh, Jogender; Kulkarni, Anil K

    2004-11-01

    Effects of gravitational acceleration were investigated on the weld pool shape and microstructural evolution for 304 stainless steel and Al-4wt% Cu alloy. Effects of welding heat source were investigated by using laser beam welding (LBW) and gas tungsten arc welding (GTAW). As the gravitational level was increased from low gravity (LG approximately 1.2 g) to high gravity (HG approximately 1.8 g) using a NASA KC-135 aircraft, the weld pool shape for 304 stainless steel was influenced considerably during GTAW. However, insignificant change in the microstructure and solute distribution was observed at gravitational levels between LG and HG. The GTAW on Al-4 wt% Cu alloy was used to investigate the effect of gravitational orientation on the weld solidification behavior. Gravitational orientation was manipulated by varying the welding direction with respect to gravity vector; that is, by welding upward opposing gravity ( ||-U) and downward with gravity ( ||-D) on a vertical weld piece and welding perpendicular to gravity (perpendicular) on a horizontal weld piece. Under the same welding conditions, a larger primary dendrite spacing in the ||-U weld was observed near the weld pool surface and the fusion boundary than in the case of perpendicular or ||-D welds. The ||-D weld exhibited different solidification morphology and abnormal S shape of solidification rate curve during its growth. For 304 stainless steel GTAW, significant effects of gravitational orientation were observed on the weld pool shape that was associated with weld surface morphology and convection flow. However, the weld pool shape for LBW was mostly constant with respect to the gravitational orientation.

  6. Influence of Adapted Wavelengths on Temperature Fields and Melt Pool Geometry in Laser Transmission Welding

    NASA Astrophysics Data System (ADS)

    Schkutow, A.; Frick, T.

    Laser transmission welding is an established joining technology for the creation of strong, hermetic and aesthetic weld seams between thermoplastic parts. However, weld seam properties are strongly dependent on the optical properties of the materials involved. This paper investigates the wavelength-dependent absorption properties of polymeric materials and carbon black, their influence on temperature field generation and the resulting melt pool geometry in laser transmission welding. A FE simulation model is developed to examine the possibilities of influencing the temperature fields during contour and quasi-simultaneous laser transmission welding by adapting the wavelengths under consideration of the absorption and scattering properties. The application of laser wavelengths in the spectral range of 1400 nm to 2000 nm leads to modified temperature fields and melt pool geometries, which are expected to feature a better load-bearing capacity and a much improved gap-bridging capability.

  7. Onset of the initial instability during the solidification of welding pool of aluminum alloy under transient conditions

    NASA Astrophysics Data System (ADS)

    Zheng, Wenjian; Dong, Zhibo; Wei, Yanhong; Song, Kuijing

    2014-09-01

    Onset of initial morphological instability is predicted by using a new analytic model and quantitative phase field model during the solidification of the welding pool of Al-Cu alloy under transient conditions. In the linear growth stage of the welding pool, the dynamic evolution of the interface instability is analyzed, and the interface behaviors under infinitesimal fluctuations are also investigated. The results show that the mean wavelength at the crossover time evaluated from this analytic model is in good agreement with those obtained by the quantitative phase field simulations and the experiments. The linear growth stage takes up quite a long time of the whole solidification of welding pool and thus it should be primarily considered in investigating the transient growth of welding pool. This study establishes a valid numerical framework for studying the dendrite growth under transient solidification conditions and provides a new approach for studying the transient solidification of welding pool.

  8. Effect of Shoulder Size on Weld Properties of Dissimilar Metal Friction Stir Welds

    NASA Astrophysics Data System (ADS)

    Akinlabi, E. T.

    2012-07-01

    This article reports a research study that shows the effect of shoulder diameter size on the resulting weld properties of dissimilar friction stir welds between 5754 aluminum alloy (AA) and C11000 copper (Cu). Welds were produced using three different shoulder diameter tools: 15, 18, and 25 mm by varying the rotational speed between 600 and 1200 rpm and the traverse speed between 50 and 300 mm/min to achieve the best result. Each parameter combination was chosen to represent different heat input conditions (low, intermediates and high). The welds were characterized through microstructural evaluation, tensile testing, microhardness measurements, x-ray diffraction analysis, and electrical resistivity. Microstructural evaluation of the welds revealed that the welds produced consisted of all the friction stir welding (FSW) microstructure zones with organized flow lines comprising mixture layers of aluminum (Al) and copper (Cu) at the Stir Zones. The average Ultimate Tensile Strength (UTS) of the welds considered ranged from 178 to 208 MPa. Higher Vickers microhardness values were measured at the joint interfaces of all the welds because of the presence of intermetallic compounds in these regions. The x-ray diffraction analysis revealed the presence of Al4Cu9 and Al2Cu intermetallics at the interfacial regions, and low electrical resistivities were obtained at the joint interfaces. An optimized parameter setting for FSW of Al and Cu was obtained at the weld produced at 950 rpm and 50 mm/min with the 18-mm shoulder diameter tool.

  9. Plasma diagnostics approach to welding heat source/molten pool interaction

    SciTech Connect

    Key, J.F.; McIlwain, M.E.; Isaacson, L.

    1980-01-01

    Plasma diagnostic techniques show that weld fusion zone profile and loss of metal vapors from the molten pool are strongly dependent on both the intensity and distribution of the heat source. These plasma properties, are functions of cathode vertex angle and thermal conductivity of the shielding gas, especially near the anode.

  10. Surface temperature distribution of GTA weld pools on thin-plate 304 stainless steel

    SciTech Connect

    Zacharia, T.; David, S.A.; Vitek, J.M.; Kraus, H.G.

    1995-11-01

    A transient multidimensional computational model was utilized to study gas tungsten arc (GTA) welding of thin-plate 304 stainless steel (SS). The model eliminates several of the earlier restrictive assumptions including temperature-independent thermal-physical properties. Consequently, all important thermal-physical properties were considered as temperature dependent throughout the range of temperatures experienced by the weld metal. The computational model was used to predict surface temperature distribution of the GTA weld pools in 1.5-mm-thick AISI 304 SS. The welding parameters were chosen so as to correspond with an earlier experimental study that produced high-resolution surface temperature maps. One of the motivations of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate excellent agreement, thereby verifying the model.

  11. Predicting the backside width of weld pool during pulsed GTAW process based on a neural network model

    NASA Astrophysics Data System (ADS)

    Zhang, Guangjun; Chen, Shanben; Liu, Xiaodong; Wu, Lin

    2001-10-01

    Modeling of welding process is the base of process control. Because welding process is a multivariable, strong coupling, time-varying and nonlinear system, traditional modeling methods are not suitable. In this paper, the dynamic neural network model for predicting backside width of pulsed GTAW weld pool by welding parameters and topside shape parameters was constructed. Orthogonal method was applied to design the sampling experiments. Experiments were carried on low carbon steel with 2mm thickness during pulsed gas tungsten arc butt-welding with gap. Based on self-developed vision sensor, double-side images of weld pool were captured simultaneously in a frame. By image processing the topside dimension and shape of weld pool, such as length, maximum width, gap width and the half-length ratio, and the backside dimension such as area, length and maximum width were calculated. Artificial neural network was applied to establish the model for predicting backside width of weld pool. The inputs of the model were the topside dimension, shape of weld pool and welding parameters such as pulse current, pulse duty ratio, and welding speed. The output of the model was the backside width of weld pool. The algorithm was the extended delta-bar-delta (EDD), and the learning ratio automatically determined by the algorithm. Threshold function was sigmoid function. The training cycle was selected to be 50000. The final EMS error of backside width was 5.2 percent. The simulation experiments were carried out to test the accuracy of the ANN model. From the results of the test, the output of ANN model can predict the backside width precisely.

  12. Penetration in GTA welding

    SciTech Connect

    Heiple, C.R.; Burgardt, P.

    1990-01-01

    The size and shape of the weld bead produced in GTA welding depends on the magnitude and distribution of the energy incident on the workpiece surfaces as well as the dissipation of that energy in the workpiece. The input energy is largely controllable through the welding parameters selected, however the dissipation of that energy in the workpiece is less subject to control. Changes in energy dissipation can produce large changes in weld shape or penetration. Heat transport away from the weld pool is almost entirely by conduction, but heat transport in the weld pool is more complicated. Heat conduction through the liquid is an important component, but heat transport by convection (mass transport) is often the dominant mechanism. Convective heat transport is directional and changes the weld pool shape from that produced by conduction alone. Surface tension gradients are often the dominant forces driving fluid flow in GTA weld pools. These gradients are sensitive functions of weld pool chemistry and the energy input distribution to the weld. Experimental and theoretical work conducted primarily in the past decade has greatly enhanced our understanding of weld pool fluid flow, the forces which drive it, and its effects on weld pool shape. This work is reviewed here. While less common, changes in energy dissipation through the unmelted portion of the workpiece can also affect fusion zone shape or penetration. These effects are also described. 41 refs., 9 figs.

  13. Study on removal of phase lines in welding pool surface shape sensing

    NASA Astrophysics Data System (ADS)

    Wei, Yiqing; Liu, Nansheng; Hu, Xian; Ai, Xiaopu; Wei, Sheng; Liu, Xiaorui

    2009-11-01

    In recent years, arc welding pool surface shape sensing becomes a hot spot in the field of welding automation. In order to restore the pool surface shape, we first need to photograph the pool surface, and then extract useful information from the acquired images. In arc welding surface shape sensing system based on structured light projection, the raster images obtained by charge-coupled device (CCD) are seriously affected by strong arc and spatter, etc. resulting in errors of phase unwrapping, and thus seriously affecting the surface shape recovery. To address phase lines of unwrapping errors, this paper presents a two-neighborhood method. First we analyzed the characteristics of phase lines in the phase diagram, then by comparison of phase diagrams or phase difference diagrams processed before and after, the effectiveness of two-neighborhood method was confirmed, finally this method was applied to the actual pool phase diagram processing, experimental results also confirmed this two-neighborhood method is feasible in removal of phase lines.

  14. Weld Bead Size, Microstructure and Corrosion Behavior of Zirconium Alloys Joints Welded by Pulsed Laser Spot Welding

    NASA Astrophysics Data System (ADS)

    Cai, Chuang; Li, Liqun; Tao, Wang; Peng, Genchen; Wang, Xian

    2016-09-01

    Pulsed laser spot welding of intersection points of zirconium alloys straps was performed. Weld bead size, microstructure and the corrosion behavior of weld bead were investigated. With the increasing laser peak power or number of shots, the weld width of the beads increased, the protrusion decreased and the dimple increased with further increase in heat input. The fusion zone consisted of a mixture of αZr and residual βZr phases. After annealing treatment, βNb and Zr(Fe, Nb)2 second phase particles were precipitated inter- and intragranular of αZr grains adequately. The oxide thickness of annealed weld bead was about 3.90 μm, decreased by about 18.1% relative to the 4.76 μm of as-welded specimen corroded at 400 °C and 10.3 MPa for 20 days. The corrosion resistance of annealed specimen was better than that of as-welded specimen, since the second phase particles exerted better corrosion resistance, and the content of Nb in βZr and the fraction of βZr decreased after the annealing treatment.

  15. Effect of Convection on Weld Pool Shape and Microstructure.

    DTIC Science & Technology

    1986-07-01

    as tracers to provide contrast. Microfocus x - ray is used to produce a focused x - ray beam. This x - ray beam is directed through the test section. An...119 Figure 3.4.2 Schematic Diagram of the Experimental Set Up - X - ray Shadow Graph .......................... 120 Figure 3.4.3 Mlcrograph of the Cross...section of the Laser Melted Pool, Laser Power = 8.0 kW, Beam Radius = 0.5 mm, Scanning Speed = 50 mm/sec ..... 121 Figure 3.4.4 X - ray Shadow Graph of

  16. Ultra-fast in-situ X-ray studies of evolving columnar dendrites in solidifying steel weld pools

    NASA Astrophysics Data System (ADS)

    Mirihanage, W. U.; Di Michiel, M.; Mathiesen, R. H.

    2015-06-01

    High-brilliance polychromatic synchrotron radiation has been used to conduct in-situ studies of the solidification microstructure evolution during simulated welding. The welding simulations were realized by rapidly fusing ∼ 5 mm spot in Fe-Cr-Ni steel. During the solid- liquid-solid phase transformations, a section of the weld pool was placed in an incident 50-150 keV polychromatic synchrotron X-ray beam, in a near-horizontal position at a very low inclination angle. Multiple high-resolution 2D detectors with very high frame rates were utilized to capture time resolved X-ray diffraction data from suitably oriented solid dendrites evolving in the weld pool. Comprehensive analysis of the diffraction data revealed individual and overall dendritic growth characteristics and relevant melt and solid flow dynamics during weld pool solidification, which was completed within 1.5 s. Columnar dendrite tip velocities were estimated from the experimental data and during early stages of solidification were exceeded 4 mm/s. The most remarkable observation revealed through the time-resolved reciprocal space observations are correlated to significant tilting of columnar type dendrites at their root during solidification, presumably caused by convective currents in the weld pool. When the columnar dendrite tilting are transformed to respective metric linear tilting velocities at the dendrite tip; tilting velocities are found to be in the same order of magnitude as the columnar tip growth velocities, suggesting a highly transient nature of growth conditions.

  17. Lin28a regulates germ cell pool size and fertility

    PubMed Central

    Shinoda, Gen; de Soysa, T. Yvanka; Seligson, Marc T.; Yabuuchi, Akiko; Fujiwara, Yuko; Huang, Pei Yi; Hagan, John P.; Gregory, Richard I.; Moss, Eric G.; Daley, George Q.

    2013-01-01

    Overexpression of LIN28A is associated with human germ cell tumors and promotes primordial germ cell (PGC) development from embryonic stem cells in vitro and in chimeric mice. Knockdown of Lin28a inhibits PGC development in vitro, but how constitutional Lin28a deficiency affects the mammalian reproductive system in vivo remains unknown. Here, we generated Lin28a knockout (KO) mice and found that Lin28a deficiency compromises the size of the germ cell pool in both males and females by affecting PGC proliferation during embryogenesis. Interestingly however, in Lin28a KO males the germ cell pool partially recovers during postnatal expansion, while fertility remains impaired in both males and females mated to wild type mice. Embryonic overexpression of let-7, a microRNA negatively regulated by Lin28a, reduces the germ cell pool, corroborating the role of the Lin28a/let-7 axis in regulating the germ lineage. PMID:23378032

  18. Gravity and Heater Size Effects on Pool Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; Raj, Rishi

    2014-01-01

    The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.

  19. Validation of a Model of Linear Friction Welding of Ti6Al4V by Considering Welds of Different Sizes

    NASA Astrophysics Data System (ADS)

    Schroeder, F.; Ward, R. Mark; Turner, R. P.; Walpole, A. R.; Attallah, M. M.; Gebelin, J.-C.; Reed, R. C.

    2015-10-01

    A model for the linear friction welding of the alloy Ti6Al4V was tested experimentally. Instrumented welds were carried out on rectilinear geometries of various dimensions, and the thermal profiles, upset rates, in-plane forces and subsequent micro hardness were measured for comparison. In particular the effects of weld size perpendicular and parallel to the oscillation were investigated, including a case in which the two sides of the weld had different sizes. The predictions of the model were found to be in good agreement with the experimental results, which provides confirmation that the model is useful for the purposes of design.

  20. Plasma-weld pool interaction in tungsten inert-gas configuration

    NASA Astrophysics Data System (ADS)

    Mougenot, J.; Gonzalez, J.-J.; Freton, P.; Masquère, M.

    2013-04-01

    A three-dimensional (3D) transient model of a transferred argon arc in interaction with an anode material is presented and the results discussed. The model based on a finite volume method is developed using the open software @Saturne distributed by Electricité de France. The 3D model includes the characterization of the plasma gas and of the work piece with a current continuity resolution in the whole domain. Transport and thermodynamic properties are dependent on the local temperature and on the vapours emitted by the eroded material due to the heat flux transferred by the plasma. Drag force, Marangoni force, Laplace and gravity forces are taken into account on the weld pool description. The plasma and the weld pool characteristics are presented and compared with experimental and theoretical results from the literature. For a distance between the two electrodes of d = 5 mm and an applied current intensity of I = 200 A, the vapour concentration is weak. The influence of the parameters used in the Marangoni formulation is highlighted. Finally, in agreement with some authors, we show with this global transient 3D model that it is not necessary to include the voltage drop in the energy balance.

  1. Number size distribution of fine and ultrafine fume particles from various welding processes.

    PubMed

    Brand, Peter; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas

    2013-04-01

    Studies in the field of environmental epidemiology indicate that for the adverse effect of inhaled particles not only particle mass is crucial but also particle size is. Ultrafine particles with diameters below 100 nm are of special interest since these particles have high surface area to mass ratio and have properties which differ from those of larger particles. In this paper, particle size distributions of various welding and joining techniques were measured close to the welding process using a fast mobility particle sizer (FMPS). It turned out that welding processes with high mass emission rates (manual metal arc welding, metal active gas welding, metal inert gas welding, metal inert gas soldering, and laser welding) show mainly agglomerated particles with diameters above 100 nm and only few particles in the size range below 50 nm (10 to 15%). Welding processes with low mass emission rates (tungsten inert gas welding and resistance spot welding) emit predominantly ultrafine particles with diameters well below 100 nm. This finding can be explained by considerably faster agglomeration processes in welding processes with high mass emission rates. Although mass emission is low for tungsten inert gas welding and resistance spot welding, due to the low particle size of the fume, these processes cannot be labeled as toxicologically irrelevant and should be further investigated.

  2. Towards and FVE-FAC Method for Determining Thermocapillary Effects on Weld Pool Shape

    NASA Technical Reports Server (NTRS)

    Canright, David; Henson, Van Emden

    1996-01-01

    Several practical materials processes, e.g., welding, float-zone purification, and Czochralski crystal growth, involve a pool of molten metal with a free surface, with strong temperature gradients along the surface. In some cases, the resulting thermocapillary flow is vigorous enough to convect heat toward the edges of the pool, increasing the driving force in a sort of positive feedback. In this work we examine this mechanism and its effect on the solid-liquid interface through a model problem: a half space of pure substance with concentrated axisymmetric surface heating, where surface tension is strong enough to keep the liquid free surface flat. The numerical method proposed for this problem utilizes a finite volume element (FVE) discretization in cylindrical coordinates. Because of the axisymmetric nature of the model problem, the control volumes used are torroidal prisms, formed by taking a polygonal cross-section in the (r, z) plane and sweeping it completely around the z-axis. Conservation of energy (in the solid), and conservation of energy, momentum, and mass (in the liquid) are enforced globally by integrating these quantities and enforcing conservation over each control volume. Judicious application of the Divergence Theorem and Stokes' Theorem, combined with a Crank-Nicolson time-stepping scheme leads to an implicit algebraic system to be solved at each time step. It is known that near the boundary of the pool, that is, near the solid-liquid interface, the full conduction-convection solution will require extremely fine length scales to resolve the physical behavior of the system. Furthermore, this boundary moves as a function of time. Accordingly, we develop the foundation of an adaptive refinement scheme based on the principles of Fast Adaptive Composite Grid methods (FAC). Implementation of the method and numerical results will appear in a later report.

  3. X-Ray and Optical Videography for 3D Measurement of Capillary and Melt Pool Geometry in Laser Welding

    NASA Astrophysics Data System (ADS)

    Boley, M.; Abt, F.; Weber, R.; Graf, T.

    This paper describes a method to reconstruct the 3D shape of the melt pool and the capillary of a laser keyhole welding process. Three different diagnostic methods, including X-Ray and optical videography as well as metallographic cross sections are combined to gain the three dimensional data of the solidus-liquidus-surface. A detailed description of the experimental setup and a discussion of different methods to combine the 2D data sets of the three different diagnostic methods to a 3D-model will be given. The result will be a static 3D description of the welding process.

  4. Welding.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This curriculum guide is designed for use by South Carolina vocational education teachers as a continuing set of lesson plans for a two-year course on welding. Covered in the individual sections of the guide are the following topics: an orientation to welding, oxyacetylene welding, advanced oxyacetylene welding, shielded metal arc welding, TIG…

  5. 10 CFR 905.32 - Resource extensions and resource pool size.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Resource extensions and resource pool size. 905.32 Section... § 905.32 Resource extensions and resource pool size. (a) Western will extend a project-specific percentage of the marketable resource, determined to be available at the time future resource...

  6. 10 CFR 905.32 - Resource extensions and resource pool size.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Resource extensions and resource pool size. 905.32 Section... § 905.32 Resource extensions and resource pool size. (a) Western will extend a project-specific percentage of the marketable resource, determined to be available at the time future resource...

  7. 10 CFR 905.32 - Resource extensions and resource pool size.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Resource extensions and resource pool size. 905.32 Section... § 905.32 Resource extensions and resource pool size. (a) Western will extend a project-specific percentage of the marketable resource, determined to be available at the time future resource...

  8. 10 CFR 905.32 - Resource extensions and resource pool size.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Resource extensions and resource pool size. 905.32 Section... § 905.32 Resource extensions and resource pool size. (a) Western will extend a project-specific percentage of the marketable resource, determined to be available at the time future resource...

  9. 10 CFR 905.32 - Resource extensions and resource pool size.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Resource extensions and resource pool size. 905.32 Section... § 905.32 Resource extensions and resource pool size. (a) Western will extend a project-specific percentage of the marketable resource, determined to be available at the time future resource...

  10. Possibility of Underwater Explosive Welding for Making Large-Sized Thin Metal Plate Clad by Overlapping Plates

    NASA Astrophysics Data System (ADS)

    Hokamoto, Kazuyuki; Mori, Akihisa; Fujita, Masahiro

    The authors have developed a new method of explosive welding using underwater shock wave for the welding of thin plate on a substrate. Considering the size limitation of the welding area in using the technique, the possibility of overlapping thin plates to make large-sized welding area is investigated. In general, the results for the welding of Inconel 600 on 304 stainless steel show a macroscopically successful weld, but the microstructure shows some melting spots caused due to the trapping of metal jet during the welding process when the welding condition is changed. The welding process is discussed based on the experimental results in comparison with some numerically simulated results obtained by AUTODYN-2D code.

  11. Robotic Vision for Welding

    NASA Technical Reports Server (NTRS)

    Richardson, R. W.

    1986-01-01

    Vision system for robotic welder looks at weld along axis of welding electrode. Gives robot view of most of weld area, including yet-unwelded joint, weld pool, and completed weld bead. Protected within welding-torch body, lens and fiber bundle give robot closeup view of weld in progress. Relayed to video camera on robot manipulator frame, weld image provides data for automatic control of robot motion and welding parameters.

  12. Welding.

    ERIC Educational Resources Information Center

    Lehigh County Area Vocational-Technical School, Schnecksville, PA.

    This curriculum guide provides materials for a 12-unit secondary course in welding. Purpose stated for the flexible entry and exit course is to help students master manipulative skills to develop successful welding techniques and to gain an understanding of the specialized tools and equipment used in the welding field. Units cover oxyacetylene…

  13. Molten Pool Behavior and Mechanical Properties of Pulsed Current Double-Sided Synchronization GTA Welded Fe-18Cr-17Mn-Ni-N

    NASA Astrophysics Data System (ADS)

    Qiang, Wei; Wang, Kehong; Feng, Yuehai; Chen, Jiahe

    2016-12-01

    Double-sided synchronization vertical gas tungsten arc welding (DSSVW) procedure was used to weld high-nitrogen low-nickel stainless steel Fe-18Cr-17Mn-Ni-N without groove and filler wire. First, the molten pool behaviors and appearances of pulsed current DSSVW (PC-DSSVW) and constant current DSSVW (CC-DSSVW) were comparatively analyzed. The periodic variation occurs in the width of both the anode region of the arc and the molten pool tail during PC-DSSVW, while the contact angle first increases and then decreases, and both the width of the anode region and the length of arc plume increase progressively in CC-DSSVW. It is found that the weld appearance of PC-DSSVW is superior to that of CC-DSSVW. Second, the forces of the DSSVW molten pool were analyzed. The result indicates that the molten pool of the DSSVW procedure is in a state of unstable equilibrium, and it will easily lose balance after being disturbed, resulting in the asymmetrical weld or hump bead. Third, the PC-DSSVW experiments at various welding speeds were conducted to study the influence of welding speed on the weld profile, microstructure, tensile strength and impact toughness. Furthermore, the solidification mode of Fe-18Cr-17Mn-Ni-N was predicted to help determine the microstructure of the welded joint. Results indicate that the weld width, weld reinforcement and melting area all increase with decreasing welding speed, and Fe-18Cr-17Mn-Ni-N solidifies as A mode. The microstructure of the base metal (BM) and heat-affected zone (HAZ) is equiaxed austenite and that of the fusion zone (FZ) is austenite dendrite with some chromium carbides dispersed in the grain boundary; with decreasing welding speed, grains become coarse. The maximum tensile strength (UTS) and elongation of PC-DSSVW joint are 860 MPa and 8.1%, and the elongation decreases dramatically with decreasing welding speed. The impact toughness decreases substantially compared to the BM, achieving 48.2% of the BM.

  14. Molten Pool Behavior and Mechanical Properties of Pulsed Current Double-Sided Synchronization GTA Welded Fe-18Cr-17Mn-Ni-N

    NASA Astrophysics Data System (ADS)

    Qiang, Wei; Wang, Kehong; Feng, Yuehai; Chen, Jiahe

    2017-02-01

    Double-sided synchronization vertical gas tungsten arc welding (DSSVW) procedure was used to weld high-nitrogen low-nickel stainless steel Fe-18Cr-17Mn-Ni-N without groove and filler wire. First, the molten pool behaviors and appearances of pulsed current DSSVW (PC-DSSVW) and constant current DSSVW (CC-DSSVW) were comparatively analyzed. The periodic variation occurs in the width of both the anode region of the arc and the molten pool tail during PC-DSSVW, while the contact angle first increases and then decreases, and both the width of the anode region and the length of arc plume increase progressively in CC-DSSVW. It is found that the weld appearance of PC-DSSVW is superior to that of CC-DSSVW. Second, the forces of the DSSVW molten pool were analyzed. The result indicates that the molten pool of the DSSVW procedure is in a state of unstable equilibrium, and it will easily lose balance after being disturbed, resulting in the asymmetrical weld or hump bead. Third, the PC-DSSVW experiments at various welding speeds were conducted to study the influence of welding speed on the weld profile, microstructure, tensile strength and impact toughness. Furthermore, the solidification mode of Fe-18Cr-17Mn-Ni-N was predicted to help determine the microstructure of the welded joint. Results indicate that the weld width, weld reinforcement and melting area all increase with decreasing welding speed, and Fe-18Cr-17Mn-Ni-N solidifies as A mode. The microstructure of the base metal (BM) and heat-affected zone (HAZ) is equiaxed austenite and that of the fusion zone (FZ) is austenite dendrite with some chromium carbides dispersed in the grain boundary; with decreasing welding speed, grains become coarse. The maximum tensile strength (UTS) and elongation of PC-DSSVW joint are 860 MPa and 8.1%, and the elongation decreases dramatically with decreasing welding speed. The impact toughness decreases substantially compared to the BM, achieving 48.2% of the BM.

  15. Effects of temperature-dependent material properties and shielding gas on molten pool formation during continuous laser welding of AZ91 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Bannour, Sana; Abderrazak, Kamel; Mhiri, Hatem; Le Palec, Georges

    2012-11-01

    Laser welding processes are widely used for fabrications in many engineering applications such as aerospace and automotives. In this paper, a moving distributed heat source model based on Goldak's method [1] has been implemented into finite volume thermal simulations in order to predict temperature distributions during the welding process of a magnesium alloy and to study the effects of variations in thermal properties, absorption coefficient and gas shielding on the computed temperature distributions and weld pool dimensions. The main conclusion is the significant effects of varying the thermal conductivity and absorption coefficient of magnesium. Also, it has been seen that the shielding gas, besides its main role of protection against oxidation, has a significant effect on the width of the weld pool. Finally, the obtained results have been compared to the experimental ones and a satisfactory correlation has been observed, indicating the reliability of the model developed in this study.

  16. Welding and lung cancer in a pooled analysis of case-control studies.

    PubMed

    Kendzia, Benjamin; Behrens, Thomas; Jöckel, Karl-Heinz; Siemiatycki, Jack; Kromhout, Hans; Vermeulen, Roel; Peters, Susan; Van Gelder, Rainer; Olsson, Ann; Brüske, Irene; Wichmann, H-Erich; Stücker, Isabelle; Guida, Florence; Tardón, Adonina; Merletti, Franco; Mirabelli, Dario; Richiardi, Lorenzo; Pohlabeln, Hermann; Ahrens, Wolfgang; Landi, Maria Teresa; Caporaso, Neil; Consonni, Dario; Zaridze, David; Szeszenia-Dabrowska, Neonila; Lissowska, Jolanta; Gustavsson, Per; Marcus, Michael; Fabianova, Eleonora; 't Mannetje, Andrea; Pearce, Neil; Tse, Lap Ah; Yu, Ignatius Tak-Sun; Rudnai, Peter; Bencko, Vladimir; Janout, Vladimir; Mates, Dana; Foretova, Lenka; Forastiere, Francesco; McLaughlin, John; Demers, Paul; Bueno-de-Mesquita, Bas; Boffetta, Paolo; Schüz, Joachim; Straif, Kurt; Pesch, Beate; Brüning, Thomas

    2013-11-15

    Several epidemiologic studies have indicated an increased risk of lung cancer among welders. We used the SYNERGY project database to assess welding as a risk factor for developing lung cancer. The database includes data on 15,483 male lung cancer cases and 18,388 male controls from 16 studies in Europe, Canada, China, and New Zealand conducted between 1985 and 2010. Odds ratios and 95% confidence intervals between regular or occasional welding and lung cancer were estimated, with adjustment for smoking, age, study center, and employment in other occupations associated with lung cancer risk. Overall, 568 cases and 427 controls had ever worked as welders and had an odds ratio of developing lung cancer of 1.44 (95% confidence interval: 1.25, 1.67) with the odds ratio increasing for longer duration of welding. In never and light smokers, the odds ratio was 1.96 (95% confidence interval: 1.37, 2.79). The odds ratios were somewhat higher for squamous and small cell lung cancers than for adenocarcinoma. Another 1,994 cases and 1,930 controls had ever worked in occupations with occasional welding. Work in any of these occupations was associated with some elevation of risk, though not as much as observed in regular welders. Our findings lend further support to the hypothesis that welding is associated with an increased risk of lung cancer.

  17. Welding and Lung Cancer in a Pooled Analysis of Case-Control Studies

    PubMed Central

    Kendzia, Benjamin; Behrens, Thomas; Jöckel, Karl-Heinz; Siemiatycki, Jack; Kromhout, Hans; Vermeulen, Roel; Peters, Susan; Van Gelder, Rainer; Olsson, Ann; Brüske, Irene; Wichmann, H.-Erich; Stücker, Isabelle; Guida, Florence; Tardón, Adonina; Merletti, Franco; Mirabelli, Dario; Richiardi, Lorenzo; Pohlabeln, Hermann; Ahrens, Wolfgang; Landi, Maria Teresa; Caporaso, Neil; Consonni, Dario; Zaridze, David; Szeszenia-Dabrowska, Neonila; Lissowska, Jolanta; Gustavsson, Per; Marcus, Michael; Fabianova, Eleonora; ‘t Mannetje, Andrea; Pearce, Neil; Tse, Lap Ah; Yu, Ignatius Tak-sun; Rudnai, Peter; Bencko, Vladimir; Janout, Vladimir; Mates, Dana; Foretova, Lenka; Forastiere, Francesco; McLaughlin, John; Demers, Paul; Bueno-de-Mesquita, Bas; Boffetta, Paolo; Schüz, Joachim; Straif, Kurt; Pesch, Beate; Brüning, Thomas

    2013-01-01

    Several epidemiologic studies have indicated an increased risk of lung cancer among welders. We used the SYNERGY project database to assess welding as a risk factor for developing lung cancer. The database includes data on 15,483 male lung cancer cases and 18,388 male controls from 16 studies in Europe, Canada, China, and New Zealand conducted between 1985 and 2010. Odds ratios and 95% confidence intervals between regular or occasional welding and lung cancer were estimated, with adjustment for smoking, age, study center, and employment in other occupations associated with lung cancer risk. Overall, 568 cases and 427 controls had ever worked as welders and had an odds ratio of developing lung cancer of 1.44 (95% confidence interval: 1.25, 1.67) with the odds ratio increasing for longer duration of welding. In never and light smokers, the odds ratio was 1.96 (95% confidence interval: 1.37, 2.79). The odds ratios were somewhat higher for squamous and small cell lung cancers than for adenocarcinoma. Another 1,994 cases and 1,930 controls had ever worked in occupations with occasional welding. Work in any of these occupations was associated with some elevation of risk, though not as much as observed in regular welders. Our findings lend further support to the hypothesis that welding is associated with an increased risk of lung cancer. PMID:24052544

  18. Controls on the Size and Occurrence of Pools in Coarse-Grained Forest Rivers

    NASA Astrophysics Data System (ADS)

    Buffington, J. M.; Lisle, T. E.; Woodsmith, R. D.; Hilton, S.

    2001-12-01

    Controls on pool formation are examined in gravel- and cobble-bed rivers in forest mountain drainage basins of northern California, southern Oregon, and southeastern Alaska. We demonstrate that the majority of pools at our study sites are formed by flow obstructions and that pool geometry and frequency largely depend on obstruction characteristics (size, type, and frequency). However, the effectiveness of obstructions to induce scour also depends on channel characteristics, such as channel gradient, width-depth ratio, relative submergence (ratio of flow depth to grain size), and the caliber and rate of bed material supply. Moreover, different reach-scale channel types impose different characteristic physical processes and boundary conditions that further control the occurrence of pools within a watershed. Our findings indicate that effective management of pools and associated aquatic habitat requires consideration of a variety of factors, each of which may be more or less important depending on channel type and location within a watershed. Consequently, strategies for managing pools that are based solely on single-factor, regional target values (e.g. a certain number of wood pieces or pools per stream length) are likely to be ineffective because they do not account for the variety of local and watershed controls on pool scour and, therefore, may be of limited value for proactive management of complex ecosystems.

  19. Effects of electrode bevel angle on argon arc properties and weld shape

    NASA Astrophysics Data System (ADS)

    Dong, W. C.; Lu, S. P.; Li, D. Z.; Y Li, Y.

    2012-07-01

    A numerical modeling of coupled welding arc with weld pool is established using FLUENT software for moving shielded GTA welding to systematically investigate the effects of electrode bevel angle on the argon arc properties as well as the weld shape on SUS304 stainless steel. The calculated results show that the argon arc is constricted and the peak values of heat flux and shear stress on the weld pool decrease with increasing electrode bevel angle, while the radial distribution of heat flux and shear stress varying slightly. The weld shape is controlled by the pool flow patterns driving by the surface tension, gas shear stress, electromagnetic force and buoyancy. The Marangoni convection induced by surface tension plays an important role on weld shapes. All the weld shapes are wide and shallow with low weld metal oxygen content, while the narrow and deep weld shapes form under high weld metal oxygen content, which is related with the oxygen concentration in the shielding gas. The weld depth/width (D/W) ratio increases with increasing electrode bevel angle for high weld metal oxygen content and is not sensitive to the electrode bevel angle under low weld metal oxygen content. The calculated results for the weld shape, weld size and weld D/W ratio agree well with the experimental ones.

  20. Tungsten Carbide Grain Size Computation for WC-Co Dissimilar Welds

    NASA Astrophysics Data System (ADS)

    Zhou, Dongran; Cui, Haichao; Xu, Peiquan; Lu, Fenggui

    2016-06-01

    A "two-step" image processing method based on electron backscatter diffraction in scanning electron microscopy was used to compute the tungsten carbide (WC) grain size distribution for tungsten inert gas (TIG) welds and laser welds. Twenty-four images were collected on randomly set fields per sample located at the top, middle, and bottom of a cross-sectional micrograph. Each field contained 500 to 1500 WC grains. The images were recognized through clustering-based image segmentation and WC grain growth recognition. According to the WC grain size computation and experiments, a simple WC-WC interaction model was developed to explain the WC dissolution, grain growth, and aggregation in welded joints. The WC-WC interaction and blunt corners were characterized using scanning and transmission electron microscopy. The WC grain size distribution and the effects of heat input E on grain size distribution for the laser samples were discussed. The results indicate that (1) the grain size distribution follows a Gaussian distribution. Grain sizes at the top of the weld were larger than those near the middle and weld root because of power attenuation. (2) Significant WC grain growth occurred during welding as observed in the as-welded micrographs. The average grain size was 11.47 μm in the TIG samples, which was much larger than that in base metal 1 (BM1 2.13 μm). The grain size distribution curves for the TIG samples revealed a broad particle size distribution without fine grains. The average grain size (1.59 μm) in laser samples was larger than that in base metal 2 (BM2 1.01 μm). (3) WC-WC interaction exhibited complex plane, edge, and blunt corner characteristics during grain growth. A WC ( { 1 {bar{{1}}}00} ) to WC ( {0 1 1 {bar{{0}}}} ) edge disappeared and became a blunt plane WC ( { 10 1 {bar{{0}}}} ) , several grains with two- or three-sided planes and edges disappeared into a multi-edge, and a WC-WC merged.

  1. Effect of species pool size on species occurrence frequencies: Musical chairs on islands

    PubMed Central

    Diamond, Jared

    1982-01-01

    If species interactions affect species distributions, then species occurrence frequencies (νi), defined as the fraction of an archipelago's islands that species i inhabits, should vary with species pool size. A “natural experiment” approximating this test is provided by the Bismarck, Solomon, and New Hebrides archipelagoes, whose bird species pools decrease in that order, the species of each archipelago being mostly a subset of those of the next richer archipelago. The average ν for an archipelago's species decreases with archipelago pool size. In the archipelago with the largest pool, most species are on few islands and few species are on most islands, whereas the reverse is true in the archipelago with the smallest pool. For species shared between two or more archipelagoes, νi decreases with pool size or number of species in the same guild. These interarchipelagal differences in νi or average ν reflect differences in level of interspecific competition, which reduces νs in species-rich archipelagoes in two ways: usually, by reducing a species' incidence on small islands and restricting the species to larger islands; less often (for so-called supertramps), by restricting a species to small islands. PMID:16578762

  2. Mathematical modelling of convective processes in a weld pool under electric arc surfacing

    NASA Astrophysics Data System (ADS)

    Sarychev, V. D.; Granovskii, A. Yu; Nevskii, S. A.; Konovalov, S. V.

    2017-01-01

    The authors develop the mathematical model of convective processes in a molten pool under electric arc surfacing with flux-cored wire. The model is based on the ideas of how convective flows appear due to temperature gradient and action of electromagnetic forces. Influence of alloying elements in the molten metal was modeled as a non-linear dependence of surface tension upon temperature. Surface tension and its temperature coefficient were calculated according to the electron density functional method with consideration to asymmetric electron distribution at the interface “molten metal / shielding gas”. Simultaneous solution of Navier-Stokes and Maxwell equations according to finite elements method with consideration to the moving heat source at the interface showed that there is a multi-vortex structure in the molten metal. This structure gives rise to a downward heat flux which, at the stage of heating, moves from the centre of the pool and stirs it full width. At the cooling stage this flux moves towards the centre of the pool and a single vortex is formed near the symmetry centre. This flux penetration is ∼ 10 mm. Formation of the downward heat flux is determined by sign reversal of the temperature coefficient of surface tension due to the presence of alloying elements.

  3. Size effect on cold-welding of gold nanowires investigated using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Da; Fang, Te-Hua; Wu, Chung-Chin

    2016-03-01

    The size effect on the cold-welding mechanism and mechanical properties of Au nanowires (NWs) in head-to-head contact are studied using molecular dynamics simulations based on the second-moment approximation of the many-body tight-binding potential. The results are discussed in terms of atomic trajectories, slip vectors, stress, radial distribution function, and weld strength ratio. Simulation results show that during the cold-welding process, a few disordered atoms/defects in the jointing area rearrange themselves and transform into a face-centered cubic crystalline structure. With an increase in contact between the two NWs, dislocations gradually form on the (111) slip plane and then on a twin plane, leading to an increase in the lateral deformation of 4-nm-wide NWs. The effect of structural instability increases with decreasing NW width, making the alignment of the two NWs more difficult. The elongation ability of the welded NWs increases with increasing NW width. Smaller NWs have better weld strength.

  4. Welding.

    ERIC Educational Resources Information Center

    Cowan, Earl; And Others

    The curriculum guide for welding instruction contains 16 units presented in six sections. Each unit is divided into the following areas, each of which is color coded: terminal objectives, specific objectives, suggested activities, and instructional materials; information sheet; transparency masters; assignment sheet; test; and test answers. The…

  5. Welding.

    ERIC Educational Resources Information Center

    Baldwin, Harold; Whitney, Gregory

    This curriculum guide is intended to assist vocational instructors in preparing students for entry-level employment as welders and preparing them for advanced training in the workplace. The package contains an overview of new and emerging welding technologies, a competency/skill and task list, an instructor's guide, and an annotated bibliography.…

  6. Effects of Fusion Zone Size on Failure Modes and Performance of Advanced High Strength Steel Spot Welds

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2006-04-28

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS). DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. The critical fusion zone sizes to ensure nugget pull-out failure mode are developed for both DP800 and TRIP800 using the limit load based analytical model and the micro-hardness measurements of the weld cross sections. Static weld strength tests using cross tension samples were performed on the joint populations with controlled fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied using statistical data analysis tools. The results in this study show that the conventional weld size of 4 t can not produce nugget pullout mode for both the DP800 and TRIP800 materials. The results also suggest that performance based spot weld acceptance criteria should be developed for different AHSS spot welds.

  7. Modeling of Heat and Mass Transfer in Fusion Welding

    SciTech Connect

    Zhang, Wei

    2011-01-01

    In fusion welding, parts are joined together by melting and subsequent solidification. Although this principle is simple, complex transport phenomena take place during fusion welding, and they determine the final weld quality and performance. The heat and mass transfer in the weld pool directly affect the size and shape of the pool, the solidification microstructure, the formation of weld defects such as porosity and humping, and the temperature distribution in the fusion zone and heat-affected zone (HAZ). Furthermore, the temperature evolution affects the kinetics and extent of various solid-state phase transformations, which in turn determine the final weld microstructure and mechanical properties. The formation of residual stresses and distortion originates from the thermal expansion and contraction during welding heating and cooling, respectively.

  8. Nitrogen stress affects the turnover and size of nitrogen pools supplying leaf growth in a grass.

    PubMed

    Lehmeier, Christoph Andreas; Wild, Melanie; Schnyder, Hans

    2013-08-01

    The effect of nitrogen (N) stress on the pool system supplying currently assimilated and (re)mobilized N for leaf growth of a grass was explored by dynamic ¹⁵N labeling, assessment of total and labeled N import into leaf growth zones, and compartmental analysis of the label import data. Perennial ryegrass (Lolium perenne) plants, grown with low or high levels of N fertilization, were labeled with ¹⁵NO₃⁻/¹⁴NO₃⁻ from 2 h to more than 20 d. In both treatments, the tracer time course in N imported into the growth zones fitted a two-pool model (r² > 0.99). This consisted of a "substrate pool," which received N from current uptake and supplied the growth zone, and a recycling/mobilizing "store," which exchanged with the substrate pool. N deficiency halved the leaf elongation rate, decreased N import into the growth zone, lengthened the delay between tracer uptake and its arrival in the growth zone (2.2 h versus 0.9 h), slowed the turnover of the substrate pool (half-life of 3.2 h versus 0.6 h), and increased its size (12.4 μg versus 5.9 μg). The store contained the equivalent of approximately 10 times (low N) and approximately five times (high N) the total daily N import into the growth zone. Its turnover agreed with that of protein turnover. Remarkably, the relative contribution of mobilization to leaf growth was large and similar (approximately 45%) in both treatments. We conclude that turnover and size of the substrate pool are related to the sink strength of the growth zone, whereas the contribution of the store is influenced by partitioning between sinks.

  9. Ultrasonic Phased Array Technique for Accurate Flaw Sizing in Dissimilar Metal Welds

    SciTech Connect

    Jonathan D Buttram

    2005-03-11

    Described is a manual,portable non-destructive technique to determine the through wall height of cracks present in dissimilar metal welds used in the primary coolling systems of pressure water and boiler light water reactors. Current manual methods found in industry have proven not to exhibit the sizing accuracy required by ASME inspection requirement. The technique described demonstrated an accuracy approximately three times that required to ASME Section XI, Appendix 8 qualification.

  10. Quality of the log-geometric distribution extrapolation for smaller undiscovered oil and gas pool size

    USGS Publications Warehouse

    Chenglin, L.; Charpentier, R.R.

    2010-01-01

    The U.S. Geological Survey procedure for the estimation of the general form of the parent distribution requires that the parameters of the log-geometric distribution be calculated and analyzed for the sensitivity of these parameters to different conditions. In this study, we derive the shape factor of a log-geometric distribution from the ratio of frequencies between adjacent bins. The shape factor has a log straight-line relationship with the ratio of frequencies. Additionally, the calculation equations of a ratio of the mean size to the lower size-class boundary are deduced. For a specific log-geometric distribution, we find that the ratio of the mean size to the lower size-class boundary is the same. We apply our analysis to simulations based on oil and gas pool distributions from four petroleum systems of Alberta, Canada and four generated distributions. Each petroleum system in Alberta has a different shape factor. Generally, the shape factors in the four petroleum systems stabilize with the increase of discovered pool numbers. For a log-geometric distribution, the shape factor becomes stable when discovered pool numbers exceed 50 and the shape factor is influenced by the exploration efficiency when the exploration efficiency is less than 1. The simulation results show that calculated shape factors increase with those of the parent distributions, and undiscovered oil and gas resources estimated through the log-geometric distribution extrapolation are smaller than the actual values. ?? 2010 International Association for Mathematical Geology.

  11. Swimming Pools.

    ERIC Educational Resources Information Center

    Ministry of Housing and Local Government, London (England).

    Technical and engineering data are set forth on the design and construction of swimming pools. Consideration is given to site selection, pool construction, the comparative merits of combining open air and enclosed pools, and alternative uses of the pool. Guidelines are presented regarding--(1) pool size and use, (2) locker and changing rooms, (3)…

  12. Constitutive Cylindrospermopsin Pool Size in Cylindrospermopsis raciborskii under Different Light and CO2 Partial Pressure Conditions

    PubMed Central

    Pierangelini, Mattia; Sinha, Rati; Burford, Michele A.; Neilan, Brett A.

    2015-01-01

    Cylindrospermopsin (CYN) and 7-deoxy-cylindrospermopsin (dCYN) are potent hepatotoxic alkaloids produced by numerous species of cyanobacteria, including the freshwater Cylindrospermopsis raciborskii. C. raciborskii is an invasive cyanobacterium, and the study of how environmental parameters drive CYN production has received significant interest from water managers and health authorities. Light and CO2 affect cell growth and physiology in photoautotrophs, and these are potential regulators of cyanotoxin biosynthesis. In this study, we investigated how light and CO2 affect CYN and dCYN pool size as well as the expression of the key genes, cyrA and cyrK, involved in CYN biosynthesis in a toxic C. raciborskii strain. For cells growing at different light intensities (10 and 100 μmol photons m−2 s−1), we observed that the rate of CYN pool size production (μCYN) was coupled to the cell division rate (μc) during batch culture. This indicated that CYN pool size under our experimental conditions is constant and cell quotas of CYN (QCYN) and dCYN (QdCYN) are fixed. Moreover, a lack of correlation between expression of cyrA and total CYN cell quotas (QCYNs) suggests that the CYN biosynthesis is regulated posttranscriptionally. Under elevated CO2 (1,300 ppm), we observed minor effects on QCYN and no effects on expression of cyrA and cyrK. We conclude that the CYN pool size is constitutive and not affected by light and CO2 conditions. Thus, C. raciborskii bloom toxicity is determined by the absolute abundance of C. raciborskii cells within the water column and the relative abundance of toxic and nontoxic strains. PMID:25724956

  13. Increases in plasma pool size of lipoprotein components in copper-deficient hamsters

    SciTech Connect

    Al-Othman, A.A.; Rosenstein, F.; Lei, K.Y. )

    1991-03-15

    Twenty-four male Golden Syrian hamsters, were randomly assigned to 2 dietary copper (Cu) treatments; deficient and adequate. Reductions in weight gain, hematocrit and liver Cu as well as increases in heart weight and plasma volume were observed in CD hamsters after 7 weeks of treatment. Plasma very low (VLDL), low (LDL) and high (HDL) density lipoproteins were isolated by ultracentrifugation and Sepharose column chromatography. The percentage of total plasma cholesterol carried by LDL was increased from 20 to 24% but was reduced from 71 to 68% for HDL as a result of Cu deficiency. In LDL the % composition of triglycerides (TG) and phospholipids (PL) was increased by 25% but that of cholesterol was reduced by 13%. The % composition of protein was reduced 24% but that of TG was increased 18% in VLDL by Cu deficiency. Since plasma volume was increased 50% in CD hamsters, the data were expressed as the amount present in the plasma pool corrected for body weight. With the exceptions of smaller increased in VLDL protein and PL as well as the more than threefold increases in LDL TG and PL plasma pool size, the pool size for the rest of the lipoprotein components were increased about twofold in CD hamsters. The lipoprotein data further indicate that Cu deficiency increased the particle number of VLDL, LDL and HDL but enlarged the size of only VLDL and LDL.

  14. Light qualities and dose influence ascorbate pool size in detached oat leaves.

    PubMed

    Mastropasqua, Linda; Borraccino, Giuseppe; Bianco, Laura; Paciolla, Costantino

    2012-02-01

    In this work, we studied the mechanism of light influence on AsA pool size in Avena sativa L. under the effects of low intensity light at different wavelengths. Exposure to low intensity light of oat leaf segments incubated in water or in l-galactono-1,4-lactone (GL), resulted in an increase in AsA content compared with the dark control. This increase was due to modulation of l-galactono-1,4-lactone dehydrogenase (GLDH; EC 1.3.2.3) light-dependent activity and was dependent on the size of the endogenous GL pool. Both blue and red light were effective in increasing AsA, and this increase depended on both exposure time and light intensity. Protein biosynthesis, photosynthesis and calcium were involved in controlling the level of light-dependent AsA. We suggest that multiple checkpoints correlated to the presence of light underlie the ascorbate pool size. The presence of a light-activated switch for the maintenance of an adequate AsA level seems to be necessary for the various tasks of scavenging reactive oxygen species, in response to the dark-light cycle which plants experience under natural conditions.

  15. Postillumination Isoprene Emission: In Vivo Measurements of Dimethylallyldiphosphate Pool Size and Isoprene Synthase Kinetics in Aspen Leaves1

    PubMed Central

    Rasulov, Bahtijor; Copolovici, Lucian; Laisk, Agu; Niinemets, Ülo

    2009-01-01

    The control of foliar isoprene emission is shared between the activity of isoprene synthase, the terminal enzyme catalyzing isoprene formation from dimethylallyldiphosphate (DMADP), and the pool size of DMADP. Due to limited in vivo information of isoprene synthase kinetic characteristics and DMADP pool sizes, the relative importance of these controls is under debate. In this study, the phenomenon of postillumination isoprene release was employed to develop an in vivo method for estimation of the DMADP pool size and to determine isoprene synthase kinetic characteristics in hybrid aspen (Populus tremula × Populus tremuloides) leaves. The method is based on observations that after switching off the light, isoprene emission continues for 250 to 300 s and that the integral of the postillumination isoprene emission is strongly correlated with the isoprene emission rate before leaf darkening, thus quantitatively estimating the DMADP pool size associated with leaf isoprene emission. In vitro estimates demonstrated that overall leaf DMADP pool was very large, almost an order of magnitude larger than the in vivo pool. Yet, the difference between total DMADP pools in light and in darkness (light-dependent DMADP pool) was tightly correlated with the in vivo estimates of the DMADP pool size that is responsible for isoprene emission. Variation in in vivo DMADP pool size was obtained by varying light intensity and atmospheric CO2 and O2 concentrations. From these experiments, the in vivo kinetic constants of isoprene synthase were determined. In vivo isoprene synthase kinetic characteristics suggested that isoprene synthase mainly operates under substrate limitation and that short-term light, CO2, and O2 dependencies of isoprene emission result from variation in DMADP pool size rather than from modifications in isoprene synthase activity. PMID:19129417

  16. Analysis of small sample size studies using nonparametric bootstrap test with pooled resampling method.

    PubMed

    Dwivedi, Alok Kumar; Mallawaarachchi, Indika; Alvarado, Luis A

    2017-03-09

    Experimental studies in biomedical research frequently pose analytical problems related to small sample size. In such studies, there are conflicting findings regarding the choice of parametric and nonparametric analysis, especially with non-normal data. In such instances, some methodologists questioned the validity of parametric tests and suggested nonparametric tests. In contrast, other methodologists found nonparametric tests to be too conservative and less powerful and thus preferred using parametric tests. Some researchers have recommended using a bootstrap test; however, this method also has small sample size limitation. We used a pooled method in nonparametric bootstrap test that may overcome the problem related with small samples in hypothesis testing. The present study compared nonparametric bootstrap test with pooled resampling method corresponding to parametric, nonparametric, and permutation tests through extensive simulations under various conditions and using real data examples. The nonparametric pooled bootstrap t-test provided equal or greater power for comparing two means as compared with unpaired t-test, Welch t-test, Wilcoxon rank sum test, and permutation test while maintaining type I error probability for any conditions except for Cauchy and extreme variable lognormal distributions. In such cases, we suggest using an exact Wilcoxon rank sum test. Nonparametric bootstrap paired t-test also provided better performance than other alternatives. Nonparametric bootstrap test provided benefit over exact Kruskal-Wallis test. We suggest using nonparametric bootstrap test with pooled resampling method for comparing paired or unpaired means and for validating the one way analysis of variance test results for non-normal data in small sample size studies. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Size and age of the non structural carbohydrate pool in boreal trees

    NASA Astrophysics Data System (ADS)

    Czimczik, C. I.; Trumbore, S.

