Sample records for weld pool solidification

  1. Phase-field simulation of weld solidification microstructure in an Al Cu alloy

    NASA Astrophysics Data System (ADS)

    Farzadi, A.; Do-Quang, M.; Serajzadeh, S.; Kokabi, A. H.; Amberg, G.

    2008-09-01

    Since the mechanical properties and the integrity of the weld metal depend on the solidification behaviour and the resulting microstructural characteristics, understanding weld pool solidification is of importance to engineers and scientists. Thermal and fluid flow conditions affect the weld pool geometry and solidification parameters. During solidification of the weld pool, a columnar grain structure develops in the weld metal. Prediction of the formation of the microstructure during welding may be an important and supporting factor for technology optimization. Nowadays, increasing computing power allows direct simulations of the dendritic and cell morphology of columnar grains in the molten zone for specific temperature conditions. In this study, the solidification microstructures of the weld pool at different locations along the fusion boundary are simulated during gas tungsten arc welding of Al-3wt%Cu alloy using the phase-field model for the directional solidification of dilute binary alloys. A macroscopic heat transfer and fluid flow model was developed to assess the solidification parameters, notably the temperature gradient and solidification growth rate. The effect of the welding speed is investigated. Computer simulations of the solidification conditions and the formation of a cellular morphology during the directional solidification in gas tungsten arc welding are described. Moreover, the simulation results are compared with existing theoretical models and experimental findings.

  2. Onset of Curved Dendrite Growth in an Al-Cu Welding Pool: A Phase Field Study

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Wei, Yanhong

    2018-02-01

    A phase field model is developed to predict curved dendrite growth in the gas tungsten arc (GTA) welding pool of an Al-Cu alloy. The equations of temperature gradient, pulling velocity and dendrite growth orientation are proposed to consider the transient solidification process during welding. Solidification microstructures and solute diffusion along the fusion boundary in the welding pool are predicted by using the phase field model coupled with transient solidification conditions. Predicted primary dendrites are curved and point toward the welding direction. Welding experiments are carried out to observe solidification microstructures of the weld. Comparisons of simulation results with experimental measurements are conducted. Predicted dendritic morphology, dendrite growth orientation, primary dendrite arm spacing and initial cell spacing give a good agreement with experimental measurements.

  3. Gravitational effects on the weld pool shape and microstructural evolution during gas tungsten arc and laser beam welding of 304 stainless steel and Al-4 wt% Cu alloy.

    PubMed

    Kang, Namhyun; Singh, Jogender; Kulkarni, Anil K

    2004-11-01

    Effects of gravitational acceleration were investigated on the weld pool shape and microstructural evolution for 304 stainless steel and Al-4wt% Cu alloy. Effects of welding heat source were investigated by using laser beam welding (LBW) and gas tungsten arc welding (GTAW). As the gravitational level was increased from low gravity (LG approximately 1.2 g) to high gravity (HG approximately 1.8 g) using a NASA KC-135 aircraft, the weld pool shape for 304 stainless steel was influenced considerably during GTAW. However, insignificant change in the microstructure and solute distribution was observed at gravitational levels between LG and HG. The GTAW on Al-4 wt% Cu alloy was used to investigate the effect of gravitational orientation on the weld solidification behavior. Gravitational orientation was manipulated by varying the welding direction with respect to gravity vector; that is, by welding upward opposing gravity ( ||-U) and downward with gravity ( ||-D) on a vertical weld piece and welding perpendicular to gravity (perpendicular) on a horizontal weld piece. Under the same welding conditions, a larger primary dendrite spacing in the ||-U weld was observed near the weld pool surface and the fusion boundary than in the case of perpendicular or ||-D welds. The ||-D weld exhibited different solidification morphology and abnormal S shape of solidification rate curve during its growth. For 304 stainless steel GTAW, significant effects of gravitational orientation were observed on the weld pool shape that was associated with weld surface morphology and convection flow. However, the weld pool shape for LBW was mostly constant with respect to the gravitational orientation.

  4. On the hot cracking susceptibility of a semisolid aluminium 6061 weld: Application of a coupled solidification- thermomechanical model

    NASA Astrophysics Data System (ADS)

    Zareie Rajani, H. R.; Phillion, A. B.

    2015-06-01

    A coupled solidification-thermomechanical model is presented that investigates the hot tearing susceptibility of an aluminium 6061 semisolid weld. Two key phenomena are considered: excessive deformation of the semisolid weld, initiating a hot tear, and the ability of the semisolid weld to heal the hot tear by circulation of the molten metal. The model consists of two major modules: weld solidification and thermomechanical analysis. 1) By means of a multi-scale model of solidification, the microstructural evolution of the semisolid weld is simulated in 3D. The semisolid structure, which varies as a function of welding parameters, is composed of solidifying grains and a network of micro liquid channels. The weld solidification module is utilized to obtain the solidification shrinkage. The size of the micro liquid channels is used as an indicator to assess the healing ability of the semisolid weld. 2) Using the finite element method, the mechanical interaction between the weld pool and the base metal is simulated to capture the transient force field deforming the semisolid weld. Thermomechanical stresses and shrinkage stresses are both considered in the analysis; the solidification contractions are extracted from the weld solidification module and applied to the deformation simulation as boundary conditions. Such an analysis enables characterization of the potential for excessive deformation of the weld. The outputs of the model are used to study the effect of welding parameters including welding current and speed, and also welding constraint on the hot cracking susceptibility of an aluminium alloy 6061 semisolid weld.

  5. Gravitational effects on the development of weld-pool and solidification microstructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boatner, L.A.; David, S.A.; Workman, G.

    1994-09-01

    This research effort has as its objective the development of a quantitative understanding of the effects of both low- and high-g environments on the solidification microstructures and morphologies that are produced in alloy single crystals during a variety of melting and solidification processes. The overall goal of the effort is to delineate the nature of the roles played by natural convection, surface-tension-driven convection, and mass transport effects due to interactions associated with various heating methods that are used to form melt pools in practical, commercially important alloy systems. The experimental and theoretical investigations comprising this effort encompass the study ofmore » configurations in which stationary heat sources are employed as well as melt pools formed by moving heat sources like those frequently used in fusion-welding processes.« less

  6. Numerical modeling of keyhole dynamics in laser welding

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Hai; Zhou, Jun; Tsai, Hai-Lung

    2003-03-01

    Mathematical models and the associated numerical techniques have been developed to study the following cases: (1) the formation and collapse of a keyhole, (2) the formation of porosity and its control strategies, (3) laser welding with filler metals, and (4) the escape of zinc vapor in laser welding of galvanized steel. The simulation results show that the formation of porosity in the weld is caused by two competing mechanisms: one is the solidification rate of the molten metal and the other is the speed that molten metal backfills the keyhole after laser energy is terminated. The models have demonstrated that porosity can be reduced or eliminated by adding filler metals, controlling laser tailing power, or applying an electromagnetic force during keyhole collapse process. It is found that a uniform composition of weld pool is difficult to achieve by filler metals due to very rapid solidification of the weld pool in laser welding, as compared to that in gas metal arc welding.

  7. Heat transfer, fluid flow and mass transfer in laser welding of stainless steel with small length scale

    NASA Astrophysics Data System (ADS)

    He, Xiuli

    Nd: YAG Laser welding with hundreds of micrometers in laser beam diameter is widely used for assembly and closure of high reliability electrical and electronic packages for the telecommunications, aerospace and medical industries. However, certain concerns have to be addressed to obtain defect-free and structurally sound welds. During laser welding, Because of the high power density used, the pressures at the weld pool surface can be greater than the ambient pressure. This excess pressure provides a driving force for the vaporization to take place. As a result of vaporization for different elements, the composition in the weld pool may differ from that of base metal, which can result in changes in the microstructure and degradation of mechanical properties of weldments. When the weld pool temperatures are very high, the escaping vapor exerts a large recoil force on the weld pool surface, and as a consequence, tiny liquid metal particles may be expelled from the weld pool. Vaporization of alloying elements and liquid metal expulsion are the two main mechanisms of material loss. Besides, for laser welds with small length scale, heat transfer and fluid flow are different from those for arc welds with much larger length scale. Because of small weld pool size, rapid changes of temperature and very short duration of the laser welding process, physical measurements of important parameters such as temperature and velocity fields, weld thermal cycles, solidification and cooling rates are very difficult. The objective of the research is to quantitatively understand the influences of various factors on the heat transfer, fluid flow, vaporization of alloying elements and liquid metal expulsion in Nd:YAG laser welding with small length scale of 304 stainless steel. In this study, a comprehensive three dimensional heat transfer and fluid flow model based on the mass, momentum and energy conservation equations is relied upon to calculate temperature and velocity fields in the weld pool, weld thermal cycle, weld pool geometry and solidification parameters. Surface tension and buoyancy forces were considered for the calculation of transient weld pool convection. Very fine grids and small time steps were used to achieve accuracy in the calculations. The calculated weld pool dimensions were compared with the corresponding measured values to validate the model. (Abstract shortened by UMI.)

  8. A Monte Carlo model for 3D grain evolution during welding

    NASA Astrophysics Data System (ADS)

    Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena

    2017-09-01

    Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bézier curves, which allow for the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. The model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.

  9. A Monte Carlo model for 3D grain evolution during welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena

    Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bezier curves, which allow formore » the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. Furthermore, the model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.« less

  10. A Monte Carlo model for 3D grain evolution during welding

    DOE PAGES

    Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena

    2017-08-04

    Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bezier curves, which allow formore » the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. Furthermore, the model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.« less

  11. Determination and Dependencies of Melt Pool Dimensions in Laser Micro Welding

    NASA Astrophysics Data System (ADS)

    Patschger, Andreas; Bliedtner, Jens

    Melt pool dimensions such as width and length influence the properties of the resulting weld joint and should be considered when designing the laser welding process. The melt pool width and as a consequence the weld seam width determine the strength of the joint. The melt pool length is directly linked to the solidification time which affects the resulting metallurgical micro structure. The melt pool dimensions can be estimated by given analytical solutions based on the capillary diameter. In order to test the given estimations, melt pool dimensions of bead-on-plate welds in stainless steel foils were measured by means of high speed imaging and microscopy. The welds were obtained by applying different focal diameters between 25 μm and 204 μm to foil thicknesses of 50 μm and 100 μm. As a result, simplified correlations based on the focal diameter are derived which is less complex to determine in practice. Regression analyses ensure a statistical comparability.

  12. Solidification microstructures in single-crystal stainless steel melt pools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sipf, J.B.; Boatner, L.A.; David, S.A.

    1994-03-01

    Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. Thesemore » results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.« less

  13. Analysis of ripple formation in single crystal spot welds

    NASA Technical Reports Server (NTRS)

    Rappaz, M.; Corrigan, D.; Boatner, L. A.

    1997-01-01

    Stationary spot welds have been made at the (001) surface of Fe-l5%Ni-15%Cr single crystals using a Gas Tungsten Arc (GTA). On the top surface of the spot welds, very regular and concentric ripples were observed after solidification by differential interference color microscopy. Their height (typically 1--5 micrometers and spacing, typically approximately 60 micrometers) decreased with the radius of the pool. These ripples were successfully accounted for in terms of capillary-wave theory using the fundamental mode frequency f(sub 0) given by the first zero of the zero-order Bessel function. The spacing d between the ripples was then equated to v(sub s)/f(sub 0), where v(sub s) is the solidification rate. From the measured ripple spacing, the velocity of the pool was deduced as a function of the radius, and this velocity was in good agreement with the results of a heat-flow simulation.

  14. Cellular Automaton Study of Hydrogen Porosity Evolution Coupled with Dendrite Growth During Solidification in the Molten Pool of Al-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Gu, Cheng; Wei, Yanhong; Yu, Fengyi; Liu, Xiangbo; She, Lvbo

    2017-09-01

    Welding porosity defects significantly reduce the mechanical properties of welded joints. In this paper, the hydrogen porosity evolution coupled with dendrite growth during solidification in the molten pool of Al-4.0 wt pct Cu alloy was modeled and simulated. Three phases, including a liquid phase, a solid phase, and a gas phase, were considered in this model. The growth of dendrites and hydrogen gas pores was reproduced using a cellular automaton (CA) approach. The diffusion of solute and hydrogen was calculated using the finite difference method (FDM). Columnar and equiaxed dendrite growth with porosity evolution were simulated. Competitive growth between different dendrites and porosities was observed. Dendrite morphology was influenced by porosity formation near dendrites. After solidification, when the porosities were surrounded by dendrites, they could not escape from the liquid, and they made pores that existed in the welded joints. With the increase in the cooling rate, the average diameter of porosities decreased, and the average number of porosities increased. The average diameter of porosities and the number of porosities in the simulation results had the same trend as the experimental results.

  15. Analysis of ripple formation in single crystal spot welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rappaz, M.; Corrigan, D.; Boatner, L.A.

    1997-10-01

    Stationary spot welds have been made at the (001) surface of Fe-l5%Ni-15%Cr single crystals using a Gas Tungsten Arc (GTA). On the top surface of the spot welds, very regular and concentric ripples were observed after solidification by differential interference color microscopy. Their height (typically 1--5 {micro}m) and spacing (typically {approximately} 60 {micro}m) decreased with the radius of the pool. These ripples were successfully accounted for in terms of capillary-wave theory using the fundamental mode frequency f{sub 0} given by the first zero of the zero-order Bessel function. The spacing d between the ripples was then equated to v{sub s}/f{submore » 0}, where v{sub s} is the solidification rate. From the measured ripple spacing, the velocity of the pool was deduced as a function of the radius, and this velocity was in good agreement with the results of a heat-flow simulation.« less

  16. Investigation of Weld Pool Structure and Property Control in Pulsed Arc Welding.

    DTIC Science & Technology

    1981-03-04

    noted, elsewhere, freezing rate in the trailing and transverse directions show similarly contrasting behavior (6 𔄁 ). The movement of the solidus and...rise to low freezing eutectics and, hence, should be kept to the lowest possible level.1 3 󈧒 Solidification Cracking in Stainless Steel Welds It has...been observed 1 5 that hot cracking in austenitic stainless steel weldments is reduced or prevented when a small amount of delta ferrite is present

  17. Experimental study of hot cracking at circular welding joints of 42CrMo steel

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Chen, Genyu; Chen, Binghua; Wang, Jinhai; Zhou, Cong

    2017-12-01

    The hot cracking at circular welding joints of quenched and tempered 42CrMo steel were studied. The flow of the molten pool and the solidification process of weld were observed with a high-speed video camera. The information on the variations in the weld temperature was collected using an infrared (IR) thermal imaging system. The metallurgical factors of hot cracking were analyzed via metallographic microscope and scanning electron microscope (SEM). The result shows that leading laser laser-metal active gas (MAG) hybrid welding process has a smaller solid-liquid boundary movement rate (VSL) and a smaller solid-liquid boundary temperature gradient (GSL) compared with leading arc laser-MAG hybrid welding process and laser welding process. Additionally, the metal in the molten pool has superior permeability while flowing toward the dendritic roots and can compensate for the inner-dendritic pressure balance. Therefore, leading laser laser-MAG hybrid welding process has the lowest hot cracking susceptibility.

  18. Weld pool development during GTA and laser beam welding of Type 304 stainless steel; Part II-experimental correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacharia, T.; David, S.A.; Vitek, J.M.

    1989-12-01

    In part I of the paper, the results of the heat flow and the fluid flow analysis were presented. Here, in Part II of the paper, predictions of the computational model are verified by comparing the numerically predicted and experimentally observed fusion zone size and shape. Stationary gas tungsten arc and laser beam welds were made on Type 304 stainless steel for different times to provide a variety of solidification conditions such as cooling rate and temperature gradient. Calculated temperatures and cooling rates are correlated with the experimentally observed fusion zone structure. In addition, the effect of sulfur on GTAmore » weld penetration was quantitatively evaluated by considering two heats of 304 stainless steel containing 90 and 240 ppm sulfur. Sulfur, as expected, increased the depth/width ratio by altering the surface tension gradient driven flow in the weld pool.« less

  19. Gravitational effects on weld pool shape and microstructural evolution during gas tungsten arc and laser beam welding on 304 stainless steel, nickel, and aluminum-4 wt.% copper alloy

    NASA Astrophysics Data System (ADS)

    Kang, Namhyun

    The objective of the present work was to investigate effects of gravitational (acceleration) level and orientation on Ni 200 alloy (99.5% Ni purity), 304 stainless steel, and Al-4 wt.% Cu alloy during gas tungsten arc welding (GTAW) and laser beam welding (LBW). Main characterization was focused on the weld pool shape, microstructure, and solute distribution as a function of gravitational level and orientation. The welds were divided into two classes, i.e., 'stable' and 'unstable' welds, in view of the variation of weld pool shape as a function of gravitational level and orientation. In general, higher arc current and translational GTAW produced more significant effects of gravitational orientation on the weld pool shape than the case of lower arc current and spot welding. Cross-sectional area (CSA) was a secondary factor in determining the stability of weld pool shape. For the 'stable' weld of 304 stainless steel GTAW, the II-U weld showed less convexity in the pool bottom and more depression of the free surface, therefore producing deeper penetration (10--20%) than the case of II-D weld. The II-D weld of 304 stainless steel showed 31% deeper penetration, 28% narrower width, and more hemispherical shape of the weld pool than the case of II-U weld. For GTAW on 304 stainless steel, gravitational level variation from low gravity (LG ≈ 1.2 go) to high gravity (HG ≈ 1.8 go) caused 10% increase in width and 10% decrease in depth while maintaining the overall weld pool volume. Furthermore, LBW on 304 stainless steels showed mostly constant shape of weld pool as a function of gravitational orientation. GTAW on Ni showed similar trends of weld pool shape compared with GTAW on 304 stainless steel, i.e., the weld pool became unstable by showing more penetration in the II-D weld for slower arc translational velocity (V a) and larger weld pool size. However, the Ni weld pool shape had greater stability of the weld pool shape with respect to the gravitational orientation than the case of 304 stainless steel, i.e., higher current boundary and no humping. Regardless of the gravitational level, the ferrite content and the distribution of the solutes (Cr and Ni) remained constant for GTAW on 304 stainless steel. However, for GTAW on Al-4 wt.% Cu alloys, the gravitational orientation changed the weld pool shape associated with convection flows. In summary, gravity influenced the weld pool shape that was associated with convection flows and weld surface deformation for specific welding conditions. The variation of convection flows and weld pool shape played a role in modifying VS and GL. Solidification orientation and morphology were affected because VS and GL were changed as a function of gravity. Studies of gravity on the welding process are expected to play a significant role in the space-station construction and circumferential pipe welding on the earth. (Abstract shortened by UMI.)

  20. In situ laser-induced breakdown spectroscopy measurements of chemical compositions in stainless steels during tungsten inert gas welding

    NASA Astrophysics Data System (ADS)

    Taparli, Ugur Alp; Jacobsen, Lars; Griesche, Axel; Michalik, Katarzyna; Mory, David; Kannengiesser, Thomas

    2018-01-01

    A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding. Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence of weld defects and changes in the chemical composition in the weld pool or in the two-phase region where solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and Mn II characteristic emissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observed with the termination of the welding plume due to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels, Mn accumulations on both sides of the weld could be detected between the heat affected zone (HAZ) and the base material.

  1. Laser Spot Welding of Copper-aluminum Joints Using a Pulsed Dual Wavelength Laser at 532 and 1064 nm

    NASA Astrophysics Data System (ADS)

    Stritt, Peter; Hagenlocher, Christian; Kizler, Christine; Weber, Rudolf; Rüttimann, Christoph; Graf, Thomas

    A modulated pulsed laser source emitting green and infrared laser light is used to join the dissimilar metals copper and aluminum. The resultant dynamic welding process is analyzed using the back reflected laser light and high speed video observations of the interaction zone. Different pulse shapes are applied to influence the melt pool dynamics and thereby the forming grain structure and intermetallic phases. The results of high-speed images and back-reflections prove that a modulation of the pulse shape is transferred to oscillations of the melt pool at the applied frequency. The outcome of the melt pool oscillation is shown by the metallurgically prepared cross-section, which indicates different solidification lines and grain shapes. An energy-dispersivex-ray analysis shows the mixture and the resultant distribution of the two metals, copper and aluminum, within the spot weld. It can be seen that the mixture is homogenized the observed melt pool oscillations.

  2. Welding Behavior of Free Machining Stainless Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BROOKS,JOHN A.; ROBINO,CHARLES V.; HEADLEY,THOMAS J.

    2000-07-24

    The weld solidification and cracking behavior of sulfur bearing free machining austenitic stainless steel was investigated for both gas-tungsten arc (GTA) and pulsed laser beam weld processes. The GTA weld solidification was consistent with those predicted with existing solidification diagrams and the cracking response was controlled primarily by solidification mode. The solidification behavior of the pulsed laser welds was complex, and often contained regions of primary ferrite and primary austenite solidification, although in all cases the welds were found to be completely austenite at room temperature. Electron backscattered diffraction (EBSD) pattern analysis indicated that the nature of the base metalmore » at the time of solidification plays a primary role in initial solidification. The solid state transformation of austenite to ferrite at the fusion zone boundary, and ferrite to austenite on cooling may both be massive in nature. A range of alloy compositions that exhibited good resistance to solidification cracking and was compatible with both welding processes was identified. The compositional range is bounded by laser weldability at lower Cr{sub eq}/Ni{sub eq} ratios and by the GTA weldability at higher ratios. It was found with both processes that the limiting ratios were somewhat dependent upon sulfur content.« less

  3. The keyhole region in VPPA welds

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.

    1988-01-01

    The morphology and properties of the Variable Polarity Plasma Arc (VPPA) weld composite zone are intimately related to the physical processes associated with the keyhole. The effects of microsegregation and transient weld stress on macrosegregation in the weld tool are examined. In addition the electrical character of straight and reverse polarity portions of the arc cycle were characterized. The results of the former study indicate that alloy 2219 is weldable because large liquid volumes are available during latter stages of weld solidification. Strains in the pool region, acting in conjunction with weld microsegregation can produce macrosegregation great enough to produce radiographic contrast effects in welds. Mechanisms of surface copper enrichment were identified. The latter study has demonstrated that increased heat is delivered to workpieces if the reverse polarity proportion of the weld cycle is increased. Current in the straight polarity portion of the welding cycle increased as the reverse cycle proportion increased. Voltage during reverse polarity segments is large.

  4. Molten Pool Behavior and Mechanical Properties of Pulsed Current Double-Sided Synchronization GTA Welded Fe-18Cr-17Mn-Ni-N

    NASA Astrophysics Data System (ADS)

    Qiang, Wei; Wang, Kehong; Feng, Yuehai; Chen, Jiahe

    2017-02-01

    Double-sided synchronization vertical gas tungsten arc welding (DSSVW) procedure was used to weld high-nitrogen low-nickel stainless steel Fe-18Cr-17Mn-Ni-N without groove and filler wire. First, the molten pool behaviors and appearances of pulsed current DSSVW (PC-DSSVW) and constant current DSSVW (CC-DSSVW) were comparatively analyzed. The periodic variation occurs in the width of both the anode region of the arc and the molten pool tail during PC-DSSVW, while the contact angle first increases and then decreases, and both the width of the anode region and the length of arc plume increase progressively in CC-DSSVW. It is found that the weld appearance of PC-DSSVW is superior to that of CC-DSSVW. Second, the forces of the DSSVW molten pool were analyzed. The result indicates that the molten pool of the DSSVW procedure is in a state of unstable equilibrium, and it will easily lose balance after being disturbed, resulting in the asymmetrical weld or hump bead. Third, the PC-DSSVW experiments at various welding speeds were conducted to study the influence of welding speed on the weld profile, microstructure, tensile strength and impact toughness. Furthermore, the solidification mode of Fe-18Cr-17Mn-Ni-N was predicted to help determine the microstructure of the welded joint. Results indicate that the weld width, weld reinforcement and melting area all increase with decreasing welding speed, and Fe-18Cr-17Mn-Ni-N solidifies as A mode. The microstructure of the base metal (BM) and heat-affected zone (HAZ) is equiaxed austenite and that of the fusion zone (FZ) is austenite dendrite with some chromium carbides dispersed in the grain boundary; with decreasing welding speed, grains become coarse. The maximum tensile strength (UTS) and elongation of PC-DSSVW joint are 860 MPa and 8.1%, and the elongation decreases dramatically with decreasing welding speed. The impact toughness decreases substantially compared to the BM, achieving 48.2% of the BM.

  5. Grain Refinement of AZ31 Magnesium Alloy Weldments by AC Pulsing Technique

    NASA Astrophysics Data System (ADS)

    Kishore Babu, N.; Cross, C. E.

    2012-11-01

    The current study has investigated the influence of alternating current pulsing on the structure and mechanical properties of AZ31 magnesium alloy gas tungsten arc (GTA) weldments. Autogenous full penetration bead-on-plate GTA welds were made under a variety of conditions including variable polarity (VP), variable polarity mixed (VPM), alternating current (AC), and alternating current pulsing (ACPC). AC pulsing resulted in significant refinement of weld metal when compared with the unpulsed conditions. AC pulsing leads to relatively finer and more equiaxed grain structure in GTA welds. In contrast, VP, VPM, and AC welding resulted in predominantly columnar grain structures. The reason for this grain refinement may be attributed to the periodic variations in temperature gradient and solidification rate associated with pulsing as well as weld pool oscillation observed in the ACPC welds. The observed grain refinement was shown to result in an appreciable increase in fusion zone hardness, tensile strength, and ductility.

  6. Weldability of a high entropy CrMnFeCoNi alloy

    DOE PAGES

    Wu, Zhenggang; David, Stan A.; Feng, Zhili; ...

    2016-07-19

    We present the high-entropy alloys are unique alloys in which five or more elements are all in high concentrations. In order to determine its potential as a structural alloy, a model face-centered-cubic CrMnFeCoNi alloy was selected to investigate its weldability. Welds produced by electron beam welding show no cracking. The grain structures within the fusion zone (FZ) are controlled by the solidification behavior of the weld pool. The weldment possesses mechanical properties comparable to those of the base metal (BM) at both room and cryogenic temperatures. Finally, compared with the BM, deformation twinning was more pronounced in the FZ ofmore » the tested alloy.« less

  7. Inverse Thermal Analysis of Alloy 690 Laser and Hybrid Laser-GMA Welds Using Solidification-Boundary Constraints

    NASA Astrophysics Data System (ADS)

    Lambrakos, S. G.

    2017-08-01

    An inverse thermal analysis of Alloy 690 laser and hybrid laser-GMA welds is presented that uses numerical-analytical basis functions and boundary constraints based on measured solidification cross sections. In particular, the inverse analysis procedure uses three-dimensional constraint conditions such that two-dimensional projections of calculated solidification boundaries are constrained to map within experimentally measured solidification cross sections. Temperature histories calculated by this analysis are input data for computational procedures that predict solid-state phase transformations and mechanical response. These temperature histories can be used for inverse thermal analysis of welds corresponding to other welding processes whose process conditions are within similar regimes.

  8. Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osoba, L.O.; Ding, R.G.; Ojo, O.A., E-mail: ojo@cc.umanitoba.ca

    Analytical electron microscopy and spectroscopy analyses of the fusion zone (FZ) microstructure in autogenous laser beam welded Haynes 282 (HY 282) superalloy were performed. The micro-segregation patterns observed in the FZ indicate that Co, Cr and Al exhibited a nearly uniform distribution between the dendrite core and interdendritic regions while Ti and Mo were rejected into the interdendritic liquid during the weld solidification. Transmission electron diffraction analysis and energy dispersive X-ray microanalysis revealed the second phase particles formed along the FZ interdendritic region to be Ti-Mo rich MC-type carbide particles. Weld FZ solidification cracking, which is sometimes associated with themore » formation of {gamma}-{gamma}' eutectic in {gamma}' precipitation strengthened nickel-base superalloys, was not observed in the HY 282 superalloy. Modified primary solidification path due to carbon addition in the newly developed superalloy is used to explain preclusion of weld FZ solidification cracking in the material. - Highlights: Black-Right-Pointing-Pointer A newly developed superalloy was welded by CO{sub 2} laser beam joining technique. Black-Right-Pointing-Pointer Electron microscopy characterization of the weld microstructure was performed. Black-Right-Pointing-Pointer Identified interdendritic microconstituents consist of MC-type carbides. Black-Right-Pointing-Pointer Modification of primary solidification path is used to explain cracking resistance.« less

  9. Numerical and experimental analysis for solidification and residual stress in the GMAW process for AISI 304 stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, J.; Mazumder, J.

    1996-12-31

    Networking three fields of welding--thermal, microstructure, and stress--was attempted and produced a reliable model using a numerical method with the finite element analysis technique. Model prediction was compared with experimental data in order to validate the model. The effects of welding process parameters on these welding fields were analyzed and reported. The effort to correlate the residual stress and solidification was initiated, with some valuable results. The solidification process was simulated using the formulation based on the Hunt-Trivedi model. Based on the temperature history, solidification speed and primary dendrite arm spacing were predicted at given nodes of interest. Results showmore » that the variation during solidification is usually within an order of magnitude. The temperature gradient was generally in the range of 10{sup 4}--10{sup 5} K/m for the given welding conditions (welding power = 6 kW and welding speed = 3.3867 to 7.62 mm/sec), while solidification speed appeared to slow down from an order of 10{sup {minus}1} to 10{sup {minus}2} m/sec during solidification. SEM images revealed that the primary dendrite arm spacing (PDAS) fell in the range of 10{sup 1}--10{sup 2} {micro}m. For grain growth at the heat affected zone (HAZ), Ashby`s model was employed. The prediction was in agreement with experimental results. For the residual stress calculation, the same mesh generation used in the heat transfer analysis was applied to make the simulation consistent. The analysis consisted of a transient heat analysis followed by a thermal stress analysis. An experimentally measured strain history was compared with the simulated result. The relationship between microstructure and the stress/strain field of welding was also obtained. 64 refs., 18 figs., 9 tabs.« less

  10. The grape cluster, metal particle 63344,1. [in lunar coarse fines

    NASA Technical Reports Server (NTRS)

    Goldstein, J. I.; Axon, H. J.; Agrell, S. O.

    1975-01-01

    The grape cluster metal particle 63344,1 found in lunar coarse fines is examined using the scanning electron microscope (SEM), electron microprobe, and an optical microscope. This metal particle is approximately 0.5 cm in its largest dimension and consists of hundreds of metallic globules welded together to form a structure somewhat like a bunch of grapes. Electron microprobe analysis for Fe, Ni, Co, P, and S in the metal was carried out using wavelength dispersive detectors. No primary solidification structure is observed in the globules, and the particle is slow cooled from the solidification temperature (nearly 1300 C) taking days to probably months to reach 600 C. Two mechanisms for the formation of globules are proposed. One mechanism involves the primary impact of an iron meteorite which produces a metallic liquid and vapor phase. The second mechanism involves the formation of a liquid pool of metal after impact of an iron meteorite projectile followed by a secondary impact in the liquid metal pool.

  11. Hot cracking of Structural Steel during Laser Welding

    NASA Astrophysics Data System (ADS)

    Pineda Huitron, Rosa M.; Vuorinen, Esa

    2017-10-01

    Laser welding is an important technique in many industries due to its high precision in operation, its local and fast processing, narrow welds and its good weld surface quality. However, the process can involve some complications due to the rapid heating and cooling of the material processed, resulting in physical and metallurgical effects as thermal contraction during solidification, giving as a result the presence of residual stresses in the narrow weld. Formation of defects during the process is an important topic to be evaluated in order to achieve better performance of the steels in use. In the present work, defects formed during laser welding of a structural steel have been investigated. The defects formed have been identified and the causes of the defects are discussed. Possible strategies for improvement of the welding procedure and final weld result are proposed. The defects were analysed by optical and scanning electron microscopy and hardness measurement. Cracks were located in the middle of the fusion zone and followed both inter-granular and trans-granular paths. Impurities as manganese sulphides were found along the welding direction, and could act as sites for crack formation. The cracks formed during solidification of the weld are identified as solidification cracks. This kind of cracks is usually caused by solidification shrinkage and thermal contractions during the process, which appear in the fusion zone and sometimes in the heat affected zone.

  12. Thermal regulation in multiple-source arc welding involving material transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doumanidis, C.C.

    1995-06-01

    This article addresses regulation of the thermal field generated during arc welding, as the cause of solidification, heat-affected zone and cooling rate related metallurgical transformations affecting the final microstructure and mechanical properties of various welded materials. This temperature field is described by a dynamic real-time process model, consisting of an analytical composite conduction expression for the solid region, and a lumped-state, double-stream circulation model in the weld pool, integrated with a Gaussian heat input and calibrated experimentally through butt joint GMAW tests on plain steel plates. This model serves as the basis of an in-process thermal control system employing feedbackmore » of part surface temperatures measured by infrared pyrometry; and real-time identification of the model parameters with a multivariable adaptive control strategy. Multiple heat inputs and continuous power distributions are implemented by a single time-multiplexed torch, scanning the weld surface to ensure independent, decoupled control of several thermal characteristics. Their regulation is experimentally obtained in longitudinal GTAW of stainless steel pipes, despite the presence of several geometrical, thermal and process condition disturbances of arc welding.« less

  13. Detailed Microstructural Characterization and Restoration Mechanisms of Duplex and Superduplex Stainless Steel Friction-Stir-Welded Joints

    NASA Astrophysics Data System (ADS)

    Santos, T. F. A.; Torres, E. A.; Lippold, J. C.; Ramirez, A. J.

    2016-12-01

    Duplex stainless steels are successfully used in a wide variety of applications in areas such as the food industry, petrochemical installations, and sea water desalination plants, where high corrosion resistance and high mechanical strength are required. However, during fusion welding operations, there can be changes to the favorable microstructure of these materials that compromise their performance. Friction stir welding with a non-consumable pin enables welded joints to be obtained in the solid state, which avoids typical problems associated with solidification of the molten pool, such as segregation of alloying elements and the formation of solidification and liquefaction cracks. In the case of superduplex stainless steels, use of the technique can avoid unbalanced proportions of ferrite and austenite, formation of deleterious second phases, or growth of ferritic grains in the heat-affected zone. Consolidated joints with full penetration were obtained for 6-mm-thick plates of UNS S32101 and S32205 duplex stainless steels, and S32750 and S32760 superduplex steels. The welding heat cycles employed avoided the conditions required for formation of deleterious phases, except in the case of the welded joint of the S32760 steel, where SEM images indicated the formation of secondary phases, as corroborated by decreased mechanical performance. Analysis using EBSD and transmission electron microscopy revealed continuous dynamic recrystallization by the formation of cellular arrays of dislocations in the ferrite and discontinuous dynamic recrystallization in the austenite. Microtexture evaluation indicated the presence of fibers typical of shear in the thermomechanically affected zone. These fibers were not obviously present in the stir zone, probably due to the intensity of microstructural reformulation to which this region was subjected.

  14. Partially melted zone in aluminum welds

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Che

    The partially melted zone (PMZ) is a region immediately outside the weld metal where grain boundary (GB) liquation can occur and cause intergranular cracking. Aluminum alloys are known to be susceptible to liquation and liquation cracking. The PMZ of alloy 2219 (essentially Al-6.3Cu) was studied. Liquation is initiated eutectically. Solidification of the GB liquid was directional---upward and toward the weld as a result of the temperature gradients across the PMZ. The liquated material solidifies with severe segregation into a low-strength, low-ductility structure consisting of a solute-depleted ductile phase and a solute-rich brittle eutectic. In tensile testing the maximum load and displacement before failure were both far below those of the base metal. The GB eutectic fractured while the adjacent Cu-depleted a deformed readily under tension. The solidification mode of the grain boundary liquid was mostly planar. However, cellular solidification was also observed near the bottom of partial-penetration welds, where temperature gradients were lowest. The liquation mechanisms in wrought multicomponent aluminum alloys during welding were also studied. Three mechanisms were identified. They cover most, if not all, wrought aluminum alloys. Liquation cracking in the PMZ was investigated in full-penetration aluminum welds. Liquation cracking occurs because the solidifying PMZ is pulled by a solidifying and thus contracting weld metal that is stronger than the PMZ. Liquation cracking can occur if there is significant liquation in the PMZ, if there is no solidification cracking in the adjacent weld metal, and if the PMZ becomes lower in solid fraction (and hence strength) during its terminal solidification than the solidifying weld metal. Liquation cracking in the PMZ was also investigated in partial-penetration aluminum welds. The papillary (nipple) type penetration common in welding with spray transfer of the filler wire actually oscillates along the weld and promotes cracking regardless of the filler metal used. The fast-solidifying weld metal immediately behind the penetration tip contracts and pulls the PMZ near the tip and, regardless of the weld-metal composition, cracking can occur if PMZ liquation is significant.

  15. GTA weld cracking-alloy 625 to 304L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, R.A.; Milewski, J.O.

    1985-08-01

    Autogenous gas tungsten arc welds joining alloy 625 and 304L stainless steel were found to be susceptible to weld solidification cracking. Utilization of pulsed current GTA welding produced a higher sensitivity to solidification cracks than continuous current welding. Spot Varestraint tests show that the sensitivity of this dissimilar metal combination to cracking exists over the entire range of dilutions while the greatest sensitivity is in 304L stainless steel rich compositions. Auger electron spectroscopy indicates that segregation of sulfur and phosphorous to the interdendritic phase promotes the hot cracking.

  16. Effect of Chemical Composition on Susceptibility to Weld Solidification Cracking in Austenitic Weld Metal

    NASA Astrophysics Data System (ADS)

    Kadoi, Kota; Shinozaki, Kenji

    2017-12-01

    The influence of the chemical composition, especially the niobium content, chromium equivalent Creq, and nickel equivalent Nieq, on the weld solidification cracking susceptibility in the austenite single-phase region in the Schaeffler diagram was investigated. Specimens were fabricated using the hot-wire laser welding process with widely different compositions of Creq, Nieq, and niobium in the region. The distributions of the susceptibility, such as the crack length and brittle temperature range (BTR), in the Schaeffler diagram revealed a region with high susceptibility to solidification cracking. Addition of niobium enhanced the susceptibility and changed the distribution of the susceptibility in the diagram. The BTR distribution was in good agreement with the distribution of the temperature range of solidification (Δ T) calculated by solidification simulation based on Scheil model. Δ T increased with increasing content of alloying elements such as niobium. The distribution of Δ T was dependent on the type of alloying element owing to the change of the partitioning behavior. Thus, the solidification cracking susceptibility in the austenite single-phase region depends on whether the alloy contains elements. The distribution of the susceptibility in the region is controlled by the change in Δ T and the segregation behavior of niobium with the chemical composition.

  17. Hot-wire Laser Welding of Deep and Wide Gaps

    NASA Astrophysics Data System (ADS)

    Näsström, J.; Frostevarg, J.; Silver, T.

    Heavy section Gas Metal Arc Welding (GMAW) usually requires special edge preparation and several passes. One alternative for increased performance is Laser Arc Hybrid Welding (LAHW). For very thick sheets however, imperfections like root drops or solidification cracks can occur. In this study, other techniques are also studied, including multi-pass filling of deep gaps with wire deposition. A laser is then used to melt the filler and base material. The hot- and cold wire laser welding processes are highly sensitive to wire-laser positioning, where controlled melting of the wire is essential. Apart from a comprehensive literature survey, preliminary experiments were also performed in order to find a novel method variant that can successfully fill deep and wide gaps. The method applied uses a defocused laser that generates the melt pool. A resistance heated wire is fed into the melt pool front in a leading position. This is similar to additive manufacturing techniques such as laser direct metal deposition with wire. A layer height of several millimeters can be achieved and rather low laser power can be chosen. The preliminary experiments were observed using high speed imaging and briefly evaluated by visual examination of the resulting beads. Using a defocused laser beam turned out to have two major advantages; 1. It adds heat to the melt pool in a manner that properly fuses the bottom and walls of the base material. 2. It counteracts difficulties due to an irregularly oscillating filler wire. These early results show that this can be a promising technique for joining thick steels with wide gaps.

  18. Cooling Rate Determination in Additively Manufactured Aluminum Alloy 2219

    NASA Astrophysics Data System (ADS)

    Brice, Craig A.; Dennis, Noah

    2015-05-01

    Metallic additive manufacturing processes generally utilize a conduction mode, welding-type approach to create beads of deposited material that can be arranged into a three-dimensional structure. As with welding, the cooling rates in the molten pool are relatively rapid compared to traditional casting techniques. Determination of the cooling rate in the molten pool is critical for predicting the solidified microstructure and resultant properties. In this experiment, wire-fed electron beam additive manufacturing was used to melt aluminum alloy 2219 under different thermal boundary conditions. The dendrite arm spacing was measured in the remelted material, and this information was used to estimate cooling rates in the molten pool based on established empirical relationships. The results showed that the thermal boundary conditions have a significant effect on the resulting cooling rate in the molten pool. When thermal conduction is limited due to a small thermal sink, the dendrite arm spacing varies between 15 and 35 µm. When thermal conduction is active, the dendrite arm spacing varies between 6 and 12 µm. This range of dendrite arm spacing implies cooling rates ranging from 5 to 350 K/s. Cooling rates can vary greatly as thermal conditions change during deposition. A cooling rate at the higher end of the range could lead to significant deviation from microstructural equilibrium during solidification.

  19. Laser beam joining of optical fibers in silicon V-grooves

    NASA Astrophysics Data System (ADS)

    Kaufmann, Stefan; Otto, Andreas; Luz, Gerhard

    2000-06-01

    The increasing use of optical data transmission systems and the development of new optical components require adjustment-insensitive and reliable joining and assembling techniques. The state of the art includes the utilization of silicon submounts with anisotropically etched V-grooves. Several glass fibers are fixed in these V-grooves with adhesive. Adhesive bonds tend towards degradation under the influence of temperature and moisture. For this reason, the alternative joining processes laser beam welding and laser beam soldering are relevant. The goal is a reliable joining of optical fibers in V-grooves without damage to the fibers or the silicon submount. Because of the anomaly of silicon during phase transformation, a positive joining can be realized by laser beam welding. A melt pool is created through the energy of a Nd:YAG-laser pulse. During solidification, the volume of silicon increases and a bump is formed in the center. Experiments have shown that this phenomenon can be used for joining optical fibers in silicon-V-grooves. With suitable parameters the silicon flows half around the fiber during solidification. For each fiber, several welding points are necessary. Another promising joining method is laser bema soldering. In this case, a second silicon sheet with a solder deposit is placed on the fibers which lie in the V-grooves of the metallized silicon submount. The laser heats the upper silicon until the solder metals by heat conduction.

  20. Study on Mg/Al Weld Seam Based on Zn–Mg–Al Ternary Alloy

    PubMed Central

    Liu, Liming; Liu, Fei; Zhu, Meili

    2014-01-01

    Based on the idea of alloying welding seams, a series of Zn–xAl filler metals was calculated and designed for joining Mg/Al dissimilar metals by gas tungsten arc (GTA) welding. An infrared thermography system was used to measure the temperature of the welding pool during the welding process to investigate the solidification process. It was found that the mechanical properties of the welded joints were improved with the increasing of the Al content in the Zn–xAl filler metals, and when Zn–30Al was used as the filler metal, the ultimate tensile strength could reach a maximum of 120 MPa. The reason for the average tensile strength of the joint increasing was that the weak zone of the joint using Zn–30Al filler metal was generated primarily by α-Al instead of MgZn2. When Zn–40Al was used as the filler metal, a new transition zone, about 20 μm-wide, appeared in the edge of the fusion zone near the Mg base metal. Due to the transition zones consisting of MgZn2- and Al-based solid solution, the mechanical property of the joints was deteriorated. PMID:28788508

  1. Change of Hot Cracking Susceptibility in Welding of High Strength Aluminum Alloy AA 7075

    NASA Astrophysics Data System (ADS)

    Holzer, M.; Hofmann, K.; Mann, V.; Hugger, F.; Roth, S.; Schmidt, M.

    High strength aluminum alloys are known as hard to weld alloys due to their high hot crack susceptibility. However, they have high potential for applications in light weight constructions of automotive industry and therefore it is needed to increase weldability. One major issue is the high hot cracking susceptibility. Vaporization during laser beam welding leads to a change of concentration of the volatile elements magnesium and zinc. Hence, solidification range of the weld and therefore hot cracking susceptibility changes. Additionally, different welding velocities lead to changed solidification conditions with certain influence on hot cracking. This paper discusses the influence of energy per unit length during laser beam welding of AA 7075 on the change of element concentration in the weld seam and the resulting influence on hot cracking susceptibility. Therefore EDS-measurements of weld seams generated with different velocities are performed to determine the change of element concentration. These quantitative data is used to numerically calculate the solidification range in order to evaluate its influence on the hot cracking susceptibility. Besides that, relative hot crack length and mechanical properties are measured. The results increase knowledge about welding of high strength aluminum alloy AA 7075 and hence support further developing of the welding process.

  2. Solidification and solidification cracking in nitrogen-strengthened austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Ritter, Ann M.; Savage, Warren F.

    1986-04-01

    The solidification behavior of three heats of nitrogen-strengthened austenitic stainless steel was examined and was correlated with solidification mode predictions and with hot cracking resistance. The heat of NITRONIC* 50 solidified by the austenitic-ferrite mode, and the NITRONIC 50W and NITRONIC 50W - Nb heats solidified by the ferritic-austenitic mode. This behavior was in good agreement with predictions based on Espy’s formulas for Cr and Ni equivalents. Both the NITRONIC 50W and NITRONIC 50W + Nb welds contained primary delta-ferrite, with the latter weld and the NITRONIC 50 weld also containing some eutectic ferrite. Solute profiles in austenite near the eutectic ferrite showed decreasing Fe and increasing Cr, Ni, Mn, and Mo relative to austenite in the dendrite cores. Numerous Nb-rich precipitates were found on the eutectic ferrite/austenite interfaces and within the eutectic ferrite. The precipitates were mainly Nb(C, N), with some Z-phase, a Nb-rich nitride, also detected. One instance of the transformation of eutectic ferrite to sigma-phase was observed to have occurred during cooling of the NITRONIC 50 weld. Hot cracking was seen in the NITRONIC 50 and NITRONIC 50W + Nb welds and resulted from the formation of a niobium carbonitride eutectic in the interdendritic regions. In the absence of Nb, the NITRONIC 50W heat formed no observable eutectic constituents and did not hot crack. The presence of hot cracks in the NITRONIC 50W + Nb weld indicates that solidification by the ferritic-austenitic mode did not counteract the effects of small Nb additions.

  3. Development of a chromium-free consumable for joining stainless steels

    NASA Astrophysics Data System (ADS)

    Sowards, Jeffrey William

    Government regulations in the United States (OSHA Standards: 1910; 1915; 1917; 1918; 1926) and abroad are decreasing allowable exposure levels of hexavalent chromium to welding related personnel. The latest OSHA ruling in 2006 reduced the permissible exposure limit of airborne hexavalent chromium from 52 to 5 mug m-3. Achieving the new level may not be practical from an engineering controls standpoint during the fabrication of tightly enclosed stainless steel components such as the inside of ship hulls and boiler vessels. One method of addressing this problem is to implement a chromium-free welding consumable that provides equivalent mechanical performance and corrosion characteristics to current stainless steel welding consumables. This project was aimed at developing such a consumable and evaluating its suitability for replacement of current stainless steel consumables such as E308L-16. A new shielded metal arc welding (SMAW) consumable based on the Ni-Cu-Ru system was developed for austenitic stainless steel welding. The focus of this work was evaluating the mechanical properties, weldability, and fume formation characteristics of the various iterations of consumables developed. Welds deposited on Type 304 stainless steel were evaluated with weldability tests including: mechanical testing, hot ductility testing, Strain-to-fracture testing, Transverse Varestraint testing, and button melting. Mechanical properties of weld deposits of each consumable were found to exceed minimum values of Type 304 stainless steel based on tensile testing. Guide bend testing showed that weld deposits met minimum weld ductility requirements for stainless steel consumables, such as E308-16. Hot ductility testing revealed a narrow crack susceptible region (33 to 54°C) indicating a low susceptibility to weld metal liquation cracking. GTA welds exhibited superior ductility when compared to SMA welds. This was attributed to a lack of slag inclusions in the weld deposit, which are effective weld strengtheners. Varestraint testing revealed that weld deposits have a higher solidification cracking susceptibility than stainless steel consumables used to join Type 304. Higher cracking susceptibility was attributed to austenitic solidification of the weld metal resulting in increased weld segregation and stabilization of a TiC eutectic reaction at the end of solidification. No solidification cracks were observed in actual weld deposits. Evaluation of weld microsegregation patterns showed higher dilutions of Type 304 increased segregation of Ti, promoting a TiC eutectic reaction at the end of solidification. Thermodynamic modeling techniques were used to describe the solidification the Ni-Cu weld deposits as a function of dilution with Type 304. Solidification cracking susceptibility was shown to increase with dilution during evaluation with the Cast Pin Tear Test indicating high dilution welds should be avoided to minimize solidification cracking during welding. The Strain-to-fracture test was used to examine DDC cracking susceptibility, and revealed that this alloy has a higher susceptibility to solid-state weld cracking than austenitic stainless alloys such as 304. Threshold strain levels necessary to initiate cracking in the weld deposits were in the range of 2 to 3%. These values are comparable to other Ni-base alloys with a moderate to high susceptibility to DDC. Fume generation rates (FGR) of the new consumable were measured and bulk fume phases were analyzed with X-ray diffraction. FGR values were found to be similar to current SMAW and flux cored arc welding consumables. No chromium bearing compounds were observed during X-ray diffraction measurements, and the bulk fume consisted primarily of halides and metallic-oxides. Fume generated by the new consumable was subjected to colorimetric testing showing hexavalent Cr content (0.02 wt-%) was reduced by two orders of magnitude compared to E308-16 (2.6 wt-%). The source of this hexavalent chromium was from evaporation of the base metal due to the welding heat source. The consumable developed in this study, having a nominal composition of Ni-7.5Cu-1Ru-0.5Al-0.5Ti-0.02C, met virtually all the design criteria that were initially established. Work performed by the Fontana Corrosion Center showed that the weld deposits met corrosion design criteria to prevent localized attack of the weld metal. Work performed in this study showed that mechanical properties were comparable to stainless steel consumables, and weld cracking susceptibility was comparable to Ni-base welding consumables. The consumable was also found to have good operability characteristics. (Abstract shortened by UMI.)

  4. Microstructure and Solidification Crack Susceptibility of Al 6014 Molten Alloy Subjected to a Spatially Oscillated Laser Beam.

    PubMed

    Kang, Minjung; Han, Heung Nam; Kim, Cheolhee

    2018-04-23

    Oscillating laser beam welding for Al 6014 alloy was performed using a single mode fiber laser and two-axis scanner system. Its effect on the microstructural evolution of the fusion zone was investigated. To evaluate the influence of oscillation parameters, self-restraint test specimens were fabricated with different beam patterns, widths, and frequencies. The behavior of hot cracking propagation was analyzed by high-speed camera and electron backscatter diffraction. The behavior of crack propagation was observed to be highly correlated with the microstructural evolution of the fusion zone. For most oscillation conditions, the microstructure resembled that of linear welds. A columnar structure was formed near the fusion line and an equiaxed structure was generated at its center. The wide equiaxed zone of oscillation welding increased solidification crack susceptibility. For an oscillation with an infinite-shaped scanning pattern at 100 Hz and 3.5 m/min welding speed, the bead width, solidification microstructure, and the width of the equiaxed zone at the center of fusion fluctuated. Furthermore, the equiaxed and columnar regions alternated periodically, which could reduce solidification cracking susceptibility.

  5. Microstructure and Solidification Crack Susceptibility of Al 6014 Molten Alloy Subjected to a Spatially Oscillated Laser Beam

    PubMed Central

    Kang, Minjung; Han, Heung Nam

    2018-01-01

    Oscillating laser beam welding for Al 6014 alloy was performed using a single mode fiber laser and two-axis scanner system. Its effect on the microstructural evolution of the fusion zone was investigated. To evaluate the influence of oscillation parameters, self-restraint test specimens were fabricated with different beam patterns, widths, and frequencies. The behavior of hot cracking propagation was analyzed by high-speed camera and electron backscatter diffraction. The behavior of crack propagation was observed to be highly correlated with the microstructural evolution of the fusion zone. For most oscillation conditions, the microstructure resembled that of linear welds. A columnar structure was formed near the fusion line and an equiaxed structure was generated at its center. The wide equiaxed zone of oscillation welding increased solidification crack susceptibility. For an oscillation with an infinite-shaped scanning pattern at 100 Hz and 3.5 m/min welding speed, the bead width, solidification microstructure, and the width of the equiaxed zone at the center of fusion fluctuated. Furthermore, the equiaxed and columnar regions alternated periodically, which could reduce solidification cracking susceptibility. PMID:29690630

  6. Laser weldability of 21Cr-6Ni-9Mn stainless steel: Part I - Impurity effects and solidifcation mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tate, Stephen B.; Javernick, Daniel Anthony; Lienert, Thomas J.

    For laser welded type 21Cr-6Ni-9Mn (21-6-9) stainless steels, the relationship between solidification cracking susceptibility and chemical composition was examined, and primary solidification mode (PSM) diagrams were developed to predict solidification mode. Sigmajig testing was used with experimental heats of type 21-6-9 to determine the effect of P and S on solidification cracking w hen primary austenite solidification occurred. Phosphorus showed a larger influence on solidification cracking relative to S, and a relationship of (P+0.2S ) was found for total impurity content. PSM diagrams to predict solidification mode were developed by analyzing welds made at three travel speeds for a widemore » range of 21-6-9 alloys and some other similar alloys. The minimum Cr eq/Ni eq required for primary ferrite solidification increased as travel speed increased, with more alloys showing primary austenite solidification at higher travel rates. Furthermore, as travel speed increased from 21 to 85 mm/s, the average solidification rate increased from 6 to 25 mm/s.« less

  7. Laser weldability of 21Cr-6Ni-9Mn stainless steel: Part I - Impurity effects and solidifcation mode

    DOE PAGES

    Tate, Stephen B.; Javernick, Daniel Anthony; Lienert, Thomas J.; ...

    2016-11-02

    For laser welded type 21Cr-6Ni-9Mn (21-6-9) stainless steels, the relationship between solidification cracking susceptibility and chemical composition was examined, and primary solidification mode (PSM) diagrams were developed to predict solidification mode. Sigmajig testing was used with experimental heats of type 21-6-9 to determine the effect of P and S on solidification cracking w hen primary austenite solidification occurred. Phosphorus showed a larger influence on solidification cracking relative to S, and a relationship of (P+0.2S ) was found for total impurity content. PSM diagrams to predict solidification mode were developed by analyzing welds made at three travel speeds for a widemore » range of 21-6-9 alloys and some other similar alloys. The minimum Cr eq/Ni eq required for primary ferrite solidification increased as travel speed increased, with more alloys showing primary austenite solidification at higher travel rates. Furthermore, as travel speed increased from 21 to 85 mm/s, the average solidification rate increased from 6 to 25 mm/s.« less

  8. Influence of Solute Content and Solidification Parameters on Grain Refinement of Aluminum Weld Metal

    NASA Astrophysics Data System (ADS)

    Schempp, Philipp; Cross, Carl Edward; Pittner, Andreas; Rethmeier, Michael

    2013-07-01

    Grain refinement provides an important possibility to enhance the mechanical properties ( e.g., strength and ductility) and the weldability (susceptibility to solidification cracking) of aluminum weld metal. In the current study, a filler metal consisting of aluminum base metal and different amounts of commercial grain refiner Al Ti5B1 was produced. The filler metal was then deposited in the base metal and fused in a GTA welding process. Additions of titanium and boron reduced the weld metal mean grain size considerably and resulted in a transition from columnar to equiaxed grain shape ( CET). In commercial pure aluminum (Alloy 1050A), the grain-refining efficiency was higher than that in the Al alloys 6082 and 5083. Different welding and solidification parameters influenced the grain size response only slightly. Furthermore, the observed grain-size reduction was analyzed by means of the undercooling parameter P and the growth restriction parameter Q, which revealed the influence of solute elements and nucleant particles on grain size.

  9. Low-Temperature Aging Characteristics of Type 316L Stainless Steel Welds: Dependence on Solidification Mode

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Watanabe, Yutaka

    2008-06-01

    Thermal aging embrittlement of light water reactor (LWR) components made of stainless steel cast has been recognized as a potential degradation issue, and careful attention has been paid to it. Although welds of austenitic stainless steels have γ-δ duplex microstructure, which is similar to that of the stainless steel cast, examination of the thermal aging characteristics of the stainless steel welds is very limited. In this investigation, two types of type 316L stainless steel weld metal with different solidification modes were prepared using two kinds of filler metals having tailored Ni equivalent and Cr equivalent. Differences between the two weld metals in the morphology of microstructure, in the composition of δ-ferrite, and in hardening behaviors with isothermal aging at 335 °C have been investigated. The hardness of the ferrite phase has increased with aging time, while the hardness of austenite phase has stayed the same. The mottled aspect has been observed in δ-ferrite of aged samples by transmission electron microscopy (TEM) observation. These characteristics suggest that spinodal decomposition has occurred in δ-ferrite by aging at 335 °C. The age-hardening rate of δ-ferrite was faster for the primary austenite solidification mode (AF mode) sample than the primary ferrite solidification mode (FA mode) sample in the initial stage of the aging up to 2000 hours. It has been suggested that the solidification mode can affect the kinetics of spinodal decomposition.

  10. Effect of Surface Tension Anisotropy and Welding Parameters on Initial Instability Dynamics During Solidification: A Phase-Field Study

    NASA Astrophysics Data System (ADS)

    Yu, Fengyi; Wei, Yanhong

    2018-05-01

    The effects of surface tension anisotropy and welding parameters on initial instability dynamics during gas tungsten arc welding of an Al-alloy are investigated by a quantitative phase-field model. The results show that the surface tension anisotropy and welding parameters affect the initial instability dynamics in different ways during welding. The surface tension anisotropy does not influence the solute diffusion process but does affect the stability of the solid/liquid interface during solidification. The welding parameters affect the initial instability dynamics by varying the growth rate and thermal gradient. The incubation time decreases, and the initial wavelength remains stable as the welding speed increases. When welding power increases, the incubation time increases and the initial wavelength slightly increases. Experiments were performed for the same set of welding parameters used in modeling, and the results of the experiments and simulations were in good agreement.

  11. Thermal Imaging for Assessment of Electron-Beam Free Form Fabrication (EBF(sup 3)) Additive Manufacturing Welds

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Burke, Eric R.; Hafley, Robert A.; Taminger, Karen M.; Domack, Christopher S.; Brewer, Amy R.; Martin, Richard E.

    2013-01-01

    Additive manufacturing is a rapidly growing field where 3-dimensional parts can be produced layer by layer. NASA s electron beam free-form fabrication (EBF(sup 3)) technology is being evaluated to manufacture metallic parts in a space environment. The benefits of EBF(sup 3) technology are weight savings to support space missions, rapid prototyping in a zero gravity environment, and improved vehicle readiness. The EBF(sup 3) system is composed of 3 main components: electron beam gun, multi-axis position system, and metallic wire feeder. The electron beam is used to melt the wire and the multi-axis positioning system is used to build the part layer by layer. To insure a quality weld, a near infrared (NIR) camera is used to image the melt pool and solidification areas. This paper describes the calibration and application of a NIR camera for temperature measurement. In addition, image processing techniques are presented for weld assessment metrics.

  12. Initiation and growth kinetics of solidification cracking during welding of steel

    PubMed Central

    Aucott, L.; Huang, D.; Dong, H. B.; Wen, S. W.; Marsden, J. A.; Rack, A.; Cocks, A. C. F.

    2017-01-01

    Solidification cracking is a key phenomenon associated with defect formation during welding. To elucidate the failure mechanisms, solidification cracking during arc welding of steel are investigated in situ with high-speed, high-energy synchrotron X-ray radiography. Damage initiates at relatively low true strain of about 3.1% in the form of micro-cavities at the weld subsurface where peak volumetric strain and triaxiality are localised. The initial micro-cavities, with sizes from 10 × 10−6 m to 27 × 10−6 m, are mostly formed in isolation as revealed by synchrotron X-ray micro-tomography. The growth of micro-cavities is driven by increasing strain induced to the solidifying steel. Cavities grow through coalescence of micro-cavities to form micro-cracks first and then through the propagation of micro-cracks. Cracks propagate from the core of the weld towards the free surface along the solidifying grain boundaries at a speed of 2–3 × 10−3 m s−1. PMID:28074852

  13. Understanding the solidification and microstructure evolution during CSC-MIG welding of Fe–Cr–B-based alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorour, A.A., E-mail: ahmad.sorour@mail.mcgill.ca; Chromik, R.R., E-mail: richard.chromik@mcgill.ca; Gauvin, R., E-mail: raynald.gauvin@mcgill.ca

    2013-12-15

    The present is a study of the solidification and microstructure of Fe–28.2%Cr–3.8%B–1.5%Si–1.5%Mn (wt.%) alloy deposited onto a 1020 plain carbon steel substrate using the controlled short-circuit metal inert gas welding process. The as-solidified alloy was a metal matrix composite with a hypereutectic microstructure. Thermodynamic calculation based on the Scheil–Gulliver model showed that a primary (Cr,Fe){sub 2}B phase formed first during solidification, followed by an eutectic formation of the (Cr,Fe){sub 2}B phase and a body-centered cubic Fe-based solid solution matrix, which contained Cr, Mn and Si. Microstructure analysis confirmed the formation of these phases and showed that the shape of themore » (Cr,Fe){sub 2}B phase was irregular plate. As the welding heat input increased, the weld dilution increased and thus the volume fraction of the (Cr,Fe){sub 2}B plates decreased while other microstructural characteristics were similar. - Highlights: • We deposit Fe–Cr–B-based alloy onto plain carbon steel using the CSC-MIG process. • We model the solidification behavior using thermodynamic calculation. • As deposited alloy consists of (Cr,Fe){sub 2}B plates embedded in Fe-based matrix. • We study the effect of the welding heat input on the microstructure.« less

  14. Deformation behavior of a 16-8-2 GTA weld as influenced by its solidification substructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foulds, J.R.; Moteff, J.; Sikka, V.K.

    1983-07-01

    Weldment sections from formed and welded type 316 stainless steel pipe are characterized with respect to some time-independent (tensile) and time-dependent (creep) mechanical properties at temperatures between 25/sup 0/C and 649/sup 0/C. The GTA weldment, welded with 16-8-2 filler metal, is sectioned from pipe in the formed + welded + solution annealed + straightened condition, as well as in the same condition with an additional re-solution treatment. Detailed room temperature microhardness measurements on these sections before and after reannealing enable a determination of the different recovery characteristics of weld and base metal. The observed stable weld metal solidification dislocation substructuremore » in comparison with the base metal random dislocation structure, in fact, adequately explains weld/base metal elevated temperature mechanical behavior differences from this recovery characteristic standpoint. The weld metal substructure is the only parameter common to the variety of austenitic stainless steel welds exhibiting the consistent parent/weld metal deformation behavior differences described. As such, it must be considered the key to understanding weldment mechanical behavior.« less

  15. Microstructure formation in partially melted zone during gas tungsten arc welding of AZ91 Mg cast alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Tianping; Chen, Zhan W.; Gao Wei

    2008-11-15

    During gas tungsten arc (GTA) welding of AZ91 Mg cast alloy, constitutional liquid forms locally in the original interdendritic regions in the partially melted zone (PMZ). The PMZ re-solidification behaviour has not been well understood. In this study, the gradual change of the re-solidification microstructure within PMZ from base metal side to weld metal side was characterised. High cooling rate experiments using Gleeble thermal simulator were also conducted to understand the morphological change of the {alpha}-Mg/{beta}-Mg{sub 17}Al{sub 12} phase interface formed during re-solidification after partial melting. It was found that the original partially divorced eutectic structure has become a moremore » regular eutectic phase in most of the PMZ, although close to the fusion boundary the re-solidified eutectic is again a divorced one. Proceeding the eutectic re-solidification, if the degree of partial melting is sufficiently high, {alpha}-Mg re-solidified with a cellular growth, resulting in a serrated interface between {alpha}-Mg and {alpha}-Mg/{beta}-Mg{sub 17}Al{sub 12} in the weld sample and between {alpha}-Mg and {beta}-Mg{sub 17}Al{sub 12} (fully divorced eutectic) in Gleeble samples. The morphological changes affected by the peak temperature and cooling rate are also explained.« less

  16. Study on Dynamic Development of Three-dimensional Weld Pool Surface in Stationary GTAW

    NASA Astrophysics Data System (ADS)

    Huang, Jiankang; He, Jing; He, Xiaoying; Shi, Yu; Fan, Ding

    2018-04-01

    The weld pool contains abundant information about the welding process. In particular, the type of the weld pool surface shape, i. e., convex or concave, is determined by the weld penetration. To detect it, an innovative laser-vision-based sensing method is employed to observe the weld pool surface of the gas tungsten arc welding (GTAW). A low-power laser dots pattern is projected onto the entire weld pool surface. Its reflection is intercepted by a screen and captured by a camera. Then the dynamic development process of the weld pool surface can be detected. By observing and analyzing, the change of the reflected laser dots reflection pattern, for shape of the weld pool surface shape, was found to closely correlate to the penetration of weld pool in the welding process. A mathematical model was proposed to correlate the incident ray, reflected ray, screen and surface of weld pool based on structured laser specular reflection. The dynamic variation of the weld pool surface and its corresponding dots laser pattern were simulated and analyzed. By combining the experimental data and the mathematical analysis, the results show that the pattern of the reflected laser dots pattern is closely correlated to the development of weld pool, such as the weld penetration. The concavity of the pool surface was found to increase rapidly after the surface shape was changed from convex to concave during the stationary GTAW process.

  17. Effects of post-weld heat treatment on microstructure and mechanical properties of laser welds in GH3535 superalloy

    NASA Astrophysics Data System (ADS)

    Yu, Kun; Jiang, Zhenguo; Leng, Bin; Li, Chaowen; Chen, Shuangjian; Tao, Wang; Zhou, Xingtai; Li, Zhijun

    2016-07-01

    In this study, the microstructure and mechanical properties of laser welds before and after post-weld heat treatment processes were studied. The results show that the tensile strength of the joints can be increased by 90 MPa by a post-weld heat treatment process at 871 °C for 6 h, exceeding the strength of the original state of the base metal. Besides, elongation of the joints are also increased to 43% by the process, whereas the elongation of as-welded joints are only 22%. In addition, the Charpy impact properties of laser welds almost do not change. Second phase precipitates, which were identified as Mo-Si rich M6C-type carbides by transmission electron diffraction and scanning electron microscope, were observed at solidification grain boundaries and solidification subgrain boundaries. These carbides can pin dislocations during the following tensile deformation, hence are responsible for the strengthening of tensile properties of the joints.

  18. Laser weldability of 21Cr-6Ni-9Mn stainless steel: Part II - Weldability diagrams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tate, Stephen B.; Javernick, Daniel Anthony; Lienert, Thomas J.

    In this second part of the study, weldability diagrams developed to relate solidification crack susceptibility and chemical composition for laser welded type 21Cr-6Ni-9Mn (21-6-9) stainless steel are presented. Sigmajig testing on 14 commercial 21-6-9 alloys, 20 experimental 21-6-9 alloys, and 7 other high-N, high-Mn austenitic stainless steels was used to develop weldability diagrams for solidification crack susceptibility for laser welding of type 21-6-9. Three travel speeds were used to show the changes in minimum Cr eq/Ni eq for primary ferrite solidification as solidification rate increase d with travel speed . Primary austenite solidification was observed below 1.55 Cr eq/Ni eqmore » (Espy equivalents) at 21 mm/s travel speed. At 42 mm/s travel speed , a mix of solidification modes were displayed for alloys from 1.55-1.75 Cr eq/Ni eq. Primary ferrite solidification was observed above 1.75 Cr eq/Ni eq at both 42 and 85 mm/s travel speeds. No solidification cracking was observed for alloys with primary ferrite solidification. Lastly, variable cracking behavior was found in alloys with primary austenite solidification, but in general cracking was observed in alloys with greater than 0.02 wt-% combined impurity content according to (P+0.2S).« less

  19. Laser weldability of 21Cr-6Ni-9Mn stainless steel: Part II - Weldability diagrams

    DOE PAGES

    Tate, Stephen B.; Javernick, Daniel Anthony; Lienert, Thomas J.; ...

    2016-11-02

    In this second part of the study, weldability diagrams developed to relate solidification crack susceptibility and chemical composition for laser welded type 21Cr-6Ni-9Mn (21-6-9) stainless steel are presented. Sigmajig testing on 14 commercial 21-6-9 alloys, 20 experimental 21-6-9 alloys, and 7 other high-N, high-Mn austenitic stainless steels was used to develop weldability diagrams for solidification crack susceptibility for laser welding of type 21-6-9. Three travel speeds were used to show the changes in minimum Cr eq/Ni eq for primary ferrite solidification as solidification rate increase d with travel speed . Primary austenite solidification was observed below 1.55 Cr eq/Ni eqmore » (Espy equivalents) at 21 mm/s travel speed. At 42 mm/s travel speed , a mix of solidification modes were displayed for alloys from 1.55-1.75 Cr eq/Ni eq. Primary ferrite solidification was observed above 1.75 Cr eq/Ni eq at both 42 and 85 mm/s travel speeds. No solidification cracking was observed for alloys with primary ferrite solidification. Lastly, variable cracking behavior was found in alloys with primary austenite solidification, but in general cracking was observed in alloys with greater than 0.02 wt-% combined impurity content according to (P+0.2S).« less

  20. Weld pool oscillation during GTA welding of mild steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Y.H.; Ouden, G. den

    1993-08-01

    In this paper the results are reported of a study dealing with the oscillation behavior of weld pools in the case of GTA bead-on-plate welding of mild steel, Fe 360. During welding, the weld pool was brought into oscillation by applying short current pulses, and the oscillation frequency and amplitude were measured by monitoring the arc voltage. It was found that the oscillation of the partially penetrated weld pool is dominated by one of two different oscillation modes (Mode 1 and Mode 2) depending on the welding conditions, whereas the oscillation of the fully penetrated weld pool is characterized bymore » a third oscillation mode (Mode 3). It is possible to maintain partially penetrated weld pool oscillation in Mode 1 by choosing appropriate welding conditions. Under these conditions, an abrupt decrease in oscillation frequency occurs when the weld pool transfers from partial penetration to full penetration. Thus, weld penetration can be in-process controlled by monitoring the oscillation frequency during welding.« less

  1. Numerical and experimental determination of weld pool shape during high-power diode laser welding

    NASA Astrophysics Data System (ADS)

    Klimpel, Andrzej; Lisiecki, Aleksander; Szymanski, Andrzej; Hoult, Anthony P.

    2003-10-01

    In this paper, results of investigations on the shape of weld pool during High Power Diode Laser (HPDL) welding are presented. The results of tests showed that the shape of weld pool and mechanism of laser welding with a rectangular pattern of 808 nm laser radiation differs distinctly from previous laser welding mechanisms. For all power densities the conduction mode welds were observed and weld pool geometry depends significantly on the welding parameters.

  2. Microstructure Formation in Dissimilar Metal Welds: Electron Beam Welding of Ti/Ni

    NASA Astrophysics Data System (ADS)

    Chatterjee, Subhradeep; Abinandanan, T. A.; Reddy, G. Madhusudhan; Chattopadhyay, Kamanio

    2016-02-01

    We present results for electron beam welding of a binary Ti/Ni dissimilar metal couple. The difference in physical properties of the base metals and metallurgical features (thermodynamics and kinetics) of the system influence both macroscopic transport and microstructure development in the weld. Microstructures near the fusion interfaces are markedly different from those inside the weld region. At the Ti side, Ti2Ni dendrites are observed to grow toward the fusion interface, while in the Ni side, layered growth of γ-Ni, Ni3Ti, and Ni3Ti + NiTi eutectic is observed. Different morphologies of the latter eutectic constitute the predominant microstructure inside the weld metal region. These results are compared and contrasted with those from laser welding of the same binary couple, and a scheme of solidification is proposed to explain the observations. This highlights notable departures from welding of similar and other dissimilar metals such as a significant asymmetry in heat transport that governs progress of solidification from each side of the couple, and a lack of unique liquidus isotherm characterizing the liquid-solid front.

  3. Influence of the arc plasma parameters on the weld pool profile in TIG welding

    NASA Astrophysics Data System (ADS)

    Toropchin, A.; Frolov, V.; Pipa, A. V.; Kozakov, R.; Uhrlandt, D.

    2014-11-01

    Magneto-hydrodynamic simulations of the arc and fluid simulations of the weld pool can be beneficial in the analysis and further development of arc welding processes and welding machines. However, the appropriate coupling of arc and weld pool simulations needs further improvement. The tungsten inert gas (TIG) welding process is investigated by simulations including the weld pool. Experiments with optical diagnostics are used for the validation. A coupled computational model of the arc and the weld pool is developed using the software ANSYS CFX. The weld pool model considers the forces acting on the motion of the melt inside and on the surface of the pool, such as Marangoni, drag, electromagnetic forces and buoyancy. The experimental work includes analysis of cross-sections of the workpieces, highspeed video images and spectroscopic measurements. Experiments and calculations have been performed for various currents, distances between electrode and workpiece and nozzle diameters. The studies show the significant impact of material properties like surface tension dependence on temperature as well as of the arc structure on the weld pool behaviour and finally the weld seam depth. The experimental weld pool profiles and plasma temperatures are in good agreement with computational results.