    2005-12-01

    Autotrophic respiration of trees is supposed to be closely linked to CO2 uptake by photosynthesis on a time scale of days. However, several studies have indicated that roots of boreal trees do not respired carbon (C) with a radiocarbon signature Δ14C similar to that of CO2 in the atmosphere, but C that is 3-4 years old. Also, estimates of gross primary productivity obtained by eddy covariance flux measurements do often not correlate with tree ring width (growth). Both these findings point to the presences of a large non-structural C (NSC) pool within the tree, mainly sugars and starches. The concentration of NSC in tree tissue is considered a measure of C shortage or surplus for growth. Studies indicate that the NSC pool in trees is usually large and relatively constant throughout the year, not affected by e.g. leaf flushing. While estimates of the size of the NSC pool are available for a number of trees from various ecosystems, estimated of its turnover time are lacking. We tested if our finding that boreal trees respire 3-4 year old C is an artifact resulting from the depletion of the NSC pool in excised roots over time. We incubated roots with a diameter of 2-4 mm while they were still attached to the tree, and excised roots after 3 hours, and 1 to 4 days. We sampled CO2 for Δ14C analysis of intact roots, freshly excised roots, and after 1 and 3 days. To obtain an estimate of the NSC pool size and its turnover time in roots of various diameter, we excised and incubated roots of 3 diameters: root hairs with mycorrhizal fungi, 2-4 mm, and 1-2 cm. We followed their respiration over the course of one full day. We will also compare the Δ14C of respired CO2 of freshly root hairs to that of the NSC in the roots. To obtain an estimate of the size and turnover of the whole tree NSC pool, we will measure the Δ14C of NSC in wood. Preliminary results indicate that CO2 fluxes were not correlated to temperature or the initial CO2 concentration in the chamber. While CO2

  18. Effects of Fusion Zone Size and Failure Mode on Peak Load and Energy Absorption of Advanced High Strength Steel Spot Welds under Lap Shear Loading Conditions

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-06-01

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS) under lap shear loading condition. DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. Static weld strength tests using lap shear samples were performed on the joint populations with various fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied for all the weld populations using statistical data analysis tools. The results in this study show that AHSS spot welds with conventionally required fusion zone size of can not produce nugget pullout mode for both the DP800 and TRIP800 welds under lap shear loading. Moreover, failure mode has strong influence on weld peak load and energy absorption for all the DP800 welds and the TRIP800 small welds: welds failed in pullout mode have statistically higher strength and energy absorption than those failed in interfacial fracture mode. For TRIP800 welds above the critical fusion zone level, the influence of weld failure modes on peak load and energy absorption diminishes. Scatter plots of peak load and energy absorption versus weld fusion zone size were then constructed, and the results indicate that fusion zone size is the most critical factor in weld quality in terms of peak load and energy absorption for both DP800 and TRIP800 spot welds.

  19. Munc18-1 expression levels control synapse recovery by regulating readily releasable pool size

    PubMed Central

    Toonen, Ruud F. G.; Wierda, Keimpe; Sons, Michèle S.; de Wit, Heidi; Cornelisse, L. Niels; Brussaard, Arjen; Plomp, Jaap J.; Verhage, Matthijs

    2006-01-01

    Prompt recovery after intense activity is an essential feature of most mammalian synapses. Here we show that synapses with reduced expression of the presynaptic gene munc18-1 suffer from increased depression during intense stimulation at glutamatergic, GABAergic, and neuromuscular synapses. Conversely, munc18-1 overexpression makes these synapses recover faster. Concomitant changes in the readily releasable vesicle pool and its refill kinetics were found. The number of vesicles docked at the active zone and the total number of vesicles per terminal correlated with both munc18-1 expression levels and the size of the releasable vesicle pool. These data show that varying expression of a single gene controls synaptic recovery by modulating the number of docked, release-ready vesicles and thereby replenishment of the secretion capacity. PMID:17110441

  20. Measuring size and composition of species pools: a comparison of dark diversity estimates.

    PubMed

    de Bello, Francesco; Fibich, Pavel; Zelený, David; Kopecký, Martin; Mudrák, Ondřej; Chytrý, Milan; Pyšek, Petr; Wild, Jan; Michalcová, Dana; Sádlo, Jiří; Šmilauer, Petr; Lepš, Jan; Pärtel, Meelis

    2016-06-01

    Ecological theory and biodiversity conservation have traditionally relied on the number of species recorded at a site, but it is agreed that site richness represents only a portion of the species that can inhabit particular ecological conditions, that is, the habitat-specific species pool. Knowledge of the species pool at different sites enables meaningful comparisons of biodiversity and provides insights into processes of biodiversity formation. Empirical studies, however, are limited due to conceptual and methodological difficulties in determining both the size and composition of the absent part of species pools, the so-called dark diversity. We used >50,000 vegetation plots from 18 types of habitats throughout the Czech Republic, most of which served as a training dataset and 1083 as a subset of test sites. These data were used to compare predicted results from three quantitative methods with those of previously published expert estimates based on species habitat preferences: (1) species co-occurrence based on Beals' smoothing approach; (2) species ecological requirements, with envelopes around community mean Ellenberg values; and (3) species distribution models, using species environmental niches modeled by Biomod software. Dark diversity estimates were compared at both plot and habitat levels, and each method was applied in different configurations. While there were some differences in the results obtained by different methods, particularly at the plot level, there was a clear convergence, especially at the habitat level. The better convergence at the habitat level reflects less variation in local environmental conditions, whereas variation at the plot level is an effect of each particular method. The co-occurrence agreed closest the expert estimate, followed by the method based on species ecological requirements. We conclude that several analytical methods can estimate species pools of given habitats. However, the strengths and weaknesses of different methods

  1. Determination of an unrelated donor pool size for human leukocyte antigen-matched platelets in Brazil

    PubMed Central

    Bub, Carolina Bonet; Torres, Margareth Afonso; Moraes, Maria Elisa; Hamerschlak, Nelson; Kutner, José Mauro

    2015-01-01

    Background Successful transfusion of platelet refractory patients is a challenge. Many potential donors are needed to sustain human leukocyte antigen matched-platelet transfusion programs because of the different types of antigens and the constant needs of these patients. For a highly mixed population such as the Brazilian population, the pool size required to provide adequate platelet support is unknown. Methods A mathematical model was created to estimate the appropriate size of an unrelated donor pool to provide human leukocyte antigen-compatible platelet support for a Brazilian population. A group of 154 hematologic human leukocyte antigen-typed patients was used as the potential patient population and a database of 65,500 human leukocyte antigen-typed bone marrow registered donors was used as the donor population. Platelet compatibility was based on the grading system of Duquesnoy. Results Using the mathematical model, a pool containing 31,940, 1710 and 321 donors would be necessary to match more than 80% of the patients with at least five completely compatible (no cross-reactive group), partial compatible (one cross-reactive group) or less compatible (two cross-reactive group) donors, respectively. Conclusion The phenotypic diversity of the Brazilian population has probably made it more difficulty to find completely compatible donors. However, this heterogeneity seems to have facilitated finding donors when cross-reactive groups are accepted as proposed by the grading system of Duquesnoy. The results of this study may help to establish unrelated human leukocyte antigen-compatible platelet transfusions, a procedure not routinely performed in most Brazilian transfusion services. PMID:26969768

  2. Probabilistic Estimation of Critical Flaw Sizes in the Primary Structure Welds of the Ares I-X Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Hoge, Peter A.; Patel, B. M.; Nagpal, Vinod K.

    2009-01-01

    The primary structure of the Ares I-X Upper Stage Simulator (USS) launch vehicle is constructed of welded mild steel plates. There is some concern over the possibility of structural failure due to welding flaws. It was considered critical to quantify the impact of uncertainties in residual stress, material porosity, applied loads, and material and crack growth properties on the reliability of the welds during its pre-flight and flight. A criterion--an existing maximum size crack at the weld toe must be smaller than the maximum allowable flaw size--was established to estimate the reliability of the welds. A spectrum of maximum allowable flaw sizes was developed for different possible combinations of all of the above listed variables by performing probabilistic crack growth analyses using the ANSYS finite element analysis code in conjunction with the NASGRO crack growth code. Two alternative methods were used to account for residual stresses: (1) The mean residual stress was assumed to be 41 ksi and a limit was set on the net section flow stress during crack propagation. The critical flaw size was determined by parametrically increasing the initial flaw size and detecting if this limit was exceeded during four complete flight cycles, and (2) The mean residual stress was assumed to be 49.6 ksi (the parent material s yield strength) and the net section flow stress limit was ignored. The critical flaw size was determined by parametrically increasing the initial flaw size and detecting if catastrophic crack growth occurred during four complete flight cycles. Both surface-crack models and through-crack models were utilized to characterize cracks in the weld toe.

  3. Development of a comprehensive weld process model

    SciTech Connect

    Radhakrishnan, B.; Zacharia, T.; Paul, A.

    1997-05-01

    This cooperative research and development agreement (CRADA) between Concurrent Technologies Corporation (CTC) and Lockheed Martin Energy Systems (LMES) combines CTC`s expertise in the welding area and that of LMES to develop computer models and simulation software for welding processes. This development is of significant impact to the industry, including materials producers and fabricators. The main thrust of the research effort was to develop a comprehensive welding simulation methodology. A substantial amount of work has been done by several researchers to numerically model several welding processes. The primary drawback of most of the existing models is the lack of sound linkages between the mechanistic aspects (e.g., heat transfer, fluid flow, and residual stress) and the metallurgical aspects (e.g., microstructure development and control). A comprehensive numerical model which can be used to elucidate the effect of welding parameters/conditions on the temperature distribution, weld pool shape and size, solidification behavior, and microstructure development, as well as stresses and distortion, does not exist. It was therefore imperative to develop a comprehensive model which would predict all of the above phenomena during welding. The CRADA built upon an already existing three-dimensional (3-D) welding simulation model which was developed by LMES which is capable of predicting weld pool shape and the temperature history in 3-d single-pass welds. However, the model does not account for multipass welds, microstructural evolution, distortion and residual stresses. Additionally, the model requires large resources of computing time, which limits its use for practical applications. To overcome this, CTC and LMES have developed through this CRADA the comprehensive welding simulation model described above.

  4. Solidification of underwater wet welds

    SciTech Connect

    Pope, A.M.; Medeiros, R.C. de; Liu, S.

    1995-12-31

    It is well known that the shape of a weld pool can influence the microstructure and segregation pattern of the final solidified weld metal. Mechanical properties and susceptibility to defects are consequently affected by the solidification mode of the weld. In this work the solidification behavior of weld beads deposited in air and underwater wet welding using rutile electrodes were compared. The welds were deposited by gravity feed, on low carbon, manganese steel plates using similar welding conditions. Macroscopic observation of the weld craters showed that welds deposited in air presented an elliptical weld pool. The underwater wet welds, on the other hand, solidified with a tear drop shape. Although the welds differed in shape, their lengths were approximately the same. Microscopic examinations carried out on transverse, normal and longitudinal sections revealed a coarser columnar grain structure in the underwater welds. These results suggest that the tear-drop shaped pool induced solidification in a preferred orientation with segregation more likely in welds deposited under wet conditions. This change in weld pool geometry can be explained by the surface heat loss conditions that occur in a wet weld: slower when covered by the steam bubble and faster in the region in contact with water behind the pool.

  5. Pool sizes of the precursors for phosphatidylcholine synthesis in developing rat lung.

    PubMed

    Tokmakjian, S; Possmayer, F

    1981-10-23

    1. Pulmonary maturation in the rat is accompanied by a 30% postnatal increase in the pool size of choline, a 4-fold overall prenatal and postnatal decrease in the level of cholinephosphate, a 3-fold decrease in CDPcholine levels and a 2-fold increase in the content of phosphatidylcholine. 2. The level of 1,2-diacyl-sn-glycerol in rat lung increases 5-fold during the fetal and neonatal periods. Only minor alterations were noted in the fatty acid composition. 3. These results are consistent with an increase in the relative rates of the cholinephosphate cytidylyl-transferase and cholinephosphotransferase steps of phosphatidylcholine production during pulmonary maturation. The relative rate of the step catalyzed by phosphatidate phosphohydrolase may also be increased.

  6. Released fraction and total size of a pool of immediately available transmitter quanta at a calyx synapse.

    PubMed

    Schneggenburger, R; Meyer, A C; Neher, E

    1999-06-01

    The size of a pool of readily releasable vesicles at a giant brainstem synapse, the calyx of Held, was probed with three independent approaches. Using simultaneous pre- and postsynaptic whole-cell recordings, two forms of presynaptic Ca2+ stimuli were applied in rapid succession: uncaging of Ca2+ by flash photolysis and the opening of voltage-gated Ca2+ channels. The ensuing transmitter release showed a nearly complete cross-inhibition between the two stimuli, indicating the depletion of a limited pool of about 700 transmitter quanta. The pool size was confirmed in experiments using enhanced extracellular Ca2+ concentrations, as well as short, high-frequency stimulus trains. The results reveal a surprisingly large pool of functionally available vesicles, of which a fraction of about 0.2 is released by a single presynaptic action potential under physiological conditions.

  7. Effects of Fusion Zone Size and Failure Mode on Peak Load and Energy Absorption of Advanced High Strength Steel Spot Welds

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2007-01-01

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS). DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. The critical fusion zone sizes to ensure nugget pull-out failure mode are developed for both DP800 and TRIP800 using limit load based analytical model and micro-hardness measurements of the weld cross sections. Static weld strength tests using cross tension samples were performed on the joint populations with controlled fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied for all the weld populations using statistical data analysis tools. The results in this study show that AHSS spot welds with fusion zone size of can not produce nugget pullout mode for both the DP800 and TRIP800 materials examined. The critical fusion zone size for nugget pullout shall be derived for individual materials based on different base metal properties as well as different heat affected zone (HAZ) and weld properties resulted from different welding parameters.

  8. Trafficking of the plasma membrane gamma-aminobutyric acid transporter GAT1. Size and rates of an acutely recycling pool.

    PubMed

    Wang, Dan; Quick, Michael W

    2005-05-13

    Plasma membrane neurotransmitter transporters rapidly traffic to and from the cell surface in neurons. This trafficking may be important in regulating neuronal signaling. Such regulation will be subject to the number of trafficking transporters and their trafficking rates. In the present study, we define an acutely recycling pool of endogenous gamma-aminobutyric acid transporters (GAT1) in cortical neurons that comprises approximately one-third of total cellular GAT1. Kinetic analysis of this pool estimates exocytosis and endocytosis time constants of 1.6 and 0.9 min, respectively, and thus approximately one-third of the recycling pool is plasma membrane resident in the basal state. Recent evidence shows that GAT1 substrates, second messengers, and interacting proteins regulate GAT1 trafficking. These triggers could act by altering trafficking rates or by changing the recycling pool size. In the present study we examine three GAT1 modulators. Calcium depletion decreases GAT1 surface expression by diminishing the recycling pool size. Sucrose increases GAT1 surface expression by blocking clathrin- and dynamin-dependent endocytosis, but it does not change the recycling pool size. Protein kinase C decreases surface GAT1 expression by increasing the endocytosis rate, but it does not change the exocytosis rate or the recycling pool size. Based upon estimates of GAT1 molecules in cortical boutons, the present data suggest that approximately 1000 transporters comprise the acutely recycling pool, of which 300 are on the surface in the basal state, and five transporters insert into the plasma membrane every second. This insertion could represent the fusion of one transporter-containing vesicle.

  9. On the hot cracking susceptibility of a semisolid aluminium 6061 weld: Application of a coupled solidification- thermomechanical model

    NASA Astrophysics Data System (ADS)

    Zareie Rajani, H. R.; Phillion, A. B.

    2015-06-01

    A coupled solidification-thermomechanical model is presented that investigates the hot tearing susceptibility of an aluminium 6061 semisolid weld. Two key phenomena are considered: excessive deformation of the semisolid weld, initiating a hot tear, and the ability of the semisolid weld to heal the hot tear by circulation of the molten metal. The model consists of two major modules: weld solidification and thermomechanical analysis. 1) By means of a multi-scale model of solidification, the microstructural evolution of the semisolid weld is simulated in 3D. The semisolid structure, which varies as a function of welding parameters, is composed of solidifying grains and a network of micro liquid channels. The weld solidification module is utilized to obtain the solidification shrinkage. The size of the micro liquid channels is used as an indicator to assess the healing ability of the semisolid weld. 2) Using the finite element method, the mechanical interaction between the weld pool and the base metal is simulated to capture the transient force field deforming the semisolid weld. Thermomechanical stresses and shrinkage stresses are both considered in the analysis; the solidification contractions are extracted from the weld solidification module and applied to the deformation simulation as boundary conditions. Such an analysis enables characterization of the potential for excessive deformation of the weld. The outputs of the model are used to study the effect of welding parameters including welding current and speed, and also welding constraint on the hot cracking susceptibility of an aluminium alloy 6061 semisolid weld.

  10. Determination of deoxycholic acid pool size and input rate using (24-/sup 13/C)deoxycholic acid and serum sampling

    SciTech Connect

    Stellard, F.; Paumgartner, G.; van Berge Henegouwen, G.P.; van der Werf, S.D.

    1986-11-01

    We have developed an isotope dilution method for determination of deoxycholic acid pool size and input rate which employs oral administration of 50 mg of (24-/sup 13/C)deoxycholic acid and serum sampling. The method has been validated by classical isotope dilution technique using (24-/sup 14/C)deoxycholic acid and bile sampling in five patients with colonic adenomas. Excellent agreement between pool sizes and input rates determined with /sup 13/C/12C isotope ratio measurements in serum and /sup 14/C measurements in bile was obtained when isotope ratios were measured in the conjugated fraction of deoxycholic acid in serum. We conclude that pool size and input rate of deoxycholic acid can accurately be determined by blood sampling after oral administration of (24-/sup 13/C)deoxycholic acid, therewith eliminating the use of radioactive tracers and the need for bile sampling.

  11. Optically controlled welding system

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1988-01-01

    An optically controlled welding system wherein a welding torch having through-the-torch viewing capabilities is provided with an optical beam splitter to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder to make the welding torch responsive thereto. Other features include an actively cooled electrode holder which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm, and a weld pool contour detector comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom, being characteristic of a penetrated or unpenetrated condition of the weld pool.

  12. Optically controlled welding system

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1989-01-01

    An optically controlled welding system (10) wherein a welding torch (12) having through-the-torch viewing capabilities is provided with an optical beam splitter (56) to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder (15) to make the welding torch responsive thereto. Other features includes an actively cooled electrode holder (26) which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm (28) and a weld pool contour detector (14) comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom being characteristic of a penetrated or unpenetrated condition of the weld pool.

  13. cMyc Regulates the Size of the Premigratory Neural Crest Stem Cell Pool.

    PubMed

    Kerosuo, Laura; Bronner, Marianne E

    2016-12-06

    The neural crest is a transient embryonic population that originates within the central nervous system (CNS) and then migrates into the periphery and differentiates into multiple cell types. The mechanisms that govern neural crest stem-like characteristics and self-renewal ability are poorly understood. Here, we show that the proto-oncogene cMyc is a critical factor in the chick dorsal neural tube, where it regulates the size of the premigratory neural crest stem cell pool. Loss of cMyc dramatically decreases the number of emigrating neural crest cells due to reduced self-renewal capacity, increased cell death, and shorter duration of the emigration process. Interestingly, rather than via E-Box binding, cMyc acts in the dorsal neural tube by interacting with another transcription factor, Miz1, to promote self-renewal. The finding that cMyc operates in a non-canonical manner in the premigratory neural crest highlights the importance of examining its role at specific time points and in an in vivo context.

  14. Evaluation of Molybdenum as a Surrogate for Iridium in the GPHS Weld Development

    SciTech Connect

    Stine, Andrew Martin; Pierce, Stanley W.; Moniz, Paul F.

    2015-10-17

    The welding equipment used for welding iridium containers (clads) at Los Alamos National Laboratory is twenty five years old and is undergoing an upgrade. With the upgrade, there is a requirement for requalification of the welding process, and the opportunity for process improvement. Testing of the new system and requalification will require several welds on iridium test parts and clads, and any efforts to improve the process will add to the need for iridium parts. The extreme high cost of iridium imposes a severe limitation on the extent of test welding that can be done. The 2 inch diameter, 0.027 inch thick, iridium blank disc that the clad cup is formed from, is useful for initial weld trials, but it costs $5000. The development clad sets needed for final tests and requalification cost $15,000 per set. A solution to iridium cost issue would be to do the majority of the weld development on a less expensive surrogate metal with similar weld characteristics. One such metal is molybdenum. Since its melting index (melting temperature x thermal conductivity) is closest to iridium, welds on molybdenum should be similar in size for a given weld power level. Molybdenum is inexpensive; a single 2 inch molybdenum disc costs only $9. In order to evaluate molybdenum as a surrogate for iridium, GTA welds were first developed to provide full penetration on 0.030 inch thick molybdenum discs at speeds of 20, 25, and 30 inches per minute (ipm). These weld parameters were then repeated on the standard 0.027 inch thick iridium blanks. The top surface and bottom surface (root) width and grain structure of the molybdenum and iridium welds were compared, and similarities were evident between the two metals. Due to material and thickness differences, the iridium welds were approximately 35% wider than the molybdenum welds. A reduction in iridium weld current of 35% produce welds slightly smaller than the molybdenum welds yet showed that current could be scaled according to molybdenum

  15. Effects of Fusion Zone Size on Failure Modes and Performance of Advanced High Strength Steel Spot Welds (2006-01-0531)

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2007-03-01

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS). DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. The critical fusion zone sizes to ensure nugget pull-out failure mode are developed for both DP800 and TRIP800 using the limit load based analytical model and the micro-hardness measurements of the weld cross sections. Static weld strength tests using cross tension samples were performed on the joint populations with controlled fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied using statistical data analysis tools. The results in this study show that the conventional weld size of 4 t1/2 can not produce nugget pullout mode for both the DP800 and TRIP800 materials. The results also suggest that performance based spot weld acceptance criteria should be developed for different AHSS spot welds.

  16. Active weld control

    NASA Technical Reports Server (NTRS)

    Powell, Bradley W.; Burroughs, Ivan A.

    1994-01-01

    Through the two phases of this contract, sensors for welding applications and parameter extraction algorithms have been developed. These sensors form the foundation of a weld control system which can provide action weld control through the monitoring of the weld pool and keyhole in a VPPA welding process. Systems of this type offer the potential of quality enhancement and cost reduction (minimization of rework on faulty welds) for high-integrity welding applications. Sensors for preweld and postweld inspection, weld pool monitoring, keyhole/weld wire entry monitoring, and seam tracking were developed. Algorithms for signal extraction were also developed and analyzed to determine their application to an adaptive weld control system. The following sections discuss findings for each of the three sensors developed under this contract: (1) weld profiling sensor; (2) weld pool sensor; and (3) stereo seam tracker/keyhole imaging sensor. Hardened versions of these sensors were designed and built under this contract. A control system, described later, was developed on a multiprocessing/multitasking operating system for maximum power and flexibility. Documentation for sensor mechanical and electrical design is also included as appendices in this report.

  17. Virtual Welding — Applying Science to Welding Practices

    NASA Astrophysics Data System (ADS)

    Yang, Zhishang; Cao, Zhenning; Chen, X. L.; Ludewig, Howard W.

    2004-06-01

    Welding practice has traditionally been treated as an art and in most cases experience based trial-and-error experimentation has been the major approach to establish a feasible welding procedure. In recent years, significant progress has been made in understanding welding phenomena based on numerical modeling. Recent modeling efforts include simulation of the weld pool formation, weld microstructure evolution, and welding induced residual stress and distortion. The numerical models based on interdisciplinary applied sciences (e.g. heat transfer and fluid flow, materials science, mechanical engineering, and fracture mechanics) have provided detailed insights into welding process and guidance in design of high performance welded-joints and cost effective welding process. The concept of "Virtual Welding," which is a simulation package based on interdisciplinary applied science and multi-scale numerical models, is proposed in this paper. Examples are provided to demonstrate the applications of "Virtual Welding" in industrial practices for high performance welds and reduced manufacturing cost.

  18. Total-body creatine pool size and skeletal muscle mass determination by creatine-(methyl-D3) dilution in rats.

    PubMed

    Stimpson, Stephen A; Turner, Scott M; Clifton, Lisa G; Poole, James C; Mohammed, Hussein A; Shearer, Todd W; Waitt, Greg M; Hagerty, Laura L; Remlinger, Katja S; Hellerstein, Marc K; Evans, William J

    2012-06-01

    There is currently no direct, facile method to determine total-body skeletal muscle mass for the diagnosis and treatment of skeletal muscle wasting conditions such as sarcopenia, cachexia, and disuse. We tested in rats the hypothesis that the enrichment of creatinine-(methyl-d(3)) (D(3)-creatinine) in urine after a defined oral tracer dose of D(3)-creatine can be used to determine creatine pool size and skeletal muscle mass. We determined 1) an oral tracer dose of D(3)-creatine that was completely bioavailable with minimal urinary spillage and sufficient enrichment in the body creatine pool for detection of D(3)-creatine in muscle and D(3)-creatinine in urine, and 2) the time to isotopic steady state. We used cross-sectional studies to compare total creatine pool size determined by the D(3)-creatine dilution method to lean body mass determined by independent methods. The tracer dose of D(3)-creatine (<1 mg/rat) was >99% bioavailable with 0.2-1.2% urinary spillage. Isotopic steady state was achieved within 24-48 h. Creatine pool size calculated from urinary D(3)-creatinine enrichment at 72 h significantly increased with muscle accrual in rat growth, significantly decreased with dexamethasone-induced skeletal muscle atrophy, was correlated with lean body mass (r = 0.9590; P < 0.0001), and corresponded to predicted total muscle mass. Total-body creatine pool size and skeletal muscle mass can thus be accurately and precisely determined by an orally delivered dose of D(3)-creatine followed by the measurement of D(3)-creatinine enrichment in a single urine sample and is promising as a noninvasive tool for the clinical determination of skeletal muscle mass.

  19. Time-dependent calculations of molten pool formation and thermal plasma with metal vapour in gas tungsten arc welding

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Yamamoto, K.; Tashiro, S.; Nakata, K.; Yamamoto, E.; Yamazaki, K.; Suzuki, K.; Murphy, A. B.; Lowke, J. J.

    2010-11-01

    A gas tungsten arc (GTA) was modelled taking into account the contamination of the plasma by metal vapour from the molten anode. The whole region of GTA atmosphere including the tungsten cathode, the arc plasma and the anode was treated using a unified numerical model. A viscosity approximation was used to express the diffusion coefficient in terms of viscosity of the shielding gas and metal vapour. The transient two-dimensional distributions of temperature, velocity of plasma flow and iron vapour concentration were predicted, together with the molten pool as a function of time for a 150 A arc current at atmospheric pressure, both for helium and argon gases. It was shown that the thermal plasma in the GTA was influenced by iron vapour from the molten pool surface and that the concentration of iron vapour in the plasma was dependent on the temperature of the molten pool. GTA on high sulfur stainless steel was calculated to discuss the differences between a low sulfur and a high sulfur stainless steel anode. Helium was selected as the shielding gas because a helium GTA produces more metal vapour than an argon GTA. In the GTA on a high sulfur stainless steel anode, iron vapour and current path were constricted. Radiative emission density in the GTA on high sulfur stainless steel was also concentrated in the centre area of the arc plasma together with the iron vapour although the temperature distributions were almost the same as that in the case of a low sulfur stainless steel anode.

  20. Development of a Comprehensive Weld Process Model

    SciTech Connect

    Radhakrishnan, B.; Zacharia, T.

    1997-05-01

    This cooperative research and development agreement (CRADA) between Concurrent Technologies Corporation (CTC) and Lockheed Martin Energy Systems (LMES) combines CTC's expertise in the welding area and that of LMES to develop computer models and simulation software for welding processes. This development is of significant impact to the industry, including materials producers and fabricators. The main thrust of the research effort was to develop a comprehensive welding simulation methodology. A substantial amount of work has been done by several researchers to numerically model several welding processes. The primary drawback of most of the existing models is the lack of sound linkages between the mechanistic aspects (e.g., heat transfer, fluid flow, and residual stress) and the metallurgical aspects (e.g., microstructure development and control). A comprehensive numerical model which can be used to elucidate the effect of welding parameters/conditions on the temperature distribution, weld pool shape and size, solidification behavior, and microstructure development, as well as stresses and distortion, does not exist. It was therefore imperative to develop a comprehensive model which would predict all of the above phenomena during welding. The CRADA built upon an already existing three- dimensional (3-D) welding simulation model which was developed by LMES which is capable of predicting weld pool shape and the temperature history in 3-d single-pass welds. However, the model does not account for multipass welds, microstructural evolution, distortion and residual stresses. Additionally, the model requires large resources of computing time, which limits its use for practical applications. To overcome this, CTC and LMES have developed through this CRADA the comprehensive welding simulation model described above. The following technical tasks have been accomplished as part of the CRADA. 1. The LMES welding code has been ported to the Intel Paragon parallel computer at ORNL

  1. A Scanning Transmission Electron Microscopy Method for Determining Manganese Composition in Welding Fume as a Function of Primary Particle Size.

    PubMed

    Richman, Julie D; Livi, Kenneth J T; Geyh, Alison S

    2011-06-01

    Increasing evidence suggests that the physicochemical properties of inhaled nanoparticles influence the resulting toxicokinetics and toxicodynamics. This report presents a method using scanning transmission electron microscopy (STEM) to measure the Mn content throughout the primary particle size distribution of welding fume particle samples collected on filters for application in exposure and health research. Dark field images were collected to assess the primary particle size distribution and energy-dispersive X-ray and electron energy loss spectroscopy were performed for measurement of Mn composition as a function of primary particle size. A manual method incorporating imaging software was used to measure the primary particle diameter and to select an integration region for compositional analysis within primary particles throughout the size range. To explore the variation in the developed metric, the method was applied to 10 gas metal arc welding (GMAW) fume particle samples of mild steel that were collected under a variety of conditions. The range of Mn composition by particle size was -0.10 to 0.19 %/nm, where a positive estimate indicates greater relative abundance of Mn increasing with primary particle size and a negative estimate conversely indicates decreasing Mn content with size. However, the estimate was only statistically significant (p<0.05) in half of the samples (n=5), which all had a positive estimate. In the remaining samples, no significant trend was measured. Our findings indicate that the method is reproducible and that differences in the abundance of Mn by primary particle size among welding fume samples can be detected.

  2. Analysis of solidification microstructures in Fe-Ni-Cr single-crystal welds

    NASA Astrophysics Data System (ADS)

    Rappaz, M.; David, S. A.; Vitek, J. M.; Boatner, L. A.

    1990-06-01

    A geometric analysis technique for the evaluation of the microstructures in autogenous single-crystal electron beam welds has been previously developed. In the present work, these analytical methods are further extended, and a general procedure for predicting the solidification microstructure of single-crystal welds with any arbitrary orientation is established. Examples of this general analysis are given for several welding orientations. It is shown that a nonsymmetric cell structure is expected in transverse micrographs for most welding geometries. The development of steady-state conditions in the weld pool is also examined in terms of the weld pool size, its shape (as revealed by the dendritic growth pattern), and the size of the dendritic cells. It is found that steady state is established within a few millimeters of the beginning of the weld. Furthermore, steady state is achieved faster in welds made at higher welding speeds. A general analysis of the three-dimensional (3-D) weld pool shape based on the dendritic structure as revealed in the two-dimensional (2-D) transverse micrographs is also developed. It is shown that in combination with information on the preferred growth direction as a function of the solidification front orientation, the entire dendritic growth pattern in single-crystal welds can be predicted. A comparison with the actual weld micrographs shows a reasonable agreement between the theory and experiment. Finally, the theoretical analysis of the dendrite tip radius is extended from binary systems to include the case of ternary systems. The theoretical dendrite trunk spacing in a ternary Fe-Ni-Cr alloy is calculated from the dendrite tip radius and is compared with the experimental values for several weld conditions. Good agreement between experiment and theory is found.

  3. X-ray and neutron diffraction measurements of dislocation density and subgrain size in a friction stir welded aluminum alloy

    SciTech Connect

    Claussen, Bjorn; Woo, Wanchuck; Zhili, Feng; Edward, Kenik; Ungar, Tamas

    2009-01-01

    The dislocation density and subgrain size were determined in the base material and friction-stir welds of 6061-T6 aluminum alloy. High-resolution X-ray diffraction measurement was performed in the base material. The result of the line profile analysis of the X-ray diffraction peak shows that the dislocation density is about 4.5 x 10{sup 14} m{sup 02} and the subgrain size is about 200 nm. Meanwhile, neutron diffraction measurements have been performed to observe the diffraction peaks during friction-stir welding (FSW). The deep penetration capability of the neutron enables us to measure the peaks from the midplane of the Al plate underneath the tool shoulder of the friction-stir welds. The peak broadening analysis result using the Williamson-Hall method shows the dislocation density of about 3.2 x 10{sup 15} m{sup -2} and subgrain size of about 160 nm. The significant increase of the dislocation density is likely due to the severe plastic deformation during FSW. This study provides an insight into understanding the transient behavior of the microstructure under severe thermomechanical deformation.

  4. Laser beam welding of any metal.

    SciTech Connect

    Leong, K. H.

    1998-10-01

    The effect of a metal's thermophysical properties on its weldability are examined. The thermal conductivity, melting point, absorptivity and thermal diffusivity of the metal and the laser beam focused diameter and welding speed influence the minimum beam irradiance required for melting and welding. Beam diameter, surface tension and viscosity of the molten metal affect weld pool stability and weld quality. Lower surface tension and viscosity increases weld pool instability. With larger beam diameters causing wider welds, dropout also increases. Effects of focused beam diameter and joint fitup on weldability are also examined. Small beam diameters are sensitive to beam coupling problems in relation to fitup precision in addition to beam alignment to the seam. Welding parameters for mitigating weld pool instability and increasing weld quality are derived from the above considerations. Guidelines are presented for the tailoring of welding parameters to achieve good welds. Weldability problems can also be anticipated from the properties of a metal.

  5. Fluid Flow Phenomena during Welding

    SciTech Connect

    Zhang, Wei

    2011-01-01

    MOLTEN WELD POOLS are dynamic. Liquid in the weld pool in acted on by several strong forces, which can result in high-velocity fluid motion. Fluid flow velocities exceeding 1 m/s (3.3 ft/s) have been observed in gas tungsten arc (GTA) welds under ordinary welding conditions, and higher velocities have been measured in submerged arc welds. Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects. Moving liquid transports heat and often dominates heat transport in the weld pool. Because heat transport by mass flow depends on the direction and speed of fluid motion, weld pool shape can differ dramatically from that predicted by conductive heat flow. Temperature gradients are also altered by fluid flow, which can affect weld microstructure. A number of defects in GTA welds have been attributed to fluid flow or changes in fluid flow, including lack of penetration, top bead roughness, humped beads, finger penetration, and undercutting. Instabilities in the liquid film around the keyhole in electron beam and laser welds are responsible for the uneven penetration (spiking) characteristic of these types of welds.

  6. Pool size measurements facilitate the determination of fluxes at branching points in non-stationary metabolic flux analysis: the case of Arabidopsis thaliana.

    PubMed

    Heise, Robert; Fernie, Alisdair R; Stitt, Mark; Nikoloski, Zoran

    2015-01-01

    Pool size measurements are important for the estimation of absolute intracellular fluxes in particular scenarios based on data from heavy carbon isotope experiments. Recently, steady-state fluxes estimates were obtained for central carbon metabolism in an intact illuminated rosette of Arabidopsis thaliana grown photoautotrophically (Szecowka et al., 2013; Heise et al., 2014). Fluxes were estimated therein by integrating mass-spectrometric data of the dynamics of the unlabeled metabolic fraction, data on metabolic pool sizes, partitioning of metabolic pools between cellular compartments and estimates of photosynthetically inactive pools, with a simplified model of plant central carbon metabolism. However, the fluxes were determined by treating the pool sizes as fixed parameters. Here we investigated whether and, if so, to what extent the treatment of pool sizes as parameters to be optimized in three scenarios may affect the flux estimates. The results are discussed in terms of benchmark values for canonical pathways and reactions, including starch and sucrose synthesis as well as the ribulose-1,5-bisphosphate carboxylation and oxygenation reactions. In addition, we discuss pathways emerging from a divergent branch point for which pool sizes are required for flux estimation, irrespective of the computational approach used for the simulation of the observable labeling pattern. Therefore, our findings indicate the necessity for development of techniques for accurate pool size measurements to improve the quality of flux estimates from non-stationary flux estimates in intact plant cells in the absence of alternative flux measurements.

  7. Pool size measurements facilitate the determination of fluxes at branching points in non-stationary metabolic flux analysis: the case of Arabidopsis thaliana

    PubMed Central

    Heise, Robert; Fernie, Alisdair R.; Stitt, Mark; Nikoloski, Zoran

    2015-01-01

    Pool size measurements are important for the estimation of absolute intracellular fluxes in particular scenarios based on data from heavy carbon isotope experiments. Recently, steady-state fluxes estimates were obtained for central carbon metabolism in an intact illuminated rosette of Arabidopsis thaliana grown photoautotrophically (Szecowka et al., 2013; Heise et al., 2014). Fluxes were estimated therein by integrating mass-spectrometric data of the dynamics of the unlabeled metabolic fraction, data on metabolic pool sizes, partitioning of metabolic pools between cellular compartments and estimates of photosynthetically inactive pools, with a simplified model of plant central carbon metabolism. However, the fluxes were determined by treating the pool sizes as fixed parameters. Here we investigated whether and, if so, to what extent the treatment of pool sizes as parameters to be optimized in three scenarios may affect the flux estimates. The results are discussed in terms of benchmark values for canonical pathways and reactions, including starch and sucrose synthesis as well as the ribulose-1,5-bisphosphate carboxylation and oxygenation reactions. In addition, we discuss pathways emerging from a divergent branch point for which pool sizes are required for flux estimation, irrespective of the computational approach used for the simulation of the observable labeling pattern. Therefore, our findings indicate the necessity for development of techniques for accurate pool size measurements to improve the quality of flux estimates from non-stationary flux estimates in intact plant cells in the absence of alternative flux measurements. PMID:26082786

  8. The effect of welding parameters on penetration in GTA welds

    SciTech Connect

    Shirali, A.A. ); Mills, K.C. )

    1993-07-01

    The effect of various welding parameters on the penetration of GTA welds has been investigated. Increases in welding speed were found to reduce penetration; however, increases in welding current were observed to increase the penetration in high sulfur (HS) casts and decrease penetration in low sulfur (LS) steels. Plots of penetration as a function of increasing linear energy (the heat supplied per unit length of weld) revealed a similar trend with increased penetration in HS casts, but the penetration in LS casts was unaffected by increases in linear energy. These results support the Burgardt-Heiple proposition that changes in welding parameters on penetration can be explained in terms of their effect, sequentially, on the temperature gradient and the Marangoni forces operating in the weld pool. Increases in arc length were found to decrease weld penetration regardless of the sulfur concentration of the steel, and the effects of electrode geometry and welding position on weld penetration were also investigated.

  9. Fracture toughness testing of Linde 1092 reactor vessel welds in the transition range using Charpy-sized specimens

    SciTech Connect

    Pavinich, W.A.; Yoon, K.K.; Hour, K.Y.; Hoffman, C.L.

    1999-10-01

    The present reference toughness method for predicting the change in fracture toughness can provide over estimates of these values because of uncertainties in initial RT{sub NDT} and shift correlations. It would be preferable to directly measure fracture toughness. However, until recently, no standard method was available to characterize fracture toughness in the transition range. ASTM E08 has developed a draft standard that shows promise for providing lower bound transition range fracture toughness using the master curve approach. This method has been successfully implemented using 1T compact fracture specimens. Combustion Engineering reactor vessel surveillance programs do not have compact fracture specimens. Therefore, the CE Owners Group developed a program to validate the master curve method for Charpy-sized and reconstituted Charpy-sized specimens for future application on irradiated specimens. This method was validated for Linde 1092 welds using unirradiated Charpy-sized and reconstituted Charpy-sized specimens by comparison of results with those from compact fracture specimens.

  10. Elastic-Plastic Fracture Mechanics Analysis of Critical Flaw Size in ARES I-X Flange-to-Skin Welds

    NASA Technical Reports Server (NTRS)

    Chell, G. Graham; Hudak, Stephen J., Jr.

    2008-01-01

    NASA's Ares 1 Upper Stage Simulator (USS) is being fabricated from welded A516 steel. In order to insure the structural integrity of these welds it is of interest to calculate the critical initial flaw size (CIFS) to establish rational inspection requirements. The CIFS is in turn dependent on the critical final flaw size (CFS), as well as fatigue flaw growth resulting from transportation, handling and service-induced loading. These calculations were made using linear elastic fracture mechanics (LEFM), which are thought to be conservative because they are based on a lower bound, so called elastic, fracture toughness determined from tests that displayed significant plasticity. Nevertheless, there was still concern that the yield magnitude stresses generated in the flange-to-skin weld by the combination of axial stresses due to axial forces, fit-up stresses, and weld residual stresses, could give rise to significant flaw-tip plasticity, which might render the LEFM results to be non-conservative. The objective of the present study was to employ Elastic Plastic Fracture Mechanics (EPFM) to determine CFS values, and then compare these values to CFS values evaluated using LEFM. CFS values were calculated for twelve cases involving surface and embedded flaws, EPFM analyses with and without plastic shakedown of the stresses, LEFM analyses, and various welding residual stress distributions. For the cases examined, the computed CFS values based on elastic analyses were the smallest in all instances where the failures were predicted to be controlled by the fracture toughness. However, in certain cases, the CFS values predicted by the elastic-plastic analyses were smaller than those predicted by the elastic analyses; in these cases the failure criteria were determined by a breakdown in stress intensity factor validity limits for deep flaws (a greater than 0.90t), rather than by the fracture toughness. Plastic relaxation of stresses accompanying shakedown always increases the

  11. Variation in adenylate energy charge and phosphoadenylate pool size in estuarine organisms after an oil spill

    SciTech Connect

    Shafer, T.H.; Hackney, C.T.

    1987-05-01

    Adenylate energy charge (AEC) is the proportion of the total phosphoadenylate pool charged with high-energy bonds. AEC values vary between zero and one by definition. Since AEC can be measured in any organism, decreases might be a universal measure of sublethal environmental stress. In some organisms which maintain high AEC while withstanding natural or anthropogenic stress, the absolute concentration of ATP and the total phosphoadenylate pool (TPP) decrease proportionally. However, in certain organisms the TPP shows dramatic natural fluctuations unrelated to pollution or stress. On 28 June 1983, a tanker spilled approximately 42,000 gallons of number6 diesel oil in the Cape Fear River, North Carolina, USA. Oil covered the tidal marshes on the east side of the river and provided an opportunity to determine if either the AEC or TPP in a variety of organisms would respond to this stress. Five test species were examined as long as one year after the spill. AEC and TPP values of the organisms were compared between contaminated and uncontaminated sites at all seasons. This is the first investigation to monitor AEC in a number of taxonomically distinct estuarine species during an extended period after an oil spill.

  12. Regulation of the xanthophyll cycle pool size in duckweed (Lemna minor) plants.

    PubMed

    García-Plazaola, José Ignacio; Hernández, Antonio; Artetxe, Unai; Becerril, José María

    2002-09-01

    Duckweed (Lemna minor L.) plants grown under high light are characterized, when compared to low light acclimated plants, by a higher xanthophyll cycle (VAZ) pool content, but also by a higher proportion of photoconvertible violaxanthin and a superior ability to synthesize VAZ pigments. When duckweed plants were transferred to a high light environment a general response was the quick adjustment of the carotenoid composition, mainly xanthophyll cycle pigments. These changes resulted from a balance between a process of continuous light-independent carotenoid degradation and a light-induced accumulation. The use of norflurazon, an inhibitor of carotenogenesis, allowed us to demonstrate that the observed light induced increase of the VAZ pool was mainly caused by de novo synthesis through carotenogenesis. The extent of light-induced carotenogenesis was proportional to the light treatment and also to the operation of the VAZ cycle since it was partly abolished by treatments leading to a low activity of the VAZ cycle, such as low light, DTT or DCMU. These results suggest that not only the light itself, but also a mechanism triggered by a factor associated with the de-epoxidation state of the VAZ cycle controls carotenogenesis at some point before phytoene formation in the terpenoid biosynthesis pathway.

  13. Injury-stimulated and self-restrained BMP signaling dynamically regulates stem cell pool size during Drosophila midgut regeneration.

    PubMed

    Tian, Aiguo; Wang, Bing; Jiang, Jin

    2017-03-13

    Many adult organs rely on resident stem cells to maintain homeostasis. Upon injury, stem cells increase proliferation, followed by lineage differentiation to replenish damaged cells. Whether stem cells also change division mode to transiently increase their population size as part of a regenerative program and, if so, what the underlying mechanism is have remained largely unexplored. Here we show that injury stimulates the production of two bone morphogenetic protein (BMP) ligands, Dpp and Gbb, which drive an expansion of intestinal stem cells (ISCs) by promoting their symmetric self-renewing division in Drosophila adult midgut. We find that BMP production in enterocytes is inhibited by BMP signaling itself, and that BMP autoinhibition is required for resetting ISC pool size to the homeostatic level after tissue repair. Our study suggests that dynamic BMP signaling controls ISC population size during midgut regeneration and reveals mechanisms that precisely control stem cell number in response to tissue needs.

  14. Heat and fluid flow in complex joints during gas metal arc welding—Part I: Numerical model of fillet welding

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Kim, C.-H.; DebRoy, T.

    2004-05-01

    Gas metal arc (GMA) fillet welding is one of the most important processes for metal joining because of its high productivity and amiability to automation. This welding process is characterized by the complicated V-shaped joint geometry, a deformable weld pool surface, and the additions of hot metal droplets. In the present work, a three-dimensional numerical heat transfer and fluid flow model was developed to examine the temperature profiles, velocity fields, weld pool shape and size, and the nature of the solidified weld bead geometry during GMA fillet welding. The model solved the equations of conservation of mass, momentum, and energy using a boundary fitted curvilinear coordinate system. Apart from the direct transport of heat from the welding arc, additional heat from the metal droplets was modeled considering a volumetric heat source. The deformation of the weld pool surface was calculated by minimizing the total surface energy. Part I of this article is focused on the details of the numerical model such as coordinate transformation and calculation of volumetric heat source and free surface profile. An application of the model to GMA fillet welding of mild steel is described in an accompanying article (W. Zhang, C.-H. Kim and T. DebRoy, J. Appl Phys. 95, 5220 (2004)).

  15. [(18)F](2S,4R)4-Fluoroglutamine PET Detects Glutamine Pool Size Changes in Triple-Negative Breast Cancer in Response to Glutaminase Inhibition.

    PubMed

    Zhou, Rong; Pantel, Austin R; Li, Shihong; Lieberman, Brian P; Ploessl, Karl; Choi, Hoon; Blankemeyer, Eric; Lee, Hsiaoju; Kung, Hank F; Mach, Robert H; Mankoff, David A

    2017-03-15

    Glutaminolysis is a metabolic pathway adapted by many aggressive cancers, including triple-negative breast cancers (TNBC), to utilize glutamine for survival and growth. In this study, we examined the utility of [(18)F](2S,4R)4-fluoroglutamine ([(18)F]4F-Gln) PET to measure tumor cellular glutamine pool size, whose change might reveal the pharmacodynamic (PD) effect of drugs targeting this cancer-specific metabolic pathway. High glutaminase (GLS) activity in TNBC tumors resulted in low cellular glutamine pool size assayed via high-resolution (1)H magnetic resonance spectroscopy (MRS). GLS inhibition significantly increased glutamine pool size in TNBC tumors. MCF-7 tumors, with inherently low GLS activity compared with TNBC, displayed a larger baseline glutamine pool size that did not change as much in response to GLS inhibition. The tumor-to-blood-activity ratios (T/B) obtained from [(18)F]4F-Gln PET images matched the distinct glutamine pool sizes of both tumor models at baseline. After a short course of GLS inhibitor treatment, the T/B values increased significantly in TNBC, but did not change in MCF-7 tumors. Across both tumor types and after GLS inhibitor or vehicle treatment, we observed a strong positive correlation between T/B values and tumor glutamine pool size measured using MRS (r(2) = 0.71). In conclusion, [(18)F]4F-Gln PET tracked cellular glutamine pool size in breast cancers with differential GLS activity and detected increases in cellular glutamine pool size induced by GLS inhibitors. This study accomplished the first necessary step toward validating [(18)F]4F-Gln PET as a PD marker for GLS-targeting drugs. Cancer Res; 77(6); 1476-84. ©2017 AACR.

  16. The binding capability of plasma phospholipid transfer protein, but not HDL pool size, is critical to repress LPS induced inflammation

    PubMed Central

    Yu, Yang; Cui, Yingjie; Zhao, Yanan; Liu, Shuai; Song, Guohua; Jiao, Peng; Li, Bin; Luo, Tian; Guo, Shoudong; Zhang, Xiangjian; Wang, Hao; Jiang, Xian-Cheng; Qin, Shucun

    2016-01-01

    Phospholipid transfer protein (PLTP) participates in high density lipoprotein (HDL) metabolism. Increased plasma PLTP activity was observed in lipopolysaccharide (LPS) triggered acute inflammatory diseases. This study aimed to determine the exact role of PLTP in LPS induced inflammation. HDL pool size was shrunk both in PLTP deficient mice (PLTP−/−) and PLTP transgenic mice (PLTP-Tg). PLTP displayed a strong protective effect on lethal endotoxemia in mice survival study. Furthermore, after LPS stimulation, the expression of pro-inflammatory cytokines were increased in bone marrow derived macrophage (BMDM) from PLTP−/−, while decreased in BMDM from PLTP-Tg compared with BMDM from wild-type mice (WT). Moreover, LPS induced nuclear factor kappa-B (NFκB) activation was enhanced in PLTP−/− BMDM or PLTP knockdown RAW264.7. Conversely, PLTP overexpression countered the NFκB activation in LPS challenged BMDM. Additionally, the activation of toll like receptor 4 (TLR4) induced by LPS showed no alteration in PLTP−/− BMDM. Finally, PLTP could bind to LPS, attenuate the pro-inflammatory effects of LPS, and improve the cell viability in vitro. To sum up, these findings elucidated that PLTP repressed LPS induced inflammation due to extracellular LPS binding capability, and the protective effects were not related to HDL pool size in mice. PMID:26857615

  17. Chronic treatment with lithium and pretreatment with excess inositol reduce inositol pool size in astrocytes by different mechanisms.

    PubMed

    Wolfson, M; Hertz, E; Belmaker, R H; Hertz, L

    1998-03-16

    Chronic treatment with a lithium salt is the classical treatment for manic-depressive disorder. It is hypothesized that the therapeutic action of lithium is caused by its inhibition of inositol phosphatases which leads to a relative deficiency of inositol and, therefore, an impairment of inositol recycling and production of precursor for the second messengers inositol triphosphate (IP3) and diacylglycerol (DAG). However, peculiarly enough, treatment with high doses of inositol also has an antidepressant effect. In the present work, we have studied the acute and chronic effects of lithium and of excess inositol, in separation or together, on accumulation of 50 microM [3H]inositol (a physiologically relevant concentration) into primary cultures of mouse astrocytes. Two parameters were investigated: (1) rate of unidirectional uptake across the cell membrane (measured during short-term exposure to the radioisotope), and (2) magnitude of the intracellular pool of inositol, equilibrating with extracellular inositol (measured during long-term exposure to the radioisotope). Inositol uptake was highly concentrative and occurred with a Km of approximately 500 microM and a Vmax of 1.5 nmol/min/mg protein. The uptake rate was not affected by either acute or chronic treatment with LiCl (or both), but it was substantially reduced ('down-regulated') after pretreatment with a high concentration of inositol. The inositol pool size was decreased to a similar extent as the uptake rate by previous exposure to excess inositol. In spite of the fact that inositol uptake rate was unaffected by lithium, the magnitude of the inositol pool was significantly decreased by chronic treatment with a pharmacologically relevant concentration of LiCl (1 mM), but not by treatment with lower concentrations. This decrease is likely to reflect a reduction in either inositol synthesis or replenishment of inositol from IP3, due to the inhibition of inositol phosphatases by the lithium ion. In agreement

  18. Increased cholesterol 7α-hydroxylase expression and size of the bile acid pool in the lactating rat

    PubMed Central

    Wooton-Kee, Clavia Ruth; Cohen, David E.; Vore, Mary

    2008-01-01

    Maximal bile acid secretory rates and expression of bile acid transporters in liver and ileum are increased in lactation, possibly to facilitate increased enterohepatic recirculation of bile acids. We determined changes in the size and composition of the bile acid pool and key enzymes of the bile acid synthetic pathway [cholesterol 7α-hydroxylase (Cyp7a1), sterol 27-hydroxylase (Cyp27a1), and sterol 12α-hydroxylase (Cyp8b1)] in lactating rats relative to female virgin controls. The bile acid pool increased 1.9 to 2.5-fold [postpartum (PP) days 10, 14, and 19–23], compared with controls. A 1.5-fold increase in cholic acids and a 14 to 20% decrease in muricholic acids in lactation significantly increased the hydrophobicity index. In contrast, the hepatic concentration of bile acids and small heterodimer partner mRNA were unchanged in lactation. A 2.8-fold increase in Cyp7a1 mRNA expression at 16 h (10 h of light) demonstrated a shift in the diurnal rhythm at day 10 PP; Cyp7a1 protein expression and cholesterol 7α-hydroxylase activity were significantly increased at this time and remained elevated at day 14 PP but decreased to control levels by day 21 PP. There was an overall decrease in Cyp27a1 mRNA expression and a 20% decrease in Cyp27a1 protein expression, but there was no change in Cyp8b1 mRNA or protein expression at day 10 PP. The increase in Cyp7a1 expression PP provides a mechanism for the increase in the bile acid pool. PMID:18292185

  19. Estimates for the pool size of releasable quanta at a single central synapse and for the time required to refill the pool.

    PubMed

    Stevens, C F; Tsujimoto, T

    1995-01-31

    Local superfusion of limited dendritic areas with hypertonic or hyperkalemic solutions stimulates the release of quanta from a small population of synapses made on rodent hippocampal neurons maintained in primary culture, and each quantal event can be detected in the postsynaptic neuron. With maintained stimulation, the initial release rate is about 20 quanta per sec per synapse, and this rate declines exponentially to a final low level. These observations can be interpreted as depletion of available quanta and, with this interpretation, a bouton would contain one to two dozen quanta in its readily releasable pool. Tests with a second application of the solution that produces release reveal that the pool of readily releasable quanta is replenished with a time constant of about 10 sec (36 degrees C). The pool of quanta defined in this way may correspond to the population of vesicles docked at the bouton's active zone.

  20. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

  1. Method for enhanced control of welding processes

    DOEpatents

    Sheaffer, Donald A.; Renzi, Ronald F.; Tung, David M.; Schroder, Kevin

    2000-01-01

    Method and system for producing high quality welds in welding processes, in general, and gas tungsten arc (GTA) welding, in particular by controlling weld penetration. Light emitted from a weld pool is collected from the backside of a workpiece by optical means during welding and transmitted to a digital video camera for further processing, after the emitted light is first passed through a short wavelength pass filter to remove infrared radiation. By filtering out the infrared component of the light emitted from the backside weld pool image, the present invention provides for the accurate determination of the weld pool boundary. Data from the digital camera is fed to an imaging board which focuses on a 100.times.100 pixel portion of the image. The board performs a thresholding operation and provides this information to a digital signal processor to compute the backside weld pool dimensions and area. This information is used by a control system, in a dynamic feedback mode, to automatically adjust appropriate parameters of a welding system, such as the welding current, to control weld penetration and thus, create a uniform weld bead and high quality weld.

  2. A pilot-scale study of Cryptosporidium-sized microsphere removals from swimming pools via sand filtration.

    PubMed

    Lu, Ping; Amburgey, James E

    2016-02-01

    Cryptosporidium species are the most common cause of gastrointestinal illness in treated recreational water venues. In order to protect public health during swimming, Cryptosporidium-sized microsphere removals by high-rate sand filtration with six coagulants were evaluated with a 5.5 m(3) pilot-scale swimming pool. A sand filter without coagulation removed 20-63% of Cryptosporidium-sized microspheres. Cryptosporidium-sized microsphere removals exceeded 98% by sand filtration with five of the six tested coagulants. Continuously feeding coagulants A, B, and F (i.e., organic polymers) led to coagulant accumulation in the system and decreased removals over time (<2 days). Coagulant E (polyaluminum chloride) consistently removed more than 90% of microspheres at 30 m/h while the removals dropped to approximately 50% at a filtration rate of 37 m/h. Coagulant C was a chitosan-based product that removed fewer microspheres compared with other products, <75%, under the studied conditions. Results indicated aluminum-based coagulants (coagulants D and E) had an overall performance advantage over the organic polymer based coagulants primarily in terms of their tendency not to accumulate in the water and cease to be effective at improving filter efficiency.

  3. Changes in the Size of the Active Microbial Pool Explain Short-Term Soil Respiratory Responses to Temperature and Moisture

    PubMed Central

    Salazar-Villegas, Alejandro; Blagodatskaya, Evgenia; Dukes, Jeffrey S.

    2016-01-01

    abiotic conditions activated soil microorganisms. We conclude that soil respiratory responses to short-term changes in environmental conditions are better explained by changes in AMB than in TMB. These results suggest that decomposition models that explicitly represent microbial carbon pools should take into account the active microbial pool, and researchers should be cautious in comparing modeled microbial pool sizes with measurements of TMB. PMID:27148213

  4. gone early, a novel germline factor, ensures the proper size of the stem cell precursor pool in the Drosophila ovary.

    PubMed

    Matsuoka, Shinya; Gupta, Swati; Suzuki, Emiko; Hiromi, Yasushi; Asaoka, Miho

    2014-01-01

    In order to sustain lifelong production of gametes, many animals have evolved a stem cell-based gametogenic program. In the Drosophila ovary, germline stem cells (GSCs) arise from a pool of primordial germ cells (PGCs) that remain undifferentiated even after gametogenesis has initiated. The decision of PGCs to differentiate or remain undifferentiated is regulated by somatic stromal cells: specifically, epidermal growth factor receptor (EGFR) signaling activated in the stromal cells determines the fraction of germ cells that remain undifferentiated by shaping a Decapentaplegic (Dpp) gradient that represses PGC differentiation. However, little is known about the contribution of germ cells to this process. Here we show that a novel germline factor, Gone early (Goe), limits the fraction of PGCs that initiate gametogenesis. goe encodes a non-peptidase homologue of the Neprilysin family metalloendopeptidases. At the onset of gametogenesis, Goe was localized on the germ cell membrane in the ovary, suggesting that it functions in a peptidase-independent manner in cell-cell communication at the cell surface. Overexpression of Goe in the germline decreased the number of PGCs that enter the gametogenic pathway, thereby increasing the proportion of undifferentiated PGCs. Inversely, depletion of Goe increased the number of PGCs initiating differentiation. Excess PGC differentiation in the goe mutant was augmented by halving the dose of argos, a somatically expressed inhibitor of EGFR signaling. This increase in PGC differentiation resulted in a massive decrease in the number of undifferentiated PGCs, and ultimately led to insufficient formation of GSCs. Thus, acting cooperatively with a somatic regulator of EGFR signaling, the germline factor goe plays a critical role in securing the proper size of the GSC precursor pool. Because goe can suppress EGFR signaling activity and is expressed in EGF-producing cells in various tissues, goe may function by attenuating EGFR signaling

  5. Ephemeroptera, Plecoptera, and Trichoptera on Isle Royale National Park, USA, compared to mainland species pool and size distribution

    PubMed Central

    DeWalt, R. Edward; South, Eric J.

    2015-01-01

    Abstract Extensive sampling for aquatic insects was conducted in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies) (EPT) of Isle Royale National Park (ISRO), Michigan, United States of America, during summer 2013. The island was ice covered until 8,000 to 10,000 years ago and is isolated by 22–70 km distance from the mainland. Two hypotheses were examined: that ISRO EPT richness would be much reduced from the mainland, and that the species colonizing ISRO would be of smaller size than mainland, adults presumably using updrafts to bridge the distance from mainland sources. Data sets were developed for known mainland EPT species and size for those species. The first hypothesis was confirmed with the mainland species pool consisting of 417 EPT, while ISRO is known to support 73 species. Richness of EPT is directly related to the number of specimens examined. Small streams supported five EPT species, while 15–25 species were found in larger streams. Lakeshores had intermediate diversity. The second hypothesis was substantiated for stoneflies, but not for mayflies or caddisflies. Stoneflies apparently are poorer fliers than either of the other two orders. PMID:26692811

  6. Welded Kimberlite?

    NASA Astrophysics Data System (ADS)

    van Straaten, B. I.; Kopylova, M. G.; Russell, J. K.; Scott Smith, B. H.

    2009-05-01

    settings. In this contribution we explore the possible welded origin for dark and competent kimberlite facies from the Victor Northwest pipe (Northern Ontario, Canada). This volumetrically extensive facies superficially resembles a coherent rock. The following observations on the dark and competent facies are suggestive of a pyroclastic, rather than intrusive or extrusive coherent origin: The facies is completely enveloped by pyroclastic facies; has gradational contacts with adjacent pyroclastic facies above and below; contains faint outlines of primary pyroclasts; shows diffuse grain size variations and rare bedding; shows systematic changes in components from the underlying pyroclastic facies to the dark and competent facies to the overlying pyroclastic facies implying a lack of a depositional break in this succession; and shows a faint, generally subhorizontal fabric despite the presence of an equant grain shape population. In addition, we present evidence that the original inter-clast porosity has been reduced or eliminated by syn-depositional welding rather than by precipitation of secondary minerals in the inter-clast pore spaces. We feel that the latter process (i.e., alteration) is highly unlikely because: The kimberlite package contains intervals with well crystallized groundmass similar to coherent kimberlite, this texture simply cannot be produced by alteration; the kimberlite is in fact the freshest rock within the pipe, containing mostly fresh olivines; and the dark and competent kimberlite does not show a patchy or vein-related heterogeneity typical of alteration. In summary, these deposits likely represent a variably welded succession of proximal spatter/fire fountaining kimberlite deposits.

  7. Welding wire pressure sensor assembly

    NASA Technical Reports Server (NTRS)

    Morris, Timothy B. (Inventor); Milly, Peter F., Sr. (Inventor); White, J. Kevin (Inventor)

    1994-01-01

    The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.

  8. Swimming Pool Safety

    MedlinePlus

    ... Prevention Listen Español Text Size Email Print Share Swimming Pool Safety Page Content ​What is the best way to keep my child safe around swimming pools? An adult should actively watch children at ...

  9. Welding with brilliant lasers: prospects and limitations

    NASA Astrophysics Data System (ADS)

    Kittel, Sonja; Dausinger, Friedrich

    2010-02-01

    Now that high brightness laser sources featuring high output power are commercially available, extremely small focal diameters and high power densities permit laser welding with a high aspect ratio at low heat input. With regard to an increase in productivity this implies a deeper weld depth at a higher feed rate and hence at a shorter processing time. In this research, a modular optical system generates focal diameters from 195 μm down to 15 μm for the purpose of identifying the prospects and limitations of the application of high brightness beam sources in laser welding. Metallographical analysis and observation using a high speed camera give information about the weld seam geometry and weld pool dynamics. Thus, the influence of minimizing focal diameters on process stability is evaluated: From the correlation of longitudinal cross-sections and high speed camera observation, an interrelationship between spiking and keyhole breakdown results. In dependence of the particular spot size and the beam quality of the laser source a new processing range arises. These observations are traced back to theoretical beam properties and a fundamental thesis about the applicability of a high brightness laser is derived. Eventually it shows that a small beam diameter is most advantageous for micro application.

  10. Three-Dimensional Coaxial Weld Monitoring

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S.

    1989-01-01

    Optical system for coaxial-viewing welding torch enables perception or measurement of depth. Light from welding area passes through beam splitter into two optical trains forming two images, each viewed along line making small angle with axis of torch. Two lines of sight intersect at weld pool. Parallax between two views provides sensation of depth over entire field view.

  11. Studies on Creep Deformation and Rupture Behavior of 316LN SS Multi-Pass Weld Joints Fabricated with Two Different Electrode Sizes

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Kumar, J. Ganesh; Parida, P. K.; Ganesan, V.; Laha, K.

    2017-02-01

    Effect of electrode size on creep deformation and rupture behavior has been assessed by carrying out creep tests at 923 K (650 °C) over the stress range 140 to 225 MPa on 316LN stainless steel weld joints fabricated employing 2.5 and 4 mm diameter electrodes. The multi-pass welding technique not only changes the morphology of delta ferrite from vermicular to globular in the previous weld bead region near to the weld bead interface, but also subjects the region to thermo-mechanical heat treatment to generate appreciable strength gradient. Electron backscatter diffraction analysis revealed significant localized strain gradients in regions adjoining the weld pass interface for the joint fabricated with large electrode size. Larger electrode diameter joint exhibited higher creep rupture strength than the smaller diameter electrode joint. However, both the joints had lower creep rupture strength than the base metal. Failure in the joints was associated with microstructural instability in the fusion zone, and the vermicular delta ferrite zone was more prone to creep cavitation. Larger electrode diameter joint was found to be more resistant to failure caused by creep cavitation than the smaller diameter electrode joint. This has been attributed to the larger strength gradient between the beads and significant separation between the cavity prone vermicular delta ferrite zones which hindered the cavity growth. Close proximity of cavitated zones in smaller electrode joint facilitated their faster coalescence leading to more reduction in creep rupture strength. Failure location in the joints was found to depend on the electrode size and applied stress. The change in failure location has been assessed on performing finite element analysis of stress distribution across the joint on incorporating tensile and creep strengths of different constituents of joints, estimated by ball indentation and impression creep testing techniques.

  12. Weld seam tracking and lap weld penetration monitoring using the optical spectrum of the weld plume

    SciTech Connect

    Mueller, R.E.; Hopkins, J.A.; Semak, V.V.; McCay, M.H.

    1996-12-31

    Joining of dissimilar materials is a long standing problem in manufacturing, with many tricks and special techniques developed to successfully join specific pairs of materials. Often, these special techniques impose stringent requirements on the process such as precise control of process parameters to achieve the desired joint characteristics. Laser welding is one of the techniques which has had some success in welding dissimilar metal alloys, and appears to be a viable process for these materials. Minimal heat input limits differential thermal expansion, and the small weld pool allows precise control of alloy mixing in the fusion zone. Obtaining optimal weld performance requires accurate monitoring and control of absorbed laser power and weld focus position. In order to monitor the laser welding process, the authors have used a small computer controlled optical spectrometer to observe the emission from the weld plume. Absorbed laser power can be related to the temperature of the weld pool surface and the plume above the weld. Focus position relative to the joint can easily be seen by the proportion of elements from each material existing in the plume. This monitor has been used to observe and optimize the performance of butt and lap welds between dissimilar alloys, where each alloy contains at least one element not found in the other alloy. Results will be presented for a copper-steel butt joint and a lap weld between stainless and low alloy steels.

  13. FatJ acts via the Hippo mediator Yap1 to restrict the size of neural progenitor cell pools

    PubMed Central

    Van Hateren, Nick J.; Das, Raman M.; Hautbergue, Guillaume M.; Borycki, Anne-Gaëlle; Placzek, Marysia; Wilson, Stuart A.

    2011-01-01

    The size, composition and functioning of the spinal cord is likely to depend on appropriate numbers of progenitor and differentiated cells of a particular class, but little is known about how cell numbers are controlled in specific cell cohorts along the dorsoventral axis of the neural tube. Here, we show that FatJ cadherin, identified in a large-scale RNA interference (RNAi) screen of cadherin genes expressed in the neural tube, is localised to progenitors in intermediate regions of the neural tube. Loss of function of FatJ promotes an increase in dp4-vp1 progenitors and a concomitant increase in differentiated Lim1+/Lim2+ neurons. Our studies reveal that FatJ mediates its action via the Hippo pathway mediator Yap1: loss of downstream Hippo components can rescue the defect caused by loss of FatJ. Together, our data demonstrate that RNAi screens are feasible in the chick embryonic neural tube, and show that FatJ acts through the Hippo pathway to regulate cell numbers in specific subsets of neural progenitor pools and their differentiated progeny. PMID:21521736

  14. Optical penetration sensor for pulsed laser welding

    DOEpatents

    Essien, Marcelino; Keicher, David M.; Schlienger, M. Eric; Jellison, James L.

    2000-01-01

    An apparatus and method for determining the penetration of the weld pool created from pulsed laser welding and more particularly to an apparatus and method of utilizing an optical technique to monitor the weld vaporization plume velocity to determine the depth of penetration. A light source directs a beam through a vaporization plume above a weld pool, wherein the plume changes the intensity of the beam, allowing determination of the velocity of the plume. From the velocity of the plume, the depth of the weld is determined.

  15. Daily consumption of orange-fleshed sweet potato with added fat tends to increase total body vitamin A pool size in vitamin A depleted Bangladeshi women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We assessed the affect of daily consumption of orange-fleshed sweet potato (OFSP), with or without added fat, on the total body vitamin A (VA) pool size of Bangladeshi women with low initial VA status. Women (n=120) received for 60d either 1) 0 µg RAE/d as boiled white-fleshed sweet potatoes (WFSP) ...

  16. Nutrient demand interacts with legume particle length to affect digestion responses and rumen pool sizes in dairy cows.

    PubMed

    Kammes, K L; Ying, Y; Allen, M S

    2012-05-01

    Effects of legume particle length on dry matter intake (DMI), milk production, ruminal fermentation and pool sizes, and digestion and passage kinetics, and the relationship of these effects with preliminary DMI (pDMI) were evaluated using 13 ruminally and duodenally cannulated Holstein cows in a crossover design with a 14-d preliminary period and two 19-d treatment periods. During the preliminary period, pDMI of individual cows ranged from 22.8 to 32.4 kg/d (mean=26.5 kg/d) and 3.5% fat-corrected milk yield ranged from 22.9 to 62.4 kg/d (mean=35.1 kg/d). Experimental treatments were diets containing alfalfa silage chopped to (1) 19 mm (long cut, LC) or (2) 10 mm (short cut, SC) theoretical length of cut as the sole forage. Alfalfa silages contained approximately 43% neutral detergent fiber (NDF); diets contained approximately 47% forage and 20% forage NDF. Preliminary DMI, an index of nutrient demand, was determined during the last 4 d of the preliminary period, when cows were fed a common diet, and used as a covariate. Main effects of legume particle length and their interaction with pDMI were tested by ANOVA. Alfalfa particle length and its interaction with pDMI did not affect milk yield or rumen pH. The LC diet decreased milk fat concentration more per kilogram of pDMI increase than the SC diet and increased yields of milk fat and fat-corrected milk less per kilogram of pDMI increase than the SC diet, resulting in a greater benefit for LC at low pDMI and for SC at high pDMI. The LC diet tended to decrease DMI compared with the SC diet. Ruminal digestion and passage rates of feed fractions did not differ between LC and SC and were not related to level of intake. The LC diet tended to decrease the rate of ruminal turnover for NDF but increased NDF rumen pools at a slower rate than the SC diet as pDMI increased. This indicated that the faster NDF turnover rate did not counterbalance the higher DMI for SC, resulting in larger NDF rumen pools for SC than LC. As p

  17. Toward laser welding of glasses without optical contacting

    NASA Astrophysics Data System (ADS)

    Richter, S.; Zimmermann, F.; Eberhardt, R.; Tünnermann, A.; Nolte, S.

    2015-10-01

    The welding of transparent materials with ultrashort laser pulse at high repetition rates has attracted much attention due to its potential applications in fields such as optics, microfluidics, optofluidics and precision machinery. One demanding issue is the stable and reliable welding of different materials without the utilization of an intermediate layer or an optical contact. In this work, we maximized the size of the molten volume in order to generate a large pool of molten material which is able to fill an existing gap between the samples. To this end, we used bursts of ultrashort laser pulses with an individual pulse energy of up to . The laser-induced welding seams exhibit a base area with a size of up to . Using these large modifications, we are able to overcome the requirement of an optical contact and weld even gaps with a height of about . Bulging of the sample surface and ejection of molten material in the gap between the two samples allow to bridge the gap and enable successful welding. We also determined the breaking strength of laser-welded fused silica samples without an optical contact by a three-point bending test. The determined value of up to 73 MPa is equivalent to 85 % of stability of the pristine bulk material.

  18. Weld electrode cooling study

    NASA Astrophysics Data System (ADS)

    Masters, Robert C.; Simon, Daniel L.

    1999-03-01

    The U.S. auto/truck industry has been mandated by the Federal government to continuously improve their fleet average gas mileage, measured in miles per gallon. Several techniques are typically used to meet these mandates, one of which is to reduce the overall mass of cars and trucks. To help accomplish this goal, lighter weight sheet metal parts, with smaller weld flanges, have been designed and fabricated. This paper will examine the cooling characteristics of various water cooled weld electrodes and shanks used in resistance spot welding applications. The smaller weld flanges utilized in modern vehicle sheet metal fabrications have increased industry's interest in using one size of weld electrode (1/2 inch diameter) for certain spot welding operations. The welding community wants more data about the cooling characteristics of these 1/2 inch weld electrodes. To hep define the cooling characteristics, an infrared radiometer thermal vision system (TVS) was used to capture images (thermograms) of the heating and cooling cycles of several size combinations of weld electrodes under typical production conditions. Tests results will show why the open ended shanks are more suitable for cooling the weld electrode assembly then closed ended shanks.

  19. X-Ray and Neutron Diffraction Measurements of Dislocation Density and Subgrain Size in a Friction-Stir-Welded Aluminum Alloy

    SciTech Connect

    Woo, Wan Chuck; Ungar, Prof Tomas; Feng, Zhili; Kenik, Edward A; Clausen, B

    2009-01-01

    The dislocation density and subgrain size were determined in the base material and friction-stir welds of 6061-T6 aluminum alloy. High-resolution X-ray diffraction measurement was performed in the base material. The result of the line profile analysis of the X-ray diffraction peak shows that the dislocation density is about 4.5 x 10{sup 14} m{sup -2} and the subgrain size is about 200 nm. Meanwhile, neutron diffraction measurements have been performed to observe the diffraction peaks during friction-stir welding (FSW). The deep penetration capability of the neutron enables us to measure the peaks from the midplane of the Al plate underneath the tool shoulder of the friction-stir welds. The peak broadening analysis result using the Williamson-Hall method shows the dislocation density of about 3.2 x 10{sup 15} m{sup -2} and subgrain size of about 160 nm. The significant increase of the dislocation density is likely due to the severe plastic deformation during FSW. This study provides an insight into understanding the transient behavior of the microstructure under severe thermomechanical deformation.

  20. Fast, Nonspattering Inert-Gas Welding

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.

    1991-01-01

    Proposed welding technique combines best features of metal (other than tungsten)/inert-gas welding, plasma arc welding, and tungsten/inert-gas welding. Advantages include: wire fed to weld joint preheated, therefore fed at high speed without spattering; high-frequency energy does not have to be supplied to workpiece to initiate welding; size of arc gap not critical, power-supply control circuit adjusts voltage across gap to compensate for changes; only low gas-flow rate needed; welding electrode replaced easily as prefabricated assembly; external wire-feeding manipulator not needed; and welding process relatively forgiving of operator error.

  1. Nitrogen Stress Affects the Turnover and Size of Nitrogen Pools Supplying Leaf Growth in a Grass1[C][W][OPEN

    PubMed Central

    Lehmeier, Christoph Andreas; Wild, Melanie; Schnyder, Hans

    2013-01-01

    The effect of nitrogen (N) stress on the pool system supplying currently assimilated and (re)mobilized N for leaf growth of a grass was explored by dynamic 15N labeling, assessment of total and labeled N import into leaf growth zones, and compartmental analysis of the label import data. Perennial ryegrass (Lolium perenne) plants, grown with low or high levels of N fertilization, were labeled with 15NO3−/14NO3− from 2 h to more than 20 d. In both treatments, the tracer time course in N imported into the growth zones fitted a two-pool model (r2 > 0.99). This consisted of a “substrate pool,” which received N from current uptake and supplied the growth zone, and a recycling/mobilizing “store,” which exchanged with the substrate pool. N deficiency halved the leaf elongation rate, decreased N import into the growth zone, lengthened the delay between tracer uptake and its arrival in the growth zone (2.2 h versus 0.9 h), slowed the turnover of the substrate pool (half-life of 3.2 h versus 0.6 h), and increased its size (12.4 μg versus 5.9 μg). The store contained the equivalent of approximately 10 times (low N) and approximately five times (high N) the total daily N import into the growth zone. Its turnover agreed with that of protein turnover. Remarkably, the relative contribution of mobilization to leaf growth was large and similar (approximately 45%) in both treatments. We conclude that turnover and size of the substrate pool are related to the sink strength of the growth zone, whereas the contribution of the store is influenced by partitioning between sinks. PMID:23757403

  2. An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in Space

    NASA Technical Reports Server (NTRS)

    Fragomeni, James M.; Nunes, Arthur C., Jr.

    1998-01-01

    The safety issue has been raised with regards to potential molten metal detachments from the weld pool and cold filler wire during electron beam welding in space. This investigation was undertaken to evaluate if molten metal could detach and come in contact with astronauts and burn through the fabric of the astronauts' Extravehicular Mobility Unit (EMU) during electron beam welding in space. Molten metal detachments from either the weld/cut substrate or weld wire could present harm to a astronaut if the detachment was to burn through the fabric of the EMU. Theoretical models were developed to predict the possibility and size of the molten metal detachment hazards during the electron beam welding exercises at Low Earth Orbit (LEO). The primary molten metal detachment concerns were those cases of molten metal separation from the metal surface due to metal cutting, weld pool splashing, entrainment and release of molten metal due to filler wire snap-out from the weld puddle, and molten metal accumulation and release from the end of the weld wire. Some possible ways of obtaining molten metal drop detachments would include an impulse force, or bump, to the weld sample, cut surface, or filler wire. Theoretical models were developed for these detachment concerns from principles of impact and kinetic energies, surface tension, drop geometry, surface energies, and particle dynamics. The surface tension represents the force opposing the liquid metal drop from detaching whereas the weight of the liquid metal droplet represents a force that is tending to detach the molten metal drop. Theoretical calculations have indicated that only a small amount of energy is required to detach a liquid metal drop; however, much of the energy of an impact is absorbed in the sample or weld plate before it reaches the metal drop on the cut edge or surface. The tendency for detachment is directly proportional to the weld pool radius and metal density and inversely proportional to the surface

  3. Microstructure characteristics of laser MIG hybrid welded mild steel

    NASA Astrophysics Data System (ADS)

    Gao, Ming; Zeng, Xiaoyan; Yan, Jun; Hu, Qianwu

    2008-07-01

    To deepen the understanding of laser-arc hybrid welding, the weld shape and microstructure characteristics of laser-metal inert gas hybrid welded mild steel were analyzed. The results showed typical hybrid weld could be classified as two parts: the wide upper zone and the narrow nether zone, which were defined as arc zone and laser zone, respectively. In the hybrid weld, the microstructure, alloy element distribution and microhardness all have evident difference between laser zone and arc zone. The microstructure of arc zone consists of coarse columnar dendrite and fine acicular dendrite between the columnar dendrites, but that of laser zone is composed of fine equiaxed dendrite in weld center and columnar dendrite around the equiaxed dendrite. Compared to arc zone, laser zone has finer grain size, higher microhardness, smaller alloy element content in the fusion zone and narrower heat affected zone. The discussions demonstrated that the observed difference was caused by the difference of temperature gradient, crystallizing and the effects of arc pressure on the molten pool between laser zone and arc zone.

  4. FLUXES FOR MECHANIZED ELECTRIC WELDING,

    DTIC Science & Technology

    WELDING FLUXES, WELDING ), (* WELDING , WELDING FLUXES), ARC WELDING , WELDS, STABILITY, POROSITY, WELDING RODS, STEEL, CERAMIC MATERIALS, FLUXES(FUSION), TITANIUM ALLOYS, ALUMINUM ALLOYS, COPPER ALLOYS, ELECTRODEPOSITION

  5. Protein Restriction with Amino Acid-Balanced Diets Shrinks Circulating Pool Size of Amino Acid by Decreasing Expression of Specific Transporters in the Small Intestine

    PubMed Central

    Luo, Min; Zhang, Xin; Sun, Wen Juan; Jiao, Ning; Li, De Fa; Yin, Jing Dong

    2016-01-01

    Dietary protein restriction is not only beneficial to health and longevity in humans, but also protects against air pollution and minimizes feeding cost in livestock production. However, its impact on amino acid (AA) absorption and metabolism is not quite understood. Therefore, the study aimed to explore the effect of protein restriction on nitrogen balance, circulating AA pool size, and AA absorption using a pig model. In Exp.1, 72 gilts weighting 29.9 ± 1.5 kg were allocated to 1 of the 3 diets containing 14, 16, or 18% CP for a 28-d trial. Growth (n = 24), nitrogen balance (n = 6), and the expression of small intestinal AA and peptide transporters (n = 6) were evaluated. In Exp.2, 12 barrows weighting 22.7 ± 1.3 kg were surgically fitted with catheters in the portal and jejunal veins as well as the carotid artery and assigned to a diet containing 14 or 18% CP. A series of blood samples were collected before and after feeding for determining the pool size of circulating AA and AA absorption in the portal vein, respectively. Protein restriction did not sacrifice body weight gain and protein retention, since nitrogen digestibility was increased as dietary protein content reduced. However, the pool size of circulating AA except for lysine and threonine, and most AA flux through the portal vein were reduced in pigs fed the low protein diet. Meanwhile, the expression of peptide transporter 1 (PepT-1) was stimulated, but the expression of the neutral and cationic AA transporter systems was depressed. These results evidenced that protein restriction with essential AA-balanced diets, decreased AA absorption and reduced circulating AA pool size. Increased expression of small intestinal peptide transporter PepT-1 could not compensate for the depressed expression of jejunal AA transporters for AA absorption. PMID:27611307

  6. Mathematical Model Of Variable-Polarity Plasma Arc Welding

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1996-01-01

    Mathematical model of variable-polarity plasma arc (VPPA) welding process developed for use in predicting characteristics of welds and thus serves as guide for selection of process parameters. Parameters include welding electric currents in, and durations of, straight and reverse polarities; rates of flow of plasma and shielding gases; and sizes and relative positions of welding electrode, welding orifice, and workpiece.

  7. Synaptic vesicle pool size, release probability and synaptic depression are sensitive to Ca2+ buffering capacity in the developing rat calyx of Held

    PubMed Central

    Leão, R.M.; von Gersdorff, H.

    2010-01-01

    The calyx of Held, a specialized synaptic terminal in the medial nucleus of the trapezoid body, undergoes a series of changes during postnatal development that prepares this synapse for reliable high frequency firing. These changes reduce short-term synaptic depression during tetanic stimulation and thereby prevent action potential failures during a stimulus train. We measured presynaptic membrane capacitance changes in calyces from young postnatal day 5–7 (p5–7) or older (p10–12) rat pups to examine the effect of calcium buffer capacity on vesicle pool size and the efficiency of exocytosis. Vesicle pool size was sensitive to the choice and concentration of exogenous Ca2+ buffer, and this sensitivity was much stronger in younger animals. Pool size and exocytosis efficiency in p5–7 calyces were depressed by 0.2 mM EGTA to a greater extent than with 0.05 mM BAPTA, even though BAPTA is a 100-fold faster Ca2+ buffer. However, this was not the case for p10–12 calyces. With 5 mM EGTA, exocytosis efficiency was reduced to a much larger extent in young calyces compared to older calyces. Depression of exocytosis using pairs of 10-ms depolarizations was reduced by 0.2 mM EGTA compared to 0.05 mM BAPTA to a similar extent in both age groups. These results indicate a developmentally regulated heterogeneity in the sensitivity of different vesicle pools to Ca2+ buffer capacity. We propose that, during development, a population of vesicles that are tightly coupled to Ca2+ channels expands at the expense of vesicles more distant from Ca2+ channels. PMID:19219302

  8. Development of a Three-Dimensional Heat-Transfer Model for the Gas Tungsten Arc Welding Process Using the Finite Element Method Coupled with a Genetic Algorithm Based Identification of Uncertain Input Parameters

    NASA Astrophysics Data System (ADS)

    Bag, S.; de, A.

    2008-11-01

    An accurate estimation of the temperature field in weld pool and its surrounding area is important for a priori determination of the weld-pool dimensions and the weld thermal cycles. A finite element based three-dimensional (3-D) quasi-steady heat-transfer model is developed in the present work to compute temperature field in gas tungsten arc welding (GTAW) process. The numerical model considers temperature-dependent material properties and latent heat of melting and solidification. A novelty of the numerical model is that the welding heat source is considered in the form of an adaptive volumetric heat source that confirms to the size and the shape of the weld pool. The need to predefine the dimensions of the volumetric heat source is thus overcome. The numerical model is further integrated with a parent-centric recombination (PCX) operated generalized generation gap (G3) model based genetic algorithm to identify the magnitudes of process efficiency and arc radius that are usually unknown but required for the accurate estimation of the net heat input into the workpiece. The complete numerical model and the genetic algorithm based optimization code are developed indigenously using an Intel Fortran Compiler. The integrated model is validated further with a number of experimentally measured weld dimensions in GTA-welded samples in stainless steels.

  9. Effects of CO2 perturbation on phosphorus pool sizes and uptake in a mesocosm experiment during a low productive summer season in the northern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Nausch, Monika; Bach, Lennart Thomas; Czerny, Jan; Goldstein, Josephine; Grossart, Hans-Peter; Hellemann, Dana; Hornick, Thomas; Achterberg, Eric Pieter; Schulz, Kai-Georg; Riebesell, Ulf

    2016-05-01

    Studies investigating the effect of increasing CO2 levels on the phosphorus cycle in natural waters are lacking although phosphorus often controls phytoplankton development in many aquatic systems. The aim of our study was to analyse effects of elevated CO2 levels on phosphorus pool sizes and uptake. The phosphorus dynamic was followed in a CO2-manipulation mesocosm experiment in the Storfjärden (western Gulf of Finland, Baltic Sea) in summer 2012 and was also studied in the surrounding fjord water. In all mesocosms as well as in surface waters of Storfjärden, dissolved organic phosphorus (DOP) concentrations of 0.26 ± 0.03 and 0.23 ± 0.04 µmol L-1, respectively, formed the main fraction of the total P-pool (TP), whereas phosphate (PO4) constituted the lowest fraction with mean concentration of 0.15 ± 0.02 in the mesocosms and 0.17 ± 0.07 µmol L-1 in the fjord. Transformation of PO4 into DOP appeared to be the main pathway of PO4 turnover. About 82 % of PO4 was converted into DOP whereby only 18 % of PO4 was transformed into particulate phosphorus (PP). PO4 uptake rates measured in the mesocosms ranged between 0.6 and 3.9 nmol L-1 h-1. About 86 % of them was realized by the size fraction < 3 µm. Adenosine triphosphate (ATP) uptake revealed that additional P was supplied from organic compounds accounting for 25-27 % of P provided by PO4 only. CO2 additions did not cause significant changes in phosphorus (P) pool sizes, DOP composition, and uptake of PO4 and ATP when the whole study period was taken into account. However, significant short-term effects were observed for PO4 and PP pool sizes in CO2 treatments > 1000 µatm during periods when phytoplankton biomass increased. In addition, we found significant relationships (e.g., between PP and Chl a) in the untreated mesocosms which were not observed under high fCO2 conditions. Consequently, it can be hypothesized that the relationship between PP formation and phytoplankton growth changed with CO2 elevation

  10. Electrode formulation to reduce weld metal hydrogen and porosity

    SciTech Connect

    Liu, S.; Olson, D.L.; Ibarra, S.

    1994-12-31

    Residual weld metal hydrogen is a major concern in high strength steel welding, especially when the weld is performed under high cooling rate conditions. In the case of underwater wet welding, weld metal porosity is also of importance because of the water environment. The control of both problems can be achieved by means of pyrochemical reactions in the weld pool. The hydrogen-oxygen reaction and carbon-oxygen reaction are fundamental in the control of residual hydrogen in the weld metal and the amount of gas pores entrapped. A simple model was proposed to estimate weld metal residual hydrogen content by monitoring the weld pool deoxidation reactions. Potent deoxidizers such as aluminum will first react with oxygen in the liquid weld pool, followed by other elements present such as silicon and manganese. Carbon and hydrogen will be the last ones to react with oxygen prior to the iron atoms. The Ellingham-Richardson diagram frequently applied in describing steel and iron making processes was used in the modeling. Following the sequence of deoxidation, the chemical make-up of the gas pores and the amount of each chemical species in the pores could be estimated. Carbon monoxide and hydrogen were determined to be the major components in the weld pores. To minimize the amount of weld metal porosity and residual hydrogen content, specially designed consumables that will control the oxygen potential of the weld pool must be developed.

  11. Evaluation of weld porosity in laser beam seam welds: optimizing continuous wave and square wave modulated processes.

    SciTech Connect

    Ellison, Chad M.; Perricone, Matthew; Faraone, Kevin M. (Honeywell FM&T, Kansas City, MO); Roach, Robert Allen; Norris, Jerome T.

    2007-02-01

    Nd:YAG laser joining is a high energy density (HED) process that can produce high-speed, low-heat input welds with a high depth-to-width aspect ratio. This is optimized by formation of a ''keyhole'' in the weld pool resulting from high vapor pressures associated with laser interaction with the metallic substrate. It is generally accepted that pores form in HED welds due to the instability and frequent collapse of the keyhole. In order to maintain an open keyhole, weld pool forces must be balanced such that vapor pressure and weld pool inertia forces are in equilibrium. Travel speed and laser beam power largely control the way these forces are balanced, as well as welding mode (Continuous Wave or Square Wave) and shielding gas type. A study into the phenomenon of weld pool porosity in 304L stainless steel was conducted to better understand and predict how welding parameters impact the weld pool dynamics that lead to pore formation. This work is intended to aid in development and verification of a finite element computer model of weld pool fluid flow dynamics being developed in parallel efforts and assist in weld development activities for the W76 and future RRW programs.

  12. The keyhole region in VPPA welds

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.

    1988-01-01

    The morphology and properties of the Variable Polarity Plasma Arc (VPPA) weld composite zone are intimately related to the physical processes associated with the keyhole. The effects of microsegregation and transient weld stress on macrosegregation in the weld tool are examined. In addition the electrical character of straight and reverse polarity portions of the arc cycle were characterized. The results of the former study indicate that alloy 2219 is weldable because large liquid volumes are available during latter stages of weld solidification. Strains in the pool region, acting in conjunction with weld microsegregation can produce macrosegregation great enough to produce radiographic contrast effects in welds. Mechanisms of surface copper enrichment were identified. The latter study has demonstrated that increased heat is delivered to workpieces if the reverse polarity proportion of the weld cycle is increased. Current in the straight polarity portion of the welding cycle increased as the reverse cycle proportion increased. Voltage during reverse polarity segments is large.

  13. Application of welding science to welding engineering: A lumped parameter gas metal arc welding dynamic process model

    SciTech Connect

    Murray, P.E.; Smartt, H.B.; Johnson, J.A.

    1997-12-31

    We develop a model of the depth of penetration of the weld pool in gas metal arc welding (GMAW) which demonstrates interaction between the arc, filler wire and weld pool. This model is motivated by the observations of Essers and Walter which suggest a relationship between droplet momentum and penetration depth. A model of gas metal arc welding was augmented to include an improved model of mass transfer and a simple model of accelerating droplets in a plasma jet to obtain the mass and momentum of impinging droplets. The force of the droplets and depth of penetration is correlated by a dimensionless linear relation used to predict weld pool depth for a range of values of arc power and contact tip to workpiece distance. Model accuracy is examined by comparing theoretical predictions and experimental measurements of the pool depth obtained from bead on plate welds of carbon steel in an argon rich shielding gas. Moreover, theoretical predictions of pool depth are compared to the results obtained from the heat conduction model due to Christensen et al. which suggest that in some cases the momentum of impinging droplets is a better indicator of the depth of the weld pool and the presence of a deep, narrow penetration.

  14. Welding Curriculum.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  15. Welding IV.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding IV, a competency-based course in advanced arc welding offered at the Community College of Allegheny County to provide students with proficiency in: (1) single vee groove welding using code specifications established by the American Welding Society…

  16. Numerical analysis of fume formation mechanism in arc welding

    NASA Astrophysics Data System (ADS)

    Tashiro, Shinichi; Zeniya, Tasuku; Yamamoto, Kentaro; Tanaka, Manabu; Nakata, Kazuhiro; Murphy, Anthony B.; Yamamoto, Eri; Yamazaki, Kei; Suzuki, Keiichi

    2010-11-01

    In order to clarify the fume formation mechanism in arc welding, a quantitative investigation based on the knowledge of interaction among the electrode, arc and weld pool is indispensable. A fume formation model consisting of a heterogeneous condensation model, a homogeneous nucleation model and a coagulation model has been developed and coupled with the GTA or GMA welding model. A series of processes from evaporation of metal vapour to fume formation from the metal vapour was totally investigated by employing this simulation model. The aim of this paper is to visualize the fume formation process and clarify the fume formation mechanism theoretically through a numerical analysis. Furthermore, the reliability of the simulation model was also evaluated through a comparison of the simulation result with the experimental result. As a result, it was found that the size of the secondary particles consisting of small particles with a size of several tens of nanometres reached 300 nm at maximum and the secondary particle was in a U-shaped chain form in helium GTA welding. Furthermore, it was also clarified that most part of the fume was produced in the downstream region of the arc originating from the metal vapour evaporated mainly from the droplet in argon GMA welding. The fume was constituted by particles with a size of several tens of nanometres and had similar characteristics to that of GTA welding. On the other hand, if the metal transfer becomes unstable and the metal vapour near the droplet diffuses directly towards the surroundings of the arc not getting into the plasma flow, the size of the particles reaches several hundred nanometres.

  17. Friction Stir Welding Development

    NASA Technical Reports Server (NTRS)

    Romine, Peter L.

    1998-01-01

    The research of this summer was a continuation of work started during the previous summer faculty fellowship period. The Friction Stir Welding process (FSW) patented by The Welding Institute (TWI), in Great Britain, has become a popular topic at the Marshall Space Flight Center over the past year. Last year it was considered a novel approach to welding but few people took it very seriously as a near term solution. However, due to continued problems with cracks in the new aluminum-lithium space shuttle external tank (ET), the friction stir process is being mobilized at full speed in an effort to mature this process for the potential manufacture of flight hardware. It is now the goal of NASA and Lockheed-Martin Corporation (LMC) to demonstrate a full-scale friction stir welding system capable of welding ET size barrel sections. The objectives this summer were: (1) Implementation and validation of the rotating dynamometer on the MSFC FSW system; (2) Collection of data for FSW process modeling efforts; (3) Specification development for FSW implementation on the vertical weld tool; (4) Controls and user interface development for the adjustable pin tool; and (5) Development of an instrumentation system for the planishing process. The projects started this summer will lead to a full scale friction stir welding system that is expected to produce a friction stir welded shuttle external tank type barrel section. The success of this could lead to the implementation of the friction stir process for manufacturing future shuttle external tanks.

  18. Amino Acid Synthesis in Photosynthesizing Spinach Cells: Effects of Ammonia on Pool Sizes and Rates of Labeling from 14CO2

    SciTech Connect

    Larsen, Peder Olesen; Cornwell, Karen L.; Gee, Sherry L.; Bassham, James A.

    1981-08-01

    In this paper, isolated cells from leaves of Spinacia oleracea have been maintained in a state capable of high rates of photosynthetic CO2 fixation for more than 60 hours. The incorporation of 14CO2 under saturating CO2 conditions into carbohydrates, carboxylic acids, and amino acids, and the effect of ammonia on this incorporation have been studied. Total incorporation, specific radioactivity, and pool size have been determined as a function of time for most of the protein amino acids and for γ-aminobutyric acid. The measurements of specific radio-activities and of the approaches to 14C “saturation” of some amino acids indicate the presence and relative sizes of metabolically active and passive pools of these amino acids. Added ammonia decreased carbon fixation into carbohydrates and increased fixation into carboxylic acids and amino acids. Different amino acids were, however, affected in different and highly specific ways. Ammonia caused large stimulatory effects in incorporation of 14C into glutamine (a factor of 21), aspartate, asparagine, valine, alanine, arginine, and histidine. No effect or slight decreases were seen in glycine, serine, phenylalanine, and tyrosine labeling. In the case of glutamate, 14C labeling decreased, but specific radioactivity increased. The production of labeled γ-aminobutyric acid was virtually stopped by ammonia. The results indicate that added ammonia stimulates the reactions mediated by pyruvate kinase and phosphoenolpyruvate carboxylase, as seen with other plant systems. Finally, the data on the effects of added ammonia on total labeling, pool sizes, and specific radioactivities of several amino acids provides a number of indications about the intracellular sites of principal synthesis from carbon skeletons of these amino acids and the selective nature of effects of increased intracellular ammonia concentration on such synthesis.

  19. Effects of CO2 perturbation on phosphorus pool sizes and uptake in a mesocosm experiment during a low productive summer season in the northern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Nausch, M.; Bach, L.; Czerny, J.; Goldstein, J.; Grossart, H. P.; Hellemann, D.; Hornick, T.; Achterberg, E.; Schulz, K.; Riebesell, U.

    2015-10-01

    Studies investigating the effect of increasing CO2 levels on the phosphorus cycle in natural waters are lacking although phosphorus often controls phytoplankton development in aquatic systems. The aim of our study was to analyze effects of elevated CO2 levels on phosphorus pool sizes and uptake. Therefore, we conducted a CO2-manipulation mesocosm experiment in the Storfjärden (western Gulf of Finland, Baltic Sea) in summer 2012. We compared the phosphorus dynamics in different mesocosm treatments but also studied them outside the mesocosms in the surrounding fjord water. In the mesocosms as well as in surface waters of Storfjärden, dissolved organic phosphorus (DOP) concentrations of 0.26 ± 0.03 and 0.23 ± 0.04 μmol L-1, respectively, formed the main fraction of the total P-pool (TP), whereas phosphate (PO4) constituted the lowest fraction with mean concentration of 0.15 ± 0.02 μmol L-1 and 0.17 ± 0.07 μmol L-1 in the mesocosms and in the fjord, respectively. Uptake of PO4 ranged between 0.6 and 3.9 nmol L-1 h-1 of which ~ 86 % (mesocosms) and ~ 72 % (fjord) were realized by the size fraction < 3 μm. Adenosine triphosphate (ATP) uptake revealed that additional P was supplied from organic compounds accounting for 25-27 % of P provided by PO4 only. CO2 additions did not cause significant changes in phosphorus (P) pool sizes, DOP composition, and uptake of PO4 and ATP when the whole study period was taken into account. About 18 % of PO4 was transformed into POP, whereby the major proportion (~ 82 %) was converted into DOP suggesting that the conversion of PO4 to DOP is the main pathway of the PO4 turnover. We observed that significant relationships (e.g., between POP and Chl a) in the untreated mesocosms vanished under increased fCO2 conditions. Consequently, it can be hypothesized that the relationship between POP formation and phytoplankton growth changed under elevated CO2 conditions. Significant short-term effects were observed for PO4 and particulate

  20. Variable-Polarity Plasma Arc Welding Of Alloy 2219

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.; Nunes, Arthur C., Jr.

    1989-01-01

    Report presents results of study of variable-polarity plasma arc (VPPA) welding of aluminum alloy 2219. Consists of two parts: Examination of effects of microsegregation and transient weld stress on macrosegregation in weld pool and, electrical characterization of straight- and reverse-polarity portions of arc cycle.

  1. Fancd2 and p21 function independently in maintaining the size of hematopoietic stem and progenitor cell pool in mice.

    PubMed

    Zhang, Qing-Shuo; Watanabe-Smith, Kevin; Schubert, Kathryn; Major, Angela; Sheehan, Andrea M; Marquez-Loza, Laura; Newell, Amy E Hanlon; Benedetti, Eric; Joseph, Eric; Olson, Susan; Grompe, Markus

    2013-09-01

    Fanconi anemia patients suffer from progressive bone marrow failure. An overactive p53 response to DNA damage contributes to the progressive elimination of Fanconi anemia hematopoietic stem and progenitor cells (HSPC), and hence presents a potential target for therapeutic intervention. To investigate whether the cell cycle regulatory protein p21 is the primary mediator of the p53-dependent stem cell loss, p21/Fancd2 double-knockout mice were generated. Surprisingly double mutant mice displayed even more severe loss of HSPCs than Fancd2(-/-) single mutants. p21 deletion did not rescue the abnormal cell cycle profile and had no impact on the long-term repopulating potential of Fancd2(-/-) bone marrow cells. Collectively, our data indicate that p21 has an indispensable role in maintaining a normal HSPC pool and suggest that other p53-targeted factors, not p21, mediate the progressive elimination of HSPC in Fanconi anemia.

  2. BDNF increases release probability and the size of a rapidly recycling vesicle pool within rat hippocampal excitatory synapses

    PubMed Central

    Tyler, William J; Zhang, Xiao-lei; Hartman, Kenichi; Winterer, Jochen; Muller, Wolfgang; Stanton, Patric K; Pozzo-Miller, Lucas

    2006-01-01

    Exerting its actions pre-, post- and peri-synaptically, brain-derived neurotrophic factor (BDNF) is one of the most potent modulators of hippocampal synaptic function. Here, we examined the effects of BDNF on a rapidly recycling pool (RRP) of vesicles within excitatory synapses. First, we estimated vesicular release in hippocampal cultures by performing FM4-64 imaging in terminals impinging on enhanced green fluorescent protein (eGFP)-labelled dendritic spines – a hallmark of excitatory synapses. Consistent with a modulation of the RRP, BDNF increased the evoked destaining rate of FM4-64 only during the initial phase of field stimulation. Multiphoton microscopy in acute hippocampal slices confirmed these observations by selectively imaging the RRP, which was loaded with FM1-43 by hyperosmotic shock. Slices exposed to BDNF showed an increase in the evoked and spontaneous rates of FM1-43 destaining from terminals in CA1 stratum radiatum, mostly representing excitatory terminals of Schaffer collaterals. Variance-mean analysis of evoked EPSCs in CA1 pyramidal neurons further confirmed that release probability is increased in BDNF-treated slices, without changes in the number of independent release sites or average postsynaptic quantal amplitude. Because BDNF was absent during dye loading, imaging, destaining and whole-cell recordings, these results demonstrate that BDNF induces a long-lasting enhancement in the probability of transmitter release at hippocampal excitatory synapses by modulating the RRP. Since the endogenous BDNF scavenger TrkB-IgG prevented the enhancement of FM1-43 destaining rate caused by induction of long-term potentiation in acute hippocampal slices, the modulation of a rapidly recycling vesicle pool may underlie the role of BDNF in hippocampal long-term synaptic plasticity. PMID:16709633

  3. Contribution to study of heat transfer and fluid flow during GTA welding

    NASA Astrophysics Data System (ADS)

    Koudadje, Koffi; Delalondre, Clarisse; Médale, Marc; Carpreau, Jean-Michel

    2014-06-01

    In this paper, the effect of surface-active elements especially sulfur on weld pool shape has been reported. In our contribution, we analyze the influence of the weld pool chemical composition (Mn, Si, …), welding energy, sulphur gradient and electromagnetic effect. The computed results are in good agreement with the corresponding experimental results, indicating the validity of the modeling approach.

  4. Advanced Welding Concepts

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  5. Review of Fillet Weld Strength Parameters for Shipbuilding.

    DTIC Science & Technology

    1980-02-01

    AD-ACED 356M ASSACHUJSETTS INST OF TECH CAMRaIDOS DEPT OF OCEAN E-EcTC Pft 13110 REVIEW OF FILLET WELD STREMOYN PARAMETERS FOR SHIPSUILOINS. RU) FES...hours are devoted to welding . A further analysis indicated that 75 percent of the welded joints were fillet welded . Inasmuch as the requirements of...fillet weld sizes have not been revised for many years, the Ship Structure Committee considered a review and analysis of current marine fillet weld

  6. Effects of welding technology on welding stress based on the finite element method

    NASA Astrophysics Data System (ADS)

    Fu, Jianke; Jin, Jun

    2017-01-01

    Finite element method is used to simulate the welding process under four different conditions of welding flat butt joints. Welding seams are simulated with birth and death elements. The size and distribution of welding residual stress is obtained in the four kinds of welding conditions by Q345 manganese steel plate butt joint of the work piece. The results shown that when using two-layers welding,the longitudinal and transverse residual stress were reduced;When welding from Middle to both sides,the residual stress distribution will change,and the residual stress in the middle of the work piece was reduced.

  7. Primary Water Stress Corrosion Cracks in Nickel Alloy Dissimilar Metal Welds: Detection and Sizing Using Established and Emerging Nondestructive Examination Techniques

    SciTech Connect

    Braatz, Brett G.; Cumblidge, Stephen E.; Doctor, Steven R.; Prokofiev, Iouri

    2012-12-31

    The U.S. Nuclear Regulatory Commission has established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) as a follow-on to the international cooperative Program for the Inspection of Nickel Alloy Components (PINC). The goal of PINC was to evaluate the capabilities of various nondestructive evaluation (NDE) techniques to detect and characterize surface-breaking primary water stress corrosion cracks in dissimilar-metal welds (DMW) in bottom-mounted instrumentation (BMI) penetrations and small-bore (≈400-mm diameter) piping components. A series of international blind round-robin tests were conducted by commercial and university inspection teams. Results from these tests showed that a combination of conventional and phased-array ultrasound techniques provided the highest performance for flaw detection and depth sizing in dissimilar metal piping welds. The effective detection of flaws in BMIs by eddy current and ultrasound shows that it may be possible to reliably inspect these components in the field. The goal of PARENT is to continue the work begun in PINC and apply the lessons learned to a series of open and blind international round-robin tests that will be conducted on a new set of piping components including large-bore (≈900-mm diameter) DMWs, small-bore DMWs, and BMIs. Open round-robin testing will engage universities and industry worldwide to investigate the reliability of emerging NDE techniques to detect and accurately size flaws having a wide range of lengths, depths, orientations, and locations. Blind round-robin testing will invite testing organizations worldwide, whose inspectors and procedures are certified by the standards for the nuclear industry in their respective countries, to investigate the ability of established NDE techniques to detect and size flaws whose characteristics range from easy to very difficult to detect and size. This paper presents highlights of PINC and reports on the plans and progress for

  8. Adaptive tracking of weld joints using active contour model in arc-welding processes

    NASA Astrophysics Data System (ADS)

    Kim, Jaeseon; Koh, Kyoungchul; Cho, Hyungsuck

    2001-02-01

    12 This paper presents a vision processing scheme to automatic weld joint tracking in robotic arc welding process. Particular attention is concentrated on its robustness against various optical disturbances, such as arc glares and weld spatters radiating from the melted weld pool. Underlying the developed vision processing is a kind of model-based pattern searching, which is necessarily accompanied by two separate stages of modeling and tracking. In the modeling stage, a syntactic approach is adopted to identify unknown weld joint structure. The joint profile identified in the modeling stage is used as a starting point for successive tracking of variations in the geometry of weld joint during welding, which is automatically achieved by an active contour model technology following feature- based template matching. The performance of the developed scheme is investigated through a series of practical welding experiments.