  4. Experimental investigation on the weld pool formation process in plasma keyhole arc welding

    NASA Astrophysics Data System (ADS)

    Van Anh, Nguyen; Tashiro, Shinichi; Van Hanh, Bui; Tanaka, Manabu

    2018-01-01

    This paper seeks to clarify the weld pool formation process in plasma keyhole arc welding (PKAW). We adopted, for the first time, the measurement of the 3D convection inside the weld pool in PKAW by stereo synchronous imaging of tungsten tracer particles using two sets of x-ray transmission systems. The 2D convection on the weld pool surface was also measured using zirconia tracer particles. Through these measurements, the convection in a wide range of weld pools from the vicinity of the keyhole to the rear region was successfully visualized. In order to discuss the heat transport process in a weld pool, the 2D temperature distribution on the weld pool surface was also measured by two-color pyrometry. The results of the comprehensive experimental measurement indicate that the shear force due to plasma flow is found to be the dominant driving force in the weld pool formation process in PKAW. Thus, heat transport in a weld pool is considered to be governed by two large convective patterns near the keyhole: (1) eddy pairs on the surface (perpendicular to the torch axis), and (2) eddy pairs on the bulk of the weld pool (on the plane of the torch). They are formed with an equal velocity of approximately 0.35 m s-1 and are mainly driven by shear force. Furthermore, the flow velocity of the weld pool convection becomes considerably higher than that of other welding processes, such as TIG welding and GMA welding, due to larger plasma flow velocity.

  5. Numerical simulation of heat transfer and fluid flow in laser drilling of metals

    NASA Astrophysics Data System (ADS)

    Zhang, Tingzhong; Ni, Chenyin; Zhou, Jie; Zhang, Hongchao; Shen, Zhonghua; Ni, Xiaowu; Lu, Jian

    2015-05-01

    Laser processing as laser drilling, laser welding and laser cutting, etc. is rather important in modern manufacture, and the interaction of laser and matter is a complex phenomenon which should be detailed studied in order to increase the manufacture efficiency and quality. In this paper, a two-dimensional transient numerical model was developed to study the temperature field and molten pool size during pulsed laser keyhole drilling. The volume-of-fluid method was employed to track free surfaces, and melting and evaporation enthalpy, recoil pressure, surface tension, and energy loss due to evaporating materials were considered in this model. Besides, the enthalpy-porosity technique was also applied to account for the latent heat during melting and solidification. Temperature fields and melt pool size were numerically simulated via finite element method. Moreover, the effectiveness of the developed computational procedure had been confirmed by experiments.

  6. Influence of heat-treated Al-Si coating on the weldability and microstructural inhomogeneity for hot stamped steel resistance nut projection welds

    NASA Astrophysics Data System (ADS)

    Chun, Eun-Joon; Lim, Sung-Sang; Kim, Young-Tae; Nam, Ki-Sung; Kim, Young-Min; Park, Young-Whan; Murugan, Siva Prasad; Park, Yeong-Do

    2018-03-01

    Resistance nut projection weldability of Al-Si coated hot stamped steel (HSS) was investigated under the viewpoint of weldable current range and joint strength (pull-out load). The microstructural inhomogeneities in the welds were also studied in order to elucidate the factors affecting the joint strength of the welds. The weldability of the given Al-Si coated HSS was compared with the weldability of an identical HSS without the Al-Si coating (Al-Si coating was polished out) and Zn coated dual phase steel. The weldable current range of Al-Si coated HSS was found to be narrower than that of the other materials. Furthermore, the average pull-out load within the weldable current range of the Al-Si coated HSS was the lowest among the three materials. The reason for poor weld mechanical property of the Al-Si coated hot-stamped steel was attributed to the microstructural inhomogeneities such as unmixed Al-Si coating layer at the edge of the nugget and the second phase Fe3(Al, Si) intermetallic compound. The formation of Fe3(Al, Si) phase was attributed to the solidification segregation of Al and Si during the weld solidification and was confirmed with the numerical analysis of solidification segregation.

  7. 3D finite element simulation of TIG weld pool

    NASA Astrophysics Data System (ADS)

    Kong, X.; Asserin, O.; Gounand, S.; Gilles, P.; Bergheau, J. M.; Medale, M.

    2012-07-01

    The aim of this paper is to propose a three-dimensional weld pool model for the moving gas tungsten arc welding (GTAW) process, in order to understand the main factors that limit the weld quality and improve the productivity, especially with respect to the welding speed. Simulation is a very powerful tool to help in understanding the physical phenomena in the weld process. A 3D finite element model of heat and fluid flow in weld pool considering free surface of the pool and traveling speed has been developed for the GTAW process. Cast3M software is used to compute all the governing equations. The free surface of the weld pool is calculated by minimizing the total surface energy. The combined effects of surface tension gradient, buoyancy force, arc pressure, arc drag force to drive the fluid flow is included in our model. The deformation of the weld pool surface and the welding speed affect fluid flow, heat flow and thus temperature gradients and molten pool dimensions. Welding trials study is presented to compare our numerical results with macrograph of the molten pool.

  8. Two-dimensional time-resolved x-ray diffraction study of dual phase rapid solidification in steels

    NASA Astrophysics Data System (ADS)

    Yonemura, Mitsuharu; Osuki, Takahiro; Terasaki, Hidenori; Komizo, Yuichi; Sato, Masugu; Toyokawa, Hidenori; Nozaki, Akiko

    2010-01-01

    The high intensity heat source used for fusion welding creates steep thermal gradients of 100 °C/s from 1800 °C. Further, the influence of preferred orientation is important for the observation of a directional solidification that follows the dendrite growth along the ⟨100⟩ direction toward the moving heat source. In the present study, we observed the rapid solidification of weld metal at a time resolution of 0.01-0.1 s by a two-dimensional time-resolved x-ray diffraction (2DTRXRD) system for real welding. The diffraction rings were dynamically observed by 2DTRXRD with synchrotron energy of 18 keV while the arc passes over the irradiation area of the x-rays. The arc power output was 10 V-150 A, and the scan speed of the arc was 1.0 mm/s. The temperature rise in instruments was suppressed by a water-cooled copper plate under the specimen. Further, the temperature distribution of the weld metal was measured by a thermocouple and correlated with the diffraction patterns. Consequently, solidification and solid phase transformation of low carbon steels and stainless steels were observed during rapid cooling by 2DTRXRD. In the low carbon steel, the microstructure is formed in a two step process, (i) formation of crystallites and (ii) increase of crystallinity. In stainless steel, the irregular interface layer of δ/γ in the quenched metal after solidification is expected to show the easy movement of dendrites at a lower temperature. In carbide precipitation stainless steel, it is easy for NbC to grow on δ phase with a little undercooling. Further, a mistlike pattern, which differs from the halo pattern, in the fusion zone gave some indication of the possibilities to observe the nucleation and the early solidification by 2DTRXRD.

  9. Optimization of Superaustenitic Stainless Steel Filler Metals for Welding Advanced Double Hull Combatant Ships

    DTIC Science & Technology

    2005-02-16

    alloy is also given. The solidification mode of martensitic samples has been omitted and replaced with ’M’. Mo Ni +Cr Cr Ni ... alloys composed predominately of austenite. The four solidification modes present in the remaining 64 alloys , in order of increasing Cr/ Ni content, were...result in Fe- Ni -Cr-Mo alloys from the arc-melt condition. Solidification Solidification Primar- Secondar- Final microstrncture Mode

  10. Optimal Control of Thermo--Fluid Phenomena in Variable Domains

    NASA Astrophysics Data System (ADS)

    Volkov, Oleg; Protas, Bartosz

    2008-11-01

    This presentation concerns our continued research on adjoint--based optimization of viscous incompressible flows (the Navier--Stokes problem) coupled with heat conduction involving change of phase (the Stefan problem), and occurring in domains with variable boundaries. This problem is motivated by optimization of advanced welding techniques used in automotive manufacturing, where the goal is to determine an optimal heat input, so as to obtain a desired shape of the weld pool surface upon solidification. We argue that computation of sensitivities (gradients) in such free--boundary problems requires the use of the shape--differential calculus as a key ingredient. We also show that, with such tools available, the computational solution of the direct and inverse (optimization) problems can in fact be achieved in a similar manner and in a comparable computational time. Our presentation will address certain mathematical and computational aspects of the method. As an illustration we will consider the two--phase Stefan problem with contact point singularities where our approach allows us to obtain a thermodynamically consistent solution.

  11. Vision-based weld pool boundary extraction and width measurement during keyhole fiber laser welding

    NASA Astrophysics Data System (ADS)

    Luo, Masiyang; Shin, Yung C.

    2015-01-01

    In keyhole fiber laser welding processes, the weld pool behavior is essential to determining welding quality. To better observe and control the welding process, the accurate extraction of the weld pool boundary as well as the width is required. This work presents a weld pool edge detection technique based on an off axial green illumination laser and a coaxial image capturing system that consists of a CMOS camera and optic filters. According to the difference of image quality, a complete developed edge detection algorithm is proposed based on the local maximum gradient of greyness searching approach and linear interpolation. The extracted weld pool geometry and the width are validated by the actual welding width measurement and predictions by a numerical multi-phase model.

  12. Modeling and characterization of as-welded microstructure of solid solution strengthened Ni-Cr-Fe alloys resistant to ductility-dip cracking part I: Numerical modeling

    NASA Astrophysics Data System (ADS)

    Unfried-Silgado, Jimy; Ramirez, Antonio J.

    2014-03-01

    This work aims the numerical modeling and characterization of as-welded microstructure of Ni-Cr-Fe alloys with additions of Nb, Mo and Hf as a key to understand their proven resistance to ductility-dip cracking. Part I deals with as-welded structure modeling, using experimental alloying ranges and Calphad methodology. Model calculates kinetic phase transformations and partitioning of elements during weld solidification using a cooling rate of 100 K.s-1, considering their consequences on solidification mode for each alloy. Calculated structures were compared with experimental observations on as-welded structures, exhibiting good agreement. Numerical calculations estimate an increase by three times of mass fraction of primary carbides precipitation, a substantial reduction of mass fraction of M23C6 precipitates and topologically closed packed phases (TCP), a homogeneously intradendritic distribution, and a slight increase of interdendritic Molybdenum distribution in these alloys. Incidences of metallurgical characteristics of modeled as-welded structures on desirable characteristics of Ni-based alloys resistant to DDC are discussed here.

  13. Penetration in GTA welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiple, C.R.; Burgardt, P.

    1990-01-01

    The size and shape of the weld bead produced in GTA welding depends on the magnitude and distribution of the energy incident on the workpiece surfaces as well as the dissipation of that energy in the workpiece. The input energy is largely controllable through the welding parameters selected, however the dissipation of that energy in the workpiece is less subject to control. Changes in energy dissipation can produce large changes in weld shape or penetration. Heat transport away from the weld pool is almost entirely by conduction, but heat transport in the weld pool is more complicated. Heat conduction throughmore » the liquid is an important component, but heat transport by convection (mass transport) is often the dominant mechanism. Convective heat transport is directional and changes the weld pool shape from that produced by conduction alone. Surface tension gradients are often the dominant forces driving fluid flow in GTA weld pools. These gradients are sensitive functions of weld pool chemistry and the energy input distribution to the weld. Experimental and theoretical work conducted primarily in the past decade has greatly enhanced our understanding of weld pool fluid flow, the forces which drive it, and its effects on weld pool shape. This work is reviewed here. While less common, changes in energy dissipation through the unmelted portion of the workpiece can also affect fusion zone shape or penetration. These effects are also described. 41 refs., 9 figs.« less

  14. Hot cracking during welding and casting

    NASA Astrophysics Data System (ADS)

    Cao, Guoping

    Aluminum welds are susceptible to liquation cracking in the partially melted zone (PMZ). Using the multicomponent Scheil model, curves of temperature vs. fraction solid (T-fS) during solidification were calculated for the PMZ and weld metals (WMs). These curves were used to predict the crack susceptibility by checking if the harmful condition of WM fS > PMZ fS exists during PMZ solidification and reduce the susceptibility by minimizing this condition. This approach was tested against full-penetration welds of alloys 7075 and 2024 and it can be used to guide the selection or development of filler metals. Liquation cracking in the PMZ in welds of Al-Si cast alloys was also investigated. The crack susceptibility was evaluated by circular-patch test, and full-penetration welds made with filler metals 1100, 4043, 4047 and 5356. Liquation cracking was significant with filler metals 1100 and 5356 but slight with filler metals 4043 and 4047. In all welds, liquation cracks were completely backfilled, instead of open as in full-penetration welds of wrought alloys 2219 and 6061. The T-fS curves showed that alloy A357 has a much higher fraction liquid for backfilling before PMZ solidification was essentially over. Hot tearing in Mg-xAl-yCa alloys was studied by constrained rod casting (CRC) in a steel mold. The hot tearing susceptibility decreased significantly with increasing Ca content (y) but did not change much with the Al content (x). An instrumented CRC with a steel mold was developed to detect the onset of hot tearing. The secondary phases, eutectic content, solidification path, and freezing range were examined. Hot tearing in Mg-Al-Sr alloys was also studied by CRC in a steel mold. With Mg-(4,6,8)Al-1.5Sr alloys, the hot tearing susceptibility decreased significantly with increasing Al content. With Mg-(4,6,8)Al-3Sr alloys, the trend was similar but not as significant. At the same Al content, the hot tearing susceptibility decreased significantly with increasing Sr content. Instrumented CRC with a steel mold was also used to test hot tearing of Mg-Al-Sr alloys. Cracking occurred at a higher temperature in alloys most susceptible to cracking than in alloys least susceptible.

  15. Control of Gas Tungsten Arc welding pool shape by trace element addition to the weld pool

    DOEpatents

    Heiple, C.R.; Burgardt, P.

    1984-03-13

    An improved process for Gas Tungsten Arc welding maximizes the depth/width ratio of the weld pool by adding a sufficient amount of a surface active element to insure inward fluid flow, resulting in deep, narrow welds. The process is especially useful to eliminate variable weld penetration and shape in GTA welding of steels and stainless steels, particularly by using a sulfur-doped weld wire in a cold wire feed technique.

  16. Computational modeling of GTA (gas tungsten arc) welding with emphasis on surface tension effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacharia, T.; David, S.A.

    1990-01-01

    A computational study of the convective heat transfer in the weld pool during gas tungsten arch (GTA) welding of Type 304 stainless steel is presented. The solution of the transport equations is based on a control volume approach which utilized directly, the integral form of the governing equations. The computational model considers buoyancy and electromagnetic and surface tension forces in the solution of convective heat transfer in the weld pool. In addition, the model treats the weld pool surface as a deformable free surface. The computational model includes weld metal vaporization and temperature dependent thermophysical properties. The results indicate thatmore » consideration of weld pool vaporization effects and temperature dependent thermophysical properties significantly influence the weld model predictions. Theoretical predictions of the weld pool surface temperature distributions and the cross-sectional weld pool size and shape wee compared with corresponding experimental measurements. Comparison of the theoretically predicted and the experimentally obtained surface temperature profiles indicated agreement with {plus minus} 8%. The predicted weld cross-section profiles were found to agree very well with actual weld cross-sections for the best theoretical models. 26 refs., 8 figs.« less

  17. Evaluating the Properties of Dissimilar Metal Welding Between Inconel 625 and 316L Stainless Steel by Applying Different Welding Methods and Consumables

    NASA Astrophysics Data System (ADS)

    Kourdani, Ahmad; Derakhshandeh-Haghighi, Reza

    2018-04-01

    The current work was carried out to characterize welding of Inconel 625 superalloy and 316L stainless steel. In the present study, shielded metal arc welding (SMAW) and gas tungsten arc welding (GTAW) with two types of filler metals (ERNiCrMo-3 and ERSS316L) and an electrode (ENiCrMo-3) were utilized. This paper describes the selection of the proper welding method and welding consumables in dissimilar metal joining. During solidification of ERNiCrMo-3 filler metal, Nb and Mo leave dendritic cores and are rejected to inter-dendritic regions. However, ERSS316L filler metal has small amounts of elements with a high tendency for segregation. So, occurrence of constitutional super-cooling for changing the solidification mode from cellular to dendritic or equiaxed is less probable. Using GTAW with lower heat input results in higher cooling rate and finer microstructure and less Nb segregation. The interface between weld metal and base metal and also unmixed zones was evaluated by scanning electron microscopy and energy dispersive X-ray (EDX) analysis. Microhardness measurements, tensile test, and Charpy impact test were performed to see the effect of these parameters on mechanical properties of the joints.

  18. Studying the Issues in Laser Joining of Lightweight Materials in a Coach-Peel Joint Configuration

    NASA Astrophysics Data System (ADS)

    Yang, Guang

    In the automotive industry, aluminum alloys have been widely used and partially replaced the conventional steel structures in order to decrease the weight of a car and improve its fuel efficiency. This Thesis focuses on the development of laser joining of light-weight materials, such as aluminum alloys and high-strength galvanized steels. Among different joint types, the coach-peel configuration is of a specific design that requires a heat source capable of heating up a large surface area of the joint. Coach-peel joints applied on the visible exterior of a car require a smooth transition from the weld surface to the panel surface and low surface roughness without any need for post-processing. Although these joints are used as non-load-bearing components, a desirable strength of the weld is also needed. A fusion-brazing process using a dual-beam laser allows the automotive components such as the roof and side member panels to be joined in a coach-peel configuration with a high surface quality as well as an acceptable strength of the weld. To improve the weld surface quality, processing parameters such as laser beam configuration, laser-wire position, and shielding gas parameters were optimized for joining of aluminum alloy to aluminum alloy. Laser power was optimized for dual-beam laser joining of aluminum alloy to galvanized steel at high speed. The feasibility of joining as-received panels with lubricant was also explored. The identification of strain hardening models of aluminum alloys was conducted for the mechanical finite element analysis of the joint. Control of the molten pool solidification through the selection of laser beam configuration is one approach to improve joint quality. Laser joining of aluminum alloy AA 6111-T4 coach peel panels with the addition of AA 4047 filler wire was investigated using three configurations of laser beam: a single beam, dual beams in-line with the weld bead, and dual beams aligned perpendicular to the weld bead (herein referred to as cross-beam). To compare the three joining processes, the transient heat distribution, cooling rates, and solidification rates were analyzed by three-dimensional finite element models using ANSYS. Microstructure evolution, tensile strength, fracture mechanisms, and surface roughness of joints were investigated accordingly. To improve the weld surface quality of aluminum joints, the laser-wire position and the gas parameters were optimized. Visualization of the gas flow by a CCD camera revealed the effects of nozzle shape, flow rate, inclination angle of the gas tube, nozzle position, and gas compositions (argon and helium) on the weld surface quality. The suppression of plasma plume and the effects of oxidation on the molten pool were illustrated in detail. With an optimized set of processing parameters, the weld surface roughness (Ra) of approximately 1 microm can be achieved. The feasibility of fabricating the aluminum alloy panel joint in the as-received condition, i.e., with stamping lubricant, by using the cross-beam laser was investigated. Two commercial mineral oils, Bonderite L-FM MP-404 and Ferrocote 61 MAL HCL, were applied onto clean panels prior to joining in order to simulate the conditions of the production environment. The formation and growth of hydrogen bubbles inside the molten pool, the stability of welding process, and the possible energy absorption capability of the porous weld were explained. Besides joining of similar materials, cross-beam laser was applied to join aluminum alloy 6111 to hot-dip galvanized steel in the coach-peel configuration. The filler material was not only brazed onto the galvanized steel but also partially fusion-welded with the aluminum panel. Through adjusting the laser power to 3.4 kW, a desirable wetting and spreading of filler wire on both panel surfaces could be achieved, and the thickness of intermetallic layer in the middle section of the interface between the weld bead and steel was less than 2 microm. To better understand the solid/liquid interfacial reaction at the brazing interface, two rotary Gaussian heat source models were introduced to simulate the temperature distribution in the molten pool by using the finite element method. Joint properties were examined in terms of microstructure and mechanical properties. Simulation of the mechanical response of a coach-peel joint is instructive for improvement of the joining process. The effective true stress-strain curve of fusion-brazed AA 4047 was difficult to obtain experimentally. Therefore, the von Mises isotropic flow function of the weld bead was inversely derived by image-based finite element analysis. Through iterative correction, the predicted tensile response of the coach-peel joint matched well with the experiment. The von Mises fracture stresses at the fusion zone boundary and the brazing interface were identified, respectively.

  19. Visualization of hump formation in high-speed gas metal arc welding

    NASA Astrophysics Data System (ADS)

    Wu, C. S.; Zhong, L. M.; Gao, J. Q.

    2009-11-01

    The hump bead is a typical weld defect observed in high-speed welding. Its occurrence limits the improvement of welding productivity. Visualization of hump formation during high-speed gas metal arc welding (GMAW) is helpful in the better understanding of the humping phenomena so that effective measures can be taken to suppress or decrease the tendency of hump formation and achieve higher productivity welding. In this study, an experimental system was developed to implement vision-based observation of the weld pool behavior during high-speed GMAW. Considering the weld pool characteristics in high-speed welding, a narrow band-pass and neutral density filter was equipped for the CCD camera, the suitable exposure time was selected and side view orientation of the CCD camera was employed. The events that took place at the rear portion of the weld pools were imaged during the welding processes with and without hump bead formation, respectively. It was found that the variation of the weld pool surface height and the solid-liquid interface at the pool trailing with time shows some useful information to judge whether the humping phenomenon occurs or not.

  20. Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing

    DOE PAGES

    Raghavan, Narendran; Dehoff, Ryan; Pannala, Sreekanth; ...

    2016-04-26

    The fabrication of 3-D parts from CAD models by additive manufacturing (AM) is a disruptive technology that is transforming the metal manufacturing industry. The correlation between solidification microstructure and mechanical properties has been well understood in the casting and welding processes over the years. This paper focuses on extending these principles to additive manufacturing to understand the transient phenomena of repeated melting and solidification during electron beam powder melting process to achieve site-specific microstructure control within a fabricated component. In this paper, we have developed a novel melt scan strategy for electron beam melting of nickel-base superalloy (Inconel 718) andmore » also analyzed 3-D heat transfer conditions using a parallel numerical solidification code (Truchas) developed at Los Alamos National Laboratory. The spatial and temporal variations of temperature gradient (G) and growth velocity (R) at the liquid-solid interface of the melt pool were calculated as a function of electron beam parameters. By manipulating the relative number of voxels that lie in the columnar or equiaxed region, the crystallographic texture of the components can be controlled to an extent. The analysis of the parameters provided optimum processing conditions that will result in columnar to equiaxed transition (CET) during the solidification. Furthermore, the results from the numerical simulations were validated by experimental processing and characterization thereby proving the potential of additive manufacturing process to achieve site-specific crystallographic texture control within a fabricated component.« less

  1. Automatic Welding System of Aluminum Pipe by Monitoring Backside Image of Molten Pool Using Vision Sensor

    NASA Astrophysics Data System (ADS)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    An automatic welding system using Tungsten Inert Gas (TIG) welding with vision sensor for welding of aluminum pipe was constructed. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position and moving welding torch with the AC welding machine. The monitoring system consists of a vision sensor using a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Neural network model for welding speed control were constructed to perform the process automatically. From the experimental results it shows the effectiveness of the control system confirmed by good detection of molten pool and sound weld of experimental result.

  2. Three-dimensional transient thermoelectric currents in deep penetration laser welding of austenite stainless steel

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Pang, Shengyong; Shao, Xinyu; Wang, Chunming; Xiao, Jianzhong; Jiang, Ping

    2017-04-01

    The existence of thermoelectric currents (TECs) in workpieces during the laser welding of metals has been common knowledge for more than 15 years. However, the time-dependent evolutions of TECs in laser welding remain unclear. The present study developed a novel three-dimensional theoretical model of thermoelectric phenomena in the fiber laser welding of austenite stainless steel and used it to observe the time-dependent evolutions of TECs for the first time. Our model includes the complex physical effects of thermal, electromagnetic, fluid and phase transformation dynamics occurring at the millimeter laser ablated zone, which allowed us to simulate the TEC, self-induced magnetic field, Lorentz force, keyhole and weld pool behaviors varying with the welding time for different parameters. We found that TECs are truly three-dimensional, time-dependent, and uneven with a maximum current density of around 107 A/m2 located at the liquid-solid (L/S) interface near the front or bottom part of the keyhole at a laser power of 1.5 kW and a welding speed of 3 m/min. The TEC formed three-dimensional circulations moving from the melting front to solidification front in the solid part of workpiece, after which the contrary direction was followed in the liquid part. High frequency oscillation characteristics (2.2-8.5 kHz) were demonstrated in the TEC, which coincides with that of the keyhole instability (2.0-5.0 kHz). The magnitude of the self-induced magnetic field and Lorentz force can reach 0.1 mT and 1 kN/m3, respectively, which are both consistent with literature data. The predicted results of the weld dimensions by the proposed model agree well with the experimental results. Our findings could enhance the fundamental understanding of thermoelectric phenomena in laser welding.

  3. A unified 3D model for an interaction mechanism of the plasma arc, weld pool and keyhole in plasma arc welding

    NASA Astrophysics Data System (ADS)

    Jian, Xiaoxia; Wu, ChuanSong; Zhang, Guokai; Chen, Ji

    2015-11-01

    A 3D model is developed to perform numerical investigation on the coupled interaction mechanism of the plasma arc, weld pool and keyhole in plasma arc welding. By considering the traveling of the plasma arc along the welding direction, unified governing equations are solved in the whole domain including the torch, plasma arc, keyhole, weld pool and workpiece, which involves different physical mechanisms in different zones. The local thermodynamic equilibrium-diffusion approximation is used to treat the interface between the plasma arc and weld pool, and the volume-of-fluid method is used to track the evolution of the keyhole wall. The interaction effects between the plasma arc, keyhole and weld pool as well as the heat, mass and pressure transport phenomena in the whole welding domain are quantitatively simulated. It is found that when the torch is moving along the joint line, the axis of the keyhole channel tilts backward, and the envelope of molten metal surrounding the keyhole wall inside the weld pool is unsymmetrical relative to the keyhole channel. The plasma arc welding tests are conducted, and the predicted keyhole dimensions and the fusion zone shape are in agreement with the experimentally measured results.

  4. Ferrous friction stir weld physical simulation

    NASA Astrophysics Data System (ADS)

    Norton, Seth Jason

    2006-04-01

    Traditional fusion welding processes have several drawbacks associated with the melting and solidification of metal. Weld defects associated with the solidification of molten metal may act as initiation sites for cracks. Segregation of alloying elements during solidification may cause local changes in resistance to corrosion. The high amount of heat required to produce the molten metal in the weld can produce distortion from the intended position on cooling. The heat from the electric arc commonly used to melt metal in fusion welds may also produce metal fumes which are a potential health hazard. Friction stir welding is one application which has the potential to make full thickness welds in a single pass, while eliminating fume, reducing distortion, and eliminating solidification defects. Currently the friction stir welding process is used in the aerospace industry on aluminum alloys. Interest in the process by industries which rely on iron and its alloys for structural material is increasing. While friction stir welding has been shown to be feasible with iron alloys, the understanding of friction stir welding process effects on these materials is in its infancy. This project was aimed to better that understanding by developing a procedure for physical simulation of friction stir welding. Friction stir weld material tracer experiments utilizing stainless steel markers were conducted with plates of ingot iron and HSLA-65. Markers of 0.0625" diameter 308 stainless steel worked well for tracing the end position of material moved by the friction stir welding tool. The markers did not produce measurable increases in the loading of the tool in the direction of travel. Markers composed of 0.25" diameter 304 stainless steel did not perform as well as the smaller markers and produced increased loads on the friction stir welding tool. The smaller markers showed that material is moved in a curved path around the tool and deposited behind the tool. Material near the surface is moved a greater distance as it is acted upon by the tool shoulder. A friction stir weld was made on a plate of HSLA-65 which had 0.0625" Inconel sheathed thermocouples embedded in the tool path at seven positions. Thermocouples on the top of the plate acquired data at the desired position until encountering the shoulder, at which point they were sheared by the shoulder and stirred behind the tool. Thermocouples on the bottom of the plate were deformed a relatively small amount and acquired data throughout the welding process. Heating rates calculated from the slope of the acquired temperature data show that the peak heating rate (˜1100°C on top and ˜500°C on the bottom) occurs on both the top and bottom of the weld at temperatures between 350°C and 500°C. An increase in the heating rate occurring at elevated temperature was associated with the transformation from ferrite to austenite. Comparison of phase transformation data acquired in rapid heating in the GleebleRTM suggests that austenite transforms back to ferrite at higher temperatures in the presence of strain than in its absence. Peak temperatures on the top of the plate exceeded 1200°C and peak temperatures acquired on the bottom exceeded 1000°C. The heating rate method of data analysis was sensitive enough to pick up variations in the heating rate which occurred at the same frequency as the rotation rate of the tool. (Abstract shortened by UMI.)

  5. Method for enhanced control of welding processes

    DOEpatents

    Sheaffer, Donald A.; Renzi, Ronald F.; Tung, David M.; Schroder, Kevin

    2000-01-01

    Method and system for producing high quality welds in welding processes, in general, and gas tungsten arc (GTA) welding, in particular by controlling weld penetration. Light emitted from a weld pool is collected from the backside of a workpiece by optical means during welding and transmitted to a digital video camera for further processing, after the emitted light is first passed through a short wavelength pass filter to remove infrared radiation. By filtering out the infrared component of the light emitted from the backside weld pool image, the present invention provides for the accurate determination of the weld pool boundary. Data from the digital camera is fed to an imaging board which focuses on a 100.times.100 pixel portion of the image. The board performs a thresholding operation and provides this information to a digital signal processor to compute the backside weld pool dimensions and area. This information is used by a control system, in a dynamic feedback mode, to automatically adjust appropriate parameters of a welding system, such as the welding current, to control weld penetration and thus, create a uniform weld bead and high quality weld.

  6. Examination of the physical processes associated with the keyhole region of variable polarity plasma arc welds in aluminum alloy 2219

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.

    1987-01-01

    The morphology and properties of the Variable Polarity Plasma Arc (VPPA) weld composite zone are intimately related to the physical processes associated with the keyhole. This study examined the effects of oxide, halide, and sulfate additions to the weld plate on the keyhole and the weld pool. Changes in both the arc plasma character and the bead morphology were correlated to the chemical environment of the weld. Pool behavior was observed by adding flow markers to actual VPPA welds. A low temperature analog to the welding process was developed. The results of the study indicate that oxygen, even at low partial pressures, can disrupt the stable keyhole and weld pool. The results also indicate that the Marangoni surface tension driven flows dominate the weld pool over the range of welding currents studied.

  7. A Three-Stage Mechanistic Model for Solidification Cracking During Welding of Steel

    NASA Astrophysics Data System (ADS)

    Aucott, L.; Huang, D.; Dong, H. B.; Wen, S. W.; Marsden, J.; Rack, A.; Cocks, A. C. F.

    2018-03-01

    A three-stage mechanistic model for solidification cracking during TIG welding of steel is proposed from in situ synchrotron X-ray imaging of solidification cracking and subsequent analysis of fracture surfaces. Stage 1—Nucleation of inter-granular hot cracks: cracks nucleate inter-granularly in sub-surface where maximum volumetric strain is localized and volume fraction of liquid is less than 0.1; the crack nuclei occur at solute-enriched liquid pockets which remain trapped in increasingly impermeable semi-solid skeleton. Stage 2—Coalescence of cracks via inter-granular fracture: as the applied strain increases, cracks coalesce through inter-granular fracture; the coalescence path is preferential to the direction of the heat source and propagates through the grain boundaries to solidifying dendrites. Stage 3—Propagation through inter-dendritic hot tearing: inter-dendritic hot tearing occurs along the boundaries between solidifying columnar dendrites with higher liquid fraction. It is recommended that future solidification cracking criterion shall be based on the application of multiphase mechanics and fracture mechanics to the failure of semi-solid materials.

  8. Non-Equilibrium Phenomena in High Power Beam Materials Processing

    NASA Astrophysics Data System (ADS)

    Tosto, Sebastiano

    2004-03-01

    The paper concerns some aspects of non-equilibrium materials processing with high power beams. Three examples show that the formation of metastable phases plays a crucial role to understand the effects of beam-matter interaction: (i) modeling of pulsed laser induced thermal sputtering; (ii) formation of metastable phases during solidification of the melt pool; (i) possibility of carrying out heat treatments by low power irradiation ``in situ''. The case (i) deals with surface evaporation and boiling processes in presence of superheating. A computer simulation model of thermal sputtering by vapor bubble nucleation in molten phase shows that non-equilibrium processing enables the rise of large surface temperature gradients in the boiling layer and the possibility of sub-surface temperature maximum. The case (ii) concerns the heterogeneous welding of Cu and AISI 304L stainless steel plates by electron beam irradiation. Microstructural investigation of the molten zone has shown that dwell times of the order of 10-1-10-3 s, consistent with moderate cooling rates in the range 10^3-10^5 K/s, entail the formation of metastable Cu-Fe phases. The case (iii) concerns electron beam welding and post-welding treatments of 2219 Al base alloy. Electron microscopy and positron annihilation have explained why post-weld heat transients induced by low power irradiation of specimens in the as welded condition enable ageing effects usually expected after some hours of treatment in furnace. The problem of microstructural instability is particularly significant for a correct design of components manufactured with high power beam technologies and subjected to severe acceptance standards to ensure advanced performances during service life.

  9. Experimental and numerical studies on three dimensional GTA weld pool convection: Non-axisymmetric effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Y.; Dutta, P.; Schupp, P.E.

    1995-12-31

    Observations of surface flow patterns of steel and aluminum GTAW pools have been made using a pulsed laser visualization system. The weld pool convection is found to be three dimensional, with the azimuthal circulation depending on the location of the clamp with respect to the torch. Oscillation of steel pools and undulating motion in aluminum weld pools are also observed even with steady process parameters. Current axisymmetric numerical models are unable to explain such phenomena. A three dimensional computational study is carried out in this study to explain the rotational flow in aluminum weld pools.

  10. Modeling of the Weld Shape Development During the Autogenous Welding Process by Coupling Welding Arc with Weld Pool

    NASA Astrophysics Data System (ADS)

    Dong, Wenchao; Lu, Shanping; Li, Dianzhong; Li, Yiyi

    2010-10-01

    A numerical model of the welding arc is coupled to a model for the heat transfer and fluid flow in the weld pool of a SUS304 stainless steel during a moving GTA welding process. The described model avoids the use of the assumption of the empirical Gaussian boundary conditions, and at the same time, provides reliable boundary conditions to analyze the weld pool. Based on the two-dimensional axisymmetric numerical modeling of the argon arc, the heat flux to workpiece, the input current density, and the plasma drag stress are obtained. The arc temperature contours, the distributions of heat flux, and current density at the anode are in fair agreement with the reported experimental results. Numerical simulation and experimental studies to the weld pool development are carried out for a moving GTA welding on SUS304 stainless steel with different oxygen content from 30 to 220 ppm. The calculated result show that the oxygen can change the Marangoni convection from outward to inward direction on the liquid pool surface and make the wide shallow weld shape become narrow deep one. The calculated result for the weld shape and weld D/W ratio agrees well with the experimental one.

  11. Application of welding science to welding engineering: A lumped parameter gas metal arc welding dynamic process model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, P.E.; Smartt, H.B.; Johnson, J.A.

    1997-12-31

    We develop a model of the depth of penetration of the weld pool in gas metal arc welding (GMAW) which demonstrates interaction between the arc, filler wire and weld pool. This model is motivated by the observations of Essers and Walter which suggest a relationship between droplet momentum and penetration depth. A model of gas metal arc welding was augmented to include an improved model of mass transfer and a simple model of accelerating droplets in a plasma jet to obtain the mass and momentum of impinging droplets. The force of the droplets and depth of penetration is correlated bymore » a dimensionless linear relation used to predict weld pool depth for a range of values of arc power and contact tip to workpiece distance. Model accuracy is examined by comparing theoretical predictions and experimental measurements of the pool depth obtained from bead on plate welds of carbon steel in an argon rich shielding gas. Moreover, theoretical predictions of pool depth are compared to the results obtained from the heat conduction model due to Christensen et al. which suggest that in some cases the momentum of impinging droplets is a better indicator of the depth of the weld pool and the presence of a deep, narrow penetration.« less

  12. Weld pool oscillation during pulsed GTA welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aendenroomer, A.J.R.; Ouden, G. den

    1996-12-31

    This paper deals with weld pool oscillation during pulsed GTA welding and with the possibility to use this oscillation for in-process control of weld penetration. Welding experiments were carried out under different welding conditions. During welding the weld pool was triggered into oscillation by the normal welding pulses or by extra current pulses. The oscillation frequency was measured both during the pulse time and during the base time by analyzing the arc voltage variation using a Fast Fourier Transformation program. Optimal results are obtained when full penetration occurs during the pulse time and partial penetration during the base time. Undermore » these conditions elliptical overlapping spot welds are formed. In the case of full penetration the weld pool oscillates in a low frequency mode (membrane oscillation), whereas in the case of partial penetration the weld pool oscillates in a high frequency mode (surface oscillation). Deviation from the optimal welding conditions occurs when high frequency oscillation is observed during both pulse time and base time (underpenetration) or when low frequency oscillation is observed during both pulse time and base time (overpenetration). In line with these results a penetration sensing system with feedback control was designed, based on the criterion that optimal weld penetration is achieved when two peaks are observed in the frequency distribution. The feasibility of this sensing system for orbital tube welding was confirmed by the results of experiments carried out under various welding conditions.« less

  13. Process control of GMAW by detection of discontinuities in the molten weld pool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, N.M.; Kunerth, D.C.; Johnson, J.A.

    1988-01-01

    The use of ultrasonic sensors to detect discontinuities associated with the molten pool is one phase of a project to automate the welding process. In this work, ultrasonic sensors were used to interrogate the region around the molten/solid interface during gas metal arc welding (GMAW). The ultrasonic echoes from the interface and the molten pool provide information about the quality of the fusion zone and the molten pool. This information can be sent to a controller that can vary the welding parameters to correct the process. Previously ultrasonic shear waves were used to determine if the geometry of the molten/solidmore » interface was indicative of an acceptable weld. In this work, longitudinal waves were used to interrogate the molten weld pool for discontinuities. Unacceptable welding conditions that can result in porosity, incomplete penetration, or undercut were detected. 8 refs., 4 figs.« less

  14. Experimental measurement of stationary SS 304, SS 316L and 8630 GTA weld pool surface temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, H.G.

    1989-07-01

    The optical spectral radiometric/laser reflectance experimental method, previously developed by the author, was extended to obtain high-resolution surface temperature maps of stationary GTA molten weld pools using thick-plate SS 304, SS316L, and 8630 steel. Increasing the welding current from 50 to 200 A resulted in peak pool surface temperatures from 1050{sup 0} to 2400{sup 0}C for the SS 304. At a constant welding current of 150 A, the SS 304 and various heats of SS 316L and 8630 resulted in peak weld pool temperatures from 2300{sup 0} to 2700{sup 0}C. Temperature contour plots of all the welds made are given.more » Surface temperature maps are classified into types that are believed to be indicative of the convective circulation patterns present in the weld pools.« less

  15. The Effect of Heat Input and Composition on Weld Metal Microstructures in Thin Section HY-130 GMAW(Gas Metal Are Welding) Weldments

    DTIC Science & Technology

    1988-12-01

    weldments, Glover et al. [Ref. Ej show, via a schematic CCT diagram , that austenite should transform to coarse polygonal ferrite with regions of pearlite...are essentially subjected to continuous cooling during solidification, so the resultant microstructures should be predictable from CCT diagrams . Unfortunately...cooling rate variaticn just within a single weld pass. Although individual CCT diagrams for weld metals are generally not available, the influence of

  16. Determination of a temperature sensor location for monitoring weld pool size in GMAW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boo, K.S.; Cho, H.S.

    1994-11-01

    This paper describes a method of determining the optimal sensor location to measure weldment surface temperature, which has a close correlation with weld pool size in the gas metal arc (GMA) welding process. Due to the inherent complexity and nonlinearity in the GMA welding process, the relationship between the weldment surface temperature and the weld pool size varies with the point of measurement. This necessitates an optimal selection of the measurement point to minimize the process nonlinearity effect in estimating the weld pool size from the measured temperature. To determine the optimal sensor location on the top surface of themore » weldment, the correlation between the measured temperature and the weld pool size is analyzed. The analysis is done by calculating the correlation function, which is based upon an analytical temperature distribution model. To validate the optimal sensor location, a series of GMA bead-on-plate welds are performed on a medium-carbon steel under various welding conditions. A comparison study is given in detail based upon the simulation and experimental results.« less

  17. Influence of Aluminum Content on Grain Refinement and Strength of AZ31 Magnesium GTA Weld Metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, N. Kishore; Cross, Carl E.

    2012-06-28

    The goal is to characterize the effect of Al content on AZ31 weld metal, the grain size and strength, and examine role of Al on grain refinement. The approach is to systematically vary the aluminum content of AZ31 weld metal, Measure average grain size in weld metal, and Measure cross-weld tensile properties and hardness. Conclusions are that: (1) increased Al content in AZ31 weld metal results in grain refinement Reason: higher undercooling during solidification; (2) weld metal grain refinement resulted in increased strength & hardness Reason: grain boundary strengthening; and (3) weld metal strength can be raised to wrought basemore » metal levels.« less

  18. A mathematical model of the chevron-like wave pattern on a weld piece

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowden, J.; Kapadia, P.

    1996-12-31

    In welding processes in general the surface of a metallic weld displays a chevron-like pattern. Such a pattern is also clearly seen to be present if welding is carried out using a laser beam. In the welding process a laser beam is directed normally on the metal undergoing translation and usually penetrates it to form a keyhole. The keyhole is surrounded by a molten region, the weld pool. Even if a CO{sub 2} laser is used, there are numerous fluctuations and instabilities that occur, so that the keyhole imposes forcing frequencies on the molten weld pool, additional to vibrations attendantmore » on the process of translation. The weld pool in turn responds by supporting a spectrum of waves of different frequencies involving the natural frequency of the weld pool as well as various forcing frequencies. These waves are surface tension-type capillary waves and previous publications have attempted to model their behavior mathematically, although not all aspects of the problem have always been included. The wave pattern that is manifested in the chevron-like pattern seen on the weld piece is, however, not necessarily identical to the wave pattern present in the weld pool. This is because the chevron-like wave pattern forms as a result of several complicating effects that arise as the weld specimen cools on its surface immediately after the weld has been formed. This process involves the waves on the surface of the weld pool freezing to form the chevron-like wave pattern. A feature that is often ignored is the fact that the waves on the weld pool can only be regarded as irrotational if the translation speed is sufficiently low. This paper describes mathematically the formation of the chevron-like wave pattern based on suitable simplifying assumptions to model the process. The mathematical description of the way in which this chevron-like pattern forms is a step toward a more comprehensive understanding of this process.« less

  19. Multiscale characterization and mechanical modeling of an Al-Zn-Mg electron beam weld

    NASA Astrophysics Data System (ADS)

    Puydt, Quentin; Flouriot, Sylvain; Ringeval, Sylvain; Parry, Guillaume; De Geuser, Frédéric; Deschamps, Alexis

    Welding of precipitation hardening alloys results in multi-scale microstructural heterogeneities, from the hardening nano-scale precipitates to the micron-scale solidification structures and to the component geometry. This heterogeneity results in a complex mechanical response, with gradients in strength, stress triaxiality and damage initiation sites.

  20. Dynamic behavior of the weld pool in stationary GMAW

    NASA Astrophysics Data System (ADS)

    Chapuis, J.; Romero, E.; Bordreuil, C.; Soulié, F.; Fras, G.

    2010-06-01

    Because hump formation limits welding productivity, better understanding of the humping phenomena during the welding process is needed to access to process modifications that decrease the tendency for hump formation and then allow higher productivity welding. From a physical point of view, the mechanism identified is the Rayleigh instability initiated by strong surface tension gradient which induces a variation of kinetic flow. But the causes of the appearance of this instability are not yet well explained. Because of the phenomena complex and multi-physics, we chose in first step to conduct an analysis of the characteristic times involved in weld pool in pulsed stationary GMAW. The goal is to study the dynamic behavior of the weld pool, using our experimental multi physics approach. The experimental tool and methodology developed to understand these fast phenomena are presented first: frames acquisition with high speed digital camera and specific optical devices, numerical library. The analysis of geometric parameters of the weld pool during welding operation are presented in the last part: we observe the variations of wetting angles (or contact lines angles), the base and the height of the weld pool (macro-drop) versus weld time.

  1. Fluid Flow Phenomena during Welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei

    2011-01-01

    MOLTEN WELD POOLS are dynamic. Liquid in the weld pool in acted on by several strong forces, which can result in high-velocity fluid motion. Fluid flow velocities exceeding 1 m/s (3.3 ft/s) have been observed in gas tungsten arc (GTA) welds under ordinary welding conditions, and higher velocities have been measured in submerged arc welds. Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects. Moving liquid transports heat and often dominates heat transport in the weld pool. Because heat transport by mass flow depends on the direction andmore » speed of fluid motion, weld pool shape can differ dramatically from that predicted by conductive heat flow. Temperature gradients are also altered by fluid flow, which can affect weld microstructure. A number of defects in GTA welds have been attributed to fluid flow or changes in fluid flow, including lack of penetration, top bead roughness, humped beads, finger penetration, and undercutting. Instabilities in the liquid film around the keyhole in electron beam and laser welds are responsible for the uneven penetration (spiking) characteristic of these types of welds.« less

  2. Metallic glass formation at the interface of explosively welded Nb and stainless steel

    NASA Astrophysics Data System (ADS)

    Bataev, I. A.; Hokamoto, K.; Keno, H.; Bataev, A. A.; Balagansky, I. A.; Vinogradov, A. V.

    2015-07-01

    The interface between explosively welded niobium and stainless steel SUS 304 was studied using scanning electron microscopy, transmission electron microscopy and energy dispersive X-Ray spectroscopy. The wavy interface along which vortex zones were located was observed. The vortex zones formed due to the mixing of materials typically had amorphous structure. Inoue's criteria of glass formation were used to explain this result. The effect of the composition, cooling rate and pressure on the glass formation are discussed. The conditions of deformation, heating, and cooling as well as shockwaves propagation were numerically simulated. We show that the conditions of vortex zone formation resemble the conditions of rapid solidification processes. In contrast to the "classical" methods of rapid solidification of melt, the conditions of metastable phase formation during explosive welding are significantly complicated by the fluctuations of composition and pressure. Possible metastable structures formation at the interface of some common explosively joined materials is predicted.

  3. Numerical simulation of humping phenomenon in high speed gas metal arc welding

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Wu, Chuan-Song

    2011-06-01

    It is of great significance to obtain a thorough understanding of the physical mechanisms responsible for humping bead phenomenon in high speed gas metal arc welding (GMAW) in order to raise welding efficiency. Experiments were conducted to observe the weld pool behaviors in high speed GMAW, and it was found that both the severely deformed weld pool surface and strong backward flowing play a dominant role in humping bead formation. In this study, a mathematical model is developed to quantitatively analyze the forming mechanism of humping beads for high speed GMAW through considering both the momentum and heat content distribution of the backward flowing molten metal inside the weld pool. The transient development of temperature profiles in the weld pool with severe deformation demonstrates the humping bead forming process under some welding conditions. The predicted and measured humping bead dimensions are in agreement.

  4. An investigation of the elevated temperature cracking susceptibility of alloy C-22 weld-metal

    NASA Astrophysics Data System (ADS)

    Gallagher, Morgan Leo

    Alloy C-22 is one of the most corrosion resistant Ni-Cr-Mo alloys available today, and is particularly versatile. As a result, Alloy C-22 is being considered for use in the construction of storage canisters for permanent disposal of radioactive waste in the Yucca Mountain Project. However, in such a critical application, weld related defects (such as these two forms of cracking) are simply unacceptable. Solidification cracking occurs when weld shrinkage strains are applied to liquid films that result from microsegregation during solidification. Many nickel-base alloys are susceptible to solidification cracking since they solidify as austenite and many of their alloying additions partition during solidification and form low melting eutectic constituents. The transvarestraint test was used to quantify the susceptibility of Alloy C-22 to solidification cracking. The solidification cracking temperature range (SCTR) was found to be approximately 50°C (90°F); this SCTR predicts that Alloy-C-22 will have only slightly higher susceptibility than known crack-resistant alloys, such as duplex stainless-steel 2205 and austenitic stainless-steel Type 304 (FN6). Ductility-dip cracking (DDC) is a solid-state cracking phenomenon that occurs below the effective solidus temperature in highly restrained austenitic alloys. Although this type of cracking is relatively uncommon, it can be costly in critical applications where there is a low tolerance for defects. This investigation used two separate tests to quantify the susceptibility of the alloy to DDC: the hot-ductility test and the strain-to-fracture (STF) test. The hot-ductility test revealed that Alloy C-22 weld-metal exhibits an intermediate temperature ductility-dip, with ductility recovery at the upper end of the testing temperature range. The ductility minimum in the hot-ductility tests occurred around 950°C (1742°F) in both the on-heating and on-cooling tests. The strain-to-fracture test also revealed Alloy C-22 to be susceptible to ductility-dip cracking. Alloy C-22 displayed a low threshold strain necessary to initiate cracking, a wide temperature range over which cracking occurred, and no recovery of ductility at the upper end of the testing temperature range. The recovery of ductility at the upper end of the testing temperature range in the hotductility test, and the absence of this recovery in the STF test, is explained by the recrystallization behavior of the metal. Alloy C-22 has a low stacking-fault-energy, as compared to other DDC susceptible nickel-base alloys, and accordingly requires higher levels of deformation before recrystallization begins. With the relatively low strains experienced by the samples in the STF test (less than ten-percent), cracking will occur before enough strain is accumulated to cause recrystallization. In the hot-ductility test, where the sample is pulled to failure, sufficient strain (forty-percent or greater) is applied such that recrystallization occurs. This recrystallization is responsible for the recovery of ductility at the high end of the testing temperature range in the hot-ductility test. The low threshold strain that is observed in the STF test is in part explained by the behavior of the metal during the thermal cycle of the test. Experimental observations indicate that tortuous (wavy) solidification grain boundaries (SGB) migrate, or straighten, during the temperature upslope and hold period of the STF test. This migration of the grain boundaries reduces the mechanical locking effect that tortuous grain boundaries provide, allowing cracking to occur at lower applied strains. Button-melting experiments were conducted to examine the effect of compositional variation on both solidification cracking and ductility-dip cracking susceptibility of the alloy. Molybdenum, tungsten, and iron were selected for variation, as previous research has shown these three elements to be significantly enriched or depleted in the terminal solidification products of Alloy C-22 weld-metal. The solidification temperature range and volume fraction of secondary phases were used as indicators of the susceptibility of the experimental alloys to solidification cracking and ductility-dip cracking, respectively. Previous research on nickel-base alloys has demonstrated that the solidification temperature range of an alloy is directly proportional to the susceptibility of the alloy to solidification cracking. Experiments conducted within this investigation indicate that increasing the volume fraction of secondary phases in Alloy C-22 acts to increase the elevated temperature cracking-resistance and ductility of the alloy. The solidification temperature ranges of the Alloy C-22 variants examined within the button-melting experiments did not significantly widen or narrow with increases in composition. These same compositional variations demonstrated that increasing amounts of molybdenum, tungsten, and iron increased the volume fraction of secondary phases, with each element having relatively the same potency. Based on the button melting experiments and thermodynamic simulations, it is expected that Alloy C-22 will have good resistance to weld solidification cracking over its entire composition range. (Abstract shortened by UMI.)

  5. Experimental characterization of the weld pool flow in a TIG configuration

    NASA Astrophysics Data System (ADS)

    Stadler, M.; Masquère, M.; Freton, P.; Franceries, X.; Gonzalez, J. J.

    2014-11-01

    Tungsten Inert Gas (TIG) welding process relies on heat transfer between plasma and work piece leading to a metallic weld pool. Combination of different forces produces movements on the molten pool surface. One of our aims is to determine the velocity on the weld pool surface. This provides a set of data that leads to a deeper comprehension of the flow behavior and allows us to validate numerical models used to study TIG parameters. In this paper, two diagnostic methods developed with high speed imaging for the determination of velocity of an AISI 304L stainless steel molten pool are presented. Application of the two methods to a metallic weld pool under helium with a current intensity of 100 A provides velocity values around 0.70 m/s which are in good agreement with literature works.

  6. Optically controlled welding system

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1988-01-01

    An optically controlled welding system wherein a welding torch having through-the-torch viewing capabilities is provided with an optical beam splitter to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder to make the welding torch responsive thereto. Other features include an actively cooled electrode holder which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm, and a weld pool contour detector comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom, being characteristic of a penetrated or unpenetrated condition of the weld pool.

  7. Integrated optical sensor

    DOEpatents

    Watkins, Arthur D.; Smartt, Herschel B.; Taylor, Paul L.

    1994-01-01

    An integrated optical sensor for arc welding having multifunction feedback control. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties.

  8. Integrated optical sensor

    DOEpatents

    Watkins, A.D.; Smartt, H.B.; Taylor, P.L.

    1994-01-04

    An integrated optical sensor for arc welding having multifunction feedback control is described. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties. 6 figures.

  9. Relationship between spatter formation and dynamic molten pool during high-power deep-penetration laser welding

    NASA Astrophysics Data System (ADS)

    Li, Shichun; Chen, Genyu; Katayama, Seiji; Zhang, Yi

    2014-06-01

    The spatter and the molten pool behavior, which were the important phenomena concerned with the welding quality, were observed and studied by using the high-speed camera and the X-ray transmission imaging system during laser welding under different welding parameters. The formation mechanism of spatter and the corresponding relationships between the spatter and molten pool behavior were investigated. The increase of laser power could cause more intense evaporation and lead to more spatter. When the focal position of laser beam was changed, different forms of spatter were generated, as well as the flow trends of molten metal on the front keyhole wall and at the rear molten pool were changed. The results revealed that the behavior of molten pool, which could be affected by the absorbed energy distribution in the keyhole, was the key factor to determine the spatter formation during laser welding. The relatively sound weld seam could be obtained during laser welding with the focal position located inside the metal.

  10. Numerical Modeling of Fluid Flow, Heat Transfer and Arc-Melt Interaction in Tungsten Inert Gas Welding

    NASA Astrophysics Data System (ADS)

    Li, Linmin; Li, Baokuan; Liu, Lichao; Motoyama, Yuichi

    2017-04-01

    The present work develops a multi-region dynamic coupling model for fluid flow, heat transfer and arc-melt interaction in tungsten inert gas (TIG) welding using the dynamic mesh technique. The arc-weld pool unified model is developed on basis of magnetohydrodynamic (MHD) equations and the interface is tracked using the dynamic mesh method. The numerical model for arc is firstly validated by comparing the calculated temperature profiles and essential results with the former experimental data. For weld pool convection solution, the drag, Marangoni, buoyancy and electromagnetic forces are separately validated, and then taken into account. Moreover, the model considering interface deformation is adopted in a stationary TIG welding process with SUS304 stainless steel and the effect of interface deformation is investigated. The depression of weld pool center and the lifting of pool periphery are both predicted. The results show that the weld pool shape calculated with considering the interface deformation is more accurate.

  11. Optically controlled welding system

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1989-01-01

    An optically controlled welding system (10) wherein a welding torch (12) having through-the-torch viewing capabilities is provided with an optical beam splitter (56) to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder (15) to make the welding torch responsive thereto. Other features includes an actively cooled electrode holder (26) which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm (28) and a weld pool contour detector (14) comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom being characteristic of a penetrated or unpenetrated condition of the weld pool.

  12. Keyhole behavior and liquid flow in molten pool during laser-arc hybrid welding

    NASA Astrophysics Data System (ADS)

    Naito, Yasuaki; Katayama, Seiji; Matsunawa, Akira

    2003-03-01

    Hybrid welding was carried out on Type 304 stainless steel plate under various conditions using YAG laser combined with TIG arc. During arc and laser-arc hybrid welding, arc voltage variation was measured, and arc plasma, laser-induced plume and evaporation spots as well as keyhole behavior and liquid flow in the molten pool were observed through CCD camera and X-ray real-time transmission apparatus. It was consequently found that hybrid welding possessed many features in comparison with YAG laser welding. The deepest weld bead could be produced when the YAG laser beam of high power density was shot on the molten pool made beforehand stably with TIG arc. A keyhole was long and narrow, and its behavior was rather stable inside the molten pool. It was also confirmed that porosity was reduced by the suppression of bubble formation in hybrid welding utilizing a laser of a moderate power density.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stine, Andrew Martin; Pierce, Stanley W.; Moniz, Paul F.

    The welding equipment used for welding iridium containers (clads) at Los Alamos National Laboratory is twenty five years old and is undergoing an upgrade. With the upgrade, there is a requirement for requalification of the welding process, and the opportunity for process improvement. Testing of the new system and requalification will require several welds on iridium test parts and clads, and any efforts to improve the process will add to the need for iridium parts. The extreme high cost of iridium imposes a severe limitation on the extent of test welding that can be done. The 2 inch diameter, 0.027more » inch thick, iridium blank disc that the clad cup is formed from, is useful for initial weld trials, but it costs $5000. The development clad sets needed for final tests and requalification cost $15,000 per set. A solution to iridium cost issue would be to do the majority of the weld development on a less expensive surrogate metal with similar weld characteristics. One such metal is molybdenum. Since its melting index (melting temperature x thermal conductivity) is closest to iridium, welds on molybdenum should be similar in size for a given weld power level. Molybdenum is inexpensive; a single 2 inch molybdenum disc costs only $9. In order to evaluate molybdenum as a surrogate for iridium, GTA welds were first developed to provide full penetration on 0.030 inch thick molybdenum discs at speeds of 20, 25, and 30 inches per minute (ipm). These weld parameters were then repeated on the standard 0.027 inch thick iridium blanks. The top surface and bottom surface (root) width and grain structure of the molybdenum and iridium welds were compared, and similarities were evident between the two metals. Due to material and thickness differences, the iridium welds were approximately 35% wider than the molybdenum welds. A reduction in iridium weld current of 35% produce welds slightly smaller than the molybdenum welds yet showed that current could be scaled according to molybdenum/iridium weld width ratio to achieve similar welds. Further weld trials using various thicknesses of molybdenum determined that 0.024 inch thick molybdenum material would best match the 0.027 inch thick iridium in achieving comparable welds when using the same welding parameters. Across the range of welding speeds, the characteristic weld pool shape and solidification grain structure in the two materials was also similar. With the similarity of welding characteristics confirmed, and the appropriate thickness of molybdenum determined, it has been concluded that the use of molybdenum discs and tube sections will greatly expand the weld testing opportunities prior to iridium weld qualification« less

  14. Melting Efficiency During Plasma Arc Welding

    NASA Technical Reports Server (NTRS)

    McClure, J.C.; Evans, D. M.; Tang, W.; Nunes, A. C.

    1999-01-01

    A series of partial penetration Variable Polarity Plasma Arc welds were made at equal power but various combinations of current and voltage on 2219 aluminum. Arc Efficiency was measured calorimetrically and ranged between 48% and 66%. Melting efficiency depends on the weld pool shape. Increased current increases the melting efficiency as it increases the depth to width ratio of the weld pool. Higher currents are thought to raise arc pressure and depress the liquid at the bottom of the weld pool causing a more nearly two dimensional heat flow condition.

  15. Microstructure and hydrogen induced failure mechanisms in iron-nickel weldments

    NASA Astrophysics Data System (ADS)

    Fenske, Jamey Alan

    A recent series of inexplicable catastrophic failures of specific subsea dissimilar metal Fe-Ni butter welds has illuminated a fundamental lack of understanding of both the microstructure created along the fusion line as well as its impact on the hydrogen susceptibility of these interfaces. In order to remedy this, the present work compares and contrasts the microstructure and hydrogen-induced fracture morphology of AISI 8630-IN 625 and F22-IN 625 dissimilar metal weld interfaces as a function of post-weld heat treatment duration. A variety of techniques were used to study details of both the microstructure and fracture morphology including optical microscopy, scanning electron microscopy, secondary ion mass spectrometry, transmission electron microscopy, electron backscatter diffraction, and energy dispersive x-ray spectroscopy. For both systems, the microstructure along the weld interface consisted of a coarse grain heat-affected zone in the Fe-base metal followed by discontinuous martensitic partially-mixed zones and a continuous partially-mixed zone on the Ni-side of the fusion line. Within the partially mixed zone on the Ni-side there exists a 200 nm-wide transition zone within a 20 mum-wide planar solidification region followed by a cellular dendritic region with Nb-Mo rich carbides decorating the dendrite boundaries. The size, area fraction and composition of the discontinuous PMZ were determined to be controlled by uneven mixing in the liquid weld pool influenced by convection currents produced from the welding procedure. The virgin martensitic microstructure produced in these regions is formed as consequence of a both the local composition and the post-weld heat treatment. The local higher Ni content results in these regions being retransformed into austenite during the post-weld heat treatment and then virgin martensite while cooling to room temperature. Although there were differences in the volume of the discontinuous partially mixed-zones, the major difference in the weld metal interfaces was the presence of M 7C3 precipitates in the planar solidification region. The formation of these precipitates, which were found in what was previously referred to as the "featureless-zone," were determined to be dependent on the carbon content of the Fe-base metal and the duration of the post-weld heat treatment. A high density of these ordered 100 nm-long by 10 nm-wide needle-like precipitates were found in the AISI 8630-IN 625 weldment in the 10 hour post-weld heat treatment condition while only the initial stages of their nucleation were evident in the F22-IN 625 15 hour post-weld heat treatment specimen. The study of the fractured specimens revealed that the M7C 3 carbides play a key role in the susceptibility to hydrogen embrittlement of the Fe-Ni butter weldments. The fractures initially nucleate along the isolated Fe-base metal -- discontinuous partially mixed zone interfaces. The M7C3 carbides accumulate hydrogen and then provide a low energy fracture path between the discontinuous partially mixed zones leading to catastrophic failure. The result is a fracture morphology that alternates between flat regions produced by fracture along the discontinuous partially mixed zones and cleavage-like fracture regions produced by fracture along the ordered carbide matrix interfaces.

  16. Grain fragmentation in ultrasonic-assisted TIG weld of pure aluminum.

    PubMed

    Chen, Qihao; Lin, Sanbao; Yang, Chunli; Fan, Chenglei; Ge, Hongliang

    2017-11-01

    Under the action of acoustic waves during an ultrasonic-assisted tungsten inert gas (TIG) welding process, a grain of a TIG weld of aluminum alloy is refined by nucleation and grain fragmentation. Herein, effects of ultrasound on grain fragmentation in the TIG weld of aluminum alloy are investigated via systematic welding experiments of pure aluminum. First, experiments involving continuous and fixed-position welding are performed, which demonstrate that ultrasound can break the grain of the TIG weld of pure aluminum. The microstructural characteristics of an ultrasonic-assisted TIG weld fabricated by fixed-position welding are analyzed. The microstructure is found to transform from plane crystal, columnar crystal, and uniform equiaxed crystal into plane crystal, deformed columnar crystal, and nonuniform equiaxed crystal after application of ultrasound. Second, factors influencing ultrasonic grain fragmentation are investigated. The ultrasonic amplitude and welding current are found to have a considerable effect on grain fragmentation. The degree of fragmentation first increases and then decreases with an increase in ultrasonic amplitude, and it increases with an increase in welding current. Measurement results of the vibration of the weld pool show that the degree of grain fragmentation is related to the intensity of acoustic nonlinearity in the weld pool. The greater the intensity of acoustic nonlinearity, the greater is the degree of grain fragmentation. Finally, the mechanism of ultrasonic grain fragmentation in the TIG weld of pure aluminum is discussed. A finite element simulation is used to simulate the acoustic pressure and flow in the weld pool. The acoustic pressure in the weld pool exceeds the cavitation threshold, and cavitation bubbles are generated. The flow velocity in the weld pool does not change noticeably after application of ultrasound. It is concluded that the high-pressure conditions induced during the occurrence of cavitation, lead to grain fragmentation in a pure aluminum TIG weld during an ultrasonic-assisted TIG welding process. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. An Assessment of Molten Metal Detachment Hazards for Electron Beam Welding in the Space Environment: Analysis and Test Results

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Russell, C.; Bhat, B.; Fragomeni, J. M.

    1998-01-01

    Conditions under which molten metal detachments might occur in a space welding environment are analyzed. A weld pool detachment parameter specifying conditions for pool detachment by impact is derived and corroborated by experimental evidence. Impact detachment for the pool is unlikely. Impact detachment for a drop of metal on the end of the weld wire may be possible under extreme conditions. Other potential causes of molten metal detachment considered, vaporization pressure forces and wire flickout from the pool, did not appear to present significant detachment threats.

  18. Effect of Al-Si Coating on Weld Microstructure and Properties of 22MnB5 Steel Joints for Hot Stamping

    NASA Astrophysics Data System (ADS)

    Lin, Wenhu; Li, Fang; Wu, Dongsheng; Chen, Xiaoguan; Hua, Xueming; Pan, Hua

    2018-03-01

    22MnB5 hot stamping steels are gradually being used in tailor-welded blank applications. In this experiment, 1-mm-thick Al-Si coated and de-coated 22MnB5 steels were laser-welded and then hot-stamped. The chemical compositions, solidification process, microstructure and mechanical properties were investigated to reveal the effect of Al-Si coating and heat treatment. In the welded condition, the coated joints had an Al content of approximately 2.5 wt.% in the fusion zone and the de-coated joints had 0.5 wt.% Al. The aluminum promoted the δ-ferrite formation as the skeletal structure during solidification. In the high-aluminum weld, the microstructure consisted of martensite and long and band-like δ-ferrite. Meanwhile, the low-aluminum weld was full of lath martensite. After the hot stamping process, the δ-ferrite fraction increased from 10 to 24% in the coated joints and the lath martensite became finer in the de-coated joints. The tensile strengths of the coated joints or de-coated joints were similar to that before hot stamping, but the strength of the coated joints was reduced heavily after hot stamping compared to the de-coated joints and base material. The effect of δ-ferrite on the tensile properties became stronger when the fusion zone was soft and deformed first in the hot-stamped specimens. The coated weld showed a brittle fracture surface with many cleavage planes, and the de-coated weld showed a ductile fracture surface with many dimples in hot-stamped conditions.

  19. Hot-crack test for aluminium alloys welds using TIG process

    NASA Astrophysics Data System (ADS)

    Niel, A.; Deschaux-Beaume, F.; Bordreuil, C.; Fras, G.

    2010-06-01

    Hot cracking is a critical defect frequently observed during welding of aluminium alloys. In order to better understand the interaction between cracking phenomenon, process parameters, mechanical factors and microstructures resulting from solidification after welding, an original hot-cracking test during welding is developed. According to in-situ observations and post mortem analyses, hot cracking mechanisms are investigated, taking into account the interaction between microstructural parameters, depending on the thermal cycles, and mechanical parameters, depending on geometry and clamping conditions of the samples and on the thermal field on the sample. Finally, a process map indicating the limit between cracking and non-cracking zones according to welding parameters is presented.

  20. Nanoparticle-induced unusual melting and solidification behaviours of metals

    PubMed Central

    Ma, Chao; Chen, Lianyi; Cao, Chezheng; Li, Xiaochun

    2017-01-01

    Effective control of melting and solidification behaviours of materials is significant for numerous applications. It has been a long-standing challenge to increase the melted zone (MZ) depth while shrinking the heat-affected zone (HAZ) size during local melting and solidification of materials. In this paper, nanoparticle-induced unusual melting and solidification behaviours of metals are reported that effectively solve this long-time dilemma. By introduction of Al2O3 nanoparticles, the MZ depth of Ni is increased by 68%, while the corresponding HAZ size is decreased by 67% in laser melting at a pulse energy of 0.18 mJ. The addition of SiC nanoparticles shows similar results. The discovery of the unusual melting and solidification of materials that contain nanoparticles will not only have impacts on existing melting and solidification manufacturing processes, such as laser welding and additive manufacturing, but also on other applications such as pharmaceutical processing and energy storage. PMID:28098147

  1. Investigation of Hot Cracking Behavior in Transverse Mechanically Arc Oscillated Autogenous AA2014 T6 TIG Welds

    NASA Astrophysics Data System (ADS)

    Biradar, N. S.; Raman, R.

    2012-09-01

    Hot cracking studies on autogenous AA2014 T6 TIG welds were carried out. Significant cracking was observed during linear and circular welding test (CWT) on 4-mm-thick plates. Weld metal grain structure and amount of liquid distribution during the terminal stages of solidification were the key cause for hot cracking in aluminum welds. Square-wave AC TIG welding with transverse mechanical arc oscillation (TMAO) was employed to study the cracking behavior during linear and CWT. TMAO welds with amplitude = 0.9 mm and frequency = 0.5 Hz showed significant reduction in cracking tendency. The increase in cracking resistance in the arc-oscillated weld was attributed to grain refinement and improved weld bead morphology, which improved the weld metal ductility and uniformity, respectively, of residual tensile stresses that developed during welding. The obtained results were comparable to those of reported favorable results of electromagnetic arc oscillation.

  2. Melting of SiC powders preplaced duplex stainless steel using TIG welding

    NASA Astrophysics Data System (ADS)

    Maleque, M. A.; Afiq, M.

    2018-01-01

    TIG torch welding technique is a conventional melting technique for the cladding of metallic materials. Duplex stainless steels (DSS) show decrease in performance under aggressive environment which may lead to unanticipated failure due to poor surface properties. In this research, surface modification is done by using TIG torch method where silicon carbide (SiC) particles are fused into DSS substrate in order to form a new intermetallic compound at the surface. The effect of particle size, feed rate of SiC preplacement, energy input and shielding gas flow rate on surface topography, microstructure, microstructure and hardness are investigated. Deepest melt pool (1.237 mm) is produced via TIG torch with highest energy input of 1080 J/mm. Observations of surface topography shows rippling marks which confirms that re-solidification process has taken place. Melt microstructure consist of dendritic and globular carbides precipitate as well as partially melted silicon carbides (SiC) particles. Micro hardness recorded at value ranging from 316 HV0.5 to 1277 HV0.5 which shows increment from base hardness of 260 HV0.5kgf. The analyzed result showed that incorporation of silicon carbide particles via TIG Torch method increase the hardness of DSS.

  3. Weld pool development during GTA and laser beam welding of Type 304 stainless steel; Part I - theoretical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacharia, T.; David, S.A.; Vitek, J.M.

    1989-12-01

    A computational and experimental study was carried out to quantitatively understand the influence of the heat flow and the fluid flow in the transient development of the weld pool during gas tungsten arc (GTA) and laser beam welding of Type 304 stainless steel. Stationary gas tungsten arc and laser beam welds were made on two heats of Type 304 austenitic stainless steels containing 90 ppm sulfur and 240 ppm sulfur. A transient heat transfer model was utilized to simulate the heat flow and fluid flow in the weld pool. In this paper, the results of the heat flow and fluidmore » flow analysis are presented.« less

  4. Simulation and Technology of Hybrid Welding of Thick Steel Parts with High Power Fiber Laser

    NASA Astrophysics Data System (ADS)

    Turichin, Gleb; Valdaytseva, Ekaterina; Tzibulsky, Igor; Lopota, Alexander; Velichko, Olga

    The article devoted to steady state and dynamic simulation of melt pool behavior during hybrid laser-arc welding of pipes and shipbuilding sections. The quasi-stationary process-model was used to determine an appropriate welding mode. The dynamical model of laser welding was used for investigation of keyhole depth and width oscillations. The experiments of pipe steel and stainless steel hybrid laser-MAG welding have been made with 15-kW fiber laser in wide range of welding mode parameters. Comparison of experimentally measured and simulated behavior of penetration depth as well as their oscillation spectra approved the self-oscillation nature of melt pool behavior. The welding mode influence of melt pool stability has also been observed. The technological peculiarities, which allow provide high quality weld seam, has been discussed also.

  5. Active weld control

    NASA Technical Reports Server (NTRS)

    Powell, Bradley W.; Burroughs, Ivan A.

    1994-01-01

    Through the two phases of this contract, sensors for welding applications and parameter extraction algorithms have been developed. These sensors form the foundation of a weld control system which can provide action weld control through the monitoring of the weld pool and keyhole in a VPPA welding process. Systems of this type offer the potential of quality enhancement and cost reduction (minimization of rework on faulty welds) for high-integrity welding applications. Sensors for preweld and postweld inspection, weld pool monitoring, keyhole/weld wire entry monitoring, and seam tracking were developed. Algorithms for signal extraction were also developed and analyzed to determine their application to an adaptive weld control system. The following sections discuss findings for each of the three sensors developed under this contract: (1) weld profiling sensor; (2) weld pool sensor; and (3) stereo seam tracker/keyhole imaging sensor. Hardened versions of these sensors were designed and built under this contract. A control system, described later, was developed on a multiprocessing/multitasking operating system for maximum power and flexibility. Documentation for sensor mechanical and electrical design is also included as appendices in this report.

  6. High Power Laser Beam Welding of Thick-walled Ferromagnetic Steels with Electromagnetic Weld Pool Support

    NASA Astrophysics Data System (ADS)

    Fritzsche, André; Avilov, Vjaceslav; Gumenyuk, Andrey; Hilgenberg, Kai; Rethmeier, Michael

    The development of modern high power laser systems allows single pass welding of thick-walled components with minimal distortion. Besides the high demands on the joint preparation, the hydrostatic pressure in the melt pool increases with higher plate thicknesses. Reaching or exceeding the Laplace pressure, drop-out or melt sagging are caused. A contactless electromagnetic weld support system was used for laser beam welding of thick ferromagnetic steel plates compensating these effects. An oscillating magnetic field induces eddy currents in the weld pool which generate Lorentz forces counteracting the gravity forces. Hysteresis effects of ferromagnetic steels are considered as well as the loss of magnetization in zones exceeding the Curie temperature. These phenomena reduce the effective Lorentz forces within the weld pool. The successful compensation of the hydrostatic pressure was demonstrated on up to 20 mm thick plates of duplex and mild steel by a variation of the electromagnetic power level and the oscillation frequency.

  7. On the effect of β phase on the microstructure and mechanical properties of friction stir welded commercial brass alloys.

    PubMed

    Heidarzadeh, Akbar; Saeid, Tohid

    2015-12-01

    Conventional fusion welding of brass (Cu-Zn) alloys has some difficulties such as evaporation of Zn, toxic behavior of Zn vapor, solidification cracking, distortion, and oxidation [1], [2], [3]. Fortunately, friction stir welding (FSW) has been proved to be a good candidate for joining the brass alloys, which can overcome the fusion welding short comes [4], [5], [6], [7]. The data presented here relates to FSW of the single and double phase brass alloys. The data is the microstructure and mechanical properties of the base metals and joints.

  8. On the effect of β phase on the microstructure and mechanical properties of friction stir welded commercial brass alloys

    PubMed Central

    Heidarzadeh, Akbar; Saeid, Tohid

    2015-01-01

    Conventional fusion welding of brass (Cu–Zn) alloys has some difficulties such as evaporation of Zn, toxic behavior of Zn vapor, solidification cracking, distortion, and oxidation [1], [2], [3]. Fortunately, friction stir welding (FSW) has been proved to be a good candidate for joining the brass alloys, which can overcome the fusion welding short comes [4], [5], [6], [7]. The data presented here relates to FSW of the single and double phase brass alloys. The data is the microstructure and mechanical properties of the base metals and joints. PMID:26793745

  9. Effects of electrode bevel angle on argon arc properties and weld shape

    NASA Astrophysics Data System (ADS)

    Dong, W. C.; Lu, S. P.; Li, D. Z.; Y Li, Y.

    2012-07-01

    A numerical modeling of coupled welding arc with weld pool is established using FLUENT software for moving shielded GTA welding to systematically investigate the effects of electrode bevel angle on the argon arc properties as well as the weld shape on SUS304 stainless steel. The calculated results show that the argon arc is constricted and the peak values of heat flux and shear stress on the weld pool decrease with increasing electrode bevel angle, while the radial distribution of heat flux and shear stress varying slightly. The weld shape is controlled by the pool flow patterns driving by the surface tension, gas shear stress, electromagnetic force and buoyancy. The Marangoni convection induced by surface tension plays an important role on weld shapes. All the weld shapes are wide and shallow with low weld metal oxygen content, while the narrow and deep weld shapes form under high weld metal oxygen content, which is related with the oxygen concentration in the shielding gas. The weld depth/width (D/W) ratio increases with increasing electrode bevel angle for high weld metal oxygen content and is not sensitive to the electrode bevel angle under low weld metal oxygen content. The calculated results for the weld shape, weld size and weld D/W ratio agree well with the experimental ones.

  10. Phenomenological Models and Animations of Welding and their Impact

    NASA Astrophysics Data System (ADS)

    DebRoy, Tarasankar

    Professor Robertson's recognized research on metallurgical thermodynamics and kinetics for over 40 years facilitated the emergence of rigorous quantitative understanding of many complex metallurgical processes. The author had the opportunity to work with Professor Robertson on liquid metals in the 1970s. This paper is intended to review the advances in the quantitative understanding of welding processes and weld metal attributes in recent decades. Over this period, phenomenological models have been developed to better understand and control various welding processes and the structure and properties of welded materials. Numerical models and animations of melting, solidification and the evolution of micro and macro-structural features will be presented to critically examine their impact on the practice of welding and the underlying science.

  11. Welding of gamma titanium aluminide alloys

    NASA Technical Reports Server (NTRS)

    Smashey, Russell W. (Inventor); Snyder, John H. (Inventor); Kelly, Thomas J. (Inventor); Sheranko, Ronald L. (Inventor)

    1998-01-01

    An article made of a gamma titanium aluminide alloy is welded, as for example in the weld repair of surface cracks, by removing foreign matter from the area to be welded, first stress relieving the article, cooling the entire article to a welding temperature of from about 1000.degree. F. to about 1400.degree. F., welding a preselected region in an inert atmosphere at the welding temperature, and second stress relieving the article. Welding is preferably accomplished by striking an arc in the preselected region so as to locally melt the alloy in the preselected region, providing a filler metal having the same composition as the gamma titanium aluminide alloy of the article, and feeding the filler metal into the arc so that the filler metal is melted and fused with the article to form a weldment upon solidification.

  12. Study of the structure and properties of laser-welded joints of the Al-Mg-Li alloy

    NASA Astrophysics Data System (ADS)

    Pugacheva, N. B.; Antenorova, N. P.; Senaeva, E. I.

    2015-12-01

    The macro- and microstructures, the distribution of chemical elements and of the values of the microhardness over the width of the zones of remelting and heat-affected zone have been studied after the laser welding of sheets of an Al-Mg-Li alloy. It has been shown that the material of the zone of remelting (1.2 mm thick) represents in itself finely dispersed misoriented dendrites, in the primary branches of which particles of the strengthening δ' phase (Al3Li) with dimensions of no more than 10 nm and in the interdendrite spaces, dispersed particles of the S phase (Al2MgLi and FeAl2) have been revealed. The hardness of the material of the zone of remelting was 108-123 HV 0.05; the hardness of the basic alloy, 150-162 HV 0.05. In the heat-affected zones of thickness 2 mm, the primary recrystallization occurred only in a narrow zone directly at the boundary with the weld. The strength of the welded junction was 470-490 MPa, which corresponds to the regulated degree of strength of the aluminum alloys of this class. The relative elongation of the material of the weld proved to be considerably less than that in the alloy matrix because of the microporosity of the weld material. It is shown that the convective stirring of the melt in the welding pool upon the laser welding made it possible to avoid the appearance of macroscopic defects, but on the microlevel there are observed micropores in the form of spheres with dimensions of 5-50 μm. The solidification of the alloy occurred in such a way that the dendrites had time to grow around the gas bubbles prior to their collapse, forming a sufficiently strong carcass. Inside the dendritic carcass, there have been revealed coarse inclusions (to 200 μm) that consist of oxides (Al2O3, Fe2O3, MgO, SiO2, CaO), of an iron-based alloy, and of the host aluminum alloy.

  13. Optical penetration sensor for pulsed laser welding

    DOEpatents

    Essien, Marcelino; Keicher, David M.; Schlienger, M. Eric; Jellison, James L.

    2000-01-01

    An apparatus and method for determining the penetration of the weld pool created from pulsed laser welding and more particularly to an apparatus and method of utilizing an optical technique to monitor the weld vaporization plume velocity to determine the depth of penetration. A light source directs a beam through a vaporization plume above a weld pool, wherein the plume changes the intensity of the beam, allowing determination of the velocity of the plume. From the velocity of the plume, the depth of the weld is determined.

  14. Fiber Laser Weldability of Austenitic Nickel Alloys

    NASA Astrophysics Data System (ADS)

    Watson, Jonathan

    Recent developments of fiber lasers allow for easier beam delivery facilitating greater applications for laser welding in industry. Welding with high energy density heat sources allows for faster travel speeds, faster cooling rates, and smaller heat affected zones. However, there is a still a lack of knowledge base on how laser welding process parameters affect the weldability of austenitic nickel alloys. In this work, laser welds were made on several austenitic nickel alloys from different alloy families: HAYNESRTM 214RTM alloy, HAYNESRTM 282RTM alloy, HAYNESRTM 230RTM alloy, HAYNESRTM HR-120RTM alloy, HAYNESRTM HR-160 RTM alloy, HAYNESRTM 188 alloy, HAYNESRTM 718 alloy. Welds were made at 25 mm/s at laser powers ranging from 400 to 600 Watts. Solidification cracking was observed in cross-sections of the fusion zone of HR-160RTM alloy and HR-120RTM alloy. Dendritic solidification was found in all alloys, and partitioning within the dendritic structure compared well with Scheil calculations performed using ThermoCalc software. A eutectic liquid rich in carbide forming elements was found at the interdendritic regions in 188, 230RTM, 282 RTM, and 718 alloys and was quantified by processing backscatter electron images of the fusion zone. This interdendritic liquid was found to back fill solidification cracks that formed in the fusion zone during weldability testing. Transverse Varestraint and Sigma-Jig testing were performed to rank the weldability of alloys. During Transvarestraint testing, the ram drop timing was recorded in relation to the laser output, and a type R thermocouple was also placed in the laser path, and the approximate cooling rate of the fusion zone was recorded and used to calculate the solidification cracking temperature range. Rankings of the weldability compared well between Sigma-Jig and Transvarestraint testing, with the exception of 214 alloy and HR-120 alloy, which ranked much better and worse, respectively in Sigma-Jig tests. A possible explanation for this difference is the higher thermal conductivity and lower yields strength of 214 alloy and high temperatures, allowing it to accommodate more stress in the Sigma-Jig test. The final ranking of alloys from more weldable to less weldable by Sigma-Jig testing is 188, 214, 282, 718, 230, HR-120, and HR-160. The final ranking by maximum crack length in Transvarestraint specimens listed from more weldable to less weldable is: 188, 282, HR-120, 718, 230, 214, and HR-160.

  15. Welding deviation detection algorithm based on extremum of molten pool image contour

    NASA Astrophysics Data System (ADS)

    Zou, Yong; Jiang, Lipei; Li, Yunhua; Xue, Long; Huang, Junfen; Huang, Jiqiang

    2016-01-01

    The welding deviation detection is the basis of robotic tracking welding, but the on-line real-time measurement of welding deviation is still not well solved by the existing methods. There is plenty of information in the gas metal arc welding(GMAW) molten pool images that is very important for the control of welding seam tracking. The physical meaning for the curvature extremum of molten pool contour is revealed by researching the molten pool images, that is, the deviation information points of welding wire center and the molten tip center are the maxima and the local maxima of the contour curvature, and the horizontal welding deviation is the position difference of these two extremum points. A new method of weld deviation detection is presented, including the process of preprocessing molten pool images, extracting and segmenting the contours, obtaining the contour extremum points, and calculating the welding deviation, etc. Extracting the contours is the premise, segmenting the contour lines is the foundation, and obtaining the contour extremum points is the key. The contour images can be extracted with the method of discrete dyadic wavelet transform, which is divided into two sub contours including welding wire and molten tip separately. The curvature value of each point of the two sub contour lines is calculated based on the approximate curvature formula of multi-points for plane curve, and the two points of the curvature extremum are the characteristics needed for the welding deviation calculation. The results of the tests and analyses show that the maximum error of the obtained on-line welding deviation is 2 pixels(0.16 mm), and the algorithm is stable enough to meet the requirements of the pipeline in real-time control at a speed of less than 500 mm/min. The method can be applied to the on-line automatic welding deviation detection.

  16. Grain Refinement of Freeform Fabricated Ti-6Al-4V Alloy Using Beam/Arc Modulation

    NASA Technical Reports Server (NTRS)

    Mitzner, Scott; Liu, Stephen; Domack, Marcia S.; Hafley, Robert A.

    2012-01-01

    Grain refinement can significantly improve the mechanical properties of freeform-fabricated Ti-6Al-4V alloy, promoting increased strength and enhanced isotropy compared with coarser grained material. Large beta-grains can lead to a segregated microstructure, in regard to both alpha-phase morphology and alpha-lath orientation. Beam modulation, which has been used in conventional fusion welding to promote grain refinement, is explored in this study for use in additive manufacturing processes including electron beam freeform fabrication (EBF(sup 3)) and gas-tungsten arc (GTA) deposition to alter solidification behavior and produce a refined microstructure. The dynamic molten pool size induced by beam modulation causes rapid heat flow variance and results in a more competitive grain growth environment, reducing grain size. Consequently, improved isotropy and strength can be achieved with relatively small adjustments to deposition parameters.

  17. Electron Beam Welding of Duplex Steels with using Heat Treatment

    NASA Astrophysics Data System (ADS)

    Schwarz, Ladislav; Vrtochová, Tatiana; Ulrich, Koloman

    2010-01-01

    This contribution presents characteristics, metallurgy and weldability of duplex steels with using concentrated energy source. The first part of the article describes metallurgy of duplex steels and the influence of nitrogen on their solidification. The second part focuses on weldability of duplex steels with using electron beam aimed on acceptable structure and corrosion resistance performed by multiple runs of defocused beam over the penetration weld.

  18. Blast Performance of Four Armour Materials

    DTIC Science & Technology

    2013-08-01

    provided in the Q&T condition, possessing tempered martensitic microstructures. Steels H, A and M possessed very similar microstructures at the...weld metal solidification cracking in steels and stainless steels . He has also undertaken extensive work on improving the weld zone toughness of high...3.1 Microstructures of steels It is generally accepted that a tempered martensitic microstructure is the most desirable condition for armour steel

  19. Development of Weld Metal Microstructures in Pulsed Laser Welding of Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mirakhorli, F.; Malek Ghaini, F.; Torkamany, M. J.

    2012-10-01

    The microstructure of the weld metal of a duplex stainless steel made with Nd:YAG pulsed laser is investigated at different travel speeds and pulse frequencies. In terms of the solidification pattern, the weld microstructure is shown to be composed of two distinct zones. The presence of two competing heat transfer channels to the relatively cooler base metal and the relatively hotter previous weld spot is proposed to develop two zones. At high overlapping factors, an array of continuous axial grains at the weld centerline is formed. At low overlapping factors, in the zone of higher cooling rate, a higher percentage of ferrite is transformed to austenite. This is shown to be because with extreme cooling rates involved in pulsed laser welding with low overlapping, the ferrite-to-austenite transformation can be limited only to the grain boundaries.

  20. The nitrogen effect on Type 304L austenitic stainless steel weld metal welded with a GTA (Gas Tungsten Arc) system under ambient and hyperbaric conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okagawa, R.K.

    1984-01-01

    Small amounts of nitrogen were injected into Type 304L austenitic stainless steel weld metal. This was accomplished by using an Ar-N/sub 2/ shield gas mixture in combination with a controlled argon atmosphere on autogeneous Gas Tungsten Arc (GTA) welds. Weld metal nitrogen as a function of nitrogen shield gas content and applied pressure was examined. Nitrogen shield gas contents above 4% were found to have a major effect on the weld metal microstructure. The base metal nitrogen did not influence the nitrogen solubility reaction or solidification behavior during welding. For Type 304L austenitic stainless steel, a nitrogen coefficient of 13.4more » was determined for the nickel equivalent expression. 63 refs., 19 figs., 4 tabs.« less

  1. An integrated optical sensor for GMAW feedback control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, P.L.; Watkins, A.D.; Larsen, E.D.

    1992-08-01

    The integrated optical sensor (IOS) is a multifunction feedback control sensor for arc welding, that is computer automated and independent of significant operator interaction. It is based on three major ``off-the-shelf`` components: a charged coupled device (CCD) camera, a diode laser, and a processing computer. The sensor head is compact and lightweight to avoid interference with weld head mobility, hardened to survive the harsh operating environment, and free of specialized cooling and power requirements. The sensor is positioned behind the GMAW torch and measures weld pool position and width, standoff distance, and postweld centerline cooling rate. Weld pool position andmore » width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint, thus allowing compensation for such phenomena as arc blow. Sensor stand off distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to infer the final metallurgical state of the weld bead and heat affected zone, thereby providing a means of controlling post weld mechanical properties.« less

  2. An integrated optical sensor for GMAW feedback control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, P.L.; Watkins, A.D.; Larsen, E.D.

    1992-01-01

    The integrated optical sensor (IOS) is a multifunction feedback control sensor for arc welding, that is computer automated and independent of significant operator interaction. It is based on three major off-the-shelf'' components: a charged coupled device (CCD) camera, a diode laser, and a processing computer. The sensor head is compact and lightweight to avoid interference with weld head mobility, hardened to survive the harsh operating environment, and free of specialized cooling and power requirements. The sensor is positioned behind the GMAW torch and measures weld pool position and width, standoff distance, and postweld centerline cooling rate. Weld pool position andmore » width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint, thus allowing compensation for such phenomena as arc blow. Sensor stand off distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to infer the final metallurgical state of the weld bead and heat affected zone, thereby providing a means of controlling post weld mechanical properties.« less

  3. Contribution to study of heat transfer and fluid flow during GTA welding

    NASA Astrophysics Data System (ADS)

    Koudadje, Koffi; Delalondre, Clarisse; Médale, Marc; Carpreau, Jean-Michel

    2014-06-01

    In this paper, the effect of surface-active elements especially sulfur on weld pool shape has been reported. In our contribution, we analyze the influence of the weld pool chemical composition (Mn, Si, …), welding energy, sulphur gradient and electromagnetic effect. The computed results are in good agreement with the corresponding experimental results, indicating the validity of the modeling approach.

  4. Hot cracking susceptibility of fillers 52 and 82 in alloy 690 welding

    NASA Astrophysics Data System (ADS)

    Wu, Weite; Tsai, C. H.

    1999-02-01

    The hot cracking susceptibility of fillers 52 and 82 in a alloy 690 weldment is analyzed by the Varestraint test. Weld characteristics, microstructure, hardness distribution, and thermal analysis of the two filler metals are also examined. The weld metal of both fillers develops an extremely dense oxide layer. A stainless steel brush cannot remove the oxide layer, and a grinder may be needed between weld passes to assure a sound weld. Differential temperature analysis (DTA) shows that filler 82 has a lower melting point and a wider melting/solidification temperature differential (Δ T). These characteristics correlate with greater hot cracking susceptibility of filler 82 than 52 in Varestraint tests. The hot cracks are intergranular and are caused by elements segregating in grain boundies.

  5. Welding and Weldability of AZ31B by Gas Tungsten Arc and Laser Beam Welding Processes

    NASA Astrophysics Data System (ADS)

    Lathabai, S.; Barton, K. J.; Harris, D.; Lloyd, P. G.; Viano, D. M.; McLean, A.

    Welding will play an important role in the fabrication of modular lightweight structures based on magnesium alloy die castings, extrusion profiles and wrought products. Minimisation of rejection rates during fabrication requires that satisfactory weldability be established for a particular combination of materials and welding procedures. In this paper, we present the results of a study to quantify the weldability of wrought alloy AZ31B by gas tungsten arc (GTA) and laser beam (LB) welding processes. The susceptibility to weld metal solidification cracking was evaluated using the Circular Patch weldability test. Operating windows of welding parameters for crack-free and porosity-free GTA and LB welding were identified, based on which welding procedures were developed for sheet and plate AZ31B. The microstructure and mechanical properties of welded test plates were assessed, leading to a better understanding of microstructurat development and structure-property relationships in GTA and LB weldments in AZ31B.

  6. Weldment for austenitic stainless steel and method

    DOEpatents

    Bagnall, Christopher; McBride, Marvin A.

    1985-01-01

    For making defect-free welds for joining two austenitic stainless steel mers, using gas tungsten-arc welding, a thin foil-like iron member is placed between the two steel members to be joined, prior to making the weld, with the foil-like iron member having a higher melting point than the stainless steel members. When the weld is formed, there results a weld nugget comprising melted and then solidified portions of the joined members with small portions of the foil-like iron member projecting into the solidified weld nugget. The portions of the weld nugget proximate the small portions of the foil-like iron member which project into the weld nugget are relatively rich in iron. This causes these iron-rich nugget portions to display substantial delta ferrite during solidification of the weld nugget which eliminates weld defects which could otherwise occur. This is especially useful for joining austenitic steel members which, when just below the solidus temperature, include at most only a very minor proportion of delta ferrite.

  7. Analysis of weld geometry and liquid flow in laser transmission welding between polyethylene terephthalate (PET) and Ti6Al4V based on numerical simulation

    NASA Astrophysics Data System (ADS)

    Ai, Yuewei; Zheng, Kang; Shin, Yung C.; Wu, Benxin

    2018-07-01

    The laser transmission welding of polyethylene terephthalate (PET) and titanium alloy Ti6Al4V involving the evaluating of the resultant geometry and quality of welds is investigated using a fiber laser in this paper. A 3D transient numerical model considering the melting and fluid flow is developed to predict the weld geometry and porosity formation. The temperature field, molten pool and liquid flow are simulated with varying laser power and welding speed based on the model. It is observed that the weld geometry predictions from the numerical simulation are in good agreement with the experimental data. The results show that the porosity consistently appears in the high temperature region due to the decomposition of PET. In addition, it has also been found that the molten pool with a vortex flow pattern is formed only in the PET layer and the welding processing parameters have significant effects on the fluid flow, which eventually affects the heat transfer, molten pool geometry and weld formation. Consequently, it is shown adopting appropriate welding processing parameters based on the proposed model is essential for the sound weld without defects.

  8. Status analysis of keyhole bottom in laser-MAG hybrid welding process.

    PubMed

    Wang, Lin; Gao, Xiangdong; Chen, Ziqin

    2018-01-08

    The keyhole status is a determining factor of weld quality in laser-metal active gas arc (MAG) hybrid welding process. For a better evaluation of the hybrid welding process, three different penetration welding experiments: partial penetration, normal penetration (or full penetration), and excessive penetration were conducted in this work. The instantaneous visual phenomena including metallic vapor, spatters and keyhole of bottom surface were used to evaluate the keyhole status by a double high-speed camera system. The Fourier transform was applied on the bottom weld pool image for removing the image noise around the keyhole, and then the bottom weld pool image was reconstructed through the inverse Fourier transform. Lastly, the keyhole bottom was extracted from the de-noised bottom weld pool image. By analyzing the visual features of the laser-MAG hybrid welding process, mechanism of the closed and opened keyhole bottom were revealed. The results show that the stable opened or closed status of keyhole bottom is directly affected by the MAG droplet transition in the normal penetration welding process, and the unstable opened or closed status of keyhole bottom would appear in excessive penetration welding and partial penetration welding. The analysis method proposed in this paper could be used to monitor the keyhole stability in laser-MAG hybrid welding process.

  9. Electron Backscatter Diffraction Analysis of Joints Between AISI 316L Austenitic/UNS S32750 Dual-Phase Stainless Steel

    NASA Astrophysics Data System (ADS)

    Shamanian, Morteza; Mohammadnezhad, Mahyar; Amini, Mahdi; Zabolian, Azam; Szpunar, Jerzy A.

    2015-08-01

    Stainless steels are among the most economical and highly practicable materials widely used in industrial areas due to their mechanical and corrosion resistances. In this study, a dissimilar weld joint consisting of an AISI 316L austenitic stainless steel (ASS) and a UNS S32750 dual-phase stainless steel was obtained under optimized welding conditions by gas tungsten arc welding technique using AWS A5.4:ER2594 filler metal. The effect of welding on the evolution of the microstructure, crystallographic texture, and micro-hardness distribution was also studied. The weld metal (WM) was found to be dual-phased; the microstructure is obtained by a fully ferritic solidification mode followed by austenite precipitation at both ferrite boundaries and ferrite grains through solid-state transformation. It is found that welding process can affect the ferrite content and grain growth phenomenon. The strong textures were found in the base metals for both steels. The AISI 316L ASS texture is composed of strong cube component. In the UNS S32750 dual-phase stainless steel, an important difference between the two phases can be seen in the texture evolution. Austenite phase is composed of a major cube component, whereas the ferrite texture mainly contains a major rotated cube component. The texture of the ferrite is stronger than that of austenite. In the WM, Kurdjumov-Sachs crystallographic orientation relationship is found in the solidification microstructure. The analysis of the Kernel average misorientation distribution shows that the residual strain is more concentrated in the austenite phase than in the other phase. The welding resulted in a significant hardness increase in the WM compared to initial ASS.

  10. Numerical simulation of heat transfer and fluid flow during double-sided laser beam welding of T-joints for aluminum aircraft fuselage panels

    NASA Astrophysics Data System (ADS)

    Yang, Zhibin; Tao, Wang; Li, Liqun; Chen, Yanbin; Shi, Chunyuan

    2017-06-01

    In comparison with conventional laser beam welding, double-sided laser beam welding has two laser heat sources simultaneously and symmetrically loaded from both sides makes it to be a more complicated coupled heat transport and fluid flow process. In this work, in order to understand the heat transfer and fluid flow, a three-dimensional model was developed and validated with the experimental results. The temperature field, fluid flow field, and keyhole characteristic were calculated using the developed model by FLUENT software. Calculated results indicated that the temperature and fluid flow fields were bilateral symmetry along the stringer center, and the molten pool maximum length was located near the keyhole intersection position. The skin side had higher temperature and faster cooling speed. Several characteristic flow patterns in the weld pool cross section, including the vortexes flows near the keyhole opening position, the convection flows above the keyhole intersection location, the regularity downward flows at the molten pool bottom. And in the lengthwise section, a distinct vortex flow below the keyhole, and the liquid metal behind the keyhole first flowed to near the molten pool maximum length location and then to the molten pool surface. Perpendicular to and along welding direction the keyhole liquid metal flowed to the weld molten pool surface and around the keyhole, respectively. The special temperature fields and fluid flow patterns were closely related to the effects of the double sides' laser energy coupling and enhancement. The calculated weld pool geometry basically in good agreement with the experimental results indicated that the developed model was validity and reasonable.

  11. Effects of SO/sub 2/ torch gas additions on GTA weld shape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiple, C.R.; Burgardt, P.

    1984-01-01

    Small additions of sulfur or oxygen to the GTA weld pool in steels with low weld d/w (depth/width) ratios substantially increases the weld d/w ratio and furthermore the improved weld d/w ratio is largely independent of reasonable variations in base metal sulfur and oxygen content. The addition of small concentrations of SO/sub 2/ to the normal argon shielding gas is a simple and effective way to add sulfur to the weld pool and increase weld d/w ratio. Autogenous bead-on-plate welds under otherwise identical welding conditions were made on stainless steel plate with SO/sub 2/ concentrations in the torch gas rangingmore » between 0 and 2000 ppM.« less

  12. Influence of modes of metal transfer on grain structure and direction of grain growth in low nickel austenitic stainless steel weld metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Manidipto; Saha, Saptarshi; Pal, Tapan Kumar, E-mail: tkpal.ju@gmail.com

    2015-04-15

    The present study elaborately discussed the effect of different modes of metal transfer (i.e., short circuit mode, spray mode and pulse mode) on grain structure and direction of grain growth in low nickel austenitic stainless steel weld metals. Electron backscattered diffraction (EBSD) analysis was used to study the grain growth direction and grain structure in weld metals. The changes in grain structure and grain growth direction were found to be essentially varied with the weld pool shape and acting forces induced by modes of metal transfer at a constant welding speed. Short circuit mode of metal transfer owing to highermore » Marangoni force (M{sub a}) and low electromagnetic force (R{sub m}) promotes the lower weld pool volume (Γ) and higher weld pool maximum radius (r{sub m}). Short circuit mode also shows curved and tapered columnar grain structures and the grain growth preferentially occurred in <001> direction. In contrast, spray mode of metal transfer increases the Γ and reduces the r{sub m} values due to very high R{sub m} and typically reveals straight and broad columnar grain structures with preferential growth direction in <111>. In the pulse mode of metal transfer relatively high M{sub a} and R{sub m} simultaneously increase the weld pool width and the primary penetration which might encourage relatively complex grain growth directions in the weld pool and cause a shift of major intensity from <001> to <111> direction. It can also be concluded that the fusion zone grain structure and direction of grain growth are solely dependent on modes of metal transfer and remain constant for a particular mode of metal transfer irrespective of filler wire used. - Highlights: • Welded joints of LNiASS were prepared by varying modes of metal transfer. • Weld pool shape, grain structure and grain growth direction were studied. • Short circuit mode shows curved and tapered grain growth in <001> direction. • Spray mode shows straight and broad columnar grain growth in <111> direction. • Pulse mode shows complex grain growth with a shift in growth direction.« less

  13. INERT GAS SHIELD FOR WELDING

    DOEpatents

    Jones, S.O.; Daly, F.V.

    1958-10-14

    S>An inert gas shield is presented for arc-welding materials such as zirconium that tend to oxidize rapidly in air. The device comprises a rectangular metal box into which the welding electrode is introduced through a rubber diaphragm to provide flexibility. The front of the box is provided with a wlndow having a small hole through which flller metal is introduced. The box is supplied with an inert gas to exclude the atmosphere, and with cooling water to promote the solidification of the weld while in tbe inert atmosphere. A separate water-cooled copper backing bar is provided underneath the joint to be welded to contain the melt-through at the root of the joint, shielding the root of the joint with its own supply of inert gas and cooling the deposited weld metal. This device facilitates the welding of large workpieces of zirconium frequently encountered in reactor construction.

  14. Welding processes for Inconel 718- A brief review

    NASA Astrophysics Data System (ADS)

    Tharappel, Jose Tom; Babu, Jalumedi

    2018-03-01

    Inconel 718 is being extensively used for high-temperature applications, rocket engines, gas turbines, etc. due to its ability to maintain high strength at temperatures range 450-700°C complimented by excellent oxidation and corrosion resistance and its outstanding weldability in either the age hardened or annealed condition. Though alloy 718 is reputed to possess good weldability in the context of their resistance to post weld heat treatment cracking, heat affected zone (HAZ) and weld metal cracking problems persist. This paper presents a brief review on welding processes for Inconel 718 and the weld defects, such as strain cracking during post weld heat treatment, solidification cracking, and liquation cracking. The effect of alloy chemistry, primary and secondary processing on the HAZ cracking susceptibility, influence of post/pre weld heat treatments on precipitation, segregation reactions, and effect of grain size etc. discussed and concluded with future scope for research.

  15. ARC and Melting Efficiency of Plasma ARC Welds

    NASA Technical Reports Server (NTRS)

    McClure, J. C.; Nunes, A. C.; Evans, D. M.

    1999-01-01

    A series of partial penetration Variable Polarity Plasma Arc welds were made at equal power but various combinations of current and voltage on 2219 Aluminum. Arc efficiency was measured calorimetrically and ranged between 48% and 66% for the conditions of the welds. Arc efficiency depends in different ways on voltage and current. The voltage effect dominates. Raising voltage while reducing current increases arc efficiency. Longer, higher voltage arcs are thought to transfer a greater portion of arc power to the workpiece through shield gas convection. Melting efficiency depends upon weld pool shape as well as arc efficiency. Increased current increases the melting efficiency as it increases the depth to width ratio of the weld pool. Increased plasma gas flow does the same thing. Higher currents are thought to raise arc pressure and depress liquid at the bottom of the weld pool. More arc power then transfers to the workpiece through increasing plasma gas convection. If the power is held constant, the reduced voltage lowers the arc efficiency, while the pool shape change increases the melting efficiency,

  16. Effect of heat treatment and diffusion welding conditions on the structure and properties of porous material workpieces made of titanium fibers

    NASA Astrophysics Data System (ADS)

    Kollerov, M. Yu.; Shlyapin, S. D.; Gusev, D. E.; Senkevich, K. S.; Runova, Yu. E.

    2015-11-01

    The effect of the diffusion welding conditions on the structure and properties of a porous material (PM) made of titanium fibers is studied. It is shown that the use of fibers produced by melt quenching and then joined to form workpieces or articles by diffusion welding can be a promising trend in the production of PMs for medicine applications. A change in the solidification rate of fibers and their contact substantially affects the mechanical properties of PM workpieces. As the diffusion welding temperature of both sheet and cylindrical workpieces increases, the strength of PM increases and the plasticity of PM decreases.

  17. Three-dimensional modeling of the plasma arc in arc welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, G.; Tsai, H. L.; Hu, J.

    2008-11-15

    Most previous three-dimensional modeling on gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) focuses on the weld pool dynamics and assumes the two-dimensional axisymmetric Gaussian distributions for plasma arc pressure and heat flux. In this article, a three-dimensional plasma arc model is developed, and the distributions of velocity, pressure, temperature, current density, and magnetic field of the plasma arc are calculated by solving the conservation equations of mass, momentum, and energy, as well as part of the Maxwell's equations. This three-dimensional model can be used to study the nonaxisymmetric plasma arc caused by external perturbations such asmore » an external magnetic field. It also provides more accurate boundary conditions when modeling the weld pool dynamics. The present work lays a foundation for true three-dimensional comprehensive modeling of GTAW and GMAW including the plasma arc, weld pool, and/or electrode.« less

  18. Laser Beam Oscillation Strategies for Fillet Welds in Lap Joints

    NASA Astrophysics Data System (ADS)

    Müller, Alexander; Goecke, Sven-F.; Sievi, Pravin; Albert, Florian; Rethmeier, Michael

    Laser beam oscillation opens up new possibilities of influencing the welding process in terms of compensation of tolerances and reduction of process emissions that occur in industrial applications, such as in body-in-white manufacturing. The approaches are to adapt the melt pool width in order to generate sufficient melt volume or to influence melt pool dynamics, e.g. for a better degassing. Welding results are highly dependent on the natural frequency of the melt pool, the used spot diameter and the oscillation speed of the laser beam. The conducted investigations with an oscillated 300 μm laser spot show that oscillation strategies, which are adjusted to the joining situation improve welding result for zero-gap welding as well as for bridging gaps to approximately 0.8 mm. However, a complex set of parameters has to be considered in order to generate proper welding results. This work puts emphasize on introducing them.

  19. Exploring infrared sensoring for real time welding defects monitoring in GTAW.

    PubMed

    Alfaro, Sadek C A; Franco, Fernand Díaz

    2010-01-01

    This paper presents an evaluation of an infrared sensor for monitoring the welding pool temperature in a Gas Tungsten Arc Welding (GTAW) process. The purpose of the study is to develop a real time system control. It is known that the arc welding pool temperature is related to the weld penetration depth; therefore, by monitoring the temperature, the arc pool temperature and penetration depth are also monitored. Various experiments were performed; in some of them the current was varied and the temperature changes were registered, in others, defects were induced throughout the path of the weld bead for a fixed current. These simulated defects resulted in abrupt changes in the average temperature values, thus providing an indication of the presence of a defect. The data has been registered with an acquisition card. To identify defects in the samples under infrared emissions, the timing series were analyzed through graphics and statistic methods. The selection of this technique demonstrates the potential for infrared emission as a welding monitoring parameter sensor.

  20. Exploring Infrared Sensoring for Real Time Welding Defects Monitoring in GTAW

    PubMed Central

    Alfaro, Sadek C. A.; Franco, Fernand Díaz

    2010-01-01

    This paper presents an evaluation of an infrared sensor for monitoring the welding pool temperature in a Gas Tungsten Arc Welding (GTAW) process. The purpose of the study is to develop a real time system control. It is known that the arc welding pool temperature is related to the weld penetration depth; therefore, by monitoring the temperature, the arc pool temperature and penetration depth are also monitored. Various experiments were performed; in some of them the current was varied and the temperature changes were registered, in others, defects were induced throughout the path of the weld bead for a fixed current. These simulated defects resulted in abrupt changes in the average temperature values, thus providing an indication of the presence of a defect. The data has been registered with an acquisition card. To identify defects in the samples under infrared emissions, the timing series were analyzed through graphics and statistic methods. The selection of this technique demonstrates the potential for infrared emission as a welding monitoring parameter sensor. PMID:22219697

  1. [Impact of introduction of O2 on the welding arc of gas pool coupled activating TIG].

    PubMed

    Huang, Yong; Wang, Yan-Lei; Zhang, Zhi-Guo

    2014-05-01

    In the present paper, Boltzmann plot method was applied to analyze the temperature distributions of the are plasma when the gas pool coupled activating TIG welding was at different coupling degrees with the outer gas being O2. Based on this study of temperature distributions, the changing regularities of are voltage and are appearance were studied. The result shows that compared with traditional TIG welding, the introduction of O2 makes the welding arc constricted slightly, the temperature of the are center build up, and the are voltage increase. When argon being the inner gas, oxygen serving as the outer gas instead of argon makes the are constricted more obviously. When the coupling degree increases from 0 to 2, the temperature of the are center and the are voltage both increase slightly. In the gas pool coupled activating TIG welding the are is constricted not obviously, and the reason why the weld penetration is improved dramatically in the welding of stainless steel is not are constriction.

  2. Effect of Inverter Power Source Characteristics on Welding Stability and Heat Affected Zone Dimensions

    NASA Astrophysics Data System (ADS)

    Il'yaschenko, D. P.; Chinakhov, D. A.; Mamadaliev, R. A.

    2018-01-01

    The paper presents results the research in the effect of power sources dynamic characteristics on stability of melting and electrode metal transfer to the weld pool shielded metal arc welding. It is proved that when applying inverter-type welding power sources, heat and mass transfer characteristics change, arc gap short-circuit time and drop generation time are reduced. This leads to reduction of weld pool heat content and contraction of the heat-affected zone by 36% in comparison the same parameters obtained using a diode rectifier.

  3. Residual Stress Development in Explosive-Bonded Bi-Metal Composite Materials

    DTIC Science & Technology

    2014-03-01

    at ANSTO, researching high temperature fatigue behaviour and modelling of ferritic pressure vessel steel , for which he was awarded the degree at...solidification cracking in steels and stainless steels . He has also undertaken extensive work on improving the weld zone toughness of high strength steels ...957. [3] I. Tatsukawa, I. Oda, ‘Residual Stress Measurements on Explosive Clad Stainless Steel ’, Trans. Japan Welding Soc., 2(2), 1971, p26-34

  4. High temperature phase chemistries and solidification mode prediction in nitrogen-strengthened austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Ritter, Ann M.; Henry, Michael F.; Savage, Warren F.

    1984-07-01

    Nitronic 50 and Nitronic 50W, two nitrogen-strengthened stainless steels, were heat treated over a wide range of temperatures, and the compositions of the ferrite and austenite at each temperature were measured with analytical electron microscopy techniques. The compositional data were used to generate the (γ + δ phase field on a 58 pct Fe vertical section. Volume fractions of ferrite and austenite were calculated from phase chemistries and compared with volume fractions determined from optical micrographs. Weld solidification modes were predicted by reference to the Cr and Ni contents of each alloy, and the results were compared with predictions based on the ratios of calculated Cr and Ni equivalents for the alloys. Nitronic 50, which contained ferrite and austenite at the solidus temperature of 1370 °C, solidified through the eutectic triangle, and the weld microstructure was similar to that of austenitic-ferritic solidification. Nitronic 50W was totally ferritic at 1340 °C and solidified as primary delta ferrite. During heat treatments, Nitronic 50 and Nitronic 50W precipitated secondary phases, notably Z-phase (NbCrN), sigma phase, and stringered phases rich in Mn and Cr.

  5. Hot cracking susceptibility of fillers 52 and 82 in alloy 690 welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, W.; Tsai, C.H.

    1999-02-01

    The hot cracking susceptibility of fillers 52 and 82 in a alloy 690 weldment is analyzed by the Varestraint test. Weld characteristics, microstructure, hardness distribution, and thermal analysis of the two filler metals are also examined. The weld metal of both fillers develops an extremely dense oxide layer. A stainless steel brush cannot remove the oxide layer, and a grinder may be needed between weld passes to assure a sound weld. Differential temperature analysis (DTA) shows that filler 82 has a lower melting point and a wider melting/solidification temperature differential ({Delta} T). These characteristics correlate with greater hot cracking susceptibilitymore » of filler 82 than 52 in Varestraint tests. The hot cracks are intergranular and are caused by elements segregating in grain boundaries.« less

  6. Thermal Impacts in Vibration-assisted Laser Deep Penetration Welding of Aluminum

    NASA Astrophysics Data System (ADS)

    Radel, T.

    Mechanical vibrations affect the nucleation and grain growth conditions during welding. In order to understand the vibration-induced influences on the grain formation conditions in laser beam welding of aluminum the thermal impacts of simultaneously applied vibrations are analyzed in this study. Therefore, laser deep penetration welding at vibration frequencies between 0.5 kHz and 5 kHz is investigated. Besides full penetration, partial penetration experiments were carried out. The results show that the thermal and absorption efficiencies are not significantly affected by the applied excitation. The solidification time increases in case of applied excitation which is rather disadvantageous regarding grain refinement. Thus, mechanical-metallurgical and not thermal-metallurgical effects should be responsible for the change in grain nucleation and grain growth conditions in laser beam welding with simultaneously applied vibrations.

  7. Improving Processes of Mechanized Pulsed Arc Welding of Low-Frequency Range Variation of Mode Parameters

    NASA Astrophysics Data System (ADS)

    Saraev, Yu N.; Solodskiy, S. A.; Ulyanova, O. V.

    2016-04-01

    A new technology of low-frequency modulation of the arc current in MAG and MIG welding is presented. The technology provides control of thermal and crystallization processes, stabilizes the time of formation and crystallization of the weld pool. Conducting theoretical studies allowed formulating the basic criteria for obtaining strong permanent joints for high-duty structures, providing conditions for more equilibrium structure of the deposited metal and the smaller width of the HAZ. The stabilization of time of the formation and crystallization of the weld pool improves the formation of the weld and increases productivity in welding thin sheet metal.

  8. Welding of nickel-base superalloys having a nil-ductility range

    NASA Technical Reports Server (NTRS)

    Smashey, Russell W. (Inventor); Kelly, Thomas J. (Inventor); Snyder, John H. (Inventor); Sheranko, Ronald L. (Inventor)

    1999-01-01

    An article made of a nickel-base superalloy having a nil-ductility range from the solidus temperature of the alloy to about 600.degree. F. below the solidus temperature is welded, as for example in the weld repair of surface cracks, by removing foreign matter from the area to be welded, first stress relieving the article, adjusting the temperature of the article to a welding temperature of from about 1800.degree. F. to about 2100.degree. F., welding a preselected area in an inert atmosphere at the welding temperature, and second stress relieving the article. Welding is preferably accomplished by striking an arc in the preselected area so as to locally melt the alloy in the preselected area, providing a filler metal having the same composition as the nickel-based superalloy of the article, and feeding the filler metal into the arc so that the filler metal is melted and fused with the article to form a weldment upon solidification.

  9. Stability of Full Penetration, Flat Position Weld Pools

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.; Coan, Al. B.

    1999-01-01

    The dynamics of the dropthrough distance of a full penetration, flat position weld pool is described. Close to incipient root side penetration the dropthrough is metastable, so that a small drop in power can cause a loss of penetration if not followed soon enough by a compensating rise in power. The SPA (Soft Plasma Arc) process with higher pressure on top of the weld pool loses penetration more quickly than the GTA (Gas Tungsten Arc) process. 2195 aluminum-lithium alloy with a lower surface tension loses penetration more quickly than 2219 aluminum alloy. An instance of loss of penetration of a SPA weld in 2195 aluminum-lithium alloy is discussed in the light of the model.

  10. Effect of Austenitic and Austeno-Ferritic Electrodes on 2205 Duplex and 316L Austenitic Stainless Steel Dissimilar Welds

    NASA Astrophysics Data System (ADS)

    Verma, Jagesvar; Taiwade, Ravindra V.

    2016-11-01

    This study addresses the effect of different types of austenitic and austeno-ferritic electrodes (E309L, E309LMo and E2209) on the relationship between weldability, microstructure, mechanical properties and corrosion resistance of shielded metal arc welded duplex/austenitic (2205/316L) stainless steel dissimilar joints using the combined techniques of optical, scanning electron microscope, energy-dispersive spectrometer and electrochemical. The results indicated that the change in electrode composition led to microstructural variations in the welds with the development of different complex phases such as vermicular ferrite, lathy ferrite, widmanstatten and intragranular austenite. Mechanical properties of welded joints were diverged based on compositions and solidification modes; it was observed that ferritic mode solidified weld dominated property wise. However, the pitting corrosion resistance of all welds showed different behavior in chloride solution; moreover, weld with E2209 was superior, whereas E309L exhibited lower resistance. Higher degree of sensitization was observed in E2209 weld, while lesser in E309L weld. Optimum ferrite content was achieved in all welds.

  11. Mathematical Model of Solidification During Electroslag Casting of Pilger Roll

    NASA Astrophysics Data System (ADS)

    Liu, Fubin; Li, Huabing; Jiang, Zhouhua; Dong, Yanwu; Chen, Xu; Geng, Xin; Zang, Ximin

    A mathematical model for describing the interaction of multiple physical fields in slag bath and solidification process in ingot during pilger roll casting with variable cross-section which is produced by the electroslag casting (ESC) process was developed. The commercial software ANSYS was applied to calculate the electromagnetic field, magnetic driven fluid flow, buoyancy-driven flow and heat transfer. The transportation phenomenon in slag bath and solidification characteristic of ingots are analyzed for variable cross-section with variable input power under the conditions of 9Cr3NiMo steel and 70%CaF2 - 30%Al2O3 slag system. The calculated results show that characteristic of current density distribution, velocity patterns and temperature profiles in the slag bath and metal pool profiles in ingot have distinct difference at variable cross-sections due to difference of input power and cooling condition. The pool shape and the local solidification time (LST) during Pilger roll ESC process are analyzed.

  12. Welding wire pressure sensor assembly

    NASA Technical Reports Server (NTRS)

    Morris, Timothy B. (Inventor); Milly, Peter F., Sr. (Inventor); White, J. Kevin (Inventor)

    1994-01-01

    The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.

  13. Microstructure and Hydrogen-Induced Failure Mechanisms in Fe and Ni Alloy Weldments

    NASA Astrophysics Data System (ADS)

    Fenske, J. A.; Robertson, I. M.; Ayer, Raghavan; Hukle, Martin; Lillig, Dan; Newbury, Brian

    2012-09-01

    The microstructure and fracture morphology of AISI 8630-IN625 and ASTM A182-F22-IN625 dissimilar metal weld interfaces were compared and contrasted as a function of postweld heat treatment (PWHT) duration. For both systems, the microstructure along the weld interface consisted of a coarse grain heat-affected zone in the Fe-base metal followed by discontinuous martensitic partially mixed zones and a continuous partially mixed zone on the Ni side of the fusion line. Within the partially mixed zone on the Ni side, there exists a 200-nm-wide transition zone within a 20- μm-wide planar solidification region followed by a cellular dendritic region with Nb-Mo-rich carbides decorating the dendrite boundaries. Although there were differences in the volume of the partially mixed zones, the major difference in the metal weld interfaces was the presence of M7C3 precipitates in the planar solidification region, which had formed in AISI 8630-IN625 but not in ASTM A182-F22-IN625. These precipitates make the weldment more susceptible to hydrogen embrittlement and provide a low energy fracture path between the discontinuous partially mixed zones.

  14. Recent Developments and Research Progress on Friction Stir Welding of Titanium Alloys: An Overview

    NASA Astrophysics Data System (ADS)

    Karna, Sivaji; Cheepu, Muralimohan; Venkateswarulu, D.; Srikanth, V.

    2018-03-01

    Titanium and its alloys are joined by various welding processes. However, Fusion welding of titanium alloys resulted solidification problems like porosity, segregation and columnar grains. The problems occurred in conventional welding processes can be resolved using a solid state welding i.e. friction stir welding. Aluminium and Magnesium alloys were welded by friction stir welding. However alloys used for high temperature applications such as titanium alloys and steels are arduous to weld using friction stir welding process because of tool limitations. Present paper summarises the studies on joining of Titanium alloys using friction stir welding with different tool materials. Selection of tool material and effect of welding conditions on mechanical and microstructure properties of weldments were also reported. Major advantage with friction stir welding is, we can control the welding temperature above or below β-transus temperature by optimizing the process parameters. Stir zone in below beta transus condition consists of bi-modal microstructure and microstructure in above β-transus condition has large prior β- grains and α/β laths present in the grain. Welding experiments conducted below β- transus condition has better mechanical properties than welding at above β-transus condition. Hardness and tensile properties of weldments are correlated with the stir zone microstructure.

  15. Investigation on the Mechanism and Failure Mode of Laser Transmission Spot Welding Using PMMA Material for the Automotive Industry

    PubMed Central

    Wang, Xiao; Liu, Baoguang; Liu, Wei; Zhong, Xuejiao; Jiang, Yingjie; Liu, Huixia

    2017-01-01

    To satisfy the need of polymer connection in lightweight automobiles, a study on laser transmission spot welding using polymethyl methacrylate (PMMA) is conducted by using an Nd:YAG pulse laser. The influence of three variables, namely peak voltages, defocusing distances and the welding type (type I (pulse frequency and the duration is 25 Hz, 0.6 s) and type II (pulse frequency and the duration is 5 Hz, 3 s)) to the welding quality was investigated. The result showed that, in the case of the same peak voltages and defocusing distances, the number of bubbles for type I was obviously more than type II. The failure mode of type I was the base plate fracture along the solder joint, and the connection strength of type I was greater than type II. The weld pool diameter:depth ratio for type I was significantly greater than type II. It could be seen that there was a certain relationship between the weld pool diameter:depth ratio and the welding strength. By the finite element simulation, the weld pool for type I was more slender than type II, which was approximately the same as the experimental results. PMID:28772383

  16. Shielding gas selection for increased weld penetration and productivity in GTA welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leinonen, J.I.

    1996-12-31

    The effects of hydrogen and helium additions to the argon shielding gas on GTA weld pool profiles in the case of two austenitic stainless steel sheets 3 mm thick are investigated here in detail. One of the test steels shows good weldability, with a relatively deep, narrow weld pool profile, but the other is poorly weldable, with a shallow, wide weld pool when argon shielding gas is used. Bead-on-plate test welds were produced with arc shields of argon, argon with hydrogen additions of 2 to 18.2% and argon with helium additions of 20 to 80%. The hydrogen additions increases themore » depth of weld penetration in both test steels, but productivity with respect to maximum welding speed can be improved to an accepted level only with steel sheets of good weldability in terms of a relatively high depth/width (D/W) ratio. The depth of penetration in the test steel of good weldability increased somewhat with helium additions and the D/W ratio remained unchanged, while these parameters increased markedly in the poorly weldable steel when a He-20% Ar shielding gas was used and resembled those of the more weldable steel.« less

  17. Investigation on the Mechanism and Failure Mode of Laser Transmission Spot Welding Using PMMA Material for the Automotive Industry.

    PubMed

    Wang, Xiao; Liu, Baoguang; Liu, Wei; Zhong, Xuejiao; Jiang, Yingjie; Liu, Huixia

    2017-01-01

    To satisfy the need of polymer connection in lightweight automobiles, a study on laser transmission spot welding using polymethyl methacrylate (PMMA) is conducted by using an Nd:YAG pulse laser. The influence of three variables, namely peak voltages, defocusing distances and the welding type (type I (pulse frequency and the duration is 25 Hz, 0.6 s) and type II (pulse frequency and the duration is 5 Hz, 3 s)) to the welding quality was investigated. The result showed that, in the case of the same peak voltages and defocusing distances, the number of bubbles for type I was obviously more than type II. The failure mode of type I was the base plate fracture along the solder joint, and the connection strength of type I was greater than type II. The weld pool diameter:depth ratio for type I was significantly greater than type II. It could be seen that there was a certain relationship between the weld pool diameter:depth ratio and the welding strength. By the finite element simulation, the weld pool for type I was more slender than type II, which was approximately the same as the experimental results.

  18. Inverse Thermal Analysis of Titanium GTA Welds Using Multiple Constraints

    NASA Astrophysics Data System (ADS)

    Lambrakos, S. G.; Shabaev, A.; Huang, L.

    2015-06-01

    Inverse thermal analysis of titanium gas-tungsten-arc welds using multiple constraint conditions is presented. This analysis employs a methodology that is in terms of numerical-analytical basis functions for inverse thermal analysis of steady-state energy deposition in plate structures. The results of this type of analysis provide parametric representations of weld temperature histories that can be adopted as input data to various types of computational procedures, such as those for prediction of solid-state phase transformations. In addition, these temperature histories can be used to construct parametric function representations for inverse thermal analysis of welds corresponding to other process parameters or welding processes whose process conditions are within similar regimes. The present study applies an inverse thermal analysis procedure that provides for the inclusion of constraint conditions associated with both solidification and phase transformation boundaries.

  19. Microstructural evolution and precipitation behavior in heat affected zone of Inconel 625 and AISI 904L dissimilar welds

    NASA Astrophysics Data System (ADS)

    Senthur Prabu, S.; Devendranath Ramkumar, K.; Arivazhagan, N.

    2017-11-01

    In the present investigation an attempt has been made to join the dissimilar combination of Inconel 625 super alloy and super austenitic stainless steel (AISI 904L) using manual multi-pass continuous current gas tungsten arc (CCGTA) welding processes. Two different filler wires such as ERNiCrMo-4 and ERNiCrCoMo-1 have been used to compare the metallurgical properties of these welded joints. Both optical microscopy and scanning electron microscopy techniques were adopted to disseminate the microstructure traits of these weldments. Formation of secondary phases at the HAZ and weld interface of AISI 904L was witnessed while using the ERNiCrCoMo-1 filler, along with Solidification Grain Boundary (SGB) and Migrated Grain Boundary (MGB) were also observed at the weld zone.

  20. The influence of arc plasma parameters on the form of a welding pool

    NASA Astrophysics Data System (ADS)

    Frolov, V. Ya.; Toropchin, A. I.

    2015-07-01

    The influence of the Marangoni force on the form of a welding pool has been considered. Results of computer simulation of the processes of welding arc generation with a non-consumable tungsten electrode in inert gas are shown. The experimental results are reported and comparatively analyzed. The calculations were carried out in a package of applied programs at various currents.

  1. Surface-active element effects on the shape of GTA, laser, and electron-beam welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiple, C.R.; Roper, J.R.; Stagner, R.T.

    1983-03-01

    Laser and electron-beam welds were passed across selenium-doped zones in 21-6-9 stainless steel. The depth/width (d/w) ratio of a defocused laser weld with a weld pool shape similar to a GTA weld increased by over 200% in a zone where 66 ppm selenium had been added. Smaller increases were observed in selenium-doped zones for a moderately defocused electron beam weld with a higher d/w ratio in undoped base metal. When laser or electron beam weld penetration was by a keyhole mechanism, no change in d/w ratio occurred in selenium-doped zones. The results confirm the surface-tension-driven fluid-flow model for the effectmore » of minor elements on GTA weld pool shape. Other experimental evidence bearing on the effect of minor elements on GTA weld penetration is summarized.« less

  2. Computational simulation of weld microstructure and distortion by considering process mechanics

    NASA Astrophysics Data System (ADS)

    Mochizuki, M.; Mikami, Y.; Okano, S.; Itoh, S.

    2009-05-01

    Highly precise fabrication of welded materials is in great demand, and so microstructure and distortion controls are essential. Furthermore, consideration of process mechanics is important for intelligent fabrication. In this study, the microstructure and hardness distribution in multi-pass weld metal are evaluated by computational simulations under the conditions of multiple heat cycles and phase transformation. Because conventional CCT diagrams of weld metal are not available even for single-pass weld metal, new diagrams for multi-pass weld metals are created. The weld microstructure and hardness distribution are precisely predicted when using the created CCT diagram for multi-pass weld metal and calculating the weld thermal cycle. Weld distortion is also investigated by using numerical simulation with a thermal elastic-plastic analysis. In conventional evaluations of weld distortion, the average heat input has been used as the dominant parameter; however, it is difficult to consider the effect of molten pool configurations on weld distortion based only on the heat input. Thus, the effect of welding process conditions on weld distortion is studied by considering molten pool configurations, determined by temperature distribution and history.

  3. Probing Reliability of Transport Phenomena Based Heat Transfer and Fluid Flow Analysis in Autogeneous Fusion Welding Process

    NASA Astrophysics Data System (ADS)

    Bag, S.; de, A.

    2010-09-01

    The transport phenomena based heat transfer and fluid flow calculations in weld pool require a number of input parameters. Arc efficiency, effective thermal conductivity, and viscosity in weld pool are some of these parameters, values of which are rarely known and difficult to assign a priori based on the scientific principles alone. The present work reports a bi-directional three-dimensional (3-D) heat transfer and fluid flow model, which is integrated with a real number based genetic algorithm. The bi-directional feature of the integrated model allows the identification of the values of a required set of uncertain model input parameters and, next, the design of process parameters to achieve a target weld pool dimension. The computed values are validated with measured results in linear gas-tungsten-arc (GTA) weld samples. Furthermore, a novel methodology to estimate the overall reliability of the computed solutions is also presented.

  4. Modeling growth and dissolution of inclusions during fusion welding of steels

    NASA Astrophysics Data System (ADS)

    Hong, Tao

    The characteristics of inclusions in the weld metals are critical factors to determine the structure, properties and performance of weldments. The research in the present thesis applied computational modeling to study inclusion behavior considering thermodynamics and kinetics of nucleation, growth and dissolution of inclusion along its trajectory calculated from the heat transfer and fluid flow model in the weld pool. The objective of this research is to predict the characteristics of inclusions, such as composition, size distribution, and number density in the weld metal from different welding parameters and steel compositions. To synthesize the knowledge of thermodynamics and kinetics of nucleation, growth and dissolution of inclusion in the liquid metal, a set of time-temperature-transformation (TTT) diagrams are constructed to represent the effects of time and temperature on the isothermal growth and dissolution behavior of fourteen types of individual inclusions. The non-isothermal behavior of growth and dissolution of inclusions is predicted from their isothermal behavior by constructing continuous-cooling-transformation (CCT) diagrams using Scheil additive rule. A well verified fluid flow and heat transfer model developed at Penn State is used to calculate the temperature and velocity fields in the weld pool for different welding processes. A turbulent model considering enhanced viscosity and thermal conductivity (k-ε model) is applied. The calculations show that there is vigorous circulation of metal in the weld pool. The heat transfer and fluid flow model helps to understand not only the fundamentals of the physical phenomena (luring welding, but also the basis to study the growth and dissolution of inclusions. The calculations of particle tracking of thousands of inclusions show that most inclusions undergo complex gyrations and thermal cycles in the weld pool. The inclusions experience both growth and dissolution during their lifetime. Thermal cycles of thousand of inclusions nucleated in the liquid region are tracked and their growth and dissolution are calculated to estimate the final size distribution and number density of inclusions statistically. The calculations show that welding conditions and weld metal compositions affect the inclusion characteristics significantly. Good agreement between the computed and the experimentally observed inclusion size distribution indicates that the inclusion behavior in the weld pool can be understood from the fundamentals of transport phenomena and transformation kinetics.

  5. Effects of shielding gas composition on arc profile and molten pool dynamics in gas metal arc welding of steels

    NASA Astrophysics Data System (ADS)

    Wang, L. L.; Lu, F. G.; Wang, H. P.; Murphy, A. B.; Tang, X. H.

    2014-11-01

    In gas metal arc welding, gases of different compositions are used to produce an arc plasma, which heats and melts the workpiece. They also protect the workpiece from the influence of the air during the welding process. This paper models gas metal arc welding (GMAW) processes using an in-house simulation code. It investigates the effects of the gas composition on the temperature distribution in the arc and on the molten pool dynamics in gas metal arc welding of steels. Pure argon, pure CO2 and different mixtures of argon and CO2 are considered in the study. The model is validated by comparing the calculated weld profiles with physical weld measurements. The numerical calculations reveal that gas composition greatly affects the arc temperature profile, heat transfer to the workpiece, and consequently the weld dimension. As the CO2 content in the shielding gas increases, a more constricted arc plasma with higher energy density is generated as a result of the increased current density in the arc centre and increased Lorentz force. The calculation also shows that the heat transferred from the arc to the workpiece increases with increasing CO2 content, resulting in a wider and deeper weld pool and decreased reinforcement height.

  6. An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in Space

    NASA Technical Reports Server (NTRS)

    Fragomeni, James M.; Nunes, Arthur C., Jr.

    1998-01-01

    The safety issue has been raised with regards to potential molten metal detachments from the weld pool and cold filler wire during electron beam welding in space. This investigation was undertaken to evaluate if molten metal could detach and come in contact with astronauts and burn through the fabric of the astronauts' Extravehicular Mobility Unit (EMU) during electron beam welding in space. Molten metal detachments from either the weld/cut substrate or weld wire could present harm to a astronaut if the detachment was to burn through the fabric of the EMU. Theoretical models were developed to predict the possibility and size of the molten metal detachment hazards during the electron beam welding exercises at Low Earth Orbit (LEO). The primary molten metal detachment concerns were those cases of molten metal separation from the metal surface due to metal cutting, weld pool splashing, entrainment and release of molten metal due to filler wire snap-out from the weld puddle, and molten metal accumulation and release from the end of the weld wire. Some possible ways of obtaining molten metal drop detachments would include an impulse force, or bump, to the weld sample, cut surface, or filler wire. Theoretical models were developed for these detachment concerns from principles of impact and kinetic energies, surface tension, drop geometry, surface energies, and particle dynamics. The surface tension represents the force opposing the liquid metal drop from detaching whereas the weight of the liquid metal droplet represents a force that is tending to detach the molten metal drop. Theoretical calculations have indicated that only a small amount of energy is required to detach a liquid metal drop; however, much of the energy of an impact is absorbed in the sample or weld plate before it reaches the metal drop on the cut edge or surface. The tendency for detachment is directly proportional to the weld pool radius and metal density and inversely proportional to the surface tension of the liquid metal. For a detachment the initial kinetic energy of the weld pool with respect to the plate has to exceed the energy to form the extra surface required for the detachment of the pool. The difficulty is in transferring the energy from the point of impact through the plate and sample to the cut edge. It is likely that not all of the kinetic energy is available for detaching the pool; some may be sequestered in weld pool oscillations. The coefficient of restitution for the collision will be lower than one if irreversible deformation, for example plastic flow deformation, takes place during the collision. Thus determining the amount of energy from an impact that actually reaches the molten metal droplet is critical. Various molten metal detachment scenarios were tested experimentally in an enclosed vacuum chamber using the Ukrainian Universal Hand Tool, an electron beam welder designed for space welding. The experimental testing was performed in a 4 ft. X 4 ft. vacuum chamber at Marshall Space Flight Center, evacuated to vacuum levels of at least 50 microTorr, and also some welding garment material was utilized to observe the effect of the molten metal detachments on the material. A "carillon" apparatus consisting of four pendulum hammer strikers, each weighing approximately 3.65 lbs, raised to predetermined specific heights was used to apply an impact force to the weld sample/plate during electron beam welding and cutting exercises. The strikers were released by switching on an electric motor to rotate a pin holding wires retaining the strikers at desired heights. The specimens were suspended so as to be free to respond to the blows with a sudden velocity increment. The specimens were mounted on a hinged plate for minimizing effective mass with the option to fasten it down so as to raise its effective mass closer to that anticipated for an actual space welding scenario. Measurements were made of the impact energy and the horizontal fling distances of the detached metal drops. It was not particularly easy to generate the detachments for this experiment. This document presents the details of the theoretical modeling effort and a summary of the experimental effort to measure molten metal drop detachments from terrestrial electron beam welding in the enclosed vacuum chamber. The results of the experimental effort have shown that molten metal detachments can occur from the sample/weld plate only if a sufficiently large impact force is applied to the weld plate. A "weld pool detachment parameter" was determined to indicate whether detachment would occur. Detachment can be either full or partial (dripping), Partial detachment means that the weld pool detached from one side of the liquid-solid boundary so as to leave a hole at the puddle site but remained attached over part of the liquid-solid boundary and dripped down the plate with no fully detached material detected. Full detachment, however, does not necessarily mean that the whole pool fully detached; in some cases only a smaller portion of the pool detached, the remainder dripping down the plate. The weld pool detachment parameter according to theory and according to the empirical data allows a determination of whether full detachments might occur. Theoretical calculations indicated titanium alloy would be the most difficult from which to detach molten metal droplets followed by stainless steel and then by aluminum. The experimental results were for the most part consistent with the theoretical analysis and predictions. The above theory is applicable to other situations as desired for assessing the potential for molten metal detachments.

  7. Interaction of trace elements and welding parameters on GTA weld shape. [Variation with penetration and tip angle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgardt, P.; Heiple, C.R.

    1985-01-01

    Good penetration and poor penetration steels have different responses to changes in temperature distribution on the weld pool surface. Penetration of 304 SS was varied using S and Se dopants. The weld parameter investigated was the electrode tip angle. Results of bead-on-plate GTA welds show that there is a difference in response of weld pool shape to tip angle depending on penetration: Low penetration base metal showed no dependence, intermediate penetration steel showed a small linear decrease of weld depth-to-width ratio (d/w) with tip angle, while high penetration steel showed an increase of d/w up to a maximum at aboutmore » 50/sup 0/, followed by a decrease in d/w. (DLC)« less

  8. Determination of crystal growth rates during rapid solidification of polycrystalline aluminum by nano-scale spatio-temporal resolution in situ transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zweiacker, K.; McKeown, J. T.; Liu, C.

    In situ investigations of rapid solidification in polycrystalline Al thin films were conducted using nano-scale spatio-temporal resolution dynamic transmission electron microscopy. Differences in crystal growth rates and asymmetries in melt pool development were observed as the heat extraction geometry was varied by controlling the proximity of the laser-pulse irradiation and the associated induced melt pools to the edge of the transmission electron microscopy support grid, which acts as a large heat sink. Experimental parameters have been established to maximize the reproducibility of the material response to the laser-pulse-related heating and to ensure that observations of the dynamical behavior of themore » metal are free from artifacts, leading to accurate interpretations and quantifiable measurements with improved precision. Interface migration rate measurements revealed solidification velocities that increased consistently from ~1.3 m s –1 to ~2.5 m s –1 during the rapid solidification process of the Al thin films. Under the influence of an additional large heat sink, increased crystal growth rates as high as 3.3 m s –1 have been measured. The in situ experiments also provided evidence for development of a partially melted, two-phase region prior to the onset of rapid solidification facilitated crystal growth. As a result, using the experimental observations and associated measurements as benchmarks, finite-element modeling based calculations of the melt pool evolution after pulsed laser irradiation have been performed to obtain estimates of the temperature evolution in the thin films.« less

  9. Determination of crystal growth rates during rapid solidification of polycrystalline aluminum by nano-scale spatio-temporal resolution in situ transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zweiacker, K., E-mail: Kai@zweiacker.org; Liu, C.; Wiezorek, J. M. K.

    In situ investigations of rapid solidification in polycrystalline Al thin films were conducted using nano-scale spatio-temporal resolution dynamic transmission electron microscopy. Differences in crystal growth rates and asymmetries in melt pool development were observed as the heat extraction geometry was varied by controlling the proximity of the laser-pulse irradiation and the associated induced melt pools to the edge of the transmission electron microscopy support grid, which acts as a large heat sink. Experimental parameters have been established to maximize the reproducibility of the material response to the laser-pulse-related heating and to ensure that observations of the dynamical behavior of themore » metal are free from artifacts, leading to accurate interpretations and quantifiable measurements with improved precision. Interface migration rate measurements revealed solidification velocities that increased consistently from ∼1.3 m s{sup −1} to ∼2.5 m s{sup −1} during the rapid solidification process of the Al thin films. Under the influence of an additional large heat sink, increased crystal growth rates as high as 3.3 m s{sup −1} have been measured. The in situ experiments also provided evidence for development of a partially melted, two-phase region prior to the onset of rapid solidification facilitated crystal growth. Using the experimental observations and associated measurements as benchmarks, finite-element modeling based calculations of the melt pool evolution after pulsed laser irradiation have been performed to obtain estimates of the temperature evolution in the thin films.« less

  10. Determination of crystal growth rates during rapid solidification of polycrystalline aluminum by nano-scale spatio-temporal resolution in situ transmission electron microscopy

    DOE PAGES

    Zweiacker, K.; McKeown, J. T.; Liu, C.; ...

    2016-08-04

    In situ investigations of rapid solidification in polycrystalline Al thin films were conducted using nano-scale spatio-temporal resolution dynamic transmission electron microscopy. Differences in crystal growth rates and asymmetries in melt pool development were observed as the heat extraction geometry was varied by controlling the proximity of the laser-pulse irradiation and the associated induced melt pools to the edge of the transmission electron microscopy support grid, which acts as a large heat sink. Experimental parameters have been established to maximize the reproducibility of the material response to the laser-pulse-related heating and to ensure that observations of the dynamical behavior of themore » metal are free from artifacts, leading to accurate interpretations and quantifiable measurements with improved precision. Interface migration rate measurements revealed solidification velocities that increased consistently from ~1.3 m s –1 to ~2.5 m s –1 during the rapid solidification process of the Al thin films. Under the influence of an additional large heat sink, increased crystal growth rates as high as 3.3 m s –1 have been measured. The in situ experiments also provided evidence for development of a partially melted, two-phase region prior to the onset of rapid solidification facilitated crystal growth. As a result, using the experimental observations and associated measurements as benchmarks, finite-element modeling based calculations of the melt pool evolution after pulsed laser irradiation have been performed to obtain estimates of the temperature evolution in the thin films.« less

  11. Modification of the Gurney Equation for Explosive Bonding by Slanted Elevation Angle

    DTIC Science & Technology

    2014-04-01

    researching high temperature fatigue behaviour and modelling of ferritic pressure vessel steel , for which he was awarded the degree at the University of...weld metal solidification cracking in steels and stainless steels . He has also undertaken extensive work on improving the weld zone toughness of high... steel (2.0) 15 2.4 16 300 x300 1: S defines ‘Superaustenitic’. The flyer plate was placed on the top of the bottom plate for each test with

  12. Control of Welding Processes.

    DTIC Science & Technology

    1987-01-01

    lower level, widens and then narrows again at the root (like an upside-down Coca - Cola bottle), shrinkage voids and/or solidification cracking can be...Virginia 22312. Printed in the United States of America. c. -f .1 P .0 . W% 4P .P.,.0.1 % % % % MS -. r ~~Pi -V"I.J:.6_-%n W-- -VI .: : 4 r, ’ % : -X ML_...utilizing feedback and real-time adjustment of the welding current based on one or the other measurement, were marketed . Unfortunately, none of these

  13. Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghavan, Narendran; Simunovic, Srdjan; Dehoff, Ryan

    In addition to design geometry, surface roughness, and solid-state phase transformation, solidification microstructure plays a crucial role in controlling the performance of additively manufactured components. Crystallographic texture, primary dendrite arm spacing (PDAS), and grain size are directly correlated to local solidification conditions. We have developed a new melt-scan strategy for inducing site specific, on-demand control of solidification microstructure. We were able to induce variations in grain size (30 μm–150 μm) and PDAS (4 μm - 10 μm) in Inconel 718 parts produced by the electron beam additive manufacturing system (Arcam®). A conventional raster melt-scan resulted in a grain size ofmore » about 600 μm. The observed variations in grain size with different melt-scan strategies are rationalized using a numerical thermal and solidification model which accounts for the transient curvature of the melt pool and associated thermal gradients and liquid-solid interface velocities. The refinement in grain size at high cooling rates (>104 K/s) is also attributed to the potential heterogeneous nucleation of grains ahead of the epitaxially growing solidification front. The variation in PDAS is rationalized using a coupled numerical-theoretical model as a function of local solidification conditions (thermal gradient and liquid-solid interface velocity) of the melt pool.« less

  14. Influence of Oxides on Microstructures and Mechanical Properties of High-Strength Steel Weld Joint

    NASA Astrophysics Data System (ADS)

    Cai, Yangchuan; Luo, Zhen; Huang, Zunyue; Zeng, Yida

    2016-11-01

    A comprehensive investigation was conducted into the effect of oxides on penetrations, microstructures and mechanical properties of BS700MC super steel weld bead. Boron oxide changed the penetration of weld bead by changing the Marangoni convection in the weld pool and contracting the welding arc. Chromium oxide only changed the Marangoni convection in the weld pool to increase the penetration of super steel. Thus, the super steel weld bead has higher penetration coated with flux boron oxide than that coated with chromium oxide. In other words, the activating flux TIG (A-TIG) welding with flux boron oxide has less welding heat input than the A-TIG welding with flux chromium oxide. As a result, on the one hand, there existed more fine and homogeneous acicular ferrites in the microstructure of welding heat-affected zone when the super steel was welded by A-TIG with flux boron oxide. Thus, the weld beads have higher value of low-temperature impact toughness. On the other hand, the softening degree of welding heat-affected zone, welded by A-TIG with flux boron oxide, will be decreased for the minimum value of welding heat input.