  9. Exciting Pools

    ERIC Educational Resources Information Center

    Wright, Bradford L.

    1975-01-01

    Advocates the creation of swimming pool oscillations as part of a general investigation of mechanical oscillations. Presents the equations, procedure for deriving the slosh modes, and methods of period estimation for exciting swimming pool oscillations. (GS)

  10. Sensors control gas metal arc welding

    SciTech Connect

    Siewert, T.A.; Madigan, R.B.; Quinn, T.P.

    1997-04-01

    The response time of a trained welder from the time a weld problem is identified to the time action is taken is about one second--especially after a long, uneventful period of welding. This is acceptable for manual welding because it is close to the time it takes for the weld pool to solidify. If human response time were any slower, manual welding would not be possible. However, human response time is too slow to respond to some weld events, such as melting of the contact tube in gas metal arc welding (GMAW), and only automated intelligent control systems can react fast enough to correct or avoid these problems. Control systems incorporate welding knowledge that enables intelligent decisions to be made about weld quality and, ultimately, to keep welding parameters in the range where only high-quality welds are produced. This article discusses the correlation of electrical signals with contact-tube wear, changes in shielding gas, changes in arc length, and other weld process data.

  11. Size Distribution and Estimated Respiratory Deposition of Total Chromium, Hexavalent Chromium, Manganese, and Nickel in Gas Metal Arc Welding Fume Aerosols.

    PubMed

    Cena, Lorenzo G; Chisholm, William P; Keane, Michael J; Cumpston, Amy; Chen, Bean T

    A laboratory study was conducted to determine the mass of total Cr, Cr(VI), Mn, and Ni in 15 size fractions for mild and stainless steel gas-metal arc welding (GMAW) fumes. Samples were collected using a nano multi orifice uniform deposition impactor (MOUDI) with polyvinyl chloride filters on each stage. The filters were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography. Limits of detection (LODs) and quantitation (LOQs) were experimentally calculated and percent recoveries were measured from spiked metals in solution and dry, certified welding-fume reference material. The fraction of Cr(VI) in total Cr was estimated by calculating the ratio of Cr(VI) to total Cr mass for each particle size range. Expected, regional deposition of each metal was estimated according to respiratory-deposition models. The weight percent (standard deviation) of Mn in mild steel fumes was 9.2% (6.8%). For stainless steel fumes, the weight percentages were 8.4% (5.4%) for total Cr, 12.2% (6.5%) for Mn, 2.1% (1.5%) for Ni and 0.5% (0.4%) for Cr(VI). All metals presented a fraction between 0.04 and 0.6 μm. Total Cr and Ni presented an additional fraction <0.03 μm. On average 6% of the Cr was found in the Cr(VI) valence state. There was no statistical difference between the smallest and largest mean Cr(VI) to total Cr mass ratio (p-value D 0.19), hence our analysis does not show that particle size affects the contribution of Cr(VI) to total Cr. The predicted total respiratory deposition for the metal particles was ∼25%. The sites of principal deposition were the head airways (7-10%) and the alveolar region (11-14%). Estimated Cr(VI) deposition was highest in the alveolar region (14%).

  12. Why to measure a broad range of city sizes? Analysis of globally pooled data of urban GHG measurements for sustainability

    NASA Astrophysics Data System (ADS)

    Rybski, Diego; Sterzel, Till; Reusser, Dominik E.; Fichter, Christina; Kropp, Jürgen P.

    2013-04-01

    We have assembled a database of urban GHG emissions from various published sources, including about 200 cities globally. Analyzing this CO2 emission inventory from multiple countries we find power-law relations between the emissions and city size, measured in population. The results suggest that in developing countries large cities emit more CO2 per capita compared to small cities, i.e. they tend to comprise super-linear correlations. For developed countries the results suggest the opposite, i.e. linear or sub-linear correlations, implying better efficiency of large cities. We derive how the total emissions of an entire country relate with the power-law correlations and find that the size of the most populated city is dominating in the case of linear and super-linear correlations, while a transition occurs to sub-linear correlations, where the size of the largest city has no influence. It is important to further substantiate an overview of city emission inventories across a broad range of city sizes and types to further clarify the complex relationships between cities and GHG emissions. On the one hand, we propose a minimum set of meta-information to be reported together with the emission inventories, e.g. for determining comparability among inventories. On the other hand, we propose to fill evident gaps with respect to regions (e.g. sub-Saharan African and South American cities) and types of cities (e.g. small medium and low-income country cities) to allow for a better global overview of city sizes, income, and emissions. We conclude that from the climate change mitigation point of view, urbanization is desirable in developed countries and should be avoided in developing countries, if effinciency increasing mechanisms can not be established. More data acquisition is needed to support our empirical findings.

  13. Delineation of biochemical, molecular, and physiological changes accompanying bile acid pool size restoration in Cyp7a1(-/-) mice fed low levels of cholic acid.

    PubMed

    Jones, Ryan D; Repa, Joyce J; Russell, David W; Dietschy, John M; Turley, Stephen D

    2012-07-15

    Cholesterol 7α-hydroxylase (CYP7A1) is the initiating and rate-limiting enzyme in the neutral pathway that converts cholesterol to primary bile acids (BA). CYP7A1-deficient (Cyp7a1(-/-)) mice have a depleted BA pool, diminished intestinal cholesterol absorption, accelerated fecal sterol loss, and increased intestinal cholesterol synthesis. To determine the molecular and physiological effects of restoring the BA pool in this model, adult female Cyp7a1(-/-) mice and matching Cyp7a1(+/+) controls were fed diets containing cholic acid (CA) at modest levels [0.015, 0.030, and 0.060% (wt/wt)] for 15-18 days. A level of just 0.03% provided a CA intake of ~12 μmol (4.8 mg) per day per 100 g body wt and was sufficient in the Cyp7a1(-/-) mice to normalize BA pool size, fecal BA excretion, fractional cholesterol absorption, and fecal sterol excretion but caused a significant rise in the cholesterol concentration in the small intestine and liver, as well as a marked inhibition of cholesterol synthesis in these organs. In parallel with these metabolic changes, there were marked shifts in intestinal and hepatic expression levels for many target genes of the BA sensor farnesoid X receptor, as well as genes involved in cholesterol transport, especially ATP-binding cassette (ABC) transporter A1 (ABCA1) and ABCG8. In Cyp7a1(+/+) mice, this level of CA supplementation did not significantly disrupt BA or cholesterol metabolism, except for an increase in fecal BA excretion and marginal changes in mRNA expression for some BA synthetic enzymes. These findings underscore the importance of using moderate dietary BA levels in studies with animal models.

  14. Delineation of biochemical, molecular, and physiological changes accompanying bile acid pool size restoration in Cyp7a1−/− mice fed low levels of cholic acid

    PubMed Central

    Jones, Ryan D.; Repa, Joyce J.; Russell, David W.; Dietschy, John M.

    2012-01-01

    Cholesterol 7α-hydroxylase (CYP7A1) is the initiating and rate-limiting enzyme in the neutral pathway that coverts cholesterol to primary bile acids (BA). CYP7A1-deficient (Cyp7a1−/−) mice have a depleted BA pool, diminished intestinal cholesterol absorption, accelerated fecal sterol loss, and increased intestinal cholesterol synthesis. To determine the molecular and physiological effects of restoring the BA pool in this model, adult female Cyp7a1−/− mice and matching Cyp7a1+/+ controls were fed diets containing cholic acid (CA) at modest levels [0.015, 0.030, and 0.060% (wt/wt)] for 15–18 days. A level of just 0.03% provided a CA intake of ∼12 μmol (4.8 mg) per day per 100 g body wt and was sufficient in the Cyp7a1−/− mice to normalize BA pool size, fecal BA excretion, fractional cholesterol absorption, and fecal sterol excretion but caused a significant rise in the cholesterol concentration in the small intestine and liver, as well as a marked inhibition of cholesterol synthesis in these organs. In parallel with these metabolic changes, there were marked shifts in intestinal and hepatic expression levels for many target genes of the BA sensor farnesoid X receptor, as well as genes involved in cholesterol transport, especially ATP-binding cassette (ABC) transporter A1 (ABCA1) and ABCG8. In Cyp7a1+/+ mice, this level of CA supplementation did not significantly disrupt BA or cholesterol metabolism, except for an increase in fecal BA excretion and marginal changes in mRNA expression for some BA synthetic enzymes. These findings underscore the importance of using moderate dietary BA levels in studies with animal models. PMID:22628034

  15. Welding Technician

    ERIC Educational Resources Information Center

    Smith, Ken

    2009-01-01

    About 95% of all manufactured goods in this country are welded or joined in some way. These welded products range in nature from bicycle handlebars and skyscrapers to bridges and race cars. The author discusses what students need to know about careers for welding technicians--wages, responsibilities, skills needed, career advancement…

  16. Full penetration detection in Nd:YAG laser welding by analysis of oscillatory optical signals: application to overlap weld-seam tracking

    NASA Astrophysics Data System (ADS)

    Hand, Duncan P.; Haran, Frank M.; Jones, Julian D. C.; Peters, Christopher

    1997-04-01

    We describe a non-intrusive optical sensor for process monitoring of Nd:YAG laser welding, using light returned through the core of the power delivery optical fiber. This sensor is referred to as the core power monitor (core PM), and uses the delivery fiber to collect the broadband light generated in the process, which is then divided into spectral bands (designated as UV/visible and IR). These optical signals exhibit a characteristic oscillatory intensity modulation within the frequency range 2 - 5 kHz, which is believed to arise from a combination of keyhole, and weld pool oscillations. The frequency content may be related to the size and shape of the welding keyhole, and an alarm system for overlap weeding has been developed based on this principle. This can detect both misalignment of the focused laser spot off the seam, and any excessive gap between the plates.

  17. Deconvoluting the Friction Stir Weld Process for Optimizing Welds

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Nunes, Arthur C.

    2008-01-01

    In the friction stir welding process, the rotating surfaces of the pin and shoulder contact the weld metal and force a rotational flow within the weld metal. Heat, generated by the metal deformation as well as frictional slippage with the contact surface, softens the metal and makes it easier to deform. As in any thermo-mechanical processing of metal, the flow conditions are critical to the quality of the weld. For example, extrusion of metal from under the shoulder of an excessively hot weld may relax local pressure and result in wormhole defects. The trace of the weld joint in the wake of the weld may vary geometrically depending upon the flow streamlines around the tool with some geometry more vulnerable to loss of strength from joint contamination than others. The material flow path around the tool cannot be seen in real time during the weld. By using analytical "tools" based upon the principles of mathematics and physics, a weld model can be created to compute features that can be observed. By comparing the computed observations with actual data, the weld model can be validated or adjusted to get better agreement. Inputs to the model to predict weld structures and properties include: hot working properties ofthe metal, pin tool geometry, travel rate, rotation and plunge force. Since metals record their prior hot working history, the hot working conditions imparted during FSW can be quantified by interpreting the final microstructure. Variations in texture and grain size result from variations in the strain accommodated at a given strain rate and temperature. Microstructural data from a variety of FSWs has been correlated with prior marker studies to contribute to our understanding of the FSW process. Once this stage is reached, the weld modeling process can save significant development costs by reducing costly trial-and-error approaches to obtaining quality welds.

  18. Laser-TIG Welding of Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Turichin, G.; Tsibulsky, I.; Somonov, V.; Kuznetsov, M.; Akhmetov, A.

    2016-08-01

    The article presents the results of investigation the technological opportunity of laser-TIG welding of titanium alloys. The experimental stand for implementation of process with the capability to feed a filler wire was made. The research of the nature of transfer the filler wire into the welding pool has been demonstrated. The influence of distance between the electrode and the surface of the welded plates on the stability of the arc was shown. The relationship between welding velocity, the position of focal plane of the laser beam and the stability of penetration of plates was determined.

  19. Understanding metal vaporizaiton from laser welding.

    SciTech Connect

    DebRoy, Tarasankar; Fuerschbach, Phillip William; He, Xiuli; Norris, Jerome T.

    2003-09-01

    The production of metal vapor as a consequence of high intensity laser irradiation is a serious concern in laser welding. Despite the widespread use of lasers in manufacturing, little fundamental understanding of laser/material interaction in the weld pool exists. Laser welding experiments on 304 stainless steel have been completed which have advanced our fundamental understanding of the magnitude and the parameter dependence of metal vaporization in laser spot welding. Calculations using a three-dimensional, transient, numerical model were used to compare with the experimental results. Convection played a very important role in the heat transfer especially towards the end of the laser pulse. The peak temperatures and velocities increased significantly with the laser power density. The liquid flow is mainly driven by the surface tension and to a much less extent, by the buoyancy force. Heat transfer by conduction is important when the liquid velocity is small at the beginning of the pulse and during weld pool solidification. The effective temperature determined from the vapor composition was found to be close to the numerically computed peak temperature at the weld pool surface. At very high power densities, the computed temperatures at the weld pool surface were found to be higher than the boiling point of 304 stainless steel. As a result, vaporization of alloying elements resulted from both total pressure and concentration gradients. The calculations showed that the vaporization was concentrated in a small region under the laser beam where the temperature was very high.

  20. Nicotine enhancement of dopamine release by a calcium-dependent increase in the size of the readily releasable pool of synaptic vesicles.

    PubMed

    Turner, Timothy J

    2004-12-15

    A major factor underlying compulsive tobacco use is nicotine-induced modulation of dopamine release in the mesolimbic reward pathway (Wise and Rompre, 1989). An established biochemical mechanism for nicotine-enhanced dopamine release is by activating presynaptic nicotinic acetylcholine receptors (nAChRs) (Wonnacott, 1997). Prolonged application of 10(-7) to 10(-5) m nicotine to striatal synaptosomes promoted a sustained efflux of [3H]dopamine. This nicotine effect was mediated by non-alpha7 nAChRs, because it was blocked by 5 mum mecamylamine but was resistant to 100 nm alpha-bungarotoxin (alphaBgTx). Dopamine release was diminished by omitting Na+ or by applying peptide calcium channel blockers, indicating that nAChRs trigger release by depolarizing the nerve terminals. However, because alpha7 receptors rapidly desensitize in the continuous presence of agonists, a repetitive stimulation protocol was used to evaluate the possible significance of desensitization. This protocol produced a transient increase in [3H]dopamine released by depolarization and a significant increase in the response to hypertonic solutions that measure the size of the readily releasable pool (RRP) of synaptic vesicles. The nicotine-induced increase in the size of the readily releasable pool was blocked by alphaBgTx and by the calmodulin antagonist calmidazolium, suggesting that Ca2+ entry through alpha7 nAChRs specifically enhances synaptic vesicle mobilization at dopamine terminals. Thus, nicotine enhances dopamine release by two complementary actions mediated by discrete nAChR subtypes and suggest that the alpha7 nAChR-mediated pathway is tightly and specifically coupled to refilling of the RRP of vesicles in dopamine terminals.

  1. Examination of the physical processes associated with the keyhole region of variable polarity plasma arc welds in aluminum alloy 2219

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.

    1987-01-01

    The morphology and properties of the Variable Polarity Plasma Arc (VPPA) weld composite zone are intimately related to the physical processes associated with the keyhole. This study examined the effects of oxide, halide, and sulfate additions to the weld plate on the keyhole and the weld pool. Changes in both the arc plasma character and the bead morphology were correlated to the chemical environment of the weld. Pool behavior was observed by adding flow markers to actual VPPA welds. A low temperature analog to the welding process was developed. The results of the study indicate that oxygen, even at low partial pressures, can disrupt the stable keyhole and weld pool. The results also indicate that the Marangoni surface tension driven flows dominate the weld pool over the range of welding currents studied.

  2. Elements of arc welding

    SciTech Connect

    Not Available

    1993-07-01

    This paper looks at the following arc welding techniques: (1) shielded metal-arc welding; (2) submerged-arc welding; (3) gas metal-arc welding; (4) flux-cored arc welding; (5) electrogas welding; (6) gas tungsten-arc welding; and (7) plasma-arc welding.

  3. Grain refinement control in TIG arc welding

    NASA Technical Reports Server (NTRS)

    Iceland, W. F.; Whiffen, E. L. (Inventor)

    1975-01-01

    A method for controlling grain size and weld puddle agitation in a tungsten electrode inert gas welding system to produce fine, even grain size and distribution is disclosed. In the method the frequency of dc welding voltage pulses supplied to the welding electrode is varied over a preselected frequency range and the arc gas voltage is monitored. At some frequency in the preselected range the arc gas voltage will pass through a maximum. By maintaining the operating frequency of the system at this value, maximum weld puddle agitation and fine grain structure are produced.

  4. Virtual welding equipment for simulation of GMAW processes with integration of power source regulation

    NASA Astrophysics Data System (ADS)

    Reisgen, Uwe; Schleser, Markus; Mokrov, Oleg; Zabirov, Alexander

    2011-06-01

    A two dimensional transient numerical analysis and computational module for simulation of electrical and thermal characteristics during electrode melting and metal transfer involved in Gas-Metal-Arc-Welding (GMAW) processes is presented. Solution of non-linear transient heat transfer equation is carried out using a control volume finite difference technique. The computational module also includes controlling and regulation algorithms of industrial welding power sources. The simulation results are the current and voltage waveforms, mean voltage drops at different parts of circuit, total electric power, cathode, anode and arc powers and arc length. We describe application of the model for normal process (constant voltage) and for pulsed processes with U/I and I/I-modulation modes. The comparisons with experimental waveforms of current and voltage show that the model predicts current, voltage and electric power with a high accuracy. The model is used in simulation package SimWeld for calculation of heat flux into the work-piece and the weld seam formation. From the calculated heat flux and weld pool sizes, an equivalent volumetric heat source according to Goldak model, can be generated. The method was implemented and investigated with the simulation software SimWeld developed by the ISF at RWTH Aachen University.

  5. Mechanical properties and microstructures of a magnesium alloy gas tungsten arc welded with a cadmium chloride flux

    SciTech Connect

    Zhang, Z.D.; Liu, L.M. Shen, Y.; Wang, L.

    2008-01-15

    Gas tungsten arc (GTA) welds were prepared on 5-mm thick plates of wrought magnesium AZ31B alloy, using an activated flux. The microstructural characteristics of the weld joint were investigated using optical and scanning microscopy, and the fusion zone microstructure was compared with that of the base metal. The elemental distribution was also investigated by electron probe microanalysis (EPMA). Mechanical properties were determined by standard tensile tests on small-scale specimens. The as-welded fusion zone prepared using a CdCl{sub 2} flux exhibited a larger grain size than that prepared without flux; the microstructure consisted of matrix {alpha}-Mg, eutectic {alpha}-Mg and {beta}-Al{sub 12}Mg{sub 17}. The HAZ was observed to be slightly wider for the weld prepared with a CdCl{sub 2} flux compared to that prepared without flux; thus the tensile strength was lower for the flux-prepared weld. The fact that neither Cd nor Cl was detected in the weld seam by EPMA indicates that the CdCl{sub 2} flux has a small effect on convection in the weld pool.

  6. Pool Purification

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Caribbean Clear, Inc. used NASA's silver ion technology as a basis for its automatic pool purifier. System offers alternative approach to conventional purification chemicals. Caribbean Clear's principal markets are swimming pool owners who want to eliminate chlorine and bromine. Purifiers in Caribbean Clear System are same silver ions used in Apollo System to kill bacteria, plus copper ions to kill algae. They produce spa or pool water that exceeds EPA Standards for drinking water.

  7. 49 CFR 178.61 - Specification 4BW welded steel cylinders with electric-arc welded longitudinal seam.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 4BW welded steel cylinders with... steel cylinders with electric-arc welded longitudinal seam. (a) Type, size and service pressure. A DOT 4BW cylinder is a welded type steel cylinder with a longitudinal electric-arc welded seam, a...

  8. 49 CFR 178.61 - Specification 4BW welded steel cylinders with electric-arc welded longitudinal seam.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 4BW welded steel cylinders with... steel cylinders with electric-arc welded longitudinal seam. (a) Type, size and service pressure. A DOT 4BW cylinder is a welded type steel cylinder with a longitudinal electric-arc welded seam, a...

  9. 49 CFR 178.61 - Specification 4BW welded steel cylinders with electric-arc welded longitudinal seam.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 4BW welded steel cylinders with... steel cylinders with electric-arc welded longitudinal seam. (a) Type, size and service pressure. A DOT 4BW cylinder is a welded type steel cylinder with a longitudinal electric-arc welded seam, a...

  10. 49 CFR 178.61 - Specification 4BW welded steel cylinders with electric-arc welded longitudinal seam.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 4BW welded steel cylinders with... steel cylinders with electric-arc welded longitudinal seam. (a) Type, size and service pressure. A DOT 4BW cylinder is a welded type steel cylinder with a longitudinal electric-arc welded seam, a...

  11. An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in the Space Shuttle Bay at LEO for the International Space Welding Experiment

    NASA Technical Reports Server (NTRS)

    Fragomeni, James M.

    1996-01-01

    . However, some of the energy will be absorbed by the plate before it reaches the metal drop. Based on the theoretical calculations, it was determined that during a weld cutting exercise, the titanium alloy would be the most difficult to detach molten metal droplets followed by stainless steel and then by aluminum. The results of the experimental effort have shown that molten metal will detach if large enough of a hammer blow is applied to the weld sample plate during the full penetration welding and cutting exercises. However, no molten metal detachments occurred as a result of the filler wire snap-out tests from the weld puddle since it was too difficult to cause the metal to flick-out from the pool. Molten metal detachments, though not large in size, did result from the direct application of the electron beam on the end of the filler weld wire.

  12. Welding polarity effects on weld spatters and bead geometry of hyperbaric dry GMAW

    NASA Astrophysics Data System (ADS)

    Xue, Long; Wu, Jinming; Huang, Junfen; Huang, Jiqiang; Zou, Yong; Liu, Jian

    2016-03-01

    Welding polarity has influence on welding stability to some extent, but the specific relationship between welding polarity and weld quality has not been found, especially under the hyperbaric environment. Based on a hyperbaric dry welding experiment system, gas metal arc welding(GMAW) experiments with direct current electrode positive(DCEP) and direct current electrode negative(DCEN) operations are carried out under the ambient pressures of 0.1 MPa, 0.4 MPa, 0.7 MPa and 1.0 MPa to find the influence rule of different welding polarities on welding spatters and weld bead geometry. The effects of welding polarities on the weld bead geometry such as the reinforcement, the weld width and the penetration are discussed. The experimental results show that the welding spatters gradually grow in quantity and size for GMAW with DCEP, while GMAW with DCEN can produce fewer spatters comparatively with the increase of the ambient pressure. Compared with DCEP, the welding current and arc voltage waveforms for DCEN is more stable and the distribution of welding current probability density for DCEN is more concentrated under the hyperbaric environment. When the ambient pressure is increased from 0.1 MPa to 1.0 MPa, the effects of welding polarities on the reinforcement, the weld width and the penetration are as follows: an increase of 0.8 mm for the weld reinforcement is produced by GMAW with DCEN and 1.3 mm by GMAW with DCEP, a decrease of 7.2 mm for the weld width is produced by DCEN and 6.1 mm by DCEP; and an increase of 3.9 mm for the penetration is produced by DCEN and 1.9 mm by DCEP. The proposed research indicates that the desirable stability in the welding procedure can be achieved by GMAW with DCEN operation under the hyperbaric environment.

  13. Infrared sensing techniques for adaptive robotic welding

    SciTech Connect

    Lin, T.T.; Groom, K.; Madsen, N.H.; Chin, B.A.

    1986-01-01

    The objective of this research is to investigate the feasibility of using infrared sensors to monitor the welding process. Data were gathered using an infrared camera which was trained on the molten metal pool during the welding operation. Several types of process perturbations which result in weld defects were then intentionally induced and the resulting thermal images monitored. Gas tungsten arc using ac and dc currents and gas metal arc welding processes were investigated using steel, aluminum and stainless steel plate materials. The thermal images obtained in the three materials and different welding processes revealed nearly identical patterns for the same induced process perturbation. Based upon these results, infrared thermography is a method which may be very applicable to automation of the welding process.

  14. Shielding conditions of local cavity for underwater arc spot welding

    SciTech Connect

    Ogawa, Y.; Koga, H.

    1996-12-01

    Arc spot welding to join lapped plates is an effective maintenance operation for emergent recovering technique of defects under water. The welding operation is easy and effective except for an excessive amount of weld metal for deep penetration. A special nozzle for CO{sub 2} arc spot welding was designed to maintain this defect. A large amount of swirl shielding gas flow is adopted to discharge the excessive weld metal and to reduce digging action of weld pool. An additional high speed air jet is supplied to reinforce these effects. Almost flat weld bead is obtained by using of this nozzle. The effect of swirl shielding flow and additional air jet on the pressure is studied. When an excessive axial gas flow is used, a pressure at the weld pool becomes high enough to press down the weld surface below original surface level of base plate, and some molten metal is splashed out. Then, it is difficult to get a sound weld geometry. A swirl gas flow is tried to reduce the static pressure on the weld pool. The pressure on the weld pool by the swirl flow becomes much lower compared to the case by axial flow. When the swirl flow is used, a flat bead can be obtained. But some molten metal which is blown out by the swirl gas is resolidified at the edge of the nozzle. The additional high speed air jet is required to blow out the splashed metal from the nozzle completely. It has a suction effect itself. The pressure on the weld pool is also decreased. But the interaction between the swirl flow and the additional jet shows a complicated manner. This paper discusses the interaction between main shielding gas flow and the additional air jet to guarantee the good shielding condition for underwater use.

  15. Soldadura (Welding). Spanish Translations for Welding.

    ERIC Educational Resources Information Center

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  16. Mechanical Characteristics of Welded Joints of Aluminum Alloy 6061 T6 Formed by Arc and Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Astarita, A.; Squillace, A.; Nele, L.

    2016-01-01

    Butt welds formed by arc welding in inert gas with nonconsumable electrode (tungsten inert gas (TIG) welding) and by friction stir welding (FSW) from aluminum alloy AA6061 T6 are studied. Comparative analysis of the structures and mechanical properties of the welded joints is performed using the results of optical and electron microscopy, tensile tests, tests for residual bending ductility, and measurements of microhardness. The changes in the microstructure in different zones and the degrees of degradation of the mechanical properties after the welding are determined. It is shown that the size of the tool for the friction stir welding affects the properties of the welds. Quantitative results showing the relation between the microscopic behavior of the alloy and the welding-induced changes in the microstructure are obtained. Friction stir welding is shown to provide higher properties of the welds.

  17. Size Distribution and Estimated Respiratory Deposition of Total Chromium, Hexavalent Chromium, Manganese, and Nickel in Gas Metal Arc Welding Fume Aerosols

    PubMed Central

    Cena, Lorenzo G.; Chisholm, William P.; Keane, Michael J.; Cumpston, Amy; Chen, Bean T.

    2016-01-01

    A laboratory study was conducted to determine the mass of total Cr, Cr(VI), Mn, and Ni in 15 size fractions for mild and stainless steel gas-metal arc welding (GMAW) fumes. Samples were collected using a nano multi orifice uniform deposition impactor (MOUDI) with polyvinyl chloride filters on each stage. The filters were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography. Limits of detection (LODs) and quantitation (LOQs) were experimentally calculated and percent recoveries were measured from spiked metals in solution and dry, certified welding-fume reference material. The fraction of Cr(VI) in total Cr was estimated by calculating the ratio of Cr(VI) to total Cr mass for each particle size range. Expected, regional deposition of each metal was estimated according to respiratory-deposition models. The weight percent (standard deviation) of Mn in mild steel fumes was 9.2% (6.8%). For stainless steel fumes, the weight percentages were 8.4% (5.4%) for total Cr, 12.2% (6.5%) for Mn, 2.1% (1.5%) for Ni and 0.5% (0.4%) for Cr(VI). All metals presented a fraction between 0.04 and 0.6 μm. Total Cr and Ni presented an additional fraction <0.03 μm. On average 6% of the Cr was found in the Cr(VI) valence state. There was no statistical difference between the smallest and largest mean Cr(VI) to total Cr mass ratio (p-value D 0.19), hence our analysis does not show that particle size affects the contribution of Cr(VI) to total Cr. The predicted total respiratory deposition for the metal particles was ∼25%. The sites of principal deposition were the head airways (7–10%) and the alveolar region (11–14%). Estimated Cr(VI) deposition was highest in the alveolar region (14%). PMID:26848207

  18. The paired deuterated retinol dilution technique can be used to estimate the daily vitamin A intake required to maintain a targeted whole body vitamin A pool size in men.

    PubMed

    Haskell, Marjorie J; Jamil, Kazi M; Peerson, Janet M; Wahed, Mohammed A; Brown, Kenneth H

    2011-03-01

    The estimated average requirement (EAR) for vitamin A (VA) of adult males is based on the amount of dietary VA required to maintain adequate function and provide a modest liver VA reserve (0.07 μmol/g). In the present study, the paired-deuterated retinol dilution technique was used to estimate changes in VA pool size in Bangladeshi men from low-income, urban neighborhoods who had small initial VA pool sizes (0.059 ± 0.032 mmol, or 0.047 ± 0.025 μmol/g liver; n = 16). The men were supplemented for 60 d with 1 of 8 different levels of dietary VA, ranging from 100 to 2300 μg/d (2 men/dietary VA level). VA pool size was estimated before and after the supplementation period. The mean change (plus or minus) in VA pool size in the men was plotted against their corresponding levels of daily VA intake and a regression line was fit to the data. The level of intake at which the regression line crossed the x-axis (where estimates of VA pool size remained unchanged) was used as an estimate of the EAR. A VA intake of 254-400 μg/d was sufficient to maintain a small VA pool size (0.059 ± 0.032 mmol) in the Bangladeshi men, corresponding to a VA intake of 362-571 μg/d for a 70-kg U.S. man, which is lower than their current EAR of 625 μg/d. The data suggest that the paired-deuterated retinol dilution technique could be used for estimating the EAR for VA for population subgroups for which there are currently no direct estimates.

  19. WELDING TORCH

    DOEpatents

    Correy, T.B.

    1961-10-01

    A welding torch into which water and inert gas are piped separately for cooling and for providing a suitable gaseous atmosphere is described. A welding electrode is clamped in the torch by a removable collet sleeve and a removable collet head. Replacement of the sleeve and head with larger or smaller sleeve and head permits a larger or smaller welding electrode to be substituted on the torch. (AEC)

  20. Investigation of underwater welding of steel

    SciTech Connect

    Shannon, G.J.; Watson, J.; Deans, W.F. . Dept. of Engineering)

    1994-12-01

    The preliminary underwater welding study described forms part of a European funded research program (EUREKA EU194) which involves a feasibility study into laser welding applications in the offshore oil industry. An investigation was undertaken using a 1.2 KW carbon dioxide laser for underwater butt welding of BS 4360 43A and 50D steel, in order to assess the quality of the welds and to achieve an understanding of the laser/water/material interaction. Using a high-speed camera, the temporal behavior of the melt pool and ''plasma'' dynamics surrounded by an aqueous environment were monitored. Experiments were undertaken to characterize the attenuation of the laser beam in the water as a function of various focal length optics and depth of water. The effect of energy input conditions on the weld bead appearance and mechanical properties were also examined. The interaction of the laser beam with water produced a wave-guiding mechanism in which the focused beam instantaneously vaporizes the water and directs the beam on to the workpiece. The underwater weld beads exhibited sound microstructures over a range of weld energy inputs, mainly due to the formation of a ''dry region'' during welding. Metallurgical analysis of the welds showed a slight increase in hardness, though other post-weld mechanical strengths were similar to in-air results.

  1. Plasma arc welding weld imaging

    NASA Technical Reports Server (NTRS)

    Rybicki, Daniel J. (Inventor); Mcgee, William F. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has a transparent shield cup disposed about the constricting nozzle, the cup including a small outwardly extending polished lip. A guide tube extends externally of the torch and has a free end adjacent to the lip. First and second optical fiber bundle assemblies are supported within the guide tube. Light from a strobe light is transmitted along one of the assemblies to the free end and through the lip onto the weld site. A lens is positioned in the guide tube adjacent to the second assembly and focuses images of the weld site onto the end of the fiber bundle of the second assembly and these images are transmitted along the second assembly to a video camera so that the weld site may be viewed continuously for monitoring the welding process.

  2. Damage Tolerance Assessment of Friction Pull Plug Welds

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process developed and patented by The Welding Institute in Cambridge, England. Friction stir welding has been implemented in the aerospace industry in the fabrication of longitudinal welds in pressurized cryogenic propellant tanks. As the industry looks to implement friction stir welding in circumferential welds in pressurized cryogenic propellant tanks, techniques to close out the termination hole associated with retracting the pin tool are being evaluated. Friction pull plug welding is under development as a one means of closing out the termination hole. A friction pull plug weld placed in a friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite, plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size in the test or service environments. Test data relating residual strength capability to flaw size in two aluminum alloy friction plug weld configurations is presented.

  3. Welding III.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding III, an advanced course in arc welding offered at the Community College of Allegheny County to provide students with the proficiency necessary for industrial certification. The course objectives, which are outlined first, specify that students will…

  4. Welding Curriculum.

    ERIC Educational Resources Information Center

    EASTCONN Regional Educational Services Center, North Windham, CT.

    The purpose of this welding program is to provide students with skills and techniques to become employed as advanced apprentice welders. The welding program manual includes the following sections: (1) course description; (2) general objectives; (3) competencies; (4) curriculum outline for 13 areas; (5) 13 references; and (6) student progress…

  5. Pulsed Long Arc Welding

    NASA Astrophysics Data System (ADS)

    Krampit, N. Yu

    2016-04-01

    The paper presents a method and an appliance for pulsed arc welding. The method supports dosage of energy required for melting each bead of electrode metal starting from the detachment of a bead. The appliance including a sensor to register bead detachment shows this moment due to the voltage burst in the arc space. Transferred beads of electrode metal are of similar size because of the dosage of energy used for melting each bead, as the consequence, the process is more stable and starting conditions to transfer electrode metal are similar, as the result, a produced weld is improved.

  6. WELDING METHOD

    DOEpatents

    Cornell, A.A.; Dunbar, J.V.; Ruffner, J.H.

    1959-09-29

    A semi-automatic method is described for the weld joining of pipes and fittings which utilizes the inert gasshielded consumable electrode electric arc welding technique, comprising laying down the root pass at a first peripheral velocity and thereafter laying down the filler passes over the root pass necessary to complete the weld by revolving the pipes and fittings at a second peripheral velocity different from the first peripheral velocity, maintaining the welding head in a fixed position as to the specific direction of revolution, while the longitudinal axis of the welding head is disposed angularly in the direction of revolution at amounts between twenty minutas and about four degrees from the first position.

  7. Effect of friction stir welding parameters on defect formation

    NASA Astrophysics Data System (ADS)

    Tarasov, S. Yu.; Rubtsov, V. E.; Eliseev, A. A.; Kolubaev, E. A.; Filippov, A. V.; Ivanov, A. N.

    2015-10-01

    Friction stir welding is a perspective method for manufacturing automotive parts, aviation and space technology. One of the major problems is the formation of welding defects and weld around the welding zone. The formation of defect is the main reason failure of the joint. A possible way to obtain defect-free welded joints is the selection of the correct welding parameters. Experimental results describing the effect of friction stir welding process parameters on the defects of welded joints on aluminum alloy AMg5M have been shown. The weld joint defects have been characterized using the non-destructive radioscopic and ultrasound phase array methods. It was shown how the type and size of defects determine the welded joint strength.

  8. Laser Beam Oscillation Strategies for Fillet Welds in Lap Joints

    NASA Astrophysics Data System (ADS)

    Müller, Alexander; Goecke, Sven-F.; Sievi, Pravin; Albert, Florian; Rethmeier, Michael

    Laser beam oscillation opens up new possibilities of influencing the welding process in terms of compensation of tolerances and reduction of process emissions that occur in industrial applications, such as in body-in-white manufacturing. The approaches are to adapt the melt pool width in order to generate sufficient melt volume or to influence melt pool dynamics, e.g. for a better degassing. Welding results are highly dependent on the natural frequency of the melt pool, the used spot diameter and the oscillation speed of the laser beam. The conducted investigations with an oscillated 300 μm laser spot show that oscillation strategies, which are adjusted to the joining situation improve welding result for zero-gap welding as well as for bridging gaps to approximately 0.8 mm. However, a complex set of parameters has to be considered in order to generate proper welding results. This work puts emphasize on introducing them.

  9. Effect of Welding Heat Input on the Corrosion Resistance of Carbon Steel Weld Metal

    NASA Astrophysics Data System (ADS)

    Lu, Yongxin; Jing, Hongyang; Han, Yongdian; Xu, Lianyong

    2016-02-01

    The corrosion resistance of carbon steel weld metal with three different microstructures has been systematically evaluated using electrochemical techniques with the simulated produced water containing CO2 at 90 °C. Microstructures include acicular ferrite, polygonal ferrite, and a small amount of pearlite. With welding heat input increasing, weld metal microstructure becomes more uniform. Electrochemical techniques including potentiodynamic polarization curve, linear polarization resistance, and electrochemical impedance spectroscopy were utilized to characterize the corrosion properties on weld joint, indicating that the best corrosion resistance corresponded to the weld metal with a polygonal ferrite microstructure, whereas the weld metal with the acicular ferrite + polygonal ferrite microstructure showed the worst corrosion resistance. The samples with high welding heat input possessed better corrosion resistance. Results were discussed in terms of crystal plane orientation, grain size, and grain boundary type found in each weld metal by electron backscatter diffraction test.

  10. Vaccum Gas Tungsten Arc Welding, phase 1

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Krotz, P. D.; Todd, D. T.; Liaw, Y. K.

    1995-01-01

    This two year program will investigate Vacuum Gas Tungsten Arc Welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. VGTAW appears to offer a significant improvement in weldability because of the clean environment and lower heat input needed. The overall objective of the program is to develop the VGTAW technology and implement it into a manufacturing environment that will result in lower cost, better quality and higher reliability aerospace components for the space shuttle and other NASA space systems. Phase 1 of this program was aimed at demonstrating the process's ability to weld normally difficult-to-weld materials. Phase 2 will focus on further evaluation, a hardware demonstration and a plan to implement VGTAW technology into a manufacturing environment. During Phase 1, the following tasks were performed: (1) Task 11000 Facility Modification - an existing vacuum chamber was modified and adapted to a GTAW power supply; (2) Task 12000 Materials Selection - four difficult-to-weld materials typically used in the construction of aerospace hardware were chosen for study; (3) Task 13000 VGTAW Experiments - welding experiments were conducted under vacuum using the hollow tungsten electrode and evaluation. As a result of this effort, two materials, NARloy Z and Incoloy 903, were downselected for further characterization in Phase 2; and (4) Task 13100 Aluminum-Lithium Weld Studies - this task was added to the original work statement to investigate the effects of vacuum welding and weld pool vibration on aluminum-lithium alloys.

  11. In-process discontinuity detection during friction stir welding

    NASA Astrophysics Data System (ADS)

    Shrivastava, Amber

    The objective of this work is to develop a method for detecting the creation of discontinuities (e.g., voids) during friction stir welding. Friction stir welding is inherently cost-effective, however, the need for significant weld inspection can make the process cost-prohibitive. A new approach to weld inspection is required -- where an in-situ characterization of weld quality can be obtained, reducing the need for post-process inspection. Friction stir welds with discontinuity and without discontinuity were created. In this work, discontinuities are generated by reducing the friction stir tool rotation frequency and increasing the tool traverse speed in order to create "colder" welds. During the welds, forces are measured. Discontinuity sizes for welds are measured by computerized tomography. The relationship between the force transients and the discontinuity sizes indicate that the force measurement during friction stir welding can be effectively used for detecting discontinuities in friction stir welds. The normalized force transient data and normalized discontinuity size are correlated to develop a criterion for discontinuity detection. Additional welds are performed to validate the discontinuity detection method. The discontinuity sizes estimated by the force measurement based method are in good agreement with the discontinuity sizes measured by computerized tomography. These results show that the force measurement based discontinuity detection model method can be effectively used to detect discontinuities during friction stir welding.

  12. Laser welding of selected aerospace alloys

    NASA Astrophysics Data System (ADS)

    Ebadan, Gracie E.

    The study was aimed at developing an understanding of the microstructural effects of the laser welding process on the alloys, and assessing the structural integrity of the resultant welds. The effect of laser processing parameters such as laser power, laser beam traverse speed, lens focal length, and the manipulation of these parameters on the welding efficiency and weld area integrity was also investigated. Other tasks within the project included a study on the possibility of using an anodic film to enhance the laser weld ability of Al 6061. Finally, attempts were made to identify phases observed in the weld area of the composite materials. Nimonics C263 and PE11 exhibited laser welds free of cracks and porosity. The difference in composition between the two alloys did not result in any significant dissimilarities in their response to the laser welding process. The welds in both alloys exhibited a fine columnar dendritic microstructure, and while carbides were observed in the interdendritic regions of the welds, electron optical analysis did not reveal any gamma' precipitates in this region. It was concluded that for the welding of thin gage materials above a threshold laser power the resultant welding efficiency shows a greater dependence on laser beam mode, and laser spot size, than on laser power, and beam traverse speed. Aluminum 6061 was not easily welded with a laser in its as received form, and the welds showed some degree of porosity. Anodizing was found to improve the welding efficiency in this material. While the presence of an anodic film on the metal surface increased the welding efficiency of the alloy, no relationship was found between the thickness of the anodic film and welding efficiency in the range of film thicknesses investigated. Weld regions were observed to be cellular dendritic in structure, with narrow heat affected zones. No precipitates or low melting point phases could be identified in the weld region. Melt zones were successfully

  13. RIM1 and RIM2 redundantly determine Ca2+ channel density and readily releasable pool size at a large hindbrain synapse

    PubMed Central

    Han, Yunyun; Babai, Norbert; Kaeser, Pascal; Südhof, Thomas C.

    2014-01-01

    The localization and density of voltage-gated Ca2+ channels at active zones are essential for the amount and kinetics of transmitter release at synapses. RIM proteins are scaffolding proteins at the active zone that bind to several other presynaptic proteins, including voltage-gated Ca2+ channel α-subunits. The long isoforms of RIM proteins, which contain NH2-terminal Rab3- and Munc13-interacting domains, as well as a central PDZ domain and two COOH-terminal C2 domains, are encoded by two genes, Rim1 and Rim2. Here, we used the ideal accessibility of the large calyx of Held synapse for direct presynaptic electrophysiology to investigate whether the two Rim genes have redundant, or separate, functions in determining the presynaptic Ca2+ channel density, and the size of a readily releasable vesicle pool (RRP). Quantitative PCR showed that cochlear nucleus neurons, which include calyx of Held generating neurons, express both RIM1 and RIM2. Conditional genetic inactivation of RIM2 at the calyx of Held led to a subtle reduction in presynaptic Ca2+ current density, whereas deletion of RIM1 was ineffective. The release efficiency of brief presynaptic Ca2+ “tail” currents and the RRP were unaffected in conditional single RIM1 and RIM2 knockout (KO) mice, whereas both parameters were strongly reduced in RIM1/2 double KO mice. Thus, despite a somewhat more decisive role for RIM2 in determining presynaptic Ca2+ channel density, RIM1 and RIM2 can overall replace each other's presynaptic functions at a large relay synapse in the hindbrain, the calyx of Held. PMID:25343783

  14. Internal Wire Guide For Gas/Tungsten-Arc Welding

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.; Dyer, Gerald E.

    1990-01-01

    Wire kept in shielding gas, preventing oxidation. Guide inside gas cup of gas/tungsten-arc welding torch feeds filler wire to weld pool along line parallel to axis of torch. Eliminates problem of how to place and orient torch to provide clearance for external wire guide.

  15. Syllabus in Trade Welding.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The syllabus outlines material for a course two academic years in length (minimum two and one-half hours daily experience) leading to entry-level occupational ability in several welding trade areas. Fourteen units covering are welding, gas welding, oxyacetylene welding, cutting, nonfusion processes, inert gas shielded-arc welding, welding cast…

  16. ELECTRIC WELDING EQUIPMENT AND AUTOMATION OF WELDING IN CONSTRUCTION,

    DTIC Science & Technology

    WELDING , *ARC WELDING , AUTOMATION, CONSTRUCTION, INDUSTRIES, POWER EQUIPMENT, GENERATORS, POWER TRANSFORMERS, RESISTANCE WELDING , SPOT WELDING , MACHINES, AUTOMATIC, STRUCTURES, WIRING DIAGRAMS, USSR.

  17. Welding and Weldability of Thorium-Doped Iridium Alloys

    SciTech Connect

    David, S.A.; Ohriner, E.K.; King, J.F.

    2000-03-12

    Ir-0.3%W alloys doped with thorium are currently used as post-impact containment material for radioactive fuel in thermoelectric generators that provide stable electrical power for a variety of outer planetary space exploration missions. Welding and weldability of a series of alloys was investigated using arc and laser welding processes. Some of these alloys are prone to severe hot-cracking during welding. Weldability of these alloys was characterized using Sigmajig weldability test. Hot-cracking is influenced to a great extent by the fusion zone microstructure and composition. Thorium content and welding atmosphere were found to be very critical. The weld cracking behavior in these alloys can be controlled by modifying the fusion zone microstructure. Fusion zone microstructure was found to be controlled by welding process, process parameters, and the weld pool shape.

  18. Microstructure Improvement in Weld Metal under the Ultrasonic Application

    SciTech Connect

    Cui, Yan; Xu, Cailu; Han, Qingyou

    2007-01-01

    When considering the operational performance of weldments in the engineering projects, the most important issues to be considered are weld metal mechanical properties, integrity of the welded joint, and weldability 1 . These issues are closely related to the microstructure of the weld metal. A significant amount of research has been carried out to alter the process variables and to use external devices to obtain microstructure control of the weldments. It has been reported that grain refined microstructure not only reduces cracking behavior of alloys including solidification cracking, cold cracking and reheat cracking, 2 - 5 but also improves the mechanical properties of the weld metal, such as toughness, ductility, strength, and fatigue life. 6, 7 Weld pool stirring, 8 arc oscillation, 9, 10 arc pulsation, 11 , and magnetic arc oscillator 12, 13 have been applied to fusion welding to refine the microstructures. This article describes initial experimental results on the use of power ultrasonic vibration to refine the microstructure of weld metals.

  19. Surface-active element effects on the shape of GTA, laser, and electron-beam welds

    SciTech Connect

    Heiple, C.R.; Roper, J.R.; Stagner, R.T.; Aden, R.J.

    1983-03-01

    Laser and electron-beam welds were passed across selenium-doped zones in 21-6-9 stainless steel. The depth/width (d/w) ratio of a defocused laser weld with a weld pool shape similar to a GTA weld increased by over 200% in a zone where 66 ppm selenium had been added. Smaller increases were observed in selenium-doped zones for a moderately defocused electron beam weld with a higher d/w ratio in undoped base metal. When laser or electron beam weld penetration was by a keyhole mechanism, no change in d/w ratio occurred in selenium-doped zones. The results confirm the surface-tension-driven fluid-flow model for the effect of minor elements on GTA weld pool shape. Other experimental evidence bearing on the effect of minor elements on GTA weld penetration is summarized.

  20. Tool For Friction Stir Tack Welding of Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerald W.; Dingler, Johnny W.; Loftus, Zachary

    2003-01-01

    A small friction-stir-welding tool has been developed for use in tack welding of aluminum-alloy workpieces. It is necessary to tack-weld the workpieces in order to hold them together during friction stir welding because (1) in operation, a full-size friction-stir-welding tool exerts a large force that tends to separate the workpieces and (2) clamping the workpieces is not sufficient to resist this force. It is possible to tack the pieces together by gas tungsten arc welding, but the process can be awkward and time-consuming and can cause sufficient damage to necessitate rework. Friction stir tack welding does not entail these disadvantages. In addition, friction stir tack welding can be accomplished by use of the same automated equipment (except for the welding tool) used in subsequent full friction stir welding. The tool for friction stir tack welding resembles the tool for full friction stir welding, but has a narrower shoulder and a shorter pin. The shorter pin generates a smaller workpiece-separating force so that clamping suffices to keep the workpieces together. This tool produces a continuous or intermittent partial-penetration tack weld. The tack weld is subsequently consumed by action of the larger tool used in full friction stir welding tool.

  1. Smaller Coaxial-View Welding Torch

    NASA Technical Reports Server (NTRS)

    Gangl, Kenneth J.

    1991-01-01

    Coaxial-view torch for gas/tungsten arc welding has only two-thirds length and width of its predecessor. Shape and size similar to that of commercial arc-welding torch (Linde HW-27 or equivalent), even though it contains lens system. Collet that holds electrode has unique design allowing greater passage of light. Used in small spaces previously inaccessible, also introduced into production welding operations with minimum of disturbance.

  2. Reduction of Biomechanical and Welding Fume Exposures in Stud Welding.

    PubMed

    Fethke, Nathan B; Peters, Thomas M; Leonard, Stephanie; Metwali, Mahmoud; Mudunkotuwa, Imali A

    2016-04-01

    The welding of shear stud connectors to structural steel in construction requires a prolonged stooped posture that exposes ironworkers to biomechanical and welding fume hazards. In this study, biomechanical and welding fume exposures during stud welding using conventional methods were compared to exposures associated with use of a prototype system that allowed participants to weld from an upright position. The effect of base material (i.e. bare structural beam versus galvanized decking) on welding fume concentration (particle number and mass), particle size distribution, and particle composition was also explored. Thirty participants completed a series of stud welding simulations in a local apprenticeship training facility. Use of the upright system was associated with substantial reductions in trunk inclination and the activity levels of several muscle groups. Inhalable mass concentrations of welding fume (averaged over ~18 min) when using conventional methods were high (18.2 mg m(-3) for bare beam; 65.7 mg m(-3) for through deck), with estimated mass concentrations of iron (7.8 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), zinc (0.2 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), and manganese (0.9 mg m(-3) for bare beam; 1.5 mg m(-3) for through deck) often exceeding the American Conference of Governmental Industrial Hygienists Threshold Limit Values (TLVs). Number and mass concentrations were substantially reduced when using the upright system, although the total inhalable mass concentration remained above the TLV when welding through decking. The average diameters of the welding fume particles for both bare beam (31±17 nm) through deck conditions (34±34 nm) and the chemical composition of the particles indicated the presence of metallic nanoparticles. Stud welding exposes ironworkers to potentially high levels of biomechanical loading (primarily to the low back) and welding fume. The upright system used in this study improved exposure

  3. Enabling high speed friction stir welding of aluminum tailor welded blanks

    NASA Astrophysics Data System (ADS)

    Hovanski, Yuri

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding (FSW) has traditionally been applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum FSW components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability using a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  4. Laser welding of fused quartz

    DOEpatents

    Piltch, Martin S.; Carpenter, Robert W.; Archer, III, McIlwaine

    2003-06-10

    Refractory materials, such as fused quartz plates and rods are welded using a heat source, such as a high power continuous wave carbon dioxide laser. The radiation is optimized through a process of varying the power, the focus, and the feed rates of the laser such that full penetration welds may be accomplished. The process of optimization varies the characteristic wavelengths of the laser until the radiation is almost completely absorbed by the refractory material, thereby leading to a very rapid heating of the material to the melting point. This optimization naturally occurs when a carbon dioxide laser is used to weld quartz. As such this method of quartz welding creates a minimum sized heat-affected zone. Furthermore, the welding apparatus and process requires a ventilation system to carry away the silicon oxides that are produced during the welding process to avoid the deposition of the silicon oxides on the surface of the quartz plates or the contamination of the welds with the silicon oxides.

  5. Recent progress on gas tungsten arc welding of vanadium alloys

    SciTech Connect

    Grossbeck, M.L.; King, J.F.; Alexander, D.J.

    1997-08-01

    Emphasis has been placed on welding 6.4 mm plate, primarily by gas tungsten arc (GTA) welding. The weld properties were tested using blunt notch Charpy testing to determine the ductile to brittle transition temperature (DBTT). Erratic results were attributed to hydrogen and oxygen contamination of the welds. An improved gas clean-up system was installed on the welding glove box and the resulting high purity welds had Charpy impact properties similar to those of electron beam welds with similar grain size. A post-weld heat treatment (PWHT) of 950{degrees}C for two hours did not improve the properties of the weld in cases where low concentrations of impurities were attained. Further improvements in the gas clean-up system are needed to control hydrogen contamination.

  6. A laser-based vision system for weld quality inspection.

    PubMed

    Huang, Wei; Kovacevic, Radovan

    2011-01-01

    Welding is a very complex process in which the final weld quality can be affected by many process parameters. In order to inspect the weld quality and detect the presence of various weld defects, different methods and systems are studied and developed. In this paper, a laser-based vision system is developed for non-destructive weld quality inspection. The vision sensor is designed based on the principle of laser triangulation. By processing the images acquired from the vision sensor, the geometrical features of the weld can be obtained. Through the visual analysis of the acquired 3D profiles of the weld, the presences as well as the positions and sizes of the weld defects can be accurately identified and therefore, the non-destructive weld quality inspection can be achieved.

  7. Fundamental study of molten pool depth measurement method using an ultrasonic phased array system

    NASA Astrophysics Data System (ADS)

    Mizota, Hirohisa; Nagashima, Yoshiaki; Obana, Takeshi

    2015-07-01

    The molten pool depth measurement method using an ultrasonic phased array system has been developed. The molten pool depth distribution is evaluated by comparing the times taken by the ultrasonic wave to propagate through a molten pool and a solid-phase and through only the solid-phase near the molten pool. Maximum molten pool depths on a flat type-304 stainless-steel plate, formed with a gas tungsten arc welding machine for different welding currents from 70 to 150 A, were derived within an error of ±0.5 mm.

  8. A Field Study on the Respiratory Deposition of the Nano-Sized Fraction of Mild and Stainless Steel Welding Fume Metals

    PubMed Central

    Cena, L. G.; Chisholm, W. P.; Keane, M. J.; Chen, B. T.