  15. Analysis of Welding Zinc Coated Steel Sheets in Zero Gap Configuration by 3D Simulations and High Speed Imaging

    NASA Astrophysics Data System (ADS)

    Koch, Holger; Kägeler, Christian; Otto, Andreas; Schmidt, Michael

    Welding of zinc coated sheets in zero gap configuration is of eminent interest for the automotive industry. This Laser welding process would enable the automotive industry to build auto bodies with a high durability in a plain manufacturing process. Today good welding results can only be achieved by expensive constructive procedures such as clamping devices to ensure a defined gad. The welding in zero gap configuration is a big challenge because of the vaporised zinc expelled from the interface between the two sheets. To find appropriate welding parameters for influencing the keyhole and melt pool dynamics, a three dimensional simulation and a high speed imaging system for laser keyhole welding have been developed. The obtained results help to understand the process of the melt pool perturbation caused by vaporised zinc.

  16. Adaptive Neuro-Fuzzy Inference System (ANFIS)-Based Models for Predicting the Weld Bead Width and Depth of Penetration from the Infrared Thermal Image of the Weld Pool

    NASA Astrophysics Data System (ADS)

    Subashini, L.; Vasudevan, M.

    2012-02-01

    Type 316 LN stainless steel is the major structural material used in the construction of nuclear reactors. Activated flux tungsten inert gas (A-TIG) welding has been developed to increase the depth of penetration because the depth of penetration achievable in single-pass TIG welding is limited. Real-time monitoring and control of weld processes is gaining importance because of the requirement of remoter welding process technologies. Hence, it is essential to develop computational methodologies based on an adaptive neuro fuzzy inference system (ANFIS) or artificial neural network (ANN) for predicting and controlling the depth of penetration and weld bead width during A-TIG welding of type 316 LN stainless steel. In the current work, A-TIG welding experiments have been carried out on 6-mm-thick plates of 316 LN stainless steel by varying the welding current. During welding, infrared (IR) thermal images of the weld pool have been acquired in real time, and the features have been extracted from the IR thermal images of the weld pool. The welding current values, along with the extracted features such as length, width of the hot spot, thermal area determined from the Gaussian fit, and thermal bead width computed from the first derivative curve were used as inputs, whereas the measured depth of penetration and weld bead width were used as output of the respective models. Accurate ANFIS models have been developed for predicting the depth of penetration and the weld bead width during TIG welding of 6-mm-thick 316 LN stainless steel plates. A good correlation between the measured and predicted values of weld bead width and depth of penetration were observed in the developed models. The performance of the ANFIS models are compared with that of the ANN models.

  17. Numerical study of coupled turbulent flow and solidification for steel slab casters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aboutalebi, M.R.; Hasan, M.; Guthrie, R.I.L.

    1995-09-01

    A two-dimensional numerical modeling study was undertaken to account for coupled turbulent flow and heat transfer with solidification in the mold and submold regions of a steel slab coaster. Liquid steel is introduced into a water-cooled mold through a bifurcated submerged entry nozzle. Turbulence phenomena in the melt pool of the caster were accounted for, using a modified version of the low-Reynolds-number {kappa}-{epsilon} turbulence model of Launder and Sharma. The mushy region solidification, in the presence of turbulence, was taken into account by modifying the standard enthalpy-porosity technique, which is presently popular for modeling solidification problems. Thermocapillary and buoyancy effectsmore » have been considered in this model to evaluate the influences of the liquid surface tension gradient at the meniscus surface, and natural convection on flow patterns in the liquid pool. Parametric studies were carried out to evaluate the effects of typical variables, such as inlet superheat and casting speed, on the fluid flow and heat transfer results. The numerical predictions were compared with available experimental data.« less

  18. Investigating gas-phase defect formation in late-stage solidification using a novel phase-field crystal alloy model

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Smith, Nathan; Provatas, Nikolas

    2017-09-01

    We study late-stage solidification and the associated formation of defects in alloy materials using a novel model based on the phase-field-crystal technique. It is shown that our model successfully captures several important physical phenomena that occur in the late stages of solidification, including solidification shrinkage, liquid cavitation and microsegregation, all in a single framework. By examining the interplay of solidification shrinkage and solute segregation, this model reveals that the formation of gas pore defects at the late stage of solidification can lead to nucleation of second phase solid particles due to solute enrichment in the eutectic liquid driven by gas-phase nucleation and growth. We also predict a modification of the Gulliver-Scheil equation in the presence of gas pockets in confined liquid pools.

  19. Self-Aligning Sensor-Mounting Fixture

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Mills, Rhonda J.

    1991-01-01

    Optical welding sensors replaced without realignment. Mounting fixture for optical weld-penetration sensor enables accurate and repeatable alignment. Simple and easy to use. Assembled on welding torch, it holds sensor securely and keeps it pointed toward weld pool. Designed for use on gas/tungsten arc-welding torch, fixture replaces multipiece bracket.

  20. Welding-Induced Microstructure Evolution of a Cu-Bearing High-Strength Blast-Resistant Steel

    NASA Astrophysics Data System (ADS)

    Caron, Jeremy L.; Babu, Sudarsanam Suresh; Lippold, John C.

    2011-12-01

    A new high strength, high toughness steel containing Cu for precipitation strengthening was recently developed for naval, blast-resistant structural applications. This steel, known as BlastAlloy160 (BA-160), is of nominal composition Fe-0.05C-3.65Cu-6.5Ni-1.84Cr-0.6Mo-0.1V (wt pct). The evident solidification substructure of an autogenous gas tungsten arc (GTA) weld suggested fcc austenite as the primary solidification phase. The heat-affected zone (HAZ) hardness ranged from a minimum of 353 HV in the coarse-grained HAZ (CGHAZ) to a maximum of 448 HV in the intercritical HAZ (ICHAZ). After postweld heat treatment (PWHT) of the spot weld, hardness increases were observed in the fusion zone (FZ), CGHAZ, and fine-grained HAZ (FGHAZ) regions. Phase transformation and metallographic analyses of simulated single-pass HAZ regions revealed lath martensite to be the only austenitic transformation product in the HAZ. Single-pass HAZ simulations revealed a similar hardness profile for low heat-input (LHI) and high heat-input (HHI) conditions, with higher hardness values being measured for the LHI samples. The measured hardness values were in good agreement with those from the GTA weld. Single-pass HAZ regions exhibited higher Charpy V-notch impact toughness than the BM at both test temperatures of 293 K and 223 K (20 °C and -50 °C). Hardness increases were observed for multipass HAZ simulations employing an initial CGHAZ simulation.

  1. Numerical Simulation of Transient Liquid Phase Bonding under Temperature Gradient

    NASA Astrophysics Data System (ADS)

    Ghobadi Bigvand, Arian

    Transient Liquid Phase bonding under Temperature Gradient (TG-TLP bonding) is a relatively new process of TLP diffusion bonding family for joining difficult-to-weld aerospace materials. Earlier studies have suggested that in contrast to the conventional TLP bonding process, liquid state diffusion drives joint solidification in TG-TLP bonding process. In the present work, a mass conservative numerical model that considers asymmetry in joint solidification is developed using finite element method to properly study the TG-TLP bonding process. The numerical results, which are experimentally verified, show that unlike what has been previously reported, solid state diffusion plays a major role in controlling the solidification behavior during TG-TLP bonding process. The newly developed model provides a vital tool for further elucidation of the TG-TLP bonding process.

  2. Research on the welding process of aluminum alloy based on high power fiber laser

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Zhang, Wei; Pan, Xiaoming; Huang, Shanshi; Liu, Wenwen

    2017-08-01

    To research the formation and variation principle of the weld seam and molten pool for aluminum alloy high power fiber laser welding, the welding experiments for 5052 aluminum alloy were carried out. The influences of laser power, scanning velocity and protection gas on the welding process were systematically researched. The results show that with the increase of power and scanning velocity, the depth to width ratio first increases and then decreases. The ratio reaches the maximum value at 2.6 KW and 30 mm/s, respectively. When the power located at 2.6 KW to 2.8 KW or the velocity located at 25 mm/s to 30 mm/s, stable deep penetration welding can be obtained. The weld seam shows relative flat appearance and the molten pool presents typical "T shape" topography. Moreover, the protection gas also influences the appearance of the weld seam. Using the independently designed fixture, the quality of the weld seam can be well improved.

  3. Microstructure and Porosity of Laser-welded Dissimilar Material Joints of HR-2 and J75

    NASA Astrophysics Data System (ADS)

    Shen, Xianfeng; Teng, Wenhua; Zhao, Shuming; He, Wenpei

    Dissimilar laser welding of HR-2 and J75 has a wide range of applications in high-and low-temperature hydrogen storage. The porosity distributions of the welded joints were investigated at different line energies, penetration status, and welding positions (1G, 2G, and 3G). The effect of the welding position on the welding appearance was evident only at high line energies because of the essential effect of gravity of the larger and longer dwelling molten pool. The porosity of the welded joints between the solutionised and aged J75 and HR-2 at the 3G position and partial penetration was located at the weld centre line, while the porosity at the 2G position with full penetration was distributed at the weld edges, which is consistent with the distribution of floating slag. Full keyhole penetration resulted in minimum porosity, partial penetration resulted in moderate porosity, and periodic molten pool penetration resulted in maximum porosity.

  4. Investigation on Microstructure and Mechanical Properties of ATIG welded alloy C-276 with Fe2O3 flux

    NASA Astrophysics Data System (ADS)

    Surve, Angad; Bhosage, Sharnappa; Mehta, Akshay; Srikanth, A.; Arivarasu, M.; Manikandan, M.; Gokulkumar, K.; Rajan, Deva. N.

    2018-02-01

    Alloy C-276 susceptible to hot cracking. The microsegregation occurs during solidification is the largely responsible for the hot cracking in the alloy. The present study investigates the microstructure and mechanical properties of alloy C-276 weld joint fabricated by ATIG welding technique. The macro examination was carried out assess the defects in the weld joints. Optical and scanning electron microscope examination was carried out to see the structural changes in the fusion zone. The tensile test was performed to evaluate the strength of the weld joints. The results show the defect free welding was achieved in the established process parameters. The macrograph shows the full depth of penetration was obtained in the single pass by the effect of Marangoni convection. Energy Dispersive X-ray spectroscopy (EDS) analysis illustrates the absence of microsegregation in the interdendritic zone. The tensile test shows the improved mechanical properties compared to the base metal.

  5. Acoustic-Emission Weld-Penetration Monitor

    NASA Technical Reports Server (NTRS)

    Maram, J.; Collins, J.

    1986-01-01

    Weld penetration monitored by detection of high-frequency acoustic emissions produced by advancing weld pool as it melts and solidifies in workpiece. Acoustic emission from TIG butt weld measured with 300-kHz resonant transducer. Rise in emission level coincides with cessation of weld penetration due to sudden reduction in welding current. Such monitoring applied to control of automated and robotic welders.

  6. Experimental research on the dynamic behaviors of the keyhole and molten pool in laser deep-penetration welding

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Lin, Qida; Yin, Xuni; Li, Simeng; Deng, Jiquan

    2018-04-01

    Both the morphology and temperature are two important characteristics of the keyhole and the molten pool in laser deep-penetration welding. The modified ‘sandwich’ method was adopted to overcome the difficulty in obtaining inner information about the keyhole and the molten pool. Based on this method, experimental platforms were built for observing the variations in the surface morphology, the longitudinal keyhole profile and the internal temperature. The experimental results of three dynamic behaviors exbibit as follows. The key factor, which makes the pool width go into a quasi-steady state, lies in the balance between the vortex and the sideways flows around the keyhole. Experimental observation shows that the keyhole goes through three stages in laser welding: the rapid drilling stage, the slow drilling stage and the quasi-steady state. The time for achieving a relative fixed keyhole depth is close to the formation time of the maximum pool width. The internal temperatures inside the keyhole and the molten pool first experience a rapid increase, then a decrease and finally go into a quasi-steady state. Compared to that in the unstable stage, the liquid–metal uphill formed in the stable stage of laser welding has less influence on the internal temperature.

  7. Detection of defects in laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration by a real-time spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan

    2014-05-01

    The effect of surface oxide layer existing at the lap-joint faying surface of magnesium sheets is investigated on the keyhole dynamics of the weld pool and weld bead qualities. It is observed that by removing the oxide layer from the faying surface of the lap joint, a high quality weld can be achieved in the laser welding process. However, the presence of an oxide layer deteriorates the quality of the weld by forming pores at the interface of the two overlapped sheets. The purpose of this paper is to identify the correlation between the integrity of the weld and the interaction between the laser and material. A spectroscopy sensor was applied to detect the spectra emitted from a plasma plume during the laser welding of AZ31B magnesium alloy in a zero-gap lap joint configuration. The electron temperature was calculated by applying a Boltzmann plot method based on the detected spectra, and the correlation between the pore formation and the spectral signals was studied. The laser molten pool and the keyhole condition were monitored in real-time by a high speed charge-coupled device (CCD) camera. A green laser was used as an illumination source in order to detect the influence of the oxide layer on the dynamic behavior of the molten pool. Results revealed that the detected spectrum and weld defects had a meaningful correlation for real-time monitoring of the weld quality during laser welding of magnesium alloys.

  8. Fluid Flow Characteristics and Porosity Behavior in Full Penetration Laser Welding of a Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Chang, Baohua; Allen, Chris; Blackburn, Jon; Hilton, Paul; Du, Dong

    2015-04-01

    In this paper, a computational fluid mechanics model is developed for full penetration laser welding of titanium alloy Ti6Al4V. This has been used to analyze possible porosity formation mechanisms, based on predictions of keyhole behavior and fluid flow characteristics in the weld pool. Numerical results show that when laser welding 3 mm thickness titanium alloy sheets with given laser beam focusing optics, keyhole depth oscillates before a full penetration keyhole is formed, but thereafter keyhole collapses are not predicted numerically. For lower power, lower speed welding, the fluid flow behind the keyhole is turbulent and unstable, and vortices are formed. Molten metal is predicted to flow away from the center plane of the weld pool, and leave a gap or void within the weld pool behind the keyhole. For higher power, higher speed welding, fluid flow is less turbulent, and such vortices are not formed. Corresponding experimental results show that porosity was absent in the melt runs made at higher power and higher welding speed. In contrast, large pores were present in melt runs made at lower power and lower welding speed. Based on the combination of experimental results and numerical predictions, it is proposed that porosity formation when keyhole laser welding may result from turbulent fluid flow behind the keyhole, with the larger the value of associated Reynolds number, the higher the possibility of porosity formation. For such fluid flow controlled porosities, measures to decrease Reynolds number of the fluid flow close to the keyhole could prove effective in reducing or avoiding porosity.

  9. Stefan problem for a finite liquid phase and its application to laser or electron beam welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasuya, T.; Shimoda, N.

    1997-10-01

    An exact solution of a heat conduction problem with the effect of latent heat of solidification (Stefan problem) is derived. The solution of the one dimensional Stefan problem for a finite liquid phase initially existing in a semi-infinite body is applied to evaluate temperature fields produced by laser or electron beam welding. The solution of the model has not been available before, as Carslaw and Jaeger [{ital Conduction of Heat in Solids}, 2nd ed. (Oxford University Press, New York, 1959)] pointed out. The heat conduction calculations are performed using thermal properties of carbon steel, and the comparison of the Stefanmore » problem with a simplified linear heat conduction model reveals that the solidification rate and cooling curve over 1273 K significantly depend on which model (Stefan or linear heat conduction problem) is applied, and that the type of the thermal model applied has little meaning for cooling curve below 1273 K. Since the heat conduction problems with a phase change arise in many important industrial fields, the solution derived in this study is ready to be used not only for welding but also for other industrial applications. {copyright} {ital 1997 American Institute of Physics.}« less

  10. On the determination of the origin of linear anomaly in the macrostructure of VPPA welded 2219-T87 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Jemian, W. A.

    1986-01-01

    The objective was to determine the cause and significance of the weld radiograph enigma, which is a linear anomaly in the features of the X-ray film. By observing features on available radiographs and in studying published reports of similar features it was possible to conclude that there are many manifestations of the enigma, and that they are all specific features of fine structure in radiographs due to natural processes connected with welding and to specific X-ray absorption and diffraction phenomena. These processes include the thermal distribution and liquid metal flow in welding, the development of microstructure, morpohology, second phase particles and porosity due to the solidification process and to the pattern of residual stresses after the weld metal has cooled to the ambient temperature. Microdensitometer traces were made across weld radiographs of standard and enigmatic types. Similar patterns were produced by computer simulation. These show that the enigma is a relatively low contrast feature compared to real weld defects, such as undercuts or centerline cracks. The enigma can be distinguished from weld defects by these microdensitometer traces. The enigma effect on weld properties is not known but is expected to be minor.

  11. On the determination of the origin of linear anomaly in the macrostructure of VPPA welded 2219-T87 aluminum alloy: Preliminary report

    NASA Technical Reports Server (NTRS)

    Jemian, W. A.

    1986-01-01

    The cause and significance of the weld radiograph enigma, which is a linear anomaly in the features of the X-ray film is examined. By observing features on available radiographs and in studying published reports of similar features, it was possible to conclude that there are many manifestations of the enigma, and that they are all specific features of fine structure in radiographs due to natural processes connected with welding and to specific X-ray absorption and diffraction phenomena. These processes include the thermal distribution and liquid metal flow in welding, the development of microstructure, morphology, second phase particles and porosity due to the solidification process, and to the pattern of residual stresses after the weld metal has cooled to the ambient temperature. Microdensitometer traces were made across weld radiographs of standard enigmatic types. Similar patterns were produced by computer simulation. These show that the enigma is a relatively low contrast feature compared to real weld defects, such as undercuts or centerline cracks. The enigma can be distinguished from weld defects by these microdensitometer traces. The enigma effect on weld properties is not known but is expected to be minor.

  12. Modeling of laser welding of steel and titanium plates with a composite insert

    NASA Astrophysics Data System (ADS)

    Isaev, V. I.; Cherepanov, A. N.; Shapeev, V. P.

    2017-10-01

    A 3D model of laser welding proposed before by the authors was extended to the case of welding of metallic plates made of dissimilar materials with a composite multilayer intermediate insert. The model simulates heat transfer in the welded plates and takes into account phase transitions. It was proposed to select the composition of several metals and dimensions of the insert to avoid the formation of brittle intermetallic phases in the weld joint negatively affecting its strength properties. The model accounts for key physical phenomena occurring during the complex process of laser welding. It is capable to calculate temperature regimes at each point of the plates. The model can be used to select the welding parameters reducing the risk of formation of intermetallic plates. It can forecast the dimensions and crystalline structure of the solidified melt. Based on the proposed model a numerical algorithm was constructed. Simulations were carried out for the welding of titanium and steel plates with a composite insert comprising four different metals: copper and niobium (intermediate plates) with steel and titanium (outer plates). The insert is produced by explosion welding. Temperature fields and the processes of melting, evaporation, and solidification were studied.

  13. The defects and microstructure in the fusion zone of multipass laser welded joints with Inconel 52M filler wire for nuclear power plants

    NASA Astrophysics Data System (ADS)

    Li, Gang; Lu, Xiaofeng; Zhu, Xiaolei; Huang, Jian; Liu, Luwei; Wu, Yixiong

    2017-09-01

    The defects and microstructure in the fusion zone of multipass laser welded joints with Inconel 52M filler wire are investigated for nuclear power plants. Experimental results indicate that the incomplete fusion forms as the deposited metals do not completely cover the groove during multipass laser welding. The dendritic morphologies are observed on the inner surface of the porosity in the fusion zone. Many small cellular are found in the zones near the fusion boundary. With solidification preceding, cellular gradually turn into columnar dendrites and symmetrical columnar dendrites are exhibited in the weld center of the fusion zone. The fine equiaxed grains form and columnar dendrites disappear in the remelted zone of two passes. The dendrite arm spacing in the fusion zone becomes widened with increasing welding heat input. Nb-rich carbides/carbonitrides are preferentially precipitated in the fusion zone of multipass laser welded joints. In respect to high cooling rate during multipass laser welding, element segregation could be insufficient to achieve the component of Laves phase.

  14. The Effect of Process Parameters and Tool Geometry on Thermal Field Development and Weld Formation in Friction Stir Welding of the Alloys AZ31 and AZ61

    NASA Astrophysics Data System (ADS)

    Zettler, R.; Blanco, A. C.; dos Santos, J. F.; Marya, S.

    An increase in the use of magnesium (Mg) in the car manufacturing industry has raised questions concerning its weldability. Friction Stir Welding (FSW) has the advantage of achieving metallic bonding below that of the melting point of the base material thus avoiding many of the metallurgical problems associated with the solidification process. The present study presents the results of a development program carried out to investigate the response of Mg alloys AZ31 and AZ61 to different FSW tool geometries and process parameters. Temperature development across the weld zone was monitored and the produced welds have been subjected to microstructural analysis and mechanical testing. Defect free welds have been produced with optimised FSW-tool and parameters. The micro structure of the welded joint resulted in similar ductility and hardness levels as compared to that of the base material. The results also demonstrated that tool geometry plays a fundamental role in the response of the investigated alloys to the FSW process.

  15. Study of the stability of electrode metal melting and transfer in the process of consumable electrode welding powered by supplies with differing dynamic characteristics

    NASA Astrophysics Data System (ADS)

    Saraev, Y. N.; Chinakhov, D. A.; Il'yashchenko, D. P.; Kiselev, A. S.; Gardiner, A. S.; Raev, I. V.

    2016-11-01

    In the paper we present the results of the study of the power supply characteristics effect upon the stability of electrode metal melting and transfer into the weld pool in the process of consumable electrode welding. It was shown that application of inverter type welding power supplies of the new generation results in changing the characteristics of the heat and mass transfer which has a decisive impact upon the heat content of the weld pool, reduction of residual stresses in the heat-affected zone (HAZ). The authors also substantiate the tendency to the reduction of the structural constituents in the area of the permanent joint.

  16. Numerical Simulations on the Laser Spot Welding of Zirconium Alloy Endplate for Nuclear Fuel Bundle Assembly

    NASA Astrophysics Data System (ADS)

    Satyanarayana, G.; Narayana, K. L.; Boggarapu, Nageswara Rao

    2018-03-01

    In the nuclear industry, a critical welding process is joining of an end plate to a fuel rod to form a fuel bundle. Literature on zirconium welding in such a critical operation is limited. A CFD model is developed and performed for the three-dimensional non-linear thermo-fluid analysis incorporating buoyancy and Marnangoni stress and specifying temperature dependent properties to predict weld geometry and temperature field in and around the melt pool of laser spot during welding of a zirconium alloy E110 endplate with a fuel rod. Using this method, it is possible to estimate the weld pool dimensions for the specified laser power and laser-on-time. The temperature profiles will estimate the HAZ and microstructure. The adequacy of generic nature of the model is validated with existing experimental data.

  17. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

  18. Variable-Polarity Plasma Arc Welding Of Alloy 2219

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.; Nunes, Arthur C., Jr.

    1989-01-01

    Report presents results of study of variable-polarity plasma arc (VPPA) welding of aluminum alloy 2219. Consists of two parts: Examination of effects of microsegregation and transient weld stress on macrosegregation in weld pool and, electrical characterization of straight- and reverse-polarity portions of arc cycle.

  19. Mechanical Properties and Microstructural Characterization of Aged Nickel-based Alloy 625 Weld Metal

    NASA Astrophysics Data System (ADS)

    Silva, Cleiton Carvalho; de Albuquerque, Victor Hugo C.; Miná, Emerson Mendonça; Moura, Elineudo P.; Tavares, João Manuel R. S.

    2018-03-01

    The aim of this work was to evaluate the different phases formed during solidification and after thermal aging of the as-welded 625 nickel-based alloy, as well as the influence of microstructural changes on the mechanical properties. The experiments addressed aging temperatures of 650 and 950 °C for 10, 100, and 200 hours. The samples were analyzed by electron microscopy, microanalysis, and X-ray diffraction in order to identify the secondary phases. Mechanical tests such as hardness, microhardness, and Charpy-V impact test were performed. Nondestructive ultrasonic inspection was also conducted to correlate the acquired signals with mechanical and microstructural properties. The results show that the alloy under study experienced microstructural changes when aged at 650 °C. The aging was responsible by the dissolution of the Laves phase formed during the solidification and the appearance of γ″ phase within interdendritic region and fine carbides along the solidification grain boundaries. However, when it was aged at 950 °C, the Laves phase was continuously dissolved and the excess Nb caused the precipitation of the δ-phase (Ni3Nb), which was intensified at 10 hours of aging, with subsequent dissolution for longer periods such as 200 hours. Even when subjected to significant microstructural changes, the mechanical properties, especially toughness, were not sensitive to the dissolution and/or precipitation of the secondary phases.

  20. An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in Space

    NASA Technical Reports Server (NTRS)

    Fragomeni, James M.; Nunes, Arthur C., Jr.

    1998-01-01

    The safety issue has been raised with regards to potential molten metal detachments from the weld pool and cold filler wire during electron beam welding in space. This investigation was undertaken to evaluate if molten metal could detach and come in contact with astronauts and burn through the fabric of the astronauts' Extravehicular Mobility Unit (EMU) during electron beam welding in space. Molten metal detachments from either the weld/cut substrate or weld wire could present harm to a astronaut if the detachment was to burn through the fabric of the EMU. Theoretical models were developed to predict the possibility and size of the molten metal detachment hazards during the electron beam welding exercises at Low Earth Orbit (LEO). The primary molten metal detachment concerns were those cases of molten metal separation from the metal surface due to metal cutting, weld pool splashing, entrainment and release of molten metal due to filler wire snap-out from the weld puddle, and molten metal accumulation and release from the end of the weld wire. Some possible ways of obtaining molten metal drop detachments would include an impulse force, or bump, to the weld sample, cut surface, or filler wire. Theoretical models were developed for these detachment concerns from principles of impact and kinetic energies, surface tension, drop geometry, surface energies, and particle dynamics. The surface tension represents the force opposing the liquid metal drop from detaching whereas the weight of the liquid metal droplet represents a force that is tending to detach the molten metal drop. Theoretical calculations have indicated that only a small amount of energy is required to detach a liquid metal drop; however, much of the energy of an impact is absorbed in the sample or weld plate before it reaches the metal drop on the cut edge or surface. The tendency for detachment is directly proportional to the weld pool radius and metal density and inversely proportional to the surface tension of the liquid metal. For a detachment the initial kinetic energy of the weld pool with respect to the plate has to exceed the energy to form the extra surface required for the detachment of the pool. The difficulty is in transferring the energy from the point of impact through the plate and sample to the cut edge. It is likely that not all of the kinetic energy is available for detaching the pool; some may be sequestered in weld pool oscillations. The coefficient of restitution for the collision will be lower than one if irreversible deformation, for example plastic flow deformation, takes place during the collision. Thus determining the amount of energy from an impact that actually reaches the molten metal droplet is critical. Various molten metal detachment scenarios were tested experimentally in an enclosed vacuum chamber using the Ukrainian Universal Hand Tool, an electron beam welder designed for space welding. The experimental testing was performed in a 4 ft. X 4 ft. vacuum chamber at Marshall Space Flight Center, evacuated to vacuum levels of at least 50 microTorr, and also some welding garment material was utilized to observe the effect of the molten metal detachments on the material. A "carillon" apparatus consisting of four pendulum hammer strikers, each weighing approximately 3.65 lbs, raised to predetermined specific heights was used to apply an impact force to the weld sample/plate during electron beam welding and cutting exercises. The strikers were released by switching on an electric motor to rotate a pin holding wires retaining the strikers at desired heights. The specimens were suspended so as to be free to respond to the blows with a sudden velocity increment. The specimens were mounted on a hinged plate for minimizing effective mass with the option to fasten it down so as to raise its effective mass closer to that anticipated for an actual space welding scenario. Measurements were made of the impact energy and the horizontal fling distances of the detached metal drops. It was not particularly easy to generate the detachments fo

  1. Effect of Post Weld Heat Treatment on Corrosion Behavior of AA2014 Aluminum – Copper Alloy Electron Beam Welds

    NASA Astrophysics Data System (ADS)

    Venkata Ramana, V. S. N.; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    The present work pertains to the study of corrosion behavior of aluminum alloy electron beam welds. The aluminium alloy used in the present study is copper containing AA2014 alloy. Electron Beam Welding (EBW) was used to weld the alloys in annealed (O) condition. Microstructural changes across the welds were recorded and the effect of post weld heat treatment (PWHT) in T4 (Solutionized and naturally aged) condition on pitting corrosion resistance was studied. A software based PAR basic electrochemical system was used for potentio-dynamic polarization tests. From the study it is observed that weld in O condition is prone to more liquation than that of PWHT condition. This may be attributed to re-melting and solidification of excess eutectic present in the O condition of the base metal. It was also observed that slightly higher hardness values are recorded in O condition than that of PWHT condition. The pitting corrosion resistance of the PMZ/HAZ in PWHT condition is better than that of O condition. This is attributed to copper segregation at the grain boundaries of PMZ in O condition.

  2. Investigation on the hot melting temperature field simulation of HDPE water supply pipeline in gymnasium pool

    NASA Astrophysics Data System (ADS)

    Cai, Zhiqiang; Dai, Hongbin; Fu, Xibin

    2018-06-01

    In view of the special needs of the water supply and drainage system of swimming pool in gymnasium, the correlation of high density polyethylene (HDPE) pipe and the temperature field distribution during welding was investigated. It showed that the temperature field distribution has significant influence on the quality of welding. Moreover, the mechanical properties of the welded joint were analyzed by the bending test of the weld joint, and the micro-structure of the welded joint was evaluated by scanning electron microscope (SEM). The one-dimensional unsteady heat transfer model of polyethylene pipe welding joints was established by MARC. The temperature field distribution during welding process was simulated, and the temperature field changes during welding were also detected and compared by the thermo-couple temperature automatic acquisition system. Results indicated that the temperature of the end surface of the pipe does not reach the maximum value, when it is at the end of welding heating. Instead, it reaches the maximum value at 300 sand latent heat occurs during the welding process. It concludes that the weld quality is the highest when the welding pressure is 0.2 MPa, and the heating temperature of HDPE heat fusion welding is in the range of 210 °C-230 °C.

  3. Advanced characterization techniques in understanding the roles of nickel in enhancing strength and toughness of submerged arc welding high strength low alloy steel multiple pass welds in the as-welded condition

    NASA Astrophysics Data System (ADS)

    Sham, Kin-Ling

    Striving for higher strength along with higher toughness is a constant goal in material properties. Even though nickel is known as an effective alloying element in improving the resistance of a steel to impact fracture, it is not fully understood how nickel enhances toughness. It was the goal of this work to assist and further the understanding of how nickel enhanced toughness and maintained strength in particular for high strength low alloy (HSLA) steel submerged arc welding multiple pass welds in the as-welded condition. Using advanced analytical techniques such as electron backscatter diffraction, x-ray diffraction, electron microprobe, differential scanning calorimetry, and thermodynamic modeling software, the effect of nickel was studied with nickel varying from one to five wt. pct. in increments of one wt. pct. in a specific HSLA steel submerged arc welding multiple pass weldment. The test matrix of five different nickel compositions in the as-welded and stress-relieved condition was to meet the targeted mechanical properties with a yield strength greater than or equal to 85 ksi, a ultimate tensile strength greater than or equal to 105 ksi, and a nil ductility temperature less than or equal to -140 degrees F. Mechanical testing demonstrated that nickel content of three wt. pct and greater in the as-welded condition fulfilled the targeted mechanical properties. Therefore, one, three, and five wt. pct. nickel in the as-welded condition was further studied to determine the effect of nickel on primary solidification mode, nickel solute segregation, dendrite thickness, phase transformation temperatures, effective ferrite grain size, dislocation density and strain, grain misorientation distribution, and precipitates. From one to five wt. pct nickel content in the as-welded condition, the primary solidification was shown to change from primary delta-ferrite to primary austenite. The nickel partitioning coefficient increased and dendrite/cellular thickness was refined. Austenite decomposition temperatures into different ferrite products were also suppressed to refine the effective ferrite grain size with increasing nickel. Finally, dislocation density and strain increased and a more preferred orientation behavior was observed. At five wt. pct nickel, a precipitate in the form of MnNi3 or FeNi3 was observed. Its presence in both inter and intragranular regions enhanced strength and toughness by limiting the ferrite grain size and precipitation strengthening.

  4. Keyhole and weld shapes for plasma arc welding under normal and zero gravity

    NASA Technical Reports Server (NTRS)

    Keanini, R. G.; Rubinsky, B.

    1990-01-01

    A first order study of the interfacial (keyhole) shape between a penetrating argon plasma arc jet and a stationary liquid metal weld pool is presented. The interface is determined using the Young-Laplace equation by assuming that the plasma jet behaves as a one-dimensional ideal gas flow and by neglecting flow within the weld pool. The solution for the keyhole shape allows an approximate determination of the liquid-solid metal phase boundary location based on the assumption that the liquid melt is a stagnant thermal boundary layer. Parametric studies examine the effect of plasma mass flow rate, initial plasma enthalpy, liquid metal surface tension, and jet shear on weldment shape under both normal and zero gravity. Among the more important findings of this study is that keyhole and weld geometries are minimally affected by gravity, suggesting that data gathered under gravity can be used in planning in-space welding.

  5. Characterization of weld imperfections in 2195 Al-Li alloy: Experimental approaches towards mechanisms

    NASA Astrophysics Data System (ADS)

    Zaidi, Anwer Arif

    1997-10-01

    2195 Al-Li alloy apparently offers significantly higher strength to weight ratio than the 2219 aluminum alloy. It was discovered that 2195 Al-Li has a greater tendency to crack, generates peculiar kind of porosity, and is vulnerable to deleterious microparticulate emission during welding than its 2219 predecessor. An experimental investigation has been carried to characterize these weld imperfections in 2195 Al-Li alloy. This work presents a scientific account of an analytical study and of the clues it has provided towards an understanding of the weld imperfections in 2195 Al-Li welds. The study begins with the observation of peculiar pore formation in 2195 welds, which occurs not as in the case of 2219 welds upon solidification, but in a thermal ageing process subsequent to solidification. An apparent reaction (DTA) between the fusion zone dendritic surface and nitrogen gas implies a porous fusion zone. Tiny surface melting sites, designated as Blisters, due to its resemblance to skin blisters, testify to the conjunction of outgassing and melting effects and suggest that porosity formation in the solid phase depends upon local melting as well as outgassing. The absence of a dark magnesium rich substance, designated as smut in the immediate vicinity of a crack opening next to a weld repair bead implies either an umbrella of gas emission keeping off a condensate evaporated under the welding arc or, possibly an expulsion of atomized, liquified metal from the crack itself in the form of microparticulate emission. These microparticulate emission from VPPA welds takes various forms herein labeled as smut, snow, and Lava. It is attributed to a gas generating reaction taking place at molten grain boundaries or crack surfaces. The reaction could only be release of hydrogen displaced from lithium hydrides by a coming influx of dissolved nitrogen. There appears to be a close link between porosity, cracking and microparticulate emission. Observations of melting on the surface of repair and E-stop cracks suggest interdendritic melting as the main factor responsible for cracking during welding. Heating in nitrogen reveals a weight loss (TGA) characteristic of an outgassing process before the weight gain thought to be associated with a nitrogen reaction takes over; hence the outgassing process, whatever it is, is thought to be independent of the nitrogen reaction. If the nitrogen contribution to porosity generation is then assigned to the promotion of local melting, the fusion zone fracture of laser weld beads subject to residual stress and heated under nitrogen atmosphere, but not under vacuum nor helium, is explicable. If this has been accomplished, cracking during welding is understood, and control procedures should be implicit in the understanding. (Abstract shortened by UMI.)

  6. Effect of carbon black on temperature field and weld profile during laser transmission welding of polymers: A FEM study

    NASA Astrophysics Data System (ADS)

    Acherjee, Bappa; Kuar, Arunanshu S.; Mitra, Souren; Misra, Dipten

    2012-04-01

    The influence of the carbon black on temperature distribution and weld profile, during laser transmission welding of polymers, is investigated in the present research work. A transient numerical model, based on conduction mode heat transfer, is developed to analyze the process. The heat input to the model is considered to be the volumetric Gaussian heat source. The computation of temperature field during welding is carried out for polycarbonates having different proportion of carbon black in polymer matrix. The temperature dependent material properties of polycarbonate are taken into account for modeling. The finite element code ANSYS ® is employed to obtain the numerical results. The numerically computed results of weld pool dimensions are compared with the experimental results. The comparison shows a fair agreement between them, which gives confidence to use the developed model for intended investigation with acceptable accuracy. The results obtained have revealed that the carbon black has considerable influence on the temperature field distribution and the formation of the weld pool geometry.

  7. Modelling of fluid flow phenomenon in laser+GMAW hybrid welding of aluminum alloy considering three phase coupling and arc plasma shear stress

    NASA Astrophysics Data System (ADS)

    Xu, Guoxiang; Li, Pengfei; Cao, Qingnan; Hu, Qingxian; Gu, Xiaoyan; Du, Baoshuai

    2018-03-01

    The present study aims to develop a unified three dimensional numerical model for fiber laser+GMAW hybrid welding, which is used to study the fluid flow phenomena in hybrid welding of aluminum alloy and the influence of laser power on weld pool dynamic behavior. This model takes into account the coupling of gas, liquid and metal phases. Laser heat input is described using a cone heat source model with changing peak power density, its height being determined based on the keyhole size. Arc heat input is modeled as a double ellipsoid heat source. The arc plasma flow and droplet transfer are simulated through the two simplified models. The temperature and velocity fields for different laser powers are calculated. The computed results are in general agreement with the experimental data. Both the peak and average values of fluid flow velocity during hybrid welding are much higher than those of GMAW. At a low level of laser power, both the arc force and droplet impingement force play a relatively large role on fluid flow in the hybrid welding. Keyhole depth always oscillates within a range. With an increase in laser power, the weld pool behavior becomes more complex. An anti-clockwise vortex is generated and the stability of keyhole depth is improved. Besides, the effects of laser power on different driving forces of fluid flow in weld pool are also discussed.

  8. Laser Beam Welding of Nitride Steel Components

    NASA Astrophysics Data System (ADS)

    Gu, Hongping; Yin, Guobin; Shulkin, Boris

    Laser beam welding is a joining technique that has many advantages over conventional GMAW welding, such as low heat input, short cycle time as well as good cosmetic welds. Laser beam welding has been widely used for welding powertrain components in automotive industry. When welding nitride steel components, however, laser beam welding faces a great challenge. The difficulty lies in the fact that the nitride layer in the joint releases the nitrogen into the weld pool, resulting in a porous weld. This research presents an industrial ready solution to prevent the nitrogen from forming gas bubbles in the weld.

  9. Characterization the microstructure of pulsed Nd:YAG welding method in low frequencies; correlation with tensile and fracture behavior in laser-welded nitinol joints

    NASA Astrophysics Data System (ADS)

    Shojaei Zoeram, Ali; Rahmani, Aida; Asghar Akbari Mousavi, Seyed Ali

    2017-05-01

    The precise controllability of heat input in pulsed Nd:YAG welding method provided by two additional parameters, frequency and pulse duration, has made this method very promising for welding of alloys sensitive to heat input. The poor weldability of Ti-rich nitinol as a result of the formation of Ti2Ni IMC has deprived us of the unique properties of this alloy. In this study, to intensify solidification rate during welding of Ti-rich nitinol, pulsed Nd:YAG laser beam in low frequency was employed in addition to the employment of a copper substrate. Specific microstructure produced in this condition was characterized and the effects of this microstructure on tensile and fracture behavior of samples welded by two different procedures, full penetration and double-sided method with halved penetration depth for each side were investigated. The investigations revealed although the combination of low frequencies, the use of a high thermal conductor substrate and double-sided method eliminated intergranular fracture and increased tensile strength, the particular microstructure, built in the pulsed welding method in low frequencies, results to the formation of the longitudinal cracks during the first stages of tensile test at weld centerline. This degrades tensile strength of welded samples compared to base metal. The results showed samples welded in double-sided method performed much better than samples welded in full penetration mode.

  10. Surface preparation effects on GTA (gas tungsten arc) weld penetration in JBK-75 stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, R.D.; Heiple, C.R.; Sturgill, P.L.

    1989-01-01

    The results of a study are reported here on the effects of surface preparation on the shape of GTA welds on JBK-75, an austenitic precipitation hardenable stainless steel similar to A286. Minor changes in surface (weld groove) preparation produced substantial changes in the penetration characteristics and welding behavior of this alloy. Increased and more consistent weld penetration (higher d/w ratios) along with improved arc stability and less arc wander result from wire brushing and other abrasive surface preparations, although chemical and machining methods did not produce any improvement in penetration. Abrasive treatments roughen the surface, increase the surface area, andmore » increase the surface oxide thickness. The increased weld d/w ratio is attributed to oxygen added to the weld pool from the surface oxide on the base metal. The added oxygen alters the surface-tension driven fluid flow pattern in the weld pool. Similar results were observed with changes in filler wire surface oxide thickness, caused by changes in wire production conditions. 15 refs., 14 figs., 4 tabs.« less

  11. Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam

    NASA Astrophysics Data System (ADS)

    Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish

    2017-09-01

    In the present work, AISI 304 stainless steel sheets are laser welded in butt joint configuration using a robotic control 600 W pulsed Nd:YAG laser system. The objective of the work is of twofold. Firstly, the study aims to find out the effect of incident angle on the weld pool geometry, microstructure and tensile property of the welded joints. Secondly, a set of experiments are conducted, according to response surface design, to investigate the effects of process parameters, namely, incident angle of laser beam, laser power and welding speed, on ultimate tensile strength by developing a second order polynomial equation. Study with three different incident angle of laser beam 89.7 deg, 85.5 deg and 83 deg has been presented in this work. It is observed that the weld pool geometry has been significantly altered with the deviation in incident angle. The weld pool shape at the top surface has been altered from semispherical or nearly spherical shape to tear drop shape with decrease in incident angle. Simultaneously, planer, fine columnar dendritic and coarse columnar dendritic structures have been observed at 89.7 deg, 85.5 deg and 83 deg incident angle respectively. Weld metals with 85.5 deg incident angle has higher fraction of carbide and δ-ferrite precipitation in the austenitic matrix compared to other weld conditions. Hence, weld metal of 85.5 deg incident angle achieved higher micro-hardness of ∼280 HV and tensile strength of 579.26 MPa followed by 89.7 deg and 83 deg incident angle welds. Furthermore, the predicted maximum value of ultimate tensile strength of 580.50 MPa has been achieved for 85.95 deg incident angle using the developed equation where other two optimum parameter settings have been obtained as laser power of 455.52 W and welding speed of 4.95 mm/s. This observation has been satisfactorily validated by three confirmatory tests.

  12. Characterization of Mg/Al butt joints welded by gas tungsten arc filling with Zn–29.5Al–0.5Ti filler metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fei; Wang, Hongyang; Liu, Liming, E-mail: liulm@dlut.edu.cn

    2014-04-01

    The multivariate alloying design of a welding joint is used in the Mg to Al welding process. A Zn–29.5Al–0.5Ti alloy is added as filler metal in gas tungsten arc welding of Mg and Al alloy joint based on the analysis of Al and Mg alloy characteristics. The tensile strength, microstructure, and phase constitution of the weld seam are analyzed. The formation of brittle and hard Mg–Al intermetallic compounds is avoided because of the effects of Zn, Al, and Ti. The average tensile strength of the joint is 148 MPa. Al{sub 3}Ti is first precipitated and functions as the nucleus ofmore » heterogeneous nucleation during solidification. Moreover, the precipitated Al–MgZn{sub 2} hypoeutectic phase exhibited a feather-like structure, which enhances the property of the Mg–Al dissimilar joint. - Highlights: • Mg alloy AZ31B and Al alloy 6061 are butt welded by fusion welding. • The effect of Ti in filler metal is investigated. • The formation of Mg–Al intermetallic compounds is avoided.« less

  13. Physical Metallurgy, Weldability, and in-Service Performance of Nickel-Chromium Filler Metals Used in Nuclear Power Systems

    NASA Astrophysics Data System (ADS)

    Young, George A.; Etien, Robert A.; Hackett, Micah J.; Tucker, Julie D.; Capobianco, Thomas E.

    Wrought Alloy 690 is well established for corrosion resistant nuclear applications but development continues to improve the weldability of a filler metal that retains the corrosion resistance and phase stability of the base metal. High alloy Ni-Cr filler metals are prone to several types of welding defects and new alloys are emerging for commercial use. This paper uses experimental and computational methods to illustrate key differences among welding consumables. Results show that solidification segregation is critical to understanding the weldability and environmentally-assisted cracking resistance of these alloys. Primary water stress corrosion cracking tests show a marked decrease in crack growth rates near 21 wt. % Cr at the grain boundary. While filler metals with 21-29 wt.% grain boundary Cr show similar PWSCC resistance, the higher alloyed grades are more prone to solidification cracking. Modeling and aging studies indicate that in some filler metals minor phase formation (e.g., Laves and σ) and long range order (LRO) must be assessed to ensure adequate weldability and inservice performance.

  14. The effect of the welding direction on the plasma and metal transfer behavior of CO2 laser+GMAW-P hybrid welding processes

    NASA Astrophysics Data System (ADS)

    Zhang, Wang; Hua, Xueming; Liao, Wei; Li, Fang; Wang, Min

    2014-07-01

    During laser-arc hybrid welding, the welding direction exerts direct effects on the plasma properties, the transient behavior of the droplet, the weld pool behavior, and the temperature field. Ultimately, it will affect the welding process and the weld quality. However, the behavior of the CO2 laser+GMAW-P hybrid welding process has not been systematically studied. In this paper, the current-voltage characteristics of different welding processes were analyzed and compared. The dynamics of the droplet transfer, the plasma behavior, and the weld pool behavior were observed by using two high-speed camera systems. Moreover, an optical emission spectroscopy was applied to analyze the plasma temperature and the electron number density. The results indicated that the electrical resistance of the arc plasma reduced in the laser leading mode. For the same pulse duration, the metal transfer mode was the spray type with the laser leading arrangement. The temperature and electron density distribution showed bimodal behavior in the case of arc leading mode, while this phenomenon does not exist in the caser of laser leading mode. The double elliptic-planar distribution which conventional simulation process used was not applicable in the laser leading mode.

  15. Surface preparation effects on GTA weld shape in JBK-75 stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, R.D.; Robertson, A.M.; Heiple, C.R.

    1993-02-01

    The results of a study are reported here on the effects of surface preparation on the shape of autogenous gas tungsten arc (GTA) welds in JBK-75, an austenitic precipitation hardenable stainless steel similar to A286. Minor changes in surface preparation produced substantial changes in the fusion zone shape and welding behavior of this alloy. Increased and more consistent depth of fusion (higher d/w ratios) along with improved arc stability and less arc wander resulted from wire brushing and other abrasive surface preparations, although chemical and machining methods did not produce any increase in depth of fusion. Abrasive treatments roughen themore » surface, increase the surface area, increase the surface oxide thickness, and entrap oxide. The increased weld d/w ratio is attributed to oxygen added to the weld pool from the surface oxide on the base metal. The added oxygen alters the surface-tension-driven fluid flow pattern in the weld pool. Increased depth of fusion in wire-fed U-groove weld joints also resulted when welding wire with a greater surface oxide thickness was used. Increasing the amount of wire brushing produced even deeper welds. However, a maximum in depth of fusion was observed with further wire brushing, beyond which weld fusion depth decreased.« less

  16. Modern fiber laser beam welding of the newly-designed precipitation-strengthened nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Naffakh Moosavy, Homam; Aboutalebi, Mohammad-Reza; Seyedein, Seyed Hossein; Goodarzi, Massoud; Khodabakhshi, Meisam; Mapelli, Carlo; Barella, Silvia

    2014-04-01

    In the present research, the modern fiber laser beam welding of newly-designed precipitation-strengthened nickel-base superalloys using various welding parameters in constant heat input has been investigated. Five nickel-base superalloys with various Ti and Nb contents were designed and produced by Vacuum Induction Melting furnace. The fiber laser beam welding operations were performed in constant heat input (100 J mm-2) and different welding powers (400 and 1000 W) and velocities (40 and 100 mm s-1) using 6-axis anthropomorphic robot. The macro- and micro-structural features, weld defects, chemical composition and mechanical property of 3.2 mm weldments were assessed utilizing optical and scanning electron microscopes equipped with EDS analysis and microhardness tester. The results showed that welding with higher powers can create higher penetration-to-width ratios. The porosity formation was increased when the welding powers and velocities were increased. None of the welds displayed hot solidification and liquation cracks in 400 and 1000 W welding powers, but liquation phenomenon was observed in all the heat-affected zones. With increasing the Nb content of the superalloys the liquation length was increased. The changing of the welding power and velocity did not alter the hardness property of the welds. The hardness of welds decreased when the Ti content declined in the composition of superalloys. Finally, the 400 and 1000 W fiber laser powers with velocity of 40 and 100 m ms-1 have been offered for hot crack-free welding of the thin sheet of newly-designed precipitation-strengthened nickel-base superalloys.

  17. Surface temperature distribution of GTA weld pools on thin-plate 304 stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacharia, T.; David, S.A.; Vitek, J.M.

    1995-11-01

    A transient multidimensional computational model was utilized to study gas tungsten arc (GTA) welding of thin-plate 304 stainless steel (SS). The model eliminates several of the earlier restrictive assumptions including temperature-independent thermal-physical properties. Consequently, all important thermal-physical properties were considered as temperature dependent throughout the range of temperatures experienced by the weld metal. The computational model was used to predict surface temperature distribution of the GTA weld pools in 1.5-mm-thick AISI 304 SS. The welding parameters were chosen so as to correspond with an earlier experimental study that produced high-resolution surface temperature maps. One of the motivations of the presentmore » study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate excellent agreement, thereby verifying the model.« less

  18. Numerical Simulation of Stationary AC Tungsten Inert Gas Welding of Aluminum Plate in Consideration of Oxide Layer Cleaning

    NASA Astrophysics Data System (ADS)

    Tashiro, Shinichi; Tanaka, Manabu

    An unified numerical simulation model of AC TIG welding of the aluminum plate considering energy balance among the electrode, the arc and the base metal and employing an analytical model for calculating cleaning rate of the oxide layer has been developed for investigating heat transport properties and weld pool formation process in AC TIG welding of aluminum plate. As a result of this simulation, it was shown that although the heat flux from the arc onto the base metal increases in EN (Electrode Negative) phase due to the electron condensation, that in EP (Electrode Positive) phase conversely decreases because mainly of cooling caused by the electron emission. Furthermore, the validity of the simulation model was confirmed by comparing to experimental results such as the arc voltage, the area of cleaning zone and the shape of weld pool.

  19. A hot-cracking mitigation technique for welding high-strength aluminum alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y.P.; Dong, P.; Zhang, J.

    2000-01-01

    A hot-cracking mitigation technique for gas tungsten arc welding (GTAW) of high-strength aluminum alloy 2024 is presented. The proposed welding technique incorporates a trailing heat sink (an intense cooling source) with respect to the welding torch. The development of the mitigation technique was based on both detailed welding process simulation using advanced finite element techniques and systematic laboratory experiments. The finite element methods were used to investigate the detailed thermomechanical behavior of the weld metal that undergoes the brittle temperature range (BTR) during welding. As expected, a tensile deformation zone within the material BTR region was identified behind the weldmore » pool under conventional GTA welding process conventional GTA welding process conditions for the aluminum alloy studied. To mitigate hot cracking, the tensile zone behind the weld pool must be eliminated or reduce to a satisfactory level if the weld metal hot ductility cannot be further improved. With detailed computational modeling, it was found that by the introduction of a trailing heat sink at some distance behind the welding arc, the tensile strain rate with respect to temperature in the zone encompassing the BTR region can be significantly reduced. A series of parametric studies were also conducted to derive optimal process parameters for the trailing heat sink. The experimental results confirmed the effectiveness of the trailing heat sink technique. With a proper implementation of the trailing heat sink method, hot cracking can be completely eliminated in welding aluminum alloy 2024 (AA 2024).« less

  20. Metal transfer and V-I transients in GMAW of aluminium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, S.; Rao, U.R.K.; Aghakhani, M.

    1996-12-31

    The mode of metal transfer in arc welding significantly affects the positional weldability; particularly the overhead welding, the chemical composition and properties of weld metal, metallurgy of weld metal, weld pool stability, arc stability, spatter losses, and weld bead geometry. The mode of metal transfer is affected mainly by the type of the arc, welding current, electrode polarity, arc voltage, contact tube to plate distance (CTPD)/Stand-off, type and flow rate of the shielding gas, torch angle and alloying elements in GMAW of aluminium and its alloys.

  1. Real-time monitoring of the laser hot-wire welding process

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Liu, Shuang; Ma, Junjie; Kovacevic, Radovan

    2014-04-01

    The laser hot-wire welding process was investigated in this work. The dynamics of the molten pool during welding was visualized by using a high-speed charge-coupled device (CCD) camera assisted by a green laser as an illumination source. It was found that the molten pool is formed by the irradiation of the laser beam on the filler wire. The effect of the hot-wire voltage on the stability of the welding process was monitored by using a spectrometer that captured the emission spectrum of the laser-induced plasma plume. The spectroscopic study showed that when the hot-wire voltage is above 9 V a great deal of spatters occur, resulting in the instability of the plasma plume and the welding process. The effect of spatters on the plasma plume was shown by the identified spectral lines of the element Mn I. The correlation between the Fe I electron temperature and the weld-bead shape was studied. It was noted that the electron temperature of the plasma plume can be used to real-time monitor the variation of the weld-bead features and the formation of the weld defects.

  2. Laser Welding in Space

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kaukler, William F.

    1989-01-01

    Solidification type welding process experiments in conditions of microgravity were performed. The role of convection in such phenomena was examined and convective effects in the small volumes obtained in the laser weld zone were observed. Heat transfer within the weld was affected by acceleration level as indicated by the resulting microstructure changes in low gravity. All experiments were performed such that both high and low gravity welds occurred along the same weld beam, allowing the effects of gravity alone to be examined. Results indicate that laser welding in a space environment is feasible and can be safely performed IVA or EVA. Development of the hardware to perform the experiment in a Hitchhiker-g platform is recomended as the next step. This experiment provides NASA with a capable technology for welding needs in space. The resources required to perform this experiment aboard a Shuttle Hitchhiker-pallet are assessed. Over the four year period 1991 to 1994, it is recommended that the task will require 13.6 manyears and $914,900. In addition to demonstrating the technology and ferreting out the problems encountered, it is suggested that NASA will also have a useful laser materials processing facility for working with both the scientific and the engineering aspects of materials processing in space. Several concepts are also included for long-term optimization of available solar power through solar pumping solid state lasers directly for welding power.

  3. Structural and mechanical properties of welded joints of reduced activation martensitic steels

    NASA Astrophysics Data System (ADS)

    Filacchioni, G.; Montanari, R.; Tata, M. E.; Pilloni, L.

    2002-12-01

    Gas tungsten arc welding and electron beam welding methods were used to realise welding pools on plates of reduced activation martensitic steels. Structural and mechanical features of these simulated joints have been investigated in as-welded and post-welding heat-treated conditions. The research allowed to assess how each welding technique affects the original mechanical properties of materials and to find suitable post-welding heat treatments. This paper reports results from experimental activities on BATMAN II and F82H mod. steels carried out in the frame of the European Blanket Project - Structural Materials Program.

  4. Laser welding in space

    NASA Technical Reports Server (NTRS)

    Kaukler, W. F.; Workman, G. L.

    1991-01-01

    Autogenous welds in 304 stainless steel were performed by Nd-YAG laser heating in a simulated space environment. Simulation consists of welding on the NASA KC-135 aircraft to produce the microgravity and by containing the specimen in a vacuum chamber. Experimental results show that the microgravity welds are stronger, harder in the fusion zone, have deeper penetration and have a rougher surface rippling of the weld pool than one-g welds. To perform laser welding in space, a solar-pumped laser concept that significantly increases the laser conversion efficiency and makes welding viable despite the limited power availability of spacecraft is proposed.

  5. Ultrasonic Processing of Materials

    NASA Astrophysics Data System (ADS)

    Han, Qingyou

    2015-08-01

    Irradiation of high-energy ultrasonic vibration in metals and alloys generates oscillating strain and stress fields in solids, and introduces nonlinear effects such as cavitation, acoustic streaming, and radiation pressure in molten materials. These nonlinear effects can be utilized to assist conventional material processing processes. This article describes recent research at Oak Ridge National Labs and Purdue University on using high-intensity ultrasonic vibrations for degassing molten aluminum, processing particulate-reinforced metal matrix composites, refining metals and alloys during solidification process and welding, and producing bulk nanostructures in solid metals and alloys. Research results suggest that high-intensity ultrasonic vibration is capable of degassing and dispersing small particles in molten alloys, reducing grain size during alloy solidification, and inducing nanostructures in solid metals.

  6. Advances in ultrasonic testing of austenitic stainless steel welds. Towards a 3D description of the material including attenuation and optimisation by inversion

    NASA Astrophysics Data System (ADS)

    Moysan, J.; Gueudré, C.; Ploix, M.-A.; Corneloup, G.; Guy, Ph.; Guerjouma, R. El; Chassignole, B.

    In the case of multi-pass welds, the material is very difficult to describe due to its anisotropic and heterogeneous properties. Anisotropy results from the metal solidification and is correlated with the grain orientation. A precise description of the material is one of the key points to obtain reliable results with wave propagation codes. A first advance is the model MINA which predicts the grain orientations in multi-pass 316-L steel welds. For flat position welding, good predictions of the grains orientations were obtained using 2D modelling. In case of welding in position the resulting grain structure may be 3D oriented. We indicate how the MINA model can be improved for 3D description. A second advance is a good quantification of the attenuation. Precise measurements are obtained using plane waves angular spectrum method together with the computation of the transmission coefficients for triclinic material. With these two first advances, the third one is now possible: developing an inverse method to obtain the material description through ultrasonic measurements at different positions.

  7. M551 metals melting experiment. [space manufacturing of aluminum alloys, tantalum alloys, stainless steels

    NASA Technical Reports Server (NTRS)

    Li, C. H.; Busch, G.; Creter, C.

    1976-01-01

    The Metals Melting Skylab Experiment consisted of selectively melting, in sequence, three rotating discs made of aluminum alloy, stainless steel, and tantalum alloy. For comparison, three other discs of the same three materials were similarly melted or welded on the ground. The power source of the melting was an electron beam unit. Results are presented which support the concept that the major difference between ground base and Skylab samples (i.e., large elongated grains in ground base samples versus nearly equiaxed and equal sized grains in Skylab samples) can be explained on the basis of constitutional supercooling, and not on the basis of surface phenomena. Microstructural observations on the weld samples and present explanations for some of these observations are examined. In particular, ripples and their implications to weld solidification were studied. Evidence of pronounced copper segregation in the Skylab A1 weld samples, and the tantalum samples studied, indicates a weld microhardness (and hence strength) that is uniformly higher than the ground base results, which is in agreement with previous predictions. Photographs are shown of the microstructure of the various alloys.

  8. Research on the Effect of Welding Speed on the Quality of Welding Seam Based on the Local Dry Underwater Welding

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Chen, Wu; Wang, Huagang; Ba, Jinyu; Li, Bing

    2017-12-01

    The repair of nuclear spent fuel pool has a high requirement for the quality of welding, the welding speed directly affects the quality of the weld when local dry automatic underwater welding is used to repair the damaged surface. Under the condition of the same condition, the local dry automatic underwater welding test was carried out under the condition of the same welding condition. Taking the 20cm as the experimental condition, after massive experiments show that when the welding speed is approximately 48cm/min the weld quality is high, meeting the design requirements, based on the double layer shrinkage nozzle chamber of local dry underwater automatic welding.

  9. Influence of heat input in electron beam process on microstructure and properties of duplex stainless steel welded interface

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Lv, Xiaoqing; Zhang, Jianyang

    2018-03-01

    The influence of heat input in electron beam (EB) process on microstructure, mechanical properties, and pitting corrosion resistance of duplex stainless steel (DSS) welded interface was investigated. The rapid cooling in EB welding resulted in insufficient austenite formation. The austenite mainly consisted of grain boundary austenite and intragranular austenite, and there was abundant Cr2N precipitation in the ferrite. The Ni, Mo, and Si segregation indicated that the dendritic solidification was primarily ferrite in the weld. The weld exhibited higher hardness, lower toughness, and poorer pitting corrosion resistance than the base metal. The impact fractures of the welds were dominated by the transgranular cleavage failure of the ferrite. The ferrite was selectively attacked because of its lower pitting resistance equivalent number than that of austenite. The Cr2N precipitation accelerated the pitting corrosion. In summary, the optimised heat input slightly increased the austenite content, reduced the segregation degree and ferrite texture intensity, decreased the hardness, and improved the toughness and pitting corrosion resistance. However, the effects were limited. Furthermore, optimising the heat input could not suppress the Cr2N precipitation. Taking into full consideration the microstructure and properties, a heat input of 0.46 kJ/mm is recommended for the EB welding of DSS.

  10. Annual report, FY 1979 Spent fuel and fuel pool component integrity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, A.B. Jr.; Bailey, W.J.; Schreiber, R.E.

    International meetings under the BEFAST program and under INFCE Working Group No. 6 during 1978 and 1979 continue to indicate that no cases of fuel cladding degradation have developed on pool-stored fuel from water reactors. A section from a spent fuel rack stand, exposed for 1.5 y in the Yankee Rowe (PWR) pool had 0.001- to 0.003-in.-deep (25- to 75-..mu..m) intergranular corrosion in weld heat-affected zones but no evidence of stress corrosion cracking. A section of a 304 stainless steel spent fuel storage rack exposed 6.67 y in the Point Beach reactor (PWR) spent fuel pool showed no significant corrosion.more » A section of 304 stainless steel 8-in.-dia pipe from the Three Mile Island No. 1 (PWR) spent fuel pool heat exchanger plumbing developed a through-wall crack. The crack was intergranular, initiating from the inside surface in a weld heat-affected zone. The zone where the crack occurred was severely sensitized during field welding. The Kraftwerk Union (Erlangen, GFR) disassembled a stainless-steel fuel-handling machine that operated for 12 y in a PWR (boric acid) spent fuel pool. There was no evidence of deterioration, and the fuel-handling machine was reassembled for further use. A spent fuel pool at a Swedish PWR was decontaminated. The procedure is outlined in this report.« less

  11. On the primary spacing and microsegregation of cellular dendrites in laser deposited Ni-Nb alloys

    NASA Astrophysics Data System (ADS)

    Ghosh, Supriyo; Ma, Li; Ofori-Opoku, Nana; Guyer, Jonathan E.

    2017-09-01

    In this study, an alloy phase-field model is used to simulate solidification microstructures at different locations within a solidified molten pool. The temperature gradient G and the solidification velocity V are obtained from a macroscopic heat transfer finite element simulation and provided as input to the phase-field model. The effects of laser beam speed and the location within the melt pool on the primary arm spacing and on the extent of Nb partitioning at the cell tips are investigated. Simulated steady-state primary spacings are compared with power law and geometrical models. Cell tip compositions are compared to a dendrite growth model. The extent of non-equilibrium interface partitioning of the phase-field model is investigated. Although the phase-field model has an anti-trapping solute flux term meant to maintain local interface equilibrium, we have found that during simulations it was insufficient at maintaining equilibrium. This is due to the fact that the additive manufacturing solidification conditions fall well outside the allowed limits of this flux term.

  12. Microstructural Response of Directionally Solidified René 80 Superalloy to Gas-Tungsten Arc Welding

    NASA Astrophysics Data System (ADS)

    Sidhu, R. K.; Ojo, O. A.; Chaturvedi, M. C.

    2009-01-01

    The microstructural response of directionally solidified René 80 (DS René 80) superalloy to gas-tungsten-arc (GTA) welding was investigated. Rapid heating during welding resulted in a significant grain-boundary liquation of solid-state reaction product γ' precipitates, intergranular elemental segregation induced M5B3 borides, and secondary solidification constituents MC carbides and sulfocarbides, which were all present in the preweld heat-treated alloy. Liquation of these particles embrittled the grain boundaries in the heat-affected zone (HAZ) and caused microfissuring along the liquated grain boundaries. Nevertheless, contrary to the generally observed increase in HAZ cracking in superalloys with an increase in Ti and Al concentration, due to increase in the alloy’s hardness, significantly reduced cracking was observed in DS René 80 compared to the conventionally cast IN738 welded under the same conditions, despite its hardness being higher than that of IN738. This was related to the nature of base-metal grain- boundary intersections at the fusion-zone boundary in these materials.

  13. ICALEO '91 - Laser materials processing; Proceedings of the Meeting, San Jose, CA, Nov. 3-8, 1991

    NASA Astrophysics Data System (ADS)

    Metzbower, Edward A.; Beyer, Eckhard; Matsunawa, Akira

    Consideration is given to new developments in LASERCAV technology, modeling of deep penetration laser welding, the theory of radiative transfer in the plasma of the keyhole in penetration laser welding, a synchronized laser-video camera system study of high power laser material interactions, laser process monitoring with dual wavelength optical sensors, new devices for on-line process diagnostics during laser machining, and the process development for a portable Nd:YAG laser materials processing system. Attention is also given to laser welding of alumina-reinforced 6061 aluminum alloy composite, the new trend of laser materials processing, optimization of the laser cutting process for thin section stainless steels, a new nozzle concept for cutting with high power lasers, rapid solidification effects during laser welding, laser surface modification of a low carbon steel with tungsten carbide and carbon, absorptivity of a polarized beam during laser hardening, and laser surface melting of 440 C tool steel. (No individual items are abstracted in this volume)

  14. Application of Finite Element, Phase-field, and CALPHAD-based Methods to Additive Manufacturing of Ni-based Superalloys.

    PubMed

    Keller, Trevor; Lindwall, Greta; Ghosh, Supriyo; Ma, Li; Lane, Brandon M; Zhang, Fan; Kattner, Ursula R; Lass, Eric A; Heigel, Jarred C; Idell, Yaakov; Williams, Maureen E; Allen, Andrew J; Guyer, Jonathan E; Levine, Lyle E

    2017-10-15

    Numerical simulations are used in this work to investigate aspects of microstructure and microseg-regation during rapid solidification of a Ni-based superalloy in a laser powder bed fusion additive manufacturing process. Thermal modeling by finite element analysis simulates the laser melt pool, with surface temperatures in agreement with in situ thermographic measurements on Inconel 625. Geometric and thermal features of the simulated melt pools are extracted and used in subsequent mesoscale simulations. Solidification in the melt pool is simulated on two length scales. For the multicomponent alloy Inconel 625, microsegregation between dendrite arms is calculated using the Scheil-Gulliver solidification model and DICTRA software. Phase-field simulations, using Ni-Nb as a binary analogue to Inconel 625, produced microstructures with primary cellular/dendritic arm spacings in agreement with measured spacings in experimentally observed microstructures and a lesser extent of microsegregation than predicted by DICTRA simulations. The composition profiles are used to compare thermodynamic driving forces for nucleation against experimentally observed precipitates identified by electron and X-ray diffraction analyses. Our analysis lists the precipitates that may form from FCC phase of enriched interdendritic compositions and compares these against experimentally observed phases from 1 h heat treatments at two temperatures: stress relief at 1143 K (870 °C) or homogenization at 1423 K (1150 °C).

  15. Large Eddy Simulation of Transient Flow, Solidification, and Particle Transport Processes in Continuous-Casting Mold

    NASA Astrophysics Data System (ADS)

    Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa

    2014-07-01

    The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.

  16. Effect of Electromagnetic Stirring on Weld Pools.

    DTIC Science & Technology

    1983-10-01

    R136 71S EFFECT OF ELECTROMAGNET1C STIRRING ON WELD POOL5(U) i/lD DAVID W TAYLOR NAVAL SH-IP RE5ERRCH AND DEVELOPMENT CENTER ANN. R DENRLE ET RL...COMMANDER TECHNICAL DIRECTOR 01 OFFICER-IN-CHARGE OFFICER-IN-CHARGE CARDEROCK ANNAPOLIS 06 04 SYSTEMS DEVELOPMENT DEPARTMENT 11 SHIP PERFORMANCE AVIATION AND...SHIP ACOUSTICS PROPULSION AND DEPARTMENT AUXILIARY SYSTEMS DEPARTMENT 19 27 SHIP MATERIALS CENTRAL ENGINEERING INSTRUMENTATION DEPARTMENT DEPARTMENT28

  17. Single-Track Melt-Pool Measurements and Microstructures in Inconel 625

    NASA Astrophysics Data System (ADS)

    Ghosh, Supriyo; Ma, Li; Levine, Lyle E.; Ricker, Richard E.; Stoudt, Mark R.; Heigel, Jarred C.; Guyer, Jonathan E.

    2018-06-01

    We use single-track laser melting experiments and simulations on Inconel 625 to estimate the dimensions and microstructure of the resulting melt pool. Our work is based on a design-of-experiments approach which uses multiple laser power and scan speed combinations. Single-track experiments generated melt pools of certain dimensions that showed reasonable agreement with our finite-element calculations. Phase-field simulations were used to predict the size and segregation of the cellular microstructure that formed along the melt-pool boundaries for the solidification conditions that changed as a function of melt-pool dimensions.

  18. Single-Track Melt-Pool Measurements and Microstructures in Inconel 625

    NASA Astrophysics Data System (ADS)

    Ghosh, Supriyo; Ma, Li; Levine, Lyle E.; Ricker, Richard E.; Stoudt, Mark R.; Heigel, Jarred C.; Guyer, Jonathan E.

    2018-02-01

    We use single-track laser melting experiments and simulations on Inconel 625 to estimate the dimensions and microstructure of the resulting melt pool. Our work is based on a design-of-experiments approach which uses multiple laser power and scan speed combinations. Single-track experiments generated melt pools of certain dimensions that showed reasonable agreement with our finite-element calculations. Phase-field simulations were used to predict the size and segregation of the cellular microstructure that formed along the melt-pool boundaries for the solidification conditions that changed as a function of melt-pool dimensions.

  19. Real-time monitoring of laser welding of galvanized high strength steel in lap joint configuration

    NASA Astrophysics Data System (ADS)

    Kong, Fanrong; Ma, Junjie; Carlson, Blair; Kovacevic, Radovan

    2012-10-01

    Two different cases regarding the zinc coating at the lap joint faying surface are selected for studying the influence of zinc vapor on the keyhole dynamics of the weld pool and the final welding quality. One case has the zinc coating fully removed at the faying surface; while the other case retains the zinc coating on the faying surface. It is found that removal of the zinc coating at the faying surface produces a significantly better weld quality as exemplified by a lack of spatters whereas intense spatters are present when the zinc coating is present at the faying surface. Spectroscopy is used to detect the optical spectra emitted from a laser generated plasma plume during the laser welding of galvanized high strength DP980 steel in a lap-joint configuration. A correlation between the electron temperature and defects within the weld bead is identified by using the Boltzmann plot method. The laser weld pool keyhole dynamic behavior affected by a high-pressure zinc vapor generated at the faying surface of galvanized steel lap-joint is monitored in real-time by a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source.

  20. Effects of Cr2O3 Activating Flux on the Plasma Plume in Pulsed Laser Welding

    NASA Astrophysics Data System (ADS)

    Yi, Luo; Yunfei, Du; Xiaojian, Xie; Rui, Wan; Liang, Zhu; Jingtao, Han

    2016-11-01

    The effects of Cr2O3 activating flux on pulsed YAG laser welding of stainless steel and, particularly, on the behavior of the plasma plume in the welding process were investigated. According to the acoustic emission (AE) signals detected in the welding process, the possible mechanism for the improvement in penetration depth was discussed. The results indicated that the AE signals detected in the welding process reflected the behavior of the plasma plume as pulsed laser energy affecting the molten pool. The root-mean-square (RMS) waveform, AE count, and power spectrum of AE signals were three effective means to characterize the behavior of the plasma plume, which indicated the characteristics of energy released by the plasma plume. The activating flux affected by the laser beam helped to increase the duration and intensity of energy released by the plasma plume, which improved the recoil force and thermal effect transferred from the plasma plume to the molten pool. These results were the main mechanism for Cr2O3 activating flux addition improving the penetration depth in pulsed YAG laser welding.

  1. Effects of current on droplet generation and arc plasma in gas metal arc welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, J.; Tsai, H. L.

    2006-09-01

    In gas metal arc welding (GMAW), a technology using pulsed currents has been employed to achieve the one-droplet-per-pulse (ODPP) metal transfer mode with the advantages of low average currents, a stable and controllable droplet generation, and reduced spatter. In this paper, a comprehensive model was developed to study the effects of different current profiles on the droplet formation, plasma generation, metal transfer, and weld pool dynamics in GMAW. Five types of welding currents were studied, including two constant currents and three wave form currents. In each type, the transient temperature and velocity distributions of the arc plasma and the moltenmore » metal, and the shapes of the droplet and the weld pool were calculated. The results showed that a higher current generates smaller droplets, higher droplet frequency, and higher electromagnetic force that becomes the dominant factor detaching the droplet from the electrode tip. The model has demonstrated that a stable ODPP metal transfer mode can be achieved by choosing a current with proper wave form for given welding conditions.« less

  2. Simulation of Laser Additive Manufacturing and its Applications

    NASA Astrophysics Data System (ADS)

    Lee, Yousub

    Laser and metal powder based additive manufacturing (AM), a key category of advanced Direct Digital Manufacturing (DDM), produces metallic components directly from a digital representation of the part such as a CAD file. It is well suited for the production of high-value, customizable components with complex geometry and the repair of damaged components. Currently, the main challenges for laser and metal powder based AM include the formation of defects (e.g., porosity), low surface finish quality, and spatially non-uniform properties of material. Such challenges stem largely from the limited knowledge of complex physical processes in AM especially the molten pool physics such as melting, molten metal flow, heat conduction, vaporization of alloying elements, and solidification. Direct experimental measurement of melt pool phenomena is highly difficult since the process is localized (on the order of 0.1 mm to 1 mm melt pool size) and transient (on the order of 1 m/s scanning speed). Furthermore, current optical and infrared cameras are limited to observe the melt pool surface. As a result, fluid flows in the melt pool, melt pool shape and formation of sub-surface defects are difficult to be visualized by experiment. On the other hand, numerical simulation, based on rigorous solution of mass, momentum and energy transport equations, can provide important quantitative knowledge of complex transport phenomena taking place in AM. The overarching goal of this dissertation research is to develop an analytical foundation for fundamental understanding of heat transfer, molten metal flow and free surface evolution. Two key types of laser AM processes are studied: a) powder injection, commonly used for repairing of turbine blades, and b) powder bed, commonly used for manufacturing of new parts with complex geometry. In the powder injection simulation, fluid convection, temperature gradient (G), solidification rate (R) and melt pool shape are calculated using a heat transfer and fluid flow model, which solves the mass, momentum and energy transport equations using the volume of fluid (VOF) method. These results provide quantitative understanding of underlying mechanisms of solidification morphology, solidification scale and deposit side bulging. In particular, it is shown that convective mixing alters solidification conditions (G and R), cooling trend and resultant size of primary dendrite arm spacing. Melt pool convexity in multiple layer LAM is associated not only with the convex shape of prior deposit but also with Marangoni flow. Lastly, it is shown that the lateral width of bulge is possibly controlled by the type of surface tension gradient. It is noted that laser beam spot size in the powder injection AM is about 2 mm and it melts hundreds of powder particles. Hence, the injection of individual particles is approximated by a lumped mass flux into the molten pool. On the other hand, for laser powder bed AM, the laser beam spot size is about 100 microm and thus it only melts a few tens of particles. Therefore, resolution of individual powder particles is essential for the accurate simulation of laser powder bed AM. To obtain the powder packing information in the powder bed, dynamic discrete element simulation (DEM) is used. It considers particle-particle interactions during packing to provide the quantitative structural powder bed properties such as particle arrangement, size and packing density, which is then an inputted as initial geometry for heat transfer and fluid flow simulation. This coupled 3D transient transport model provides a high spatial resolution while requiring less demanding computation. The results show that negatively skewed particle size distribution, faster scanning speed, low power and low packing density worsen the surface finish quality and promote the formation of balling defects. Taken together, both powder injection and powder bed models have resulted in an improved quantitative understanding of heat transfer, molten metal flow and free surface evolution. Furthermore, the analytical foundation that is developed in this dissertation provides the temperature history in AM, a prerequisite for predicting the solid-state phase transformation kinetics, residual stresses and distortion using other models. Moreover, it can be integrated with experimental monitoring and sensing tools to provide the capability of controlling melt pool shape, solidification microstructure, defect formation and surface finish.

  3. Hydrogen Transport and Rationalization of Porosity Formation during Welding of Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Huang, Jianglin; Warnken, Nils; Gebelin, Jean-Christophe; Strangwood, Martin; Reed, Roger C.

    2012-02-01

    The transport of hydrogen during fusion welding of the titanium alloy Ti-6Al4V is analyzed. A coupled thermodynamic/kinetic treatment is proposed for the mass transport within and around the weld pool. The modeling indicates that hydrogen accumulates in the weld pool as a consequence of the thermodynamic driving forces that arise; a region of hydrogen depletion exists in cooler, surrounding regions in the heat-affected zone and beyond. Coupling with a hydrogen diffusion-controlled bubble growth model is used to simulate bubble growth in the melt and, thus, to make predictions of the hydrogen concentration barrier needed for pore formation. The effects of surface tension of liquid metal and the radius of preexisting microbubble size on the barrier are discussed. The work provides insights into the mechanism of porosity formation in titanium alloys.

  4. Two-dimensional time-resolved X-ray diffraction study of liquid/solid fraction and solid particle size in Fe-C binary system with an electrostatic levitator furnace

    NASA Astrophysics Data System (ADS)

    Yonemura, M.; Okada, J.; Watanabe, Y.; Ishikawa, T.; Nanao, S.; Shobu, T.; Toyokawa, H.

    2013-03-01

    Liquid state provides functions such as matter transport or a reaction field and plays an important role in manufacturing processes such as refining, forging or welding. However, experimental procedures are significantly difficult for an observation of solidification process of iron and iron-based alloys in order to identify rapid transformations subjected to fast temperature evolution. Therefore, in order to study the solidification in iron and iron-based alloys, we considered a combination of high energy X-ray diffraction measurements and an electrostatic levitation method (ESL). In order to analyze the liquid/solid fraction, the solidification of melted spherical specimens was measured at a time resolution of 0.1 seconds during rapid cooling using the two-dimensional time-resolved X-ray diffraction. Furthermore, the observation of particle sizes and phase identification was performed on a trial basis using X-ray small angle scattering with X-ray diffraction.

  5. Directionally solidified article with weld repair

    NASA Technical Reports Server (NTRS)

    Smashey, Russell W. (Inventor); Snyder, John H. (Inventor); Borne, Bruce L. (Inventor)

    2003-01-01

    A directionally solidified nickel-base superalloy article has a defect therein extending parallel to the solidification direction. The article is repaired by removing any foreign matter present in the defect, and then heating the article to a repair temperature of from about 60 to about 98 percent of the solidus temperature of the base material in a chamber containing a protective gas that inhibits oxidation of the base material. The defect is filled with a filler metal while maintaining the article at the repair temperature. The filling is accomplished by providing a source of the filler metal of substantially the same composition as the base material of the directionally solidified article, and melting the filler metal into the defect progressively while moving the source of the filler metal relative to the article in a direction parallel to the solidification direction. Optionally, additional artificial heat extraction is accomplished in a heat-flow direction that is within about 45 degrees of the solidification direction, as the filler metal solidifies within the defect. The article may thereafter be heat treated.

  6. Weld repair of directionally solidified articles

    NASA Technical Reports Server (NTRS)

    Smashey, Russell W. (Inventor); Snyder, John H. (Inventor); Borne, Bruce L. (Inventor)

    2002-01-01

    A directionally solidified nickel-base superalloy article has a defect therein extending parallel to the solidification direction. The article is repaired by removing any foreign matter present in the defect, and then heating the article to a repair temperature of from about 60 to about 98 percent of the solidus temperature of the base material in a chamber containing a protective gas that inhibits oxidation of the base material. The defect is filled with a filler metal while maintaining the article at the repair temperature. The filling is accomplished by providing a source of the filler metal of substantially the same composition as the base material of the directionally solidified article, and melting the filler metal into the defect progressively while moving the source of the filler metal relative to the article in a direction parallel to the solidification direction. Optionally, additional artificial heat extraction is accomplished in a heat-flow direction that is within about 45 degrees of the solidification direction, as the filler metal solidifies within the defect. The article may thereafter be heat treated.

  7. Numerical Simulation of the Evolution of Solidification Microstructure in Laser Deposition (Preprint)

    DTIC Science & Technology

    2007-08-01

    the deposition process. This model is applied to Ti-6Al-4V. 1. Instruction Laser deposition is an extension of the laser cladding process...uses a focused laser beam as a heat source to create a melt pool on an underlying substrate. Powder material is then injected into the melt pool...melt pool Deposited layer Remelted zone Substrate Shielding gas Laser beam Powder The governing equations have been discretized using a

  8. Microstructural development during solidification of stainless steel alloys

    NASA Astrophysics Data System (ADS)

    Elmer, J. W.; Allen, S. M.; Eagar, T. W.

    1989-10-01

    The microstructures that develop during the solidification of stainless steel alloys are related to the solidification conditions and the specific alloy composition. The solidification conditions are determined by the processing method, i.e., casting, welding, or rapid solidification, and by parametric variations within each of these techniques. One variable that has been used to characterize the effects of different processing conditions is the cooling rate. This factor and the chemical composition of the alloy both influence (1) the primary mode of solidification, (2) solute redistribution and second-phase formation during solidification, and (3) the nucleation and growth behavior of the ferrite-to-austenite phase transformation during cooling. Consequently, the residual ferrite content and the microstructural morphology depend on the cooling rate and are governed by the solidification process. This paper investigates the influence of cooling rate on the microstructure of stainless steel alloys and describes the conditions that lead to the many microstructural morphologies that develop during solidification. Experiments were performed on a series of seven high-purity Fe-Ni-Cr alloys that spanned the line of twofold saturation along the 59 wt pct Fe isopleth of the ternary alloy system. High-speed electron-beam surface-glazing was used to melt and resolidify these alloys at scan speeds up to 5 m/s. The resulting cooling rates were shown to vary from 7°C/s to 7.5×106°C/s, and the resolidified melts were analyzed by optical metallographic methods. Five primary modes of solidification and 12 microstructural morphologies were characterized in the resolidified alloys, and these features appear to be a complete “set” of the possible microstructures for 300-series stainless steel alloys. The results of this study were used to create electron-beam scan speed vs composition diagrams, which can be used to predict the primary mode of solidification and the microstructural morphology for different processing conditions. Furthermore, changes in the primary solidification mode were observed in alloys that lie on the chromium-rich side of the line of twofold saturation when they are cooled at high rates. These changes were explained by the presence of metastable austenite, which grows epitaxially and can dominate the solidification microstructure throughout the resolidified zone at high cooling rates.

  9. Effect of Forced Convection Heat Transfer on Weld Pools.

    DTIC Science & Technology

    1986-01-01

    Cooling Curves for GTAW Welds Superimposed on CCT Diagram ............. 26 11 - Photomacrographs Showing Weld Macrostructure (TS Plane...decomposition kinetics. Superposition of the weld metal cooling rates measured in this study on the CCT diagram shows that the time for nucleation and growth...m - TABLE 2 - TRANSFORMATION AND COOLING TIMES FROM CCT DIAGRAM *II I I. I I I Cooling Rate I Transformation I Time to Cool tL-I- I Heat Input I

  10. Associations of welding and manganese exposure with Parkinson disease

    PubMed Central

    Borenstein, Amy R.; Nelson, Lorene M.

    2012-01-01

    Objective: To examine associations of welding and manganese exposure with Parkinson disease (PD) using meta-analyses of data from cohort, case-control, and mortality studies. Methods: Epidemiologic studies related to welding or manganese exposure and PD were identified in a PubMed search, article references, published reviews, and abstracts. Inclusion criteria were 1) cohort, case-control, or mortality study with relative risk (RR), odds ratio (OR), or mortality OR (MOR) and 95 confidence intervals (95% CI); 2) RR, OR, and MOR matched or adjusted for age and sex; 3) valid study design and analysis. When participants of a study were a subgroup of those in a larger study, only results of the larger study were included to assure independence of datasets. Pooled RR/OR estimates and 95% CIs were obtained using random effects models; heterogeneity of study effects were evaluated using the Q statistic and I2 index in fixed effect models. Results: Thirteen studies met inclusion criteria for the welding meta-analysis and 3 studies for the manganese exposure meta-analysis. The pooled RR for the association between welding and PD for all study designs was 0.86 (95% CI 0.80–0.92), with absence of between-study heterogeneity (I2 = 0.0). Effect measures for cohort, case-control, and mortality studies were similar (0.91, 0.82, 0.87). For the association between manganese exposure and PD, the pooled OR was 0.76 (95% CI 0.41–1.42). Conclusions: Welding and manganese exposure are not associated with increased PD risk. Possible explanations for the inverse association between welding and PD include confounding by smoking, healthy worker effect, and hormesis. PMID:22965675

  11. Microstructure and calorimetric behavior of laser welded open cell foams in CuZnAl shape memory alloy

    NASA Astrophysics Data System (ADS)

    Biffi, Carlo Alberto; Previtali, Barbara; Tuissi, Ausonio

    Cellular shape memory alloys (SMAs) are very promising smart materials able to combine functional properties of the material with lightness, stiffness, and damping capacity of the cellular structure. Their processing with low modification of the material properties remains an open question. In this work, the laser weldability of CuZnAl SMA in the form of open cell foams was studied. The cellular structure was proved to be successfully welded in lap joint configuration by using a thin plate of the same alloy. Softening was seen in the welded bead in all the investigated ranges of process speed as well as a double stage heat affected zone was identified due to different microstructures; the martensitic transformation was shifted to higher temperatures and the corresponding peaks were sharper with respect to the base material due to the rapid solidification of the material. Anyways, no compositional variations were detected in the joints.

  12. Friction Stir Welding of SiC/Aluminum Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    1999-01-01

    Friction Stir Welding (FSW) is a new solid state process for joining metals by plasticizing and consolidating materials around the bond line using thermal energy producing from frictional forces. A feasibility study for FSW of Metal Matrix Composites (MMC) was investigated using aluminum 6092 alloy reinforced with 17% SiC particulates. FSW process consists of a special rotating pin tool that is positioned to plunge into the MMC surface at the bond line. As the tool rotates and move forward along the bond line, the material at the bond line is heated up and forced to flow around the rotating tip to consolidate on the tip's backside to form a solid state joint. FSW has the potential for producing sound welds with MMC because the processing temperature occurs well below the melting point of the metal matrix; thereby eliminating the reinforcement-to-matrix solidification defects, reducing the undesirable chemical reactions and porosity problems.

  13. Residual stresses in welded plates

    NASA Technical Reports Server (NTRS)

    Bernstein, Edward L.

    1994-01-01

    The purpose of this project was to develop a simple model which could be used to study residual stress. The mechanism that results in residual stresses in the welding process starts with the deposition of molten weld metal which heats the immediately adjacent material. After solidification of weld material, normal thermal shrinkage is resisted by the adjacent, cooler material. When the thermal strain exceeds the elastic strain corresponding to the yield point stress, the stress level is limited by this value, which decreases with increasing temperature. Cooling then causes elastic unloading which is restrained by the adjoining material. Permanent plastic strain occurs, and tension is caused in the region immediately adjacent to the weld material. Compression arises in the metal farther from the weld in order to maintain overall static equilibrium. Subsequent repair welds may add to the level of residual stresses. The level of residual stress is related to the onset of fracture during welding. Thus, it is of great importance to be able to predict the level of residual stresses remaining after a weld procedure, and to determine the factors, such as weld speed, temperature, direction, and number of passes, which may affect the magnitude of remaining residual stress. It was hoped to use traditional analytical modeling techniques so that it would be easier to comprehend the effect of these variables on the resulting stress. This approach was chosen in place of finite element methods so as to facilitate the understanding of the physical processes. The accuracy of the results was checked with some existing experimental studies giving residual stress levels found from x-ray diffraction measurements.

  14. A Correlation of Welding Solidification Parameters to Weld Macrostructure

    DTIC Science & Technology

    1992-06-18

    BY THE START PROGRAMS. C C PROGRAM GVPLOT C DIMENSION TEMP(27,27,8),ZMELT(27,27),GRAD(27,27),V(27,27) DIMENSION TMAP (27,8),TMAP2(17,5),TEMPIMP(5...DATA GRAD /729*0./ DATA TMAP /216*0.0/ TMELT = 1770.0 79 READ(I) TIME READ(l) (((TEMP(I,J,K),I=1,27),J=1,27),K=1,8) READ(l) VTORCH C C C ACQUIRE A...MAP OF MAX TEMPERATURES IN (X,Z) IN ORDER TO DEFINE THE C FUSION ZONE DO 300 1=1,27 DO 300 J= 1,27 DO 300 K=1,8 IF (TEMP(I,J,K).GT.TMAP(I,9-K)) TMAP (I

  15. Microstructure and Tensile Behavior of Laser Arc Hybrid Welded Dissimilar Al and Ti Alloys

    PubMed Central

    Gao, Ming; Chen, Cong; Gu, Yunze; Zeng, Xiaoyan

    2014-01-01

    Fiber laser-cold metal transfer arc hybrid welding was developed to welding-braze dissimilar Al and Ti alloys in butt configuration. Microstructure, interface properties, tensile behavior, and their relationships were investigated in detail. The results show the cross-weld tensile strength of the joints is up to 213 MPa, 95.5% of same Al weld. The optimal range of heat input for accepted joints was obtained as 83–98 J·mm−1. Within this range, the joint is stronger than 200 MPa and fractures in weld metal, or else, it becomes weaker and fractures at the intermetallic compounds (IMCs) layer. The IMCs layer of an accepted joint is usually thin and continuous, which is about 1μm-thick and only consists of TiAl2 due to fast solidification rate. However, the IMCs layer at the top corner of fusion zone/Ti substrate is easily thickened with increasing heat input. This thickened IMCs layer consists of a wide TiAl3 layer close to FZ and a thin TiAl2 layer close to Ti substrate. Furthermore, both bead shape formation and interface growth were discussed by laser-arc interaction and melt flow. Tensile behavior was summarized by interface properties. PMID:28788533

  16. Wear behavior of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique

    NASA Astrophysics Data System (ADS)

    Kilinc, B.; Durmaz, M.; Abakay, E.; Sen, U.; Sen, S.

    2015-03-01

    Weld overlay coatings also known as hardfacing is a method which involves melting of the alloys and solidification for applied coatings. Recently hardfacing by welding has become a commonly used technique for improvement of material performance in extreme (high temperature, impact/abrasion, erosion, etc.) conditions.In the present study, the coatings were produced from a mixture of ferrous niobium, ferrous boron and iron powders in the ranges of -45µm particle size with different ratio. Fe12Nb5B3 and Fe2NbBalloys were coated on the AISI 1020 steel surface by TIG welding. The phases formed in the coated layer are Fe2B, NbB2, NbFeB and Fe0,2 Nb0,8 phases. The hardness of the presence phases are changing between 1689±85 HV0.01, and 181±7 HV0.1. Microstructural examinations were realized by optical and scanning electron microscopy. The wear and friction behaviors of Fe12Nb5B3 and Fe2NbB realized on the AISI 1020 steel were investigated by the technique of TIG welding by using ball-on-disk arrangement against alumina ball.

  17. Laser-TIG Welding of Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Turichin, G.; Tsibulsky, I.; Somonov, V.; Kuznetsov, M.; Akhmetov, A.

    2016-08-01

    The article presents the results of investigation the technological opportunity of laser-TIG welding of titanium alloys. The experimental stand for implementation of process with the capability to feed a filler wire was made. The research of the nature of transfer the filler wire into the welding pool has been demonstrated. The influence of distance between the electrode and the surface of the welded plates on the stability of the arc was shown. The relationship between welding velocity, the position of focal plane of the laser beam and the stability of penetration of plates was determined.

  18. Problems of Pore Formation in Welded Joints of Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Murav'ev, V. I.

    2005-07-01

    Special features of formation of the connection zone in front of the front of molten pool and changes in the macro- and microstructure of the weld metal are considered for conditions of fusion welding of titanium alloys on an example of pseudo-α-titanium alloy VT20.Ways for forming macrotexture on the surface of joined preforms are determined with the aim of obtaining weld metal with structure and properties close to those of the base metal.

  19. Study on the special vision sensor for detecting position error in robot precise TIG welding of some key part of rocket engine

    NASA Astrophysics Data System (ADS)

    Zhang, Wenzeng; Chen, Nian; Wang, Bin; Cao, Yipeng

    2005-01-01

    Rocket engine is a hard-core part of aerospace transportation and thrusting system, whose research and development is very important in national defense, aviation and aerospace. A novel vision sensor is developed, which can be used for error detecting in arc length control and seam tracking in precise pulse TIG welding of the extending part of the rocket engine jet tube. The vision sensor has many advantages, such as imaging with high quality, compactness and multiple functions. The optics design, mechanism design and circuit design of the vision sensor have been described in detail. Utilizing the mirror imaging of Tungsten electrode in the weld pool, a novel method is proposed to detect the arc length and seam tracking error of Tungsten electrode to the center line of joint seam from a single weld image. A calculating model of the method is proposed according to the relation of the Tungsten electrode, weld pool, the mirror of Tungsten electrode in weld pool and joint seam. The new methodologies are given to detect the arc length and seam tracking error. Through analyzing the results of the experiments, a system error modifying method based on a linear function is developed to improve the detecting precise of arc length and seam tracking error. Experimental results show that the final precision of the system reaches 0.1 mm in detecting the arc length and the seam tracking error of Tungsten electrode to the center line of joint seam.

  20. PREFACE: Third International Conference on Advances in Solidification Processes (ICASP - 3)

    NASA Astrophysics Data System (ADS)

    Zimmermann, Gerhard; Ratke, Lorenz

    2012-01-01

    The 3rd International Conference on Advances in Solidification Processes was held in the Rolduc Abbey in the Netherlands a few kilometres away from Aachen. Around 200 scientists from 24 countries come in for the four day meeting. They found a stimulating but also relaxing environment and atmosphere, with beautiful weather and the medieval abbey inviting for walks, discussions, sitting outside and drinking a beer or wine. The contributions given at the conference reflected recent advances in various topics of solidification processes, ranging from fundamental aspects to applied casting technologies. In 20 oral sessions and a large poster session innovative results of segregation phenomena, microstructure evolution, nucleation and growth, phase formation, polyphase solidification, rapid solidification and welding, casting technology, thermophysics of molten alloys, solidification with forced melt flow and growth of single crystals and superalloys together with innovative diagnostic techniques were presented. Thereby, findings from experiments as well as from numerical modeling on different lengths scales were jointly discussed and contribute to new insight in solidification behaviour. The papers presented in this open access proceedings cover about half the oral and poster presentations given. They were carefully reviewed as in classical peer reviewed journals by two independent referees and most of them were revised and thus improved according to the reviewers comments. We think that this collection of papers presented at ICASP-3 gives an impression of the excellent contributions made. The papers embrace both the basic and applied aspects of solidification. We especially wish to express our appreciation for the team around Georg Schmitz and Margret Nienhaus organising this event and giving us their valued advice and support at every stage in preparing the conference. We also thank Lokasenna Lektorat for taking the task of checking all language-associated issues and fixing the papers according to the templates given by IOP Conference Series. We also wish to express our gratitude to the IOP Conference Series publishers, who were always helpful and patient with us. Conference photograph

  1. Effect of adding powder on joint properties of laser penetration welding for dual phase steel and aluminum alloy

    NASA Astrophysics Data System (ADS)

    Zhou, D. W.; Liu, J. S.; Lu, Y. Z.; Xu, S. H.

    2017-09-01

    The experiments of laser penetration welding for dual phase steel and aluminum alloy were carried out, and the effect of adding Mn or Si powder on mechanical properties and microstructure of the weld was investigated. Some defects, such as spatter, inclusion, cracks and softening in heat affected zone (HAZ), can be avoided in welding joints, and the increased penetration depth is obtained by adding Mn or Si powder. The average tensile-shear strength of Si-added joint is 3.84% higher than that of Mn-added joint, and the strength of both joints exceeds that of no-added joint. In the case of adding Mn powder, small amount of liquid Al is mixed into steel molten pool, and the Al content increases in both sides of the weld, which leads to the increased weld width in aluminum molten pool. Thus, transverse area increases in jointing steel to aluminum, which is significant for the improved tensile-shear strength of joints. As far as adding Si powder is concerned, it is not the case, the enhancement of the joint properties benefits from improvement of metallurgical reaction.

  2. Dimensionless numbers in additive manufacturing

    NASA Astrophysics Data System (ADS)

    Mukherjee, T.; Manvatkar, V.; De, A.; DebRoy, T.

    2017-02-01

    The effects of many process variables and alloy properties on the structure and properties of additively manufactured parts are examined using four dimensionless numbers. The structure and properties of components made from 316 Stainless steel, Ti-6Al-4V, and Inconel 718 powders for various dimensionless heat inputs, Peclet numbers, Marangoni numbers, and Fourier numbers are studied. Temperature fields, cooling rates, solidification parameters, lack of fusion defects, and thermal strains are examined using a well-tested three-dimensional transient heat transfer and fluid flow model. The results show that lack of fusion defects in the fabricated parts can be minimized by strengthening interlayer bonding using high values of dimensionless heat input. The formation of harmful intermetallics such as laves phases in Inconel 718 can be suppressed using low heat input that results in a small molten pool, a steep temperature gradient, and a fast cooling rate. Improved interlayer bonding can be achieved at high Marangoni numbers, which results in vigorous circulation of liquid metal, larger pool dimensions, and greater depth of penetration. A high Fourier number ensures rapid cooling, low thermal distortion, and a high ratio of temperature gradient to the solidification growth rate with a greater tendency of plane front solidification.

  3. Contribution For Arc Temperature Affected By Current Increment Ratio At Peak Current In Pulsed Arc

    NASA Astrophysics Data System (ADS)

    Kano, Ryota; Mitubori, Hironori; Iwao, Toru

    2015-11-01

    Tungsten Inert Gas (TIG) Welding is one of the high quality welding. However, parameters of the pulsed arc welding are many and complicated. if the welding parameters are not appropriate, the welding pool shape becomes wide and shallow.the convection of driving force contributes to the welding pool shape. However, in the case of changing current waveform as the pulse high frequency TIG welding, the arc temperature does not follow the change of the current. Other result of the calculation, in particular, the arc temperature at the reaching time of peak current is based on these considerations. Thus, the accurate measurement of the temperature at the time is required. Therefore, the objective of this research is the elucidation of contribution for arc temperature affected by current increment ratio at peak current in pulsed arc. It should obtain a detail knowledge of the welding model in pulsed arc. The temperature in the case of increment of the peak current from the base current is measured by using spectroscopy. As a result, when the arc current increases from 100 A to 150 A at 120 ms, the transient response of the temperature didn't occur during increasing current. Thus, during the current rise, it has been verified by measuring. Therefore, the contribution for arc temperature affected by current increment ratio at peak current in pulsed arc was elucidated in order to obtain more knowledge of welding model of pulsed arc.

  4. Plasma effect on weld pool surface reconstruction by shape-from-polarization analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coniglio, N.; Mathieu, A., E-mail: alexandre.mathieu@u-bourgogne.fr; Aubreton, O.

    2014-03-31

    The polarimetric state of the thermal radiations emitted by the weld metal contains geometric information about the emitting surface. Even though the analysed thermal radiation has a wavelength corresponding to a blind spectral window of the arc plasma, the physical presence of the arc plasma itself interferes with the rays radiated by the weld pool surface before attaining the polarimeter, thus modifying the geometric information transported by the ray. In the present work, the effect of the arc plasma-surrounding zone on the polarimetric state and propagation direction of the radiated ray is analyzed. The interaction with the arc plasma zonemore » induces a drop in ray intensity and a refraction of ray optical path.« less

  5. Study of a Single-Power Two-Circuit ESR Process with Current-Carrying Mold: Mathematical Simulation of the Process and Experimental Verification

    NASA Astrophysics Data System (ADS)

    Dong, Yanwu; Hou, Zhiwen; Jiang, Zhouhua; Cao, Haibo; Feng, Qianlong; Cao, Yulong

    2018-02-01

    A novel single-power two-circuit ESR process (ESR-STCCM) with current-carrying mold has been investigated via numerical simulation and experimental research in this paper. A 2D quasi-steady-state mathematical model is developed to describe ESR-STCCM. The electromagnetic field, flow field, slag pool temperature distribution, and the shape of a molten steel pool in ESR-STCCM have been investigated by FLUENT software as well as user-defined functions (UDF). The results indicate that ESR-STCCM is different from the conventional ESR process. The maximum electromagnetic force, current density, Joule heat, and slag pool flow velocity are located in the lower part of the conductor in the ESR-STCCM process. The direction of the maximum electromagnetic force inclines upward. There are two distinct vortices in the slag pool. The larger swirl rotates counterclockwise near the conductor, with a value of 0.0263 m s-1 due to the interaction of the electromagnetic force and gravity. The maximum temperature of the slag pool is 2070 K (1797 °C) and is located in the center of the swirl with a filling ratio of 0.6 and a 20 mm electrode immersion depth. The depth of a molten steel pool is shallower, which is conducive to improving solidification quality. In addition, the filling ratio of 0.6 is conducive to controlling steel solidification quality. Some experiments have been done, and the numerical model is confirmed by experimental results.

  6. Numerical investigation of electromagnetic pulse welded interfaces between dissimilar metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wei; Sun, Xin

    Electromagnetic pulse welding (EMPW), an innovative high-speed joining technique, is a potential method for the automotive industry in joining and assembly of dissimilar lightweight metals with drastically different melting temperatures and other thermal physical properties, such as thermal conductivity and thermal expansion coefficients. The weld quality of EMPW is significantly affected by a variety of interacting physical phenomena including large plastic deformation, materials mixing, localized heating and rapid cooling, possible localized melting and subsequent diffusion and solidification, micro-cracking and void, etc. In the present study, a thermo-mechanically coupled dynamic model has been developed to quantitatively resolve the high-speed impact joiningmore » interface characteristics as well as the process-induced interface temperature evolution, defect formation and possible microstructural composition variation. Reasonably good agreement has been obtained between the predicted results and experimental measurements in terms of interfacial morphology characteristics. The modeling framework is expected to provide further understanding of the hierarchical interfacial features of the non-equilibrium material joining process and weld formation mechanisms involved in the EMPW operation, thus accelerating future development and deployment of this advanced joining technology.« less

  7. Effect of zirconium addition on welding of aluminum grain refined by titanium plus boron

    NASA Astrophysics Data System (ADS)

    Zaid, A. I. O.

    2014-06-01

    Aluminum oxidizes freely in ordinary atmosphere which makes its welding difficult and weak, particularly it solidifies in columnar structure with large grains. Therefore, it is anticipated that the effect of addition of some grain refiners to its melt before solidification is worth while investigating as it may enhance its weldabilty and improve its mechanical strength. In this paper, the effect of addition of zirconium at a weight of 0.1% (which corresponds to the peretictic limit on the aluminum-zirconium base phase diagram) to commercially pure aluminum, grain refined by Ti+B on its weldability, using gas tungsten arc welding, GTAW, method which was formerly known as TIG. A constant current level of 30 AC Ampere was used because it removes the oxides during the welding process. Metallographic examination of the weldments of the different combinations of Al with Al and Al with its microalloys: in the heat affected zone, HAZ, and away from it was carried out and examined for HAZ width, porosity, cracks and microhardness. It was found that grain refining by Ti+B or Zr resulted in enhancement of the weldment.

  8. Initial Parameter Estimation for Inverse Thermal Analysis of Ti-6Al-4V Deep Penetration Welds

    DTIC Science & Technology

    2014-05-16

    theory, for the case of deep-penetration welding, is simulation of the coupling of keyhole formation, melting, fluid flow in the weld melt pool and...isothermal boundaires, e.g., TTB and TM. A specific procedure for interpolation, however, has not been considered. For the present study, the close ...Clarendon Press, Oxford, 2nd ed, 374, 1959. 19. R. Rai, J.W. Elmer, T.A. Palmer, T. DebRoy, Heat Transfer and Fluid Flow During Keyhole Mode Laser Welding

  9. Methodology for Estimating Thermal and Neutron Embrittlement of Austenitic Stainless Steel Welds During Service in Light Water Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, O. K.; Rao, A. S.

    The effect of thermal aging on the degradation of fracture toughness and Charpy-impact properties of austenitic stainless steel (SS) welds has been characterized at reactor temperatures. The solidification behavior and the distribution and morphology of the ferrite phase in SS welds are described. Thermal aging of the welds results in moderate decreases in Charpy-impact strength and fracture toughness. The upper-shelf Charpy-impact energy of aged welds decreases by 50–80 J/cm2. The decrease in fracture toughness J-R curve, or JIc is relatively small. Thermal aging has minimal effect on the tensile strength. The fracture properties of SS welds are insensitive to fillermore » metal; the welding process has a significant effect. The large variability in the data makes it difficult to establish the effect of the welding process on fracture properties of SS welds. Consequently, the approach used for evaluating thermal and neutron embrittlement of austenitic SS welds relies on establishing a lower-bound fracture toughness J-R curve for unaged and aged, and non-irradiated and irradiated, SS welds. The existing fracture toughness J-R curve data for SS welds have been reviewed and evaluated to define lower-bound J-R curve for submerged arc (SA)/shielded metal arc (SMA)/manual metal arc (MMA) welds and gas tungsten arc (GTA)/tungsten inert gas (TIG) welds in the unaged and aged conditions. At reactor temperatures, the fracture toughness of GTA/TIG welds is a factor of about 2.3 higher than that of SA/SMA/MMA welds. Thermal aging decreases the fracture toughness by about 20%. The potential combined effects of thermal and neutron embrittlement of austenitic SS welds are also described. Lower-bound curves are presented that define the change in coefficient C and exponent n of the power-law J-R curve and the JIc value for SS welds as a function of neutron dose. The potential effects of reactor coolant environment on the fracture toughness of austenitic SS welds are also discussed.« less

  10. Study on Surface Depression of Ti-6Al-4V with Ultrahigh-Frequency Pulsed Gas Tungsten Arc Welding

    NASA Astrophysics Data System (ADS)

    Mingxuan, Yang; Zhou, Yang; Bojin, Qi

    2015-08-01

    Molten pool surface depression was observed with the arc welding process that was caused by arc pressure. It was supposed to have a significant effect on fluid in the molten pool that was important for the microstructure and joint properties. The impact of arc force was recognized as the reason for the surface depression during arc welding. The mathematical distribution of arc force was produced with the exponent and parabola models. Different models showed different concentrations and attenuations. The comparison between them was discussed with the simulation results. The volume of fluid method was picked up with the arc force distribution model. The surface depression was caused by the arc force. The geometry of the surface depression was discussed with liquid metal properties. The welding process was carried out with different pulsed frequencies. The results indicated the forced depression exists in molten pool and the geometry of depression was hugely due to the arc force distribution. The previous work calculated the depression in the center with force balance at one point. The other area of gas shielding was resistant by the reverse gravity from the feedback of liquid metal that was squeezed out. The article discusses the pressure effect with free deformation that allowed resistance of liquid and was easy to compare with different distributions. The curve profiles were studied with the arc force distributions, and exponent model was supposed to be more accurate to the as-weld condition.

  11. Welding of Thin Steel Plates by Hybrid Welding Process Combined TIG Arc with YAG Laser

    NASA Astrophysics Data System (ADS)

    Kim, Taewon; Suga, Yasuo; Koike, Takashi

    TIG arc welding and laser welding are used widely in the world. However, these welding processes have some advantages and problems respectively. In order to improve problems and make use of advantages of the arc welding and the laser welding processes, hybrid welding process combined the TIG arc with the YAG laser was studied. Especially, the suitable welding conditions for thin steel plate welding were investigated to obtain sound weld with beautiful surface and back beads but without weld defects. As a result, it was confirmed that the shot position of the laser beam is very important to obtain sound welds in hybrid welding. Therefore, a new intelligent system to monitor the welding area using vision sensor is constructed. Furthermore, control system to shot the laser beam to a selected position in molten pool, which is formed by TIG arc, is constructed. As a result of welding experiments using these systems, it is confirmed that the hybrid welding process and the control system are effective on the stable welding of thin stainless steel plates.

  12. Application of YAG Laser TIG Arc Hybrid Welding to Thin AZ31B Magnesium Alloy Sheet

    NASA Astrophysics Data System (ADS)

    Kim, Taewon; Kim, Jongcheol; Hasegawa, Yu; Suga, Yasuo

    A magnesium alloy is said to be an ecological material with high ability of recycling and lightweight property. Especially, magnesium alloys are in great demand on account of outstanding material property as a structural material. Under these circumstances, research and development of welding process to join magnesium alloy plates are of great significance for wide industrial application of magnesium. In order to use it as a structure material, the welding technology is very important. TIG arc welding process is the most ordinary process to weld magnesium alloy plates. However, since the heat source by the arc welding process affects the magnesium alloy plates, HAZ of welded joint becomes wide and large distortion often occurs. On the other hand, a laser welding process that has small diameter of heat source seems to be one of the possible means to weld magnesium alloy in view of the qualitative improvement. However, the low boiling point of magnesium generates some weld defects, including porosity and solidification cracking. Furthermore, precise edge preparation is very important in butt-welding by the laser welding process, due to the small laser beam diameter. Laser/arc hybrid welding process that combines the laser beam and the arc is an effective welding process in which these two heat sources influence and assist each other. Using the hybrid welding, a synegistic effect is achievable and the disadvantages of the respective processes can be compensated. In this study, YAG laser/TIG arc hybrid welding of thin magnesium alloy (AZ31B) sheets was investigated. First of all, the effect of the irradiation point and the focal position of laser beam on the quality of a weld were discussed in hybrid welding. Then, it was confirmed that a sound weld bead with sufficient penetration is obtained using appropriate welding conditions. Furthermore, it was made clear that the heat absorption efficiency is improved with the hybrid welding process. Finally, the tensile tests of welded joints were performed, and it was confirmed that they have sufficient mechanical properties. As a result of this study, it is confirmed that, if the appropriate welding conditions are selected, sound welded joints of AZ31B magnesium alloy are obtainable by the YAG laser/TIG arc hybrid welding process.

  13. Trends in Solidification Grain Size and Morphology for Additive Manufacturing of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Gockel, Joy; Sheridan, Luke; Narra, Sneha P.; Klingbeil, Nathan W.; Beuth, Jack

    2017-12-01

    Metal additive manufacturing (AM) is used for both prototyping and production of final parts. Therefore, there is a need to predict and control the microstructural size and morphology. Process mapping is an approach that represents AM process outcomes in terms of input variables. In this work, analytical, numerical, and experimental approaches are combined to provide a holistic view of trends in the solidification grain structure of Ti-6Al-4V across a wide range of AM process input variables. The thermal gradient is shown to vary significantly through the depth of the melt pool, which precludes development of fully equiaxed microstructure throughout the depth of the deposit within any practical range of AM process variables. A strategy for grain size control is demonstrated based on the relationship between melt pool size and grain size across multiple deposit geometries, and additional factors affecting grain size are discussed.

  14. Characterization of weld metal microstructure in a Ni-30Cr alloy with additions of niobium and molybdenum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeling, Rebecca A., E-mail: wheeling.8@osu.edu; Lippold, John C., E-mail: lippold.1@osu.edu

    2016-05-15

    Additions of niobium (Nb) and molybdenum (Mo) were made to an Alloy 690 base alloy in order to investigate the formation of a eutectic constituent at the end of solidification and to evaluate the effect of the eutectic liquid on backfilling (or healing) of solidification cracks. Solidification cracking was induced using the cast pin tear test (CPTT) and regions of backfilling were located and characterized via optical and electron microscopy. Computational predictions of fraction eutectic and composition of the eutectic constituent were compared to experimental findings and were found to correlate well in both cases. The extent of crack backfillingmore » increased significantly with increasing Nb content, but the addition of Mo did not seem to influence the amount of eutectic constituent or the degree of backfilling. SEM/EDS analysis confirmed that the eutectic composition is constant and that increasing Nb above 4 wt% has little effect on expanding the solidification temperature range, but has a beneficial effect on mitigating solidification cracking by a crack healing effect. - Highlights: • Increasing fraction eutectic as a function of Nb, as predicted by ThermoCalc™, is consistent with image analysis results. • Nb, unlike Mo, had a significant effect on the fraction eutectic formed. • Both influence the composition of the eutectic. • Thermocalc™ predictions regarding Nb content in eutectic are consistent with EDS results, but are high for the Mo content. • Increased levels of niobium resulted in a higher degree of crack backfilling and leads to a lower cracking susceptibility. • Mo may influence the eutectic liquid along solidification grain boundaries, improving backfill and thus cracking resistance.« less

  15. Effects of conventional welding and laser welding on the tensile strength, ultimate tensile strength and surface characteristics of two cobalt-chromium alloys: a comparative study.

    PubMed

    Madhan Kumar, Seenivasan; Sethumadhava, Jayesh Raghavendra; Anand Kumar, Vaidyanathan; Manita, Grover

    2012-06-01

    The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt-chromium alloy. Samples were prepared with two commercially available cobalt-chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scanning electron microscope to evaluate the surface characteristics at the welded site. Both on laser welding as well as on conventional welding technique, Diadur alloy samples showed lesser values when tested for tensile and ultimate tensile strength when compared to Wironium alloy samples. Under the scanning electron microscope, the laser welded joints show uniform welding and continuous molt pool all over the surface with less porosity than the conventionally welded joints. Laser welding is an advantageous method of connecting or repairing cast metal prosthetic frameworks.

  16. Sensors control gas metal arc welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siewert, T.A.; Madigan, R.B.; Quinn, T.P.

    1997-04-01

    The response time of a trained welder from the time a weld problem is identified to the time action is taken is about one second--especially after a long, uneventful period of welding. This is acceptable for manual welding because it is close to the time it takes for the weld pool to solidify. If human response time were any slower, manual welding would not be possible. However, human response time is too slow to respond to some weld events, such as melting of the contact tube in gas metal arc welding (GMAW), and only automated intelligent control systems can reactmore » fast enough to correct or avoid these problems. Control systems incorporate welding knowledge that enables intelligent decisions to be made about weld quality and, ultimately, to keep welding parameters in the range where only high-quality welds are produced. This article discusses the correlation of electrical signals with contact-tube wear, changes in shielding gas, changes in arc length, and other weld process data.« less

  17. Microstructural Evolution of INCONEL® Alloy 740H® Fusion Welds During Creep

    NASA Astrophysics Data System (ADS)

    Bechetti, Daniel H.; DuPont, John N.; de Barbadillo, John J.; Baker, Brian A.; Watanabe, Masashi

    2015-02-01

    Electron microscopy techniques have been used to investigate the cause of premature creep failure in the fusion zone of INCONEL® Alloy 740H® (INCONEL and 740H are registered trademarks of Special Metals Corporation) welds. The reduced creep rupture lives of all-weld-metal and cross-weld creep specimens (relative to base metal specimens) have been attributed to the presence of large grain boundary regions that were denuded in fine γ' but contained coarse, elongated particles. Investigation of creep rupture specimens has revealed four factors that influence the formation of these coarsened zones, and the large particles found within them have been identified as γ'. Comparisons of the microstructural characteristics of these zones to the characteristics that are typical of denuded zones formed by a variety of mechanisms identified in the literature have been made. It is concluded that the mechanism of γ'-denuded zone formation in alloy 740H is discontinuous coarsening of the γ' phase. The discontinuous reaction is catalyzed by the grain boundary migration and sliding which occur during creep and likely promoted by the inhomogeneous weld metal microstructure that results from solute segregation during solidification. The increased susceptibility to the formation of the observed γ'-denuded zones in the weld metal as compared to the base metal is discussed in the context of differences in the contributions to the driving force for the discontinuous coarsening reaction.

  18. Numerical and Experimental Investigations of Humping Phenomena in Laser Micro Welding

    NASA Astrophysics Data System (ADS)

    Otto, Andreas; Patschger, Andreas; Seiler, Michael

    The Humping effect is a phenomenon which is observed approximately since 50 years in various welding procedures and is characterized by droplets due to a pile-up of the melt pool. It occurs within a broad range of process parameters. Particularly during micro welding, humping effect is critical due to typically high feed rates. In the past, essentially two approaches (fluid-dynamic approach of streaming melt within the molten pool and the Plateau-Rayleigh instability of a liquid jet) were discussed in order to explain the occurrence of the humping effect. But none of both can fully explain all observed effects. For this reason, experimental studies in micro welding of thin metal foils were performed in order to determine the influence of process parameters on the occurrence of humping effects. The experimental observations were compared with results from numerical multi-physical simulations (incorporating beam propagation, incoupling, heat transfer, fluid dynamics etc.) to provide a deeper understanding of the causes for hump formation.

  19. Preliminary study on detection technology of the cladding weld of spent fuel storage pool

    NASA Astrophysics Data System (ADS)

    Qi, Pan; Cui, Hongyan; Feng, Meiming; Shao, Wenbin; Liao, Shusheng; Li, Wei

    2018-04-01

    As the first barrier of the Spent fuel storage pool, the steel cladding using different sizes (length×width) of 304L stainless steel with 3˜6mm thickness plate argon arc welded together which is direct contacted with boric acid water. Environmental humidity between the back of steel cladding and concrete, makes phosphate, chloride ion overflowed from the concrete that corroded on the weld zone with different mechanism. Part of the corrosion defects can penetrate leaded to leakage of boric acid water in penetration position accelerated crack propagation. In view of the above situation and combined with the actual needs of the power plant, the development of effective underwater nondestructive testing means of the weld area for periodic inspection and monitoring is necessary. A single method may lead to the missing of defects detection due to weld reinforcement unpolished. In this paper, eddy current array (ARRAY) and Alternating Current Field Measurement (ACFM) are adapted to test the limit sensitivity and resolution through by the specimens with artificial defects which make their detection abilities close to satisfy engineering requirements. The preliminary study found that Φ0.5mm through-wall hole and with 2mm length and 0.3mm width through-wall crack in the weld can be good inspected.

  20. Effect of laser welding process on the microstructure, mechanical properties and residual stresses in Ti-5Al-2.5Sn alloy

    NASA Astrophysics Data System (ADS)

    Junaid, Massab; Khan, Fahd Nawaz; Rahman, Khalid; Baig, Mirza Nadeem

    2017-12-01

    Pulsed Nd-YAG laser was employed in bead on plate configuration for welding of 1.6 mm thick Ti-5Al-2.5Sn alloy sheet. The effect of laser processing parameters on the weld pool shape, pulse overlap, oxide formation, and microstructure were studied using scanning electron and optical microscope. It was found out that laser peak power had a significant influence on the FZ oxygen contents and grain size whereas, both peak power and heat input per unit length were important in defining the weld pool shape. Processing parameters for full penetration welds with acceptable joint properties and low oxygen contents were selected for further study in terms of residual stresses and mechanical properties. Formation of acicular α and α‧ martensite in fusion and heat affected zone, led to an increase in microhardness by about 55 HV0.2 as compared to base metal. Induced residual stresses were found to be significantly less than the yield strength resulting in plate deformation less than 1 mm. Transverse residual stresses present at different depths below the surface tend to counter effect each other resulting in tensile strength of welded specimen becoming nearly equal to that of the base metal.

  1. The effect of welding parameters on penetration in GTA welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirali, A.A.; Mills, K.C.

    1993-07-01

    The effect of various welding parameters on the penetration of GTA welds has been investigated. Increases in welding speed were found to reduce penetration; however, increases in welding current were observed to increase the penetration in high sulfur (HS) casts and decrease penetration in low sulfur (LS) steels. Plots of penetration as a function of increasing linear energy (the heat supplied per unit length of weld) revealed a similar trend with increased penetration in HS casts, but the penetration in LS casts was unaffected by increases in linear energy. These results support the Burgardt-Heiple proposition that changes in welding parametersmore » on penetration can be explained in terms of their effect, sequentially, on the temperature gradient and the Marangoni forces operating in the weld pool. Increases in arc length were found to decrease weld penetration regardless of the sulfur concentration of the steel, and the effects of electrode geometry and welding position on weld penetration were also investigated.« less

  2. Wear behavior of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilinc, B., E-mail: bkilinc@sakarya.edu.tr; Durmaz, M.; Abakay, E.

    Weld overlay coatings also known as hardfacing is a method which involves melting of the alloys and solidification for applied coatings. Recently hardfacing by welding has become a commonly used technique for improvement of material performance in extreme (high temperature, impact/abrasion, erosion, etc.) conditions.In the present study, the coatings were produced from a mixture of ferrous niobium, ferrous boron and iron powders in the ranges of -45µm particle size with different ratio. Fe{sub 12}Nb{sub 5}B{sub 3} and Fe{sub 2}NbBalloys were coated on the AISI 1020 steel surface by TIG welding. The phases formed in the coated layer are Fe{sub 2}B,more » NbB{sub 2}, NbFeB and Fe0,2 Nb{sub 0,8} phases. The hardness of the presence phases are changing between 1689±85 HV{sub 0.01}, and 181±7 HV{sub 0.1}. Microstructural examinations were realized by optical and scanning electron microscopy. The wear and friction behaviors of Fe{sub 12}Nb{sub 5}B{sub 3} and Fe2NbB realized on the AISI 1020 steel were investigated by the technique of TIG welding by using ball-on-disk arrangement against alumina ball.« less

  3. Effects of Dynamic Impact Loading on Microstructure of FCC (TWIP) Steel

    DTIC Science & Technology

    2014-08-01

    experimental development and fundamental studies into weld metal solidification cracking in steels and stainless steels . He has also undertaken...bands (ABS) may appear when the steel is subjected to high strain rate deformation. They concluded the following: 1. For TWIP steel deformed under...mm) was selected as a trial material in this case. The Explosive Bulge Test (EBT) was performed on the TWIP steel using charge weight (PE4 high

  4. Experiments and simulation for 6061-T6 aluminum alloy resistance spot welded lap joints

    NASA Astrophysics Data System (ADS)

    Florea, Radu Stefanel

    This comprehensive study is the first to quantify the fatigue performance, failure loads, and microstructure of resistance spot welding (RSW) in 6061-T6 aluminum (Al) alloy according to welding parameters and process sensitivity. The extensive experimental, theoretical and simulated analyses will provide a framework to optimize the welding of lightweight structures for more fuel-efficient automotive and military applications. The research was executed in four primary components. The first section involved using electron back scatter diffraction (EBSD) scanning, tensile testing, laser beam profilometry (LBP) measurements, and optical microscopy(OM) images to experimentally investigate failure loads and deformation of the Al-alloy resistance spot welded joints. Three welding conditions, as well as nugget and microstructure characteristics, were quantified according to predefined process parameters. Quasi-static tensile tests were used to characterize the failure loads in specimens based upon these same process parameters. Profilometer results showed that increasing the applied welding current deepened the weld imprints. The EBSD scans revealed the strong dependency between the grain sizes and orientation function on the process parameters. For the second section, the fatigue behavior of the RSW'ed joints was experimentally investigated. The process optimization included consideration of the forces, currents, and times for both the main weld and post-heating. Load control cyclic tests were conducted on single weld lap-shear joint coupons to characterize the fatigue behavior in spot welded specimens. Results demonstrate that welding parameters do indeed significantly affect the microstructure and fatigue performance for these welds. The third section comprised residual strains of resistance spot welded joints measured in three different directions, denoted as in-plane longitudinal, in-plane transversal, and normal, and captured on the fusion zone, heat affected zone and base metal of the joints. Neutron diffraction results showed residual stresses in the weld are approximately 40% lower than the yield strength of the parent material, with maximum variation occurring in the vertical position of the specimen because of the orientation of electrode clamping forces that produce a non-uniform solidification pattern. In the final section a theoretical continuum modeling framework for 6061-T6 aluminum resistance spot welded joints is presented.

  5. Cracking in dissimilar laser welding of tantalum to molybdenum

    NASA Astrophysics Data System (ADS)

    Zhou, Xingwen; Huang, Yongde; Hao, Kun; Chen, Yuhua

    2018-06-01

    Dissimilar joining of tantalum (Ta) to molybdenum (Mo) is of great interest in high temperature structural component applications. However, few reports were found about joining of these two hard-to-weld metals. The objective of this experimental study was to assess the weldability of laser butt joining of 0.2 mm-thick Ta and Mo. In order to study cracking mechanism in Ta/Mo joint, similar Ta/Ta and Mo/Mo joints were compared under the same welding conditions. An optical microscope observation revealed presence of intergranular cracks in the Mo/Mo joint, while both transgranular and intergranular cracks were observed in Ta/Mo joint. The cracking mechanism of the Ta/Mo joint was investigated further by micro-hardness testing, micro X-ray diffraction and scanning electron microscopy. The results showed that solidification cracking tendency of Mo is a main reason for crack initiation in the Ta/Mo joint. Low ductility feature in fusion zone most certainly played a role in the transgranular propagation of cracking.

  6. Autocorrelation Function for Monitoring the Gap between The Steel Plates During Laser Welding

    NASA Astrophysics Data System (ADS)

    Mrna, Libor; Hornik, Petr

    Proper alignment of the plates prior to laser welding represents an important factor that determines the quality of the resulting weld. A gap between the plates in a butt or overlap joint affects the oscillations of the keyhole and the surrounding weld pool. We present an experimental study of the butt and overlap welds with the artificial gap of the different thickness of the plates. The welds were made on a 2 kW fiber laser machine for the steel plates and the various welding parameters settings. The eigenfrequency of the keyhole oscillations and its changes were determined from the light emissions of the plasma plume using an autocorrelation function. As a result, we describe the relations between the autocorrelation characteristics, the thickness of the gap between plates and the weld geometry.

  7. Modeling of plasma and thermo-fluid transport in hybrid welding

    NASA Astrophysics Data System (ADS)

    Ribic, Brandon D.

    Hybrid welding combines a laser beam and electrical arc in order to join metals within a single pass at welding speeds on the order of 1 m min -1. Neither autonomous laser nor arc welding can achieve the weld geometry obtained from hybrid welding for the same process parameters. Depending upon the process parameters, hybrid weld depth and width can each be on the order of 5 mm. The ability to produce a wide weld bead increases gap tolerance for square joints which can reduce machining costs and joint fitting difficulty. The weld geometry and fast welding speed of hybrid welding make it a good choice for application in ship, pipeline, and aerospace welding. Heat transfer and fluid flow influence weld metal mixing, cooling rates, and weld bead geometry. Cooling rate affects weld microstructure and subsequent weld mechanical properties. Fluid flow and heat transfer in the liquid weld pool are affected by laser and arc energy absorption. The laser and arc generate plasmas which can influence arc and laser energy absorption. Metal vapors introduced from the keyhole, a vapor filled cavity formed near the laser focal point, influence arc plasma light emission and energy absorption. However, hybrid welding plasma properties near the opening of the keyhole are not known nor is the influence of arc power and heat source separation understood. A sound understanding of these processes is important to consistently achieving sound weldments. By varying process parameters during welding, it is possible to better understand their influence on temperature profiles, weld metal mixing, cooling rates, and plasma properties. The current literature has shown that important process parameters for hybrid welding include: arc power, laser power, and heat source separation distance. However, their influence on weld temperatures, fluid flow, cooling rates, and plasma properties are not well understood. Modeling has shown to be a successful means of better understanding the influence of processes parameters on heat transfer, fluid flow, and plasma characteristics for arc and laser welding. However, numerical modeling of laser/GTA hybrid welding is just beginning. Arc and laser welding plasmas have been previously analyzed successfully using optical emission spectroscopy in order to better understand arc and laser plasma properties as a function of plasma radius. Variation of hybrid welding plasma properties with radial distance is not known. Since plasma properties can affect arc and laser energy absorption and weld integrity, a better understanding of the change in hybrid welding plasma properties as a function of plasma radius is important and necessary. Material composition influences welding plasma properties, arc and laser energy absorption, heat transfer, and fluid flow. The presence of surface active elements such as oxygen and sulfur can affect weld pool fluid flow and bead geometry depending upon the significance of heat transfer by convection. Easily vaporized and ionized alloying elements can influence arc plasma characteristics and arc energy absorption. The effects of surface active elements on heat transfer and fluid flow are well understood in the case of arc and conduction mode laser welding. However, the influence of surface active elements on heat transfer and fluid flow during keyhole mode laser welding and laser/arc hybrid welding are not well known. Modeling has been used to successfully analyze the influence of surface active elements during arc and conduction mode laser welding in the past and offers promise in the case of laser/arc hybrid welding. A critical review of the literature revealed several important areas for further research and unanswered questions. (1) The understanding of heat transfer and fluid flow during hybrid welding is still beginning and further research is necessary. (2) Why hybrid welding weld bead width is greater than that of laser or arc welding is not well understood. (3) The influence of arc power and heat source separation distance on cooling rates during hybrid welding are not known. (4) Convection during hybrid welding is not well understood despite its importance to weld integrity. (5) The influence of surface active elements on weld geometry, weld pool temperatures, and fluid flow during high power density laser and laser/arc hybrid welding are not known. (6) Although the arc power and heat source separation distance have been experimentally shown to influence arc stability and plasma light emission during hybrid welding, the influence of these parameters on plasma properties is unknown. (7) The electrical conductivity of hybrid welding plasmas is not known, despite its importance to arc stability and weld integrity. In this study, heat transfer and fluid flow are analyzed for laser, gas tungsten arc (GTA), and laser/GTA hybrid welding using an experimentally validated three dimensional phenomenological model. By evaluating arc and laser welding using similar process parameters, a better understanding of the hybrid welding process is expected. The role of arc power and heat source separation distance on weld depth, weld pool centerline cooling rates, and fluid flow profiles during CO2 laser/GTA hybrid welding of 321 stainless steel are analyzed. Laser power is varied for a constant heat source separation distance to evaluate its influence on weld temperatures, weld geometry, and fluid flow during Nd:YAG laser/GTA hybrid welding of A131 structural steel. The influence of oxygen and sulfur on keyhole and weld bead geometry, weld temperatures, and fluid flow are analyzed for high power density Yb doped fiber laser welding of (0.16 %C, 1.46 %Mn) mild steel. Optical emission spectroscopy was performed on GTA, Nd:YAG laser, and Nd:YAG laser/GTA hybrid welding plasmas for welding of 304L stainless steel. Emission spectroscopy provides a means of determining plasma temperatures and species densities using deconvoluted measured spectral intensities, which can then be used to calculate plasma electrical conductivity. In this study, hybrid welding plasma temperatures, species densities, and electrical conductivities were determined using various heat source separation distances and arc currents using an analytical method coupled calculated plasma compositions. As a result of these studies heat transfer by convection was determined to be dominant during hybrid welding of steels. The primary driving forces affecting hybrid welding fluid flow are the surface tension gradient and electromagnetic force. Fiber laser weld depth showed a negligible change when increasing the (0.16 %C, 1.46 %Mn) mild steel sulfur concentration from 0.006 wt% to 0.15 wt%. Increasing the dissolved oxygen content in weld pool from 0.0038 wt% to 0.0257 wt% increased the experimental weld depth from 9.3 mm to 10.8 mm. Calculated partial pressure of carbon monoxide increased from 0.1 atm to 0.75 atm with the 0.0219 wt% increase in dissolved oxygen in the weld metal and may explain the increase in weld depth. Nd:YAG laser/GTA hybrid welding plasma temperatures were calculated to be approximately between 7927 K and 9357 K. Increasing the Nd:YAG laser/GTA hybrid welding heat source separation distance from 4 mm to 6 mm reduced plasma temperatures between 500 K and 900 K. Hybrid welding plasma total electron densities and electrical conductivities were on the order of 1 x 1022 m-3 and 3000 S m-1, respectively.

  8. Effect of Shielding Gas on the Properties of AW 5083 Aluminum Alloy Laser Weld Joints

    NASA Astrophysics Data System (ADS)

    Vyskoč, Maroš; Sahul, Miroslav; Sahul, Martin

    2018-04-01

    The paper deals with the evaluation of the shielding gas influence on the properties of AW 5083 aluminum alloy weld joints produced with disk laser. Butt weld joints were produced under different shielding gas types, namely Ar, He, Ar + 5 vol.% He, Ar + 30 vol.% He and without shielding weld pool. Light and electron microscopy, computed tomography, microhardness measurements and tensile testing were used for evaluation of weld joint properties. He-shielded weld joints were the narrowest ones. On the other hand, Ar-shielded weld joints exhibited largest weld width. The choice of shielding gas had significant influence on the porosity level of welds. The lowest porosity was observed in weld joint produced in Ar with the addition of 5 vol.% He shielding atmosphere (only 0.03%), while the highest level of porosity was detected in weld joint produced in pure He (0.24%). Except unshielded aluminum alloy weld joint, the lowest tensile strength was recorded in He-shielded weld joints. On the contrary, the highest average microhardness was measured in He-shielded weld joints.

  9. Optimization of hybrid laser - TIG welding of 316LN steel using response surface methodology (RSM)

    NASA Astrophysics Data System (ADS)

    Ragavendran, M.; Chandrasekhar, N.; Ravikumar, R.; Saxena, Rajesh; Vasudevan, M.; Bhaduri, A. K.

    2017-07-01

    In the present study, the hybrid laser - TIG welding parameters for welding of 316LN austenitic stainless steel have been investigated by combining a pulsed laser beam with a TIG welding heat source at the weld pool. Laser power, pulse frequency, pulse duration, TIG current were presumed as the welding process parameters whereas weld bead width, weld cross-sectional area and depth of penetration (DOP) were considered as the process responses. Central composite design was used to complete the design matrix and welding experiments were conducted based on the design matrix. Weld bead measurements were then carried out to generate the dataset. Multiple regression models correlating the process parameters with the responses have been developed. The accuracy of the models were found to be good. Then, the desirability approach optimization technique was employed for determining the optimum process parameters to obtain the desired weld bead profile. Validation experiments were then carried out from the determined optimum process parameters. There was good agreement between the predicted and measured values.

  10. Modeling macro-and microstructures of Gas-Metal-Arc Welded HSLA-100 steel

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Debroy, T.

    1999-06-01

    Fluid flow and heat transfer during gas-metal-arc welding (GMAW) of HSLA-100 steel were studied using a transient, three-dimensional, turbulent heat transfer and fluid flow model. The temperature and velocity fields, cooling rates, and shape and size of the fusion and heat-affected zones (HAZs) were calculated. A continuous-cooling-transformation (CCT) diagram was computed to aid in the understanding of the observed weld metal microstructure. The computed results demonstrate that the dissipation of heat and momentum in the weld pool is significantly aided by turbulence, thus suggesting that previous modeling results based on laminar flow need to be re-examined. A comparison of the calculated fusion and HAZ geometries with their corresponding measured values showed good agreement. Furthermore, “finger” penetration, a unique geometric characteristic of gas-metal-arc weld pools, could be satisfactorily predicted from the model. The ability to predict these geometric variables and the agreement between the calculated and the measured cooling rates indicate the appropriateness of using a turbulence model for accurate calculations. The microstructure of the weld metal consisted mainly of acicular ferrite with small amounts of bainite. At high heat inputs, small amounts of allotriomorphic and Widmanstätten ferrite were also observed. The observed microstructures are consistent with those expected from the computed CCT diagram and the cooling rates. The results presented here demonstrate significant promise for understanding both macro-and microstructures of steel welds from the combination of the fundamental principles from both transport phenomena and phase transformation theory.

  11. Effects of Pulse Parameters on Weld Microstructure and Mechanical Properties of Extra Pulse Current Aided Laser Welded 2219 Aluminum Alloy Joints.

    PubMed

    Zhang, Xinge; Li, Liqun; Chen, Yanbin; Yang, Zhaojun; Chen, Yanli; Guo, Xinjian

    2017-09-15

    In order to expand the application range of laser welding and improve weld quality, an extra pulse current was used to aid laser-welded 2219 aluminum alloy, and the effects of pulse current parameters on the weld microstructure and mechanical properties were investigated. The effect mechanisms of the pulse current interactions with the weld pool were evaluated. The results indicated that the coarse dendritic structure in the weld zone changed to a fine equiaxed structure using an extra pulse current, and the pulse parameters, including medium peak current, relatively high pulse frequency, and low pulse duty ratio benefited to improving the weld structure. The effect mechanisms of the pulse current were mainly ascribed to the magnetic pinch effect, thermal effect, and electromigration effect caused by the pulse current. The effect of the pulse parameters on the mechanical properties of welded joints were consistent with that of the weld microstructure. The tensile strength and elongation of the optimal pulse current-aided laser-welded joint increased by 16.4% and 105%, respectively, compared with autogenous laser welding.

  12. Effects of Pulse Parameters on Weld Microstructure and Mechanical Properties of Extra Pulse Current Aided Laser Welded 2219 Aluminum Alloy Joints

    PubMed Central

    Zhang, Xinge; Li, Liqun; Chen, Yanbin; Yang, Zhaojun; Chen, Yanli; Guo, Xinjian

    2017-01-01

    In order to expand the application range of laser welding and improve weld quality, an extra pulse current was used to aid laser-welded 2219 aluminum alloy, and the effects of pulse current parameters on the weld microstructure and mechanical properties were investigated. The effect mechanisms of the pulse current interactions with the weld pool were evaluated. The results indicated that the coarse dendritic structure in the weld zone changed to a fine equiaxed structure using an extra pulse current, and the pulse parameters, including medium peak current, relatively high pulse frequency, and low pulse duty ratio benefited to improving the weld structure. The effect mechanisms of the pulse current were mainly ascribed to the magnetic pinch effect, thermal effect, and electromigration effect caused by the pulse current. The effect of the pulse parameters on the mechanical properties of welded joints were consistent with that of the weld microstructure. The tensile strength and elongation of the optimal pulse current-aided laser-welded joint increased by 16.4% and 105%, respectively, compared with autogenous laser welding. PMID:28914825

  13. Effect of Multipass TIG and Activated TIG Welding Process on the Thermo-Mechanical Behavior of 316LN Stainless Steel Weld Joints

    NASA Astrophysics Data System (ADS)

    Ganesh, K. C.; Balasubramanian, K. R.; Vasudevan, M.; Vasantharaja, P.; Chandrasekhar, N.

    2016-04-01

    The primary objective of this work was to develop a finite element model to predict the thermo-mechanical behavior of an activated tungsten inert gas (ATIG)-welded joint. The ATIG-welded joint was fabricated using 10 mm thickness of 316LN stainless steel plates in a single pass. To distinguish the merits of ATIG welding process, it was compared with manual multipass tungsten inert gas (MPTIG)-welded joint. The ATIG-welded joint was fabricated with square butt edge configuration using an activating flux developed in-house. The MPTIG-welded joint was fabricated in thirteen passes with V-groove edge configuration. The finite element model was developed to predict the transient temperature, residual stress, and distortion of the welded joints. Also, microhardness, impact toughness, tensile strength, ferrite measurement, and microstructure were characterized. Since most of the recent publications of ATIG-welded joint was focused on the molten weld pool dynamics, this research work gives an insight on the thermo-mechanical behavior of ATIG-welded joint over MPTIG-welded joint.

  14. High temperature aircraft research furnace facilities

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  15. Novel low-cost vision-sensing technology with controllable of exposal time for welding

    NASA Astrophysics Data System (ADS)

    Zhang, Wenzeng; Wang, Bin; Chen, Nian; Cao, Yipeng

    2005-02-01

    In the process of robot Welding, position of welding seam and welding pool shape is detected by CCD camera for quality control and seam tracking in real-time. It is difficult to always get a clear welding image in some welding methods, such as TIG welding. A novel idea that the exposal time of CCD camera is automatically controlled by arc voltage or arc luminance is proposed to get clear welding image. A set of special device and circuits are added to a common industrial CCD camera in order to flexibly control the CCD to start or close exposal by control of the internal clearing signal of the accumulated charge. Two special vision sensors according to the idea are developed. Their exposal grabbing can be triggered respectively by the arc voltage and the variety of the arc luminance. Two prototypes have been designed and manufactured. Experiments show that they can stably grab clear welding images at appointed moment, which is a basic for the feedback control of automatic welding.

  16. Investigation on edge joints of Inconel 625 sheets processed with laser welding

    NASA Astrophysics Data System (ADS)

    Caiazzo, F.; Alfieri, V.; Cardaropoli, F.; Sergi, V.

    2017-08-01

    Laser welding of Inconel 625 edge joint beads in square groove configuration was investigated. The use of different weld geometries in new aerospace solutions explains research on edge joints. A structured plan was carried out in order to characterize the process defining the influence of laser power and welding speed and to study possible interactions among the governing factors. As weld pool protection is crucial in order to obtain sound joints when processing superalloys, a special glove box for gas supply was designed to upgrade the welding head. Welded joints were characterized referring to bead profile, microstructure and X-rays. It was found that heat input plays an important role as it affects welding stability, porosity content and bead shape. Results suggest operating with low values of heat input to reduce porosity and guarantee stable bead conformation. Furthermore, a decrease in the grain size has been observed as a consequence of decreasing heat input.

  17. The technology and welding joint properties of hybrid laser-tig welding on thick plate

    NASA Astrophysics Data System (ADS)

    Shenghai, Zhang; Yifu, Shen; Huijuan, Qiu

    2013-06-01

    The technologies of autogenous laser welding and hybrid laser-TIG welding are used on thick plate of high strength lower alloy structural steel 10CrNiMnMoV in this article. The unique advantages of hybrid laser-TIG welding is summarized by comparing and analyzing the process parameters and welding joints of autogenous laser welding laser welding and hybrid laser-TIG welding. With the optimal process parameters of hybrid welding, the good welding joint without visible flaws can be obtained and its mechanical properties are tested according to industry standards. The results show that the hybrid welding technology has certain advantages and possibility in welding thick plates. It can reduce the demands of laser power, and it is significant for lowering the aspect ratio of weld during hybrid welding, so the gas in the molten pool can rise and escape easily while welding thick plates. Therefore, the pores forming tendency decreases. At the same time, hybrid welding enhances welding speed, and optimizes the energy input. The transition and grain size of the microstructure of hybrid welding joint is better and its hardness is higher than base material. Furthermore, its tensile strength and impact toughness is as good as base material. Consequently, the hybrid welding joint can meet the industry needs completely.

  18. Understanding heat and fluid flow in linear GTA welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacharia, T.; David, S.A.; Vitek, J.M.

    1992-01-01

    A transient heat flow and fluid flow model was used to predict the development of gas tungsten arc (GTA) weld pools in 1.5 mm thick AISI 304 SS. The welding parameters were chosen so as to correspond to an earlier experimental study which produced high-resolution surface temperature maps. The motivation of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate good agreement.

  19. Understanding heat and fluid flow in linear GTA welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacharia, T.; David, S.A.; Vitek, J.M.

    1992-12-31

    A transient heat flow and fluid flow model was used to predict the development of gas tungsten arc (GTA) weld pools in 1.5 mm thick AISI 304 SS. The welding parameters were chosen so as to correspond to an earlier experimental study which produced high-resolution surface temperature maps. The motivation of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate good agreement.

  20. Laser Rewelding of 304L Stainless Steel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maguire, Michael Christopher; Rodelas, Jeffrey

    Laser welding of 304L stainless steel during component fabrication has been found to alter the chemical composition of the steel due to material evaporation. During repair or rework, or during potential reuse/ rewelding of certain components, the potential exists to alter the composition to the extent that the material becomes prone to solidification cracking. This work aims to characterize the extent of this susceptibility in order to make informed decisions regarding rewelding practice and base metal chemistry allowances.

  1. Skylab M551 metals melting experiment

    NASA Technical Reports Server (NTRS)

    Poorman, R. M.

    1975-01-01

    The objectives of the M551 Metals Melting Experiment were to: (1) study behavior of molten metal, (2) characterize metals melted and solidified in the low gravity space environment compared to one-gravity of earth, and (3) determine feasibility of joining metals in space. The experiment used the electron beam (EB) and chamber of the M512 apparatus to make a dwell puddle and a melt in a rotating disc of varying thickness. Hence, the EB performed cut-through, full and partial penetration melts, in addition to a resolidified button. The three disc materials were aluminum 2219-T87, 304 stainless steel, and pure tantalum to provide a wide range of density and melting conditions. Observations to date include the proof that EB welding, cutting, and melting can be done successfully in low gravity. Earlier, some welding authorities had postulated that without gravity the EB would force the molten puddle out of contact. However, the experiment proved that surface tension forces predominate. From the viewpoint of cast-solidification, small, equiaxed grains in Skylab specimens compared to large, elongated grains in ground based specimens were observed. The former are thought to be associated with constitutional supercooling and nucleation where the latter are associated with dendritic solidification. In further support of the more equiaxed grain growth in Skylab, symmetric subgrain patterns were frequently observed where there was much less symmetry in ground based specimens.

  2. Laser Overlap Welding of Zinc-coated Steel on Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Kashani, Hamed Tasalloti; Kah, Paul; Martikainen, Jukka

    Local reinforcement of aluminum with laser welded patches of zinc-coated steel can effectively contribute to crashworthiness, durability and weight reduction of car body. However, the weld between Zn-coated steel and aluminum is commonly susceptible to defects such as spatter, cavity and crack. The vaporization of Zn is commonly known as the main source of instability in the weld pool and cavity formation, especially in a lap joint configuration. Cracks are mainly due to the brittle intermetallic compounds growing at the weld interface of aluminum and steel. This study provides a review on the main metallurgical and mechanical concerns regarding laser overlap welding of Zn-coated steel on Al-alloy and the methods used by researchers to avoid the weld defects related to the vaporization of Zn and the poor metallurgical compatibility between steel and aluminum.

  3. Development of a High Chromium Ni-Base Filler Metal Resistant to Ductility Dip Cracking and Solidification Cracking

    NASA Astrophysics Data System (ADS)

    Hope, Adam T.