    2016-01-01

    A field study was conducted to estimate the amount of Cr, Mn, and Ni deposited in the respiratory system of 44 welders in two facilities. Each worker wore a nanoparticle respiratory deposition (NRD) sampler during gas metal arc welding (GMAW) of mild and stainless steel and flux-cored arc welding (FCAW) of mild steel. Several welders also wore side-by-side NRD samplers and closed-face filter cassettes for total particulate samples. The NRD sampler estimates the aerosol's nano-fraction deposited in the respiratory system. Mn concentrations for both welding processes ranged 2.8–199 μg/m3; Ni concentrations ranged 10–51 μg/m3; and Cr concentrations ranged 40–105 μg/m3. Cr(VI) concentrations ranged between 0.5–1.3 μg/m3. For the FCAW process the largest concentrations were reported for welders working in pairs. As a consequence this often resulted in workers being exposed to their own welding fumes and to those generated from the welding partner. Overall no correlation was found between air velocity and exposure (R2 = 0.002). The estimated percentage of the nano-fraction of Mn deposited in a mild-steel-welder's respiratory system ranged between 10 and 56%. For stainless steel welding, the NRD samplers collected 59% of the total Mn, 90% of the total Cr, and 64% of the total Ni. These results indicate that most of the Cr and more than half of the Ni and Mn in the fumes were in the fraction smaller than 300 nm. PMID:25985454

  9. A Field Study on the Respiratory Deposition of the Nano-Sized Fraction of Mild and Stainless Steel Welding Fume Metals.

    PubMed

    Cena, L G; Chisholm, W P; Keane, M J; Chen, B T

    2015-01-01

    A field study was conducted to estimate the amount of Cr, Mn, and Ni deposited in the respiratory system of 44 welders in two facilities. Each worker wore a nanoparticle respiratory deposition (NRD) sampler during gas metal arc welding (GMAW) of mild and stainless steel and flux-cored arc welding (FCAW) of mild steel. Several welders also wore side-by-side NRD samplers and closed-face filter cassettes for total particulate samples. The NRD sampler estimates the aerosol's nano-fraction deposited in the respiratory system. Mn concentrations for both welding processes ranged 2.8-199 μg/m3; Ni concentrations ranged 10-51 μg/m3; and Cr concentrations ranged 40-105 μg/m3. Cr(VI) concentrations ranged between 0.5-1.3 μg/m3. For the FCAW process the largest concentrations were reported for welders working in pairs. As a consequence this often resulted in workers being exposed to their own welding fumes and to those generated from the welding partner. Overall no correlation was found between air velocity and exposure (R2 = 0.002). The estimated percentage of the nano-fraction of Mn deposited in a mild-steel-welder's respiratory system ranged between 10 and 56%. For stainless steel welding, the NRD samplers collected 59% of the total Mn, 90% of the total Cr, and 64% of the total Ni. These results indicate that most of the Cr and more than half of the Ni and Mn in the fumes were in the fraction smaller than 300 nm.

  10. Physicochemical and toxicological characteristics of welding fume derived particles generated from real time welding processes.

    PubMed

    Chang, Cali; Demokritou, Philip; Shafer, Martin; Christiani, David

    2013-01-01

    Welding fume particles have been well studied in the past; however, most studies have examined welding fumes generated from machine models rather than actual exposures. Furthermore, the link between physicochemical and toxicological properties of welding fume particles has not been well understood. This study aims to investigate the physicochemical properties of particles derived during real time welding processes generated during actual welding processes and to assess the particle size specific toxicological properties. A compact cascade impactor (Harvard CCI) was stationed within the welding booth to sample particles by size. Size fractionated particles were extracted and used for both off-line physicochemical analysis and in vitro cellular toxicological characterization. Each size fraction was analyzed for ions, elemental compositions, and mass concentration. Furthermore, real time optical particle monitors (DustTrak™, TSI Inc., Shoreview, Minn.) were used in the same welding booth to collect real time PM2.5 particle number concentration data. The sampled particles were extracted from the polyurethane foam (PUF) impaction substrates using a previously developed and validated protocol, and used in a cellular assay to assess oxidative stress. By mass, welding aerosols were found to be in coarse (PM 2.5–10), and fine (PM 0.1–2.5) size ranges. Most of the water soluble (WS) metals presented higher concentrations in the coarse size range with some exceptions such as sodium, which presented elevated concentration in the PM 0.1 size range. In vitro data showed size specific dependency, with the fine and ultrafine size ranges having the highest reactive oxygen species (ROS) activity. Additionally, this study suggests a possible correlation between welders' experience, the welding procedure and equipment used and particles generated from welding fumes. Mass concentrations and total metal and water soluble metal concentrations of welding fume particles may be

  11. Effect of Weld Characteristic on Mechanical Strength of Laser-Arc Hybrid-Welded Al-Mg-Si-Mn Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Gao, Ming; Jiang, Ming; Zeng, Xiaoyan

    2016-11-01

    Laser-arc hybrid welding (LAHW) was employed to improve the tensile properties of the joints of 8-mm-thick Al-Mg-Si-Mn alloy (AA6082) using Al-5Mg filler wire. The weld microstructures were examined by scanning electron microscope, electron backscattered diffraction, and transmission electron microscopy in detail. The LAHW joints with pore-free and high-tensile performances were obtained. The strength enhancement of the fusion zone and heat-affected zone in the LAHW joint was mainly attributed to the grain refinement strengthening and the precipitation strengthening, respectively. The microstructure characteristics were related to the effects of laser-arc interaction on the energy transfer within the molten pool. The arc caused the majority of laser energy to dissipate out of the keyhole, and then it reduced the heat input. The lower heat input refined the grain size, weakened the overaging effect, and thus improved the tensile strength.

  12. Effect of Welding Current on the Structure and Properties of Resistance Spot Welded Dissimilar (Austenitic Stainless Steel and Low Carbon Steel) Metal Joints

    NASA Astrophysics Data System (ADS)

    Shawon, M. R. A.; Gulshan, F.; Kurny, A. S. W.

    2015-04-01

    1.5 mm thick sheet metal coupons of austenitic stainless steel and plain low carbon steel were welded by resistance spot welding technique. The effects of welding current in the range 3-9 kA on the structure and mechanical properties of welded joint were investigated. The structure was studied by macroscopic, microscopic and scanning electron microscopy techniques. Mechanical properties were determined by tensile testing and microhardness measurements. Asymmetrical shape weld nugget was found to have formed in the welded joint which increased in size with an increase in welding current. The fusion zone showed cast structure with coarse columnar grain and dendritic with excess delta ferrite in austenitic matrix. Microhardness of the weld nugget was maximum because of martensite formation. An increase in welding current also increased tensile strength of the weld coupon. An attempt has also been made to relate the mode of fracture with the welding current.

  13. Shielding gas selection for increased weld penetration and productivity in GTA welding

    SciTech Connect

    Leinonen, J.I.

    1996-12-31

    The effects of hydrogen and helium additions to the argon shielding gas on GTA weld pool profiles in the case of two austenitic stainless steel sheets 3 mm thick are investigated here in detail. One of the test steels shows good weldability, with a relatively deep, narrow weld pool profile, but the other is poorly weldable, with a shallow, wide weld pool when argon shielding gas is used. Bead-on-plate test welds were produced with arc shields of argon, argon with hydrogen additions of 2 to 18.2% and argon with helium additions of 20 to 80%. The hydrogen additions increases the depth of weld penetration in both test steels, but productivity with respect to maximum welding speed can be improved to an accepted level only with steel sheets of good weldability in terms of a relatively high depth/width (D/W) ratio. The depth of penetration in the test steel of good weldability increased somewhat with helium additions and the D/W ratio remained unchanged, while these parameters increased markedly in the poorly weldable steel when a He-20% Ar shielding gas was used and resembled those of the more weldable steel.

  14. Weld repair method for aluminum lithium seam

    NASA Technical Reports Server (NTRS)

    McGee, William Floyd (Inventor); Rybicki, Daniel John (Inventor)

    1998-01-01

    Aluminum-lithium plates are butt-welded by juxtaposing the plates and making a preliminary weld from the rear or root side of the seam. An initial weld is then made from the face side of the seam, which may cause a defect in the root portion. A full-size X-ray is made and overlain over the seam to identify the defects. The defect is removed from the root side, and rewelded. Material is then removed from the face side, and the cavity is rewelded. The procedure repeats, alternating from the root side to the face side, until the weld is sound.

  15. The importance of spatter formed in shielded metal arc welding

    SciTech Connect

    Molleda, F. Mora, J.; Molleda, J.R.; Mora, E.; Mellor, B.G.

    2007-10-15

    Spatter results when droplets of liquid metal that have been ejected from the weld pool by the impact of small droplets from the covered electrode solidify and weld to the surface of the base material. The present paper studies spatter and reveals why these small droplets do not oxidise during their short trajectory and accounts for why they arrive with sufficient heat to weld to the adjacent base material. Welds were thus performed on mild steel using covered electrodes (rutile type) to obtain spatter on the adjacent base material. Scanning electron microscopy and X-ray mapping were used to study the above mentioned phenomena.

  16. Welding Curtains

    NASA Astrophysics Data System (ADS)

    1984-01-01

    Concept of transparent welding curtains made of heavy duty vinyl originated with David F. Wilson, President of Wilson Sales Company. In 1968, Wilson's curtains reduced glare of welding arc and blocked ultraviolet radiation. When later research uncovered blue light hazards, Wilson sought improvement of his products. He contracted Dr. Charles G. Miller and James B. Stephens, both of Jet Propulsion Laboratory (JPL), and they agreed to undertake development of a curtain capable of filtering out harmful irradiance, including ultraviolet and blue light and provide protection over a broad range of welding operation. Working on their own time, the JPL pair spent 3 years developing a patented formula that includes light filtering dyes and small particles of zinc oxide. The result was the Wilson Spectra Curtain.

  17. Laser based spot weld characterization

    NASA Astrophysics Data System (ADS)

    Jonietz, Florian; Myrach, Philipp; Rethmeier, Michael; Suwala, Hubert; Ziegler, Mathias

    2016-02-01

    Spot welding is one of the most important joining technologies, especially in the automotive industry. Hitherto, the quality of spot welded joints is tested mainly by random destructive tests. A nondestructive testing technique offers the benefit of cost reduction of the testing procedure and optimization of the fabrication process, because every joint could be examined. This would lead to a reduced number of spot welded joints, as redundancies could be avoided. In the procedure described here, the spot welded joint between two zinc-coated steel sheets (HX340LAD+Z100MB or HC340LA+ZE 50/50) is heated optically on one side. Laser radiation and flash light are used as heat sources. The melted zone, the so called "weld nugget" provides the mechanical stability of the connection, but also constitutes a thermal bridge between the sheets. Due to the better thermal contact, the spot welded joint reveals a thermal behavior different from the surrounding material, where the heat transfer between the two sheets is much lower. The difference in the transient thermal behavior is measured with time resolved thermography. Hence, the size of the thermal contact between the two sheets is determined, which is directly correlated to the size of the weld nugget, indicating the quality of the spot weld. The method performs well in transmission with laser radiation and flash light. With laser radiation, it works even in reflection geometry, thus offering the possibility of testing with just one-sided accessibility. By using heating with collimated laser radiation, not only contact-free, but also remote testing is feasible. A further convenience compared to similar thermographic approaches is the applicability on bare steel sheets without any optical coating for emissivity correction. For this purpose, a proper way of emissivity correction was established.

  18. Automatic Welding of Stainless Steel Tubing

    NASA Technical Reports Server (NTRS)

    Clautice, W. E.

    1978-01-01

    To determine if the use of automatic welding would allow reduction of the radiographic inspection requirement, and thereby reduce fabrication costs, a series of welding tests were performed. In these tests an automatic welder was used on stainless steel tubing of 1/2, 3/4, and 1/2 inch diameter size. The optimum parameters were investigated to determine how much variation from optimum in machine settings could be tolerate and still result in a good quality weld. The process variables studied were the welding amperes, the revolutions per minute as a function of the circumferential weld travel speed, and the shielding gas flow. The investigation showed that the close control of process variables in conjunction with a thorough visual inspection of welds can be relied upon as an acceptable quality assurance procedure, thus permitting the radiographic inspection to be reduced by a large percentage when using the automatic process.

  19. Influence of Aluminum Content on Grain Refinement and Strength of AZ31 Magnesium GTA Weld Metal

    SciTech Connect

    Babu, N. Kishore; Cross, Carl E.

    2012-06-28

    The goal is to characterize the effect of Al content on AZ31 weld metal, the grain size and strength, and examine role of Al on grain refinement. The approach is to systematically vary the aluminum content of AZ31 weld metal, Measure average grain size in weld metal, and Measure cross-weld tensile properties and hardness. Conclusions are that: (1) increased Al content in AZ31 weld metal results in grain refinement Reason: higher undercooling during solidification; (2) weld metal grain refinement resulted in increased strength & hardness Reason: grain boundary strengthening; and (3) weld metal strength can be raised to wrought base metal levels.

  20. Carbon concentrations and transformations in peatland pools

    NASA Astrophysics Data System (ADS)

    Chapman, Pippa; Holden, Joseph; Baird, Andrew; Turner, Edward; Dooling, Gemma; Billett, Mike; McKenzie, Rebecca; Leith, Fraser; Dinsmore, Kerry

    2016-04-01

    Peatland pools may act as important features for aquatic and gaseous carbon production, transformation and release. Peatland restoration often results in new pools being created. Here we compare aquatic carbon concentrations in nearby natural and artificial pool systems monitored at three sites in northern Scotland over a three-year period. We found significant differences in pool water carbon concentrations between pool types with larger dissolved organic carbon (DOC) and dissolved carbon dioxide (CO2) in artificial pools. The differences were strong for all sites and occurred in all seasons. Importantly, the DOC outflows from natural pools were markedly lower than the DOC flowing into natural pools showing that processes in these pools were transforming and removing the DOC. These effects were not found in the artificial pools. Data on the composition of the DOC (absorbance ratios, specific ultraviolet absorbance) suggested that natural pools tended to have DOC that had been processed, and was older (radiocarbon dating) while the DOC in artificial pools was young and had not undergone much biochemical processing. Slope position was an important factor influencing pool DOC with those pools with a longer upslope contributing area and collecting water with a longer hillslope residence time having larger DOC concentrations. Dissolved methane (CH4) concentrations were not significantly different between pool types but the concentrations were always above atmospheric levels with values ˜ 200 times atmospheric concentrations not uncommon. Dissolved CO2 concentrations in the artificial pools were extremely large; typically ˜20 times atmospheric levels while those in natural pools were typically only just above atmospheric levels. The pools were strong sources of CH4 and CO2 evasion from the peat system. The smaller size of the artificial pools means that more of their CO2 is stored in the water until it reaches the stream system, while the larger natural pools have

  1. Narrow gap laser welding

    DOEpatents

    Milewski, J.O.; Sklar, E.

    1998-06-02

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables. 34 figs.

  2. Narrow gap laser welding

    DOEpatents

    Milewski, John O.; Sklar, Edward

    1998-01-01

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables.

  3. High-Speed Friction-Stir Welding To Enable Aluminum Tailor-Welded Blanks

    SciTech Connect

    Hovanski, Yuri; Upadhyay, Piyush; Carsley, John; Luzanski, Tom; Carlson, Blair; Eisenmenger, Mark; Soulami, Ayoub; Marshall, Dustin; Landino, Brandon; Hartfield-Wunsch, Susan

    2015-05-01

    Current joining technologies for automotive aluminum alloys are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding has been traditionally applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum welded components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability utilizing a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  4. A hot-cracking mitigation technique for welding high-strength aluminum alloy

    SciTech Connect

    Yang, Y.P.; Dong, P.; Zhang, J.; Tian, X.

    2000-01-01

    A hot-cracking mitigation technique for gas tungsten arc welding (GTAW) of high-strength aluminum alloy 2024 is presented. The proposed welding technique incorporates a trailing heat sink (an intense cooling source) with respect to the welding torch. The development of the mitigation technique was based on both detailed welding process simulation using advanced finite element techniques and systematic laboratory experiments. The finite element methods were used to investigate the detailed thermomechanical behavior of the weld metal that undergoes the brittle temperature range (BTR) during welding. As expected, a tensile deformation zone within the material BTR region was identified behind the weld pool under conventional GTA welding process conventional GTA welding process conditions for the aluminum alloy studied. To mitigate hot cracking, the tensile zone behind the weld pool must be eliminated or reduce to a satisfactory level if the weld metal hot ductility cannot be further improved. With detailed computational modeling, it was found that by the introduction of a trailing heat sink at some distance behind the welding arc, the tensile strain rate with respect to temperature in the zone encompassing the BTR region can be significantly reduced. A series of parametric studies were also conducted to derive optimal process parameters for the trailing heat sink. The experimental results confirmed the effectiveness of the trailing heat sink technique. With a proper implementation of the trailing heat sink method, hot cracking can be completely eliminated in welding aluminum alloy 2024 (AA 2024).

  5. Morphology of drying blood pools

    NASA Astrophysics Data System (ADS)

    Laan, Nick; Smith, Fiona; Nicloux, Celine; Brutin, David; D-Blood project Collaboration

    2016-11-01

    Often blood pools are found on crime scenes providing information concerning the events and sequence of events that took place on the scene. However, there is a lack of knowledge concerning the drying dynamics of blood pools. This study focuses on the drying process of blood pools to determine what relevant information can be obtained for the forensic application. We recorded the drying process of blood pools with a camera and measured the weight. We found that the drying process can be separated into five different: coagulation, gelation, rim desiccation, centre desiccation, and final desiccation. Moreover, we found that the weight of the blood pool diminishes similarly and in a reproducible way for blood pools created in various conditions. In addition, we verify that the size of the blood pools is directly related to its volume and the wettability of the surface. Our study clearly shows that blood pools dry in a reproducible fashion. This preliminary work highlights the difficult task that represents blood pool analysis in forensic investigations, and how internal and external parameters influence its dynamics. We conclude that understanding the drying process dynamics would be advancement in timeline reconstitution of events. ANR funded project: D-Blood Project.

  6. Rapid detection methods and prevalence estimation for Borrelia lonestari glpQ in Amblyomma americanum (Acari: Ixodidae) pools of unequal size.

    PubMed

    Bacon, Rendi Murphree; Pilgard, Mark A; Johnson, Barbara J B; Piesman, Joseph; Biggerstaff, Brad J; Quintana, Miguel

    2005-01-01

    DNA was extracted from pools of Amblyomma americanum ticks collected from vegetation at two sites in Fort Leonard Wood, Missouri and tested for the presence of Borrelia spp. Two new methods were developed to detect Borrelia lonestari DNA by targeting the glycerophosphodiester phosphodiesterase (glpQ) gene. The first method detected B. lonestari DNA using a SYBR green I melting curve analysis of the PCR product obtained with glpQ gene primers. The second method, a glpQ TaqMan assay, detected and confirmed the presence of B. lonestari glpQ-specific sequences. Twenty-two of 95 tick pools collected at site A148 contained B. lonestari DNA. None of 19 pools from site A241 contained B. lonestari DNA. No B. burgdorferi sensu lato DNA was detected using a SYBR green I melting curve analysis of the PCR product obtained with outer surface protein A (ospA) primers. The overall B. lonestari infection prevalence (with 95% confidence interval) at site A148 was estimated using two algorithms: minimum infection rate 4.14% (2.45, 5.84) and maximum likelihood with correction 4.82% (3.11, 7.16). The merits of each are discussed. Sequencing of the entire B. lonestari glpQ and partial 16S rRNA genes revealed two genetic variants circulating in this population of A. americanum from Missouri.

  7. The RABL5 homolog IFT22 regulates the cellular pool size and the amount of IFT particles partitioned to the flagellar compartment in Chlamydomonas reinhardtii.

    PubMed

    Silva, David A; Huang, Xiaomeng; Behal, Robert H; Cole, Douglas G; Qin, Hongmin

    2012-01-01

    Cilia and flagella, sensory and motile structures protruding from the cell body, rely on the continuous bidirectional traffic of intraflagellar transport (IFT) particles to ferry flagellar precursors into flagella for assembly. Cells synthesize a large pool of IFT particle proteins in the cell body, but only a small portion engages in active transport within the flagella at any given time. The atypical small G protein Rab-like 5 (RABL5) has been shown to move in an IFT-like manner in the flagella, but its function in ciliogenesis is controversial. In this report, we demonstrate that IFT22, the Chlamydomonas reinhardtii homolog of RABL5, is a bona fide IFT particle complex B subunit. Although the amount of IFT22 remains unaffected by depletion of either complex A or B, depletion of IFT22 leads to a smaller pool of both complex A and B. Strikingly, the smaller cellular pool of IFT particles does not lead to a reduced distribution of IFT particles to flagella. Instead, the amount of IFT particle proteins, including IFT22 itself, increase in the flagella. Moreover, cells over-expressing IFT22 also accumulate IFT particles in their flagella. Taken together, these data indicate that, in C. reinhardtii, IFT22 controls the cellular levels of both complex A and B, thus plays a critical role in determining the cellular availability of IFT particles. In addition, although IFT22 may not directly carry any precursors for flagellar assembly, it controls how many IFT particles participate in ferrying precursors into flagella.

  8. ARc Welding (Industrial Processing Series).

    DTIC Science & Technology

    ARC WELDING , *BIBLIOGRAPHIES), (*ARC WELDS, BIBLIOGRAPHIES), ALUMINUM ALLOYS, TITANIUM ALLOYS, CHROMIUM ALLOYS, METAL PLATES, SPOT WELDING , STEEL...INERT GAS WELDING , MARAGING STEELS, MICROSTRUCTURE, HEAT RESISTANT ALLOYS, HEAT RESISTANT METALS, WELDABILITY, MECHANICAL PROPERTIES, MOLYBDENUM ALLOYS, NICKEL ALLOYS, RESISTANCE WELDING

  9. Effect of welding parameters on high-power diode laser welding on thin sheet

    NASA Astrophysics Data System (ADS)

    Salminen, Antti; Jansson, Anssi; Kujanpaa, Veli

    2003-06-01

    High power diode laser (HPDL) is the newest laser tool for industrial manufacturing. The most promising areas of application of HPDL are thin sheet welding and hardening. The HPDL has several advantages and disadvantages compared to lasers CO2 and Nd:YAG lasers currently used for welding. There is quite a few industrial applications in which diode laser is the most suitable laser. A typical industrial installation consists of a HPDL, an industrial robot, work piece manipulation and safety enclosures. The HPDL welding process is at this moment conduction limited and has therefore different parameters than the keyhole welding. In this study the basic HPDL welding parameters and the effect of the parameters on the welding process, weld quality and efficiency are examined. Joint types tested are butt joint and fillet lap joint. The parameters tested are beam intensity, welding speed, spot size, beam impingement angle. The materials tested are common carbon steel and stainless steel. By the experiments carried out it can be seen that all of these parameters have an effect on the weld quality and the absorption of the laser power during welding. The higher the beam intensity is the shorter also the throughput time is. However, in case of fillet joint the maximum welding speed and best visual out look are achieved with totally different set of parameters. Based on these experiments it can, however, be seen that reliable welding parameters can be established for the welding of various industrial products. The beam quality of the diode laser is not optimum for high speed keyhole welding but it is a flexible tool to be used for different joint types.

  10. Swimming pools soak up the sun

    SciTech Connect

    Cuoghi, D.; Hesse, P.; Schiller, T.

    1996-05-01

    Solar pool heaters survived the boom and bust solar years of the 1970s and 1980s. Today they are even popular and cost-effective in parts of the country where many people think solar is impractical. This article discusses the following topics: how solar pool heaters work; types of solar pool heater collectors; collector and pump sizing; collector siting and mounting; systems costs and economics; pool covers. 3 figs.

  11. Nano- and Microparticles in Welding Aerosol: Granulometric Analysis

    NASA Astrophysics Data System (ADS)

    Kirichenko, K. Yu.; Drozd, V. A.; Chaika, V. V.; Gridasov, A. V.; Kholodov, A. S.; Golokhvast, K. S.

    The paper presents the first results of the study of the size of particles appearing in the welding process by means of laser granulometry. It is shown that welding aerosol is the source of nano-and micro-sized particles extremely dangerous for human and animal health. Particle size distribution in the microrange was from 1 to 10 μm and up to 100%. It is shown that in 9 cases out of 28 with the use of various welding modes, welding rods and components the emission of aerosol with nano-sized particles (from 45.5% to 99.4%) is observed.

  12. Electroslag and electrogas welding

    NASA Technical Reports Server (NTRS)

    Campbell, H. C.

    1972-01-01

    These two new joining methods perform welding in the vertical position, and therein lies the secret of their impressive advantages in material handling, in weld preparation, in welding speed, in freedom from distortion, and in weld soundness. Once the work has been set in the proper vertical position for welding, no further plate handling is required. The molten filler metal is held in place by copper shoes or dams, and the weld is completed in one pass.

  13. Emissions of chromium (VI) from arc welding.

    PubMed

    Heung, William; Yun, Myoung-Jin; Chang, Daniel P Y; Green, Peter G; Halm, Chris

    2007-02-01

    The presence of Cr in the +6 oxidation state (Cr[VI]) is still observed in ambient air samples in California despite steps taken to reduce emissions from plating operations. One known source of emission of Cr(VI) is welding, especially with high Cr-content materials, such as stainless steels. An experimental effort was undertaken to expand and update Cr(VI) emission factors by conducting tests on four types of arc-welding operations: gas-metal arc welding (GMAW), shielded metal arc welding (SMAW), fluxcore arc welding, and pulsed GMAW. Standard American Welding Society hood results were compared with a total enclosure method that permitted isokinetic sampling for particle size-cut measurement, as well as total collection of the aerosol. The fraction of Cr(VI) emitted per unit mass of Cr electrode consumed was determined. Consistent with AP-42 data, initial results indicate that a significant fraction of the total Cr in the aerosol is in the +6 oxidation state. The fraction of Cr(VI) and total aerosol mass produced by the different arc welding methods varies with the type of welding process used. Self-shielded electrodes that do not use a shield gas, for example, SMAW, produce greater amounts of Cr(VI) per unit mass of electrode consumed. The formation of Cr(VI) from standard electrode wires used for welding mild steel was below the method detection limit after eliminating an artifact in the analytical method used.

  14. Effect of A-TIG Welding Process on the Weld Attributes of Type 304LN and 316LN Stainless Steels

    NASA Astrophysics Data System (ADS)

    Vasudevan, M.

    2017-02-01

    The specific activated flux has been developed for enhancing the penetration performance of TIG welding process for autogenous welding of type 304LN and 316LN stainless steels through systematic study. Initially single-component fluxes were used to study their effect on depth of penetration and tensile properties. Then multi-component activated flux was developed which was found to produce a significant increase in penetration of 10-12 mm in single-pass TIG welding of type 304LN and 316LN stainless steels. The significant improvement in penetration achieved using the activated flux developed in the present work has been attributed to the constriction of the arc and as well as reversal of Marangoni flow in the molten weld pool. The use of activated flux has been found to overcome the variable weld penetration observed in 316LN stainless steel with <50 ppm of sulfur. There was no degradation in the microstructure and mechanical properties of the A-TIG welds compared to that of the welds produced by conventional TIG welding on the contrary the transverse strength properties of the 304LN and 316LN stainless steel welds produced by A-TIG welding exceeded the minimum specified strength values of the base metals. Improvement in toughness values were observed in 316LN stainless steel produced by A-TIG welding due to refinement in the weld microstructure in the region close to the weld center. Thus, activated flux developed in the present work has greater potential for use during the TIG welding of structural components made of type 304LN and 316LN stainless steels.

  15. Effect of A-TIG Welding Process on the Weld Attributes of Type 304LN and 316LN Stainless Steels

    NASA Astrophysics Data System (ADS)

    Vasudevan, M.

    2017-03-01

    The specific activated flux has been developed for enhancing the penetration performance of TIG welding process for autogenous welding of type 304LN and 316LN stainless steels through systematic study. Initially single-component fluxes were used to study their effect on depth of penetration and tensile properties. Then multi-component activated flux was developed which was found to produce a significant increase in penetration of 10-12 mm in single-pass TIG welding of type 304LN and 316LN stainless steels. The significant improvement in penetration achieved using the activated flux developed in the present work has been attributed to the constriction of the arc and as well as reversal of Marangoni flow in the molten weld pool. The use of activated flux has been found to overcome the variable weld penetration observed in 316LN stainless steel with <50 ppm of sulfur. There was no degradation in the microstructure and mechanical properties of the A-TIG welds compared to that of the welds produced by conventional TIG welding on the contrary the transverse strength properties of the 304LN and 316LN stainless steel welds produced by A-TIG welding exceeded the minimum specified strength values of the base metals. Improvement in toughness values were observed in 316LN stainless steel produced by A-TIG welding due to refinement in the weld microstructure in the region close to the weld center. Thus, activated flux developed in the present work has greater potential for use during the TIG welding of structural components made of type 304LN and 316LN stainless steels.

  16. Friction plug welding

    NASA Technical Reports Server (NTRS)

    Takeshita, Riki (Inventor); Hibbard, Terry L. (Inventor)

    2001-01-01

    Friction plug welding (FPW) usage is advantageous for friction stir welding (FSW) hole close-outs and weld repairs in 2195 Al--Cu--Li fusion or friction stir welds. Current fusion welding methods of Al--Cu--Li have produced welds containing varied defects. These areas are found by non-destructive examination both after welding and after proof testing. Current techniques for repairing typically small (<0.25) defects weaken the weldment, rely heavily on welders' skill, and are costly. Friction plug welding repairs increase strength, ductility and resistance to cracking over initial weld quality, without requiring much time or operator skill. Friction plug welding while pulling the plug is advantageous because all hardware for performing the weld can be placed on one side of the workpiece.

  17. Optimization of Laser Keyhole Welding Strategies of Dissimilar Metals by FEM Simulation

    NASA Astrophysics Data System (ADS)

    Garcia Navas, Virginia; Leunda, Josu; Lambarri, Jon; Sanz, Carmen

    2015-07-01

    Laser keyhole welding of dissimilar metals has been simulated to study the effect of welding strategies (laser beam displacements and tilts) and combination of metals to be welded on final quality of the joints. Molten pool geometry and welding penetration have been studied but special attention has been paid to final joint material properties, such as microstructure/phases and hardness, and especially to the residual stress state because it greatly conditions the service life of laser-welded components. For a fixed strategy (laser beam perpendicular to the joint) austenitic to carbon steel laser welding leads to residual stresses at the joint area very similar to those obtained in austenitic to martensitic steel welding, but welding of steel to Inconel 718 results in steeper residual stress gradients and higher area at the joint with detrimental tensile stresses. Therefore, when the difference in thermo-mechanical properties of the metals to be welded is higher, the stress state generated is more detrimental for the service life of the component, and consequently more relevant is the optimization of welding strategy. In laser keyhole welding of austenitic to martensitic stainless steel and austenitic to carbon steel, the optimum welding strategy is displacing the laser beam 1 mm toward the austenitic steel. In the case of austenitic steel to Inconel welding, the optimum welding strategy consists in setting the heat source tilted 45 deg and moved 2 mm toward the austenitic steel.

  18. WELDING APPARATUS

    DOEpatents

    Correy, T.B.; DeWitt, D.E.; Nelson, I.V.

    1963-04-23

    This patent covers an arrangement for replacing air in a welding chamber with an inert gas. This operation usually is time-consuming because of the tendency of the inert gas to mix with the air being removed from the welding chamber. The chamber is open at the bottom and has at its top a cover and a porous plate a little below the cover. The inert gas is admitted to the chamber through two screened openings in the cover. On passing through the porous plate, the gas acts as a piston extending across the chamber and moving downwardly to expel the air through the lower open end of the chamber, with a minimum of mixing with the air being expelled. (AEC)

  19. WELDING PROCESS

    DOEpatents

    Zambrow, J.; Hausner, H.

    1957-09-24

    A method of joining metal parts for the preparation of relatively long, thin fuel element cores of uranium or alloys thereof for nuclear reactors is described. The process includes the steps of cleaning the surfaces to be jointed, placing the sunfaces together, and providing between and in contact with them, a layer of a compound in finely divided form that is decomposable to metal by heat. The fuel element members are then heated at the contact zone and maintained under pressure during the heating to decompose the compound to metal and sinter the members and reduced metal together producing a weld. The preferred class of decomposable compounds are the metal hydrides such as uranium hydride, which release hydrogen thus providing a reducing atmosphere in the vicinity of the welding operation.

  20. Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  1. Manganese in occupational arc welding fumes--aspects on physiochemical properties, with focus on solubility.

    PubMed

    Taube, Fabian

    2013-01-01

    Physicochemical properties, such as particle sizes, composition, and solubility of welding fumes are decisive for the bioaccessibility of manganese and thereby for the manganese cytotoxic and neurotoxic effects arising from various welding fumes. Because of the diverse results within the research on welding fume solubility, this article aims to review and discuss recent literature on physicochemical properties of gas metal arc welding, shielded metal arc welding, and flux-cored arc welding fumes, with focus on solubility properties. This article also presents a short introduction to the literature on arc welding techniques, health effects from manganese, and occupational exposure to manganese among welders.

  2. Toughness of 12%Cr ferritic/martensitic steel welds produced by non-arc welding processes

    SciTech Connect

    Ginn, B.J.; Gooch, T.G.

    1998-08-01

    Low carbon 12%Cr steels can offer reduced life cycle costs in many applications. The present work examined the behavior of commercial steels of varying composition when subject to low heat input welding by the electron beam (EB) process and to a forge cycle by linear friction welding (LFW). Charpy impact testing was carried out on the high temperature heat-affected zone (HAZ)/fusion boundary or weld interface, with metallographic examination. With EB welding, the ductile-brittle transition temperature (DBTT) was below 0 C (32 F) only for steel of low ferrite factor giving a fully martensitic weld area. Higher ferrite factor alloys showed predominantly ferritic transformed microstructures and a transition well above room temperature. Grain coarsening was found even with low EB process power, the peak grain size increasing with both heat input and steel ferrite factor. Use of LFW gave a fine weld area structure and DBTTs around 0 C even in high ferrite factor (FF) material.

  3. Field comparison of three inhalable samplers (IOM, PGP-GSP 3.5 and Button) for welding fumes.

    PubMed

    Zugasti, Agurtzane; Montes, Natividad; Rojo, José M; Quintana, M José

    2012-02-01

    Inhalable sampler efficiency depends on the aerodynamic size of the airborne particles to be sampled and the wind speed. The aim of this study was to compare the behaviour of three personal inhalable samplers for welding fumes generated by Manual Metal Arc (MMA) and Metal Active Gas (MAG) processes. The selected samplers were the ones available in Spain when the study began: IOM, PGP-GSP 3.5 (GSP) and Button. Sampling was carried out in a welding training center that provided a homogeneous workplace environment. The static sampling assembly used allowed the placement of 12 samplers and 2 cascade impactors simultaneously. 183 samples were collected throughout 2009 and 2010. The range of welding fumes' mass concentrations was from 2 mg m(-3) to 5 mg m(-3). The pooled variation coefficients for the three inhalable samplers were less than or equal to 3.0%. Welding particle size distribution was characterized by a bimodal log-normal distribution, with MMADs of 0.7 μm and 8.2 μm. For these welding aerosols, the Button and the GSP samplers showed a similar performance (P = 0.598). The mean mass concentration ratio was 1.00 ± 0.01. The IOM sampler showed a different performance (P < 0.001). The mean mass concentration ratios were 0.90 ± 0.01 for Button/IOM and 0.92 ± 0.02 for GSP/IOM. This information is useful to consider the measurements accomplished by the IOM, GSP or Button samplers together, in order to assess the exposure at workplaces over time or to study exposure levels in a specific industrial activity, as welding operations.

  4. An Assessment of Molten Metal Detachment Hazards for Electron Beam Welding in the Space Environment: Analysis and Test Results

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Russell, C.; Bhat, B.; Fragomeni, J. M.

    1998-01-01

    Conditions under which molten metal detachments might occur in a space welding environment are analyzed. A weld pool detachment parameter specifying conditions for pool detachment by impact is derived and corroborated by experimental evidence. Impact detachment for the pool is unlikely. Impact detachment for a drop of metal on the end of the weld wire may be possible under extreme conditions. Other potential causes of molten metal detachment considered, vaporization pressure forces and wire flickout from the pool, did not appear to present significant detachment threats.

  5. Modeling of plasma and thermo-fluid transport in hybrid welding

    NASA Astrophysics Data System (ADS)

    Ribic, Brandon D.

    Hybrid welding combines a laser beam and electrical arc in order to join metals within a single pass at welding speeds on the order of 1 m min -1. Neither autonomous laser nor arc welding can achieve the weld geometry obtained from hybrid welding for the same process parameters. Depending upon the process parameters, hybrid weld depth and width can each be on the order of 5 mm. The ability to produce a wide weld bead increases gap tolerance for square joints which can reduce machining costs and joint fitting difficulty. The weld geometry and fast welding speed of hybrid welding make it a good choice for application in ship, pipeline, and aerospace welding. Heat transfer and fluid flow influence weld metal mixing, cooling rates, and weld bead geometry. Cooling rate affects weld microstructure and subsequent weld mechanical properties. Fluid flow and heat transfer in the liquid weld pool are affected by laser and arc energy absorption. The laser and arc generate plasmas which can influence arc and laser energy absorption. Metal vapors introduced from the keyhole, a vapor filled cavity formed near the laser focal point, influence arc plasma light emission and energy absorption. However, hybrid welding plasma properties near the opening of the keyhole are not known nor is the influence of arc power and heat source separation understood. A sound understanding of these processes is important to consistently achieving sound weldments. By varying process parameters during welding, it is possible to better understand their influence on temperature profiles, weld metal mixing, cooling rates, and plasma properties. The current literature has shown that important process parameters for hybrid welding include: arc power, laser power, and heat source separation distance. However, their influence on weld temperatures, fluid flow, cooling rates, and plasma properties are not well understood. Modeling has shown to be a successful means of better understanding the influence of

  6. Autonomous Mobile Robot System for Monitoring and Control of Penetration during Fixed Pipes Welding

    NASA Astrophysics Data System (ADS)

    Muramatsu, Masahiro; Suga, Yasuo; Mori, Kazuhiro

    In order to obtain sound welded joints in the welding of horizontal fixed pipes, it is important to control the back bead width in the first pass. However, it is difficult to obtain optimum back bead width, because the proper welding conditions change with welding position. In this paper, in order to fully automatize the welding of fixed pipes, a new method is developed to control the back bead width with monitoring the shape and dimensions of the molten pool from the reverse side by autonomous mobile robot system. This robot has spherical shape so as to move in a complex route including curved pipe, elbow joint and so on. It has also a camera to observe inner surface of pipe and recognize a route in which the robot moves. The robot moves to welding point in the pipe, and monitors the reverse side shape of molten pool during welding. The host computer processes the images of molten pool acquired by the robot vision system, and calculates the optimum welding conditions to realize adaptive control of welding. As a result of the welding control experiments, the effectiveness of this system for the penetration control of fixed pipes is demonstrated.

  7. Weld-Bead Shaver

    NASA Technical Reports Server (NTRS)

    Guirguis, Kamal; Price, Daniel S.

    1990-01-01

    Hand-held power tool shaves excess metal from inside circumference of welded duct. Removes excess metal deposited by penetration of tungsten/inert-gas weld or by spatter from electron-beam weld. Produces smooth transition across joint. Easier to use and not prone to overshaving. Also cuts faster, removing 35 in. (89 cm) of weld bead per hour.

  8. Introduction to Welding.

    ERIC Educational Resources Information Center

    Fortney, Clarence; Gregory, Mike

    This curriculum guide provides six units of instruction on basic welding. Addressed in the individual units of instruction are the following topics: employment opportunities for welders, welding safety and first aid, welding tools and equipment, basic metals and metallurgy, basic math and measuring, and procedures for applying for a welding job.…

  9. Automated Spot Weld Inspection using Infrared Thermography

    SciTech Connect

    Chen, Jian; Zhang, Wei; Yu, Zhenzhen; Feng, Zhili

    2012-01-01

    An automated non-contact and non-destructive resistance spot weld inspection system based on infrared (IR) thermography was developed for post-weld applications. During inspection, a weld coupon was heated up by an auxiliary induction heating device from one side of the weld, while the resulting thermal waves on the other side were observed by an IR camera. The IR images were analyzed to extract a thermal signature based on normalized heating time, which was then quantitatively correlated to the spot weld nugget size. The use of normalized instead of absolute IR intensity was found to be useful in minimizing the sensitivity to the unknown surface conditions and environment interference. Application of the IR-based inspection system to different advanced high strength steels, thickness gauges and coatings were discussed.

  10. Modeling of thermal stresses in welds

    SciTech Connect

    Zacharia, T.; Aramayo, G.A.

    1993-12-31

    The transient stress distribution in a Sigmajig test specimen resulting from mechanical and thermal loading was calculated for a Type 316 stainless steel specimen using finite element analysis. The study attempted to resolve the relationship between the dynamic stress distribution, particularly near the trailing edge of the pool, and the observed cracking behavior in the test specimen. The initiation and propagation of the crack during welding was visually monitored using a stroboscopic vision system. The numerical results were used to understand the initiation and propagation of hot-cracks during controlled welding of a specimen subjected to external restraint.

  11. Advanced Welding Applications

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  12. Development of models for welding applications

    SciTech Connect

    Roper, J.R.; Hayer, L.K.

    1990-01-01

    The modeling of welding processes offers considerable potential for help with manufacturing problems but a complete definition of any welding process offers many challenges. However, the modular structure of MARC, and the diverse range of capabilities offered, create a good opportunity for development in this area. This paper discusses these problems and describes techniques used to overcome some of them. Models have been developed to simulate gas tungsten arc (GTA) and electron beam (EB) welding with a moving heat source. Fortran routines for subroutines FLUX and FORCDT have been written to generate a moving heat source. Sequential element activation has permitted the simulation of GTA welding with cold wire feed (CWF), as in filling of a machined weld groove. A program which generates History Definition blocks necessary for this type of welding model is also described in this paper. Semi-infinite heat transfer elements were used to get accurate temperature histories while keeping the size of the model manageable. Time-temperature histories and isothermal contours compare well with experimental measurements, although many areas for improvement and refinement remain. Results have been used to anticipate the necessity for weld parameter changes after part redesign, and the electron beam model relates closely to situations in which information is needed for the minimization of peak temperatures on the underside of the welded part. 8 refs., 11 figs.

  13. The dynamics of droplet formation and detachment in gas metal arc welding

    SciTech Connect

    Johnson, J.A.; Smartt, H.B.; Clark, D.E.; Carlson, N.M.; Watkins, A.D.; Lethcoe, B.J.

    1990-01-01

    Experimental measurements of gas metal arc welding are required for the development and confirmation of models of the process. This paper reports on two experiments that provide information for models of the arc physics and of the weld pool dynamics. The heat transfer efficiency of the spray transfer mode in gas metal arc welding was measured using a calorimetry technique. The efficiency varied from 75 to 85%. A special fixture was used to measure the droplet contribution, which is determined to be between 35 and 45% of the total input energy. A series of experiments was performed at a variety of conditions ranging from globular to spray to streaming transfer. The transfer was observed by taking high-speed movies at 500 to 5000 frames per second of the backlighted droplets. An automatic image analysis system was used to obtain information about the droplets including time between detachments, droplet size, and droplet acceleration. At the boundary between the globular and spray modes, the droplet size varies between small droplets that melt off faster than average, resulting in a smaller electrode extension, and large droplets that melt off slower than average, resulting in an increase in the electrode extension. 5 refs., 4 figs., 2 tabs.

  14. Understanding heat and fluid flow in linear GTA welds

    SciTech Connect

    Zacharia, T.; David, S.A.; Vitek, J.M.

    1992-12-31

    A transient heat flow and fluid flow model was used to predict the development of gas tungsten arc (GTA) weld pools in 1.5 mm thick AISI 304 SS. The welding parameters were chosen so as to correspond to an earlier experimental study which produced high-resolution surface temperature maps. The motivation of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate good agreement.

  15. Understanding heat and fluid flow in linear GTA welds

    SciTech Connect

    Zacharia, T.; David, S.A.; Vitek, J.M.

    1992-01-01

    A transient heat flow and fluid flow model was used to predict the development of gas tungsten arc (GTA) weld pools in 1.5 mm thick AISI 304 SS. The welding parameters were chosen so as to correspond to an earlier experimental study which produced high-resolution surface temperature maps. The motivation of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate good agreement.

  16. High-Speed Friction-Stir Welding to Enable Aluminum Tailor-Welded Blanks

    NASA Astrophysics Data System (ADS)

    Hovanski, Yuri; Upadhyay, Piyush; Carsley, John; Luzanski, Tom; Carlson, Blair; Eisenmenger, Mark; Soulami, Ayoub; Marshall, Dustin; Landino, Brandon; Hartfield-Wunsch, Susan

    2015-05-01

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and they have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high volumes. While friction-stir welding (FSW) has been traditionally applied at linear velocities less than 1 m/min, high-volume production applications demand the process be extended to higher velocities more amenable to cost-sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low-to-moderate welding velocities do not directly translate to high-speed linear FSW. Therefore, to facilitate production of high-volume aluminum FSW components, parameters were developed with a minimum welding velocity of 3 m/min. With an emphasis on weld quality, welded blanks were evaluated for postweld formability using a combination of numerical and experimental methods. An evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum TWBs, which provided validation of the numerical and experimental analysis of laboratory-scale tests.

  17. Laser beam welding of 5182 aluminum alloys sheet.

    SciTech Connect

    Leong, K. H.; Sabo, K. R.; Altshuller, B.; Wilkinson, T. L.; Albright, C. E.; Technology Development; Alcan International Limited; Reynolds Metals Co.; Ohio State Univ.

    1999-06-01

    Conditions were determined for consistent coupling of a CO{sub 2} laser beam to weld 5182 aluminum alloy sheet. Full penetration butt and bead-on-plate welds on 0.8 and 1.8 mm sheets were performed. Process conditions examined included beam mode, spot size and irradiance, shielding gas flow, and edge quality and fitup. The observed weld quality variations with the different process parameters were consistent with physical phenomena and a threshold irradiance model. Optimal conditions were determined for obtaining consistent welds on 5182 alloy sheets. Formability and tensile tests were performed on the welded samples. All test failures occurred in the fusion zone. Reduction in formability and tensile strength of the welded samples are discussed with respect to weld profiles and process parameters.

  18. Television Monitoring System for Welding

    NASA Technical Reports Server (NTRS)

    Vallow, K.; Gordon, S.

    1986-01-01

    Welding process in visually inaccessible spots viewed and recorded. Television system enables monitoring of welding in visually inaccessible locations. System assists welding operations and provide video record, used for weld analysis and welder training.

  19. Demographic consequences of terrestrial habitat loss for pool-breeding amphibians: predicting extinction risks associated with inadequate size of buffer zones.

    PubMed

    Harper, Elizabeth B; Rittenhouse, Tracy A G; Semlitsch, Raymond D

    2008-10-01

    Much of the biodiversity associated with isolated wetlands requires aquatic and terrestrial habitat to maintain viable populations. Current federal wetland regulations in the United States do not protect isolated wetlands or extend protection to surrounding terrestrial habitat. Consequently, some land managers, city planners, and policy makers at the state and local levels are making an effort to protect these wetland and neighboring upland habitats. Balancing human land-use and habitat conservation is challenging, and well-informed land-use policy is hindered by a lack of knowledge of the specific risks of varying amounts of habitat loss. Using projections of wood frog (Rana sylvatica) and spotted salamander (Ambystoma maculatum) populations, we related the amount of high-quality terrestrial habitat surrounding isolated wetlands to the decline and risk of extinction of local amphibian populations. These simulations showed that current state-level wetland regulations protecting 30 m or less of surrounding terrestrial habitat are inadequate to support viable populations of pool-breeding amphibians. We also found that species with different life-history strategies responded differently to the loss and degradation of terrestrial habitat. The wood frog, with a short life span and high fecundity, was most sensitive to habitat loss and isolation, whereas the longer-lived spotted salamander with lower fecundity was most sensitive to habitat degradation that lowered adult survival rates. Our model results demonstrate that a high probability of local amphibian population persistence requires sufficient terrestrial habitat, the maintenance of habitat quality, and connectivity among local populations. Our results emphasize the essential role of adequate terrestrial habitat to the maintenance of wetland biodiversity and ecosystem function and offer a means of quantifying the risks associated with terrestrial habitat loss and degradation.

  20. Welded solar cell interconnection

    NASA Technical Reports Server (NTRS)

    Stofel, E. J.; Browne, E. R.; Meese, R. A.; Vendura, G. J.

    1982-01-01

    The efficiency of the welding of solar-cell interconnects is compared with the efficiency of soldering such interconnects, and the cases in which welding may be superior are examined. Emphasis is placed on ultrasonic welding; attention is given to the solar-cell welding machine, the application of the welding process to different solar-cell configurations, producibility, and long-life performance of welded interconnects. Much of the present work has been directed toward providing increased confidence in the reliability of welding using conditions approximating those that would occur with large-scale array production. It is concluded that there is as yet insufficient data to determine which of three methods (soldering, parallel gap welding, and ultrasonic welding) provides the longest-duration solar panel life.

  1. Laser weld jig

    DOEpatents

    Van Blarigan, Peter; Haupt, David L.

    1982-01-01

    A system is provided for welding a workpiece (10, FIG. 1) along a predetermined weld line (12) that may be of irregular shape, which includes the step of forming a lip (32) on the workpiece to extend parallel to the weld line, and moving the workpiece by engaging the lip between a pair of rotatable members (34, 36). Rotation of one of the members at a constant speed, causes the workpiece to move so that all points on the weld line sequentially pass a fixed point in space (17) at a constant speed, so that a laser welding beam can be directed at that fixed point to form a weld along the weld line. The workpiece can include a reuseable jig (24) forming the lip, and with the jig constructed to detachably hold parts (22, 20) to be welded at a position wherein the weld line of the parts extends parallel to the lip on the jig.

  2. Monitoring Both Sides Of A Weld In Progress

    NASA Technical Reports Server (NTRS)

    Dickinson, C. B.; Hunt, J. B.

    1990-01-01

    Proposed remote vision system provides simultaneous viewing of front and back of workpiece while being welded. Enables human or automatic controller to monitor both weld pool on front and weld penetration on back. Nitrogen laser generates ultraviolet light, distributed to both sides of workpiece through two optical fiber cables. Image-intensifier tubes convert reflected ultraviolet light to visible light. Video cameras equipped with high-resolution charge-coupled devices convert visible outputs of image intensifiers into images for viewing on video monitors.

  3. Welding Phenomenon and Removal Mechanism of Aluminum-Oxide Films by Space GHTA Welding Process in Vacuum

    NASA Astrophysics Data System (ADS)

    Suita, Yoshikazu; Ekuni, Tomohide; Kamei, Misa; Tsukuda, Yoshiyuki; Terajima, Noboru; Yamashita, Masahiro; Imagawa, Kichiro; Masubuchi, Koichi

    Aluminum alloys have been widely used in constructing various space structures including the ISS (International Space Station) and launch vehicles. In order to apply the welding technology in space, welding experiments on aluminum alloy were performed using by the GHTA (Gas Hollow Tungsten Arc) welding processes using an inverter controlled DC/AC GTA welding machine in vacuum. We observed the removal mechanism of aluminum-oxide films on molten metal in detail during the welding using a high-speed video camera. As a result, it is clarified that the impact arc pressure produced by pulsed current mechanically crushes and removes aluminum-oxide films on the molten pool. This removal mechanism of aluminum-oxide films is completely different from a removal mechanism by cleaning action.

  4. Damage Tolerance Behavior of Friction Stir Welds in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of various aerospace structures. Self-reacting and conventional friction stir welding are variations of the friction stir weld process employed in the fabrication of cryogenic propellant tanks which are classified as pressurized structure in many spaceflight vehicle architectures. In order to address damage tolerance behavior associated with friction stir welds in these safety critical structures, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data describing fracture behavior, residual strength capability, and cyclic mission life capability of friction stir welds at ambient and cryogenic temperatures have been generated and will be presented in this paper. Fracture behavior will include fracture toughness and tearing (R-curve) response of the friction stir welds. Residual strength behavior will include an evaluation of the effects of lack of penetration on conventional friction stir welds, the effects of internal defects (wormholes) on self-reacting friction stir welds, and an evaluation of the effects of fatigue cycled surface cracks on both conventional and selfreacting welds. Cyclic mission life capability will demonstrate the effects of surface crack defects on service load cycle capability. The fracture data will be used to evaluate nondestructive inspection and proof test requirements for the welds.

  5. Intelligent Welding Controller

    NASA Technical Reports Server (NTRS)

    Cook, George E.; Kumar, Ramaswamy; Prasad, Tanuji; Andersen, Kristinn; Barnett, Robert J.

    1989-01-01

    Control system adapts to changing design requirements and operating conditions. Proposed control system for gas/tungsten arc welding requires only that operator specifies such direct parameters of welds as widths and depths of penetration. In control system for robotic welder, components and functions intimately connected with welding process assigned to controller domain. More general functions assigned to supervisor domain. Initial estimate of indirect parameters of welding process applied to system only at beginning of weld (t=0); after start of welding, outputs from multivariable controller takes place of estimate.

  6. Fusion welding process

    DOEpatents

    Thomas, Kenneth C.; Jones, Eric D.; McBride, Marvin A.

    1983-01-01

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  7. Low-temperature friction-stir welding of 2024 aluminum

    SciTech Connect

    Benavides, S.; Li, Y.; Murr, L.E.; Brown, D.; McClure, J.C.