    Many nuclear reactor components previously constructed with Ni-based alloys containing 20 wt% Cr have been found to be susceptible to stress corrosion cracking. The nuclear power industry now uses high chromium (˜30wt%) Ni-based filler metals to mitigate stress corrosion cracking. Current alloys are plagued with weldability issues, either solidification cracking or ductility dip cracking (DDC). Solidification cracking is related to solidification temperature range and the DDC is related to the fraction eutectic present in the microstructure. It was determined that an optimal alloy should have a solidification temperature range less than 150°C and at least 2% volume fraction eutectic. Due to the nature of the Nb rich eutectic that forms, it is difficult to avoid both cracking types simultaneously. Through computational modeling, alternative eutectic forming elements, Hf and Ta, have been identified as replacements for Nb in such alloys. Compositions have been optimized through a combination of computational and experimental techniques combined with a design of experiment methodology. Small buttons were melted using commercially pure materials in a copper hearth to obtain the desired compositions. These buttons were then subjected to a gas tungsten arc spot weld. A type C thermocouple was used to acquire the cooling history during the solidification process. The cooling curves were processed using Single Sensor Differential Thermal Analysis to determine the solidification temperature range, and indicator of solidification cracking susceptibility. Metallography was performed to determine the fraction eutectic present, an indicator of DDC resistance. The optimal level of Hf to resist cracking was found to be 0.25 wt%. The optimal level of Ta was found to be 4 wt%. gamma/MC type eutectics were found to form first in all Nb, Ta, and Hf-bearing compositions. Depending on Fe and Cr content, gamma/Laves eutectic was sometimes found in Nb and Ta-bearing compositions, while Hf-bearing compositions had gamma/Ni7Hf2 as the final eutectic to solidify. This study found that the extra Cr in the current generation alloys promotes the gamma/Laves phase eutectic, which expands the solidification temperature range and promotes solidification cracking. Both Ta-bearing and Hf-bearing eutectics were found to solidify at higher temperatures than Nb-bearing eutectics, leading to narrower solidification temperature ranges. Weldability testing on the optimized Ta-bearing compositions revealed good resistance to both DDC and solidification cracking. Unexpectedly, the optimized Hf-bearing compositions were quite susceptible to solidification cracking. This led to an investigation on the possible wetting effect of eutectics on solidification cracking susceptibly, and a theory on how wetting affects the solidification crack susceptibility and the volume fraction of eutectic needed for crack healing has been proposed. Alloys with eutectics that easily wet the grain boundaries have increased solidification crack susceptibility at low volume fraction eutectics, but as the fraction eutectic is increased, experience crack healing at relatively lower fraction eutectics than alloys with eutectics that don't wet as easily. Hf rich eutectics were found to wet grain boundaries significantly more than Nb rich eutectics. Additions of Mo were also found to increase the wetting of eutectics in Nb-bearing alloys.

  4. Experimental and theoretical characterization of deep penetration welding threshold induced by 1-μm laser

    NASA Astrophysics Data System (ADS)

    Zou, J. L.; He, Y.; Wu, S. K.; Huang, T.; Xiao, R. S.

    2015-12-01

    The deep penetration-welding threshold (DPWT) is the critical value that describes the welding mode transition from the thermal conduction to the deep penetration. The objective of this research is to clarify the DPWT induced by the lasers with wavelength of 1 μm (1-μm laser), based on experimental observation and theoretical analysis. The experimental results indicated that the DPWT was the ratio between laser power and laser spot diameter (P/d) rather than laser power density (P/S). The evaporation threshold was smaller than the DPWT, while the jump threshold of the evaporated mass flux in the molten pool surface was consistent with the DPWT. Based on the force balance between the evaporation recoil pressure and the surface tension pressure at the gas-liquid interface of the molten pool as well as the temperature field, we developed a self-focusing model, which further confirmed the experimental results.

  5. Lattice relations and solidification of the complex regular eutectic (Cr,Fe)-(Cr,Fe)23C6

    NASA Astrophysics Data System (ADS)

    Lai, Hsuan-Han; Hsieh, Chih-Chun; Lin, Chi-Ming; Wu, Weite

    2017-05-01

    The eutectic (Cr,Fe)-(Cr,Fe)23C6 showed a triaxial fishbone structure and could be categorized as a "complex regular structure". In this study, the lattice relations of the fishbone (Cr,Fe)23C6 were examined and the solidification process was observed using a transmission electron microscope and a confocal laser scanning microscope. For one of the three fish bones in a eutectic cell, parallel (Cr,Fe)23C6 lamellas at one side of the spine had the same lattice direction, as did those in the (Cr,Fe) phase. The lattices of neighboring (Cr,Fe)23C6 and (Cr,Fe) phases were not coherent. Lamellar (Cr,Fe)23C6 on opposite sides of a spine had different lattice directions, and their lattice boundary was in the spine. By using the confocal laser scanning microscope, the solidification of lamellar eutectic structure could be observed. At the low cooling rate of 5 o C·min-1, parallel lamellas would grow thick blocks instead of thin plates. To obtain a thin lamellar eutectic structure, the cooling rate should be higher, like the rate in welding.

  6. Investigation of molten pool oscillation during GMAW-P process based on a 3D model

    NASA Astrophysics Data System (ADS)

    Wang, L. L.; Lu, F. G.; Cui, H. C.; Tang, X. H.

    2014-11-01

    In order to better reveal the oscillation mechanism of the pulsed gas metal arc welding (GMAW-P) process due to an alternately varied welding current, arc plasma and molten pool oscillation were simulated through a self-consistent three-dimensional model. Based on an experimental analysis of the dynamic variation of the arc plasma and molten pool captured by a high-speed camera, the model was validated by comparison of the measured and predicted results. The calculated results showed that arc pressure was the key factor causing the molten pool to oscillate. The variation in arc size and temperature from peak time to base time resulted in a great difference in the heat input and arc pressure acting on the molten pool. The surface deformation of the molten pool due to the varying degrees of arc pressure induced alternate displacement and backflow in the molten metal. The periodic iteration of deeper and shallower surface deformation, drain and backflow of molten metal caused the molten pool to oscillate at a certain frequency. In this condition, the arc pressure at the peak time is more than six times higher than that at the base time, and the maximum surface depression is 1.4 mm and 0.6 mm, respectively, for peak time and base time.

  7. The Mechanism of Ultrasonic Vibration on Grain Refining and Degassing in GTA Spot Welding of Copper Joints.

    PubMed

    Al-Ezzi, Salih; Quan, Gaofeng; Elrayah, Adil

    2018-05-07

    This paper examines the effect of ultrasonic vibration (USV) on grain size and interrupted porosity in Gas Tungsten Arc (GTA) spot-welded copper. Grain size was refined by perpendicularly attaching a transducer to the welded sheet and applying USV to the weld pool for a short time (0, 2, 4, and 6 s) in addition improvements to the degassing process. Results illustrate a significant reduction of grain size (57%). Notably, USV provided interaction between reformations (fragmentation) and provided nucleation points (detaching particles from the fusion line) for grains in the nugget zone and the elimination of porosity in the nugget zone. The GTA spot welding process, in conjunction with USV, demonstrated an improvement in the corrosion potential for a copper spot-welded joint in comparison to the joint welded without assistance of USV. Finally, welding of copper by GTA spot welding in conjunction with ultrasound for 2 s presented significant mechanical properties.

  8. The Mechanism of Ultrasonic Vibration on Grain Refining and Degassing in GTA Spot Welding of Copper Joints

    PubMed Central

    Quan, Gaofeng

    2018-01-01

    This paper examines the effect of ultrasonic vibration (USV) on grain size and interrupted porosity in Gas Tungsten Arc (GTA) spot-welded copper. Grain size was refined by perpendicularly attaching a transducer to the welded sheet and applying USV to the weld pool for a short time (0, 2, 4, and 6 s) in addition improvements to the degassing process. Results illustrate a significant reduction of grain size (57%). Notably, USV provided interaction between reformations (fragmentation) and provided nucleation points (detaching particles from the fusion line) for grains in the nugget zone and the elimination of porosity in the nugget zone. The GTA spot welding process, in conjunction with USV, demonstrated an improvement in the corrosion potential for a copper spot-welded joint in comparison to the joint welded without assistance of USV. Finally, welding of copper by GTA spot welding in conjunction with ultrasound for 2 s presented significant mechanical properties. PMID:29735894

  9. Effect of Auxiliary Preheating of the Filler Wire on Quality of Gas Metal Arc Stainless Steel Claddings

    NASA Astrophysics Data System (ADS)

    Shahi, Amandeep S.; Pandey, Sunil

    2008-02-01

    Weld cladding is a process for producing surfaces with good corrosion resistant properties by means of depositing/laying of stainless steels on low-carbon steel components with an objective of achieving maximum economy and enhanced life. The aim of the work presented here was to investigate the effect of auxiliary preheating of the solid filler wire in mechanized gas metal arc welding (GMAW) process (by using a specially designed torch to preheat the filler wire independently, before its emergence from the torch) on the quality of the as-welded single layer stainless steel overlays. External preheating of the filler wire resulted in greater contribution of arc energy by resistive heating due to which significant drop in the main welding current values and hence low dilution levels were observed. Metallurgical aspects of the as welded overlays such as chemistry, ferrite content, and modes of solidification were studied to evaluate their suitability for service and it was found that claddings obtained through the preheating arrangement, besides higher ferrite content, possessed higher content of chromium, nickel, and molybdenum and lower content of carbon as compared to conventional GMAW claddings, thereby giving overlays with superior mechanical and corrosion resistance properties. The findings of this study not only establish the technical superiority of the new process, but also, owing to its productivity-enhanced features, justify its use for low-cost surfacing applications.

  10. Modeling macro-and microstructures of gas-metal-arc welded HSLA-100 steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Z.; Debroy, T.

    1999-06-01

    Fluid flow and heat transfer during gas-metal-arc welding (GMAW) of HSLA-100 steel were studied using a transient, three-dimensional, turbulent heat transfer and fluid flow model. The temperature and velocity fields, cooling rates, and shape and size of the fusion and heat-affected zones (HAZs) were calculated. A continuous-cooling-transformation (CCT) diagram was computed to aid in the understanding of the observed weld metal microstructure. The computed results demonstrate that the dissipation of heat and momentum in the weld pool is significantly aided by turbulence,m thus suggesting that previous modeling results based on laminar flow need to be re-examined. A comparison of themore » calculated fusion and HAZ geometries with their corresponding measured values showed good agreement. Furthermore, finger penetration, a unique geometric characteristic of gas-metal-arc weld pools, could be satisfactorily predicted from the model. The ability to predict these geometric variables and the agreement between the calculated and the measured cooling rates indicate the appropriateness of using a turbulence model for accurate calculations. The microstructure of the weld metal consisted mainly of acicular ferrite with small amounts of bainite. At high heat inputs, small amounts of allotriomorphic and Widmanstaetten ferrite were also observed. The observed microstructures are consistent with those expected from the computed CCT diagram and the cooling rates. The results presented here demonstrate significant promise for understanding both macro-and microstructures of steel welds from the combination of the fundamental principles from both transport phenomena and phase transformation theory.« less

  11. Hybrid laser arc welding: State-of-art review

    NASA Astrophysics Data System (ADS)

    Acherjee, Bappa

    2018-02-01

    Hybrid laser arc welding simultaneously utilizes the arc welding and the laser welding, in a common interaction zone. The synergic effects of laser beam and eclectic arc in the same weld pool results in an increase of welding speed and penetration depth along with the enhancement of gap bridging capability and process stability. This paper presents the current status of this hybrid technique in terms of research, developments and applications. Effort is made to present a comprehensive technical know-how about this process through a systematic review of research articles, industrial catalogues, technical notes, etc. In the introductory part of the review, an overview of the hybrid laser arc welding is presented, including operation principle, process requirements, historical developments, benefits and drawbacks of the process. This is followed by a detailed discussion on control parameters those govern the performance of hybrid laser arc welding process. Thereafter, a report of improvements of performance and weld qualities achieved by using hybrid welding process is presented based on review of several research papers. The succeeding sections furnish the examples of industrial applications and the concluding remarks.

  12. Composition and automated crystal orientation mapping of rapid solidification products in hypoeutectic Al-4 at.%Cu alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zweiacker, K. W.; Liu, Can; Gordillo, M. A.

    Rmore » apid solidification can produce metastable phases and unusual microstructure modifications in multi-component alloys during additive manufacturing or laser beam welding. Composition and phase mapping by transmission electron microscopy have been used in this paper to characterize the morphologically distinct zones developing in hypoeutectic Al-4 at.% Cu alloy after pulsed laser melting for different crystal growth rate regimes. Deviations of the compositions of the alloy phases from equilibrium predictions and unique orientation relationships between the solidification transformation products have been determined. Specifically, for the columnar growth zone at solidification rates of 0.8 m s - 1 < v < v a = 1.8 m s - 1 , two distinct orientation relationships were established between the concomitantly forming non-equilibrium phases, supersaturated α-Al solid solution and the discontinuously distributed α-Al 2Cu-based θ'-phase, which can be described as {110} θ ∥ {001} α, [001] θ ∥ [110] α and {001} θ ∥ {001} α, [100] θ ∥ [100] α. These orientation relationships permit formation of coherent interphase interfaces with low interfacial free energy. Finally, this endows a kinetic advantage to the thermodynamically less stable θ'-Al 2Cu phase relative to the more stable equilibrium θ-Al 2Cu phase during formation of the morphologically modified eutectic of the columnar growth zone grains, since repeated nucleation is required to establish the discontinuous distribution of θ'-Al 2Cu phase.« less

  13. Composition and automated crystal orientation mapping of rapid solidification products in hypoeutectic Al-4 at.%Cu alloys

    DOE PAGES

    Zweiacker, K. W.; Liu, Can; Gordillo, M. A.; ...

    2017-12-05

    Rmore » apid solidification can produce metastable phases and unusual microstructure modifications in multi-component alloys during additive manufacturing or laser beam welding. Composition and phase mapping by transmission electron microscopy have been used in this paper to characterize the morphologically distinct zones developing in hypoeutectic Al-4 at.% Cu alloy after pulsed laser melting for different crystal growth rate regimes. Deviations of the compositions of the alloy phases from equilibrium predictions and unique orientation relationships between the solidification transformation products have been determined. Specifically, for the columnar growth zone at solidification rates of 0.8 m s - 1 < v < v a = 1.8 m s - 1 , two distinct orientation relationships were established between the concomitantly forming non-equilibrium phases, supersaturated α-Al solid solution and the discontinuously distributed α-Al 2Cu-based θ'-phase, which can be described as {110} θ ∥ {001} α, [001] θ ∥ [110] α and {001} θ ∥ {001} α, [100] θ ∥ [100] α. These orientation relationships permit formation of coherent interphase interfaces with low interfacial free energy. Finally, this endows a kinetic advantage to the thermodynamically less stable θ'-Al 2Cu phase relative to the more stable equilibrium θ-Al 2Cu phase during formation of the morphologically modified eutectic of the columnar growth zone grains, since repeated nucleation is required to establish the discontinuous distribution of θ'-Al 2Cu phase.« less

  14. Welding of 316L Austenitic Stainless Steel with Activated Tungsten Inert Gas Process

    NASA Astrophysics Data System (ADS)

    Ahmadi, E.; Ebrahimi, A. R.

    2015-02-01

    The use of activating flux in TIG welding process is one of the most notable techniques which are developed recently. This technique, known as A-TIG welding, increases the penetration depth and improves the productivity of the TIG welding. In the present study, four oxide fluxes (SiO2, TiO2, Cr2O3, and CaO) were used to investigate the effect of activating flux on the depth/width ratio and mechanical property of 316L austenitic stainless steel. The effect of coating density of activating flux on the weld pool shape and oxygen content in the weld after the welding process was studied systematically. Experimental results indicated that the maximum depth/width ratio of stainless steel activated TIG weld was obtained when the coating density was 2.6, 1.3, 2, and 7.8 mg/cm2 for SiO2, TiO2, Cr2O3, and CaO, respectively. The certain range of oxygen content dissolved in the weld, led to a significant increase in the penetration capability of TIG welds. TIG welding with active fluxes can increase the delta-ferrite content and improves the mechanical strength of the welded joint.

  15. Influence of Joint Configuration on the Strength of Laser Welded Presshardened Steel

    NASA Astrophysics Data System (ADS)

    Kügler, H.; Mittelstädt, C.; Vollertsen, F.

    Presshardened steel is used in nowadays automotive production. Due to its high strength, sheet thicknesses can be reduced which results in decreasing weight of car body components. However, because of microstructure softening and coating agglomerations in the seam, welding is still a challenge. In this paper laser beam welding of 22MnB5 with varying energy input per irradiated area is presented. It is found that increasing energy input per seam length reduces tensile strength. Using a small spot size of 200 μm, tensile strength of 1434 N/mm2 can be reached in bead on plate welds. In lap welds tensile strength is limited because of coating particles agglomerating at the melt pool border line. However, the resulting strength is higher when using several small weld seams than using one seam with the same total seam width. With three weld seams, each 0.5mm in width, tensile strength of 911N/mm2 is reached in lap welding.

  16. Coupling of Laser with Plasma Arc to Facilitate Hybrid Welding of Metallic Materials: A Review

    NASA Astrophysics Data System (ADS)

    Zhiyong, Li; Srivatsan, T. S.; Yan, LI; Wenzhao, Zhang

    2013-02-01

    Hybrid laser arc welding combines the advantages of laser welding and arc welding. Ever since its origination in the late 1970s, this technique has gained gradual attention and progressive use due to a combination of high welding speed, better formation of weld bead, gap tolerance, and increased penetration coupled with less distortion. In hybrid laser arc welding, one of the reasons for the observed improvement is an interaction or coupling effect between the plasma arc, laser beam, droplet transfer, and the weld pool. Few researchers have made an attempt to study different aspects of the process to facilitate a better understanding. It is difficult to get a thorough understanding of the process if only certain information in a certain field is provided. In this article, an attempt to analyze the coupling effect of the process was carried out based on a careful review of the research work that has been done which provides useful information from a different prospective.

  17. Some recent studies on laser cladding and dissimilar welding

    NASA Astrophysics Data System (ADS)

    Kaul, Rakesh; Ganesh, P.; Paul, C. P.; Albert, S. K.; Mudali, U. Kamachi; Nath, A. K.

    2006-01-01

    Indigenous development of high power CO II laser technology and industrial application of lasers represent two important mandates of the laser program, being pursued at Centre for Advanced Technology (CAT), India. The present paper describes some of the important laser material processing studies, involving cladding and dissimilar welding, performed in authors' laboratory. The first case study describes how low heat input characteristics of laser cladding process has been successfully exploited for suppressing dilution in "Colmonoy6" (a nickel-base hardfacing alloy) deposits on austenitic stainless steel components. Crack free hardfaced deposits were obtained by controlling heating and cooling rates associated with laser treatment. The results show significant advantage over Colmonoy 6 deposits made by GTAW, where a 2.5 mm thick region of dilution (with reduced hardness) develops next to substrateiclad interface. The next work involves laser-assisted deposition of graded "Stellite6" (a Co-base hardfacing alloy) with smooth transition in chemical composition and hardness for enhanced resistance against cracking, esp. under thermal cycling conditions. The following two case studies demonstrate significant improvement in corrosion properties of type 304L stainless steel by laser surface alloying, achieved through cladding route. The following case study demonstrates engineering of fusion zone microstructure of end plug dissimilar weld (between alloy D9 and type 3 16M stainless steel) by controlled preferential displacement of focused laser beam, which, in-turn, enhanced its resistance against solidification cracking. Crater appearing at the termination point of laser weld is also eliminated by ramping of laser power towards the end of laser welding. The last case study involves engineering of fusion zone microstructure of dissimilar laser weld between type 304 austenitic stainless steel and stabilized 17%Cr ferritic stainless steel by controlling welding parameters.

  18. Experimental and numerical studies on the issues in laser welding of light-weight alloys in a zero-gap lap joint configuration

    NASA Astrophysics Data System (ADS)

    Harooni, Masoud

    It is advantageous for the transportation industry to use lightweight components in the structure in order to save mass and reduce CO2 emissions. One of the lightest structural metals, magnesium, fulfills the need for mass reduction within the automotive industry. Many of the body structure components in the automotive industry are assembled using joining processes such as fusion welding. Furthermore, laser welding offers a low heat impact, high process rate, joining method which is becoming increasingly popular as the cost for laser systems continues to decrease. However, there is a limited body of work investigating the laser welding of magnesium and therefore, in the current study, different techniques and methods for laser welding of magnesium alloys are numerically and experimentally studied in order to optimize process parameters to achieve high quality welds. A feasibility study was designed in order to study the effect of various laser welding process parameters (such as laser power levels and welding speeds) on weld quality. Three regression models were developed to find the best fit model that relates process parameters to the shear load of the weld. Furthermore, to understand the effect of laser welding parameters on temperature distribution in laser welding of AZ31B magnesium alloy, a numerical model was developed. A rotary Gaussian volumetric body heat source was applied in this study to obtain the temperature history during the laser welding process. Cross-sectional views of the weld beads, temperature history recorded by thermocouples, and temperature history recorded by infrared camera were used to validate the numerical model. In order to study the real-time dynamic behavior of the molten pool and the keyhole during the welding process, a high speed charge-coupled device (CCD) assisted with a green laser as an illumination source was used. In order to observe the presence of pores, prior studies destructively evaluated the weld bead however; in the current study a non-destructive evaluation method based on spectroscopy is proposed to detect the presence of pores in the lap joint of laser welded AZ31B magnesium alloy. The electron temperature that is calculated by the Boltzmann plot method is correlated to the presence of pores in the weld bead. A separate series of experiments was performed to evaluate the effect of an oxide coating layer on the dynamic behavior of the molten pool in the laser welding of an AZ31B magnesium alloy in a zero-gap lap joint configuration. A high speed CCD camera assisted with a green laser as an illumination source was selected to record the weld pool dynamics. Another technique used in this study was two-pass laser welding process to join AZ31B magnesium sheet in a zero-gap, lap-shear configuration. Two groups of samples including one pass laser welding (OPLW) and two pass laser welding (TPLW) were studied. In the two pass laser welding procedure, the first pass is performed by a defocused laser beam on the top of the two overlapped sheets in order to preheat the faying surface prior to laser welding, while the second pass is applied to melt and eventually weld the samples. Tensile and microhardness tests were used to measure the mechanical properties of the laser welded samples. A spectrometer was also used in real-time to correlate pore formation with calculated electron temperature using the Boltzmann plot method. The results of calculated electron temperature confirmed the previous results in earlier chapter. Magnesium and aluminum are two alloys which are used in different industries mainly due to their light weight. The main use of these two alloys is in automotive industry. Since different parts of the automobiles can be manufactured with each of these two alloys, it is essential to evaluate the joining feasibility of dissimilar metals such as aluminum to magnesium. A 4 kW fiber laser is used to join AZ31B magnesium alloy to AA 6014 using an overlap joint configuration. Two different methods including focused beam laser welding (FBLW) and defocused beam laser welding (DBLW) are performed. The cross-sections of the welds were studied using an optical microscope, scanning electron microscope (SEM) as well as energy-dispersive X-ray spectroscopy (EDS) to reveal the quality of the obtained dissimilar welds. The mechanical properties of the welds were studied using a tensile test and microhardness testing machines. The results show that the defocused laser welding process could help to achieve a better quality of weld. (Abstract shortened by UMI.)

  19. Optimization of hybrid laser arc welding of 42CrMo steel to suppress pore formation

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Chen, Genyu; Mao, Shuai; Zhou, Cong; Chen, Fei

    2017-06-01

    The hybrid laser arc welding (HLAW) of 42CrMo quenched and tempered steel was conducted. The effect of the processing parameters, such as the relative positions of the laser and the arc, the shielding gas flow rate, the defocusing distance, the laser power, the wire feed rate and the welding speed, on the pore formation was analyzed, the morphological characteristics of the pores were analyzed using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the majority of the pores were invasive. The pores formed at the leading a laser (LA) welding process were fewer than those at the leading a arc (AL) welding process. Increasing the shielding gas flow rate could also facilitate the reduction of pores. The laser power and the welding speed were two key process parameters to reduce the pores. The flow of the molten pool, the weld cooling rate and the pore escaping rate as a result of different parameters could all affect pore formation. An ideal pore-free weld was obtained for the optimal welding process parameters.

  20. The porosity formation mechanism in the laser-MIG hybrid welded joint of Invar alloy

    NASA Astrophysics Data System (ADS)

    Zhan, Xiaohong; Gao, Qiyu; Gu, Cheng; Sun, Weihua; Chen, Jicheng; Wei, Yanhong

    2017-10-01

    The porosity formation mechanism in the laser-metal inter gas (MIG) multi-layer hybrid welded (HW) joint of 19.05 mm thick Invar alloy is investigated. The microstructure characteristics and energy dispersive spectroscopy (EDS) are analyzed. The phase identification was conducted by the X-ray diffractometer (XRD). Experimental results show that the generation of porosity is caused by the relatively low laser power in the root pass and low current in the cover pass. It is also indicated that the microstructures of the welded joints are mainly observed to be columnar crystal and equiaxial crystal, which are closely related to the porosity formation. The EDS results show that oxygen content is significantly high in the inner wall of the porosity. The XRD results indicate that the BM and the WB of laser-MIG HW all are composed of Fe0.64Ni0.36 and γ-(Fe,Ni). When the weld pool is cooled quickly, [NiO] [FeO] and [MnO] are formed that react on C to generate CO/CO2 gases. The porosity of laser-MIG HW for Invar alloy is oxygen pore. The root source of metallurgy porosity formation is that the dissolved gases are hard to escape sufficiently and thus exist in the weld pool. Furthermore, 99.99% pure Argon is recommended as protective gas in the laser-MIG HW of Invar alloy.

  1. Process control of laser conduction welding by thermal imaging measurement with a color camera.

    PubMed

    Bardin, Fabrice; Morgan, Stephen; Williams, Stewart; McBride, Roy; Moore, Andrew J; Jones, Julian D C; Hand, Duncan P

    2005-11-10

    Conduction welding offers an alternative to keyhole welding. Compared with keyhole welding, it is an intrinsically stable process because vaporization phenomena are minimal. However, as with keyhole welding, an on-line process-monitoring system is advantageous for quality assurance to maintain the required penetration depth, which in conduction welding is more sensitive to changes in heat sinking. The maximum penetration is obtained when the surface temperature is just below the boiling point, and so we normally wish to maintain the temperature at this level. We describe a two-color optical system that we have developed for real-time temperature profile measurement of the conduction weld pool. The key feature of the system is the use of a complementary metal-oxide semiconductor standard color camera leading to a simplified low-cost optical setup. We present and discuss the real-time temperature measurement and control performance of the system when a defocused beam from a high power Nd:YAG laser is used on 5 mm thick stainless steel workpieces.

  2. Investigation of the Microstructure of Laser-Arc Hybrid Welded Boron Steel

    NASA Astrophysics Data System (ADS)

    Son, Seungwoo; Lee, Young Ho; Choi, Dong-Won; Cho, Kuk-Rae; Shin, Seung Man; Lee, Youngseog; Kang, Seong-Hoon; Lee, Zonghoon

    2018-05-01

    The microstructure of boron steel for automotive driving shaft manufacturing after laser-arc hybrid welding was investigated. Laser-arc hybrid welding technology was applied to 3-mm-thick plates of boron steel, ST35MnB. The temperature distribution of the welding pool was analyzed using the finite element method, and the microstructure of the welded boron steel was characterized using optical microscopy and scanning and transmission electron microscopies. The microstructure of the weld joint was classified into the fusion zone, the heat-affected zone (HAZ), and the base material. At the fusion zone, the bainite grains exist in the martensite matrix and show directionality because of heat input from the welding. The HAZ is composed of smaller grains, and the hardness of the HAZ is greater than that of the fusion zone. We discuss that the measured grain size and the hardness of the HAZ originate from undissolved precipitates that retard the grain growth of austenite.

  3. Real weld geometry determining mechanical properties of high power laser welded medium plates

    NASA Astrophysics Data System (ADS)

    Liu, Sang; Mi, Gaoyang; Yan, Fei; Wang, Chunming; Li, Peigen

    2018-06-01

    Weld width is commonly used as one of main factors to assess joint performances in laser welding. However, it changes significantly through the thickness direction in conditions of medium or thick plates. In this study, high-power autogenous laser welding was conducted on 7 mm thickness 201 stainless steel to elucidate the factor of whole weld transverse shape critically affecting the mechanical properties with the aim of predicting the performance visually through the weld appearance. The results show that single variation of welding parameters could result in great changes of weld pool figures and subsequently weld transverse shapes. All the obtained welds are composed of austenite containing small amount of cellular dendritic δ-Ferrite. The 0.2% proof stresses of Nail- and Peanut-shaped joint reach 458 MPa and 454 MPa, 88.2% and 87.5% of the base material respectively, while that of Wedge-shaped joint only comes to 371 MPa, 71.5% of the base material. The deterioration effect is believed to be caused by the axial grain zone in the weld center. The fatigue strength of joint P is a bit lower than N, but much better than W. Significant deformation incompatibility through the whole thickness and microstructure resistance to crack initiation should be responsible for the poor performance of W-shaped joints.

  4. A cryogenic high pressure cell for inelastic neutron scattering measurements of quantum fluids and solids.

    PubMed

    Carmichael, J R; Diallo, S O

    2013-01-01

    We present our new development of a high pressure cell for inelastic neutron scattering measurements of helium at ultra-low temperatures. The cell has a large sample volume of ~140 cm(3) and a working pressure of ~7 MPa, with a relatively thin wall-thickness (1.1 mm)--thanks to the high yield strength aluminum used in the design. Two variants of this cell have been developed. The first cell is permanently joined components using electron-beam welding and explosion welding, methods that have little or no impact on the global heat treatment of the cell. The second cell discussed has modular and interchangeable components, which includes a capacitance pressure gauge, that can be sealed using the traditional indium wire technique. The performance of the cells have been tested in recent measurements on superfluid liquid helium near the solidification line.

  5. A cryogenic high pressure cell for inelastic neutron scattering measurements of quantum fluids and solids

    NASA Astrophysics Data System (ADS)

    Carmichael, J. R.; Diallo, S. O.

    2013-01-01

    We present our new development of a high pressure cell for inelastic neutron scattering measurements of helium at ultra-low temperatures. The cell has a large sample volume of ˜140 cm3 and a working pressure of ˜7 MPa, with a relatively thin wall-thickness (1.1 mm)—thanks to the high yield strength aluminum used in the design. Two variants of this cell have been developed. The first cell is permanently joined components using electron-beam welding and explosion welding, methods that have little or no impact on the global heat treatment of the cell. The second cell discussed has modular and interchangeable components, which includes a capacitance pressure gauge, that can be sealed using the traditional indium wire technique. The performance of the cells have been tested in recent measurements on superfluid liquid helium near the solidification line.

  6. Process Stability of Ultrasonic-Wave-Assisted Gas Metal Arc Welding

    NASA Astrophysics Data System (ADS)

    Fan, Chenglei; Xie, Weifeng; Yang, Chunli; Lin, Sanbao; Fan, Yangyang

    2017-10-01

    As a newly developed arc welding method, ultrasonic-wave-assisted arc welding successfully introduced power ultrasound into the arc and weld pool, during which the ultrasonic acts on the top of the arc in the coaxial alignment direction. The advanced process for molten metals can be realized by using an additional ultrasonic field. Compared with the conventional gas metal arc welding (GMAW), the welding arc is compressed, the droplet size is decreased, and the droplet transfer frequency is increased significantly in ultrasonic-wave-assisted GMAW (U-GMAW). However, the stability of the metal transfer has deep influence on the welding quality equally, and the ultrasonic wave effect on the stability of the metal transfer is a phenomenon that is not completely understood. In this article, the stabilities of the short-circuiting transfer process and globular transfer process are studied systematically, and the effect of ultrasonic wave on the metal transfer is analyzed further. The transfer frequency and process stability of the U-GMAW process are much higher than those of the conventional GMAW. Analytical results show that the additional ultrasonic wave is helpful for improving welding stability.

  7. Method for welding an article and terminating the weldment within the perimeter of the article

    NASA Technical Reports Server (NTRS)

    Snyder, John H. (Inventor); Smashey, Russell W. (Inventor); Boerger, Eric J. (Inventor); Borne, Bruce L. (Inventor)

    2000-01-01

    An article is welded, as in weld repair of a defect, by positioning a weld lift-off block at a location on the surface of the article adjacent to the intended location of the end of the weldment on the surface of the article. The weld lift-off block has a wedge shape including a base contacting the surface of the article, and an upper face angled upwardly from the base from a base leading edge. A weld pool is formed on the surface of the article by directly heating the surface of the article using a heat source. The heat source is moved relative to the surface of the article and onto the upper surface of the weld lift-off block by crossing the leading edge of the wedge, without discontinuing the direct heating of the article by the heat source. The heating of the article with the heat source is discontinued only after the heat source is directly heating the upper face of the weld lift-off block, and not the article.

  8. Verification and validation of a rapid heat transfer calculation methodology for transient melt pool solidification conditions in powder bed metal additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plotkowski, A.; Kirka, M. M.; Babu, S. S.

    A fundamental understanding of spatial and temporal thermal distributions is crucial for predicting solidification and solid-state microstructural development in parts made by additive manufacturing. While sophisticated numerical techniques that are based on finite element or finite volume methods are useful for gaining insight into these phenomena at the length scale of the melt pool (100 - 500 µm), they are ill-suited for predicting engineering trends over full part cross-sections (> 10 x 10 cm) or many layers over long process times (> many days) due to the necessity of fully resolving the heat source characteristics. On the other hand, itmore » is extremely difficult to resolve the highly dynamic nature of the process using purely in-situ characterization techniques. This article proposes a pragmatic alternative based on a semi-analytical approach to predicting the transient heat conduction during powder bed metal additive manufacturing process. The model calculations were theoretically verified for selective laser melting of AlSi10Mg and electron beam melting of IN718 powders for simple cross-sectional geometries and the transient results are compared to steady state predictions from the Rosenthal equation. It is shown that the transient effects of the scan strategy create significant variations in the melt pool geometry and solid-liquid interface velocity, especially as the thermal diffusivity of the material decreases and the pre-heat of the process increases. With positive verification of the strategy, the model was then experimentally validated to simulate two point-melt scan strategies during electron beam melting of IN718, one intended to produce a columnar and one an equiaxed grain structure. Lastly, through comparison of the solidification conditions (i.e. transient and spatial variations of thermal gradient and liquid-solid interface velocity) predicted by the model to phenomenological CET theory, the model accurately predicted the experimental grain structures.« less

  9. Verification and validation of a rapid heat transfer calculation methodology for transient melt pool solidification conditions in powder bed metal additive manufacturing

    DOE PAGES

    Plotkowski, A.; Kirka, M. M.; Babu, S. S.

    2017-10-16

    A fundamental understanding of spatial and temporal thermal distributions is crucial for predicting solidification and solid-state microstructural development in parts made by additive manufacturing. While sophisticated numerical techniques that are based on finite element or finite volume methods are useful for gaining insight into these phenomena at the length scale of the melt pool (100 - 500 µm), they are ill-suited for predicting engineering trends over full part cross-sections (> 10 x 10 cm) or many layers over long process times (> many days) due to the necessity of fully resolving the heat source characteristics. On the other hand, itmore » is extremely difficult to resolve the highly dynamic nature of the process using purely in-situ characterization techniques. This article proposes a pragmatic alternative based on a semi-analytical approach to predicting the transient heat conduction during powder bed metal additive manufacturing process. The model calculations were theoretically verified for selective laser melting of AlSi10Mg and electron beam melting of IN718 powders for simple cross-sectional geometries and the transient results are compared to steady state predictions from the Rosenthal equation. It is shown that the transient effects of the scan strategy create significant variations in the melt pool geometry and solid-liquid interface velocity, especially as the thermal diffusivity of the material decreases and the pre-heat of the process increases. With positive verification of the strategy, the model was then experimentally validated to simulate two point-melt scan strategies during electron beam melting of IN718, one intended to produce a columnar and one an equiaxed grain structure. Lastly, through comparison of the solidification conditions (i.e. transient and spatial variations of thermal gradient and liquid-solid interface velocity) predicted by the model to phenomenological CET theory, the model accurately predicted the experimental grain structures.« less

  10. Temperature and emissivity determination of liquid steel S235

    NASA Astrophysics Data System (ADS)

    Schöpp, H.; Sperl, A.; Kozakov, R.; Gött, G.; Uhrlandt, D.; Wilhelm, G.

    2012-06-01

    Temperature determination of liquid metals is difficult but a necessary tool for improving materials and processes such as arc welding in the metal-working industry. A method to determine the surface temperature of the weld pool is described. A TIG welding process and absolute calibrated optical emission spectroscopy are used. This method is combined with high-speed photography. 2D temperature profiles are obtained. The emissivity of the radiating surface has an important influence on the temperature determination. A temperature dependent emissivity for liquid steel is given for the spectral region between 650 and 850 nm.

  11. An investigation on capability of hybrid Nd:YAG laser-TIG welding technology for AA2198 Al-Li alloy

    NASA Astrophysics Data System (ADS)

    Faraji, Amir Hosein; Moradi, Mahmoud; Goodarzi, Massoud; Colucci, Pietro; Maletta, Carmine

    2017-09-01

    This paper surveys the capability of the hybrid laser-arc welding in comparison with lone laser welding for AA2198 aluminum alloy experimentally. In the present research, a continuous Nd:YAG laser with a maximum power of 2000 W and a 350 A electric arc were used as two combined welding heat sources. In addition to the lone laser welding experiments, two strategies were examined for hybrid welding; the first one was low laser power (100 W) accompanied by high arc energy, and the second one was high laser power (2000 W) with low arc energy. Welding speed and arc current varied in the experiments. The influence of heat input on weld pool geometry was surveyed. The macrosection, microhardness profile and microstructure of the welded joints were studied and compared. The results indicated that in lone laser welding, conduction mode occurred and keyhole was not formed even in low welding speeds and thus the penetration depth was so low. It was also found that the second approach (high laser power accompanied with low arc energy) is superior to the first one (low laser power accompanied with high arc energy) in hybrid laser-arc welding of Al2198, since lower heat input was needed for full penetration weld and as a result a smaller HAZ was created.

  12. Fusion boundary microstructure evolution in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Kostrivas, Anastasios Dimitrios

    2000-10-01

    A melting technique was developed to simulate the fusion boundary of aluminum alloys using the GleebleRTM thermal simulator. Using a steel sleeve to contain the aluminum, samples were heated to incremental temperatures above the solidus temperature of a number of alloys. In alloy 2195, a 4wt%Cu-1wt%Li alloy, an equiaxed non-dendritic zone (EQZ) could be formed by heating in the temperature range from approximately 630 to 640°C. At temperatures above 640°C, solidification occurred by the normal epitaxial nucleation and growth mechanism. Fusion boundary behavior was also studied in alloys 5454-H34, 6061-T6, and 2219-T8. Additionally, experimental alloy compositions were produced by making bead on plate welds using an alloy 5454-H32 base metal and 5025 or 5087 filler metals. These filler metals contain zirconium and scandium additions, respectively, and were expected to influence nucleation and growth behavior. Both as-welded and welded/heat treated (540°C and 300°C) substrates were tested by melting simulation, resulting in dendritic and EQZ structures depending on composition and substrate condition. Orientation imaging microscopy (OIM(TM)) was employed to study the crystallographic character of the microstructures produced and to verify the mechanism responsible for EQZ formation. OIM(TM) proved that grains within the EQZ have random orientation. In all other cases, where the simulated microstructures were dendritic in nature, it was shown that epitaxy was the dominant mode of nucleation. The lack of any preferred crystallographic orientation relationship in the EQZ supports a theory proposed by Lippold et al that the EQZ is the result of heterogeneous nucleation within the weld unmixed zone. EDS analysis of the 2195 on STEM revealed particles with ternary composition consisted of Zr, Cu and Al and a tetragonal type crystallographic lattice. Microdiffraction line scans on EQZ grains in the alloy 2195 showed very good agreement between the measured Cu composition within the interior of the non-dendritic grains and the corresponding value the Scheil equation predicts for the first solid to form upon solidification for a binary Al-Cu alloy with identical Cu composition. In the context of the alloys, compositions and substrate conditions examined a mechanistic model for EQZ zone formation is proposed, helpful in adjusting base metal compositions and/or substrate conditions to control fusion boundary microstructure.

  13. A novel post-weld-shift measurement and compensation technique in butterfly-type laser module packages

    NASA Astrophysics Data System (ADS)

    Hsu, Yi-Cheng, Sr.; Tsai, Y. C.; Hung, Y. S.; Cheng, W. H.

    2005-08-01

    One of the greatest challenges in the packaging of laser modules using laser welding technique is to use a reliable and accurate joining process. However, during welding, due to the material property difference between welded components, the rapid solidification of the welded region and the associated material shrinkage often introduced a post-weld-shift (PWS) between welded components. For a typical single-mode fiber application, if the PWS induced fiber alignment shift by the laser welding joining process is even a few micrometers, up to 50 % or greater loss in the coupled power may occur. The fiber alignment shift of the PWS effect in the laser welding process has a significant impact on the laser module package yield. Therefore, a detailed understanding of the effects of PWS on the fiber alignment shifts in laser-welded laser module packages and then the compensation of the fiber alignment shifts due to PWS effects are the key research subjects in laser welding techniques for optoelectronic packaging applications. Previously, the power losses due to PWS in butterfly-type laser module packages have been qualitatively corrected by applying the laser hammering technique to the direction of the detected shift. Therefore, by applying an elastic deformation to the welded components and by observing the corresponding power variation, the direction and magnitude of the PWS may be predicted. Despite numerous studies on improving the fabrication yields of laser module packaging using the PWS correction in laser welding techniques by a qualitative estimate, limited information is available for the quantitative understanding of the PWS induced fiber alignment shift which can be useful in designing and fabricating high-yield and high-performance laser module packages. The purpose of this paper is to present a quantitative probing of the PWS induced fiber alignment shift in laser-welded butterfly-type laser module packaging by employing a novel technique of a high-magnification camera with image capture system (HMCICS). The benefit of using the HMCICS technique to determine the fiber alignment shift are quantitatively measure and compensate the PWS direction and magnitude during the laser-welded laser module packages. This study makes it possible to probe the nonlinear behavior of the PWS by using a novel HMCICS technique that results in a real time quantitative compensation of the PWS in butterfly-type laser module packages, when compared to the currently available qualitatively estimated techniques to correct the PWS2. Therefore, the reliable butterfly-type laser modules with high yield and high performance used in lightwave transmission systems may thus be developed and fabricated.

  14. Gas tungsten arc welding and friction stir welding of ultrafine grained AISI 304L stainless steel: Microstructural and mechanical behavior characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabooni, S., E-mail: s.sabooni@ma.iut.ac.ir; Karimzadeh, F.; Enayati, M.H.

    In the present study, an ultrafine grained (UFG) AISI 304L stainless steel with the average grain size of 650 nm was successfully welded by both gas tungsten arc welding (GTAW) and friction stir welding (FSW). GTAW was applied without any filler metal. FSW was also performed at a constant rotational speed of 630 rpm and different welding speeds from 20 to 80 mm/min. Microstructural characterization was carried out by High Resolution Scanning Electron Microscopy (HRSEM) with Electron Backscattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM). Nanoindentation, microhardness measurements and tensile tests were also performed to study the mechanical properties ofmore » the base metal and weldments. The results showed that the solidification mode in the GTAW welded sample is FA (ferrite–austenite) type with the microstructure consisting of an austenite matrix embedded with lath type and skeletal type ferrite. The nugget zone microstructure in the FSW welded samples consisted of equiaxed dynamically recrystallized austenite grains with some amount of elongated delta ferrite. Sigma phase precipitates were formed in the region ahead the rotating tool during the heating cycle of FSW, which were finally fragmented into nanometric particles and distributed in the weld nugget. Also there is a high possibility that the existing delta ferrite in the microstructure rapidly transforms into sigma phase particles during the short thermal cycle of FSW. These suggest that high strain and deformation during FSW can promote sigma phase formation. The final austenite grain size in the nugget zone was found to decrease with increasing Zener–Hollomon parameter, which was obtained quantitatively by measuring the peak temperature, calculating the strain rate during FSW and exact examination of hot deformation activation energy by considering the actual grain size before the occurrence of dynamic recrystallization. Mechanical properties observations showed that the welding efficiency of the FSW welded sample is around 70%, which is more than 20% higher than the GTAW welded sample. - Highlights: • Microstructure and mechanical properties of UFG 304L stainless steel were studied during GTAW and FSW. • Sigma phase formation mechanism was studied during FSW of 304L stainless steel. • THERMOCALC analysis was performed to obtain possible formation temperatures for sigma phase. • Nano-mechanical twins were found in the TMAZ region.« less

  15. Optimization of Laser Keyhole Welding Strategies of Dissimilar Metals by FEM Simulation

    NASA Astrophysics Data System (ADS)

    Garcia Navas, Virginia; Leunda, Josu; Lambarri, Jon; Sanz, Carmen

    2015-07-01

    Laser keyhole welding of dissimilar metals has been simulated to study the effect of welding strategies (laser beam displacements and tilts) and combination of metals to be welded on final quality of the joints. Molten pool geometry and welding penetration have been studied but special attention has been paid to final joint material properties, such as microstructure/phases and hardness, and especially to the residual stress state because it greatly conditions the service life of laser-welded components. For a fixed strategy (laser beam perpendicular to the joint) austenitic to carbon steel laser welding leads to residual stresses at the joint area very similar to those obtained in austenitic to martensitic steel welding, but welding of steel to Inconel 718 results in steeper residual stress gradients and higher area at the joint with detrimental tensile stresses. Therefore, when the difference in thermo-mechanical properties of the metals to be welded is higher, the stress state generated is more detrimental for the service life of the component, and consequently more relevant is the optimization of welding strategy. In laser keyhole welding of austenitic to martensitic stainless steel and austenitic to carbon steel, the optimum welding strategy is displacing the laser beam 1 mm toward the austenitic steel. In the case of austenitic steel to Inconel welding, the optimum welding strategy consists in setting the heat source tilted 45 deg and moved 2 mm toward the austenitic steel.

  16. Adjustable Lid Aids Silicon-Ribbon Growth

    NASA Technical Reports Server (NTRS)

    Mchugh, J. P.; Steidensticker, R. G.; Duncan, C. S.

    1985-01-01

    Closely-spaced crucible cover speeds up solidification. Growth rate of dendritic-web silicon ribbon from molten silicon increased by controlling distance between crucible susceptor lid and liquid/solid interface. Lid held in relatively high position when crucible newly filled with chunks of polycrystalline silicon. As silicon melts and forms pool of liquid at lower level, lid gradually lowered.

  17. Finite Element Multi-scale Modeling of Chemical Segregation in Steel Solidification Taking into Account the Transport of Equiaxed Grains

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi-Thuy-My; Gandin, Charles-André; Combeau, Hervé; Založnik, Miha; Bellet, Michel

    2018-02-01

    The transport of solid crystals in the liquid pool during solidification of large ingots is known to have a significant effect on their final grain structure and macrosegregation. Numerical modeling of the associated physics is challenging since complex and strong interactions between heat and mass transfer at the microscopic and macroscopic scales must be taken into account. The paper presents a finite element multi-scale solidification model coupling nucleation, growth, and solute diffusion at the microscopic scale, represented by a single unique grain, while also including transport of the liquid and solid phases at the macroscopic scale of the ingots. The numerical resolution is based on a splitting method which sequentially describes the evolution and interaction of quantities into a transport and a growth stage. This splitting method reduces the non-linear complexity of the set of equations and is, for the first time, implemented using the finite element method. This is possible due to the introduction of an artificial diffusion in all conservation equations solved by the finite element method. Simulations with and without grain transport are compared to demonstrate the impact of solid phase transport on the solidification process as well as the formation of macrosegregation in a binary alloy (Sn-5 wt pct Pb). The model is also applied to the solidification of the binary alloy Fe-0.36 wt pct C in a domain representative of a 3.3-ton steel ingot.

  18. Thermomechanically coupled conduction mode laser welding simulations using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Hu, Haoyue; Eberhard, Peter

    2017-10-01

    Process simulations of conduction mode laser welding are performed using the meshless Lagrangian smoothed particle hydrodynamics (SPH) method. The solid phase is modeled based on the governing equations in thermoelasticity. For the liquid phase, surface tension effects are taken into account to simulate the melt flow in the weld pool, including the Marangoni force caused by a temperature-dependent surface tension gradient. A non-isothermal solid-liquid phase transition with the release or absorption of additional energy known as the latent heat of fusion is considered. The major heat transfer through conduction is modeled, whereas heat convection and radiation are neglected. The energy input from the laser beam is modeled as a Gaussian heat source acting on the initial material surface. The developed model is implemented in Pasimodo. Numerical results obtained with the model are presented for laser spot welding and seam welding of aluminum and iron. The change of process parameters like welding speed and laser power, and their effects on weld dimensions are investigated. Furthermore, simulations may be useful to obtain the threshold for deep penetration welding and to assess the overall welding quality. A scalability and performance analysis of the implemented SPH algorithm in Pasimodo is run in a shared memory environment. The analysis reveals the potential of large welding simulations on multi-core machines.

  19. Effects of SO/sub 2/ shielding gas additions on GTA weld shape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiple, C.R.; Burgardt, P.

    1985-06-01

    Substantial increases in GTA weld depth/width ratio resulted from small additions of sulfur dioxide (SO/sub 2/) to the torch shielding gas when welding two stainless steels. The improvement was demonstrated on both Types 304 and 21-6-9 austenitic stainless steels, but would be expected for iron-base alloys generally. The weld pool shape achieved was essentially independent of variations in both SO/sub 2/ content of the torch gas and base metal composition when SO/sub 2/ in the shielding gas was in the range of 500 to 1400 ppm. With 700 ppm SO/sub 2/ in the torch gas, less than 30 ppm sulfurmore » was added to an autogenous weld bead. For alloys where this additional sulfur can be tolerated and appropriate measures can be taken to handle the toxic SO/sub 2/, this technique offers a promising way to improve GTA weld joint penetration while suppressing variable penetration.« less

  20. Improving Keyhole Stability by External Magnetic Field in Full Penetration Laser Welding

    NASA Astrophysics Data System (ADS)

    Li, Min; Xu, Jiajun; Huang, Yu; Rong, Youmin

    2018-05-01

    An external magnetic field was used to improve the keyhole stability in full penetration laser welding 316L steel. The increase of magnetic field strength gave rise to a shorter flying time of the spatter, a weaker size and brightness of the spatter, and a larger spreading area of vapor plume. This suggested that the dynamic behavior of the keyhole was stabilized by the external magnetic field. In addition, a stronger magnetic field could result in a more homogeneous distribution of laser energy, which increased the width of the weld zone, and the height of the bottom weld zone from 381 μm (0 mT) to 605 μm (50 mT). Dendrite and cellular crystal near the weld center disappeared, and grain size was refined. The external magnetic field was beneficial to the keyhole stability and improved the joint quality, because the weld pool was stirred by a Lorentz force resulting from the coupling effect of the magnetic field and inner thermocurrent.

  1. Numerical simulation and experimental investigation of laser dissimilar welding of carbon steel and austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Nekouie Esfahani, M. R.; Coupland, J.; Marimuthu, S.

    2015-07-01

    This study reports an experimental and numerical investigation on controlling the microstructure and brittle phase formation during laser dissimilar welding of carbon steel to austenitic stainless steel. The significance of alloying composition and cooling rate were experimentally investigated. The investigation revealed that above a certain specific point energy the material within the melt pool is well mixed and the laser beam position can be used to control the mechanical properties of the joint. The heat-affected zone within the high-carbon steel has significantly higher hardness than the weld area, which severely undermines the weld quality. A sequentially coupled thermo-metallurgical model was developed to investigate various heat-treatment methodology and subsequently control the microstructure of the HAZ. Strategies to control the composition leading to dramatic changes in hardness, microstructure and service performance of the dissimilar laser welded fusion zone are discussed.

  2. Characterization and Optimization of Ni-WC Composite Weld Matrix Deposited by Plasma-Transferred Arc Process

    NASA Astrophysics Data System (ADS)

    Tahaei, Ali; Horley, Paul; Merlin, Mattia; Torres-Torres, David; Garagnani, Gian Luca; Praga, Rolando; Vázquez, Felipe J. García; Arizmendi-Morquecho, Ana

    2017-03-01

    This work is dedicated to optimization of carbide particle system in a weld bead deposited by PTAW technique over D2 tool steel with high chromium content. The paper reports partial melting of the original carbide grains of the Ni-based filling powder, and growing of the secondary carbide phase (Cr, Ni)_3W_3C in the form of dendrites with wide branches that enhanced mechanical properties of the weld. The optimization of bead parameters was made with design of experiment methodology complemented by a complex sample characterization including SEM, EDXS, XRD, and nanoindentation measurements. It was shown that the preheat of the substrate to a moderate temperature 523 K (250° C) establishes linear pattern of metal flow in the weld pool, resulting in the most homogeneous distribution of the primary carbides in the microstructure of weld bead.

  3. Characterization of microstructure of A508III/309L/308L weld and oxide films formed in deaerated high-temperature water

    NASA Astrophysics Data System (ADS)

    Xiong, Qi; Li, Hongjuan; Lu, Zhanpeng; Chen, Junjie; Xiao, Qian; Ma, Jiarong; Ru, Xiangkun

    2018-01-01

    The microstructure of A508III/309L/308L weld clad and the properties of the oxide films formed in simulated pressurized water reactor primary water at 290 °C were characterized. The A508III heat-affected zone (HAZ) consisted primarily of a decarburization zone with ferrite near the fusion line and a following pearlite structure with fine grains. A high hardness region in the HAZ could be the result of C-enrichment. M23C6 and M7C3 precipitates were observed in element transition zone. 308L stainless steel (SS) containing ∼ 12% ferrites exhibited both ferritic-austenitic solidification mode (FA mode, δ→γ) and austenitic-ferritic solidification mode (AF mode, γ→δ), whereas 309L SS containing ∼ 9% ferrites exhibited only FA mode. The A508III surface oxide film was mainly Fe3O4 in deaerated high-temperature water. The coarse grain zone covered with few oxide particles was different from other types of film on the other region of HAZ and the bulk zone. More pitting appears on 309L SS after immersion in deaerated high-temperature water due to the dissolution of inclusions. SS surface oxide films consisted primarily of spinels. The oxide film on SS was divided into two layers. Ni was concentrated mainly at the oxide/substrate interface. The oxide film formed on 309L was thicker than that on the 308L. The ferrite in the stainless steel could improve the oxidation resistance.

  4. Development of an intelligent system for cooling rate and fill control in GMAW. [Gas Metal Arc Welding (GMAW)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Einerson, C.J.; Smartt, H.B.; Johnson, J.A.

    1992-01-01

    A control strategy for gas metal arc welding (GMAW) is developed in which the welding system detects certain existing conditions and adjusts the process in accordance to pre-specified rules. This strategy is used to control the reinforcement and weld bead centerline cooling rate during welding. Relationships between heat and mass transfer rates to the base metal and the required electrode speed and welding speed for specific open circuit voltages are taught to a artificial neural network. Control rules are programmed into a fuzzy logic system. TRADITOINAL CONTROL OF THE GMAW PROCESS is based on the use of explicit welding proceduresmore » detailing allowable parameter ranges on a pass by pass basis for a given weld. The present work is an exploration of a completely different approach to welding control. In this work the objectives are to produce welds having desired weld bead reinforcements while maintaining the weld bead centerline cooling rate at preselected values. The need for this specific control is related to fabrication requirements for specific types of pressure vessels. The control strategy involves measuring weld joint transverse cross-sectional area ahead of the welding torch and the weld bead centerline cooling rate behind the weld pool, both by means of video (2), calculating the required process parameters necessary to obtain the needed heat and mass transfer rates (in appropriate dimensions) by means of an artificial neural network, and controlling the heat transfer rate by means of a fuzzy logic controller (3). The result is a welding machine that senses the welding conditions and responds to those conditions on the basis of logical rules, as opposed to producing a weld based on a specific procedure.« less

  5. Ductility dip cracking susceptibility of Inconel Filler Metal 52 and Inconel Alloy 690

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikel, J.M.; Parker, D.M.

    1998-06-01

    Alloy 690 and Filler Metal 52 have become the materials of choice for commercial nuclear steam generator applications in recent years. Filler Metal 52 exhibits improved resistance to weld solidification and weld-metal liquation cracking as compared to other nickel-based filler metals. However, recently published work indicates that Filler Metal 52 is susceptible to ductility dip cracking (DDC) in highly restrained applications. Susceptibility to fusion zone DDC was evaluated using the transverse varestraint test method, while heat affected zone (HAZ) DDC susceptibility was evaluated using a newly developed spot-on-spot varestraint test method. Alloy 690 and Filler Metal 52 cracking susceptibility wasmore » compared to the DDC susceptibility of Alloy 600, Filler Metal 52, and Filler Metal 625. In addition, the effect of grain size and orientation on cracking susceptibility was also included in this study. Alloy 690, Filler Metal 82, Filler Metal 52, and Filler Metal 625 were found more susceptible to fusion zone DDC than Alloy 600. Filler Metal 52 and Alloy 690 were found more susceptible to HAZ DDC when compared to wrought Alloy 600, Filler Metal 82 and Filler Metal 625. Filler Metal 52 exhibited the greatest susceptibility to HAZ DDC of all the weld metals evaluated. The base materials were found much more resistant to HAZ DDC in the wrought condition than when autogenously welded. A smaller grain size was found to offer greater resistance to DDC. For weld metal where grain size is difficult to control, a change in grain orientation was found to improve resistance to DDC.« less

  6. Development of an intelligent system for cooling rate and fill control in GMAW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Einerson, C.J.; Smartt, H.B.; Johnson, J.A.

    1992-09-01

    A control strategy for gas metal arc welding (GMAW) is developed in which the welding system detects certain existing conditions and adjusts the process in accordance to pre-specified rules. This strategy is used to control the reinforcement and weld bead centerline cooling rate during welding. Relationships between heat and mass transfer rates to the base metal and the required electrode speed and welding speed for specific open circuit voltages are taught to a artificial neural network. Control rules are programmed into a fuzzy logic system. TRADITOINAL CONTROL OF THE GMAW PROCESS is based on the use of explicit welding proceduresmore » detailing allowable parameter ranges on a pass by pass basis for a given weld. The present work is an exploration of a completely different approach to welding control. In this work the objectives are to produce welds having desired weld bead reinforcements while maintaining the weld bead centerline cooling rate at preselected values. The need for this specific control is related to fabrication requirements for specific types of pressure vessels. The control strategy involves measuring weld joint transverse cross-sectional area ahead of the welding torch and the weld bead centerline cooling rate behind the weld pool, both by means of video (2), calculating the required process parameters necessary to obtain the needed heat and mass transfer rates (in appropriate dimensions) by means of an artificial neural network, and controlling the heat transfer rate by means of a fuzzy logic controller (3). The result is a welding machine that senses the welding conditions and responds to those conditions on the basis of logical rules, as opposed to producing a weld based on a specific procedure.« less

  7. Laser welding aluminum without filler metal using continuous wave and pulsed Nd:YAG lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bransch, H.N.

    1994-12-31

    A problem with automotive aluminum tubing applications, particularly for air conditioning heat exchanger assemblies, is terminating the tube reliably and inexpensively. An alternative to upsetting and mchining threads to the tube end is welding a nut (made from a stronger, easily machinable alloy such as Al 5456 or Al 6061) to lengths of tubing (made from a softer alloy such as Al 3003). Laser welding was investigated in order to reduce heat input and increase process speeds copared to brazing or gas metal arc welding (GMAW). Nd:YAG lasers were selected as beam source because of better absorptivity of the wavelengthmore » compared to CO{sub 2} lasers and simplified tooling with fiber optic beam delivery. It wa determined that a pulsed Nd:YAG laser produced 1.0 mm penetration at 0.3 m/min with 400 W average power, and 1.0 mm penetration at 0.75 m/min with 1000 W average power, however, an Al 4047 filler metal was required to eliminate solidification cracking. A 1900 W CW laser could weld the Al 3003 tube to the Al 5456 nut without filler metal, however, there was insufficient penetration (0.25 mm) to meet the mechanical and hermeticity requirements. To enhance penetration, but still reduce the tendency for hot cracking, the 1900 W average power beam was sine wave modulated from 400 W to 3600 W at 250 Hz and usd to weld the Al 3003 directly to the Al 5456. These parameters produced 1.2 mm penetration at 1.2 m/min without significant cracking and without using a filler metal. In addition, the welds passed all hermeticity and tensile strength tests. This combination of materials, joint design, and laser parameters produced tube assemblies that passed a leak check (300 psi nitrogen in 60{degrees}C water for 1 min) and tensile (tube breakage 100 mm from the joint, 5.2 kN tensile strength).« less

  8. Welding Residual Stress Analysis and Fatigue Strength Assessment at Elevated Temperature for Multi-pass Dissimilar Material Weld Between Alloy 617 and P92 Steel

    NASA Astrophysics Data System (ADS)

    Lee, Juhwa; Hwang, Jeongho; Bae, Dongho

    2018-03-01

    In this paper, welding residual stress analysis and fatigue strength assessment were performed at elevated temperature for multi-pass dissimilar material weld between Alloy 617 and P92 steel, which are used in thermal power plant. Multi-pass welding between Alloy 617 and P92 steel was performed under optimized welding condition determined from repeated pre-test welding. In particular, for improving dissimilar material weld-ability, the buttering welding technique was applied on the P92 steel side before multi-pass welding. Welding residual stress distribution at the dissimilar material weld joint was numerically analyzed by using the finite element method, and compared with experimental results which were obtained by the hole-drilling method. Additionally, fatigue strength of dissimilar material weld joint was assessed at the room temperature (R.T), 300, 500, and 700 °C. In finite element analysis results, numerical peak values; longitudinal (410 MPa), transverse (345 MPa) were higher than those of experiments; longitudinal (298 MPa), transverse (245 MPa). There are quantitatively big differences between numerical and experimental results, due to some assumption about the thermal conductivity, specific heat, effects of enforced convection of the molten pool, dilution, and volume change during phase transformation caused by actual shield gas. The low fatigue limit at R.T, 300 °C, 500 °C and 700 °C was assessed to be 368, 276, 173 and 137 MPa respectively.

  9. Welding Residual Stress Analysis and Fatigue Strength Assessment at Elevated Temperature for Multi-pass Dissimilar Material Weld Between Alloy 617 and P92 Steel

    NASA Astrophysics Data System (ADS)

    Lee, Juhwa; Hwang, Jeongho; Bae, Dongho

    2018-07-01

    In this paper, welding residual stress analysis and fatigue strength assessment were performed at elevated temperature for multi-pass dissimilar material weld between Alloy 617 and P92 steel, which are used in thermal power plant. Multi-pass welding between Alloy 617 and P92 steel was performed under optimized welding condition determined from repeated pre-test welding. In particular, for improving dissimilar material weld-ability, the buttering welding technique was applied on the P92 steel side before multi-pass welding. Welding residual stress distribution at the dissimilar material weld joint was numerically analyzed by using the finite element method, and compared with experimental results which were obtained by the hole-drilling method. Additionally, fatigue strength of dissimilar material weld joint was assessed at the room temperature (R.T), 300, 500, and 700 °C. In finite element analysis results, numerical peak values; longitudinal (410 MPa), transverse (345 MPa) were higher than those of experiments; longitudinal (298 MPa), transverse (245 MPa). There are quantitatively big differences between numerical and experimental results, due to some assumption about the thermal conductivity, specific heat, effects of enforced convection of the molten pool, dilution, and volume change during phase transformation caused by actual shield gas. The low fatigue limit at R.T, 300 °C, 500 °C and 700 °C was assessed to be 368, 276, 173 and 137 MPa respectively.

  10. Distribution of Argon Arc Contaminated with Nitrogen as Function of Frequency in Pulsed TIG Welding

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroki; Tanaka, Tatsuro; Yamamoto, Shinji; Iwao, Toru

    2016-09-01

    TIG arc welding is the high-quality and much applicable material joining technology. However, the current has to be small because the cathode melting should be prevented. In this case, the heat input to the welding pool becomes low, then, the welding defect sometimes occurs. The pulsed TIG arc welding is used to improve this disadvantage This welding can be controlled by some current parameters such as frequency However, few report has reported the distribution of argon arc contaminated with nitrogen It is important to prevent the contamination of nitrogen because the melting depth increases in order to prevent the welding defects. In this paper, the distribution of argon arc contaminated as function of frequency with nitrogen in pulsed TIG welding is elucidated. The nitrogen concentration, the radial flow velocity, the arc temperature were calculated using the EMTF simulation when the time reached at the base current. As a result, the nitrogen concentration into the arc became low with increasing the frequency The diffusion coefficient decreased because of the decrement of temperature over 4000 K. In this case, the nitrogen concentration became low near the anode. Therefore, the nitrogen concentration became low because the frequency is high.

  11. Mechanical properties and microstructures of a magnesium alloy gas tungsten arc welded with a cadmium chloride flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.D.; Liu, L.M.; Shen, Y.

    2008-01-15

    Gas tungsten arc (GTA) welds were prepared on 5-mm thick plates of wrought magnesium AZ31B alloy, using an activated flux. The microstructural characteristics of the weld joint were investigated using optical and scanning microscopy, and the fusion zone microstructure was compared with that of the base metal. The elemental distribution was also investigated by electron probe microanalysis (EPMA). Mechanical properties were determined by standard tensile tests on small-scale specimens. The as-welded fusion zone prepared using a CdCl{sub 2} flux exhibited a larger grain size than that prepared without flux; the microstructure consisted of matrix {alpha}-Mg, eutectic {alpha}-Mg and {beta}-Al{sub 12}Mg{submore » 17}. The HAZ was observed to be slightly wider for the weld prepared with a CdCl{sub 2} flux compared to that prepared without flux; thus the tensile strength was lower for the flux-prepared weld. The fact that neither Cd nor Cl was detected in the weld seam by EPMA indicates that the CdCl{sub 2} flux has a small effect on convection in the weld pool.« less

  12. Laser vision seam tracking system based on image processing and continuous convolution operator tracker

    NASA Astrophysics Data System (ADS)

    Zou, Yanbiao; Chen, Tao

    2018-06-01

    To address the problem of low welding precision caused by the poor real-time tracking performance of common welding robots, a novel seam tracking system with excellent real-time tracking performance and high accuracy is designed based on the morphological image processing method and continuous convolution operator tracker (CCOT) object tracking algorithm. The system consists of a six-axis welding robot, a line laser sensor, and an industrial computer. This work also studies the measurement principle involved in the designed system. Through the CCOT algorithm, the weld feature points are determined in real time from the noise image during the welding process, and the 3D coordinate values of these points are obtained according to the measurement principle to control the movement of the robot and the torch in real time. Experimental results show that the sensor has a frequency of 50 Hz. The welding torch runs smoothly with a strong arc light and splash interference. Tracking error can reach ±0.2 mm, and the minimal distance between the laser stripe and the welding molten pool can reach 15 mm, which can significantly fulfill actual welding requirements.

  13. Dynamic modeling of GMA fillet welding using cross-correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellinga, M.; Huissoon, J.; Kerr, H.

    1996-12-31

    The feasibility of employing the cross-correlation system identification technique as a dynamic modeling method for the GMAW process was examined. This approach has the advantages of modeling speed, the ability to operate in low signal to noise environments, the ease of digital implementation, and the lack of model order assumption, making it ideal in a welding application. The width of the weld pool was the parameter investigated as a function of torch travel speed. Both on-line and off-line width measurements were used to identify the impulse response. Experimental results are presented and comparisons made with both step and ramp response.

  14. LPT. EBOR (TAN646) interior, installing reactor in STF pool ("vault"). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. EBOR (TAN-646) interior, installing reactor in STF pool ("vault"). Pressure vessel shows core barrel and outlet nozzle (next to man below) to inner duct weld, which is prepared and in position for stress relieving. Camera facing southeast. Photographer: Comiskey. Date: January 20, 1965. INEEL negative no. 65-239 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  15. Materials science on parabolic aircraft: The FY 1987-1989 KC-135 microgravity test program

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A. (Editor)

    1993-01-01

    This document covers research results from the KC-135 Materials Science Program managed by MSFC for the period FY87 through FY89. It follows the previous NASA Technical Memorandum for FY84-86 published in August 1988. This volume contains over 30 reports grouped into eight subject areas covering acceleration levels, space flight hardware, transport and interfacial studies, thermodynamics, containerless processing, welding, melt/crucible interactions, and directional solidification. The KC-135 materials science experiments during FY87-89 accomplished direct science, preparation for space flight experiments, and justification for new experiments in orbit.

  16. Effect of A-TIG Welding Process on the Weld Attributes of Type 304LN and 316LN Stainless Steels

    NASA Astrophysics Data System (ADS)

    Vasudevan, M.

    2017-03-01

    The specific activated flux has been developed for enhancing the penetration performance of TIG welding process for autogenous welding of type 304LN and 316LN stainless steels through systematic study. Initially single-component fluxes were used to study their effect on depth of penetration and tensile properties. Then multi-component activated flux was developed which was found to produce a significant increase in penetration of 10-12 mm in single-pass TIG welding of type 304LN and 316LN stainless steels. The significant improvement in penetration achieved using the activated flux developed in the present work has been attributed to the constriction of the arc and as well as reversal of Marangoni flow in the molten weld pool. The use of activated flux has been found to overcome the variable weld penetration observed in 316LN stainless steel with <50 ppm of sulfur. There was no degradation in the microstructure and mechanical properties of the A-TIG welds compared to that of the welds produced by conventional TIG welding on the contrary the transverse strength properties of the 304LN and 316LN stainless steel welds produced by A-TIG welding exceeded the minimum specified strength values of the base metals. Improvement in toughness values were observed in 316LN stainless steel produced by A-TIG welding due to refinement in the weld microstructure in the region close to the weld center. Thus, activated flux developed in the present work has greater potential for use during the TIG welding of structural components made of type 304LN and 316LN stainless steels.

  17. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Cang; Fezzaa, Kamel; Cunningham, Ross W.

    Here, we employ the high-speed synchrotron hard X-ray imaging and diffraction techniques to monitor the laser powder bed fusion (LPBF) process of Ti-6Al-4V in situ and in real time. We demonstrate that many scientifically and technologically significant phenomena in LPBF, including melt pool dynamics, powder ejection, rapid solidification, and phase transformation, can be probed with unprecedented spatial and temporal resolutions. In particular, the keyhole pore formation is experimentally revealed with high spatial and temporal resolutions. The solidification rate is quantitatively measured, and the slowly decrease in solidification rate during the relatively steady state could be a manifestation of the recalescencemore » phenomenon. The high-speed diffraction enables a reasonable estimation of the cooling rate and phase transformation rate, and the diffusionless transformation from β to α’ phase is evident. The data present here will facilitate the understanding of dynamics and kinetics in metal LPBF process, and the experiment platform established will undoubtedly become a new paradigm for future research and development of metal additive manufacturing.« less

  18. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction

    DOE PAGES

    Zhao, Cang; Fezzaa, Kamel; Cunningham, Ross W.; ...

    2017-06-15

    Here, we employ the high-speed synchrotron hard X-ray imaging and diffraction techniques to monitor the laser powder bed fusion (LPBF) process of Ti-6Al-4V in situ and in real time. We demonstrate that many scientifically and technologically significant phenomena in LPBF, including melt pool dynamics, powder ejection, rapid solidification, and phase transformation, can be probed with unprecedented spatial and temporal resolutions. In particular, the keyhole pore formation is experimentally revealed with high spatial and temporal resolutions. The solidification rate is quantitatively measured, and the slowly decrease in solidification rate during the relatively steady state could be a manifestation of the recalescencemore » phenomenon. The high-speed diffraction enables a reasonable estimation of the cooling rate and phase transformation rate, and the diffusionless transformation from β to α’ phase is evident. The data present here will facilitate the understanding of dynamics and kinetics in metal LPBF process, and the experiment platform established will undoubtedly become a new paradigm for future research and development of metal additive manufacturing.« less

  19. Characterization of complex carbide–silicide precipitates in a Ni–Cr–Mo–Fe–Si alloy modified by welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, D., E-mail: dhb@ansto.gov.au; Davis, J.; Drew, M.

    2015-07-15

    Nickel based alloys of the type Hastelloy-N™ are ideal candidate materials for molten salt reactors, as well as for applications such as pressure vessels, due to their excellent resistance to creep, oxidation and corrosion. In this work, the authors have attempted to understand the effects of welding on the morphology, chemistry and crystal structure of the precipitates in the heat affected zone (HAZ) and the weld zone of a Ni–Cr–Mo–Fe–Si alloy similar to Hastelloy-N™ in composition, by using characterization techniques such as scanning and transmission electron microscopy. Two plates of a Ni–Cr–Mo–Fe–Si alloy GH-3535 were welded together using a TiGmore » welding process without filler material to achieve a joint with a curved molten zone with dendritic structure. It is evident that the primary precipitates have melted in the HAZ and re-solidified in a eutectic-like morphology, with a chemistry and crystal structure only slightly different from the pre-existing precipitates, while the surrounding matrix grains remained unmelted, except for the zones immediately adjacent to the precipitates. In the molten zone, the primary precipitates were fully melted and dissolved in the matrix, and there was enrichment of Mo and Si in the dendrite boundaries after solidification, and re-precipitation of the complex carbides/silicides at some grain boundaries and triple points. The nature of the precipitates in the molten zone varied according to the local chemical composition. - Graphical abstract: Display Omitted - Highlights: • Ni-based alloy with Cr, Mo, Si, Fe and C was welded, examined with SEM, EBSD, and TEM. • Original Ni{sub 2}(Mo,Cr){sub 4}(Si,C) carbides changed from equiaxed to lamellar shape in HAZ. • Composition and crystal structure remained almost unchanged in HAZ. • Original carbides changed to lamellar Ni{sub 3}(Mo,Cr){sub 3}(Si,C) in some cases in weld metal. • Precipitates were mostly incoherent, but semi-coherent in some cases in weld metal.« less

  20. Real-time GMAW quality classification using an artificial neural network with airborne acoustic signals as inputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matteson, A.; Morris, R.; Tate, R.

    1993-12-31

    The acoustic signal produced by the gas metal arc welding (GMAW) arc contains information about the behavior of the arc column, the molten pool and droplet transfer. It is possible to detect some defect producing conditions from the acoustic signal from the GMAW arc. An intelligent sensor, called the Weld Acoustic Monitor (WAM) has been developed to take advantage of this acoustic information in order to provide real-time quality assessment information for process control. The WAM makes use of an Artificial Neural Network (ANN) to classify the characteristic arc acoustic signals of acceptable and unacceptable welds. The ANN used inmore » the Weld Acoustic Monitor developed its own set of rules for this classification problem by learning a data base of known GMAW acoustic signals.« less

  1. Effect of temporal pulse shaping on the reduction of laser weld defects in a Pd-Ag-Sn dental alloy.

    PubMed

    Bertrand, C; Poulon-Quintin, A

    2011-03-01

    To describe the influence of pulse shaping on the behavior of a palladium-based dental alloy during laser welding and to show how its choice is effective to promote good weld quality. Single spots, weld beads and welds with 80% overlapping were performed on Pd-Ag-Sn cast plates. A pulsed Nd:Yag laser was used with a specific welding procedure using all the possibilities for pulse-shaping: (1) the square pulse shape as the default setting, (2) a rising edge slope for gradual heating, (3) a falling edge slope to slow the cooling and (4) a combination of a rising and falling edges called bridge shape. The optimization of the pulse shape is supposed to enhance weldability and produce defect-free welds (cracks, pores…) Vickers microhardness measurements were made on cross sections of the welds. A correlation between laser welding parameters and microstructure evolution was found. Hot cracking and internal porosities were systematically detected when using rapid cooling. The presence of these types of defects was significantly reduced with the slow cooling of the molten pool. The best weld quality was obtained with the use of the bridge shape. The use of a slow cooling ramp is the only way to significantly reduce the presence of typical defects within the welds for this Pd-based alloy studied. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Investigation the Amplitude Uniformity on the Surface of the Wide-Blade Ultrasonic Plastic Welding Horn

    NASA Astrophysics Data System (ADS)

    Hai Nguyen, Thanh; Thanh Quang, Quang; Luat Tran, Cong; Loc Nguyen, Huu

    2017-10-01

    Ultrasonic welding has been applied for joining thermoplastic components due to their advantages such as clean, fast and reliable. The basic principle is to use the mechanical energy of ultrasonic frequency vibration to produce the molten pool at the interface of the joined components under high pressure to create solid-state welding joints. Depending on the specific application, the ultrasonic horn is designed to generate suitable amplitudes on the surface of the welding zone. Uniformity of the amplitudes can be a challenge as the welding area increases. Therefore, design a welding horn in order to obtain the uniform amplitudes at the large area is significant difficult. This work presents a method for obtaining the uniform amplitudes at the working surface of the stepped wide-blade horn. Finite element method is used to analyze the amplitude distribution at the horn surface of 250 × 34 mm2 with working frequency of 15 kHz and aluminum alloy 7075. The uniformity of amplitude is obtained by changing the shape of the horn.

  3. Selective Laser Melting of Pure Copper

    NASA Astrophysics Data System (ADS)

    Ikeshoji, Toshi-Taka; Nakamura, Kazuya; Yonehara, Makiko; Imai, Ken; Kyogoku, Hideki

    2017-12-01

    Appropriate building parameters for selective laser melting of 99.9% pure copper powder were investigated at relatively high laser power of 800 W for hatch pitch in the range from 0.025 mm to 0.12 mm. The highest relative density of the built material was 99.6%, obtained at hatch pitch of 0.10 mm. Building conditions were also studied using transient heat analysis in finite element modeling of the liquidation and solidification of the powder layer. The estimated melt pool length and width were comparable to values obtained by observations using a thermoviewer. The trend for the melt pool width versus the hatch pitch agreed with experimental values.

  4. Selective Laser Melting of Pure Copper

    NASA Astrophysics Data System (ADS)

    Ikeshoji, Toshi-Taka; Nakamura, Kazuya; Yonehara, Makiko; Imai, Ken; Kyogoku, Hideki

    2018-03-01

    Appropriate building parameters for selective laser melting of 99.9% pure copper powder were investigated at relatively high laser power of 800 W for hatch pitch in the range from 0.025 mm to 0.12 mm. The highest relative density of the built material was 99.6%, obtained at hatch pitch of 0.10 mm. Building conditions were also studied using transient heat analysis in finite element modeling of the liquidation and solidification of the powder layer. The estimated melt pool length and width were comparable to values obtained by observations using a thermoviewer. The trend for the melt pool width versus the hatch pitch agreed with experimental values.

  5. The Corrosion and Corrosion Fatigue Behavior of Nickel Based Alloy Weld Overlay and Coextruded Claddings

    NASA Astrophysics Data System (ADS)

    Stockdale, Andrew

    The use of low NOx boilers in coal fired power plants has resulted in sulfidizing corrosive conditions within the boilers and a reduction in the service lifetime of the waterwall tubes. As a solution to this problem, Ni-based weld overlays are used to provide the necessary corrosion resistance however; they are susceptible to corrosion fatigue. There are several metallurgical factors which give rise to corrosion fatigue that are associated with the localized melting and solidification of the weld overlay process. Coextruded coatings offer the potential for improved corrosion fatigue resistance since coextrusion is a solid state coating process. The corrosion and corrosion fatigue behavior of alloy 622 weld overlays and coextruded claddings was investigated using a Gleeble thermo-mechanical simulator retrofitted with a retort. The experiments were conducted at a constant temperature of 600°C using a simulated combustion gas of N2-10%CO-5%CO2-0.12%H 2S. An alternating stress profile was used with a minimum tensile stress of 0 MPa and a maximum tensile stress of 300 MPa (ten minute fatigue cycles). The results have demonstrated that the Gleeble can be used to successfully simulate the known corrosion fatigue cracking mechanism of Ni-based weld overlays in service. Multilayer corrosion scales developed on each of the claddings that consisted of inner and outer corrosion layers. The scales formed by the outward diffusion of cations and the inward diffusion of sulfur and oxygen anions. The corrosion fatigue behavior was influenced by the surface finish and the crack interactions. The initiation of a large number of corrosion fatigue cracks was not necessarily detrimental to the corrosion fatigue resistance. Finally, the as-received coextruded cladding exhibited the best corrosion fatigue resistance.

  6. A model for heat and mass input control in GMAW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smartt, H.B.; Einerson, C.J.

    1993-05-01

    This work describes derivation of a control model for electrode melting and heat and mass transfer from the electrode to the work piece in gas metal arc welding (GMAW). Specifically, a model is developed which allows electrode speed and welding speed to be calculated for given values of voltage and torch-to-base metal distance, as a function of the desired heat and mass input to the weldment. Heat input is given on a per unit weld length basis, and mass input is given in terms of transverse cross-sectional area added to the weld bead (termed reinforcement). The relationship to prior workmore » is discussed. The model was demonstrated using a computer-controlled welding machine and a proportional-integral (PI) controller receiving input from a digital filter. The difference between model-calculated welding current and measured current is used as controller feedback. The model is calibrated for use with carbon steel welding wire and base plate with Ar-CO[sub 2] shielding gas. Although the system is intended for application during spray transfer of molten metal from the electrode to the weld pool, satisfactory performance is also achieved during globular and streaming transfer. Data are presented showing steady-state and transient performance, as well as resistance to external disturbances.« less

  7. Energetic additive manufacturing process with feed wire

    DOEpatents

    Harwell, Lane D.; Griffith, Michelle L.; Greene, Donald L.; Pressly, Gary A.

    2000-11-07

    A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.

  8. Control of the electrode metal transfer by means of the welding current pulse generator

    NASA Astrophysics Data System (ADS)

    Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Knyaz'kov, S.; Tyasto, A.

    2016-04-01

    The paper presents a generator of welding current pulses to transfer an electrode metal into the molten pool. A homogeneous artificial line is used to produce near rectangular pulses. The homogeneous artificial line provides the minimum heat input with in the pulse to transfer the electrode metal, and it significantly decreases the impact of disturbances affecting this transfer. The pulse frequency does not exceed 300 Hz, and the duration is 0.6 ÷ 0.9 ms.

  9. Strengthening materials specifications

    NASA Astrophysics Data System (ADS)

    Sampath, K.

    2005-10-01

    Continuing efforts to strengthen materials specifications readily recognize that a mere compliance with a materials specification only assures a material meeting or exceeding the minimum expectations explicitly detailed in the specification. Implicitly, such efforts also recognize that additional and specific client needs must be addressed as supplementary requirements and introduced during material procurement to reduce risks and assure enhanced performance. This article describes two U.S. Navy-related case studies that allowed further strengthening of the materials specification process, using newer methods and renewed understanding. The first case demonstrates the use of a constraints-based modeling approach to specify the chemical composition of high-performance welding electrodes for critical U.S. Navy applications. This approach helps to distinguish high-performance welding electrode chemical compositions from rich and lean welding electrode chemical compositions that might limit the operational envelope, reduce performance, or both, while increasing overall cost of fabrication but otherwise meet electrode specification requirements. The second case identifies that the size of an ingot could be an important factor while specifying the aluminum and sulfur contents of very large-size, heavy-gauge plates. Renewed understanding of melt fluidity issues associated with the solidification of very large-size ingots shows that deficiencies in through-thickness ductility of heavy-gauge plates are related to controlling aluminum and sulfur contents of the voluminous melt, notwithstanding explicit compliance with specification requirements.

  10. Microstructure and Porosity of Laser Welds in Cast Ti-6Al-4V with Addition of Boron

    NASA Astrophysics Data System (ADS)

    Tolvanen, Sakari; Pederson, Robert; Klement, Uta

    2018-03-01

    Addition of small amounts of boron to cast Ti-6Al-4V alloy has shown to render a finer microstructure and improved mechanical properties. For such an improved alloy to be widely applicable for large aerospace structural components, successful welding of such castings is essential. In the present work, the microstructure and porosity of laser welds in a standard grade cast Ti-6Al-4V alloy as well as two modified alloy versions with different boron concentrations have been investigated. Prior-β grain reconstruction revealed the prior-β grain structure in the weld zones. In fusion zones of the welds, boron was found to refine the grain size significantly and rendered narrow elongated grains. TiB particles in the prior-β grain boundaries in the cast base material restricted grain growth in the heat-affected zone. The TiB particles that existed in the as cast alloys decreased in size in the fusion zones of welds. The hardness in the weld zones was higher than in the base material and boron did not have a significant effect on hardness of the weld zones. The fusion zones were smaller in the boron-modified alloys as compared with Ti-6Al-4V without boron. Computed tomography X-ray investigations of the laser welds showed that pores in the FZ of the boron modified alloys were confined to the lower part of the welds, suggesting that boron addition influences melt pool flow.

  11. Vaccum Gas Tungsten Arc Welding, phase 1

    NASA Astrophysics Data System (ADS)

    Weeks, J. L.; Krotz, P. D.; Todd, D. T.; Liaw, Y. K.

    1995-03-01

    This two year program will investigate Vacuum Gas Tungsten Arc Welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. VGTAW appears to offer a significant improvement in weldability because of the clean environment and lower heat input needed. The overall objective of the program is to develop the VGTAW technology and implement it into a manufacturing environment that will result in lower cost, better quality and higher reliability aerospace components for the space shuttle and other NASA space systems. Phase 1 of this program was aimed at demonstrating the process's ability to weld normally difficult-to-weld materials. Phase 2 will focus on further evaluation, a hardware demonstration and a plan to implement VGTAW technology into a manufacturing environment. During Phase 1, the following tasks were performed: (1) Task 11000 Facility Modification - an existing vacuum chamber was modified and adapted to a GTAW power supply; (2) Task 12000 Materials Selection - four difficult-to-weld materials typically used in the construction of aerospace hardware were chosen for study; (3) Task 13000 VGTAW Experiments - welding experiments were conducted under vacuum using the hollow tungsten electrode and evaluation. As a result of this effort, two materials, NARloy Z and Incoloy 903, were downselected for further characterization in Phase 2; and (4) Task 13100 Aluminum-Lithium Weld Studies - this task was added to the original work statement to investigate the effects of vacuum welding and weld pool vibration on aluminum-lithium alloys.

  12. Vaccum Gas Tungsten Arc Welding, phase 1

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Krotz, P. D.; Todd, D. T.; Liaw, Y. K.

    1995-01-01

    This two year program will investigate Vacuum Gas Tungsten Arc Welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. VGTAW appears to offer a significant improvement in weldability because of the clean environment and lower heat input needed. The overall objective of the program is to develop the VGTAW technology and implement it into a manufacturing environment that will result in lower cost, better quality and higher reliability aerospace components for the space shuttle and other NASA space systems. Phase 1 of this program was aimed at demonstrating the process's ability to weld normally difficult-to-weld materials. Phase 2 will focus on further evaluation, a hardware demonstration and a plan to implement VGTAW technology into a manufacturing environment. During Phase 1, the following tasks were performed: (1) Task 11000 Facility Modification - an existing vacuum chamber was modified and adapted to a GTAW power supply; (2) Task 12000 Materials Selection - four difficult-to-weld materials typically used in the construction of aerospace hardware were chosen for study; (3) Task 13000 VGTAW Experiments - welding experiments were conducted under vacuum using the hollow tungsten electrode and evaluation. As a result of this effort, two materials, NARloy Z and Incoloy 903, were downselected for further characterization in Phase 2; and (4) Task 13100 Aluminum-Lithium Weld Studies - this task was added to the original work statement to investigate the effects of vacuum welding and weld pool vibration on aluminum-lithium alloys.

  13. Dual-beam laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration

    NASA Astrophysics Data System (ADS)

    Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan

    2014-03-01

    Porosity within laser welds of magnesium alloys is one of the main roadblocks to achieving high quality joints. One of the causes of pore formation is the presence of pre-existing coatings on the surface of magnesium alloy such as oxide or chromate layers. In this study, single-beam and dual-beam laser heat sources are investigated in relation to mitigation of pores resulting from the presence of the as-received oxide layer on the surface of AZ31B-H24 magnesium alloy during the laser welding process. A fiber laser with a power of up to 4 kW is used to weld samples in a zero-gap lap joint configuration. The effect of dual-beam laser welding with different beam energy ratios is studied on the quality of the weld bead. The purpose of this paper is to identify the beam ratio that best mitigates pore formation in the weld bead. The laser molten pool and the keyhole condition, as well as laser-induced plasma plume are monitored in real-time by use of a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source. Tensile and microhardness tests were used to measure the mechanical properties of the laser welded samples. Results showed that a dual-beam laser configuration can effectively mitigate pore formation in the weld bead by a preheating-welding mechanism.

  14. Fatigue properties of dissimilar metal laser welded lap joints

    NASA Astrophysics Data System (ADS)

    Dinsley, Christopher Paul

    This work involves laser welding austenitic and duplex stainless steel to zinc-coated mild steel, more specifically 1.2mm V1437, which is a Volvo Truck Coiporation rephosphorised mild steel. The work investigates both tensile and lap shear properties of similar and dissimilar metal laser welded butt and lap joints, with the majority of the investigation concentrating on the fatigue properties of dissimilar metal laser welded lap joints. The problems encountered when laser welding zinc-coated steel are addressed and overcome with regard to dissimilar metal lap joints with stainless steel. The result being the production of a set of guidelines for laser welding stainless steel to zinc-coated mild steel. The stages of laser welded lap joint fatigue life are defined and the factors affecting dissimilar metal laser welded lap joint fatigue properties are analysed and determined; the findings suggesting that dissimilar metal lap joint fatigue properties are primarily controlled by the local stress at the internal lap face and the early crack growth rate of the material at the internal lap face. The lap joint rotation, in turn, is controlled by sheet thickness, weld width and interfacial gap. Laser welded lap joint fatigue properties are found to be independent of base material properties, allowing dissimilar metal lap joints to be produced without fatigue failure occurring preferentially in the weaker parent material, irrespective of large base material property differences. The effects of Marangoni flow on the compositions of the laser weld beads are experimentally characterised. The results providing definite proof of the stirring mechanism within the weld pool through the use of speeds maps for chromium and nickel. Keywords: Laser welding, dissimilar metal, Zinc-coated mild steel, Austenitic stainless steel, Duplex stainless steel, Fatigue, Lap joint rotation, Automotive.

  15. The ultrasonic characteristics of high frequency modulated arc and its application in material processing.

    PubMed

    He, Longbiao; Yang, Ping; Li, Luming; Wu, Minsheng

    2014-12-01

    To solve the difficulty of introducing traditional ultrasonic transducers to welding molten pool, high frequency current is used to modulate plasma arc and ultrasonic wave is excited successfully. The characteristics of the excited ultrasonic field are studied. The results show that the amplitude-frequency response of the ultrasonic emission is flat. The modulating current is the main factor influencing the ultrasonic power and the sound pressure depends on the variation of arc plasma stream force. Experimental study of the welding structure indicates grain refinement by the ultrasonic emission of the modulated arc and the test results showed there should be an energy region for the arc ultrasonic to get best welding joints. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Virtual welding equipment for simulation of GMAW processes with integration of power source regulation

    NASA Astrophysics Data System (ADS)

    Reisgen, Uwe; Schleser, Markus; Mokrov, Oleg; Zabirov, Alexander

    2011-06-01

    A two dimensional transient numerical analysis and computational module for simulation of electrical and thermal characteristics during electrode melting and metal transfer involved in Gas-Metal-Arc-Welding (GMAW) processes is presented. Solution of non-linear transient heat transfer equation is carried out using a control volume finite difference technique. The computational module also includes controlling and regulation algorithms of industrial welding power sources. The simulation results are the current and voltage waveforms, mean voltage drops at different parts of circuit, total electric power, cathode, anode and arc powers and arc length. We describe application of the model for normal process (constant voltage) and for pulsed processes with U/I and I/I-modulation modes. The comparisons with experimental waveforms of current and voltage show that the model predicts current, voltage and electric power with a high accuracy. The model is used in simulation package SimWeld for calculation of heat flux into the work-piece and the weld seam formation. From the calculated heat flux and weld pool sizes, an equivalent volumetric heat source according to Goldak model, can be generated. The method was implemented and investigated with the simulation software SimWeld developed by the ISF at RWTH Aachen University.

  17. Building A Simulation Model For The Prediction Of Temperature Distribution In Pulsed Laser Spot Welding Of Dissimilar Low Carbon Steel 1020 To Aluminum Alloy 6061

    NASA Astrophysics Data System (ADS)

    Yousef, Adel K. M.; Taha, Ziad. A.; Shehab, Abeer A.

    2011-01-01

    This paper describes the development of a computer model used to analyze the heat flow during pulsed Nd: YAG laser spot welding of dissimilar metal; low carbon steel (1020) to aluminum alloy (6061). The model is built using ANSYS FLUENT 3.6 software where almost all the environments simulated to be similar to the experimental environments. A simulation analysis was implemented based on conduction heat transfer out of the key hole where no melting occurs. The effect of laser power and pulse duration was studied. Three peak powers 1, 1.66 and 2.5 kW were varied during pulsed laser spot welding (keeping the energy constant), also the effect of two pulse durations 4 and 8 ms (with constant peak power), on the transient temperature distribution and weld pool dimension were predicated using the present simulation. It was found that the present simulation model can give an indication for choosing the suitable laser parameters (i.e. pulse durations, peak power and interaction time required) during pulsed laser spot welding of dissimilar metals.

  18. In situ strain and temperature measurement and modelling during arc welding

    DOE PAGES

    Chen, Jian; Yu, Xinghua; Miller, Roger G.; ...

    2014-12-26

    In this study, experiments and numerical models were applied to investigate the thermal and mechanical behaviours of materials adjacent to the weld pool during arc welding. In the experiment, a new high temperature strain measurement technique based on digital image correlation (DIC) was developed and applied to measure the in situ strain evolution. In contrast to the conventional DIC method that is vulnerable to the high temperature and intense arc light involved in fusion welding processes, the new technique utilised a special surface preparation method to produce high temperature sustaining speckle patterns required by the DIC algorithm as well asmore » a unique optical illumination and filtering system to suppress the influence of the intense arc light. These efforts made it possible for the first time to measure in situ the strain field 1 mm away from the fusion line. The temperature evolution in the weld and the adjacent regions was simultaneously monitored by an infrared camera. Finally and additionally, a thermal–mechanical finite element model was applied to substantiate the experimental measurement.« less

  19. Preliminary Investigations of Joining Technologies for Attaching Refractory Metals to Ni-Based Superalloys

    NASA Technical Reports Server (NTRS)

    Gould, Jerry E.; Ritzert, Frank J.; Loewenthal, William S.

    2006-01-01

    In this study, a range of joining technologies has been investigated for creating attachments between refractory metal and Ni-based superalloys. Refractory materials of interest include Mo-47%Re, T-111, and Ta-10%W. The Ni-based superalloys include Hastelloy X and MarM 247. During joining with conventional processes, these materials have potential for a range of solidification and intermetallic formation-related defects. For this study, three non-conventional joining technologies were evaluated. These included inertia welding, electro-spark deposition (ESD) welding, and magnetic pulse welding (MPW). The developed inertia welding practice closely paralleled that typically used for the refractory metals alloys. Metallographic investigations showed that forging during inertia welding occurred predominantly on the nickel base alloy side. It was also noted that at least some degree of forging on the refractory metal side of the joint was necessary to achieve consistent bonding. Both refractory metals were readily weldable to the Hastelloy X material. When bonding to the MarM 247, results were inconsistent. This was related to the higher forging temperatures of the MarM 247, and subsequent reduced deformation on that material during welding. ESD trials using a Hastelloy X filler were successful for all material combinations. ESD places down very thin (5- to 10- m) layers per pass, and interactions between the substrates and the fill were limited (at most) to that layer. For the refractory metals, the fill only appeared to wet the surface, with minimal dilution effects. Microstructures of the deposits showed high weld metal integrity with maximum porosity on the order of a few percent. Some limited success was also obtained with MPW. In these trials, only the T-111 tubes were used. Joints were possible for the T-111 tube to the Hastelloy X bar stock, but the stiffness of the tube (resisting collapse) necessitated the use of very high power levels. These power levels resulted in damage to the equipment (concentrator) during welding. It is of note that the joint made showed the typical wavy bond microstructure associated with magnetic pulse/explosion bond joints. Joints were not possible between the T-111 tube and the MarM 247 bar stock. In this case, the MarM 247 shattered before sufficient impact forces could be developed for bonding.

  20. Laser Welding of Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Oliveira, Joao Pedro de Sousa

    Joining of shape memory alloys is of great importance for both functional and structural applications as it can provide an increased design flexibility. In this work similar NiTi/NiTi, CuAlMn/CuAlMn and dissimilar NiTi/Ti6Al4V joints were produced by Nd:YAG laser. For the NiTi/NiTi joints the effect of process parameters (namely the heat input) on the superelastic and shape memory effects of the joints was assessed and correlated to its microstructure. Microstructural analysis was performed by means of X-ray diffraction using synchrotron radiation, which allowed for fine probing of the welded material. It was noticed the presence of martensite in the thermally affected regions, while the base material remained fully austenitic. The mechanisms for the formation of martensite, at room temperature, due to the welding procedure are presented and the influence of this phase on the functional properties of the joints is discussed. Additionally, the residual stresses were determined using synchrotron X-ray diffraction. For the dissimilar NiTi/Ti6Al4V joints, a Niobium interlayer was used to prevent the formation undesired brittle intermetallic compounds. Additionally, it was observed that positioning of the laser beam was of significant importance to obtain a sound joint. The mechanisms responsible for the joint formation are discussed based on observations with advanced characterization techniques, such as transmission electron microscopy. At the NiTi/Nb interface, an eutectic reaction promotes joining of the two materials, while at the Ti6Al4V/Nb interface fusion and, subsequent solidification of the Ti6Al4V was responsible for joining. Short distance diffusion of Nb to the fusion zone of Ti6Al4V was observed. Although fracture of the dissimilar welded joints occurred at a stress lower than the minimum required for the stress induced transformation, an improvement on the microstructure and mechanical properties, relatively to existing literature, was obtained. Finally, the first weldability study of superelastic CuAlMn alloy was performed. Superelasticity was preserved after welding. Post-weld laser processing improved the damping capability of the welded joint when compared to both as-welded and base materials, aiming for seismic construction. None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None

  1. Nd:YAG laser welding of coated sheet steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, M.P.; Kerr, H.W.; Weckman, D.C.

    1994-12-31

    Coated sheet steels are used extensively in the automotive industry for the fabrication of automobile body components; however, their reduced weldability by the traditional welding processes has led to numerous studies into the use of alternate process such as laser welding. In this paper, we present a modified joint geometry which allows high quality lap welds of coated sheet steels to be made by laser welding processes. Hot-dipped galvanized sheet (16 gauge), with a 60 g/m zinc coating was used in this study. A groove was created in the top sheet of a specimen pair by pressing piano wires ofmore » various diameters into the sheet. The specimens were clamped together in a lag-joint configuration such that they were in contacted only along the grove projection. A parametric study was conducted using the variables of welding speed, laser mean power (685 W, 1000 W and 1350 W), and grove size. Weld quality and weld pool dimensions were assessed using metallurgical cross-sections and image analysis techniques. Acceptable quality seam welds were produced in the galvanized sheet steel with both grove sizes when using 1000 W and 1350 W laser mean powers and a range of welding speeds. Results of the shear-tensile tests showed that high loads to failure, with failure occurring in the parent material, were predominately found in welds produced at speeds over 1.2 m/min and when using the high mean laser powers: 1000 W and 1350 W. A modified lap joint geometry, in which a groove is pre-placed in the top sheet of the lap-joint configuration, has been developed which permits laser welding of coated sheet steels. Good quality seam welds have been produced in 16 gauge galvanized sheet steels at speeds up to 2.7 m/min using a 2 kW CW Nd:YAG laser operating at 1350 W laser mean power. Weld quality was not affected by changes in groove size.« less

  2. Cancer incidence among welders: possible effects of exposure to extremely low frequency electromagnetic radiation (ELF) and to welding fumes.

    PubMed Central

    Stern, R M

    1987-01-01

    Epidemiological studies of cancer incidence among welders disclose a pooled total of 146 cases of leukemia observed versus 159.46 expected, a risk ratio of 0.92, and 40 cases of acute leukemia observed versus 43.39 expected, a risk ratio of 0.92. For respiratory tract cancer, the pooled total is 1789 cases observed versus 1290.7 expected, a risk ratio of 1.39. Most electric welders are exposed to extremely low frequency electromagnetic radiation (ELF) (magnetic flux densities of up to 100,000 microT), a suspected leukemogen, and to concentrated metallic aerosols (up to 200 mg/m3), which can contain the putative respiratory tract carcinogens Cr(VI) and Ni. The two exposures are usually coincident, since welding with an electric current produces welding fumes. The observation of an excess risk for respiratory tract cancer strongly suggests significant exposure both to fumes and to ELF. The absence of increased risk for all leukemia or for acute leukemia among ELF-exposed welders does not support the hypothesis that the observed excess risk for leukemia or acute leukemia among workers in the electrical trades is due to their ELF exposure, which on the average is lower than that of welders. PMID:3447902

  3. Increasing Weldability of Service-Aged Reformer Tubes by Partial Solution Annealing

    NASA Astrophysics Data System (ADS)

    Mostafaei, M.; Shamanian, M.; Purmohamad, H.; Amini, M.

    2016-04-01

    A dissimilar joint of 25Cr-35Ni/30Cr-48Ni (HP/HV) heat-resistant steels was evaluated. The investigations indicated that the as-cast HP alloy contained M7C3, M23C6, and NbC carbides and HV alloy with 5 wt.% tungsten, contained M23C6 and M6C carbides embedded in an austenitic matrix. After 8 years of ex-service aging at 1050 °C, the ductility of HP/HV reformer tubes was decreased dramatically, and thus, the repair welding of the aged HP/HV dissimilar joint was at a risk. In order to repair the aged reformer tubes and increase weldability properties, a new partial solution annealing treatment was designed. Mechanical testing results showed that partial solution annealing at 1200 °C for 6 h increased the elongation and toughness of the aged HP and HV alloys drastically. Also, a mechanism for constitutional liquation cracking in the heat-affected zones (HAZ) of the HP/HV dissimilar joint was proposed. In the HAZ of the aged HP/HV welded joint, the cracks around the locally melted carbides were initiated and propagated during carbides solidification at the cooling cycle of welding associated with the decrease in the ductility of the aged HP and HV alloys. In addition, Varestraint weldability test showed that the susceptibility to hot cracking was decreased with partial solution annealing.

  4. Characterization of Discontinuous Coarsening Reaction Products in INCONEL® Alloy 740H® Fusion Welds

    NASA Astrophysics Data System (ADS)

    Bechetti, Daniel H.; Dupont, John N.; Watanabe, Masashi; de Barbadillo, John J.

    2017-04-01

    Characterization of γ' coarsened zones (CZs) in alloy 740H fusion welds via a variety of electron microscopy techniques was conducted. The effects of solute partitioning during nonequilibrium solidification on the amount of strengthening precipitates along the grain boundaries were evaluated via electron-probe microanalysis and scanning electron microscopy. Electron backscatter diffraction was used to present evidence for the preferential growth of CZs toward regions of lower γ' content, even if growth in that direction increases grain boundary area. Scanning electron microscopy and image analysis were used to quantify the propensity for CZs to develop along certain segments of the grain boundaries, as governed by the local variations in γ' content. Scanning transmission electron microscopy with X-ray energy-dispersive spectrometry (XEDS) was used to assess the compositions of the matrix and precipitate phases within the CZs and to quantify the segregation of alloying components to the reaction front. Thermodynamic and kinetic modeling were used to compare calculated and experimental compositions. The work presented here provides new insight into the progression of the discontinuous coarsening (DC) reaction in a complex engineering alloy.

  5. Ultrasonic Sensor Signals and Optimum Path Forest Classifier for the Microstructural Characterization of Thermally-Aged Inconel 625 Alloy

    PubMed Central

    de Albuquerque, Victor Hugo C.; Barbosa, Cleisson V.; Silva, Cleiton C.; Moura, Elineudo P.; Rebouças Filho, Pedro P.; Papa, João P.; Tavares, João Manuel R. S.

    2015-01-01

    Secondary phases, such as laves and carbides, are formed during the final solidification stages of nickel-based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ” and δ phases. This work presents an evaluation of the powerful optimum path forest (OPF) classifier configured with six distance functions to classify background echo and backscattered ultrasonic signals from samples of the inconel 625 superalloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasonic signals were acquired using transducers with frequencies of 4 and 5 MHz. The potentiality of ultrasonic sensor signals combined with the OPF to characterize the microstructures of an inconel 625 thermally aged and in the as-welded condition were confirmed by the results. The experimental results revealed that the OPF classifier is sufficiently fast (classification total time of 0.316 ms) and accurate (accuracy of 88.75% and harmonic mean of 89.52) for the application proposed. PMID:26024416

  6. Ultrasonic sensor signals and optimum path forest classifier for the microstructural characterization of thermally-aged inconel 625 alloy.

    PubMed

    de Albuquerque, Victor Hugo C; Barbosa, Cleisson V; Silva, Cleiton C; Moura, Elineudo P; Filho, Pedro P Rebouças; Papa, João P; Tavares, João Manuel R S

    2015-05-27

    Secondary phases, such as laves and carbides, are formed during the final solidification stages of nickel-based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ'' and δ phases. This work presents an evaluation of the powerful optimum path forest (OPF) classifier configured with six distance functions to classify background echo and backscattered ultrasonic signals from samples of the inconel 625 superalloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasonic signals were acquired using transducers with frequencies of 4 and 5 MHz. The potentiality of ultrasonic sensor signals combined with the OPF to characterize the microstructures of an inconel 625 thermally aged and in the as-welded condition were confirmed by the results. The experimental results revealed that the OPF classifier is sufficiently fast (classification total time of 0.316 ms) and accurate (accuracy of 88.75%" and harmonic mean of 89.52) for the application proposed.

  7. Phosphorus Segregation in Meta-Rapidly Solidified Carbon Steels

    NASA Astrophysics Data System (ADS)

    Li, Na; Qiao, Jun; Zhang, Junwei; Sha, Minghong; Li, Shengli

    2017-09-01

    Twin-roll strip casters for near-net-shape manufacture of steels have received increased attention in the steel industry. Although negative segregation of phosphorus occurred in twin-roll strip casting (TRSC) steels in our prior work, its mechanism is still unclear. In this work, V-shaped molds were designed and used to simulate a meta-rapid solidification process without roll separating force during twin roll casting of carbon steels. Experimental results show that no obvious phosphorus segregation exist in the V-shaped mold casting (VMC) steels. By comparing TRSC and the VMC, it is proposed that the negative phosphorus segregation during TRSC results from phosphorus redistribution driven by recirculating and vortex flow in the molten pool. Meanwhile, solute atoms near the advancing interface are overtaken and incorporated into the solid because of the high solidification speed. The high rolling force could promote the negative segregation of alloying elements in TRSC.

  8. Diffusion, convection, and solidification in cw-mode free electron laser nitrided titanium

    NASA Astrophysics Data System (ADS)

    Höche, Daniel; Shinn, Michelle; Müller, Sven; Schaaf, Peter

    2009-04-01

    Titanium sheets were irradiated by free electron laser radiation in cw mode in pure nitrogen. Due to the interaction, nitrogen diffusion occurs and titanium nitride was synthesized in the tracks. Overlapping tracks have been utilized to create coatings in order to improve the tribological properties of the sheets. Caused by the local heating and the spatial dimension of the melt pool, convection effects were observed and related to the track properties. Stress, hardness, and nitrogen content were investigated with x-ray diffraction, nanoindention, and resonant nuclear reaction analysis. The measured results were correlated with the scan parameters, especially to the lateral track shift. Cross section micrographs were prepared and investigated by means of scanning electron microscopy. They show the solidification behavior, phase formation, and the nitrogen distribution. The experiments give an insight into the possibilities of materials processing using such a unique heat source.

  9. Effects of beam configurations on wire melting and transfer behaviors in dual beam laser welding with filler wire

    NASA Astrophysics Data System (ADS)

    Ma, Guolong; Li, Liqun; Chen, Yanbin

    2017-06-01

    Butt joints of 2 mm thick stainless steel with 0.5 mm gap were fabricated by dual beam laser welding with filler wire technique. The wire melting and transfer behaviors with different beam configurations were investigated detailedly in a stable liquid bridge mode and an unstable droplet mode. A high speed video system assisted by a high pulse diode laser as an illumination source was utilized to record the process in real time. The difference of welding stability between single and dual beam laser welding with filler wire was also compartively studied. In liquid bridge transfer mode, the results indicated that the transfer process and welding stability were disturbed in the form of "broken-reformed" liquid bridge in tandem configuration, while improved by stabilizing the molten pool dynamics with a proper fluid pattern in side-by-side configuration, compared to sigle beam laser welding with filler wire. The droplet transfer period and critical radius were studied in droplet transfer mode. The transfer stability of side-by-side configuration with the minium transfer period and critical droplet size was better than the other two configurations. This was attributed to that the action direction and good stability of the resultant force which were beneficial to transfer process in this case. The side-by-side configuration showed obvious superiority on improving welding stability in both transfer modes. An acceptable weld bead was successfully generated even in undesirable droplet transfer mode under the present conditions.

  10. Role of Oxygen as Surface-Active Element in Linear GTA Welding Process

    NASA Astrophysics Data System (ADS)

    Yadaiah, Nirsanametla; Bag, Swarup

    2013-11-01

    Although the surface-active elements such as oxygen and sulfur have an adverse effect on momentum transport in liquid metals during fusion welding, such elements can be used beneficially up to a certain limit to increase the weld penetration in the gas tungsten arc (GTA) welding process. The fluid flow pattern and consequently the weld penetration and width change due to a change in coefficient of surface tension from a negative value to a positive value. The present work is focused on the analysis of possible effects of surface-active elements to change the weld pool dimensions in linear GTA welding. A 3D finite element-based heat transfer and fluid flow model is developed to study the effect of surface-active elements on stainless steel plates. A velocity in the order of 180 mm/s due to surface tension force is estimated at an optimum concentration of surface-active elements. Further, the differential evolution-based global optimization algorithm is integrated with the numerical model to estimate uncertain model parameters such as arc efficiency, effective arc radius, and effective values of material properties at high temperatures. The effective values of thermal conductivity and viscosity are estimated to be enhanced nine and seven times, respectively, over corresponding room temperature values. An error analysis is also performed to find out the overall reliability of the computed results, and a maximum reliability of 0.94 is achieved.

  11. Numerical simulation of spatter formation during fiber laser welding of 5083 aluminum alloy at full penetration condition

    NASA Astrophysics Data System (ADS)

    Wu, Dongsheng; Hua, Xueming; Huang, Lijin; Zhao, Jiang

    2018-03-01

    The droplet escape condition in laser welding is established in this paper. A three-dimensional numerical model is developed to study the weld pool convection and spatter formation at full penetration during the fiber laser welding of 5083 aluminum alloy. It is found that when laser power is 9 kW, the bottom of the keyhole is dynamically opened and closed. When the bottom of the keyhole is closed, the molten metal at the bottom of the back keyhole wall flows upwards along the fusion line. When the bottom of the keyhole is opened, few spatters can be seen around the keyhole at the top surface, two flow patterns exists in the rear part of the keyhole: a portion of molten metal flows upwards along the fusion line, other portion of molten metal flows to the bottom of the keyhole, which promote the spatter formation at the bottom of the keyhole rear wall.

  12. Investigation of Microstructural Features Determining the Toughness of 980 MPa Bainitic Weld Metal

    NASA Astrophysics Data System (ADS)

    Cao, R.; Zhang, X. B.; Wang, Z.; Peng, Y.; Du, W. S.; Tian, Z. L.; Chen, J. H.

    2014-02-01

    The microstructural features that control the impact toughness of weld metals of a 980 MPa 8 pct Ni high-strength steel are investigated using instrumented Charpy V tester, optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), electron back-scattered diffraction (EBSD), and finite-element method (FEM) calculation. The results show that the critical event for cleavage fracture in this high-strength steel and weld metals is the propagation of a bainite packet-sized crack across the packet boundary into contiguous packets, and the bainitic packet sizes control the impact toughness. The high-angle misorientation boundaries detected in a bainite packet by EBSD form fine tear ridges on fracture surfaces. However, they are not the decisive factors controlling the cleavage fracture. The effects of Ni content are essential factors for improving the toughness. The extra large cleavage facets seriously deteriorate the toughness, which are formed on the interfaces of large columnar crystals growing in welding pools with high heat input.

  13. Probing heat transfer, fluid flow and microstructural evolution during fusion welding of alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Wei

    The composition, geometry, structure and properties of the welded joints are affected by the various physical processes that take place during fusion welding. Understanding these processes has been an important goal in the contemporary welding research to achieve structurally sound and reliable welds. In the present thesis research, several important physical processes including the heat transfer, fluid flow and microstructural evolution in fusion welding were modeled based on the fundamentals of transport phenomena and phase transformation theory. The heat transfer and fluid flow calculation is focused on the predictions of the liquid metal convection in the weld pool, the temperature distribution in the entire weldment, and the shape and size of the fusion zone (FZ) and heat affected zone (HAZ). The modeling of microstructural evolution is focused on the quantitative understanding of phase transformation kinetics during welding of several important alloys under both low and high heating and cooling conditions. Three numerical models were developed in the present thesis work: (1) a three-dimensional heat transfer and free surface flow model for the gas metal arc (GMA) fillet welding considering the complex weld joint geometry, (2) a phase transformation model based on the Johnson-Mehl-Avrami (JMA) theory, and (3) a one-dimensional numerical diffusion model considering multiple moving interfaces. To check the capabilities of the developed models, several cases were investigated, in which the predictions from the models were compared with the experimental results. The cases studied are the follows. For the modeling of heat transfer and fluid flow, the welding processes studied included gas tungsten arc (GTA) linear welding, GTA transient spot welding, and GMA fillet welding. The calculated weldment geometry and thermal cycles was validated against the experimental data under various welding conditions. For the modeling of microstructural evolution, the welded materials investigated included AISI 1005 low-carbon steel, 1045 medium-carbon steel, 2205 duplex stainless steel (DSS) and Ti-6Al-4V alloy. The calculated phase transformation kinetics were compared with the experimental results obtained using an x-ray diffraction technique by Dr. John W. Elmer of Lawrence Livermore National Laboratory. (Abstract shortened by UMI.)

  14. Dry sliding wear behavior of TIG welding clad WC composite coatings

    NASA Astrophysics Data System (ADS)

    Buytoz, Soner; Ulutan, Mustafa; Yildirim, M. Mustafa

    2005-12-01

    In this study, melted tungsten carbide powders on the surface of AISI 4340 steel was applied by using tungsten inert gas (TIG) method. It was observed that it has been solidified in different microstructures depending on the production parameters. As a result of microstructure examinations, in the surface modified layers an eutectic and dendrite solidification was observed together with WC, W 2C phases. In the layer produced, the hardness values varied between 950 and 1200 HV. The minimum mass loss was observed in the sample, which was treated in 1.209 mm/s production rate, 0.5 g/s powder feed rate and 13.9 kJ/cm heat input.

  15. Crack-free conditions in welding of glass by ultrashort laser pulse.

    PubMed

    Miyamoto, Isamu; Cvecek, Kristian; Schmidt, Michael

    2013-06-17

    The spatial distribution of the laser energy absorbed by nonlinear absorption process in bulk glass w(z) is determined and thermal cycles due to the successive ultrashort laser pulse (USLP) is simulated using w(z) based on the transient thermal conduction model. The thermal stress produced in internal melting of bulk glass by USLP is qualitatively analyzed based on a simple thermal stress model, and crack-free conditions are studied in glass having large coefficient of thermal expansion. In heating process, cracks are prevented when the laser pulse impinges into glass with temperatures higher than the softening temperature of glass. In cooling process, shrinkage stress is suppressed to prevent cracks, because the embedded molten pool produced by nonlinear absorption process behaves like an elastic body under the compressive stress field unlike the case of CW-laser welding where the molten pool having a free surface produced by linear absorption process is plastically deformed under the compressive stress field.

  16. A model for prediction of fume formation rate in gas metal arc welding (GMAW), globular and spray modes, DC electrode positive.

    PubMed

    Dennis, J H; Hewitt, P J; Redding, C A; Workman, A D

    2001-03-01

    Prediction of fume formation rate during metal arc welding and the composition of the fume are of interest to occupational hygienists concerned with risk assessment and to manufacturers of welding consumables. A model for GMAW (DC electrode positive) is described based on the welder determined process parameters (current, wire feed rate and wire composition), on the surface area of molten metal in the arc and on the partial vapour pressures of the component metals of the alloy wire. The model is applicable to globular and spray welding transfer modes but not to dip mode. Metal evaporation from a droplet is evaluated for short time increments and total evaporation obtained by summation over the life of the droplet. The contribution of fume derived from the weld pool and spatter (particles of metal ejected from the arc) is discussed, as are limitations of the model. Calculated droplet temperatures are similar to values determined by other workers. A degree of relationship between predicted and measured fume formation rates is demonstrated but the model does not at this stage provide a reliable predictive tool.

  17. Structural analysis of a reflux pool-boiler solar receiver

    NASA Astrophysics Data System (ADS)

    Hoffman, E. L.; Stone, C. M.

    1991-06-01

    Coupled thermal-structural finite element calculations of a reflux pool-boiler solar receiver were performed to characterize the operating stresses and to address issues affecting the service life of the receiver. Analyses performed using shell elements provided information for receiver material selection and design optimization. Calculations based on linear elastic fracture mechanics principles were performed using continuum elements to assess the vulnerability of a seam-weld to fatigue crack growth. All calculations were performed using ABAQUS, a general purpose finite element code, and elements specifically formulated for coupled thermal-structural analysis. Two materials were evaluated: 316L SS and Haynes 230 alloys. The receiver response was simulated for a combination of structural and thermal loads that represent the startup and operating conditions of the receiver. For both materials, maximum stresses in the receiver developed shortly after startup due to uneven temperature distribution across the receiver surface. The largest effective stress was near yield in the 316L SS receiver and below 39 percent of yield in the Haynes 230 receiver. The calculations demonstrated that stress reductions of over 25 percent could be obtained by reducing the aft dome thickness to one closer to the absorber. The fatigue calculations demonstrated that the stress distribution near the seam-weld notch depends primarily on the structural load created by internal pressurization of the receiver rather than the thermal, indicating that the thermal loads can be neglected when assessing the stress intensity near the seam-weld notch. The stress intensity factor, computed using the J-integral method and crack opening-displacement field equations, was significantly below the fatigue threshold for most steels. The calculations indicated that the weld notch was always loaded in compression, a condition which is not conducive to fatigue crack growth.

  18. Exposure to welding fumes increases lung cancer risk among light smokers but not among heavy smokers: evidence from two case-control studies in Montreal.

    PubMed

    Vallières, Eric; Pintos, Javier; Lavoué, Jérôme; Parent, Marie-Élise; Rachet, Bernard; Siemiatycki, Jack

    2012-08-01

    We investigated relationships between occupational exposure to gas and arc welding fumes and the risk of lung cancer among workers exposed to these agents throughout the spectrum of industries. Two population-based case-control studies were conducted in Montreal. Study I (1979-1986) included 857 cases and 1066 controls, and Study II (1996-2001) comprised 736 cases and 894 controls. Detailed job histories were obtained by interview and evaluated by an expert team of chemist-hygienists to estimate degree of exposure to approximately 300 substances for each job. Gas and arc welding fumes were among the agents evaluated. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) of lung cancer using logistic regression, adjusting for smoking history and other covariates. The two studies provided similar results, so a pooled analysis was conducted. Among all subjects, no significant association was found between lung cancer and gas welding fumes (OR = 1.1; 95% CI = 0.9-1.4) or arc welding fumes (OR = 1.0; 95% CI = 0.8-1.2). However, when restricting attention to light smokers, there was an increased risk of lung cancer in relation to gas welding fumes (OR = 2.9; 95% CI = 1.7-4.8) and arc welding fumes (OR = 2.3; 95% CI = 1.3-3.8), with even higher OR estimates among workers with the highest cumulative exposures. In conclusion, there was no detectable excess risk of lung cancer due to welding fumes among moderate to heavy smokers; but among light smokers we found an excess risk related to both types of welding fumes.

  19. Exposure to welding fumes increases lung cancer risk among light smokers but not among heavy smokers: evidence from two case–control studies in Montreal

    PubMed Central

    Vallières, Eric; Pintos, Javier; Lavoué, Jérôme; Parent, Marie-Élise; Rachet, Bernard; Siemiatycki, Jack

    2012-01-01

    We investigated relationships between occupational exposure to gas and arc welding fumes and the risk of lung cancer among workers exposed to these agents throughout the spectrum of industries. Two population-based case–control studies were conducted in Montreal. Study I (1979–1986) included 857 cases and 1066 controls, and Study II (1996–2001) comprised 736 cases and 894 controls. Detailed job histories were obtained by interview and evaluated by an expert team of chemist–hygienists to estimate degree of exposure to approximately 300 substances for each job. Gas and arc welding fumes were among the agents evaluated. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) of lung cancer using logistic regression, adjusting for smoking history and other covariates. The two studies provided similar results, so a pooled analysis was conducted. Among all subjects, no significant association was found between lung cancer and gas welding fumes (OR = 1.1; 95% CI = 0.9–1.4) or arc welding fumes (OR = 1.0; 95% CI = 0.8–1.2). However, when restricting attention to light smokers, there was an increased risk of lung cancer in relation to gas welding fumes (OR = 2.9; 95% CI = 1.7–4.8) and arc welding fumes (OR = 2.3; 95% CI = 1.3–3.8), with even higher OR estimates among workers with the highest cumulative exposures. In conclusion, there was no detectable excess risk of lung cancer due to welding fumes among moderate to heavy smokers; but among light smokers we found an excess risk related to both types of welding fumes. PMID:23342253

  20. Risk of ischemic heart disease following occupational exposure to welding fumes: a systematic review with meta-analysis.

    PubMed

    Mocevic, Emina; Kristiansen, Pernille; Bonde, Jens Peter

    2015-04-01

    Air pollution has been linked to an increased risk of ischemic heart disease (IHD), but less is known about occupational exposure to welding fumes and the risk of IHD. The objective of this paper was to review the epidemiological evidence on causal links between welding fume exposure and risk of IHD and to investigate whether the risk of IHD depends on specific welding characteristics. A systematic search in Medline 1979-2013 and EMBASE 1974-2013 identified 18 epidemiological studies with at least one risk estimate of IHD morbidity or mortality among workers exposed to welding fumes. Following an assessment of completeness of reporting, confounding, and bias, each risk estimate was characterized as more or less reliable. Pooled risk estimates were computed across studies by random effect meta-analyses. The weighted relative risk (RR) for IHD following exposure to welding fumes was 1.09 [95 % confidence interval (CI) 1.00, 1.19]. We calculated a RR of 1.39 (95 % CI 0.96, 2.02) among studies using an internal reference group and 1.08 (95 % CI 0.99, 1.18) for studies using an external reference group. An increased risk was observed for acute myocardial infarction RR = 1.69 (95 % CI 1.18, 2.42) and other IHDs RR = 1.06 (95 % CI 0.98, 1.14). There was too limited evidence to evaluate the risk of IHD related to specific welding characteristics. Several studies indicate that welding is associated with a moderately increased risk of IHD; however, bias and confounding cannot be ruled out with reasonable confidence.

  1. Application of a Model for Simulating the Vacuum Arc Remelting Process in Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Patel, Ashish; Tripp, David W.; Fiore, Daniel

    Mathematical modeling is routinely used in the process development and production of advanced aerospace alloys to gain greater insight into system dynamics and to predict the effect of process modifications or upsets on final properties. This article describes the application of a 2-D mathematical VAR model presented in previous LMPC meetings. The impact of process parameters on melt pool geometry, solidification behavior, fluid-flow and chemistry in Ti-6Al-4V ingots will be discussed. Model predictions were first validated against the measured characteristics of industrially produced ingots, and process inputs and model formulation were adjusted to match macro-etched pool shapes. The results are compared to published data in the literature. Finally, the model is used to examine ingot chemistry during successive VAR melts.

  2. Method for laser spot welding monitoring

    NASA Astrophysics Data System (ADS)

    Manassero, Giorgio

    1994-09-01

    As more powerful solid state laser sources appear on the market, new applications become technically possible and important from the economical point of view. For every process a preliminary optimization phase is necessary. The main parameters, used for a welding application by a high power Nd-YAG laser, are: pulse energy, pulse width, repetition rate and process duration or speed. In this paper an experimental methodology, for the development of an electrooptical laser spot welding monitoring system, is presented. The electromagnetic emission from the molten pool was observed and measured with appropriate sensors. The statistical method `Parameter Design' was used to obtain an accurate analysis of the process parameter that influence process results. A laser station with a solid state laser coupled to an optical fiber (1 mm in diameter) was utilized for the welding tests. The main material used for the experimental plan was zinc coated steel sheet 0.8 mm thick. This material and the related spot welding technique are extensively used in the automotive industry, therefore, the introduction of laser technology in production line will improve the quality of the final product. A correlation, between sensor signals and `through or not through' welds, was assessed. The investigation has furthermore shown the necessity, for the modern laser production systems, to use multisensor heads for process monitoring or control with more advanced signal elaboration procedures.

  3. Hot Forging of a Cladded Component by Automated GMAW Process

    NASA Astrophysics Data System (ADS)

    Rafiq, Muhammad; Langlois, Laurent; Bigot, Régis

    2011-01-01

    Weld cladding is employed to improve the service life of engineering components by increasing corrosion and wear resistance and reducing the cost. The acceptable multi-bead cladding layer depends on single bead geometry. Hence, in first step, the relationship between input process parameters and the single bead geometry is studied and in second step a comprehensive study on multi bead clad layer deposition is carried out. This paper highlights an experimental study carried out to get single layer cladding deposited by automated Gas Metal Arc Welding (GMAW) process and to find the possibility of hot forming of the cladded work piece to get the final hot formed improved structure. GMAW is an arc welding process that uses an arc between a consumable electrode and the welding pool with an external shielding gas and the cladding is done by alongside deposition of weld beads. The experiments for single bead were conducted by varying the three main process parameters wire feed rate, arc voltage and welding speed while keeping other parameters like nozzle to work distance, shielding gas and its flow rate and torch angle constant. The effect of bead spacing and torch orientation on the cladding quality of single layer from the results of single bead deposition was studied. Effect of the dilution rate and nominal energy on the cladded layer hot bending quality was also performed at different temperatures.

  4. Welding and Lung Cancer in a Pooled Analysis of Case-Control Studies

    PubMed Central

    Kendzia, Benjamin; Behrens, Thomas; Jöckel, Karl-Heinz; Siemiatycki, Jack; Kromhout, Hans; Vermeulen, Roel; Peters, Susan; Van Gelder, Rainer; Olsson, Ann; Brüske, Irene; Wichmann, H.-Erich; Stücker, Isabelle; Guida, Florence; Tardón, Adonina; Merletti, Franco; Mirabelli, Dario; Richiardi, Lorenzo; Pohlabeln, Hermann; Ahrens, Wolfgang; Landi, Maria Teresa; Caporaso, Neil; Consonni, Dario; Zaridze, David; Szeszenia-Dabrowska, Neonila; Lissowska, Jolanta; Gustavsson, Per; Marcus, Michael; Fabianova, Eleonora; ‘t Mannetje, Andrea; Pearce, Neil; Tse, Lap Ah; Yu, Ignatius Tak-sun; Rudnai, Peter; Bencko, Vladimir; Janout, Vladimir; Mates, Dana; Foretova, Lenka; Forastiere, Francesco; McLaughlin, John; Demers, Paul; Bueno-de-Mesquita, Bas; Boffetta, Paolo; Schüz, Joachim; Straif, Kurt; Pesch, Beate; Brüning, Thomas

    2013-01-01

    Several epidemiologic studies have indicated an increased risk of lung cancer among welders. We used the SYNERGY project database to assess welding as a risk factor for developing lung cancer. The database includes data on 15,483 male lung cancer cases and 18,388 male controls from 16 studies in Europe, Canada, China, and New Zealand conducted between 1985 and 2010. Odds ratios and 95% confidence intervals between regular or occasional welding and lung cancer were estimated, with adjustment for smoking, age, study center, and employment in other occupations associated with lung cancer risk. Overall, 568 cases and 427 controls had ever worked as welders and had an odds ratio of developing lung cancer of 1.44 (95% confidence interval: 1.25, 1.67) with the odds ratio increasing for longer duration of welding. In never and light smokers, the odds ratio was 1.96 (95% confidence interval: 1.37, 2.79). The odds ratios were somewhat higher for squamous and small cell lung cancers than for adenocarcinoma. Another 1,994 cases and 1,930 controls had ever worked in occupations with occasional welding. Work in any of these occupations was associated with some elevation of risk, though not as much as observed in regular welders. Our findings lend further support to the hypothesis that welding is associated with an increased risk of lung cancer. PMID:24052544

  5. Welding and lung cancer in a pooled analysis of case-control studies.

    PubMed

    Kendzia, Benjamin; Behrens, Thomas; Jöckel, Karl-Heinz; Siemiatycki, Jack; Kromhout, Hans; Vermeulen, Roel; Peters, Susan; Van Gelder, Rainer; Olsson, Ann; Brüske, Irene; Wichmann, H-Erich; Stücker, Isabelle; Guida, Florence; Tardón, Adonina; Merletti, Franco; Mirabelli, Dario; Richiardi, Lorenzo; Pohlabeln, Hermann; Ahrens, Wolfgang; Landi, Maria Teresa; Caporaso, Neil; Consonni, Dario; Zaridze, David; Szeszenia-Dabrowska, Neonila; Lissowska, Jolanta; Gustavsson, Per; Marcus, Michael; Fabianova, Eleonora; 't Mannetje, Andrea; Pearce, Neil; Tse, Lap Ah; Yu, Ignatius Tak-Sun; Rudnai, Peter; Bencko, Vladimir; Janout, Vladimir; Mates, Dana; Foretova, Lenka; Forastiere, Francesco; McLaughlin, John; Demers, Paul; Bueno-de-Mesquita, Bas; Boffetta, Paolo; Schüz, Joachim; Straif, Kurt; Pesch, Beate; Brüning, Thomas

    2013-11-15

    Several epidemiologic studies have indicated an increased risk of lung cancer among welders. We used the SYNERGY project database to assess welding as a risk factor for developing lung cancer. The database includes data on 15,483 male lung cancer cases and 18,388 male controls from 16 studies in Europe, Canada, China, and New Zealand conducted between 1985 and 2010. Odds ratios and 95% confidence intervals between regular or occasional welding and lung cancer were estimated, with adjustment for smoking, age, study center, and employment in other occupations associated with lung cancer risk. Overall, 568 cases and 427 controls had ever worked as welders and had an odds ratio of developing lung cancer of 1.44 (95% confidence interval: 1.25, 1.67) with the odds ratio increasing for longer duration of welding. In never and light smokers, the odds ratio was 1.96 (95% confidence interval: 1.37, 2.79). The odds ratios were somewhat higher for squamous and small cell lung cancers than for adenocarcinoma. Another 1,994 cases and 1,930 controls had ever worked in occupations with occasional welding. Work in any of these occupations was associated with some elevation of risk, though not as much as observed in regular welders. Our findings lend further support to the hypothesis that welding is associated with an increased risk of lung cancer.

  6. A Quantitative Model of Keyhole Instability Induced Porosity in Laser Welding of Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Pang, Shengyong; Chen, Weidong; Wang, Wen

    2014-06-01

    Quantitative prediction of the porosity defects in deep penetration laser welding has generally been considered as a very challenging task. In this study, a quantitative model of porosity defects induced by keyhole instability in partial penetration CO2 laser welding of a titanium alloy is proposed. The three-dimensional keyhole instability, weld pool dynamics, and pore formation are determined by direct numerical simulation, and the results are compared to prior experimental results. It is shown that the simulated keyhole depth fluctuations could represent the variation trends in the number and average size of pores for the studied process conditions. Moreover, it is found that it is possible to use the predicted keyhole depth fluctuations as a quantitative measure of the average size of porosity. The results also suggest that due to the shadowing effect of keyhole wall humps, the rapid cooling of the surface of the keyhole tip before keyhole collapse could lead to a substantial decrease in vapor pressure inside the keyhole tip, which is suggested to be the mechanism by which shielding gas enters into the porosity.

  7. Ukrainian Program for Material Science in Microgravity

    NASA Astrophysics Data System (ADS)

    Fedorov, Oleg

    Ukrainian Program for Material Sciences in Microgravity O.P. Fedorov, Space Research Insti-tute of NASU -NSAU, Kyiv, The aim of the report is to present previous and current approach of Ukrainian research society to the prospect of material sciences in microgravity. This approach is based on analysis of Ukrainian program of research in microgravity, preparation of Russian -Ukrainian experiments on Russian segment of ISS and development of new Ukrainian strategy of space activity for the years 2010-2030. Two parts of issues are discussed: (i) the evolution of our views on the priorities in microgravity research (ii) current experiments under preparation and important ground-based results. item1 The concept of "space industrialization" and relevant efforts in Soviet and post -Soviet Ukrainian research institutions are reviewed. The main topics are: melt supercooling, crystal growing, testing of materials, electric welding and study of near-Earth environment. The anticipated and current results are compared. item 2. The main experiments in the framework of Ukrainian-Russian Research Program for Russian Segment of ISS are reviewed. Flight installations under development and ground-based results of the experiments on directional solidification, heat pipes, tribological testing, biocorrosion study is presented. Ground-based experiments and theoretical study of directional solidification of transparent alloys are reviewed as well as preparation of MORPHOS installation for study of succinonitrile -acetone in microgravity.

  8. Wire Arc Additive Manufacturing of AZ31 Magnesium Alloy: Grain Refinement by Adjusting Pulse Frequency.

    PubMed

    Guo, Jing; Zhou, Yong; Liu, Changmeng; Wu, Qianru; Chen, Xianping; Lu, Jiping

    2016-10-09

    Wire arc additive manufacturing (WAAM) offers a potential approach to fabricate large-scale magnesium alloy components with low cost and high efficiency, although this topic is yet to be reported in literature. In this study, WAAM is preliminarily applied to fabricate AZ31 magnesium. Fully dense AZ31 magnesium alloy components are successfully obtained. Meanwhile, to refine grains and obtain good mechanical properties, the effects of pulse frequency (1, 2, 5, 10, 100, and 500 Hz) on the macrostructure, microstructure and tensile properties are investigated. The results indicate that pulse frequency can result in the change of weld pool oscillations and cooling rate. This further leads to the change of the grain size, grain shape, as well as the tensile properties. Meanwhile, due to the resonance of the weld pool at 5 Hz and 10 Hz, the samples have poor geometry accuracy but contain finer equiaxed grains (21 μm) and exhibit higher ultimate tensile strength (260 MPa) and yield strength (102 MPa), which are similar to those of the forged AZ31 alloy. Moreover, the elongation of all samples is above 23%.

  9. Transient Response of Arc Temperature and Iron Vapor Concentration Affected by Current Frequency with Iron Vapor in Pulsed Arc

    NASA Astrophysics Data System (ADS)

    Tanaka, Tatsuro; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    TIG arc welding is chemically a joining technology with melting the metallic material and it can be high quality. However, this welding should not be used in high current to prevent cathode melting. Thus, the heat transfer is poor. Therefore, the deep penetration cannot be obtained and the weld defect sometimes occurs. The pulsed arc welding has been used for the improvement of this defect. The pulsed arc welding can control the heat flux to anode. The convention and driving force in the weld pool are caused by the arc. Therefore, it is important to grasp the distribution of arc temperature. The metal vapor generate from the anode in welding. In addition, the pulsed current increased or decreased periodically. Therefore, the arc is affected by such as a current value and current frequency, the current rate of increment and the metal vapor. In this paper, the transient response of arc temperature and the iron vapor concentration affected by the current frequency with iron vapor in pulsed arc was elucidated by the EMTF (ElectroMagnetic Thermal Fluid) simulation. As a result, the arc temperature and the iron vapor were transient response as the current frequency increase. Thus, the temperature and the electrical conductivity decreased. Therefore, the electrical field increased in order to maintain the current continuity. The current density and electromagnetic force increased at the axial center. In addition, the electronic flow component of the heat flux increased at the axial center because the current density increased. However, the heat conduction component of the heat flux decreased.

  10. Numerical analysis of fume formation mechanism in arc welding

    NASA Astrophysics Data System (ADS)

    Tashiro, Shinichi; Zeniya, Tasuku; Yamamoto, Kentaro; Tanaka, Manabu; Nakata, Kazuhiro; Murphy, Anthony B.; Yamamoto, Eri; Yamazaki, Kei; Suzuki, Keiichi

    2010-11-01

    In order to clarify the fume formation mechanism in arc welding, a quantitative investigation based on the knowledge of interaction among the electrode, arc and weld pool is indispensable. A fume formation model consisting of a heterogeneous condensation model, a homogeneous nucleation model and a coagulation model has been developed and coupled with the GTA or GMA welding model. A series of processes from evaporation of metal vapour to fume formation from the metal vapour was totally investigated by employing this simulation model. The aim of this paper is to visualize the fume formation process and clarify the fume formation mechanism theoretically through a numerical analysis. Furthermore, the reliability of the simulation model was also evaluated through a comparison of the simulation result with the experimental result. As a result, it was found that the size of the secondary particles consisting of small particles with a size of several tens of nanometres reached 300 nm at maximum and the secondary particle was in a U-shaped chain form in helium GTA welding. Furthermore, it was also clarified that most part of the fume was produced in the downstream region of the arc originating from the metal vapour evaporated mainly from the droplet in argon GMA welding. The fume was constituted by particles with a size of several tens of nanometres and had similar characteristics to that of GTA welding. On the other hand, if the metal transfer becomes unstable and the metal vapour near the droplet diffuses directly towards the surroundings of the arc not getting into the plasma flow, the size of the particles reaches several hundred nanometres.

  11. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    PubMed

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Effect of Solute Diffusion on Dendrite Growth in the Molten Pool of Al-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Zhan, Xiaohong; Gu, Cheng; Liu, Yun; Wei, Yanhong

    2017-10-01

    A cellular automaton (CA)-finite difference model is developed to simulate dendrite growth and solute diffusion during solidification process in the molten pool of Al-Cu alloy. In order to explain the interaction between the dendritic growth and solute distribution, a series of CA simulations with different solute diffusion velocity coefficients are carried out. It is concluded that the solute concentration increases with dendrite growing and solute accumulation in the dendrite tip. Converged value of the dendrite tip growth velocity is about 480 μm/s if the mesh size is refined to 2 μm or less. Growth of the primary dendrite and the secondary dendrite is mainly influenced by solute diffusion at the dendrite tips. And growth of secondary and tertiary dendrites is mainly influenced by solute diffusion at interdendrite.

  13. Microstructure and mechanical behavior of pulsed laser surface melted AISI D2 cold work tool steel

    NASA Astrophysics Data System (ADS)

    Yasavol, N.; Abdollah-zadeh, A.; Ganjali, M.; Alidokht, S. A.

    2013-01-01

    D2 cold work tool steel (CWTS) was subjected to pulse laser surface melting (PLSM) at constant frequency of 20 Hz Nd: YAG laser with different energies, scanning rate and pulse durations radiated to the surface. Characterizing the PLSM, with optical and field emission scanning electron microscopy, electron backscattered diffraction and surface hardness mapping technique was used to evaluate the microhardness and mechanical behavior of different regions of melting pool. Increasing laser energy and reducing the laser scanning rate results in deeper melt pool formation. Moreover, PLSM has led to entirely dissolution of the carbides and re-solidification of cellular/dendritic structure of a fine scale surrounded by a continuous interdendritic network. This caused an increase in surface microhardness, 2-4 times over that of the base metal.

  14. The Tungsten Inert GAS (TIG) Process of Welding Aluminium in Microgravity: Technical and Economic Considerations

    NASA Astrophysics Data System (ADS)

    Ferretti, S.; Amadori, K.; Boccalatte, A.; Alessandrini, M.; Freddi, A.; Persiani, F.; Poli, G.

    2002-01-01

    The UNIBO team composed of students and professors of the University of Bologna along with technicians and engineers from Alenia Space Division and Siad Italargon Division, took part in the 3rd Student Parabolic Flight Campaign of the European Space Agency in 2000. It won the student competition and went on to take part in the Professional Parabolic Flight Campaign of May 2001. The experiment focused on "dendritic growth in aluminium alloy weldings", and investigated topics related to the welding process of aluminium in microgravity. The purpose of the research is to optimise the process and to define the areas of interest that could be improved by new conceptual designs. The team performed accurate tests in microgravity to determine which phenomena have the greatest impact on the quality of the weldings with respect to penetration, surface roughness and the microstructures that are formed during the solidification. Various parameters were considered in the economic-technical optimisation, such as the type of electrode and its tip angle. Ground and space tests have determined the optimum chemical composition of the electrodes to offer longest life while maintaining the shape of the point. Additionally, the power consumption has been optimised; this offers opportunities for promoting the product to the customer as well as being environmentally friendly. Tests performed on the Al-Li alloys showed a significant influence of some physical phenomena such as the Marangoni effect and thermal diffusion; predictions have been made on the basis of observations of the thermal flux seen in the stereophotos. Space transportation today is a key element in the construction of space stations and future planetary bases, because the volumes available for launch to space are directly related to the payload capacity of rockets or the Space Shuttle. The research performed gives engineers the opportunity to consider completely new concepts for designing structures for space applications. In fact, once the optimised parameters are defined for welding in space, it could be possible to weld different parts directly in orbit to obtain much larger sizes and volumes, for example for space tourism habitation modules. The second relevant aspect is technology transfer obtained by the optimisation of the TIG process on aluminium which is often used in the automotive industry as well as in mass production markets.

  15. Repulsive Interaction of Sulfide Layers on Compressor Impeller Blades Remanufactured Through Plasma Spray Welding

    NASA Astrophysics Data System (ADS)

    Chang, Y.; Zhou, D.; Wang, Y. L.; Huang, H. H.

    2016-12-01

    This study investigated the repulsive interaction of sulfide layers on compressor impeller blades remanufactured through plasma spray welding (PSW). Sulfide layers on the blades made of FV(520)B steel were prepared through multifarious corrosion experiments, and PSW was utilized to remanufacture blade specimens. The specimens were evaluated through optical microscopy, scanning electron microscopy, energy-dispersive spectroscopy, 3D surface topography, x-ray diffraction, ImageJ software analysis, Vicker's micro-hardness test and tensile tests. Results showed a large number of sulfide inclusions in the fusion zone generated by sulfide layers embodied into the molten pool during PSW. These sulfide inclusions seriously degraded the mechanical performance of the blades remanufactured through PSW.

  16. Towards and FVE-FAC Method for Determining Thermocapillary Effects on Weld Pool Shape

    NASA Technical Reports Server (NTRS)

    Canright, David; Henson, Van Emden

    1996-01-01

    Several practical materials processes, e.g., welding, float-zone purification, and Czochralski crystal growth, involve a pool of molten metal with a free surface, with strong temperature gradients along the surface. In some cases, the resulting thermocapillary flow is vigorous enough to convect heat toward the edges of the pool, increasing the driving force in a sort of positive feedback. In this work we examine this mechanism and its effect on the solid-liquid interface through a model problem: a half space of pure substance with concentrated axisymmetric surface heating, where surface tension is strong enough to keep the liquid free surface flat. The numerical method proposed for this problem utilizes a finite volume element (FVE) discretization in cylindrical coordinates. Because of the axisymmetric nature of the model problem, the control volumes used are torroidal prisms, formed by taking a polygonal cross-section in the (r, z) plane and sweeping it completely around the z-axis. Conservation of energy (in the solid), and conservation of energy, momentum, and mass (in the liquid) are enforced globally by integrating these quantities and enforcing conservation over each control volume. Judicious application of the Divergence Theorem and Stokes' Theorem, combined with a Crank-Nicolson time-stepping scheme leads to an implicit algebraic system to be solved at each time step. It is known that near the boundary of the pool, that is, near the solid-liquid interface, the full conduction-convection solution will require extremely fine length scales to resolve the physical behavior of the system. Furthermore, this boundary moves as a function of time. Accordingly, we develop the foundation of an adaptive refinement scheme based on the principles of Fast Adaptive Composite Grid methods (FAC). Implementation of the method and numerical results will appear in a later report.

  17. The Relation Between Alloy Chemistry and Hot-Cracking

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Talia, J. E.

    2000-01-01

    Hot cracking is a problem in welding 2195 aluminum-lithium alloy. Weld wire additives seem to reduce the problem. This study proposes a model intended to clarify the way alloying elements affect hot-cracking. The brittle temperature range of an alloy extends wherever the tensile stress required to move the meniscus of the liquid film at the grain/dendrite boundaries is less than the bulks flow stress Sigma(sub B) of the grains: 2gamma/delta <= sigma(sub B) + P where gamma is boundary film surface tension delta= boundary film thickness P = gas pressure (Some alloys outgas.) If the above condition is not met, the grains deform under stress and the liquid film remains in place. Curves of 2gamma/delta and sigma(sub B) vs. temperature in the range just below the melting temperature determine the hot cracking susceptibility of an alloy. Both are zero at onset of solidification. sigma(sub B) rises as the thermal activation of the slip mechanism is reduced. 2gamma/delta rises as the film thickness delta which can be estimated from the Scheil equation, drops. But, given an embrittled alloy, whether the alloy actually cracks is determined by the strain imposed upon it in the embrittled condition. A critical strain is estimated, Epsilon(sub C) on the order of Epsilon(sub C) is approximately delta/l where L = grain size and where the the volume increment due to the strain, concentrated at the liquid film, is on the order of the liquid film volume. In the early 80's an empirical critical strain cracking envelope Epsilon(sub C)(T) was incorporated into a damage criterion to estimate the effect of welding parameters on the formation of microfissures in a superalloy with good results. These concepts, liquid film decoherence vs. grain bulk deformation and critical strain, form the key elements of a quantitative theory of hot-cracking applicable for assessing the effect of alloying elements on hot-cracking during welding.