    1999-09-10

    Solid-state, friction-stir welding (FSW) has been demonstrated to involve dynamic recrystallization producing ultra-fine, equiaxed grain structures to facilitate superplastic deformation as the welding or joining mechanism. Since the recrystallization temperature also decreases with increasing strain rate, the FSW process is somewhat complicated because the ambient temperature, the frictional heating fraction, and the adiabatic heating fraction (proportional to the product of strain and strain-rate) will all influence both the recrystallization and grain growth within the FSW zone. Significantly reducing the ambient temperature of the base metal or work pieces to be welded would be expected to reduce the residual weld-zone grain size. The practical consequences of this temperature reduction would be the achievement of low-temperature welding. This study compares the residual grain sizes and microstructures in 2024 Al friction-stir welded at room temperature ({approximately} 30 C) and low temperature ({minus} 30 C).

  8. A CO2 Laser Weld Shape-Predicting Neural Network

    SciTech Connect

    Fuerschbach, P.W.; Knorovsky, G.A.

    1998-10-05

    We describe two artificial neural networks (ANN) which predict CO2 partial penetration laser welds on grade 304 stainless steel. Given the laser irradiance and travel speed, one ANN (direct) predicts the resulting weld's depth, width, overall shape, energy transfer efficiency, melting efficiency and porosity likelihood in the weld fusion zone. Given the weld size and shape, the second ANN (inverse) predicts the irradiance and travel speed necessary to provide such a weld. The ANNs used 3 nodal layers and perception-type neurons. For the first ANN, with 2 inputs and 17 outputs (12 for shape, and 5 for size, efficiencies and porosity predictions), 12 to 17 intermediate layer neurons were necessary, while for the second, with 14 inputs and 2 outputs, 25 were necessary. Besides their description, data interpretation and weld schedule development via the ANNs will be shown.

  9. Identification of the Quality Spot Welding used Non Destructive Test-Ultrasonic Testing: (Effect of Welding Time)

    NASA Astrophysics Data System (ADS)

    Sifa, A.; Endramawan, T.; Badruzzaman

    2017-03-01

    Resistance Spot Welding (RSW) is frequently used as one way of welding is used in the manufacturing process, especially in the automotive industry [4][5][6][7]. Several parameters influence the process of welding points. To determine the quality of a welding job needs to be tested, either by damaging or testing without damage, in this study conducted experimental testing the quality of welding or identify quality of the nugget by using Non-Destructive Test (NDT) –Ultrasonic Testing (UT), in which the identification of the quality of the welding is done with parameter thickness of worksheet after welding using NDT-UT with use same material worksheet and have more thickness of worksheet, the thickness of the worksheet single plate 1mm, with the capability of propagation Ultrasonic Testing (UT) standard limited> 3 mm [1], welding process parameters such as the time difference between 1-10s and the welding current of 8 KV, visually Heat Affected Zone ( HAZ ) have different results due to the length of time of welding. UT uses a probe that is used with a frequency of 4 MHz, diameter 10 mm, range 100 and the couplant used is oil. Identification techniques using drop 6dB, with sound velocity 2267 m / s of Fe, with the result that the effect of the Welding time affect the size of the HAZ, identification with the lowest time 1s show results capable identified joined through NDT - UT.

  10. ECS DAAC Data Pools

    NASA Astrophysics Data System (ADS)

    Kiebuzinski, A. B.; Bories, C. M.; Kalluri, S.

    2002-12-01

    As part of its Earth Observing System (EOS), NASA supports operations for several satellites including Landsat 7, Terra, and Aqua. ECS (EOSDIS Core System) is a vast archival and distribution system and includes several Distributed Active Archive Centers (DAACs) located around the United States. EOSDIS reached a milestone in February when its data holdings exceeded one petabyte (1,000 terabytes) in size. It has been operational since 1999 and originally was intended to serve a large community of Earth Science researchers studying global climate change. The Synergy Program was initiated in 2000 with the purpose of exploring and expanding the use of remote sensing data beyond the traditional research community to the applications community including natural resource managers, disaster/emergency managers, urban planners and others. This included facilitating data access at the DAACs to enable non-researchers to exploit the data for their specific applications. The combined volume of data archived daily across the DAACs is of the order of three terabytes. These archived data are made available to the research community and to general users of ECS data. Currently, the average data volume distributed daily is two terabytes, which combined with an ever-increasing need for timely access to these data, taxes the ECS processing and archival resources for more real-time use than was previously intended for research purposes. As a result, the delivery of data sets to users was being delayed in many cases, to unacceptable limits. Raytheon, under the auspices of the Synergy Program, investigated methods at making data more accessible at a lower cost of resources (processing and archival) at the DAACs. Large on-line caches (as big as 70 Terabytes) of data were determined to be a solution that would allow users who require contemporary data to access them without having to pull it from the archive. These on-line caches are referred to as "Data Pools." In the Data Pool concept

  11. Damage Tolerance Assessment of Friction Pull Plug Welds in an Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of cryogenic propellant tanks. Self-reacting friction stir welding is one variation of the friction stir weld process being developed for manufacturing tanks. Friction pull plug welding is used to seal the exit hole that remains in a circumferential self-reacting friction stir weld. A friction plug weld placed in a self-reacting friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data relating residual strength capability to flaw size in an aluminum alloy friction plug weld will be presented.

  12. Effect of Multipass TIG and Activated TIG Welding Process on the Thermo-Mechanical Behavior of 316LN Stainless Steel Weld Joints

    NASA Astrophysics Data System (ADS)

    Ganesh, K. C.; Balasubramanian, K. R.; Vasudevan, M.; Vasantharaja, P.; Chandrasekhar, N.

    2016-04-01

    The primary objective of this work was to develop a finite element model to predict the thermo-mechanical behavior of an activated tungsten inert gas (ATIG)-welded joint. The ATIG-welded joint was fabricated using 10 mm thickness of 316LN stainless steel plates in a single pass. To distinguish the merits of ATIG welding process, it was compared with manual multipass tungsten inert gas (MPTIG)-welded joint. The ATIG-welded joint was fabricated with square butt edge configuration using an activating flux developed in-house. The MPTIG-welded joint was fabricated in thirteen passes with V-groove edge configuration. The finite element model was developed to predict the transient temperature, residual stress, and distortion of the welded joints. Also, microhardness, impact toughness, tensile strength, ferrite measurement, and microstructure were characterized. Since most of the recent publications of ATIG-welded joint was focused on the molten weld pool dynamics, this research work gives an insight on the thermo-mechanical behavior of ATIG-welded joint over MPTIG-welded joint.

  13. Daily consumption of orange-fleshed sweet potato for 60 days increased plasma β-carotene concentration but did not increase total body vitamin A pool size in Bangladeshi women.

    PubMed

    Jamil, Kazi M; Brown, Kenneth H; Jamil, Maleka; Peerson, Janet M; Keenan, Alison H; Newman, John W; Haskell, Marjorie J

    2012-10-01

    We assessed the effect of daily consumption of orange-fleshed sweet potatoes (OFSP), with or without added fat, on the vitamin A (VA) status of Bangladeshi women with low initial VA status. Women (n = 30/group) received one of the following for 6 d/wk over 10 wk: 1) 0 μg retinol activity equivalents (RAE)/d as boiled white-fleshed sweet potatoes (WFSP) and a corn oil capsule, 2) 600 μg RAE/d as boiled OFSP and a corn oil capsule, 3) fried OFSP and a corn oil capsule, or 4) boiled WFSP and a retinyl palmitate capsule in addition to their home diets. Plasma concentrations of retinol and β-carotene and total body VA pool size were assessed before and after the 60-d intervention. Initial and final plasma retinol concentrations (mean ± SD) were 0.75 ± 0.18 μmol/L and 0.84 ± 0.19 μmol/L, respectively (P = 0.31); final means did not differ by group. Initial and final plasma β-carotene concentrations were 0.10 ± 00 μmol/L and 0.18 ± 0.09 μmol/L, respectively (P < 0.0001); final mean plasma β-carotene concentrations were higher in groups that received OFSP (P < 0.0001), and final mean plasma β-carotene was marginally higher in the group that received fried OFSP compared with boiled OFSP (P = 0.07). Initial and final total body VA pool sizes were 0.060 ± 0.047 mmol and 0.091 ± 0.070 mmol, respectively (P = 0.05, n = 110) and did not differ by group. Despite an increase in plasma β-carotene concentration, the impact of OFSP on VA status appears to be limited in Bangladeshi women residing in a resource-poor community.

  14. Welding in airplane construction

    NASA Technical Reports Server (NTRS)

    Rechtlich, A; Schrenk, M

    1928-01-01

    The present article attempts to explain the principles for the production of a perfect weld and to throw light on the unexplained problems. Moreover, it is intended to elucidate the possibilities of testing the strength and reliability of welded parts.

  15. Radiographic detection of defects in friction stir welding on aluminum alloy AMg5M

    SciTech Connect

    Tarasov, Sergei Yu. Kolubaev, Evgeny A.; Rubtsov, Valery E.

    2014-11-14

    In order to reveal weld defects specific to friction stir welding we undertook radiographic inspection of AMg5M aluminum alloy welded joints. Weld defects in the form of voids have been revealed in the weld obtained under the non-optimal rotation and feed rate. Both shape and size of these defects have been confirmed by examining metallographically successive sections prepared in the weld plane as well as in the plane transversal to the tool feed direction. Linear defects have been also found in the sections that are not seen in the radiographic images. Both the preferable localization and origination of the defects have been analyzed.

  16. Hemangioma of the tongue demonstrating a perfusion blood pool mismatch

    SciTech Connect

    Front, D.; Groshar, D.; Israel, O.; Robinson, E.

    1986-02-01

    Perfusion blood pool mismatch using Tc-99m labeled red blood cells (RBCs) in a hemangioma of the tongue is described. The method is useful in the evaluation of size of the residual blood pool after irradiation of the tumor.

  17. Thermocapillary and arc phenomena in stainless steel welding

    SciTech Connect

    Pierce, S.W.; Olson, D.L.; Burgardt, P.

    1999-02-01

    This investigation characterized the effects of power level and Gaussian heat source size on thermocapillary-induced weld shape and estimated the relative influence of various possible arc phenomena in determining weld shape. Welds made with the CTAW process were compared with similar ones made with a conduction-mode EBW process and the differences were related to arc effects. Evidence of thermocapillary flow was readily apparent in both the GTA welds and the conduction-mode EB welds and was qualitatively similar in both. The similarity between the results obtained with the two processes serves to demonstrate that thermocapillary convection is the dominant factor in heat-to-heat weld shape variability. However, a similar one-to-one correspondence between welds produced with the two processes does not exist. Especially at high power, the EB welds showed stronger thermocapillary convection than the GTA welds. One important arc factor that limits thermocapillary flow in ar welds appears to be an increase in arc size with arc length and arc current. A non-Gaussian arc power distribution in GTAW seems to be most important in limiting the fluid flow. Apparently, the arc power distribution is more nearly rectangular in shape for an argon gas arc. At higher currents, above 200 A, plasma shear force may also be an important contributor to weld shape development. The conduction-mode EB welds demonstrate that thermocapillary flow reversal probably does not occur in welds made with a simple Gaussian heat source. The complex shape behavior is likely a result of an arc effect such as plasma shear.

  18. Low Gravity Improves Welds

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kaukler, William F.; Plaster, Teresa C.

    1993-01-01

    Hardnesses and tensile strengths greater. Welds made under right conditions in low gravity appear superior to those made under high gravity. Conclusion drawn from results of welding experiments conducted during low- and high-gravity-simulating maneuvers of KC-135 airplane. Results have implications not only for welding in outer space but also for repeated rapid welding on Earth or in airplanes under simulated low gravity to obtain unusually strong joints.

  19. Microhardness Testing of Aluminum Alloy Welds

    NASA Technical Reports Server (NTRS)

    Bohanon, Catherine

    2009-01-01

    A weld is made when two pieces of metal are united or fused together using heat or pressure, and sometimes both. There are several different types of welds, each having their own unique properties and microstructure. Strength is a property normally used in deciding which kind of weld is suitable for a certain metal or joint. Depending on the weld process used and the heat required for that process, the weld and the heat-affected zone undergo microstructural changes resulting in stronger or weaker areas. The heat-affected zone (HAZ) is the region that has experienced enough heat to cause solid-state microstructural changes, but not enough to melt the material. This area is located between the parent material and the weld, with the grain structure growing as it progresses respectively. The optimal weld would have a short HAZ and a small fluctuation in strength from parent metal to weld. To determine the strength of the weld and decide whether it is suitable for the specific joint certain properties are looked at, among these are ultimate tensile strength, 0.2% offset yield strength and hardness. Ultimate tensile strength gives the maximum load the metal can stand while the offset yield strength gives the amount of stress the metal can take before it is 0.2% longer than it was originally. Both of these are good tests, but they both require breaking or deforming the sample in some way. Hardness testing, however, provides an objective evaluation of weld strengths, and also the difference or variation in strength across the weld and HAZ which is difficult to do with tensile testing. Hardness is the resistance to permanent or plastic deformation and can be taken at any desired point on the specimen. With hardness testing, it is possible to test from parent metal to weld and see the difference in strength as you progress from parent material to weld. Hardness around grain boundaries and flaws in the material will show how these affect the strength of the metal while still

  20. Effect of Pre- and Post-weld Heat Treatments on Linear Friction Welded Ti-5553

    NASA Astrophysics Data System (ADS)

    Wanjara, Priti; Dalgaard, Elvi; Gholipour, Javad; Cao, Xinjin; Cuddy, Jonathan; Jonas, John J.

    2014-10-01

    Linear friction welding allows solid-state joining of near-beta ( β) titanium alloy Ti-5553 (Ti-5Al-5V-5Mo-3Cr). In the as-welded condition, the weld zone (WZ) exhibits β grain refinement and marked softening as compared with Ti-5553 in the solution heat treated and aged condition. The softening of the weldment is attributed to the depletion of the strengthening alpha ( α) phase in the WZ and the adjacent thermo-mechanically affected zone (TMAZ). Specifically, in near- β titanium alloys, the strength of the material mainly depends on the shape, size, distribution, and fraction of the primary α and other decomposition products of the β phase. Hence, a combination of pre- and post-weld heat treatments were applied to determine the conditions that allow mitigating the α phase depletion in the WZ and TMAZ of the welds. The mechanical response of the welded samples to the heat treatments was determined by performing microhardness measurements and tensile testing at room temperature with an automated 3D deformation measurement system. It was found that though the joint efficiency in the as-welded condition was high (96 pct), strain localization and failure occurred in the TMAZ. The application of post-weld solution heat treatment with aging was effective in restoring α, increasing the joint efficiency (97 to 99 pct) and inducing strain localization and failure in the parent material region.

  1. Hardness, Microstructure, and Residual Stresses in Low Carbon Steel Welding with Post-weld Heat Treatment and Temper Bead Welding

    NASA Astrophysics Data System (ADS)

    Aloraier, Abdulkareem S.; Joshi, Suraj; Price, John W. H.; Alawadhi, Khaled

    2014-04-01

    This paper investigates the effects of post-weld heat treatment (PWHT) and temper bead welding (TBW) on hardness, microstructure and residual stresses in multi-layer welding on low carbon steel specimens made with two different weld geometries, viz. (1) smooth-contoured and (2) U-shaped. It was found that the PWHT technique gave overall lower hardness than the TBW technique, but the hardness values in both techniques were acceptable. Microscopy analysis showed that the TBW technique was more effective in tempering the heat affected zone as the grain size decreased slightly at the fusion line in spite of the higher temperature at the fusion line. Residual stresses measured using the hole-drilling method showed that the residual stress is not reduced below yield stress near the last bead solidified in TBW. Only PWHT gives low residual stress results in this area. High tensile residual stresses may result in sensitivity to fatigue loading.

  2. Comparing Laser Welding Technologies with Friction Stir Welding for Production of Aluminum Tailor-Welded Blanks

    SciTech Connect

    Hovanski, Yuri; Carsley, John; Carlson, Blair; Hartfield-Wunsch, Susan; Pilli, Siva Prasad

    2014-01-15

    A comparison of welding techniques was performed to determine the most effective method for producing aluminum tailor-welded blanks for high volume automotive applications. Aluminum sheet was joined with an emphasis on post weld formability, surface quality and weld speed. Comparative results from several laser based welding techniques along with friction stir welding are presented. The results of this study demonstrate a quantitative comparison of weld methodologies in preparing tailor-welded aluminum stampings for high volume production in the automotive industry. Evaluation of nearly a dozen welding variations ultimately led to down selecting a single process based on post-weld quality and performance.

  3. Portable Weld Tester.

    ERIC Educational Resources Information Center

    Eckert, Douglas

    This training manual, which was developed for employees of an automotive plant, is designed to teach trainees to operate a portable weld tester (Miyachi MM-315). In chapter 1, the weld tester's components are illustrated and described, and the procedure for charging its batteries is explained. Chapter 2 illustrates the weld tester's parts,…

  4. Coil Welding Aid

    NASA Technical Reports Server (NTRS)

    Wiesenbach, W. T.; Clark, M. C.

    1983-01-01

    Positioner holds coil inside cylinder during tack welding. Welding aid spaces turns of coil inside cylinder and applies contact pressure while coil is tack-welded to cylinder. Device facilitates fabrication of heat exchangers and other structures by eliminating hand-positioning and clamping of individual coil turns.

  5. Variable polarity arc welding

    NASA Technical Reports Server (NTRS)

    Bayless, E. O., Jr.

    1991-01-01

    Technological advances generate within themselves dissatisfactions that lead to further advances in a process. A series of advances in welding technology which culminated in the Variable Polarity Plasma Arc (VPPA) Welding Process and an advance instituted to overcome the latest dissatisfactions with the process: automated VPPA welding are described briefly.

  6. Welding Course Curriculum.

    ERIC Educational Resources Information Center

    Genits, Joseph C.

    This guide is intended for use in helping students gain a fundamental background on the major aspects of the welding trade. The course emphasis is on mastery of the manipulative skills necessary to develop successful welding techniques and on acquisition of an understanding of the specialized tools and equipment used in welding. The first part…

  7. Instructional Guidelines. Welding.

    ERIC Educational Resources Information Center

    Fordyce, H. L.; Doshier, Dale

    Using the standards of the American Welding Society and the American Society of Mechanical Engineers, this welding instructional guidelines manual presents a course of study in accordance with the current practices in industry. Intended for use in welding programs now practiced within the Federal Prison System, the phases of the program are…

  8. Coarsening Behavior of the (Ti, Nb)(C, N) Complex Particle in a Microalloyed Steel Weld Heat-Affected Zone Considering the Critical Particle Size

    NASA Astrophysics Data System (ADS)

    Moon, Joonoh; Kim, Sanghoon; Lee, Jongbong; Lee, Changhee

    2007-11-01

    Our recent report revealed the effect of critical particle size on the particle coarsening behavior of the TiN particle. In the present work, the equation for critical particle size is extended by considering the change of particle volume fraction during the continuous thermal cycle. By considering the concept of modified critical particle size, coarsening of the (Ti, Nb)(C, N) complex particle is calculated, and the calculated results are in good agreement with experimental data.

  9. 49 CFR 178.56 - Specification 4AA480 welded steel cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 4AA480 welded steel cylinders. 178... FOR PACKAGINGS Specifications for Cylinders § 178.56 Specification 4AA480 welded steel cylinders. (a) Type, size, and service pressure. A DOT 4AA480 cylinder is a welded steel cylinder having a...

  10. 49 CFR 178.58 - Specification 4DA welded steel cylinders for aircraft use.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 4DA welded steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.58 Specification 4DA welded steel cylinders for aircraft use. (a) Type, size, and service pressure. A DOT 4DA is a welded steel sphere (two...

  11. 49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 4B welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.50 Specification 4B welded or brazed steel cylinders. (a) Type, size, and service pressure. A DOT 4B is a welded or brazed steel cylinder with...

  12. 49 CFR 178.56 - Specification 4AA480 welded steel cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 4AA480 welded steel cylinders. 178... FOR PACKAGINGS Specifications for Cylinders § 178.56 Specification 4AA480 welded steel cylinders. (a) Type, size, and service pressure. A DOT 4AA480 cylinder is a welded steel cylinder having a...

  13. 49 CFR 178.53 - Specification 4D welded steel cylinders for aircraft use.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 4D welded steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.53 Specification 4D welded steel cylinders for aircraft use. (a) Type, size, and service pressure. A DOT 4D cylinder is a welded steel sphere...

  14. 49 CFR 178.56 - Specification 4AA480 welded steel cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 4AA480 welded steel cylinders. 178... FOR PACKAGINGS Specifications for Cylinders § 178.56 Specification 4AA480 welded steel cylinders. (a) Type, size, and service pressure. A DOT 4AA480 cylinder is a welded steel cylinder having a...

  15. 49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 4B welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.50 Specification 4B welded or brazed steel cylinders. (a) Type, size, and service pressure. A DOT 4B is a welded or brazed steel cylinder with...

  16. 49 CFR 178.58 - Specification 4DA welded steel cylinders for aircraft use.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 4DA welded steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.58 Specification 4DA welded steel cylinders for aircraft use. (a) Type, size, and service pressure. A DOT 4DA is a welded steel sphere (two...

  17. 49 CFR 178.56 - Specification 4AA480 welded steel cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 4AA480 welded steel cylinders. 178... FOR PACKAGINGS Specifications for Cylinders § 178.56 Specification 4AA480 welded steel cylinders. (a) Type, size, and service pressure. A DOT 4AA480 cylinder is a welded steel cylinder having a...

  18. 49 CFR 178.58 - Specification 4DA welded steel cylinders for aircraft use.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 4DA welded steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.58 Specification 4DA welded steel cylinders for aircraft use. (a) Type, size, and service pressure. A DOT 4DA is a welded steel sphere (two...

  19. 49 CFR 178.53 - Specification 4D welded steel cylinders for aircraft use.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 4D welded steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.53 Specification 4D welded steel cylinders for aircraft use. (a) Type, size, and service pressure. A DOT 4D cylinder is a welded steel sphere...

  20. 49 CFR 178.58 - Specification 4DA welded steel cylinders for aircraft use.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 4DA welded steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.58 Specification 4DA welded steel cylinders for aircraft use. (a) Type, size, and service pressure. A DOT 4DA is a welded steel sphere (two...

  1. 49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 4B welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.50 Specification 4B welded or brazed steel cylinders. (a) Type, size, and service pressure. A DOT 4B is a welded or brazed steel cylinder with...

  2. 49 CFR 178.53 - Specification 4D welded steel cylinders for aircraft use.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 4D welded steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.53 Specification 4D welded steel cylinders for aircraft use. (a) Type, size, and service pressure. A DOT 4D cylinder is a welded steel sphere...

  3. 49 CFR 178.53 - Specification 4D welded steel cylinders for aircraft use.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 4D welded steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.53 Specification 4D welded steel cylinders for aircraft use. (a) Type, size, and service pressure. A DOT 4D cylinder is a welded steel sphere...

  4. 49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 4B welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.50 Specification 4B welded or brazed steel cylinders. (a) Type, size, and service pressure. A DOT 4B is a welded or brazed steel cylinder with...

  5. 49 CFR 178.68 - Specification 4E welded aluminum cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 4E welded aluminum cylinders. 178.68... PACKAGINGS Specifications for Cylinders § 178.68 Specification 4E welded aluminum cylinders. (a) Type, size and service pressure. A DOT 4E cylinder is a welded aluminum cylinder with a water capacity...

  6. 49 CFR 178.68 - Specification 4E welded aluminum cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 4E welded aluminum cylinders. 178.68... PACKAGINGS Specifications for Cylinders § 178.68 Specification 4E welded aluminum cylinders. (a) Type, size and service pressure. A DOT 4E cylinder is a welded aluminum cylinder with a water capacity...

  7. 49 CFR 178.68 - Specification 4E welded aluminum cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 4E welded aluminum cylinders. 178.68... PACKAGINGS Specifications for Cylinders § 178.68 Specification 4E welded aluminum cylinders. (a) Type, size and service pressure. A DOT 4E cylinder is a welded aluminum cylinder with a water capacity...

  8. 49 CFR 178.68 - Specification 4E welded aluminum cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 4E welded aluminum cylinders. 178.68... PACKAGINGS Specifications for Cylinders § 178.68 Specification 4E welded aluminum cylinders. (a) Type, size and service pressure. A DOT 4E cylinder is a welded aluminum cylinder with a water capacity...

  9. Study of weld offset in longitudinally welded SSME HPFTP inlet

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Spanyer, K. S.; Brunair, R. M.

    1992-01-01

    Welded joints are an essential part of rocket engine structures such as the Space Shuttle Main Engine (SSME) turbopumps. Defects produced in the welding process can be detrimental to weld performance. Recently, review of the SSME high pressure fuel turbopump (HPFTP) titanium inlet X-rays revealed several weld discrepancies such as penetrameter density issues, film processing discrepancies, weld width discrepancies, porosity, lack of fusion, and weld offsets. Currently, the sensitivity of welded structures to defects is of concern. From a fatigue standpoint, weld offset may have a serious effect since local yielding, in general, aggravates cyclic stress effects. Therefore, the weld offset issue is considered in this report. Using the FEM and beamlike plate approximations, parametric studies were conducted to determine the influence of weld offsets and a variation of weld widths in longitudinally welded cylindrical structures with equal wall thicknesses on both sides of the joint. Following the study, some conclusions are derived for the weld offsets.

  10. Nanospot welding of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hirayama, H.; Kawamoto, Y.; Ohshima, Y.; Takayanagi, K.

    2001-08-01

    Single wall carbon nanotube (SWNT) bundles protruding from the SWNT layers on self-aligned Sn apexes were brought to a distance of 30 nm by a scanning tunneling microscope inside a transmission electron microscope. A straight bundle on the tip could be observed in situ in contact electrostatically with a looped bundle on the sample by applying tip bias voltages above 2.0 V. The bundles were welded at the nanometer size contact area by local Joule heating.

  11. Swimming pool granuloma

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/001357.htm Swimming pool granuloma To use the sharing features on this page, please enable JavaScript. A swimming pool granuloma is a long-term (chronic) skin ...

  12. Welding of aluminum alloy with high power direct diode laser

    NASA Astrophysics Data System (ADS)

    Abe, Nobuyuki; Morikawa, Atsuhito; Tsukamoto, Masahiro; Maeda, Koichi; Namba, Keizo

    2003-06-01

    Characterized by high conversion efficiency, small size, light weight and a long lifetime, high power diode lasers are currently being developed for application to various types of metal fabrication, such as welding. In this report, a 4kW high power direct diode laser was used to weld aluminum alloys, which are the focus of increasing attention from the automobile industry because of their light weight, high formability and easy recyclability. The applicability of a direct diode laser to aluminum alloy bead-on plate, butt and lap-fillet welding was studied under various welding conditions. A sound bead without cracks was successfully obtained when 1 mm thick aluminum alloy was welded by bead-on welding at a speed of 12m/min. Moreover, the bead cross section was heat conduction welding type rather than the keyhole welding type of conventional laser welding. Investigation of the welding phenomena with a high-speed video camera showed no spattering or laser plasma, so there was no problem with laser plasma damaging the focusing lens despite the diode laser's short focusing distance.

  13. A dimensionless parameter model for arc welding processes

    SciTech Connect

    Fuerschbach, P.W.

    1994-12-31

    A dimensionless parameter model previously developed for C0{sub 2} laser beam welding has been shown to be applicable to GTAW and PAW autogenous arc welding processes. The model facilitates estimates of weld size, power, and speed based on knowledge of the material`s thermal properties. The dimensionless parameters can also be used to estimate the melting efficiency, which eases development of weld schedules with lower heat input to the weldment. The mathematical relationship between the dimensionless parameters in the model has been shown to be dependent on the heat flow geometry in the weldment.

  14. Method for welding beryllium

    DOEpatents

    Dixon, Raymond D.; Smith, Frank M.; O'Leary, Richard F.

    1997-01-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon.

  15. Three-dimensional numerical simulation of weld solidification cracking

    NASA Astrophysics Data System (ADS)

    Wei, Y. H.; Dong, Z. B.; Liu, R. P.; Dong, Z. J.

    2005-04-01

    It is difficult to measure mechanical strain in the vicinity of a moving weld pool owing to the complex solidification process. Computational modelling of the welding process provides an effective method to study the stress/strain distributions of the weldment. In this paper, the driving force to weld solidification cracking, i.e. mechanical strain versus temperature at the trail of a weld molten pool, was modelled with the three-dimensional finite element analysis procedure. The dynamic stress/strain evolutions that contribute to the formation of solidification cracking have been calculated in the cracking susceptible temperature range. In the mechanical model, solidification effects, namely deformation in the weld pool, change of initial temperature for thermal stress/strain calculation, were treated by means of a dynamic element rebirth scheme. Solidification shrinkage was also taken into consideration in simulation. The results of comparison between the calculated driving force and the experimental measurements of the material resistance predict the susceptibility of solidification cracking.

  16. The science of pooling

    SciTech Connect

    Gilbert, E.

    1995-10-01

    The pooling of data from radon studies is described. Pooling refers to the analysis of original data from several studies, not meta-analysis in which summary measures from published data are analyzed. A main objective for pooling is to reduce uncertainty and to obtain more precise estimates of risk than would be available from any single study.

  17. Development of an intelligent system for cooling rate and fill control in GMAW. [Gas Metal Arc Welding (GMAW)

    SciTech Connect

    Einerson, C.J.; Smartt, H.B.; Johnson, J.A.; Taylor, P.L. ); Moore, K.L. )

    1992-01-01

    A control strategy for gas metal arc welding (GMAW) is developed in which the welding system detects certain existing conditions and adjusts the process in accordance to pre-specified rules. This strategy is used to control the reinforcement and weld bead centerline cooling rate during welding. Relationships between heat and mass transfer rates to the base metal and the required electrode speed and welding speed for specific open circuit voltages are taught to a artificial neural network. Control rules are programmed into a fuzzy logic system. TRADITOINAL CONTROL OF THE GMAW PROCESS is based on the use of explicit welding procedures detailing allowable parameter ranges on a pass by pass basis for a given weld. The present work is an exploration of a completely different approach to welding control. In this work the objectives are to produce welds having desired weld bead reinforcements while maintaining the weld bead centerline cooling rate at preselected values. The need for this specific control is related to fabrication requirements for specific types of pressure vessels. The control strategy involves measuring weld joint transverse cross-sectional area ahead of the welding torch and the weld bead centerline cooling rate behind the weld pool, both by means of video (2), calculating the required process parameters necessary to obtain the needed heat and mass transfer rates (in appropriate dimensions) by means of an artificial neural network, and controlling the heat transfer rate by means of a fuzzy logic controller (3). The result is a welding machine that senses the welding conditions and responds to those conditions on the basis of logical rules, as opposed to producing a weld based on a specific procedure.

  18. (Welding under extreme conditions)

    SciTech Connect

    Davis, S.A.

    1989-09-29

    The traveler was an invited member of the United States delegation and representative of the Basic Energy Science Welding Science program at the 42nd Annual International Institute of Welding (IIW) Assembly and Conference held in Helsinki, Finland. The conference and the assembly was attended by about 600 delegates representing 40 countries. The theme of the conference was welding under extreme conditions. The conference program contained several topics related to welding in nuclear, arctic petrochemical, underwater, hyperbaric and space environments. At the annual assembly the traveler was a delegate (US) to two working groups of the IIW, namely Commission IX and welding research study group 212. Following the conference the traveler visited the Danish Welding Institute in Copenhagen and the Risoe National Laboratory in Roskilde. Prior to the conference the traveler visited Lappeenranta University of Technology and presented an invited seminar entitled Recent Advances in Welding Science and Technology.''

  19. An engineering model to simulate the thermal response of electronic devices during pulsed Nd:YAG laser welding

    SciTech Connect

    Gianoulakis, S.E.; Voth, T.E.; Fuerschbach, P.W.; Prinzbach, J.H.

    1996-12-31

    A model is developed to predict the thermal response of real electronic devices during pulsed Nd:YAG laser welding. Modeling laser-part interaction requires incorporation of weld pool hydrodynamics, and laser-metal vapor and laser-surface interactions. Although important information can be obtained from these models, they are not appropriate for use in design of actual components due to computational limitations. In lieu of solving for these detailed physics, a simple model is constructed. In this model, laser-part interactions are accounted for through an empirically determined energy transfer efficiency which is developed through the use of modeling and experiments. This engineering model is appropriate since part thermal response near the weld pool and weld pool shape is not of interest here. Reasonable agreement between predictions and experimental measurements for welding of real components are indicated.

  20. Simulation of deep water wet weld microstructures using electrodes with high oxidizing potential

    SciTech Connect

    Pope, A.M.; Liu, S.; Olson, D.L.

    1994-12-31

    The properties of underwater wet (UWW) welds are greatly affected by water depth. Ibarra and Olson [1] showed that the oxygen content of the weld increases with increasing depth while the amount of deoxidants such as Mn and Si decreases. This change in chemical composition adversely affects both the tensile strength and toughness of the weld. The present research was designed to understand the influence of oxidizing ingredients in the electrode covering on the chemical composition, weld bead appearance and microstructure of wet welds. Changes in the ability of the electrode to supply oxygen to the weld pool were made through modifications of the hematite to rutile (Fe{sub 2}O{sub 3}/TiO{sub 2}) ratio in the covering.The weld deposited by the rutile electrode (no hematite addition) presented the lowest oxygen content (1700 ppm). When the oxidizing character of the electrode increased the concentration of inclusions, mainly FeO, in the weld also increased. However, the increase in oxygen pickup was not monotonous but reached a `saturation` value at approximately 2100 ppm. These results suggest that the microstructure and properties of wet welds deposited at great depths by rutile electrodes will be similar to those made by oxidizing electrodes at much shallower depths. Hence studying oxidizing electrodes and improving their properties will help the development of electrodes for wet welding at greater depths. It is also a much cheaper way of `simulating` welding at higher pressures.

  1. Welding of 316L Austenitic Stainless Steel with Activated Tungsten Inert Gas Process

    NASA Astrophysics Data System (ADS)

    Ahmadi, E.; Ebrahimi, A. R.

    2015-02-01

    The use of activating flux in TIG welding process is one of the most notable techniques which are developed recently. This technique, known as A-TIG welding, increases the penetration depth and improves the productivity of the TIG welding. In the present study, four oxide fluxes (SiO2, TiO2, Cr2O3, and CaO) were used to investigate the effect of activating flux on the depth/width ratio and mechanical property of 316L austenitic stainless steel. The effect of coating density of activating flux on the weld pool shape and oxygen content in the weld after the welding process was studied systematically. Experimental results indicated that the maximum depth/width ratio of stainless steel activated TIG weld was obtained when the coating density was 2.6, 1.3, 2, and 7.8 mg/cm2 for SiO2, TiO2, Cr2O3, and CaO, respectively. The certain range of oxygen content dissolved in the weld, led to a significant increase in the penetration capability of TIG welds. TIG welding with active fluxes can increase the delta-ferrite content and improves the mechanical strength of the welded joint.

  2. Influence of sulfur and welding conditions on penetration in thin strip stainless steel

    SciTech Connect

    Scheller, P.R. ); Brooks, R.F.; Mills, K.C. . Division of Materials Metrology)

    1995-02-01

    Welding trials and surface tension measurements have been carried out on 304 stainless steels with sulfur (S) contents between 20 and 100 ppm. Surface tension measurements, determined by the levitated drop method, indicated that the temperature coefficient of surface tension (d[gamma]/dT) changed from negative to positive values at S contents exceeding approximately 50 ppm. Strips with a thickness of approximately 1 mm were GTA welded on both single-electrode, small-scale and multi-electrode industrial-scale units. Welding speeds of 1 to 2 m min[sup [minus]1] were used on the small-scale unit and up to 5 m min[sup [minus]1] on the industrial unit. The weld penetration was found to increase, for both full and partial penetration welds, with (1) increasing sulfur contents; and (2) increasing linear energy. On the small scale-unit markedly higher penetration was observed in heats with S contents > 60 ppm. But the influence of S contents was only of minor importance for welds obtained on the industrial unit. It was found that the similar weld geometry could be obtained for both low ([<=] 60 ppm) and high (> 60 ppm) sulfur contents by careful adjustment of welding parameters. The observed changes in weld geometry are consistent with the proposition that the fluid flow in the weld pool is dominated by thermo-capillary (Marangoni) forces during the GTA welding of thin strips.

  3. Robotic Welding Of Injector Manifold

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Shelley, D. Mark

    1992-01-01

    Brief report presents history, up through October 1990, of continuing efforts to convert from manual to robotic gas/tungsten arc welding in fabrication of main injector inlet manifold of main engine of Space Shuttle. Includes photographs of welding machinery, welds, and weld preparations. Of interest to engineers considering establishment of robotic-welding facilities.

  4. Residual Stress and Fatigue Strength of Hybrid Laser-MIG-Welded A7N01P-T4

    NASA Astrophysics Data System (ADS)

    Wang, Qiuying; Chen, Hui; Qiu, Peixian; Zhu, Zongtao

    2017-02-01

    A7N01P-T4 aluminum alloy is widely used in some important welded components of high-speed trains. The hybrid laser-metal inert gas (MIG) welding process was studied to solve problems associated with the MIG welding process, such as low welding efficiency, high residual stress and deformation, and serious loss of strength. A high-speed camera, a voltage and current collection system, and NI DAQ were used to acquire arc profiles, welding voltage, and welding current simultaneously. Thermal cycle tests were carried out. Residual stresses induced by the welding process and fatigue strength of the joint were investigated. Large-size fatigue specimens were used in fatigue tests. The results show that the energy of the hybrid welding process is focused, and the power density of hybrid welding process is intense. The heat input per unit of the hybrid welding process is only half of that of the MIG welding process. Compared with the MIG welded joint, the overall residual stress level of the hybrid-welded joint is lower. The peak longitudinal stress of the hybrid-welded joint is reduced by 20 pct. The fatigue strength of hybrid joints is 14 pct higher than that of MIG-welded joints. Narrow weld and HAZ, weak softening behavior, and low residual stress level are the causes of the improvement of fatigue strength.

  5. Probing liquation cracking and solidification through modeling of momentum, heat, and solute transport during welding of aluminum alloys

    NASA Astrophysics Data System (ADS)

    Mishra, S.; Chakraborty, S.; DebRoy, T.

    2005-05-01

    A transport phenomena-based mathematical model is developed to understand liquation cracking in weldments during fusion welding. Equations of conservation of mass, momentum, heat, and solute transport are numerically solved considering nonequilibrium solidification and filler metal addition to determine the solid and liquid phase fractions in the solidifying region and the solute distribution in the weld pool. An effective partition coefficient that considers the local interface velocity and the undercooling is used to simulate solidification during welding. The calculations show that convection plays a dominant role in the solute transport inside the weld pool. The predicted weld-metal solute content agreed well with the independent experimental observations. The liquation cracking susceptibility in Al-Cu alloy weldments could be reliably predicted by the model based on the computed solidifying weld-metal composition and solid fraction considering nonequilibrium solidification.

  6. Analysis of hybrid Nd:Yag laser-MAG arc welding processes

    NASA Astrophysics Data System (ADS)

    Le Guen, E.; Fabbro, R.; Carin, M.; Coste, F.; Le Masson, P.

    2011-10-01

    In the hybrid laser-arc welding process, a laser beam and an electric arc are coupled in order to combine the advantages of both processes: high welding speed, low thermal load and high depth penetration thanks to the laser; less demanding on joint preparation/fit-up, typical of arc welding. Thus the hybrid laser-MIG/MAG (Metal Inert or Active Gas) arc welding has very interesting properties: the improvement of productivity results in higher welding speeds, thicker welded materials, joint fit-up allowance, better stability of molten pool and improvement of joint metallurgical quality. The understanding of the main relevant involved physical processes are therefore necessary if one wants for example elaborate adequate simulations of this process. Also, for an efficient use of this process, it is necessary to precisely understand the complex physical phenomena that govern this welding technique. This paper investigates the analysis of the effect of the main operating parameters for the laser alone, MAG alone and hybrid Laser/MAG welding processes. The use of a high speed video camera allows us to precisely characterize the melt pool 3D geometry such as the measurements of its depression and its length and the phenomena occurring inside the melt pool through keyhole-melt pool-droplet interaction. These experimental results will form a database that is used for the validation of a three-dimensional thermal model of the hybrid welding process for a rather wide range of operating parameters where the 3-D geometry of the melt pool is taken into account.

  7. Bobbin-Tool Friction-Stir Welding of Thick-Walled Aluminum Alloy Pressure Vessels

    SciTech Connect

    Dalder, E C; Pastrnak, J W; Engel, J; Forrest, R S; Kokko, E; Ternan, K M; Waldron, D

    2007-06-06

    involved determining the room-temperature tensile and elastic-plastic fracture-toughness properties of the bobbin-tool friction-stir welds after a post-weld solution-treatment, quenching, and aging heat-treatment. These mechanical properties were used to conduct fracture-mechanics analyses to determine critical flaw sizes. Phased-array and conventional ultrasonic non-destructive examination was used to demonstrate that no flaws that match or exceed the calculated critical flaw-sizes exist in or near the friction-stir welds.

  8. Surface preparation effects on GTA weld shape in JBK-75 stainless steel

    SciTech Connect

    Campbell, R.D.; Robertson, A.M. ); Heiple, C.R. ); Sturgill, P.L.; Jamsay, R.

    1993-02-01

    The results of a study are reported here on the effects of surface preparation on the shape of autogenous gas tungsten arc (GTA) welds in JBK-75, an austenitic precipitation hardenable stainless steel similar to A286. Minor changes in surface preparation produced substantial changes in the fusion zone shape and welding behavior of this alloy. Increased and more consistent depth of fusion (higher d/w ratios) along with improved arc stability and less arc wander resulted from wire brushing and other abrasive surface preparations, although chemical and machining methods did not produce any increase in depth of fusion. Abrasive treatments roughen the surface, increase the surface area, increase the surface oxide thickness, and entrap oxide. The increased weld d/w ratio is attributed to oxygen added to the weld pool from the surface oxide on the base metal. The added oxygen alters the surface-tension-driven fluid flow pattern in the weld pool. Increased depth of fusion in wire-fed U-groove weld joints also resulted when welding wire with a greater surface oxide thickness was used. Increasing the amount of wire brushing produced even deeper welds. However, a maximum in depth of fusion was observed with further wire brushing, beyond which weld fusion depth decreased.

  9. Characterization of tool wear and weld optimization in the friction-stir welding of cast aluminum 359+20% SiC metal-matrix composite

    SciTech Connect

    Fernandez, G.J.; Murr, L.E

    2004-03-15

    Tool wear for threaded steel pin tools declines with decreasing rotation speed and increasing traverse or weld speeds for the friction-stir welding (FSW) of Al 359+20% SiC metal-matrix composite (MMC). Less than 10% tool wear occurs when the threaded tool erodes to a self-optimized shape resembling a pseudo-hour glass at weld traverse distances in excess of 3 m. There is only a 7% reduction in the SiC mean particle size in the weld zone for self-optimized pin tools with no threads as compared with a 25% variation for threaded tools wearing significantly at the start of welding. The weld zone becomes more homogeneous for efficient welding with self-optimized tools, and there is a reduction in the weld zone grain size due to dynamic recrystallization, which facilitates the solid-state flow. Transmission electron microscopy shows little difference in the dislocation density from the base material to the weld zone, but there is a propensity of dislocation loops in the weld zone. The weld zone is observed to harden by as much as 30%, in contrast to the base material, as a consequence of the recrystallized grain size reduction and the SiC particles distributed therein.

  10. In-service Inspection Ultrasonic Testing of Reactor Pressure Vessel Welds for Assessing Flaw Density and Size Distribution per 10 CFR 50.61a, Alternate Fracture Toughness Requirements

    SciTech Connect

    Sullivan, Edmund J.; Anderson, Michael T.; Norris, Wallace

    2012-09-17

    Pressurized thermal shock (PTS) events are system transients in a pressurized water reactor (PWR) in which there is a rapid operating temperature cool-down that results in cold vessel temperatures with or without repressurization of the vessel. The rapid cooling of the inside surface of the reactor pressure vessel (RPV) causes thermal stresses that can combine with stresses caused by high pressure. The aggregate effect of these stresses is an increase in the potential for fracture if a pre-existing flaw is present in a material susceptible to brittle failure. The ferritic, low alloy steel of the reactor vessel beltline adjacent to the core, where neutron radiation gradually embrittles the material over the lifetime of the plant, can be susceptible to brittle fracture. The PTS rule, described in the Code of Federal Regulations, Title 10, Section 50.61 (§50.61), “Fracture Toughness Requirements for Protection against Pressurized Thermal Shock Events,” adopted on July 23, 1985, establishes screening criteria to ensure that the potential for a reactor vessel to fail due to a PTS event is deemed to be acceptably low. The U.S. Nuclear Regulatory Commission (NRC) completed a research program that concluded that the risk of through-wall cracking due to a PTS event is much lower than previously estimated. The NRC subsequently developed a rule, §50.61a, published on January 4, 2010, entitled “Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events” (75 FR 13). Use of the new rule by licensees is optional. The §50.61a rule differs from §50.61 in that it requires licensees who choose to follow this alternate method to analyze the results from periodic volumetric examinations required by the ASME Code, Section XI, Rules for Inservice Inspection (ISI) of Nuclear Power Plants. These analyses are intended to determine if the actual flaw density and size distribution in the licensee’s reactor vessel beltline welds are bounded

  11. Multiphysical Modeling of Transport Phenomena During Laser Welding of Dissimilar Steels

    NASA Astrophysics Data System (ADS)

    Métais, A.; Matteï, S.; Tomashchuk, I.; Gaied, S.

    The success of new high-strength steels allows attaining equivalent performances with lower thicknesses and significant weight reduction. The welding of new couples of steel grades requires development and control of joining processes. Thanks to high precision and good flexibility, laser welding became one of the most used processes for joining of dissimilar welded blanks. The prediction of the local chemical composition in the weld formed between dissimilar steels in function of the welding parameters is essential because the dilution rate and the distribution of alloying elements in the melted zone determines the final tensile strength of the weld. The goal of the present study is to create and to validate a multiphysical numerical model studying the mixing of dissimilar steels in laser weld pool. A 3D modelling of heat transfer, turbulent flow and transport of species provides a better understanding of diffusion and convective mixing in laser weld pool. The present model allows predicting the weld geometry and element distribution. The model has been developed based on steady keyhole approximation and solved in quasi-stationary form in order to reduce the computation time. Turbulent flow formulation was applied to calculate velocity field. Fick law for diluted species was used to simulate the transport of alloying elements in the weld pool. To validate the model, a number of experiments have been performed: tests using pure 100 μm thick Ni foils like tracer and weld between a rich and poor manganese steels. SEM-EDX analysis of chemical composition has been carried out to obtain quantitative mapping of Ni and Mn distributions in the melted zone. The results of simulations have been found in good agreement with experimental data.

  12. Welding for life

    SciTech Connect

    Stiebler, T.J.; Nugent, R.M.; Wilson, R.P.

    1994-12-31

    State of the Art Welding Techniques are being utilized to extend the life of major steam turbine components, as well as other traditional types of repairs. The development of a temper bead welding technique has allowed Houston Lighting and Power (HL and P) to perform innovative weld repairs. Nozzle vanes are weld repaired without removing the nozzle blocks from the case; repair life has also been doubled. A new two wire Gas Tungsten ARC Welding (GTAW) machine has produced high deposition rates while maintaining excellent mechanical properties. This results in faster turn-around time and with an improved weld repair. Development of a weld wire specification has also been instrumental in achieving additional component life by increasing the resistance to fatigue, especially in the heat affected zone. All these factors work together to enhance the weld repairs. Tensile strengths of 140,000 PSI with good ductility have been achieved. This paper will discuss their experiences with several repairs and recap the results of some studies and tests performed during the technique development stages. Major repairs include; weld repair of cases, nozzle blocks, nozzle boxes, stationary blade repair, forced draft fan shaft buildup, weld repair of turbine shrouds, blades, tennons and journals.

  13. VPPA weld model evaluation

    NASA Technical Reports Server (NTRS)

    Mccutcheon, Kimble D.; Gordon, Stephen S.; Thompson, Paul A.

    1992-01-01

    NASA uses the Variable Polarity Plasma Arc Welding (VPPAW) process extensively for fabrication of Space Shuttle External Tanks. This welding process has been in use at NASA since the late 1970's but the physics of the process have never been satisfactorily modeled and understood. In an attempt to advance the level of understanding of VPPAW, Dr. Arthur C. Nunes, Jr., (NASA) has developed a mathematical model of the process. The work described in this report evaluated and used two versions (level-0 and level-1) of Dr. Nunes' model, and a model derived by the University of Alabama at Huntsville (UAH) from Dr. Nunes' level-1 model. Two series of VPPAW experiments were done, using over 400 different combinations of welding parameters. Observations were made of VPPAW process behavior as a function of specific welding parameter changes. Data from these weld experiments was used to evaluate and suggest improvements to Dr. Nunes' model. Experimental data and correlations with the model were used to develop a multi-variable control algorithm for use with a future VPPAW controller. This algorithm is designed to control weld widths (both on the crown and root of the weld) based upon the weld parameters, base metal properties, and real-time observation of the crown width. The algorithm exhibited accuracy comparable to that of the weld width measurements for both aluminum and mild steel welds.

  14. Welding arc plasma physics

    NASA Technical Reports Server (NTRS)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  15. Critical Initial Flaw Size Analysis

    NASA Technical Reports Server (NTRS)

    Dawicke, David S.; Raju, Ivatury S.; Cheston, Derrick J.

    2008-01-01

    An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). The USS consists of several "tuna can" segments that are approximately 216 inches in diameter, 115 inches tall, and 0.5 inches thick. A 6 inch wide by 1 inch thick flange is welded to the skin and is used to fasten adjacent tuna cans. A schematic of a "tuna can" and the location of the flange-to-skin weld are shown in Figure 1. Gussets (shown in yellow in Figure 1) are welded to the skin and flange every 10 degrees around the circumference of the "tuna can". The flange-to-skin weld is a flux core butt weld with a fillet weld on the inside surface, as illustrated in Figure 2. The welding process may create loss of fusion defects in the weld that could develop into fatigue cracks and jeopardize the structural integrity of the Ares I-X vehicle. The CIFS analysis was conducted to determine the largest crack in the weld region that will not grow to failure within 4 lifetimes, as specified by NASA standard 5001 & 5019 [1].

  16. Welding and joining: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A compilation is presented of NASA-developed technology in welding and joining. Topics discussed include welding equipment, techniques in welding, general bonding, joining techniques, and clamps and holding fixtures.

  17. Welding skate with computerized controls

    NASA Technical Reports Server (NTRS)

    Wall, W. A., Jr.

    1968-01-01

    New welding skate concept for automatic TIG welding of contoured or double-contoured parts combines lightweight welding apparatus with electrical circuitry which computes the desired torch angle and positions a torch and cold-wire guide angle manipulator.

  18. Microstructural Characteristics of a Stainless Steel/Copper Dissimilar Joint Made by Laser Welding

    NASA Astrophysics Data System (ADS)

    Chen, Shuhai; Huang, Jihua; Xia, Jun; Zhang, Hua; Zhao, Xingke

    2013-08-01

    The microstructures and its formation mechanism of a stainless steel/copper dissimilar joint by laser welding were investigated. It was found that the two modes of joining, i.e., welding-brazing and fusion welding, depend on different processing parameters. In the welding-brazing mode, the interface between copper and the fusion zone has scraggy morphology because the molten pool is frozen by solid copper with high thermal conductivity. The interdiffusion of elements occurs in the neighborhood of the interface, which leads to the metallurgy bond of the mode. In the fusion welding mode, the liquid phase in the fusion zone undergoes not only primary but also secondary liquid separation due to the high cooling rate and high supercooling level of laser welding. Some microcracks generated in the fusion zone by thermal stress mismatch are healed by liquid copper filling.

  19. Detection of weld line and automatic seam tracking by ultrasonic sensing robot for underwater wet welding

    SciTech Connect

    Suga, Yasuo; Machida, Akira

    1994-12-31

    An underwater wet welding robot with an ultrasonic sensor was developed to detect the weld line and to track the weld line automatically. The robot can move the welding torch toward X and Y directions and the ultrasonic sensor can oscillate along the X direction. As the ultrasonic sensor, an immersion type probe of 9.0 mm in diameter was used. The frequency of the ultrasonic wave is 5.0 MHz. The spot size of the ultrasonic beam is approximately 2 mm at a water distance of 50 mm. As the result of the detecting experiment of weld line by the ultrasonic method, there was no problem in the case of as-received steel plate. However, when the surface condition of the base metal is poor, the robot sometimes makes misjudgment. In the tracking test of the butt weld line of steel plates, which has the angle of 30{degree} to the Y-axis, the tracking error was about 0.5 mm. As the result of the experiments, it was made clear that the robot system is effective on the automatic seam tracking of underwater wet welding.

  20. Automated Weld Characterization Using the Thermoelectric Method

    NASA Technical Reports Server (NTRS)

    Fulton, J. P.; Wincheski, B.; Namkung, M.

    1992-01-01

    The effective assessment of the integrity of welds is a complicated NDE problem that continues to be a challenge. To be able to completely characterize a weld, detailed knowledge of its tensile strength, ductility, hardness, microstructure, macrostructure, and chemical composition is needed. NDE techniques which can provide information on any of these features are extremely important. In this paper, we examine a seldom used approach based on the thermoelectric (TE) effect for characterizing welds and their associated heat affected zone (HAZ). The thermoelectric method monitors the thermoelectric power which is sensitive to small changes in the kinetics of the conduction electrons near the Fermi surface that can be caused by changes in the local microstructure. The technique has been applied to metal sorting, quality testing, flaw detection, thickness gauging of layers, and microscopic structural analysis. To demonstrate the effectiveness of the technique for characterizing welds, a series of tungsten-inert-gas welded Inconel-718 samples were scanned with a computer controlled TE probe. The samples were then analyzed using a scanning electron microscope and Rockwell hardness tests to characterize the weld and the associated HAZ. We then correlated the results with the TE measurements to provide quantitative information on the size of the HAZ and the degree of hardness of the material in the weld region. This provides potentially valuable information on the strength and fatigue life of the weld. We begin the paper by providing a brief review of the TE technique and then highlight some of the factors that can effect the measurements. Next, we provide an overview of the experimental procedure and discuss the results. Finally, we summarize our findings and consider areas for future research.

  1. Dual wire welding torch and method

    DOEpatents

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  2. Performance Study and Dynamic Optimization Design for Thread Pool Systems

    SciTech Connect

    Xu, Dongping

    2004-12-19

    Thread pools have been widely used by many multithreaded applications. However, the determination of the pool size according to the application behavior still remains problematic. To automate this process, in this thesis we have developed a set of performance metrics for quantitatively analyzing thread pool performance. For our experiments, we built a thread pool system which provides a general framework for thread pool research. Based on this simulation environment, we studied the performance impact brought by the thread pool on different multithreaded applications. Additionally, the correlations between internal characterizations of thread pools and their throughput were also examined. We then proposed and evaluated a heuristic algorithm to dynamically determine the optimal thread pool size. The simulation results show that this approach is effective in improving overall application performance.

  3. Welding in Space Workshop

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1990-01-01

    The potential was discussed for welding in space, its advantages and disadvantages, and what type of programs can benefit from the capability. Review of the various presentations and comments made in the course of the workshop suggests several routes to obtaining a better understanding of how welding processes can be used in NASA's initiatives in space. They are as follows: (1) development of a document identifying well processes and equipment requirements applicable to space and lunar environments; (2) more demonstrations of welding particular hardware which are to be used in the above environments, especially for space repair operations; (3) increased awareness among contractors responsible for building space equipment as to the potential for welding operations in space and on other planetary bodies; and (4) continuation of space welding research projects is important to maintain awareness within NASA that welding in space is viable and beneficial.

  4. Ultrasonic Stir Welding

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  5. Definition of Beam Diameter for Electron Beam Welding

    SciTech Connect

    Burgardt, Paul; Pierce, Stanley W.; Dvornak, Matthew John

    2016-03-11

    It is useful to characterize the dimensions of the electron beam during process development for electron beam welding applications. Analysis of the behavior of electron beam welds is simplest when a single number can be assigned to the beam properties that describes the size of the beam spot; this value we generically call the “beam diameter”. This approach has worked well for most applications and electron beam welding machines with the weld dimensions (width and depth) correlating well with the beam diameter. However, in recent weld development for a refractory alloy, Ta-10W, welded with a low voltage electron beam machine (LVEB), it was found that the weld dimensions (weld penetration and weld width) did not correlate well with the beam diameter and especially with the experimentally determined sharp focus point. These data suggest that the presently used definition of beam diameter may not be optimal for all applications. The possible reasons for this discrepancy and a suggested possible alternative diameter definition is the subject of this paper.

  6. Friction Stir Weld Restart+Reweld Repair Allowables

    NASA Technical Reports Server (NTRS)

    Clifton, Andrew

    2008-01-01

    A friction stir weld (FSW) repair method has been developed and successfully implemented on Al 2195 plate material for the Space Shuttle External Fuel Tank (ET). The method includes restarting the friction stir weld in the termination hole of the original weld followed by two reweld passes. Room temperature and cryogenic temperature mechanical properties exceeded minimum FSW design strength and compared well with the development data. Simulated service test results also compared closely to historical data for initial FSW, confirming no change to the critical flaw size or inspection requirements for the repaired weld. Testing of VPPA fusion/FSW intersection weld specimens exhibited acceptable strength and exceeded the minimum design value. Porosity, when present at the intersection was on the root side toe of the fusion weld, the "worst case" being 0.7 inch long. While such porosity may be removed by sanding, this "worst case" porosity condition was tested "as is" and demonstrated that porosity did not negatively affect the strength of the intersection weld. Large, 15-inch "wide panels" FSW repair welds were tested to demonstrate strength and evaluate residual stresses using photo stress analysis. All results exceeded design minimums, and photo stress analysis showed no significant stress gradients due to the presence of the restart and multi-pass FSW repair weld.

  7. WELDED JACKETED URANIUM BODY

    DOEpatents

    Gurinsky, D.H.

    1958-08-26

    A fuel element is presented for a neutronic reactor and is comprised of a uranium body, a non-fissionable jacket surrounding sald body, thu jacket including a portion sealed by a weld, and an inclusion in said sealed jacket at said weld of a fiux having a low neutron capture cross-section. The flux is provided by combining chlorine gas and hydrogen in the intense heat of-the arc, in a "Heliarc" welding muthod, to form dry hydrochloric acid gas.

  8. Superplastic Forming of Aluminum Multisheet Structures Fabricated Using Friction Stir Welding and Refill Friction Stir Spot Welding

    SciTech Connect

    Grant, Glenn J.; Herling, Darrell R.; Arbegast, William J.; Allen, Casey D.; Degen, Cassandra M.

    2006-12-20

    Superplastically-formed structural panels are growing in their applications in aerospace, aircraft, automotive, and other industries. Generally, monolithic sheets are employed, limiting the size and complexity of the final part. However, more complex and larger final geometries are possible if individual sheet materials can be joined together through an appropriate joining technology, then SPF formed to final shape. The primary challenge in this type of SPF fabrication has been making a joint between the sheets that will survive the SPF forming event and display the correct amount of elongation in the joint relative to the base materials being formed. Friction Stir Welding is an ideal joining technology for SPF applications because the forming response of the weld metal at SPF conditions is adjustable by selecting different weld process parameters during initial joining. This allows the SPF deformation in the weld metal to be “tuned” to the deformation of the parent sheet to prevent early failure from occurring in either the weld metal or the parent sheet due to mismatched SPF flow stresses. Industrial application of the concept of matching flow stresses is currently being pursued on a program at the Pacific Northwest National Laboratory on room temperature formed friction stir welded tailor welded blanks for heavy truck applications. Flow stress matching and process parameter “tuning” is also important in the fabrication of SPF multisheet structural panels. These panels are fabricated by joining three sheets together with alternating welds top and bottom, so that each weld penetrates only two of the three sheets. This sheet pack is then sealed with a weld seam around the outside and hot gas is introduced between the sheets through a welded tube. Under SPF conditions the sheet pack inflates to produce an internally supported structure. In this paper we presents results on an investigation into using FSW and Refill Friction Stir Spot Welding to fabricated

  9. Effects on the efficiency of activated carbon on exposure to welding fumes

    SciTech Connect

    Ghosh, D.

    1995-02-01

    It is the intention of this paper to document that certain types of welding fumes have little or no effect on the effectiveness of the carbon filter air filtration efficiency when directly exposed to a controlled amount of welding fumes for a short-term period. The welding processes studied were restricted to shielded metal arc welding (SMAW), flux cored arc welding (FCAW), gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) processes. Contrary to the SMAW and FCAW processes, the GTAW (or TIG) and the GMAW (or MIG) welding processes do not require the use of flux as part of the overall process. Credit was taken for these processes occurring in inert gas environments and producing minimal amount of smoke. It was concluded that a study involving the SMAW process would also envelop the effects of the TIG and MIG welding processes. The quantity of welding fumes generated during the arc welding process is a function of the particular process, the size and type of electrode, welding machine amperage, and operator proficiency. For this study, the amount of welding for specific testing was equated to the amount of welding normally conducted during plant unit outages. Different welding electrodes were also evaluated, and the subsequent testing was limited to an E7018 electrode which was judged to be representative of all carbon and stainless steel electrodes commonly used at the site. The effect of welding fumes on activated charcoal was tested using a filtration unit complete with prefilters, upstream and downstream high efficiency particulate air (HEPA) filters, and a carbon adsorber section. The complete system was field tested in accordance with ANSI N510 standards prior to exposing the filters and the adsorber bed to welding fumes. The carbon samples were tested at an established laboratory using ASTM D3803-1989 standards.

  10. Electric arc welding gun

    DOEpatents

    Luttrell, Edward; Turner, Paul W.

    1978-01-01

    This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

  11. Physics of Fusion Welding

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    1986-01-01

    Applicabilities and limitations of three techniques analyzed. NASA technical memorandum discusses physics of electron-beam, gas/ tungsten-arc, and laser-beam welding. From comparison of capabilities and limitations of each technique with regard to various welding conditions and materials, possible to develop criteria for selecting best welding technique in specific application. All three techniques classified as fusion welding; small volume of workpiece melted by intense heat source. Heat source moved along seam, leaving in wake solid metal that joins seam edges together.

  12. Robot welding process control

    NASA Technical Reports Server (NTRS)

    Romine, Peter L.

    1991-01-01

    This final report documents the development and installation of software and hardware for Robotic Welding Process Control. Primary emphasis is on serial communications between the CYRO 750 robotic welder, Heurikon minicomputer running Hunter & Ready VRTX, and an IBM PC/AT, for offline programming and control and closed-loop welding control. The requirements for completion of the implementation of the Rocketdyne weld tracking control are discussed. The procedure for downloading programs from the Intergraph, over the network, is discussed. Conclusions are made on the results of this task, and recommendations are made for efficient implementation of communications, weld process control development, and advanced process control procedures using the Heurikon.

  13. IR Spot Weld Inspect

    SciTech Connect

    Chen, Jian; Feng, Zhili

    2014-01-01

    In automotive industry, destructive inspection of spot welds is still the mandatory quality assurance method due to the lack of efficient non-destructive evaluation (NDE) tools. However, it is costly and time-consuming. Recently at ORNL, a new NDE prototype system for spot weld inspection using infrared (IR) thermography has been developed to address this problem. This software contains all the key functions that ensure the NDE system to work properly: system input/output control, image acquisition, data analysis, weld quality database generation and weld quality prediction, etc.

  14. Explosive Welding of Pipes

    NASA Astrophysics Data System (ADS)

    Drennov, Oleg; Drennov, Andrey; Burtseva, Olga

    2013-06-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. Explosive welding of cylindrical surfaces is performed by launching of welded layer along longitudinal axis of construction. During this procedure, it is required to provide reliable resistance against radial convergent strains. The traditional method is application of fillers of pipe cavity, which are dense cylindrical objects having special designs. However, when connecting pipes consecutively in pipelines by explosive welding, removal of the fillers becomes difficult and sometimes impossible. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water (perturbations, which are moving in the axial direction with sound velocity, should not reach the layer end boundaries for 5-7 circulations of shock waves in the radial direction). Linear dimension of the water layer from the zone of pipe coupling along axis in each direction is >= 2R, where R is the internal radius of pipe.

  15. Welding irradiated stainless steel

    SciTech Connect

    Kanne, W.R. Jr.; Chandler, G.T.; Nelson, D.Z.; Franco-Ferreira, E.A.

    1993-12-31

    Conventional welding processes produced severe underbead cracking in irradiated stainless steel containing 1 to 33 appm helium from n,a reactions. A shallow penetration overlay technique was successfully demonstrated for welding irradiated stainless steel. The technique was applied to irradiated 304 stainless steel that contained 10 appm helium. Surface cracking, present in conventional welds made on the same steel at the same and lower helium concentrations, was eliminated. Underbead cracking was minimal compared to conventional welding methods. However, cracking in the irradiated material was greater than in tritium charged and aged material at the same helium concentrations. The overlay technique provides a potential method for repair or modification of irradiated reactor materials.

  16. The morphological evolution of the axial structure and the curved columnar grain in the weld

    NASA Astrophysics Data System (ADS)

    Han, Rihong; Lu, Shanping; Dong, Wenchao; Li, Dianzhong; Li, Yiyi

    2015-12-01

    The competitive growth of microstructures in the entire weld pool for both the Al-Cu alloy and the pure aluminum was simulated by the cellular automata method to comparatively investigate the micro-mechanisms for the morphological evolution of the axial structure and the curved columnar grain in the weld. The competitive mechanism of grains during the epitaxial growth and the morphological evolution of the grain structure in the weld with various welding speeds were studied. The results indicate that both the thermal conditions and the solidification characteristic of the weld metal exert an important influence on the grain competition and the resulting structure in the weld. For the Al-Cu alloy, the dendritic structure with a large S/L interface curvature appears during the epitaxial growth. The preferential orientation affects the competition result obviously. Owing to the anisotropic growth kinetics, the straight axial structure forms at low welding speeds. With the increase of the welding speed, the width of the axial region decreases and eventually disappears. For the pure aluminum, the S/L interface during the epitaxial growth is planar, and the grain competition is controlled by the thermal conditions completely. The columnar grains curve gradually to follow the highest temperature gradient direction at low welding speeds and become straight at high welding speeds.

  17. A Compact Gas/Tungsten-Arc Welding Torch

    NASA Technical Reports Server (NTRS)

    Morgen, Gene E.

    1991-01-01

    Compact gas/tungsten-arc welding torch delivers 100-A current, yet used in confined spaces inaccessible to even smallest commercially available torch. Despite its extremely small size, torch contains all usual components and delivers high current.

  18. Gaseous hydrogen embrittlement of T-250 laser welds

    SciTech Connect

    Tsay, L.W.; Huang, W.B.; Chen, C.

    1997-04-01

    The tensile properties of laser-welded T-250 maraging steel are measured, with attention paid to the influence of strain rate and gaseous hydrogen on the fracture behavior of welded specimens. Post-weld heat treatments are performed on laser-welded specimens to obtain underaged (WU), peak-aged (WP), and overaged (WO) specimens. Hydrogen embrittlement (HE) affects the tensile fracture behavior of the welded specimens; HE changes not only the fracture mode but also the fracture location. Without the influence of hydrogen, the fracture location is at the softest region, the weld metal (WM), and the fracture appearance reveals a ductile dimple fracture. For welds sensitive to HE, the fracture is initiated at the heat-affected zone (HAZ) with coarse grain size, and the associated fracture surface exhibits intergranular and quasi-cleavage fractures that are brittle in nature. In addition, the HAZ with coarse grain size is more prone to HE, as compared to other regions in the welded specimens. The WU specimens are susceptible to HE in air under a low strain rate, while the WP specimens are only susceptible to gaseous hydrogen embrittlement (GHE). However, the WO specimens are immune to GHE and insensitive to strain rate.

  19. Capabilities of Ultrasonic Phased Arrays for Far-Side Examinations of Austenitic Stainless Steel Piping Welds

    SciTech Connect

    Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.

    2006-10-01

    A study was conducted to assess the ability of advanced ultrasonic techniques to detect and accurately determine the size of flaws from the far-side of wrought austenitic piping welds. Far-side inspections of nuclear system austenitic piping welds are currently performed on a “best effort” basis and do not conform to ASME Code Section XI Appendix VIII performance demonstration requirements for near side inspection. For this study, four circumferential welds in 610mm (24inch) diameter, 36mm (1.42inch) thick ASTM A-358, Grade 304 vintage austenitic stainless steel pipe were examined. The welds were fabricated with varied welding parameters; both horizontal and vertical pipe orientations were used, with air and water backing, to simulate field welding conditions. A series of saw cuts, electro-discharge machined (EDM) notches, and implanted fatigue cracks were placed into the heat affected zones of the welds. The saw cuts and notches ranged in depth from 7.5% to 28.4% through-wall. The implanted cracks ranged in depth from 5% through-wall to 64% through-wall. The welds were examined with phased array technology at 2.0 MHz, and compared to conventional ultrasonic techniques as a baseline. The examinations showed that phased-array methods were able to detect and accurately length-size, but not depth size, the notches and flaws through the welds. The ultrasonic results were insensitive to the different welding techniques used in each weld.

  20. Through Weld Inspection of Wrought Stainless Steel Piping Using Phased-Array Ultrasonic Probes.

    SciTech Connect

    Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.

    2004-08-05

    A study was conducted to assess the ability of phased-array ultrasonic techniques to detect and accurately determine the size of flaws from the far-side of wrought austenitic piping welds. Far-side inspections of these welds are currently performed on a “best effort” basis and do not conform to ASME Code Section XI Appendix VIII performance demonstration requirements. For this study, four circumferential welds in 610mm diameter, 36mm thick ASTM A-358, Grade 304 vintage austenitic stainless steel pipe were examined. The welds were fabricated with varied welding parameters; both horizontal and vertical pipe orientations were used, with air and water backing, to simulate field welding conditions. A series of saw cuts, electro-discharge machined (EDM) notches, and implanted fatigue cracks were placed into the heat affected zones of the welds. The saw cuts and notches range in depth from 7.5% to 28.4% through-wall. The implanted cracks ranged in depth from 5% through wall to 64% through wall. The welds were examined with two phased-array probes, a 2.0 MHz transmit-receive longitudinal wave array and a 2.0 MHz transmit-receive shear wave array. These examinations showed that both phased-array transducers were able to detect and accurately length-size, but not depth size, all of the notches and flaws through the welds. The phased-array results were not strongly affected by the different welding techniques used in each weld.

  1. Hybrid laser-arc welding of galvanized high-strength steels in a gap-free lap-joint configuration

    NASA Astrophysics Data System (ADS)

    Yang, Shanglu

    In order to meet the industry demands for increased fuel efficiency and enhanced mechanical and structural performance of vehicles as well as provided excellent corrosion resistance, more and more galvanized advanced high-strength steels (AHSS) have been used to fabricate automobile parts such as panels, bumpers, and front rails. The automotive industry has shown tremendous interest in using laser welding to join galvanized dual phase steels because of lower heat input and higher welding speed. However, the laser welding process tends to become dramatically unstable in the presence of highly pressurized zinc vapor because of the low boiling point of zinc, around 906°C, compared to higher melting point of steel, over 1500°C. A large number of spatters are produced by expelling the liquid metal from the molten pool by the pressurized zinc vapor. Different weld defects such as blowholes and porosities appear in the welds. So far, limited information has been reported on welding of galvanized high strength dual-phase steels in a gap-free lap joint configuration. There is no open literature on the successful attainment of defect-free welds from the laser or hybrid welding of galvanized high-strength steels. To address the significant industry demand, in this study, different welding techniques and monitoring methods are used to study the features of the welding process of galvanized DP steels in a gap-free lap joint configuration. The current research covers: (i) a feasibility study on the welding of galvanized DP 980 steels in a lap joint configuration using gas tungsten arc welding (GTAW), laser welding, hybrid laser/arc welding with the common molten pool, laser welding with the assistance of GTAW preheating source and hybrid laser-variable polarity gas tungsten arc welding (Laser-VPGTAW) techniques (Chapter 2-4); (ii) a welding process monitoring of the welding techniques including the use of machine vision and acoustic emission technique (Chapter 5); (iii

  2. The effect of weld metal matching on girth weld performance: Volume III - an ECA analysis. Final report

    SciTech Connect

    Denys, R.M.; Martin, J.T.

    1995-02-01

    Modern pipeline standards contain alternative methodologies for determining the acceptable defect size in pipeline welds. Through the use of fracture mechanics and plastic collapse assessments, the mechanical and toughness properties of the defective region relate to the applied stress at the defect and defect geometry. The assumptions made in these methodologies are not always representative of the situation accurring in pipeline girth welds. To determine the effect of the various input parameters on acceptable defect size, The Welding Supervisory Committee of the American Gas Association commenced in 1990, in collaboration with the Laboratorium Soete of the University Gent, Belgium, a series of small scale (Charpy V impact and CTOD) and large scale (fatigue pre-cracked wide plate) tests. All the experimental investigations were intended to evaluate the effects of weld metal mis-match, temperature, defect size, defect type, defect interaction, pipe wall thickness and yield to tensile ratio on girth weld fracture behaviour. The aim of this report was to determine how weld metal yield strength overmatching or undermatching influences girth weld defect size prediction. A further analysis was conducted using the newly revised PD6493:1991 to provide a critical analysis with the objective of explaining the behaviour of the wide plate tests.

  3. Experimental and theoretical studies on keyhole dynamics in laser welding

    SciTech Connect

    Matsunawa, Akira; Katayama, Seiji; Kim, Jong-Do; Semak, V.V.

    1996-12-31

    The present paper describes the results of high speed photography, acoustic emission (AE) detection and plasma light emission (LE) measurement during CO{sub 2} laser welding of 304 stainless steel in different processing conditions. Video images with high spatial and temporal resolution allowed observation of the melt dynamics and keyhole evolution. The existence of a high speed melt flow which originated from the front part of weld pool and flowed along the sides wall of keyhole was confirmed by the slag motion on the weld pool. The characteristic frequencies of flow instability and keyhole fluctuations at different welding speed were measured and compared with the results of Fourier analyses of temporal AE and LE spectra. The experimental results were compared with the newly developed numerical model of keyhole dynamics. The model is based on the assumption that the propagation of front part of keyhole into material is due to the melt ejection driven by laser induced surface evaporation. The calculations predict that a high speed melt flow is induced at the front part of keyhole when the sample travel speed exceeds several 10 mm/s. The numerical analysis also shows the hump formation on the front keyhole wall surface. Experimentally observed melt behavior and transformation of the AE and LE spectra with variation of welding speed are qualitatively in good agreement with the model predictions.

  4. Manually Operated Welding Wire Feeder

    NASA Technical Reports Server (NTRS)

    Rybicki, Daniel J. (Inventor)

    2001-01-01

    A manual welding wire feeder apparatus comprising a bendable elongate metal frame with a feed roller mounted at the center thereof for rotation about an axis transverse to the longitudinal axis of the frame. The frame ends are turned up as tabs and each provided with openings in alignment with each other and the mid-width center of the roller surface. The tab openings are sized to accommodate welding wire and each extends to a side edge of the tab, both opening on the same side of the frame, whereby welding wire can be side-loaded onto the frame. On the side of the frame, opposite the roller a lock ring handle is attached tangentially and is rotatable about the attachment point and an axis perpendicular to the frame. The device is grasped in the hand normally used to hold the wire. A finger is placed through the loop ring and the frame positioned across the palm and lower fingers. The thumb is positioned atop the wire so it can be moved from the back of the frame across the roller, and towards the front. In doing so, the wire is advanced at a steady rate in axial alignment with the tab openings and roller. To accommodate different wire diameters the frame is bendable about its center in the plane of the frame axis and wire so as to keep the wire in sufficient tension against the roller and to keep the wire fixed when the frame is tilted and thumb pressure released.

  5. Microstructural Aspects in FSW and TIG Welding of Cast ZE41A Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Carlone, Pierpaolo; Astarita, Antonello; Rubino, Felice; Pasquino, Nicola

    2016-04-01

    In this paper, magnesium ZE41A alloy plates were butt joined through friction stir welding (FSW) and Tungsten Inert Gas welding processes. Process-induced microstructures were investigated by optical and SEM observations, EDX microanalysis and microhardness measurements. The effect of a post-welded T5 heat treatment on FSW joints was also assessed. Sound joints were produced by means of both techniques. Different elemental distributions and grain sizes were found, whereas microhardness profiles reflect microstructural changes. Post-welding heat treatment did not induce significant alterations in elemental distribution. The FSW-treated joint showed a more homogeneous hardness profile than the as-welded FSW joint.

  6. 13 CFR 120.611 - Pools backing Pool Certificates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Pools backing Pool Certificates. 120.611 Section 120.611 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Secondary Market Certificates § 120.611 Pools backing Pool Certificates. (a) Pool characteristics. As...

  7. Welding blades to rotors

    NASA Technical Reports Server (NTRS)

    Hoklo, K. H.; Moore, T. J. (Inventor)

    1973-01-01

    A process is described to form T-joints between dissimilar thickness parts by magnetic force upset welding. This type of resistance welding is used to join compressor and turbine parts which thereby reduces the weight and cost of jet engines.

  8. Sorting Titanium Welding Rods

    NASA Technical Reports Server (NTRS)

    Ross, W. D., Jr.; Brown, R. L.

    1985-01-01

    Three types of titanium welding wires identified by their resistance to current flow. Welding-wire tester quickly identifies unknown titaniumalloy wire by touching wire with test probe, and comparing meter response with standard response. Before touching wire, tip of test probe dipped into an electrolyte.

  9. NASA welding assessment program

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.

    1985-01-01

    A program was conducted to demonstrate the cycle life capability of welded solar cell modules relative to a soldered solar cell module in a simulated low earth orbit thermal environment. A total of five 18-cell welded (parallel gap resistance welding) modules, three 18-cell soldered modules, and eighteen single cell samples were fabricated using 2 x 4 cm silicon solar cells from ASEC, fused silica cover glass from OCLI, silver plated Invar interconnectors, DC 93-500 adhesive, and Kapton-Kevlar-Kapton flexible substrate material. Zero degree pull strength ranged from 2.4 to 5.7 lbs for front welded contacts (40 samples), and 3.5 to 6.2 lbs for back welded contacts (40 samples). Solar cell cross sections show solid state welding on both front and rear contacts. The 18-cell welded modules have a specific power of 124 W/kg and an area power density of 142 W/sq m (both at 28 C). Three welded and one soldered module were thermal cycle tested in a thermal vacuum chamber simulating a low earth orbit thermal environment.

  10. Laser Welding in Space

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kaukler, William F.

    1989-01-01

    Solidification type welding process experiments in conditions of microgravity were performed. The role of convection in such phenomena was examined and convective effects in the small volumes obtained in the laser weld zone were observed. Heat transfer within the weld was affected by acceleration level as indicated by the resulting microstructure changes in low gravity. All experiments were performed such that both high and low gravity welds occurred along the same weld beam, allowing the effects of gravity alone to be examined. Results indicate that laser welding in a space environment is feasible and can be safely performed IVA or EVA. Development of the hardware to perform the experiment in a Hitchhiker-g platform is recomended as the next step. This experiment provides NASA with a capable technology for welding needs in space. The resources required to perform this experiment aboard a Shuttle Hitchhiker-pallet are assessed. Over the four year period 1991 to 1994, it is recommended that the task will require 13.6 manyears and $914,900. In addition to demonstrating the technology and ferreting out the problems encountered, it is suggested that NASA will also have a useful laser materials processing facility for working with both the scientific and the engineering aspects of materials processing in space. Several concepts are also included for long-term optimization of available solar power through solar pumping solid state lasers directly for welding power.

  11. Welding: Scope and Sequence.

    ERIC Educational Resources Information Center

    Nashville - Davidson County Metropolitan Public Schools, TN.

    Intended for use by all welding instructors in the Metropolitan Nashville Public Schools, this guide provides a sequential listing of course content and scope. A course description provides a brief overview of the content of the courses offered in the welding program. General course objectives are then listed. Outlines of the course content are…

  12. DC arc weld starter

    DOEpatents

    Campiotti, Richard H.; Hopwood, James E.

    1990-01-01

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  13. Argon Welding Inside A Workpiece

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.

    1988-01-01

    Canopies convert large hollow workpiece into inert-gas welding chamber. Large manifold serves welding chamber for attachment of liner parts in argon atmosphere. Every crevice, opening and passageway provided with argon-rich environment. Weld defects and oxidation dramatically reduced; also welding time reduced.

  14. Alternating-Polarity Arc Welding

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1987-01-01

    Brief reversing polarity of welding current greatly improves quality of welds. NASA technical memorandum recounts progress in art of variable-polarity plasma-arc (VPPA) welding, with emphasis on welding of aluminum-alloy tanks. VPPA welders offer important advantages over conventional single-polarity gas/tungsten arc welders.

  15. Vacuum Gas Tungsten Arc Welding

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  16. Multi-Canister overpack ultrasonic examination of closure weld

    SciTech Connect

    SMITH, K.E.

    1998-11-03

    The method used for non-destructive examination of the closure weld must provide adequate assurance that the weld is structurally sound for the pressure and lifting loads to be imposed, and must be consistent with NRC equivalency requirements established for the SNF Project. Given the large flaw size that would need to exist before the structural integrity of the weld is challenged, liquid penetrant testing of the root and final passes provides adequate assurance of weld quality to meet structural loads. In addition, the helium leak test provides confirmation that the containment boundary is intact and leaktight. While UT examination does provide additional evidence of weld integrity, the value of that additional evidence for this particular application does not justify performing UT examination, given the additional financial and ALARA costs associated with performing the examination.

  17. A Lossless hybrid wavelet-fractal compression for welding radiographic images.

    PubMed

    Mekhalfa, Faiza; Avanaki, Mohammad R N; Berkani, Daoud

    2016-01-01

    In this work a lossless wavelet-fractal image coder is proposed. The process starts by compressing and decompressing the original image using wavelet transformation and fractal coding algorithm. The decompressed image is removed from the original one to obtain a residual image which is coded by using Huffman algorithm. Simulation results show that with the proposed scheme, we achieve an infinite peak signal to noise ratio (PSNR) with higher compression ratio compared to typical lossless method. Moreover, the use of wavelet transform speeds up the fractal compression algorithm by reducing the size of the domain pool. The compression results of several welding radiographic images using the proposed scheme are evaluated quantitatively and compared with the results of Huffman coding algorithm.

  18. The simple spot-welding apparatus

    NASA Astrophysics Data System (ADS)

    Hiraoka, Takeshi

    1998-07-01

    A simple spot-welding apparatus has been developed for the fabrication of stable electrodes used in the measurement of transport properties in condensed matter physics. The apparatus is especially suited for the use of brittle and small sized samples of rare-earth intermetallic compounds (REICs). The spot welding is made by a sharp pulse (150 A and several μs), generated by the precise time generation IC in a capacitor discharge circuit, to avoid breaking the sample. Stable electrodes of six 15 μ Au wires can be made on a REIC sample with length less than 1 mm.

  19. Method for welding beryllium

    SciTech Connect

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1995-12-31

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. Beryllium parts made using this method can be used as structural components in aircraft, satellites and space applications.

  20. Method for welding beryllium

    DOEpatents

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1997-04-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs.

  1. Rheomorphism of welded tuffs

    NASA Astrophysics Data System (ADS)

    Wolff, J. A.; Wright, J. V.

    1981-05-01

    Peralkaline welded tuffs from the islands of Gran Canaria, Canary Islands, and Pantelleria, Italy, show abundant evidence for post-depositional flow. It is demonstrated that rheomorphism, or secondary mass flowage, can occur in welded tuffs of ignimbrite and air-fall origin. The presence of a linear fabric is taken as the diagnostic criterion for the recognition of the process. Deposition on a slope is an essential condition for the development of rheomorphism after compaction and welding. Internal structures produced during rheomorphic flow can be studied by the methods of structural geology and show similar dispositions to comparable features in sedimentary slump sheets. It is shown that secondary flowage can occur in welded tuffs emplaced on gentle slopes, provided that the apparent viscosity of the magma is sufficiently low. Compositional factors favor the development of rheomorphism in densely welded tuffs of peralkaline type.

  2. Heat Treatment of Friction-Stir-Welded 7050 Aluminum Plates

    NASA Technical Reports Server (NTRS)

    Petter, George E.; Figert, John D.; Rybicki, Daniel J.; Burns, Timothy

    2006-01-01

    A method of heat treatment has been developed to reverse some of the deleterious effects of friction stir welding of plates of aluminum alloy 7050. This alloy is considered unweldable by arc and high-energy-density beam fusion welding processes. The alloy can be friction stir welded, but as-welded workpieces exhibit low ductility, low tensile and yield strengths, and low resistance to stress corrosion cracking. Heat treatment according to the present method increases tensile and yield strengths, and minimizes or eliminates stress corrosion cracking. It also increases ductility. This method of heat treatment is a superior alternative to a specification-required heat treatment that caused the formation of large columnar grains, which are undesired. Workpieces subjected to the prior heat treatment exhibited elongations <2 percent, and standard three-point bend specimens shattered. The development of the present heat treatment method was guided partly by the principles that (1) by minimizing grain sizes and relieving deformation stresses, one can minimize or eliminate stress corrosion cracking and (2) the key to maximizing strength and eliminating residual stresses is to perform post-weld solution heating for as long a time as possible while incurring little or no development of large columnar grains in friction stir weld nuggets. It is necessary to perform some of the solution heat treatment (to soften the alloy and improve machine welding parameters) before welding. The following is an example of thickness- dependent pre- and post-weld heat treatments according to the present method: For plates 0.270 in. (approx.6.86 mm) thick milled from plates 4.5 in. (114.3 mm) thick, perform pre-weld solution heating at 890 F (477 C) for 1 hour, then cool in air. After friction stir welding, perform solution heating for 10 minutes, quench, hold at room temperature for 96 hours, then age at 250 F (121 C) for 5 hours followed by 325 F (163 C) for 27 hours.

  3. Grinding Parts For Automatic Welding

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.; Hoult, William S.

    1989-01-01

    Rollers guide grinding tool along prospective welding path. Skatelike fixture holds rotary grinder or file for machining large-diameter rings or ring segments in preparation for welding. Operator grasps handles to push rolling fixture along part. Rollers maintain precise dimensional relationship so grinding wheel cuts precise depth. Fixture-mounted grinder machines surface to quality sufficient for automatic welding; manual welding with attendant variations and distortion not necessary. Developed to enable automatic welding of parts, manual welding of which resulted in weld bead permeated with microscopic fissures.

  4. Adaptive weld control for high-integrity welding applications

    NASA Astrophysics Data System (ADS)

    Powell, Bradley W.

    Adaptive, closed-loop weld control is necessary to maintain high-integrity, zero-defect welds. Conventional weld control techniques using weld parameter feedback control loops are sufficient to maintain set points, but fall short when confronted with unexpected variations in part/tooling temperature and mechanical structure, weldment material, arc skew angle, or calibration in weld parameter feedback measurement. Modern technology allows closed-loop control utilizing input from real-time weld monitoring sensors and inspection devices. Weld puddle parameters, bead profile parameters, and weld seam position are fed back into the weld control loop which adapts for the weld condition variations and drives them back to a desired state, thereby preventing weld defects or perturbations. Parameters such as arc position relative to the weld seam, puddle symmetry, arc length, weld width, and bead shape can be extracted from sensor imagery and used in closed-loop active weld control. All weld bead and puddle measurements are available for real-time display and statistical process control analysis, after which the data is archived to permanent storage or later retrieval and analysis.

  5. Capabilities of infrared weld monitor

    SciTech Connect

    Sanders, P.G.; Keske, J.S.; Leong, K.H.; Kornecki, G.

    1997-11-01

    A non-obtrusive pre-aligned, solid-state device has been developed to monitor the primary infrared emissions during laser welding. The weld monitor output is a 100-1000 mV signal that depends on the beam power and weld characteristics. The DC level of this signal is related to weld penetration, while AC portions of the output can be correlated with surface irregularities and part misalignment or contamination. Changes in DC behavior are also noted for both full and deep penetration welds. Full penetration welds are signified by an abrupt reduction in the weld monitor output. Bead on plate welds were made on steel, aluminum, and magnesium with both a CW CO{sub 2} laser and a pulsed Nd:YAG laser to explore the relationships between the weld characteristics and the weld monitor output.

  6. Mechanical Properties, Microstructure and Crystallographic Texture of Magnesium AZ91-D Alloy Welded by Friction Stir Welding (FSW)

    NASA Astrophysics Data System (ADS)

    Kouadri-Henni, A.; Barrallier, L.

    2014-10-01

    The objective of the study was to characterize the properties of a magnesium alloy welded by friction stir welding. The results led to a better understanding of the relationship between this process and the microstructure and anisotropic properties of alloy materials. Welding principally leads to a large reduction in grain size in welded zones due to the phenomenon of dynamic recrystallization. The most remarkable observation was that crystallographic textures appeared from a base metal without texture in two zones: the thermo-mechanically affected and stir-welded zones. The latter zone has the peculiarity of possessing a marked texture with two components on the basal plane and the pyramidal plane. These characteristics disappeared in the thermo-mechanically affected zone (TMAZ), which had only one component following the basal plane. These modifications have been explained by the nature of the plastic deformation in these zones, which occurs at a moderate temperature in the TMAZ and high temperature in the SWZ.

  7. Swimming pool. View of aisle between swimming pool and seating ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Swimming pool. View of aisle between swimming pool and seating area. Non-original spa pool is partially visible on right. - Jewish Community Center of San Francisco, 3200 California Street, San Francisco, San Francisco County, CA

  8. Weld overlay coatings for erosion control

    SciTech Connect

    Levin, B.; DuPont, J.N.; Marder, A.R.

    1993-03-03

    A literature review was made. In spite of similarities between abrasive wear and solid particle erosion, weld overlay hardfacing alloys that exhibit high abrasion resistance may not necessarily have good erosion resistance. The performance of weld overlay hardfacing alloys in erosive environments has not been studied in detail. It is believed that primary-solidified hard phases such as carbides and intermetallic compounds have a strong influence on erosion resistance of weld overlay hardfacing alloys. However, relationships between size, shape, and volume fraction of hard phases in a hardfacing alloys and erosion resistance were not established. Almost all hardfacing alloys can be separated into two major groups based upon chemical compositions of the primary solidified hard phases: (a) carbide hardening alloys (Co-base/carbide, WC-Co and some Fe base superalloys); and (b) intermetallic hardening alloys (Ni-base alloys, austenitic steels, iron-aluminides).

  9. Calibration Fixture For Welding Robot

    NASA Technical Reports Server (NTRS)

    Holly, Krisztina J.

    1990-01-01

    Compact, lightweight device used in any position or orientation. Calibration fixture designed for use on robotic gas/tungsten-arc welding torch equipped with vision-based seam-tracking system. Through optics in hollow torch cylinder, video camera obtains image of weld, viewing along line of sight coaxial with welding electrode. Attaches to welding-torch cylinder in place of gas cup normally attached in use. By use of longer or shorter extension tube, fixture accommodates welding electrode of unusual length.

  10. Thermoplastic welding apparatus and method

    DOEpatents

    Matsen, Marc R.; Negley, Mark A.; Geren, William Preston; Miller, Robert James

    2017-03-07

    A thermoplastic welding apparatus includes a thermoplastic welding tool, at least one tooling surface in the thermoplastic welding tool, a magnetic induction coil in the thermoplastic welding tool and generally encircling the at least one tooling surface and at least one smart susceptor in the thermoplastic welding tool at the at least one tooling surface. The magnetic induction coil is adapted to generate a magnetic flux field oriented generally parallel to a plane of the at least one smart susceptor.

  11. Characterisation of fume from hyperbaric welding operations

    NASA Astrophysics Data System (ADS)

    Ross, John A. S.; Semple, Sean; Duffin, Rodger; Kelly, Frank; Seldmann, Joerg; Raab, Andrea

    2009-02-01

    We report preliminary work characterising dust from hyperbaric welding trials carried out at increased pressure in a helium and oxygen atmosphere. Particle size and concentration were measured during welding. Samples for quartz and metal analysis and toxicity assessment were taken from a filter in the local fume extraction system. The residue of dust after metal extraction by nitric acid in hydrogen peroxide predominantly a non-metallic white powder assumed to be dust from welding rod coatings and thermal insulation material. Metallic analysis showed predominantly calcium, from the welding rod coating, and period 4 transition metals such as iron, manganese, magnesium and titanium (inductively coupled mass spectrometry, Agilent 7500c). The presence of zirconium indicated a contribution from grinding. The fume was nanoparticulate in nature with a mean particle diameter of 20-30 nm (MSI Inc WPS 1000XP). It showed an intermediate level of oxidative potential regarding the low-molecular weight respiratory tract lining fluid antioxidants ascorbate and glutathione and caused release of the inflammatory marker IL-8 in a human lung A 549 epithelial cell culture with no indication of cytotoxicity. The study findings have strong implications for the measurement techniques needed to assess fume exposure in hyperbaric welding and the provision of respiratory protection.

  12. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    PubMed

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements welding fume. Concentrations were mainly predicted by the welding process and were significantly higher when local exhaust ventilation (LEV) was inefficient or when welding was performed in confined spaces. Substitution of high-emission techniques like FCAW, efficient LEV, and using PAPRs where applicable can reduce exposure to welding fume. However, harmonizing the different exposure metrics for UFP (as particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging.

  13. Probing Reliability of Transport Phenomena Based Heat Transfer and Fluid Flow Analysis in Autogeneous Fusion Welding Process

    NASA Astrophysics Data System (ADS)

    Bag, S.; de, A.

    2010-09-01

    The transport phenomena based heat transfer and fluid flow calculations in weld pool require a number of input parameters. Arc efficiency, effective thermal conductivity, and viscosity in weld pool are some of these parameters, values of which are rarely known and difficult to assign a priori based on the scientific principles alone. The present work reports a bi-directional three-dimensional (3-D) heat transfer and fluid flow model, which is integrated with a real number based genetic algorithm. The bi-directional feature of the integrated model allows the identification of the values of a required set of uncertain model input parameters and, next, the design of process parameters to achieve a target weld pool dimension. The computed values are validated with measured results in linear gas-tungsten-arc (GTA) weld samples. Furthermore, a novel methodology to estimate the overall reliability of the computed solutions is also presented.

  14. EFFECT OF MINOR ADDITIONS OF HYDROGEN TO ARGON SHIELDING GAS WHEN WELDING AUSTENITIC STAINLESS STEEL WITH THE GTAW PROCESS

    SciTech Connect

    CANNELL, G.R.

    2004-12-15

    This paper provides the technical basis to conclude that the use of hydrogen containing shielding gases during welding of austenitic stainless steels will not lead to hydrogen induced cracking (HIC) of the weld or weld heat affected zone. Argon-hydrogen gas mixtures, with hydrogen additions up to 35% [1], have been successfully used as the shielding gas in gas tungsten arc welding (GTAW) of austenitic stainless steels. The addition of hydrogen improves weld pool wettability, bead shape control, surface cleanliness and heat input. The GTAW process is used extensively for welding various grades of stainless steel and is preferred when a very high weld quality is desired, such as that required for closure welding of nuclear materials packages. The use of argon-hydrogen gas mixtures for high-quality welding is occasionally questioned, primarily because of concern over the potential for HIC. This paper was written specifically to provide a technical basis for using an argon-hydrogen shielding gas in conjunction with the development, at the Savannah River Technology Center (SRTC), of an ''optimized'' closure welding process for the DOE standardized spent nuclear fuel canister [2]. However, the basis developed here can be applied to other applications in which the use of an argon-hydrogen shielding gas for GTAW welding of austenitic stainless steels is desired.

  15. Possible implication of sterile connecting device in contamination of pooled platelet concentrates.

    PubMed

    Mertens, G; Muylle, L; Goossens, H

    1997-09-01

    Considering the possibility that a pooled random donor platelet concentrate could become contaminated by welding with a sterile connecting device, we undertook a study to determine the influence of pooling on the contamination rate. As a control group, apheresis platelets were examined. Bacteriological testing was done with a sensitive CO2 detecting culture system, the BacT/ Alert. Out of 1105 pooled platelet concentrates prepared by the buffy coat method, 15 (1.4%) were confirmed as contaminated, all with Staphylococcus epidermidis and two with a second bacterial species, i.e. Staphylococcus capitis and Propionibacterium acnes, respectively. Median detection time by the BacT/Alert was 23 h. Twelve pools of five units were contaminated, which is significantly more than the three contaminated pools of four units. On the other hand, the reuse of the welding wafers proved not be a risk factor for contamination. One welded tubing segment of a contaminated platelet concentrate failed the air leakage test, an incident which was 73 times more frequent than with the sterile platelet concentrates. We found five pooled platelet concentrates containing Staphylococci from which no bacteria could be grown from the individual buffy coats that had been pooled. We suggest the contamination here to have occurred after separation of the buffy coat from the whole blood, possibly during the welding process. Finally, none out of 378 apheresis platelet concentrates was contaminated. All our observations highlight the potential risk for contamination when making pooled platelet concentrates with a sterile connecting device. For this type of transfusion product, we advocate bacteriological screening of all units before release. The incubation time for the sterility test should, however, be limited to 36 h, if logistical problems with the availability of platelets are to be avoided.

  16. Weld analysis and control system

    NASA Technical Reports Server (NTRS)

    Kennedy, Larry Z. (Inventor); Rodgers, Michael H. (Inventor); Powell, Bradley W. (Inventor); Burroughs, Ivan A. (Inventor); Goode, K. Wayne (Inventor)

    1994-01-01

    The invention is a Weld Analysis and Control System developed for active weld system control through real time weld data acquisition. Closed-loop control is based on analysis of weld system parameters and weld geometry. The system is adapted for use with automated welding apparatus having a weld controller which is capable of active electronic control of all aspects of a welding operation. Enhanced graphics and data displays are provided for post-weld analysis. The system provides parameter acquisition, including seam location which is acquired for active torch cross-seam positioning. Torch stand-off is also monitored for control. Weld bead and parent surface geometrical parameters are acquired as an indication of weld quality. These parameters include mismatch, peaking, undercut, underfill, crown height, weld width, puddle diameter, and other measurable information about the weld puddle regions, such as puddle symmetry, etc. These parameters provide a basis for active control as well as post-weld quality analysis and verification. Weld system parameters, such as voltage, current and wire feed rate, are also monitored and archived for correlation with quality parameters.

  17. Thermomechanically coupled conduction mode laser welding simulations using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Hu, Haoyue; Eberhard, Peter

    2016-10-01

    Process simulations of conduction mode laser welding are performed using the meshless Lagrangian smoothed particle hydrodynamics (SPH) method. The solid phase is modeled based on the governing equations in thermoelasticity. For the liquid phase, surface tension effects are taken into account to simulate the melt flow in the weld pool, including the Marangoni force caused by a temperature-dependent surface tension gradient. A non-isothermal solid-liquid phase transition with the release or absorption of additional energy known as the latent heat of fusion is considered. The major heat transfer through conduction is modeled, whereas heat convection and radiation are neglected. The energy input from the laser beam is modeled as a Gaussian heat source acting on the initial material surface. The developed model is implemented in Pasimodo. Numerical results obtained with the model are presented for laser spot welding and seam welding of aluminum and iron. The change of process parameters like welding speed and laser power, and their effects on weld dimensions are investigated. Furthermore, simulations may be useful to obtain the threshold for deep penetration welding and to assess the overall welding quality. A scalability and performance analysis of the implemented SPH algorithm in Pasimodo is run in a shared memory environment. The analysis reveals the potential of large welding simulations on multi-core machines.

  18. Novel low-cost vision-sensing technology with controllable of exposal time for welding

    NASA Astrophysics Data System (ADS)

    Zhang, Wenzeng; Wang, Bin; Chen, Nian; Cao, Yipeng

    2005-02-01

    In the process of robot Welding, position of welding seam and welding pool shape is detected by CCD camera for quality control and seam tracking in real-time. It is difficult to always get a clear welding image in some welding methods, such as TIG welding. A novel idea that the exposal time of CCD camera is automatically controlled by arc voltage or arc luminance is proposed to get clear welding image. A set of special device and circuits are added to a common industrial CCD camera in order to flexibly control the CCD to start or close exposal by control of the internal clearing signal of the accumulated charge. Two special vision sensors according to the idea are developed. Their exposal grabbing can be triggered respectively by the arc voltage and the variety of the arc luminance. Two prototypes have been designed and manufactured. Experiments show that they can stably grab clear welding images at appointed moment, which is a basic for the feedback control of automatic welding.

  19. Pools for the Handicapped.

    ERIC Educational Resources Information Center

    American School and University, 1979

    1979-01-01

    Three institutions in Ohio now stress hydrotherapy and water recreation as important parts of individual educational programs for the handicapped. Specially designed and adapted pools provide freedom of movement and ego building as well as physical education and recreation. (Author)

  20. Vitamin D Pooling Project

    Cancer.gov

    The Vitamin D Pooling Project of Rarer Cancers brought together investigators from 10 cohorts to conduct a large prospective epidemiologic study of the association between vitamin D status and seven rarer cancers.

  1. Swimming Pool Chemistry Teaching.

    ERIC Educational Resources Information Center

    Harding, Jennifer

    1994-01-01

    Outlines a strategy for the teaching of equilibrium in a poolside atmosphere. Illustrates the practical application of knowledge about equilibrium as demonstrated by pool staff as they satisfy the needs of both the swimmers and local health inspectors. (DDR)

  2. Solidification microstructures in single-crystal stainless steel melt pools

    SciTech Connect

    Sipf, J.B.; Boatner, L.A.; David, S.A.

    1994-03-01

    Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. These results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.

  3. Defect detection in partially completed SAW and TIG welds using online radioscopy and image processing

    NASA Astrophysics Data System (ADS)

    Bonser, Gary R.; Lawson, Shaun W.

    1998-03-01

    An application of machine vision applied to the analysis of radioscopic images of incomplete weld geometries is described. The rationale of the work is to identify weld defects as soon as they are produced, thereby reducing the costs of any subsequent repairs. Existing methods of weld and defect identification are compared, leading to the development of filtering and 'window' based variance operator for segmentation of suspect defect areas inside the weld region is described. The software and radioscopic imaging system have been benchmarked through a series of demonstration trials on both 80 mm thick carbon steel submerged arc welded testpieces, and 25mm thick carbon steel tungsten inert gas welded testpieces. The range of intentionally implanted defects, from root cracks to lack of side wall fusion, were detected with an overall accuracy of 87 percent, and classified in terms of defect size, shape, and position within the weld region.

  4. Annual report, FY 1979 Spent fuel and fuel pool component integrity.

    SciTech Connect

    Johnson, A.B. Jr.; Bailey, W.J.; Schreiber, R.E.; Kustas, F.M.

    1980-05-01

    International meetings under the BEFAST program and under INFCE Working Group No. 6 during 1978 and 1979 continue to indicate that no cases of fuel cladding degradation have developed on pool-stored fuel from water reactors. A section from a spent fuel rack stand, exposed for 1.5 y in the Yankee Rowe (PWR) pool had 0.001- to 0.003-in.-deep (25- to 75-..mu..m) intergranular corrosion in weld heat-affected zones but no evidence of stress corrosion cracking. A section of a 304 stainless steel spent fuel storage rack exposed 6.67 y in the Point Beach reactor (PWR) spent fuel pool showed no significant corrosion. A section of 304 stainless steel 8-in.-dia pipe from the Three Mile Island No. 1 (PWR) spent fuel pool heat exchanger plumbing developed a through-wall crack. The crack was intergranular, initiating from the inside surface in a weld heat-affected zone. The zone where the crack occurred was severely sensitized during field welding. The Kraftwerk Union (Erlangen, GFR) disassembled a stainless-steel fuel-handling machine that operated for 12 y in a PWR (boric acid) spent fuel pool. There was no evidence of deterioration, and the fuel-handling machine was reassembled for further use. A spent fuel pool at a Swedish PWR was decontaminated. The procedure is outlined in this report.

  5. Laser Welding of Copper Using Multi Mode Fiber Lasers at Near Infrared Wavelength

    NASA Astrophysics Data System (ADS)

    Liebl, S.; Wiedenmann, R.; Ganser, A.; Schmitz, P.; Zaeh, M. F.

    Due to the increasing electrification of automotive drives and the expansion of decentralized renewable energygeneration, the consumption of copper for the fabrication of electrical components such as electric motors or conducting paths increases. To jointhese components, laser welding is more frequently used since it represents a flexible and fully automatable joining process. Because of the high thermal conductivity, the low absorption coefficient forinfrared wavelength of common laser beam sources and the resulting limited process efficiency, welding of copper alloys represents a major challenge for laser assisted processes. In this paper, experimental investigationsare presented to identify arising process limits during laser welding of pure copper materials with multi-mode fiber lasers at near infrared wavelength depending on the applied laser power and welding velocity. In addition, a potential stabilization of the welding process by shielding gas support was examined. Further investigations were focused on the influence of shielding gas on the molten pool geometry.

  6. Effects of SO/sub 2/ shielding gas additions on GTA weld shape

    SciTech Connect

    Heiple, C.R.; Burgardt, P.

    1985-06-01

    Substantial increases in GTA weld depth/width ratio resulted from small additions of sulfur dioxide (SO/sub 2/) to the torch shielding gas when welding two stainless steels. The improvement was demonstrated on both Types 304 and 21-6-9 austenitic stainless steels, but would be expected for iron-base alloys generally. The weld pool shape achieved was essentially independent of variations in both SO/sub 2/ content of the torch gas and base metal composition when SO/sub 2/ in the shielding gas was in the range of 500 to 1400 ppm. With 700 ppm SO/sub 2/ in the torch gas, less than 30 ppm sulfur was added to an autogenous weld bead. For alloys where this additional sulfur can be tolerated and appropriate measures can be taken to handle the toxic SO/sub 2/, this technique offers a promising way to improve GTA weld joint penetration while suppressing variable penetration.

  7. Robotics for welding research

    SciTech Connect

    Braun, G.; Jones, J.

    1984-09-01

    The welding metallurgy research and education program at Colorado School of Mines (CSM) is helping industries make the transition toward automation by training students in robotics. Industry's interest is primarily in pick and place operations, although robotics can increase efficiency in areas other than production. Training students to develop fully automated robotic welding systems will usher in new curriculum requirements in the area of computers and microprocessors. The Puma 560 robot is CSM's newest acquisition for welding research 5 references, 2 figures, 1 table.

  8. Solar array welding developement

    NASA Technical Reports Server (NTRS)

    Elms, R. V., Jr.

    1974-01-01

    The present work describes parallel gap welding as used for joining solar cells to the cell interconnect system. Sample preparation, weldable cell parameter evaluation, bond scheduling, bond strength evaluation, and bonding and thermal shock tests are described. A range of weld schedule parameters - voltage, time, and force - can be identified for various cell/interconnect designs that will provide adequate bond strengths and acceptably small electrical degradation. Automation of solar array welding operations to a significant degree has been achieved in Europe and will be receiving increased attention in the U.S. to reduce solar array fabrication costs.

  9. Thermal stir welding process

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2012-01-01

    A welding method is provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  10. APPARATUS FOR ARC WELDING

    DOEpatents

    Lingafelter, J.W.

    1960-04-01

    An apparatus is described in which a welding arc created between an annular electrode and a workpiece moves under the influence of an electromagnetic field about the electrode in a closed or annular path. This mode of welding is specially suited to the enclosing of nuclear-fuel slugs in a protective casing. For example, a uranium slug is placed in an aluminum can, and an aluminum closure is welded to the open end of the can along a closed or annular path conforming to the periphery of the end closure.

  11. Thermal stir welding apparatus

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2011-01-01

    A welding method and apparatus are provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  12. Weld Wire Investigation Summary

    SciTech Connect

    Cunningham, M.A.

    1999-03-22

    After GTA welding reservoir A production/process prove-in assemblies, X-ray examination detected a lack of sidewall fusion. After examining several possible causes, it was determined that the weld wire filler metal was responsible, particularly the wire cleaning process. The final conclusion was that the filler wire must be abrasively cleaned in a particular manner to perform as required. The abrasive process was incorporated into the wire material specification, ensuring consistency for all reservoir GTA welding at AlliedSignal Federal Manufacturing and Technologies (FM and T).

  13. Exploring infrared sensoring for real time welding defects monitoring in GTAW.

    PubMed

    Alfaro, Sadek C A; Franco, Fernand Díaz

    2010-01-01

    This paper presents an evaluation of an infrared sensor for monitoring the welding pool temperature in a Gas Tungsten Arc Welding (GTAW) process. The purpose of the study is to develop a real time system control. It is known that the arc welding pool temperature is related to the weld penetration depth; therefore, by monitoring the temperature, the arc pool temperature and penetration depth are also monitored. Various experiments were performed; in some of them the current was varied and the temperature changes were registered, in others, defects were induced throughout the path of the weld bead for a fixed current. These simulated defects resulted in abrupt changes in the average temperature values, thus providing an indication of the presence of a defect. The data has been registered with an acquisition card. To identify defects in the samples under infrared emissions, the timing series were analyzed through graphics and statistic methods. The selection of this technique demonstrates the potential for infrared emission as a welding monitoring parameter sensor.

  14. Exploring Infrared Sensoring for Real Time Welding Defects Monitoring in GTAW

    PubMed Central

    Alfaro, Sadek C. A.; Franco, Fernand Díaz

    2010-01-01

    This paper presents an evaluation of an infrared sensor for monitoring the welding pool temperature in a Gas Tungsten Arc Welding (GTAW) process. The purpose of the study is to develop a real time system control. It is known that the arc welding pool temperature is related to the weld penetration depth; therefore, by monitoring the temperature, the arc pool temperature and penetration depth are also monitored. Various experiments were performed; in some of them the current was varied and the temperature changes were registered, in others, defects were induced throughout the path of the weld bead for a fixed current. These simulated defects resulted in abrupt changes in the average temperature values, thus providing an indication of the presence of a defect. The data has been registered with an acquisition card. To identify defects in the samples under infrared emissions, the timing series were analyzed through graphics and statistic methods. The selection of this technique demonstrates the potential for infrared emission as a welding monitoring parameter sensor. PMID:22219697

  15. Specs add confidence in use of wet welding. [Underwater welding

    SciTech Connect

    Not Available

    1984-02-01

    Underwater wet welding can now be utilized with the same confidence as dry welding, provided certain guidelines are followed. A new electrode is discussed that has been delivering exceptionally high quality welds by a diving firm in Houston. With the issuance of the American Welding Society's specifications (ANS/LAWS D3.6-83) much of the confusion surrounding underwater welding should be eliminated. The new specifications establish the levels of quality for underwater welding and gives everyone in the business a common language.

  16. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    SciTech Connect

    Mazumder, Baishakhi; Yu, Xinghua; Edmondson, Philip D.; Parish, Chad M.; Miller, Michael K; Meyer, H. M.; Feng, Zhili

    2015-12-08

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygenenriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the size of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.

  17. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    NASA Astrophysics Data System (ADS)

    Mazumder, B.; Yu, X.; Edmondson, P. D.; Parish, C. M.; Miller, M. K.; Meyer, H. M.; Feng, Z.

    2016-02-01

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygen-enriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the size of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.

  18. Underwater wet welding of steel

    SciTech Connect

    Ibarra, S.; Liu, S.; Olson, D.L.

    1995-05-01

    Underwater wet welding is conducted directly in water with the shielded metal arc (SMA) and flux cored arc (FCA) welding processes. Underwater wet welding has been demonstrated as an acceptable repair technique down to 100 meters (325 ft.) in depth, but wet welds have been attempted on carbon steel structures down to 200 meters (650 ft.). The primary purpose of this interpretive report is to document and evaluate current understanding of metallurgical behavior of underwater wet welds so that new welding consumables can be designed and new welding practices can be developed for fabrication and repair of high strength steel structures at greater depths. First the pyrometallurgical and physical metallurgy behaviors of underwater weldments are discussed. Second, modifications of the welding consumables and processes are suggested to enhance the ability to apply wet welding techniques.

  19. Performance Study of Swimming Pool Heaters

    SciTech Connect

    McDonald, R.J.

    2009-01-01

    The objective of this report is to perform a controlled laboratory study on the efficiency and emissions of swimming pool heaters based on a limited field investigation into the range of expected variations in operational parameters. Swimming pool heater sales trends have indicated a significant decline in the number of conventional natural gas-fired swimming pool heaters (NGPH). On Long Island the decline has been quite sharp, on the order of 50%, in new installations since 2001. The major portion of the decline has been offset by a significant increase in the sales of electric powered heat pump pool heaters (HPPH) that have been gaining market favor. National Grid contracted with Brookhaven National Laboratory (BNL) to measure performance factors in order to compare the relative energy, environmental and economic consequences of using one technology versus the other. A field study was deemed inappropriate because of the wide range of differences in actual load variations (pool size), geographic orientations, ground plantings and shading variations, number of hours of use, seasonal use variations, occupancy patterns, hour of the day use patterns, temperature selection, etc. A decision was made to perform a controlled laboratory study based on a limited field investigation into the range of expected operational variations in parameters. Critical to this are the frequency of use, temperature selection, and sizing of the heater to the associated pool heating loads. This would be accomplished by installing a limited amount of relatively simple compact field data acquisition units on selected pool installations. This data included gas usage when available and alternately heater power or gas consumption rates were inferred from the manufacturer's specifications when direct metering was not available in the field. Figure 1 illustrates a typical pool heater installation layout.

  20. Fiber Laser Welded AZ31 Magnesium Alloy: The Effect of Welding Speed on Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Chowdhury, S. H.; Chen, D. L.; Bhole, S. D.; Powidajko, E.; Weckman, D. C.; Zhou, Y.

    2012-06-01

    This study was aimed at characterizing microstructural change and evaluating tensile and fatigue properties of fiber laser welded AZ31B-H24 Mg alloy with special attention to the effect of welding speed. Laser welding led to the formation of equiaxed dendrites in the fusion zone and columnar dendrites near the fusion zone boundary along with divorced eutectic Mg17Al12 particles and recrystallized grains in the heat-affected zone. The lowest hardness across the weld appeared in the fusion zone. Although the yield strength, ductility, and fatigue life decreased, the hardening capacity increased after laser welding, with a joint efficiency reaching about 90 pct. A higher welding speed resulted in a narrower fusion zone, smaller grain size, higher yield strength, and longer fatigue life, as well as a slightly lower strain-hardening capacity mainly because of the smaller grain sizes. Tensile fracture occurred in the fusion zone, whereas fatigue failure appeared essentially in between the heat-affected zone and the fusion zone. Fatigue cracks initiated from the near-surface welding defects and propagated by the formation of fatigue striations together with secondary cracks.

  1. Surface preparation effects on GTA (gas tungsten arc) weld penetration in JBK-75 stainless steel

    SciTech Connect

    Campbell, R.D.; Heiple, C.R.; Sturgill, P.L.; Robertson, A.M.; Jamsay, R.

    1989-01-01

    The results of a study are reported here on the effects of surface preparation on the shape of GTA welds on JBK-75, an austenitic precipitation hardenable stainless steel similar to A286. Minor changes in surface (weld groove) preparation produced substantial changes in the penetration characteristics and welding behavior of this alloy. Increased and more consistent weld penetration (higher d/w ratios) along with improved arc stability and less arc wander result from wire brushing and other abrasive surface preparations, although chemical and machining methods did not produce any improvement in penetration. Abrasive treatments roughen the surface, increase the surface area, and increase the surface oxide thickness. The increased weld d/w ratio is attributed to oxygen added to the weld pool from the surface oxide on the base metal. The added oxygen alters the surface-tension driven fluid flow pattern in the weld pool. Similar results were observed with changes in filler wire surface oxide thickness, caused by changes in wire production conditions. 15 refs., 14 figs., 4 tabs.

  2. Simulation of weld solidification microstructure and its coupling to the macroscopic heat and fluid flow modelling

    NASA Astrophysics Data System (ADS)

    Pavlyk, Vitaliy; Dilthey, Ulrich

    2004-01-01

    The microstructure exerts a strong influence on the mechanical properties and on the integrity of welded joints. Prediction of the formation of the microstructure during welding and of other solidification processes may be an important and supporting factor for technology optimization. Nowadays, increasing computing power allows direct simulations of the dendritic and cell morphology of columnar grains in the molten zone for specific temperature conditions. Modelling is carried out, on the one hand, with the finite difference—cellular automata and, on the other hand, with the phase field method. Determination of the solidification conditions during fusion welding (temperature gradient, local solidification rate, weld pool shape) is carried out with a numerical macroscopic finite element modelling calculation of the weld pool fluid flow and of the temperature distribution, as presented in this paper. As with the use of accurate physical models, the simulations are carried out with a spatial resolution of the microstructure, and many assumptions and restrictions from traditional, analytical or phenomenological models may be eliminated. The possibilities of using numerical algorithms for generation and visualization of microstructure formation during solidification are demonstrated. The spectrum of applications extends from welding and casting to processes with rapid solidification. In particular, computer simulations of the solidification conditions and the formation of a dendritic morphology during the directional solidification in gas-tungsten-arc welding are described. Moreover, the simulation results are compared with the experimental findings.

  3. Numerical simulation of full-penetration laser beam welding of thick aluminium plates with inductive support

    NASA Astrophysics Data System (ADS)

    Bachmann, Marcel; Avilov, Vjaceslav; Gumenyuk, Andrey; Rethmeier, Michael

    2012-01-01

    A three-dimensional laminar steady-state numerical model was developed to investigate the influence of an alternating current (ac) magnetic field during high-power full-penetration laser welding on the weld pool dynamics and weld cross section of a 20 mm thick aluminium plate in flat position. Three-dimensional heat transfer, fluid dynamics including phase transition and electromagnetic field partial differential equations were solved iteratively with the commercial finite element software COMSOL Multiphysics using temperature-dependent material properties up to evaporation temperature. Thermocapillary convection at the weld pool surfaces, natural convection and latent heat of solid-liquid phase transition were taken into account in this model. Solidification was modelled by the Carman-Kozeny equation for porous media morphology. The ac magnet was mounted on the root side of the weld specimen. The magnetic field was aligned perpendicular to the welding direction. The flow pattern in the melt and thus also the temperature distribution were significantly changed by the application of oscillating magnetic fields. It was shown that the application of an ac magnetic field to laser beam welding allows for a prevention of the gravity drop-out. The simulation results are in good qualitative agreement with the experimental observations.

  4. Eddy current inspection of weld defects in tubing

    NASA Technical Reports Server (NTRS)

    Katragadda, G.; Lord, W.

    1992-01-01

    An approach using differential probes for the inspection of weld defects in tubing is studied. Finite element analysis is used to model the weld regions and defects. Impedance plane signals are predicted for different weld defect types and compared wherever possible with signals from actual welds in tubing. Results show that detection and sizing of defects in tubing is possible using differential eddy current techniques. The phase angle of the impedance plane trajectory gives a good indication of the sizing of the crack. Data on the type of defect can be obtained from the shape of the impedance plane trajectory and the phase. Depending on the skin depth, detection of outer wall, inner wall, and subsurface defects is possible.

  5. The hydrology of natural and artificial bog pools

    NASA Astrophysics Data System (ADS)

    Holden, Joseph; Turner, Ed; McKenzie, Rebecca; Baird, Andy; Billett, Mike; Chapman, Pippa; Dinsmore, Kerry; Dooling, Gemma

    2016-04-01

    Twelve bog pools were monitored over a 3.5-year period (2012-2015) in the Cross Lochs blanket peatland in the Flow Country of northern Scotland. Six pools were located in a natural pool complex while the other six were in an adjacent area where the peat had been ditched in the 1970s. The ditches had been subsequently dammed with peat in 2002 resulting in dozens of artificial pools along each ditch, with one pool upslope of each dam. The natural pools ranged in area from 15 m2 to 850 m2, while the artificial pools are a more uniform size at c.3 - 4 m2. Following a dry first summer, water levels in the 12 pools were lower throughout the subsequent winter and spring than they were in proceeding years showing strong inter-annual variability in pool levels even for winter months. Over the three year study, water level fluctuations in the natural pools were very different to those in the artificial pools. The natural pools showed subdued responses to rainfall and, after rainfall, slow falls in water level dominated by evaporation; the hydraulic conductivity of the peat was very low at depths of 30 and 50 cm below the peat surface around the pools (median values of 2.49 × 10-5 and 1.09 × 10-5 cm s-1 respectively). The artificial pools had much larger monthly interquartile ranges of water levels and a greater rise and fall of pool water level in response to each individual rainfall event compared with the natural pools. Thus the biogeochemistry and carbon cycling processes that occur within the natural pools is not likely to be replicated in the artificial pools as their hydrological behaviour is quite different. Slope position was a factor in terms of hydrological response of pools with those further downslope having higher relative water levels for longer periods of time compared to upslope pools. Thus we anticipate that local biogeochemical processes in and around bog pools may be impacted by slope position and by whether they are natural pools or artificial pools

  6. LPT. EBOR (TAN646) interior, installing reactor in STF pool ("vault"). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. EBOR (TAN-646) interior, installing reactor in STF pool ("vault"). Pressure vessel shows core barrel and outlet nozzle (next to man below) to inner duct weld, which is prepared and in position for stress relieving. Camera facing southeast. Photographer: Comiskey. Date: January 20, 1965. INEEL negative no. 65-239 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  7. Laser beam welding of Waspaloy: Characterization and corrosion behavior evaluation

    NASA Astrophysics Data System (ADS)

    Shoja Razavi, Reza

    2016-08-01

    In this work, a study on Nd:YAG laser welding of Waspaloy sheets has been made. Microstructures, phase changes and hardness of the laser joint were investigated using optical microscopy, scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD) and vickers microhardness (HV0.3). Corrosion behavior of the weldment at low temperature in 3.5%wt NaCl solution at room temperature was also investigated using open circuit potential and cyclic potentiodynamic polarization tests. Hot corrosion studies were conducted on samples in the molten salt environment (Na2SO4-60%V2O5) at 900 °C for 50 h. Results indicated that the microstructure of weld zone was mainly dendritic grown epitaxially in the direction perpendicular to the weld boundary and heat transfer. Moreover, the Ti-Mo carbide particles were observed in the structure of the weld zone and base metal. The average size of carbides formed in the base metal (2.97±0.5 μm) was larger than that of the weld zone (0.95±0.2 μm). XRD patterns of the weld zone and base metal showed that the laser welding did not alter the phase structure of the weld zone, being in γ-Ni(Cr) single phase. Microhardness profile showed that the hardness values of the weld zone (210-261 HV) were lower than that of the base metal (323-330 HV). Electrochemical and hot corrosion tests indicated that the corrosion resistance of the weld metal was greater than the base metal in both room and high temperatures.

  8. Mitigating Abnormal Grain Growth for Friction Stir Welded Al-Li 2195 Spun Formed Domes

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Russell, Carolyn

    2012-01-01

    Formability and abnormal grain growth (AGG) are the two major issues that have been encountered for Al alloy spun formed dome development using friction stir welded blanks. Material properties that have significant influence on the formability include forming range and strain hardening exponent. In this study, tensile tests were performed for two 2195 friction stir weld parameter sets at 400 F to study the effects of post weld anneal on the forming range and strain hardening exponent. It was found that the formability can be enhanced by applying a newly developed post weld anneal to heat treat the friction stir welded panels. This new post weld anneal leads to a higher forming range and much improved strain hardening exponent. AGG in the weld nugget is known to cause a significant reduction of ductility and fracture toughness. This study also investigated how AGG may be influenced by the heating rate to the solution heat treatment temperature. After post-weld annealing, friction stir welds were strained to 15% and 39% by compression at 400 F before they were subjected to SHT at 950 F for 1 hour. Salt bath SHT is very effective in reducing the grain size as it helps arrest the onset of AGG and promote normal recrystallization and grain growth. However, heat treating a 18 ft dome using a salt bath is not practical. Efforts are continuing at Marshall Space Flight Center to identify the welding parameters and heat treating parameters that can help mitigate the AGG in the friction stir welds.

  9. Microstructure and Tensile-Shear Properties of Resistance Spot Welded 22MnMoB Hot-Stamping Annealed Steel

    NASA Astrophysics Data System (ADS)

    Li, Yang; Cui, Xuetuan; Luo, Zhen; Ao, Sansan

    2017-01-01

    The present paper deals with the joining of 22MnMoB hot-stamping annealed steel carried out by the spot welding process. Microstructural characterization, microhardness testing and tensile-shear testing were conducted. The effects of the welding parameters, including the electrode tip diameter, welding current, welding time and electrode force upon the tensile-shear properties of the welded joints, were investigated. The results showed that a weld size of 9.6 mm was required to ensure pullout failure for the 1.8 -mm-thick hot-stamping annealed steel sheet. The welding current had the largest influence upon the tensile-shear properties of the 22MnMoB steel welded joint. The bulk resistance should play an important role in the nugget formation. In pullout failure mode, failure was initiated at the heat-affected zone, where softening occurs owing to the tempering of martensite.

  10. Customized orbital welding meets the challenge of titanium welding

    SciTech Connect

    1996-12-01

    Titanium has emerged as the material of choice for tubing used in surface condensers around the world in both new and retrofit configurations. A major worldwide supplier of steam surface condensers to the electric utility industry, Senior Engineering is finding an increased use of titanium tubes and tube sheets in condenser specifications. When compared to other alloys, titanium`s light weight is efficient in design, handling, transportation and installation activities. Additionally, it maintains a stable price structure. Senior Engineering implements an orbital welding process using fusion gas tungsten arc welding (GTAW) for its titanium tube-to-tube sheet welding. Orbital welding involves the use of a welding apparatus placed inside a tube or pipe to automatically and precisely weld a 360-deg joint. When welding manually, a welder stops several times during the weld due to the large amount of time and fatigue involved in achieving 360-deg welds, which results in lack of fusion. An automated orbital welding system, however, can accomplish the task as one continuous weld. This reduces process time and decreases lack of fusion. The orbital welding systems, featuring a microprocessor-based controller, an inverter-based power supply, an expandable mandrel and a customized torch shroud, reduced welding labor by 35%. The improved labor efficiency justified the addition of two more of the systems in January 1996.

  11. Weld failure detection

    DOEpatents

    Pennell, William E.; Sutton, Jr., Harry G.

    1981-01-01

    Method and apparatus for detecting failure in a welded connection, particrly applicable to not readily accessible welds such as those joining components within the reactor vessel of a nuclear reactor system. A preselected tag gas is sealed within a chamber which extends through selected portions of the base metal and weld deposit. In the event of a failure, such as development of a crack extending from the chamber to an outer surface, the tag gas is released. The environment about the welded area is directed to an analyzer which, in the event of presence of the tag gas, evidences the failure. A trigger gas can be included with the tag gas to actuate the analyzer.

  12. Friction stir welding tool

    DOEpatents

    Tolle; Charles R. , Clark; Denis E. , Barnes; Timothy A.

    2008-04-15

    A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

  13. Neutral polypropylene laser welding

    NASA Astrophysics Data System (ADS)

    Mandolfino, Chiara; Lertora, Enrico; Gambaro, Carla

    2016-10-01

    The joining of polymeric materials is a technology used in many industrial applications, from transport to telecommunications and the medical sector. A new technology for the joining of polymers is the laser welding process. In particular, fibre laser welding is a flexible technology which allows high process speed and the realization of good quality joints. Despite its application becoming more widespread in the production of assemblies of high precision, the application of laser technology for the welding of polymers has not been the subject of many studies up to now. This study focused on the welding of neutral polypropylene. The window process parameter was identified, without the use of additives to increase radiation absorption, and a mechanical characterization was conducted in order to evaluate the quality of the joints realized.

  14. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, D.W.; Johnson, J.A.; Smartt, H.B.

    1987-12-15

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder is disclosed. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws. 5 figs.

  15. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, Donald W.; Johnson, John A.; Smartt, Herschel B.

    1987-01-01

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  16. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, D.W.; Johnson, J.A.; Smartt, H.B.

    1985-09-04

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  17. Friction Stir Weld Tools

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)

    2007-01-01

    A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.

  18. Friction stir weld tools

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)

    2007-01-01

    A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.

  19. Evaluation of Superplastic Forming and Weld-brazing for Fabrication of Titanium Compression Panels

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Bales, T. T.; Davis, R. C.

    1985-01-01

    The two titanium processing procedures, superplastic forming and weld brazing, are successfully combined to fabricate titanium skin stiffened structural panels. Stiffeners with complex shapes are superplastically formed using simple tooling. These stiffeners are formed to the desired configuration and required no additional sizing or shaping following removal from the mold. The weld brazing process by which the stiffeners are attached to the skins utilize spot welds to maintain alignment and no additional tooling is required for brazing. The superplastic formed/weld brazed panels having complex shaped stiffeners develop up to 60 percent higher buckling strengths than panels with conventional shaped stiffeners. The superplastic forming/weld brazing process is successfully scaled up to fabricate full size panels having multiple stiffeners. The superplastic forming/weld brazing process is also successfully refined to show its potential for fabricating multiple stiffener compression panels employing unique stiffener configurations for improved structural efficiency.

  20. Modification of cellulose and rutile welding electrode coating by infiltrated TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Balos, Sebastian; Sidjanin, Leposava; Dramicanin, Miroslav; Labus, Danka; Pilic, Branka; Jovicic, Mirjana

    2016-05-01

    In this paper, a novel method of infiltration of TiO2 nanoparticles into the coating of the cellulose and rutile shielded metal arc welding electrode is shown. Tensile properties and strength of weld metals were correlated to the chemical composition of the weld metals, ferrite type, and non-metallic inclusion type, size and composition. As infiltration time is increased in the cellulose electrodes, the non-metallic inclusion count increases and their size decreases. They act as inoculants and lead to the replacement of Widmanstaetten with the finegrained acicular ferrite which increases the mechanical properties of the welds. The modification of rutile electrodes with low and medium infiltration time also refines the microstructure and increases the mechanical properties. Specimens welded with rutile electrodes infiltrated at maximum duration exhibited the lowest mechanical properties due to the relatively large non-metallic inclusions that act as void nucleation sites and the appearance of large grain allotriomorphic ferrite in the weld metal.

  1. Analysis of ripple formation in single crystal spot welds

    NASA Technical Reports Server (NTRS)

    Rappaz, M.; Corrigan, D.; Boatner, L. A.

    1997-01-01

    Stationary spot welds have been made at the (001) surface of Fe-l5%Ni-15%Cr single crystals using a Gas Tungsten Arc (GTA). On the top surface of the spot welds, very regular and concentric ripples were observed after solidification by differential interference color microscopy. Their height (typically 1--5 micrometers and spacing, typically approximately 60 micrometers) decreased with the radius of the pool. These ripples were successfully accounted for in terms of capillary-wave theory using the fundamental mode frequency f(sub 0) given by the first zero of the zero-order Bessel function. The spacing d between the ripples was then equated to v(sub s)/f(sub 0), where v(sub s) is the solidification rate. From the measured ripple spacing, the velocity of the pool was deduced as a function of the radius, and this velocity was in good agreement with the results of a heat-flow simulation.

  2. Characterization of the Microstructures and the Cryogenic Mechanical Properties of Electron Beam Welded Inconel 718

    NASA Astrophysics Data System (ADS)

    Kwon, Soon Il; Bae, Sang Hyun; Do, Jeong Hyeon; Jo, Chang Yong; Hong, Hyun Uk

    2016-02-01

    The microstructures and the cryogenic mechanical properties of electron beam (EB) welds between cast and forged Inconel 718 superalloys with a thickness of 10 mm were investigated in comparison with gas tungsten arc (GTA) welds. EB welding with a heat input lower than 250 J/mm caused the formation of liquation microfissuring in the cast-side heat-affected-zone (HAZ) of the EB welds. HAZ liquation microfissuring appeared to be associated with the constitutional liquation of primary NbC carbides at the grain boundaries. Compared with the GTA welding process, the EB welding produced welds with superior microstructure, exhibiting fine dendritic structure associated with the reduction in size and fraction of the Laves phase due to the rapid cooling rate. This result was responsible for the superior mechanical properties of the EB welds at 77 K (-196 °C). Laves particles in both welds were found to provide the preferential site for the crack initiation and propagation, leading to a significant decrease in the Charpy impact toughness at 77 K (-196 °C). Crack initiation and propagation induced by Charpy impact testing were discussed in terms of the dendrite arm spacing, the Laves size and the dislocation structure ahead of the crack arisen from the fractured Laves phase in the two welds.

  3. Automatic Welding System

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Robotic welding has been of interest to industrial firms because it offers higher productivity at lower cost than manual welding. There are some systems with automated arc guidance available, but they have disadvantages, such as limitations on types of materials or types of seams that can be welded; susceptibility to stray electrical signals; restricted field of view; or tendency to contaminate the weld seam. Wanting to overcome these disadvantages, Marshall Space Flight Center, aided by Hayes International Corporation, developed system that uses closed-circuit TV signals for automatic guidance of the welding torch. NASA granted license to Combined Technologies, Inc. for commercial application of the technology. They developed a refined and improved arc guidance system. CTI in turn, licensed the Merrick Corporation, also of Nashville, for marketing and manufacturing of the new system, called the CT2 Optical Trucker. CT2 is a non-contracting system that offers adaptability to broader range of welding jobs and provides greater reliability in high speed operation. It is extremely accurate and can travel at high speed of up to 150 inches per minute.

  4. Weld radiograph enigmas

    NASA Technical Reports Server (NTRS)

    Jemian, Wartan A.

    1986-01-01

    Weld radiograph enigmas are features observed on X-ray radiographs of welds. Some of these features resemble indications of weld defects, although their origin is different. Since they are not understood, they are a source of concern. There is a need to identify their causes and especially to measure their effect on weld mechanical properties. A method is proposed whereby the enigmas can be evaluated and rated, in relation to the full spectrum of weld radiograph indications. Thie method involves a signature and a magnitude that can be used as a quantitive parameter. The signature is generated as the diference between the microdensitometer trace across the radiograph and the computed film intensity derived from a thickness scan along the corresponding region of the sample. The magnitude is the measured difference in intensity between the peak and base line values of the signature. The procedure is demonstated by comparing traces across radiographs of a weld sample before and after the introduction of a hole and by a system based on a MacIntosh mouse used for surface profiling.

  5. Investigation of Weld Pool Structure and Property Control in Pulsed Arc Welding.

    DTIC Science & Technology

    1981-03-04

    as arrows A, B and C in the schematic repre- sentations in Figure 4. The speed of the radial flow (A) during t was measured asP high as 450 mm/sec in...after each transition, therefore, are markedly more visible than the others. Measurements of the distance between these high intensity ripples then...simulations are being compared to thermocouple measurements of the temper- ature cycles and distributions within the weldment and high speed cinematographic

  6. Vernal Pool Lessons and Activities.

    ERIC Educational Resources Information Center

    Childs, Nancy; Colburn, Betsy

    This curriculum guide accompanies Certified: A Citizen's Step-by-Step Guide to Protecting Vernal Pools which is designed to train volunteers in the process of identifying vernal pool habitat so that as many of these pools as possible can be certified by the Massachusetts Natural Heritage and Endangered Species Program. Vernal pools are a kind of…

  7. METHOD OF OBTAINING AN IMPROVED WELD IN INERT ARC WELDING

    DOEpatents

    Correy, T.B.

    1962-12-11

    A method is reported for inert arc welding. An a-c welding current is applied to the workpiece and welding electrode such that the positive portion of each cycle thereof, with the electrode positive, has only sufficient energy to clean the surface of the workpiece and the negative portion of each cycle thereof, with the electrode negative, contains the energy required to weld. (AEC)

  8. Automatic Submerged ARC Welding With Metal Power Additions to Increase Productivity and Maintain Quality

    DTIC Science & Technology

    1986-06-01

    Manager of Welding Engineering PROPOSAL WELDING OF CARBON STEEL AND HY80 UTILIZING THE BULK WELDING PROCESS May 9, 1983 PREPARED BY: NEWPORT NEwS...12 joints with carbon steel and 12 with HY80 , utilizing three The joints will requirements of Benefits 1. Deposition times that different size double...of Joint Variations and Deposition Rates Filler Metal/Base Material Chemical Analyses; Carbon Steel /HIS Filler Metal/Base Material Chemical Analyses

  9. Microstructure evolution of Al/Mg butt joints welded by gas tungsten arc with Zn filler metal

    SciTech Connect

    Liu Fei; Zhang Zhaodong; Liu Liming

    2012-07-15

    Based on the idea of alloying welding seam, Gas tungsten arc welding method with pure Zn filler metal was chosen to join Mg alloy and Al alloy. The microstructures, phases, element distribution and fracture morphology of welding seams were examined. The results indicate that there was a transitional zone in the width of 80-100 {mu}m between the Mg alloy substrate and fusion zone. The fusion zone was mainly composed of MgZn{sub 2}, Zn-based solid solution and Al-based solid solution. The welding seam presented distinct morphology in different location owning to the quite high cooling rate of the molten pool. The addition of Zn metal could prevent the formation of Mg-Al intermetallics and form the alloyed welding seam during welding. Therefore, the tensile strengths of joints have been significantly improved compared with those of gas tungsten arc welded joints without Zn metal added. Highlights: Black-Right-Pointing-Pointer Mg alloy AZ31B and Al alloy 6061 are welded successfully. Black-Right-Pointing-Pointer Zinc wire is employed as a filler metal to form the alloyed welding seam. Black-Right-Pointing-Pointer An alloyed welding seam is benefit for improving of the joint tensile strength.

  10. Relationship between apposition pressure during welding and tensile strength of the acute weld

    NASA Astrophysics Data System (ADS)

    Wu, Paul J.; Walsh, Joseph T., Jr.

    2001-05-01

    Dye-assisted photothermal welding is a technique used to close wounds by thermally cross-linking collagen across apposed tissue edges. For a successful weld, not only do laser parameters have to be optimized, but also apposition of the incision has to be consistent and controlled. The objective of this study was to quantify the relationship between the applied apposition pressure (i.e., the compressive force holding the wound closed during the welding procedure divided by the area of the skin-to-skin interface) and the tensile strength of the wound following the welding procedure. By using a clamping device made of two complementary pieces, each 3 cm wide with a row of 10 equally spaced blunt wire mesh tips, the apposition pressure along a 2-cm-long incision in each albino guinea pig was quantified using a 127-micrometers -thick load cell and varied from 0-1.8 kgf/cm2. A continuous wave, Nd:YAG laser emitting 10.0 W of 1.06-micrometers radiation from a 600-micrometers -diameter fiber irradiating a 5-mm-diameter spot size was scanned across the incision in order to deliver 300 J of total energy. As the apposition pressure of the incisions was increased, the resulting tensile strength of welded skin increased in a sigmoidal manner. For this welding technique, an apposition pressure of at least 1.2 kgf/cm2 is necessary to obtain maximum weld strength of the skin (2.56+/- 0.36 kg/cm2).

  11. A study of narrow gap laser welding for thick plates using the multi-layer and multi-pass method

    NASA Astrophysics Data System (ADS)

    Li, Ruoyang; Wang, Tianjiao; Wang, Chunming; Yan, Fei; Shao, Xinyu; Hu, Xiyuan; Li, Jianmin

    2014-12-01

    This paper details a new method that combines laser autogenous welding, laser wire filling welding and hybrid laser-GMAW welding to weld 30 mm thick plate using a multi-layer, multi-pass process. A “Y” shaped groove was used to create the joint. Research was also performed to optimize the groove size and the processing parameters. Laser autogenous welding is first used to create the backing weld. The lower, narrowest part of the groove is then welded using laser wire filling welding. Finally, the upper part of the groove is welded using laser-GMAW hybrid welding. Additionally, the wire feeding and droplet transfer behaviors are observed by high speed photography. The two main conclusions from this work are: the wire is often biased towards the side walls, resulting in a lack of fusion at the joint and the creation of other defects for larger groove sizes. Additionally, this results in the droplet transfer behavior becoming unstable, leading to a poor weld appearance for smaller groove sizes.

  12. Certification of a weld produced by friction stir welding

    DOEpatents

    Obaditch, Chris; Grant, Glenn J

    2013-10-01

    Methods, devices, and systems for providing certification of friction stir welds are disclosed. A sensor is used to collect information related to a friction stir weld. Data from the sensor is compared to threshold values provided by an extrinsic standard setting organizations using a certification engine. The certification engine subsequently produces a report on the certification status of the weld.

  13. Pre-weld heat treatment improves welds in Rene 41

    NASA Technical Reports Server (NTRS)

    Prager, M.

    1968-01-01

    Cooling of Rene 41 prior to welding reduces the incidence of cracking during post-weld heat treatment. The microstructure formed during the slow cooling rate favors elevated temperature ductility. Some vestiges of this microstructure are apparently retained during welding and thus enhance strain-age crack resistance in air.

  14. Weld line detection and process control for welding automation

    NASA Astrophysics Data System (ADS)

    Yang, Sang-Min; Cho, Man-Ho; Lee, Ho-Young; Cho, Taik-Dong

    2007-03-01

    Welding has been widely used as a process to join metallic parts. But because of hazardous working conditions, workers tend to avoid this task. Techniques to achieve the automation are the recognition of joint line and process control. A CCD (charge coupled device) camera with a laser stripe was applied to enhance the automatic weld seam tracking in GMAW (gas metal arc welding). The adaptive Hough transformation having an on-line processing ability was used to extract laser stripes and to obtain specific weld points. The three-dimensional information obtained from the vision system made it possible to generate the weld torch path and to obtain information such as the width and depth of the weld line. In this study, a neural network based on the generalized delta rule algorithm was adapted to control the process of GMAW, such as welding speed, arc voltage and wire feeding speed. The width and depth of the weld joint have been selected as neurons in the input layer of the neural-network algorithm. The input variables, the width and depth of the weld joint, are determined by image information. The voltage, weld speed and wire feed rate are represented as the neurons in the output layer. The results of the neural-network learning applied to the welding are as follows: learning ratio 0.5, momentum ratio 0.7, the number of hidden layers 2 and the number of hidden units 8. They have significant influence on the weld quality.

  15. Welding structures in gas tungsten arc-welded zircaloy-4

    SciTech Connect

    Perez, T.E.; Saggese, M.E.

    1982-02-01

    Microstructures were obtained by welding tubes to end caps in fuel elements. The final joint properties are influenced by different structural elements including microstructure, porosity, and inclusions. The secondary structure found after welding is Widmanstaetten. Welding thermal cycles are inherently inhomogeneous, affecting both plate width and /beta/ primary grain. 4 refs.

  16. Study of fatigue behavior of longitudinal welded pipes

    NASA Astrophysics Data System (ADS)

    Simion, P.; Dia, V.; Istrate, B.; Hrituleac, G.; Hrituleac, I.; Munteanu, C.

    2016-08-01

    During transport and storage of the various fluids, welded pipes are subjected to cyclic loading due to pressure fluctuations that often exceed the prescribed values for normal operation. These cyclic loading can significantly reduce the life of the pipes; as a result the design should be based on the fatigue strength not only on static resistance. In general the fatigue strength of pipes is dependent by strength, pipe geometry and surface quality. In case of the electric longitudinal welded pipes, the fatigue strength is significantly limited by concentration of residual stress and the size of existing defects in the weld seam. This paper presents the fatigue behaviour of the electric welded pipes by high frequency, under conditions that simulate real operating conditions pipes. Fatigue testing was performed on welded pipes made of micro alloyed carbon steels. Some of these pipes were previously subjected to a heat treatment of normalization, in order to also determine the influence of heat treatment on the fatigue strength of welded pipes. To determine and correlate the different factors affecting the fatigue strength, welded pipes were also subjected to various tests: tensile tests, impact tests, measurement of micro hardness, microstructural analysis by optical microscopy and scanning electron microscopy.

  17. High Strength Steel Welding Research

    DTIC Science & Technology

    2007-11-02

    ical A nalysis ............................................................................ 124 4.6.1 Inductively Coupled Plasm a...welding, the heat source is not stationary ................................................................................................ 19 0 Figure 5...primary and secondary phases in weld m etal inclusions ................................................................. 52 Figure 13: HAC in heat

  18. Welding arc length control system

    NASA Technical Reports Server (NTRS)

    Iceland, William F. (Inventor)

    1993-01-01

    The present invention is a welding arc length control system. The system includes, in its broadest aspects, a power source for providing welding current, a power amplification system, a motorized welding torch assembly connected to the power amplification system, a computer, and current pick up means. The computer is connected to the power amplification system for storing and processing arc weld current parameters and non-linear voltage-ampere characteristics. The current pick up means is connected to the power source and to the welding torch assembly for providing weld current data to the computer. Thus, the desired arc length is maintained as the welding current is varied during operation, maintaining consistent weld penetration.

  19. Resistance-Welding Test Fixture

    NASA Technical Reports Server (NTRS)

    Brennan, Andrew D.

    1990-01-01

    Realistic welding conditions produce reliable specimens. Simple fixture holds resistance-welding test specimens. Specimen holder includes metallic holder and clamps to provide electrical and thermal paths and plastic parts providing thermal and electrical isolation.

  20. Workmanship standards for fusion welding

    NASA Technical Reports Server (NTRS)

    Phillips, M. D.

    1967-01-01

    Workmanship standards manual defines practices, that adhere to rigid codes and specifications, for fusion welding of component piping, assemblies, and systems. With written and pictorial presentations, it is part of the operating procedure for fusion welding.

  1. Online NIR diagnostic of laser welding processes and its potential for quality assuring sensor systems

    NASA Astrophysics Data System (ADS)

    Dorsch, Friedhelm; Braun, Holger; Keβler, Steffen; Pfitzner, Dieter; Rominger, Volker

    2014-02-01

    We have integrated an imaging thermographic sensor into commercial welding optics for observation of the weld zone. Key element of the sensor is an InGaAs-camera that detects the thermal radiation of the welding process in the wavelength range of 1,200 to 1,700 nm. This is well suited to record images of the keyhole, the melt pool and the thermal trace. The sensor was integrated to the welding heads for on-axis observation to minimize the interfering contour to ensure easy adaption to industrial processes. The welding heads used were established industrial-grade TRUMPF optics: a BEO fixed optics with 280 mm focal length, or a TRUMPF PFO-3D scanner optics with 450 mm focal length. We used a TRUMPF TruDisk 16002 16kW-thin disk laser that transmits its power through a 200 μm core diameter light cable. The images were recorded and features of the various process zones were evaluated by image processing. It turns out that almost all weld faults can be clearly detected in the NIR images. Quantitative features like the dimension of the melt pool and the thermal trace can be derived from the captured images. They are correlated to process input parameters as well as to process results. In contrast to observation in the visible spectrum the NIR camera records the melt pool without auxiliary illumination. As an unrivaled attribute of the NIR sensor it supports an online heat flow thermography of the seam and allows identifying missing fusion ("false friends") of lap joints virtually during the welding process. Automated weld fault detection and documentation is possible by online image processing which sets the basis for comprehensive data documentation for quality assurance and traceability.

  2. Self-Reacting Friction Stir Welding for Aluminum Alloy Circumferential Weld Applications

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerry; Cantrell, Mark; Carter, Robert

    2003-01-01

    Friction stir welding is an innovative weld process that continues to grow in use, in the commercial, defense, and space sectors. It produces high quality and high strength welds in aluminum alloys. The process consists of a rotating weld pin tool that plasticizes material through friction. The plasticized material is welded by applying a high weld forge force through the weld pin tool against the material during pin tool rotation. The high weld forge force is reacted against an anvil and a stout tool structure. A variation of friction stir welding currently being evaluated is self-reacting friction stir welding. Self-reacting friction stir welding incorporates two opposing shoulders on the crown and root sides of the weld joint. In self-reacting friction stir welding, the weld forge force is reacted against the crown shoulder portion of the weld pin tool by the root shoulder. This eliminates the need for a stout tooling structure to react the high weld forge force required in the typical friction stir weld process. Therefore, the self-reacting feature reduces tooling requirements and, therefore, process implementation costs. This makes the process attractive for aluminum alloy circumferential weld applications. To evaluate the application of self-reacting friction stir welding for aluminum alloy circumferential welding, a feasibility study was performed. The study consisted of performing a fourteen-foot diameter aluminum alloy circumferential demonstration weld using typical fusion weld tooling. To accomplish the demonstration weld, weld and tack weld development were performed and fourteen-foot diameter rings were fabricated. Weld development consisted of weld pin tool selection and the generation of a process map and envelope. Tack weld development evaluated gas tungsten arc welding and friction stir welding for tack welding rings together for circumferential welding. As a result of the study, a successful circumferential demonstration weld was produced leading

  3. Microstructure and mechanical properties of laser-arc hybrid welding joint of GH909 alloy

    NASA Astrophysics Data System (ADS)

    Liu, Ting; Yan, Fei; Liu, Sang; Li, Ruoyang; Wang, Chunming; Hu, Xiyuan

    2016-06-01

    In this paper, laser-arc hybrid welding of 10 mm thick low-thermal-expansion superalloy GH909 components was carried out to obtain a joint with good performance. This investigation was conducted using an optical microscope, scanning electron microscope, energy diffraction spectrum and other methodologies. The results showed that weld joints with a desirable wineglass-shaped weld profile can be obtained employing appropriate process parameters. The different grains in between the upper central seam and the bottom seam were associated with the temperature gradient, the pool's flow and the welding thermal cycle. MC-type carbides and eutectic phases (γ+Laves) were produced at grain boundaries due to the component segregation during the welding process. In addition, γ‧ strengthening phase presented in the interior of grains, which kept a coherent relationship with the matrix. The lowest hardness value occurred in the weld center, which indicated that it was the weakest section in the whole joint. The average tensile strength of the joints reached to 632.90 MPa, nearly 76.84% of the base metal. The fracture analysis revealed that the fracture mode of the joint was ductile fracture and the main reason for joint failure was as a result of the occurrence of porosities produced in the weld during the welding process.

  4. Achieving High Strength Joint of Pure Copper Via Laser-Cold Metal Transfer Arc Hybrid Welding

    NASA Astrophysics Data System (ADS)

    Chen, Yulong; Chen, Cong; Gao, Ming; Zeng, Xiaoyan

    2016-06-01

    Fiber laser-cold metal transfer arc hybrid welding of pure copper was studied. Weld porosity was tested by X-ray nondestructive testing. Microstructure and fracture features were observed by scanning electron microscopy. Mechanical properties were evaluated by cross weld tensile test. Full penetrated and continuous welds were obtained by hybrid welding once the laser power reached 2 kW, while they could not be obtained by laser welding alone, even though the laser power reached 5 kW. The ultimate tensile strength (UTS), the yield strength (YS), and the elongation of the best hybrid weld material were up to 227, 201 MPa, and 21.5 pct, respectively. The joint efficiencies in UTS and YS of hybrid weld were up to 84 and 80 pct of the BM, respectively. The fracture location changes from the fusion zone to the heat-affected zone with the increase of laser power. Besides, the mechanisms of process stability and porosity suppression were clarified by laser-arc interaction and pool behavior. The strengthening mechanism was discussed by microstructure characteristics.

  5. An introduction to mid-Atlantic seasonal pools

    USGS Publications Warehouse

    Brown, L.J.; Jung, R.E.

    2005-01-01

    Seasonal pools, also known as vernal ponds, provide important ecological services to the mid-Atlantic region. This publication serves as an introduction to seasonal pool ecology and management; it also provides tools for exploring seasonal pools, including a full-color field guide to wildlife. Seasonal pools are defined as having four distinctive features: surface water isolation, periodic drying, small size and shallow depth, and support of a characteristic biological community. Seasonal pools experience regular drying that excludes populations of predatory fish. Thus, pools in the mid-Atlantic region provide critical breeding habitat for amphibian and invertebrate species (e.g., spotted salamander (Ambystoma maculatum), wood frog (Rana sylvatica), and fairy shrimp (Order Anostraca)) that would be at increased risk of predation in more permanent waters. The distinctive features of seasonal pools also make them vulnerable to human disturbance. In the mid-Atlantic region, land-use changes pose the greatest challenges to seasonal pool conservation. Seasonal pools are threatened by direct loss (e.g., filling or draining of the pool) as well as by destruction and fragmentation of adjoining terrestrial habitat. Many of the species that depend on seasonal pools for breeding spend the majority of their lives in the surrounding lands that extend a radius of 1000 feet or more from the pools; these vital habitats are being transected by roads and converted to other land uses. Other threats to seasonal pools include biological introductions and removals, mosquito control practices, amphibian diseases, atmospheric deposition, and climate change. The authors recommend a three-pronged strategy for seasonal pool conservation and management in the mid-Atlantic region: education and research, inventory and monitoring of seasonal pools, and landscape-level planning and management.

  6. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    DOE PAGES

    Mazumder, Baishakhi; Yu, Xinghua; Edmondson, Philip D.; ...

    2015-12-08

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygenenriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the sizemore » of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.« less

  7. Swimming Pools for Schools.

    ERIC Educational Resources Information Center

    Neilson, Donald W.; Nixon, John E.

    The increasing interest in swimming instruction and recreation for elementary and secondary school children has resulted in the development of this guide for swimming pool use, design, and construction. Introductory material discussed the need for swimming in the educational program and the organization of swimming programs in the school. Design…

  8. The Future of Pooling.

    ERIC Educational Resources Information Center

    Young, Peter C.; Fone, Martin

    1997-01-01

    Discusses seven propositions underlying the strategies that insurance pools can, will, and must pursue: (1) risk management versus risk financing; (2) elimination of windfall advantages; (3) the maintenance of market-dominant status; (4) cost leadership; (5) client focus; (6) innovation and diversification; and (7) leadership challenges. A sidebar…

  9. NEW APPROACHES: Pool table

    NASA Astrophysics Data System (ADS)

    Parry, Malcolm

    1998-05-01

    This article explains a novel way of demonstrating the principle of conservation of energy. This can be difficult to demonstrate in the laboratory, but if students have been convinced of the conservation of momentum, two-dimensional collisions on a pool table may be used.

  10. Thread Pool Interface (TPI)

    SciTech Connect

    Edwards, H. Carter

    2008-04-01

    Thread Pool Interface (TpI) provides a simple interface for running functions written in C or C++ in a thread-parallel mode. Application or library codes may need to perform operations thread-parallel on machines with multicore processors. the TPI library provides a simple mechanism for managing thread activation, deactivation, and thread-parallel execution of application-provided subprograms.

  11. Thermal plasma properties for Ar-Al, Ar-Fe and Ar-Cu mixtures used in welding plasmas processes: I. Net emission coefficients at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Cressault, Y.; Gleizes, A.

    2013-10-01

    This article is devoted to the calculation of the net emission coefficient (NEC) of Ar-Al, Ar-Fe and Ar-Cu mixtures at atmospheric pressure for arc welding processes. The results are given in data tables for temperatures between 3 kK and 30 kK, for five plasma thicknesses (0, 0.5, 1, 2, 5 mm) and ten concentrations of metallic vapours (pure gas, 0.01%, 0.1%, 1%, 5%, 10%, 25%, 50%, 75% and pure metal vapours in mass proportions). The results are in good agreement with most of the works published on the subject for such mixtures. They highlight the influence of three parameters on the radiation of the plasma: the NEC is directly related to temperature and inversely related to plasma radius and is highly sensitive to the presence of metal vapours. Finally, numerical data are supplied in tables in order to develop accurate computational modelling of welding arc and to estimate both qualitatively and quantitatively the influence of each metallic vapour on the size and on the shape of the weld pool.

  12. Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints

    NASA Astrophysics Data System (ADS)

    Patterson, Erin E.; Hovanski, Yuri; Field, David P.

    2016-06-01

    This work focuses on the microstructural characterization of aluminum to steel friction stir welded joints. Lap weld configuration coupled with scribe technology used for the weld tool have produced joints of adequate quality, despite the significant differences in hardness and melting temperatures of the alloys. Common to friction stir processes, especially those of dissimilar alloys, are microstructural gradients including grain size, crystallographic texture, and precipitation of intermetallic compounds. Because of the significant influence that intermetallic compound formation has on mechanical and ballistic behavior, the characterization of the specific intermetallic phases and the degree to which they are formed in the weld microstructure is critical to predicting weld performance. This study used electron backscatter diffraction, energy dispersive spectroscopy, scanning electron microscopy, and Vickers micro-hardness indentation to explore and characterize the microstructures of lap friction stir welds between an applique 6061-T6 aluminum armor plate alloy and a RHA homogeneous armor plate steel alloy. Macroscopic defects such as micro-cracks were observed in the cross-sectional samples, and binary intermetallic compound layers were found to exist at the aluminum-steel interfaces of the steel particles stirred into the aluminum weld matrix and across the interfaces of the weld joints. Energy dispersive spectroscopy chemical analysis identified the intermetallic layer as monoclinic Al3Fe. Dramatic decreases in grain size in the thermo-mechanically affected zones and weld zones that evidenced grain refinement through plastic deformation and recrystallization. Crystallographic grain orientation and texture were examined using electron backscatter diffraction. Striated regions in the orientations of the aluminum alloy were determined to be the result of the severe deformation induced by the complex weld tool geometry. Many of the textures observed in the weld

  13. Weld-bonded titanium structures

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Creedon, J. F. (Inventor)

    1976-01-01

    Structurally stronger titanium articles are produced by a weld-bonding technique comprising fastening at least two plates of titanium together using spotwelding and curing an adhesive interspersed between the spot-weld nuggets. This weld-bonding may be employed to form lap joints or to stiffen titanium metal plates.

  14. Capillary flow weld-bonding

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Jones, R. J. (Inventor)

    1976-01-01

    The invention of a weld-bonding technique for titanium plates was described. This involves fastening at least two plates of titanium together using spot-welding and applying a bead of adhesive along the edge of the resistance spot-welded joint which upon heating, flows and fills the separation between the joint components.

  15. Improved welding of Rene-41

    NASA Technical Reports Server (NTRS)

    Nunez, S.

    1970-01-01

    Gas-tungsten arc welding with a filler of Rene-41 produces strong welded joints. When Rene-41 is used, resistance to strain-age cracking is greatly increased by post-weld solution annealing in an inert atmosphere. Mechanical properties of Rene-41 and Hastelloy-W are compared.

  16. Welding. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of nine terminal objectives for an intermediate welding course. The materials were developed for a 36-week (3 hours daily) course designed to prepare the student for employment in the field of welding. Electric welding and specialized (TIG & MIG)…

  17. Welding. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of eight terminal objectives for a basic welding course. The materials were developed for a 36-week (2 hours daily) course developed to teach the fundamentals of welding shop work, to become familiar with the operation of the welding shop…

  18. Robotic Welding and Inspection System

    SciTech Connect

    H. B. Smartt; D. P. Pace; E. D. Larsen; T. R. McJunkin; C. I. Nichol; D. E. Clark; K. L. Skinner; M. L. Clark; T. G. Kaser; C. R. Tolle

    2008-06-01

    This paper presents a robotic system for GTA welding of lids on cylindrical vessels. The system consists of an articulated robot arm, a rotating positioner, end effectors for welding, grinding, ultrasonic and eddy current inspection. Features include weld viewing cameras, modular software, and text-based procedural files for process and motion trajectories.

  19. In-situ spatially resolved x-ray diffraction mapping of the alpha to beta to alpha transformation in commercially pure titanium arc welds

    SciTech Connect

    Elmer, J. W., LLNL

    1998-05-15

    Spatially Resolved X-Ray Diffraction (SRXRD) is used to map the {alpha}{r_arrow}{beta}{r_arrow}{alpha} phase transformation in the heat affected zone (HAZ) of commercially pure titanium gas tungsten arc welds. In-situ SRXRD experiments were conducted on arc welds using a 200 pm diameter x-ray beam at Stanford Synchrotron Radiation Laboratory (SSRL). A map was created which identifies six HAZ microstructural regions that exist between the liquid weld pool and the base metal during welding. The first region is single phase {beta}-Ti that forms in a 2- to 3-mm band adjacent to the liquid weld pool. The second region is back transformed {alpha}-Ti that forms behind the portion of the HAZ where {beta}-Ti was once present at higher temperatures. The third region is completely recrystallized {alpha}-Ti that forms in a 2- to 3-mm band surrounding the single phase {beta}-Ti region. Recrystallized {alpha}-Ti was observed by itself and also with varying amounts of {beta}-Ti. The fourth region of the weld is the partially transformed zone where {alpha}-Ti and {beta}-Ti coexist during welding. The fifth region is directly behind the partially transformed zone and consists of a mixture of recrystallized and back transformed {alpha}-Ti The sixth region is farthest from the weld pool and consists of {alpha}-Ti that is undergoing annealing and recrystallization. Annealing of the base metal was observed to some degree in all of the SRXRD patterns, showing that annealing exceeded 13 mm from the centerline of the weld. Although the microstructure consisted predominantly of {alpha}-Ti, both prior to the weld and after the weld, the (002) texture of the starting material was altered during welding to produce a predominantly (101) texture within the resulting HAZ.

  20. Lasers of All Sizes

    NASA Astrophysics Data System (ADS)

    Balcou, Philippe; Forget, Sébastien Robert-Philip, Isabelle

    2015-10-01

    * Introduction * The Laser in All Its Forms * Gas lasers * Dye lasers * Solid-state lasers * Lasers for Every Taste * The rise of lasers * Lasers of all sizes * The colors of the rainbow... and beyond * Shorter and shorter lasers * Increasingly powerful lasers * Lasers: A Universal Tool? * Cutting, welding, and cleaning * Communicating * Treating illnesses * Measuring * Supplying energy? * Entertaining * Understanding * Conclusion