  18. The use of electromagnetic body forces to enhance the quality of laser welds

    NASA Astrophysics Data System (ADS)

    Ambrosy, Guenter; Berger, P.; Huegel, H.; Lindenau, D.

    2003-11-01

    The use of electromagnetic body forces in laser beam welding of aluminum alloys is a new method to shape the geometry and to enhance the quality of the weld seams. In this new approach, electromagnetic volume forces are utilized by applying magnetic fields and electric currents of various origins. Acting in the liquid metal, they directly affect the flow field and can lead to favourable conditions for the melt dynamics and energy coupling. Numerous welds with full and partial penetration using both CO2 and Nd:YAG lasers demonstrate that this method directly influences the seam geometry and top-bead topography as well as the penetration depth and the evolution of pores and cracks. In the case of full penetration, it is also possible to lift or to lower the weld pool. The method, therefore, can be used to shape the geometry and to enhance the quality of the weld seam. Depending on the orientation of an external magnetic field, significant impacts are achieved in CO2 welding, even without an external current: the shape of the cross-sectional area can be increased of up to 50% and also the seam width is changed. Whereas for such conditions with Nd:YAG lasers no significant effect could be observed, it turned out that, when an external electric current is applied, similar effects are present with both wavelengths. In further investigations, the effect of electromagnetic body forces resulting from the interaction of an external current and its self-induced magnetic field was studied. Hereby, the current was fed into the workpiece via a tungsten electrode or a filler wire. The resulting phenomena are the same independent from wavelength and means of current feed.

  19. Field comparison of three inhalable samplers (IOM, PGP-GSP 3.5 and Button) for welding fumes.

    PubMed

    Zugasti, Agurtzane; Montes, Natividad; Rojo, José M; Quintana, M José

    2012-02-01

    Inhalable sampler efficiency depends on the aerodynamic size of the airborne particles to be sampled and the wind speed. The aim of this study was to compare the behaviour of three personal inhalable samplers for welding fumes generated by Manual Metal Arc (MMA) and Metal Active Gas (MAG) processes. The selected samplers were the ones available in Spain when the study began: IOM, PGP-GSP 3.5 (GSP) and Button. Sampling was carried out in a welding training center that provided a homogeneous workplace environment. The static sampling assembly used allowed the placement of 12 samplers and 2 cascade impactors simultaneously. 183 samples were collected throughout 2009 and 2010. The range of welding fumes' mass concentrations was from 2 mg m(-3) to 5 mg m(-3). The pooled variation coefficients for the three inhalable samplers were less than or equal to 3.0%. Welding particle size distribution was characterized by a bimodal log-normal distribution, with MMADs of 0.7 μm and 8.2 μm. For these welding aerosols, the Button and the GSP samplers showed a similar performance (P = 0.598). The mean mass concentration ratio was 1.00 ± 0.01. The IOM sampler showed a different performance (P < 0.001). The mean mass concentration ratios were 0.90 ± 0.01 for Button/IOM and 0.92 ± 0.02 for GSP/IOM. This information is useful to consider the measurements accomplished by the IOM, GSP or Button samplers together, in order to assess the exposure at workplaces over time or to study exposure levels in a specific industrial activity, as welding operations.

  20. Remote Laser Welding of Zinc Coated Steel Sheets in an Edge Lap Configuration with Zero Gap

    NASA Astrophysics Data System (ADS)

    Roos, Christian; Schmidt, Michael

    Remote Laser Welding (RLW) of zinc-coated steel sheets is a great challenge for the automotive industry but offers high potentials with respect to flexibility and costs. In state of the art applications, sheets are joined in overlap configuration with a preset gap for a stable zinc degassing. This paper investigates RLW of fillets without a preset gap and conditions for a stable process. The influence of process parameters on weld quality and process stability is shown. Experimental data give evidence, that the degassing of zinc through the capillary and the rear melt pool are the major degassing mechanisms. Furthermore the paper gives experimental validation of the zinc degassing in advance of the process zone to the open side of the fillet. Chemical analysis of the hot-dip galvanized zinc coating proof the iron-zinc-alloys to be the reason for a limited effectiveness of this mechanism in comparison to pure zinc as intermediate.

  1. Thermodynamic evaluation of the solidification phase of molten core-concrete under estimated Fukushima Daiichi nuclear power plant accident conditions

    NASA Astrophysics Data System (ADS)

    Kitagaki, Toru; Yano, Kimihiko; Ogino, Hideki; Washiya, Tadahiro

    2017-04-01

    The solidification phases of molten core-concrete under the estimated molten core-concrete interaction (MCCI) conditions in the Fukushima Daiichi Nuclear Power Plant Unit 1 were predicted using the thermodynamic equilibrium calculation tool, FactSage 6.2, and the NUCLEA database in order to contribute toward the 1F decommissioning work and to understand the accident progression via the analytical results for the 1F MCCI products. We showed that most of the U and Zr in the molten core-concrete forms (U,Zr)O2 and (Zr,U)SiO4, and the formation of other phases with these elements is limited. However, the formation of (Zr,U)SiO4 requires a relatively long time because it involves a change in the crystal structure from fcc-(U,Zr)O2 to tet-(U,Zr)O2, followed by the formation of (Zr,U)SiO4 by reaction with SiO2. Therefore, the formation of (Zr,U)SiO4 is limited under quenching conditions. Other common phases are the oxide phases, CaAl2Si2O8, SiO2, and CaSiO3, and the metallic phases of the Fe-Si and Fe-Ni alloys. The solidification phenomenon of the crust under quenching conditions and that of the molten pool under thermodynamic equilibrium conditions in the 1F MCCI progression are discussed.

  2. The self-secondary crater population of the Hokusai crater on Mercury

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyong; Prieur, Nils C.; Werner, Stephanie C.

    2016-07-01

    Whether or not self-secondaries dominate small crater populations on continuous ejecta deposits and floors of fresh impact craters has long been a controversy. This issue potentially affects the age determination technique using crater statistics. Here the self-secondary crater population on the continuous ejecta deposits of the Hokusai crater on Mercury is unambiguously recognized. Superposition relationships show that this population was emplaced after both the ballistic sedimentation of excavation flows and the subsequent veneering of impact melt, but it predated the settlement and solidification of melt pools on the crater floor. Fragments that formed self-secondaries were launched via impact spallation with large angles. Complex craters on the Moon, Mercury, and Mars probably all have formed self-secondaries populations. Dating young craters using crater statistics on their continuous ejecta deposits can be misleading. Impact melt pools are less affected by self-secondaries. Overprint by subsequent crater populations with time reduces the predominance of self-secondaries.

  3. Location specific solidification microstructure control in electron beam melting of Ti-6Al-4V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narra, Sneha P.; Cunningham, Ross; Beuth, Jack

    Relationships between prior beta grain size in solidified Ti-6Al-4V and melting process parameters in the Electron Beam Melting (EBM) process are investigated. Samples are built by varying a machine-dependent proprietary speed function to cover the process space. Optical microscopy is used to measure prior beta grain widths and assess the number of prior beta grains present in a melt pool in the raster region of the build. Despite the complicated evolution of beta grain sizes, the beta grain width scales with melt pool width. The resulting understanding of the relationship between primary machine variables and prior beta grain widths ismore » a key step toward enabling the location specific control of as-built microstructure in the EBM process. Control of grain width in separate specimens and within a single specimen is demonstrated.« less

  4. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets.

    PubMed

    Gabriel, Tobias; Rommel, Daniel; Scherm, Florian; Gorywoda, Marek; Glatzel, Uwe

    2017-03-10

    Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co-28Cr-9W-1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE) study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM) and scanning electron microscopy (SEM), combined with electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDX). Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable.

  5. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets

    PubMed Central

    Gabriel, Tobias; Rommel, Daniel; Scherm, Florian; Gorywoda, Marek; Glatzel, Uwe

    2017-01-01

    Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co–28Cr–9W–1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE) study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM) and scanning electron microscopy (SEM), combined with electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDX). Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable. PMID:28772639

  6. Wire Arc Additive Manufacturing of AZ31 Magnesium Alloy: Grain Refinement by Adjusting Pulse Frequency

    PubMed Central

    Guo, Jing; Zhou, Yong; Liu, Changmeng; Wu, Qianru; Chen, Xianping; Lu, Jiping

    2016-01-01

    Wire arc additive manufacturing (WAAM) offers a potential approach to fabricate large-scale magnesium alloy components with low cost and high efficiency, although this topic is yet to be reported in literature. In this study, WAAM is preliminarily applied to fabricate AZ31 magnesium. Fully dense AZ31 magnesium alloy components are successfully obtained. Meanwhile, to refine grains and obtain good mechanical properties, the effects of pulse frequency (1, 2, 5, 10, 100, and 500 Hz) on the macrostructure, microstructure and tensile properties are investigated. The results indicate that pulse frequency can result in the change of weld pool oscillations and cooling rate. This further leads to the change of the grain size, grain shape, as well as the tensile properties. Meanwhile, due to the resonance of the weld pool at 5 Hz and 10 Hz, the samples have poor geometry accuracy but contain finer equiaxed grains (21 μm) and exhibit higher ultimate tensile strength (260 MPa) and yield strength (102 MPa), which are similar to those of the forged AZ31 alloy. Moreover, the elongation of all samples is above 23%. PMID:28773944

  7. A Lossless hybrid wavelet-fractal compression for welding radiographic images.

    PubMed

    Mekhalfa, Faiza; Avanaki, Mohammad R N; Berkani, Daoud

    2016-01-01

    In this work a lossless wavelet-fractal image coder is proposed. The process starts by compressing and decompressing the original image using wavelet transformation and fractal coding algorithm. The decompressed image is removed from the original one to obtain a residual image which is coded by using Huffman algorithm. Simulation results show that with the proposed scheme, we achieve an infinite peak signal to noise ratio (PSNR) with higher compression ratio compared to typical lossless method. Moreover, the use of wavelet transform speeds up the fractal compression algorithm by reducing the size of the domain pool. The compression results of several welding radiographic images using the proposed scheme are evaluated quantitatively and compared with the results of Huffman coding algorithm.

  8. On the microstructure analysis of FSW joints of aluminium components made via direct metal laser sintering

    NASA Astrophysics Data System (ADS)

    Scherillo, Fabio; Astarita, Antonello; di Martino, Daniela; Contaldi, Vincenzo; di Matteo, Luca; di Petta, Paolo; Casarin, Renzo; Squillace, Antonino; Langella, Antonio

    2017-10-01

    Additive Manufacturing (AM), applied to metal industry, is a family of processes that allow complex shape components to be realized from raw materials in the form of powders. The compaction of the powders can be achieved by local melting of the powder bed or by solid state sintering. Direct Metal Laser Sintering (DMLS) is an additive manufacturing process in which a focalized laser beam is the heat source that allows the powders to be compacted. By DMLS it is possible to realize complex shape components. One of the limits of DMLS, as for every additive layer manufacturing techniques, is the unfeasibility to realize large dimension parts. Due to this limit the study of joining process of parts made via ALM is of great interest. One of the most promising options is the Friction Stir Welding (FSW), a solid state welding technique that has been proven to be very effective in the welding of metals difficult to weld, above all aluminium alloys. Since FSW is a solid-state technique, the microstructure of the various zone of the weld bead depends not only by the process itself but also by the parent microstruct ure of the parts to be welded. Furthermore, parts made of aluminium alloy via DMLS have a particular microstructure that is the result of repeated severe thermal cycles. In the present work the authors, starting from the description of the parent microstructure of parts made of AlSi10Mg aluminium alloy, study the microstructure evolution occurred within the joint made by Friction Stir Welding, analysing in details the microstructure of the main well recognized zone of the weld bead. The structure of the parent material is characterized by the presence of melting pools with a very fine microstructure. In the joint the recrystallization, the grain refinement and, above all, the redistribution of intermetallic phases occurs, resulting in an homogenization of the microstructure and in an increase of micro hardness.

  9. Microstructural development and segregation effects in directionally solidified nickel-based superalloy PWA 1484

    NASA Astrophysics Data System (ADS)

    Li, Lichun

    2002-09-01

    These studies were performed to investigate the effects of thermal gradient (G) and growth velocity (V) on the microstructure development and solidification behavior of directionally solidified nickel-based superalloy PWA 1484. Directional solidification (DS) experiments were conducted using a Bridgman crystal growth facility. The solidification velocity ranged from 0.00005 to 0.01 cm/sec and thermal gradients ranged from 12 to 108°C/cm. The as-cast microstructures of DS samples were characterized by using conventional metallography; chemical composition and segregation of directionally solidified samples were analyzed with energy dispersive spectroscopy in SEM. A range of aligned solidification microstructures is exhibited by the alloy when examined as-cast at room temperature: dendrites, flanged cells, cells. The microstructure transitions from cellular to dendritic as the growth velocity increases. The experimental data for PWA1484 exhibits excellent agreement with the well-known exponential equation (lambda1 ∝ G -1/2V-1/4). However, the constant of proportionality is different depending upon the solidification microstructure: (1) dendritic growth with secondary arms leads to a marked dependence of lambda1 on G-1/2 V-1/4; (2) flanged cellular growth with no secondary arms leads to much lower dependence of lambda 1 on G-1/2V -1/4. The primary dendritic arm spacing results were also compared to recent theoretical models. The model of Hunt and Lu and the model of Ma and Sahm provided excellent agreement at medium to high thermal gradients and a wide range of solidification velocities. The anomalous behavior of lambda 1 with high growth velocity V at low G is analyzed based on the samples' microstructures. Off-axis heat flows were shown to cause radial non-uniformity in the dendrite arm spacing data for low thermal gradients and large withdrawal velocities. Various precipitates including gamma', (gamma ' + gamma) eutectic pool or divorced eutectic gamma ', and metal carbides were characterized. Processing conditions (growth velocity V and thermal gradient G) exert significant influence on both morphology and size of precipitates present. Freckle defects were observed on the surface of nickel-based superalloy MM247 cylindrical samples but not on the surface of cylindrical PWA 1484 samples. The Rayleigh number (Ra) that represents liquid instability at the interface was evaluated for MM247 and PWA 1484 in terms of a recently proposed theoretical equation. The effects of segregation, sloped solid/liquid interface and the morphology of dendritic/cellular trunks on the mushy zone convective flow and freckle formation are also discussed.

  10. Al and Mg Alloys for Aerospace Applications Using Rapid Solidification and Powder Metallurgy Processing.

    DTIC Science & Technology

    1986-11-14

    5wt % Si was completely different from that of the alloy without silicon. The (X phase formed around the primary Mg2 Si crystals, and an irregular...content, and primary crystals in a binary Mg- 5wt % Si alloy did not exhibit this behavior. The surface of the rapidly solidified melt pools was rough and...Microhardness* of the laser treated alloys . Alloy As-cast Laser treated Mg- 5wt %Li 40.8 55.7 o, Mg- 5wt %Li- 5wt % Si 51.1 74.1 Mg-8wt%Li 42.8 71.2

  11. On the Modeling of Vacuum Arc Remelting Process in Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Patel, Ashish; Fiore, Daniel

    2016-07-01

    Mathematical modeling is routinely used in the process development and production of advanced aerospace alloys to gain greater insight into the effect of process parameters on final properties. This article describes the application of a 2-D mathematical VAR model presented at previous LMPC meetings. The impact of process parameters on melt pool geometry, solidification behavior, fluid-flow and chemistry in a Ti-6Al-4V ingot is discussed. Model predictions are validated against published data from a industrial size ingot, and results of a parametric study on particle dissolution are also discussed.

  12. Detection and evaluation of weld defects in stainless steel using alternating current field measurement

    NASA Astrophysics Data System (ADS)

    Wei-Li, Ma, Weiping; Pan-Qi, Wen-jiao, Dou; Yuan, Xin'an; Yin, Xiaokang

    2018-04-01

    Stainless steel is widely used in nuclear power plants, such as various high-radioactive pool, tools storage and fuel transportation channel, and serves as an important barrier to stop the leakage of high-radioactive material. NonDestructive Evaluation (NDE) methods, eddy current testing (ET), ultrasonic examination (UT), penetration testing (PT) and hybrid detection method, etc., have been introduced into the inspection of a nuclear plant. In this paper, the Alternating Current Field Measurement (ACFM) was fully applied to detect and evaluate the defects in the welds of the stainless steel. Simulations were carried out on different defect types, crack lengths, and orientation to reveal the relationship between the signals and dimensions to determine whether methods could be validated by the experiment. A 3-axis ACFM probe was developed and three plates including 16 defects, which served in nuclear plant before, were examined by automatic detection equipment. The result shows that the minimum detectable crack length on the surface is 2mm and ACFM shows excellent inspection results for a weld in stainless steel and gives an encouraging prospect of broader application.

  13. Analysis of plasma characteristics and conductive mechanism of laser assisted pulsed arc welding

    NASA Astrophysics Data System (ADS)

    Liu, Shuangyu; Chen, Shixian; Wang, Qinghua; Li, Yanqing; Zhang, Hong; Ding, Hongtao

    2017-05-01

    This study aims to investigate the arc plasma shape and the spectral characteristics during the laser assisted pulsed arc welding process. The arc plasma shape was synchronously observed using a high speed camera, and the emission spectrum of plasma was obtained by spectrometer. The well-known Boltzmann plot method and Stark broadening were used to calculate the electron temperature and density respectively. The conductive mechanism of arc ignition in laser assisted arc hybrid welding was investigated, and it was found that the plasma current moved to the arc anode under the action of electric field. Thus, a significant parabolic channel was formed between the keyhole and the wire tip. This channel became the main method of energy transformation between the arc and the molten pool. The calculation results of plasma resistivity show that the laser plasma has low resistivity as the starting point of conductive channel formation. When the laser pulse duration increases, the intensity of the plasma radiation spectrum and the plasma electron density will increase, and the electron temperature will decrease.

  14. The Effect of Oscillating Traverse Welding on Performance of Cr-Fe-C Hardfacing Alloys

    NASA Astrophysics Data System (ADS)

    Lai, Hsuan-Han; Hsieh, Chih-Chun; Wang, Jia-Siang; Lin, Chi-Ming; Wu, Weite

    2015-11-01

    In this study, a series of experiments involving Cr-Fe-C hardfacing alloys is conducted to evaluate the effect of oscillating traverse welding on microstructure and performance of clad alloys. The alloys are designed to exhibit hypoeutectic, eutectic, and hypereutectic morphology. The morphology of the heat-affected zone (HAZ) of the unmelted metal, the solidified remelted metal, and the fusion boundary exhibited distinct characteristics. In the hypoeutectic and the eutectic alloys, the same lamellar eutectic structure can be observed as the solidified structure, and they also showed the same evolution in the HAZ. In the hypereutectic alloy, the incomplete weld pool blending results in a eutectic morphology instead of a fully hypereutectic morphology. The hardness result reveals that, for the hypereutectic alloy, the eutectic region, instead of the HAZ, is the weak point. The wear test shows that the hypoeutectic alloy exhibits the same wear behaviors in both the remelted metal and the HAZ, and so is the hypereutectic alloy; the eutectic alloy remelted metal and the HAZ have different wear morphologies.

  15. Thermal cooling effects in the microstructure and properties of cast cobalt-base biomedical alloys

    NASA Astrophysics Data System (ADS)

    Vega Valer, Vladimir

    Joint replacement prosthesis is widely used in the biomedical field to provide a solution for dysfunctional human body joints. The demand for orthopedic knee and hip implants motivate scientists and manufacturers to develop novel materials or to increase the life of service and efficiency of current materials. Cobalt-base alloys have been investigated by various researchers for biomedical implantations. When these alloys contain Chromium, Molybdenum, and Carbon, they exhibit good tribological and mechanical properties, as well as excellent biocompatibility and corrosion resistance. In this study, the microstructure of cast Co-Cr-Mo-C alloy is purposely modified by inducing rapid solidification through fusion welding processes and solution annealing heat treatment (quenched in water at room temperature. In particular the effect of high cooling rates on the athermal phase transformation FCC(gamma)↔HCP(epsilon) on the alloy hardness and corrosion resistance is investigated. The Co-alloy microstructures were characterized using metallography and microscopy techniques. It was found that the as cast sample typically dendritic with dendritic grain sizes of approximately 150 microm and containing Cr-rich coarse carbide precipitates along the interdendritic boundaries. Solution annealing gives rise to a refined microstructure with grain size of 30 microm, common among Co-Cr-Mo alloys after heat treating. Alternatively, an ultrafine grain structure (between 2 and 10 microm) was developed in the fusion zone for specimens melted using Laser and TIG welding methods. When laser surface modification treatments were implemented, the developed solidification microstructure shifted from dendritic to a fine cellular morphology, with possible nanoscale carbide precipitates along the cellular boundaries. In turn, the solidified regions exhibited high hardness values (461.5HV), which exceeds by almost 110 points from the alloy in the as-cast condition. The amount of developed athermal epsilon-martensite phase was determined using X-ray diffractrometry. It was found that the amount of epsilon-martensite increases significantly from 2% for the Laser surface processing to 13% in the as cast specimen, 24% in the annealed specimen, and 51% for the TIG surface processing. Moreover, the corrosion rate in Ringer solution was calculated by applying the Tafel extrapolation method on each alloy condition. The lowest corrosion rate (0.435 microm/year) was achieved in the Laser treated alloy and it is attributed to the lack of appreciable athermal epsilon-martensite. The highest corrosion rate (15.5 microm/year) was found to occur in the TIG treated alloy, which possesses the largest amount of epsilon-martensite. In turn, this suggests that surface modification through melting induces variable amounts of athermal epsilon-martensite in the as-cast Co-Cr-Mo-C alloys. Apparently, rapid solidification of melted surfaces in the Co-alloy is highly effective in modifying the induced amounts of HCP phase, and hence, the exhibited properties.

  16. Influence of thickness of zinc coating on CMT welding-brazing with AlSi5 alloy wire

    NASA Astrophysics Data System (ADS)

    Jin, Pengli; Wang, Zhiping; Yang, Sinan; Jia, Peng

    2018-03-01

    Effect of thickness of zinc coating on Cold Mattel Transfer (CMT) brazing of aluminum and galvanized steel is investigated. The thickness of zinc coating is 10 μm, 30 μm, and 60 μm, respectively. A high-speed camera was used to capture images of welding process of different specimens; the microstructure and composition analyses of the welding seam were examined by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS); the mechanical properties were measured in the form of Nano-indentation experiments. The results showed that arc characteristics and metal transfer behavior were unsteady at the beginning of welding process and that became stable after two cycles of CMT. With the thickness of zinc coating thickening, arc characteristics and metal transfer behaviors were more deteriorated. Compared with 10 μm and 30 μm, clad appearance of 60 μm was straight seam edges and a smooth surface which wetting angle was 60°. Zinc-rich zone at the seam edges was formed by zinc dissolution and motel pool oscillating, and zinc content of 10 μm and 30 μm were 5.8% and 7.75%. Zinc content of 60 μm was 14.61%, and it was a belt between galvanized steel and welding seam. The thickness of intermetallic compounds layer was in the range of 1-8 μm, and it changed with the thickness of zinc coating. The average hardness of the reaction layer of 60 μm is 9.197 GPa.

  17. Use of schlieren methods to study gas flow in laser technology

    NASA Astrophysics Data System (ADS)

    Mrňa, Libor; Pavelka, Jan; Horník, Petr; Hrabovský, Jozef

    2016-11-01

    Laser technologies such as welding and cutting rely on process gases. We suggest to use schlieren imaging to visualize the gas flow during these processes. During the process of laser welding, the shielding gas flows to the welded area to prevent oxidation of the weld pool by surrounding air. The gas also interacts with hot plasma spurting from the key hole induced by the laser beam incident on the molten material. This interaction is quite complicated because hot plasma mixes with the cold shielding gas while the system is moving along the weld. Three shielding gases were used in the presented experiment: Ar, He and N2. Differences in dynamics of the flow are clearly visible on schlieren images. Moreover, high speed recording reveals a structure consisting of hot gas bubbles. We were also able to determine the velocity of the bubbles from the recording. During laser cutting, the process gas flows coaxially with the laser beam from the nozzle to remove the molten material out of the kerf. The gas flow is critical for the quality of the resulting edge of the cut. Schlieren method was used to study gas flow under the nozzle and then under the material being cut. This actually creates another slot nozzle. Due to the very low speed of flow below the material the schleiren method is already at the limit of its sensitivity. Therefore, it is necessary to apply a differential technique to increase the contrast. Distinctive widening of the flow shaped by the kerf was observed.

  18. Effect of carbon and manganese on the microstructure and mechanical properties of 9Cr2WVTa deposited metals

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Rong, Lijian; Li, Dianzhong; Lu, Shanping

    2017-03-01

    Six 9Cr2WVTa deposited metals with different carbon and manganese contents have been studied to reveal the role of major elements, which guide for the design of welding consumables for reduced activation ferritic/martensitic steel and meet for the requirements of accelerator driven systems-lead fusion reactors. The typical microstructure for the 9Cr2WVTa deposited metals is the lath martensite along with the fine stripe δ-ferrite. The chemical compositions influence the solidification sequence and therefore, change the δ-ferrite content in the deposited metal. The impact toughness for the 9Cr2WVTa deposited metals decreases remarkably when the δ-ferrite content is more than 5.2 vol%, also the impact toughness decreases owing to the high quenching martensite formation. Increasing the level of manganese addition, α phase of each alloy shifts to the bottom right according to the CCT diagram.

  19. Friction surfaced Stellite6 coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, K. Prasad; Damodaram, R.; Rafi, H. Khalid, E-mail: khalidrafi@gmail.com

    2012-08-15

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: Black-Right-Pointing-Pointer Stellite6 used as coating material formore » friction surfacing. Black-Right-Pointing-Pointer Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. Black-Right-Pointing-Pointer Finer and uniformly distributed carbides in friction surfaced coatings. Black-Right-Pointing-Pointer Absence of melting results compositional homogeneity in FS Stellite6 coatings.« less

  20. Ballistic Analysis of New Military Grade Magnesium Alloys for Armor Applications

    NASA Astrophysics Data System (ADS)

    Jones, Tyrone L.; Kondoh, Katsuyoshi

    Since 2006, the U.S. Army has been evaluating magnesium (Mg) alloys for ballistic structural applications. While Mg-alloys have been used in military structural applications since WWII, very little research has been done to improve its mediocre ballistic performance. The Army's need for ultra-lightweight armor systems has led to research and development of high strength, high ductility Mg-alloys. The U.S. Army Research Laboratory contracted through International Technology Center-Pacific Contract Number FA-5209-09-P-0158 with the Joining and Welding Research Instituteof Osaka University to develop the next generation of high strength, high ductility Mg-alloys using a novel Spinning Water Atomization Process for rapid solidification. New alloys AMX602 and ZAXE1711 in extruded bar form were characterized for microstructure, mechanical, and ballistic response. Significant increases in ballistic performance were evident when compared to the baseline alloy AZ31B.

  1. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing.

    PubMed

    Leung, Chu Lun Alex; Marussi, Sebastian; Atwood, Robert C; Towrie, Michael; Withers, Philip J; Lee, Peter D

    2018-04-10

    The laser-matter interaction and solidification phenomena associated with laser additive manufacturing (LAM) remain unclear, slowing its process development and optimisation. Here, through in situ and operando high-speed synchrotron X-ray imaging, we reveal the underlying physical phenomena during the deposition of the first and second layer melt tracks. We show that the laser-induced gas/vapour jet promotes the formation of melt tracks and denuded zones via spattering (at a velocity of 1 m s -1 ). We also uncover mechanisms of pore migration by Marangoni-driven flow (recirculating at a velocity of 0.4 m s -1 ), pore dissolution and dispersion by laser re-melting. We develop a mechanism map for predicting the evolution of melt features, changes in melt track morphology from a continuous hemi-cylindrical track to disconnected beads with decreasing linear energy density and improved molten pool wetting with increasing laser power. Our results clarify aspects of the physics behind LAM, which are critical for its development.

  2. Simulation results of influence of constricted arc column on anode deformation and melting pool swirl in vacuum arcs with AMF contacts

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Zhang, Xiao; Huang, Xiaolong; Jia, Shenli

    2017-11-01

    In the process of vacuum arc breaking, the energy injected into the anode will cause anode melting, evaporation, and deformation, resulting in the formation of the anode melting pool. The anode activities have great influence on the arc behavior. When the arc current is large enough, even the influence of axial magnetic field is considered, the arc column still is in contraction state, which means the arc burns only on a part of the electrode. In this paper, the model of anode melting pool deformation and rotation is used, and the model includes anode melting and solidification module, magneto-hydro-dynamic module of the anode melting pool, the volume of fraction method, and the current continuity equation. In this paper, the diffuse arc area is selected as 100%, 75%, and 50%, respectively. The anode temperature and deformation, the anode melting layer thickness, and the rotational velocity of the anode melting pool are obtained. The results show that when the current is at 17.5 kA (rms) and the diffuse arc area is 100%, the anode's maximum temperature is 1477 K and the crater depth is 0.83 mm. But when the diffuse arc areas are 75% and 50%, the anode's maximum temperatures reach 1500 K and 1761 K, and the crater depths reach 1.2 mm and 3 mm, respectively. Arc contraction will lead to more serious anode deformation. A similar result is obtained when the simulation current is 12.5 kA. Under the similar situation, the simulation results in the crater depth, the residual melt layer thickness, the rotational speed of the melting pool, and the maximum temperature of the anode at current zero are in good agreement with the experimental results.

  3. Effect of Convection on Weld Pool Shape and Microstructure.

    DTIC Science & Technology

    1986-07-01

    latent heat of fusion 11 u dynamic viscosity Iwo V kinematic viscosity P density a Stefan -Boltzman constant stress tensor 0, functions defined the...and temperature. The convections for velocities and temperature are based on a mixed Gauss- -* Seidel and Jacobi schemes, proceeding from line-to...line according to the Gauss- Seidel scheme, updating values as each line is completed. With each line, however, the point-by-point iteration is based on

  4. The importance of properties in modeling

    NASA Technical Reports Server (NTRS)

    Giamei, A. F.

    1993-01-01

    Casting and welding of superalloys, stainless steel and titanium alloys are processes which can be improved through modeling of heat flow, fluid flow, residual stress development, and microstructural evolution. These simulations require inputs of thermophysical data, some of which involves the partially or totally liquid state. In particular, these processes involve melting, flow in the liquid, and solidification. Modeling of such processes can lead to an improved understanding of defects such as shrinkage, inclusions, cracks, incomplete filling (or penetration), macrosegregation, improper grain structure, and deviations from dimensional specifications. Effective modeling can shorten process development time and improve quality. An approach to these problems is to develop efficient models; validate through correlations with thermal, distortion, and microstructural data; run parametric studies; extract knowledge based rules; and apply to adaptive closed loop control systems. With the appropriate pre- and post-processing, such analyses can be made 'user friendly'. This would include graphical user interfaces as well as realistic images and color maps. In such form, these models can be used for sensitivity analyses, which are useful in defining appropriate sensors and in the development of control strategies. Such modeling can be done at several levels, e.g., the MARO level, modeling large scale phenomena such as heat and fluid flow or material deformation; the MICRO level, modeling the development of dendrites, grains or precipitates; or at the NANO level, modeling point defects, dislocations, stacking faults, etc. There are many computational issues associated with these simulations, e.g. computational efficiency and accuracy. In addition, there are many materials issues, not the least of which is the availability of accurate high temperature thermophysical data for complex alloys. This would include latent heat of fusion, temperature dependent heat capacity and thermal conductivity (for liquid and solid), viscosity, surface tension, thermal expansion, mechanical properties, etc. Preliminary data is frequently gathered from the literature; however, this is often not available for modern alloys. If additional data are required, measurements can be used; however, these are costly, time consuming and can be erroneous due to a lack of testing standards or impure materials. Microstructural predictors can be extracted from thermal information, e.g. cooling rate and thermal gradient; the prediction of microstructure is dependent on solidus and liquidus temperature, mushy zone permeability, the solidification curve, volume changes, phase transformations, alloying effects (such as surface tension or viscosity), mold/metal reactions, metal/environment reactions, etc. Defect maps may be needed to predict the onset of shrinkage, hot cracking or 'freckling'. Constants may be needed for stress relaxation, dendrite coarsening, vaporization, etc. Visualization was used as a tool to better comprehend complex data sets associated with the analysis of directional solidification (including crystal growth) and welding. Examples include not only isotherms, but also cooling rate, growth rate and thermal gradient. The latter two are not single valued scalars, but rather time and space dependent vector fields. Efficient models were developed for both casting and welding to predict heat flow and the relationship to dendrite and grain growth. These codes include many of the non-linear effects, e.g. radiation, which dominate these processes. The home-built FDM code(s) were designed to be useful not only to the scientist, but also to the process engineer. Special output can be requested to compare directly to experimental data. Visualization procedures were developed to visualize critical results, e.g. fusion zone width at the surface opposite that where the arc is applied ('penetration'). Both elaborate and simplified distortion analyses were carried out. It is clear that extensive mechanical property data are critical in order to accurately predict residual stress patterns. A scheme is currently being developed to integrate these modeling tools into a set of control algorithms; however, the success of this approach is critically dependent on the availability of accurate high temperature thermophysical data.

  5. Scanning and transmission electron microscopy study of the microstructural changes occurring in aluminium matrix composites reinforced with SiC particles during casting and welding: interface reactions

    PubMed

    Urena; Gomez De Salazar JM; Gil; Escalera; Baldonedo

    1999-11-01

    Processing of aluminium matrix composites (AMCs), especially those constituted by a reactive system such as Al-SiC, presents great difficulties which limit their potential applications. The interface reactivity between SiC and molten Al generates an aluminium carbide which degrades the composite properties. Scanning and transmission electron microscopes equipped with energy-dispersive X-ray spectroscopes are essential tools for determining the structure and chemistry of the Al-SiC interfaces in AMCs and changes occurring during casting and arc welding. In the present work, an aluminium-copper alloy (AA2014) reinforced with three different percentages of SiC particles was subjected to controlled remelting tests, at temperatures in the range 750-900 degrees C for 10 and 30 min. Arc welding tests using a tungsten intert gas with power inputs in the range 850-2000 W were also carried out. The results of these studies showed that during remelting there is preferential SiC particle consumption with formation of Al4C3 by interface reaction between the solid SiC particle and the molten aluminium matrix. The formation of Al4C3 by the same mechanism has also been detected in molten pools of arc welded composites. However, in this case there was formation of an almost continuous layer of Al4C3, which protects the particle against further consumption, and formation of aciculate aluminium carbide on the top weld. Both are formed by fusion and dissolution of the SiC in molten aluminium followed by reaction and precipitation of the Al4C3 during cooling.

  6. The influence of oxygen additions on argon-shielded gas metal arc welding processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joensson, P.G.; Murphy, A.B.; Szekely, J.

    1995-02-01

    It has been observed experimentally that small additions of oxygen to the argon shielding gas affect the general operation of GMAW processes. By theoretically modeling the arc column, it is shown that the addition of 2 to 5% oxygen to argon has an insignificant effect on the arc characteristics. This corresponds to the minor changes in the thermophysical transport and thermodynamic properties caused by the oxygen addition. Therefore, it is concluded that the addition of oxygen to the argon shielding gas mainly affects the anode and the cathode regions. From the literature, it was found that the formation of oxidesmore » initiates arcing at the cathode and decreases the movement of the cathode spots. These oxides can also improve the wetting conditions at the workpiece and the electrode. Finally, oxygen is found to affect the surface tension gradient and thereby the convective flow of liquid metal in the weld pool.« less

  7. Solidification of eutectic system alloys in space (M-19)

    NASA Technical Reports Server (NTRS)

    Ohno, Atsumi

    1993-01-01

    It is well known that in the liquid state eutectic alloys are theoretically homogeneous under 1 g conditions. However, the homogeneous solidified structure of this alloy is not obtained because thermal convection and non-equilibrium solidification occur. The present investigators have clarified the solidification mechanisms of the eutectic system alloys under 1 g conditions by using the in situ observation method; in particular, the primary crystals of the eutectic system alloys never nucleated in the liquid, but instead did so on the mold wall, and the crystals separated from the mold wall by fluid motion caused by thermal convection. They also found that the equiaxed eutectic grains (eutectic cells) are formed on the primary crystals. In this case, the leading phase of the eutectic must agree with the phase of the primary crystals. In space, no thermal convection occurs so that primary crystals should not move from the mold wall and should not appear inside the solidified structure. Therefore no equiaxed eutectic grains will be formed under microgravity conditions. Past space experiments concerning eutectic alloys were classified into two types of experiments: one with respect to the solidification mechanisms of the eutectic alloys and the other to the unidirectional solidification of this alloy. The former type of experiment has the problem that the solidified structures between microgravity and 1 g conditions show little difference. This is why the flight samples were prepared by the ordinary cast techniques on Earth. Therefore it is impossible to ascertain whether or not the nucleation and growth of primary crystals in the melt occur and if primary crystals influence the formation of the equiaxed eutectic grains. In this experiment, hypo- and hyper-eutectic aluminum copper alloys which are near eutectic point are used. The chemical compositions of the samples are Al-32.4mass%Cu (Hypo-eutectic) and Al-33.5mass%Cu (hyper-eutectic). Long rods for the samples are cast by the Ohno Continuous Casting Process and they show the unidirectionally solidified structure. Each flight and ground sample was made of these same rods. The dimensions of all samples are 4.5 mm in diameter and 23.5 mm in length. Each sample is put in a graphite capsule and then vacuum sealed in a double silica ampoule. Then the ampoule is put in the tantalum cartridge and sealed by electron beam welding. For onbard experiments, a Continuous Heating Furnance (CHF) will be used for melting and solidifying samples under microgravity conditions. Six flight samples will be used. Four samples are hypo-eutectic and two are hyper-eutectic alloys. The surface of the two hypo-eutectic alloy samples are covered with aluminum oxide film to prevent Marangoni convection expected under microgravity conditions. Each sample will be heated to 700 C and held at that temperature for 5 min. After that the samples will be allowed to cool to 500 C in the furnace and they will be taken out of the furnace for He gas cooling. The heating and cooling diagrams for the flight experiments are shown. After collecting the flight samples, the solidified structures of the samples will be examined and the mechanisms of eutectic solidification under microgravity conditions will be determined. It is likely that successful flight experiment results will lead to production of high quality eutectic alloys and eutectic composite materials in space.

  8. Single-step laser deposition of functionally graded coating by dual ‘wire powder’ or ‘powder powder’ feeding—A comparative study

    NASA Astrophysics Data System (ADS)

    Syed, Waheed Ul Haq; Pinkerton, Andrew J.; Liu, Zhu; Li, Lin

    2007-07-01

    The creation of iron-copper (Fe-Cu) alloys has practical application in improving the surface heat conduction and corrosion resistance of, for example, conformal cooling channels in steel moulds, but is difficult to achieve because the elements have got low inter-solubility and are prone to solidification cracking. Previous work by these authors has reported a method to produce a graded iron-nickel-copper coating in a single-step by direct diode laser deposition (DLD) of nickel wire and copper powder as a combined feedstock. This work investigates whether dual powder feeds can be used in that process to afford greater geometric flexibility and compares attributes of the 'nickel wire and copper powder' and 'nickel powder and copper powder' processes for deposition on a H13 tool steel substrate. In wire-powder deposition, a higher temperature developed in the melt pool causing a clad with a smooth gradient structure. The nickel powder in powder-powder deposition did not impart much heat into the melt pool so the melt pool solidified with sharp composition boundaries due to single metal melting in some parts. In wire-powder experiments, a graded structure was obtained by varying the flow rates of wire and powder. However, a graded structure was not realised in powder-powder experiments by varying either the feed or the directions. Reasons for the differences and flow patterns in the melt pools and their effect on final part properties of parts produced are discussed.

  9. Welding pool measurement using thermal array sensor

    NASA Astrophysics Data System (ADS)

    Cho, Chia-Hung; Hsieh, Yi-Chen; Chen, Hsin-Yi

    2015-08-01

    Selective laser melting (SLM) is an additive manufacturing (AM) technology that uses a high-power laser beam to melt metal powder in chamber of inert gas. The process starts by slicing the 3D CAD data as a digital information source into layers to create a 2D image of each layer. Melting pool was formed by using laser irradiation on metal powders which then solidified to consolidated structure. In a selective laser melting process, the variation of melt pool affects the yield of a printed three-dimensional product. For three dimensional parts, the border conditions of the conductive heat transport have a very large influence on the melt pool dimensions. Therefore, melting pool is an important behavior that affects the final quality of the 3D object. To meet the temperature and geometry of the melting pool for monitoring in additive manufacturing technology. In this paper, we proposed the temperature sensing system which is composed of infrared photodiode, high speed camera, band-pass filter, dichroic beam splitter and focus lens. Since the infrared photodiode and high speed camera look at the process through the 2D galvanometer scanner and f-theta lens, the temperature sensing system can be used to observe the melting pool at any time, regardless of the movement of the laser spot. In order to obtain a wide temperature detecting range, 500 °C to 2500 °C, the radiation from the melting pool to be measured is filtered into a plurality of radiation portions, and since the intensity ratio distribution of the radiation portions is calculated by using black-body radiation. The experimental result shows that the system is suitable for melting pool to measure temperature.

  10. High-Temperature Tensile Behaviors of Base Metal and Electron Beam-Welded Joints of Ni-20Cr-9Mo-4Nb Superalloy

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Anil Kumar, V.; Sukumaran, Arjun; Kumar, Vinod

    2018-05-01

    Electron beam welding of Ni-20Cr-9Mo-4Nb alloy sheets was carried out, and high-temperature tensile behaviors of base metal and weldments were studied. Tensile properties were evaluated at ambient temperature, at elevated temperatures of 625 °C to 1025 °C, and at strain rates of 0.1 to 0.001 s-1. Microstructure of the weld consisted of columnar dendritic structure and revealed epitaxial mode of solidification. Weld efficiency of 90 pct in terms of strength (UTS) was observed at ambient temperature and up to an elevated temperature of 850 °C. Reduction in strength continued with further increase of test temperature (up to 1025 °C); however, a significant improvement in pct elongation is found up to 775 °C, which was sustained even at higher test temperatures. The tensile behaviors of base metal and weldments were similar at the elevated temperatures at the respective strain rates. Strain hardening exponent `n' of the base metal and weldment was 0.519. Activation energy `Q' of base metal and EB weldments were 420 to 535 kJ mol-1 determined through isothermal tensile tests and 625 to 662 kJ mol-1 through jump-temperature tensile tests. Strain rate sensitivity `m' was low (< 0.119) for the base metal and (< 0.164) for the weldment. The δ phase was revealed in specimens annealed at 700 °C, whereas, twins and fully recrystallized grains were observed in specimens annealed at 1025 °C. Low-angle misorientation and strain localization in the welds and the HAZ during tensile testing at higher temperature and strain rates indicates subgrain formation and recrystallization. Higher elongation in the weldment (at Test temperature > 775 °C) is attributed to the presence of recrystallized grains. Up to 700 °C, the deformation is through slip, where strain hardening is predominant and effect of strain rate is minimal. Between 775 °C to 850 °C, strain hardening is counterbalanced by flow softening, where cavitation limits the deformation (predominantly at lower strain rate). Above 925 °C, flow softening is predominant resulting in a significant reduction in strength. Presence of precipitates/accumulated strain at high strain rate results in high strength, but when the precipitates were coarsened at lower strain rates or precipitates were dissolved at a higher temperature, the result was a reduction in strength. Further, the accumulated strain assisted in recrystallization, which also resulted in a reduction in strength.

  11. Approximate analysis of the formation of a buoyant solid sphere in a supercooled melt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, A.D.; Wilson, D.G.; Alexiades, V.

    1986-03-01

    A mathematical model is presented for the idealized formation and development of a buoyant sphere solidifying in an infinite pool of supercooled liquid. The solid and liquid are of the same pure material and the solid is less dense than the liquid. Initially the liquid is at a uniform temperature that is below its equilibrium freezing temperature, T/sub cr/, but above the so called hypercooled temperature, T/sub cr/ - H/c/sub L/. Here H and c/sub L/ are the latent heat of solidification and the specific heat of the liquid, respectively. An approximate solution is derived based on the Megerlin approximationmore » method. 11 refs.« less

  12. Analysis of the factors that impact the reliability of high level waste canister materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, W.K.; Hall, A.M.

    1977-09-19

    The analysis encompassed identification and analysis of potential threats to canister integrity arising in the course of waste solidification, interim storage at the fuels reprocessing plant, wet and dry shipment, and geologic storage. Fabrication techniques and quality assurance requirements necessary to insure optimum canister reliability were considered taking into account such factors as welding procedure, surface preparation, stress relief, remote weld closure, and inspection methods. Alternative canister materials and canister systems were also considered in terms of optimum reliability in the face of threats to the canister's integrity, ease of fabrication, inspection, handling and cost. If interim storage in airmore » is admissible, the sequence suggested comprises producing a glass-type waste product in a continuous ceramic melter, pouring into a carbon steel or low-alloy steel canister of moderately heavy wall thickness, storing in air upright on a pad and surrounded by a concrete radiation shield, and thereafter placing in geologic storage without overpacking. Should the decision be to store in water during the interim period, then use of either a 304 L stainless steel canister overpacked with a solution-annealed and fast-cooled 304 L container, or a single high-alloy canister, is suggested. The high alloy may be Inconel 600, Incoloy Alloy 800, or Incoloy Alloy 825. In either case, it is suggested that the container be overpacked with a moderately heavy wall carbon steel or low-alloy steel cask for geologic storage to ensure ready retrievability. 19 figs., 5 tables.« less

  13. Application of Solidification Theory to Rapid Solidification Processing

    DTIC Science & Technology

    1984-07-01

    solubility; _NiAl -Cr quasibinary alloys ; Rapid solidification ; Solidification theory I’.ASRACT ICfene an roerso aid it 000e..yV SON identify0 by Week...110100a) ~j ~apid solidification allows the production of alloys with new compositions and * uphases and also allows production of improved alloys by...control of microstructure;L and homogeneity. The effect of rapid solidification velocity on the micro- structure of Ag-Cu alloys is comprehensively

  14. The solidification velocity of nickel and titanium alloys

    NASA Astrophysics Data System (ADS)

    Altgilbers, Alex Sho

    2002-09-01

    The solidification velocity of several Ni-Ti, Ni-Sn, Ni-Si, Ti-Al and Ti-Ni alloys were measured as a function of undercooling. From these results, a model for alloy solidification was developed that can be used to predict the solidification velocity as a function of undercooling more accurately. During this investigation a phenomenon was observed in the solidification velocity that is a direct result of the addition of the various alloying elements to nickel and titanium. The additions of the alloying elements resulted in an additional solidification velocity plateau at intermediate undercoolings. Past work has shown a solidification velocity plateau at high undercoolings can be attributed to residual oxygen. It is shown that a logistic growth model is a more accurate model for predicting the solidification of alloys. Additionally, a numerical model is developed from simple description of the effect of solute on the solidification velocity, which utilizes a Boltzmann logistic function to predict the plateaus that occur at intermediate undercoolings.

  15. An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in the Space Shuttle Bay at LEO for the International Space Welding Experiment

    NASA Technical Reports Server (NTRS)

    Fragomeni, James M.

    1996-01-01

    In 1997, the United States [NASA] and the Paton Electric Welding Institute are scheduled to cooperate in a flight demonstration on the U.S. Space Shuttle to demonstrate the feasibility of welding in space for a possible repair option for the International Space Station Alpha. This endeavor, known as the International Space Welding Experiment (ISWE), will involve astronauts performing various welding exercises such as brazing, cutting, welding, and coating using an electron beam space welding system that was developed by the E.O. Paton Electric Welding Institute (PWI), Kiev Ukraine. This electron beam welding system known as the "Universal Weld System" consists of hand tools capable of brazing, cutting, autogeneous welding, and coating using an 8 kV (8000 volts) electron beam. The electron beam hand tools have also been developed by the Paton Welding Institute with greater capabilities than the original hand tool, including filler wire feeding, to be used with the Universal Weld System on the U.S. Space Shuttle Bay as part of ISWE. The hand tool(s) known as the Ukrainian Universal Hand [Electron Beam Welding] Tool (UHT) will be utilized for the ISWE Space Shuttle flight welding exercises to perform welding on various metal alloy samples. A total of 61 metal alloy samples, which include 304 stainless steel, Ti-6AI-4V, 2219 aluminum, and 5456 aluminum alloys, have been provided by NASA for the ISWE electron beam welding exercises using the UHT. These samples were chosen to replicate both the U.S. and Russian module materials. The ISWE requires extravehicular activity (EVA) of two astronauts to perform the space shuttle electron beam welding operations of the 61 alloy samples. This study was undertaken to determine if a hazard could exist with ISWE during the electron beam welding exercises in the Space Shuttle Bay using the Ukrainian Universal Weld System with the UHT. The safety issue has been raised with regard to molten metal detachments as a result of several possible causes such as welder procedural error, externally applied impulsive forces(s), filler wire entrainment and snap-out, cutting expulsion, and puddle expulsion. Molten metal detachment from either the weld/cut substrate or weld wire could present harm to a astronaut in the space environment it the detachment was ti burn through the fabric of the astronaut Extravehicular Mobility Unit (EMC). In this paper an experimental test was performed in a 4 ft. x 4 ft. vacuum chamber at MSFC enabling protective garment to be exposed to the molten metal drop detachments to over 12 inches. The chamber was evacuated to vacuum levels of at least 1 x 10(exp -5) torr (50 micro-torr) during operation of the 1.0 kW Universal Hand Tool (UHT). The UHT was manually operated at the power mode appropriate for each material and thickness. The space suit protective welding garment, made of Teflon fabric (10 oz. per yard) with a plain weave, was placed on the floor of the vacuum chamber to catch the molten metal drop detachments. A pendulum release mechanism consisting of four hammers, each weighing approximately 3.65 lbs, was used to apply an impact forces to the weld sample/plate during both the electron beam welding and cutting exercises. Measurements were made of the horizontal fling distances of the detached molten metal drops. The volume of a molten metal drop can also be estimated from the size of the cut. Utilizing equations, calculations were made to determine chande in surafec area (Delat a(surface)) for 304 stainless steel for cutting based on measurements of metal drop sizes at the cut edges. For the cut sample of 304 stainless steel based on measurement of the drop size at the edge, Delta-a(surface) was determined to be 0.0054 2 in . Calculations have indicated only a small amount of energy is required to detach a liquid metal drop. For example, approximately only 0.000005 ft-lb of energy is necessary to detach a liquid metal steel drop based on the above theoretical analysis. However, some of the energy will be absorbed by the plate before it reaches the metal drop. Based on the theoretical calculations, it was determined that during a weld cutting exercise, the titanium alloy would be the most difficult to detach molten metal droplets followed by stainless steel and then by aluminum. The results of the experimental effort have shown that molten metal will detach if large enough of a hammer blow is applied to the weld sample plate during the full penetration welding and cutting exercises. However, no molten metal detachments occurred as a result of the filler wire snap-out tests from the weld puddle since it was too difficult to cause the metal to flick-out from the pool. Molten metal detachments, though not large in size, did result from the direct application of the electron beam on the end of the filler weld wire.

  16. Visualization of solidification front phenomena

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Smith, Guy A.

    1993-01-01

    Directional solidification experiments have been utilized throughout the Materials Processing in Space Program to provide an experimental platform which minimizes variables in solidification experiments. Because of the wide-spread use of this experimental technique in space-based research, it has become apparent that a better understanding of all the phenomena occurring during solidification can be better understood if direct visualization of the solidification interface were possible.

  17. Microstructural Characterization of a Polycrystalline Nickel-Based Superalloy Processed via Tungsten-Intert-Gas-Shaped Metal Deposition

    NASA Astrophysics Data System (ADS)

    Clark, Daniel; Bache, Martin R.; Whittaker, Mark T.

    2010-12-01

    Recent trials have produced tungsten-inert-gas (TIG)-welded structures of a suitable scale to allow an evaluation of the technique as an economic and commercial process for the manufacture of complex aeroengine components. The employment of TIG welding is shown to have specific advantages over alternative techniques based on metal inert gas (MIG) systems. Investigations using the nickel-based superalloy 718 have shown that TIG induces a smaller weld pool with less compositional segregation. In addition, because the TIG process involves a pulsed power source, a faster cooling rate is achieved, although this rate, in turn, compromises the deposition rate. The microstructures produced by the two techniques differ significantly, with TIG showing an absence of the detrimental delta and Laves phases typically produced by extended periods at a high temperature using MIG. Instead, an anisotropic dendritic microstructure was evident with a preferred orientation relative to the axis of epitaxy. Niobium was segregated to the interdendritic regions. A fine-scale porosity was evident within the microstructure with a maximum diameter of approximately 5 μm. This porosity often was found in clusters and usually was associated with the interdendritic regions. Subsequent postdeposition heat treatment was shown to have no effect on preexisting porosity and to have a minimal effect on the microstructure.

  18. Microstructure and properties of pure iron/copper composite cladding layers on carbon steel

    NASA Astrophysics Data System (ADS)

    Wan, Long; Huang, Yong-xian; Lü, Shi-xiong; Huang, Ti-fang; Lü, Zong-liang

    2016-08-01

    In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid-solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation (LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.

  19. High-velocity frictional properties of gabbro

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Akito; Shimamoto, Toshihiko

    High-velocity friction experiments have been performed on a pair of hollow-cylindrical specimens of gabbro initially at room temperature, at slip rates from 7.5 mm/s to 1.8 m/s, with total circumferential displacements of 125 to 174 m, and at normal stresses to 5 MPa, using a rotary-shear high-speed friction testing machine. Steady-state friction increases slightly with increasing slip rate at slip rates to about 100 mm/s (velocity strengthening) and it decreases markedly with increasing slip rate at higher velocities (velocity weakening). Steady-state friction in the velocity weakening regime is lower for the non-melting case than the frictional melting case, due perhaps to severe thermal fracturing. A very large peak friction is always recognized upon the initiation of visible frictional melting, presumably owing to the welding of fault surfaces upon the solidification of melt patches. Frictional properties thus change dramatically with increasing displacement at high velocities, and such a non-linear effect must be incorporated into the analysis of earthquake initiation processes.

  20. A FRAMEWORK TO DEVELOP FLAW ACCEPTANCE CRITERIA FOR STRUCTURAL INTEGRITY ASSESSMENT OF MULTIPURPOSE CANISTERS FOR EXTENDED STORAGE OF USED NUCLEAR FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, P.; Sindelar, R.; Duncan, A.

    2014-04-07

    A multipurpose canister (MPC) made of austenitic stainless steel is loaded with used nuclear fuel assemblies and is part of the transfer cask system to move the fuel from the spent fuel pool to prepare for storage, and is part of the storage cask system for on-site dry storage. This weld-sealed canister is also expected to be part of the transportation package following storage. The canister may be subject to service-induced degradation especially if exposed to aggressive environments during possible very long-term storage period if the permanent repository is yet to be identified and readied. Stress corrosion cracking may bemore » initiated on the canister surface in the welds or in the heat affected zone because the construction of MPC does not require heat treatment for stress relief. An acceptance criteria methodology is being developed for flaw disposition should the crack-like defects be detected by periodic Inservice Inspection. The external loading cases include thermal accident scenarios and cask drop conditions with the contribution from the welding residual stresses. The determination of acceptable flaw size is based on the procedure to evaluate flaw stability provided by American Petroleum Institute (API) 579 Fitness-for-Service (Second Edition). The material mechanical and fracture properties for base and weld metals and the stress analysis results are obtained from the open literature such as NUREG-1864. Subcritical crack growth from stress corrosion cracking (SCC), and its impact on inspection intervals and acceptance criteria, is not addressed.« less

  1. U.S. pipeline industry enters new era

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnsen, M.R.

    1999-11-01

    The largest construction project in North America this year and next--the Alliance Pipeline--marks some advances for the US pipeline industry. With the Alliance Pipeline system (Alliance), mechanized welding and ultrasonic testing are making their debuts in the US as primary mainline construction techniques. Particularly in Canada and Europe, mechanized welding technology has been used for both onshore and offshore pipeline construction for at least 15 years. However, it has never before been used to build a cross-country pipeline in the US, although it has been tested on short segments. This time, however, an accelerated construction schedule, among other reasons, necessitatedmore » the use of mechanized gas metal arc welding (GMAW). The $3-billion pipeline will delivery natural gas from northwestern British Columbia and northeastern Alberta in Canada to a hub near Chicago, Ill., where it will connect to the North American pipeline grid. Once the pipeline is completed and buried, crews will return the topsoil. Corn and other crops will reclaim the land. While the casual passerby probably won't know the Alliance pipeline is there, it may have a far-reaching effect on the way mainline pipelines are built in the US. For even though mechanized welding and ultrasonic testing are being used for the first time in the United States on this project, some US workers had already gained experience with the technology on projects elsewhere. And work on this pipeline has certainly developed a much larger pool of experienced workers for industry to draw from. The Alliance project could well signal the start of a new era in US pipeline construction.« less

  2. Microstructure Evolution in the Presence of Constraints and Implications on the Properties of Mg - Li and Nb - Al Composites

    DTIC Science & Technology

    1991-05-30

    alloys and composites Solidification experiments with Succinonitrile-acetone system Experimerts with Salol I Directional Solidification of Mg-Li alloys ...Directional Solidification of Mg-Li Composites Microstructural Analysis and Modeling Combustion Synthesis Principles ( theory ) Nb-AI alloys made by...Combustion Synthesis Nb-AI - NbB composites made by Combustion Synthesis Directional Solidification of Nb-AI Alloys Directional Solidification of Nb- Al

  3. The influence of gravity level during directional solidification of immiscible alloys

    NASA Technical Reports Server (NTRS)

    Andrews, J. B.; Schmale, A. L.; Sandlin, A. C.

    1992-01-01

    During directional solidification of immiscible (hypermonotectic) alloys it is theoretically possible to establish a stable macroscopically-planar solidification front, and thus avoid sedimentation. Unfortunately, convective instabilities often occur which interfere with the directional solidification process. In this paper, stability conditions are discussed and results presented from directional solidification studies carried out aboard NASA's KC-135 zero-g aircraft. Samples were directionally solidified while the effective gravity level was varied from approximately 0.01 g for 25 s to 1.8 g for 45 s. Dramatic variations in microstructure were observed with gravity level during solidification.

  4. Tranpsort phenomena in solidification processing of functionally graded materials

    NASA Astrophysics Data System (ADS)

    Gao, Juwen

    A combined numerical and experimental study of the transport phenomena during solidification processing of metal matrix composite functionally graded materials (FGMs) is conducted in this work. A multiphase transport model for the solidification of metal-matrix composite FGMs has been developed that accounts for macroscopic particle segregation due to liquid-particle flow and particle-solid interactions. An experimental study has also been conducted to gain physical insight as well as to validate the model. A novel method to in-situ measure the particle volume fraction using fiber optic probes is developed for transparent analogue solidification systems. The model is first applied to one-dimensional pure matrix FGM solidification under gravity or centrifugal field and is extensively validated against the experimental results. The mechanisms for the formation of particle concentration gradient are identified. Two-dimensional solidification of pure matrix FGM with convection is then studied using the model as well as experiments. The interaction among convection flow, solidification process and the particle transport is demonstrated. The results show the importance of convection in the particle concentration gradient formation. Then, simulations for alloy FGM solidification are carried out for unidirectional solidification as well as two-dimensional solidification with convection. The interplay among heat and species transport, convection and particle motion is investigated. Finally, future theoretical and experimental work is outlined.

  5. Method and apparatus for planar drag strip casting

    DOEpatents

    Powell, John C.; Campbell, Steven L.

    1991-01-01

    The present invention is directed to an improved process and apparatus for strip casting. The combination of a planar flow casting nozzle positioned back from the top dead center position with an attached nozzle extension, provides an increased level of casting control and quality. The nozzle extension provides a means of containing the molten pool above the rotating substrate to increase the control of molten metal at the edges of the strip and increase the range of coating thicknesses which may be produced. The level of molten metal in the containment means is regulated to be above the level of melt supplying the casting nozzle which produces a condition of planar drag flow with the casting substrate prior to solidification.

  6. Method and apparatus for planar drag strip casting

    DOEpatents

    Powell, J.C.; Campbell, S.L.

    1991-11-12

    The present invention is directed to an improved process and apparatus for strip casting. The combination of a planar flow casting nozzle positioned back from the top dead center position with an attached nozzle extension, provides an increased level of casting control and quality. The nozzle extension provides a means of containing the molten pool above the rotating substrate to increase the control of molten metal at the edges of the strip and increase the range of coating thicknesses which may be produced. The level of molten metal in the containment means is regulated to be above the level of melt supplying the casting nozzle which produces a condition of planar drag flow with the casting substrate prior to solidification. 5 figures.

  7. Mathematical modelling of convective processes in a weld pool under electric arc surfacing

    NASA Astrophysics Data System (ADS)

    Sarychev, V. D.; Granovskii, A. Yu; Nevskii, S. A.; Konovalov, S. V.

    2017-01-01

    The authors develop the mathematical model of convective processes in a molten pool under electric arc surfacing with flux-cored wire. The model is based on the ideas of how convective flows appear due to temperature gradient and action of electromagnetic forces. Influence of alloying elements in the molten metal was modeled as a non-linear dependence of surface tension upon temperature. Surface tension and its temperature coefficient were calculated according to the electron density functional method with consideration to asymmetric electron distribution at the interface “molten metal / shielding gas”. Simultaneous solution of Navier-Stokes and Maxwell equations according to finite elements method with consideration to the moving heat source at the interface showed that there is a multi-vortex structure in the molten metal. This structure gives rise to a downward heat flux which, at the stage of heating, moves from the centre of the pool and stirs it full width. At the cooling stage this flux moves towards the centre of the pool and a single vortex is formed near the symmetry centre. This flux penetration is ∼ 10 mm. Formation of the downward heat flux is determined by sign reversal of the temperature coefficient of surface tension due to the presence of alloying elements.

  8. On the Role of Mantle Overturn during Magma Ocean Solidification

    NASA Astrophysics Data System (ADS)

    Boukaré, C. E.; Parmentier, E.; Parman, S. W.

    2017-12-01

    Solidification of potential global magma ocean(s) (MO) early in the history of terrestrial planets may play a key role in the evolution of planetary interiors by setting initial conditions for their long-term evolution. Constraining this initial structure of solid mantles is thus crucial but remains poorly understood. MO fractional crystallization has been proposed to generate gravitationally unstable Fe-Mg chemical stratification capable of driving solid-state mantle overturn. Fractional solidification and overturn hypothesis, while only an ideal limiting case, can explain important geochemical features of both the Moon and Mars. Current overturn models consider generally post-MO overturn where the cumulate pile remains immobile until the end of MO solidification. However, if the cumulate pile overturns during MO solidification, the general picture of early planet evolution might differ significantly from the static crystallization models. We show that the timing of mantle overturn can be characterized with a dimensionless number measuring the ratio of the MO solidification time and the purely compositional overturn timescale. Syn-solidification overturn occurs if this dimensionless parameter, Rc, exceeds a critical value. Rc is mostly affected by the competition between the MO solidification time and mantle viscosity. Overturn that occurs during solidification can result in smaller scales of mantle chemical heterogeneity that could persist for long times thus influencing the whole evolution of a planetary body. We will discuss the effects of compaction/percolation on mantle viscosity. If partially molten cumulate do not have time to compact during MO solidification, viscosity of cumulates would be significantly lower as the interstitcial melt fraction would be large. Both solid mantle remelting during syn-solidification overturn and porous convection of melt retained with the cumulates are expected to reduce the degree of fractional crystallization. Syn-solidification overturn of a sluggish mantle can thus be an alternative to solid-state post-MO solidification overturn.

  9. Modelling directional solidification

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.

    1991-01-01

    The long range goal of this program is to develop an improved understanding of phenomena of importance to directional solidification and to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Current emphasis is on determining the influence of perturbations on directional solidification.

  10. Improved Crystal Quality By Detached Solidification in Microgravity

    NASA Technical Reports Server (NTRS)

    Regel, Liya L.; Wilcox, William R.; Wang, Yaz-Hen; Wang, Jian-Bin

    2003-01-01

    Many microgravity directional solidification experiments yielded ingots with portions that grew without contacting the ampoule wall, leading to greatly improved crystallographic perfection. Our long term goals have been: (1) To develop a complete understanding of all of the phenomena of detached solidification.; (2) To make it possible to achieve detached solidification reproducibly; (3) To increase crystallographic perfection through detached solidification. We have three major achievements to report here: (1) We obtained a new material balance solution for the Moving Meniscus Model of detached solidification. This solution greatly clarifies the physics as well as the roles of the parameters in the system; (2) We achieved detached solidification of InSb growing on earth in BN-coated ampoules; (3) We performed an extensive series of experiments on freezing water that showed how to form multiple gas bubbles or tubes on the ampoule wall. However, these did not propagate around the wall and lead to fully detached solidification unless the ampoule wall was extremely rough and non-wetted.

  11. Relationships Between Solidification Parameters in A319 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Vandersluis, E.; Ravindran, C.

    2018-03-01

    The design of high-performance materials depends on a comprehensive understanding of the alloy-specific relationships between solidification and properties. However, the inconsistent use of a particular solidification parameter for presenting materials characterization in the literature impedes inter-study comparability and the interpretation of findings. Therefore, there is a need for accurate expressions relating the solidification parameters for each alloy. In this study, A319 aluminum alloy castings were produced in a permanent mold with various preheating temperatures in order to control metal cooling. Analysis of the cooling curve for each casting enabled the identification of its liquidus, Al-Si eutectic, and solidus temperatures and times. These values led to the calculation of the primary solidification rate, total solidification rate, primary solidification time, and local solidification time for each casting, which were related to each other as well as to the average casting SDAS and material hardness. Expressions for each of their correlations have been presented with high coefficients of determination, which will aid in microstructural prediction and casting design.

  12. Modeling of Detached Solidification

    NASA Technical Reports Server (NTRS)

    Regel, Liya L.; Wilcox, William R.; Popov, Dmitri

    1997-01-01

    Our long term goal is to develop techniques to achieve detached solidification reliably and reproducibly, in order to produce crystals with fewer defects. To achieve this goal it is necessary to understand thoroughly the physics of detached solidification. It was the primary objective of the current project to make progress toward this complete understanding. 'Me products of this grant are attached. These include 4 papers and a preliminary survey of the observations of detached solidification in space. We have successfully modeled steady state detached solidification, examined the stability of detachment, and determined the influence of buoyancy-driven convection under different conditions. Directional solidification in microgravity has often led to ingots that grew with little or no contact with the ampoule wall. When this occurred, crystallographic perfection was usually greatly improved -- often by several orders of magnitude. Indeed, under the Soviet microgravity program the major objective was to achieve detached solidification with its resulting improvement in perfection and properties. Unfortunately, until recently the true mechanisms underlying detached solidification were unknown. As a consequence, flight experiments yielded erratic results. Within the past three years, we have developed a new theoretical model that explains many of the flight results. This model gives rise to predictions of the conditions required to yield detached solidification.

  13. Modelling Directional Solidification

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.; Zhou, Jian; Yuan, Weijun

    1992-01-01

    The long range goal of this program has been to develop an improved understanding of phenomena of importance to directional solidification, in order to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Current emphasis is on determining the influence of perturbations on directional solidification.

  14. Solidification Sequence of Spray-Formed Steels

    NASA Astrophysics Data System (ADS)

    Zepon, Guilherme; Ellendt, Nils; Uhlenwinkel, Volker; Bolfarini, Claudemiro

    2016-02-01

    Solidification in spray-forming is still an open discussion in the atomization and deposition area. This paper proposes a solidification model based on the equilibrium solidification path of alloys. The main assumptions of the model are that the deposition zone temperature must be above the alloy's solidus temperature and that the equilibrium liquid fraction at this temperature is reached, which involves partial remelting and/or redissolution of completely solidified droplets. When the deposition zone is cooled, solidification of the remaining liquid takes place under near equilibrium conditions. Scanning electron microscopy (SEM) and optical microscopy (OM) were used to analyze the microstructures of two different spray-formed steel grades: (1) boron modified supermartensitic stainless steel (SMSS) and (2) D2 tool steel. The microstructures were analyzed to determine the sequence of phase formation during solidification. In both cases, the solidification model proposed was validated.

  15. Laser dimpling process parameters selection and optimization using surrogate-driven process capability space

    NASA Astrophysics Data System (ADS)

    Ozkat, Erkan Caner; Franciosa, Pasquale; Ceglarek, Dariusz

    2017-08-01

    Remote laser welding technology offers opportunities for high production throughput at a competitive cost. However, the remote laser welding process of zinc-coated sheet metal parts in lap joint configuration poses a challenge due to the difference between the melting temperature of the steel (∼1500 °C) and the vapourizing temperature of the zinc (∼907 °C). In fact, the zinc layer at the faying surface is vapourized and the vapour might be trapped within the melting pool leading to weld defects. Various solutions have been proposed to overcome this problem over the years. Among them, laser dimpling has been adopted by manufacturers because of its flexibility and effectiveness along with its cost advantages. In essence, the dimple works as a spacer between the two sheets in lap joint and allows the zinc vapour escape during welding process, thereby preventing weld defects. However, there is a lack of comprehensive characterization of dimpling process for effective implementation in real manufacturing system taking into consideration inherent changes in variability of process parameters. This paper introduces a methodology to develop (i) surrogate model for dimpling process characterization considering multiple-inputs (i.e. key control characteristics) and multiple-outputs (i.e. key performance indicators) system by conducting physical experimentation and using multivariate adaptive regression splines; (ii) process capability space (Cp-Space) based on the developed surrogate model that allows the estimation of a desired process fallout rate in the case of violation of process requirements in the presence of stochastic variation; and, (iii) selection and optimization of the process parameters based on the process capability space. The proposed methodology provides a unique capability to: (i) simulate the effect of process variation as generated by manufacturing process; (ii) model quality requirements with multiple and coupled quality requirements; and (iii) optimize process parameters under competing quality requirements such as maximizing the dimple height while minimizing the dimple lower surface area.

  16. Numerical Investigation of Influence of Electrode Immersion Depth on Heat Transfer and Fluid Flow in Electroslag Remelting Process

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Cai, Hui; Pan, Liping; He, Zhu; Liu, Shuang; Li, Baokuan

    2016-12-01

    The influence of the electrode immersion depth on the electromagnetic, flow and temperature fields, as well as the solidification progress in an electroslag remelting furnace have been studied by a transient three-dimensional coupled mathematical model. Maxwell's equations were solved by the electrical potential approach. The Lorentz force and Joule heating were added into the momentum and energy conservation equations as a source term, respectively, and were updated at each time step. The volume of fluid method was invoked to track the motion of the metal droplet and slag-metal interface. The solidification was modeled by an enthalpy-porosity formulation. An experiment was carried out to validate the model. The total amount of Joule heating decreases from 2.13 × 105 W to 1.86 × 105 W when the electrode immersion depth increases from 0.01 m to 0.03 m. The variation law of the slag temperature is different from that of the Joule heating. The volume average temperature rises from 1856 K to 1880 K when the immersion depth increases from 0.01 m to 0.02 m, and then drops to 1869 K if the immersion depth continuously increases to 0.03 m. As a result, the deepest metal pool, which is around 0.03 m, is formed when the immersion depth is 0.02 m.

  17. Casting And Solidification Technology (CAST): Directional solidification phenomena in a metal model at reduced gravity

    NASA Technical Reports Server (NTRS)

    Mccay, M. H.

    1988-01-01

    The Casting and Solidification Technology (CAST) experiment will study the phenomena that occur during directional solidification of an alloy, e.g., constitutional supercooling, freckling, and dendrite coarsening. The reduced gravity environment of space will permit the individual phenomena to be examined with minimum complication from buoyancy driven flows.

  18. Simulation Computation of 430 Ferritic Stainless Steel Solidification

    NASA Astrophysics Data System (ADS)

    Pang, Ruipeng; Li, Changrong; Wang, Fuming; Hu, Lifu

    The solidification structure of 430 ferritic stainless steel has been calculated in the solidification process by using 3D-CAFE model under the condition of water cooling. The calculated results consistent with those obtained from experiment. Under watercooling condition, the solidification structure consists of chilled layer, columnar grain zone, transition zone and equiaxed grain zone.

  19. Dielectric Properties of Low-Level Liquid Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. E. Lagos; M. A. Ebadian

    1998-10-20

    The purpose of this study was to develop a data collection containing values for the dielectric properties of various low-level liquid waste (LLLW) simulants measured as a function of frequency, temperature, and composition. The investigation was motivated by current interest in the use of microwave processing for the treatment of radioactive waste. A large volume of transuranic liquid and sludge produced by the U.S. Department of Defense (DOD) during the production of nuclear fiel bars is stored at several U.S. Department of Energy (DOE) sites around the United States. Waste storage and disposal space is scarce, expensive, and must bemore » minimized. Thus, several DOE sites are pursuing the use of microwave heating as a means of achieving volume reduction and solidification of low-level liquid wastes. It is important to know which microwave frequencies should be employed tc achieve the most efficient processing at a range of different temperatures. The dielectric properties of the LLLW simulants can be utilized to determine the optimum frequencies for use with a particular LLLW or with other LLLWS of similar composition. Furthermore, nonlinear thermal processes, such as thermal runaway, which occur in the material being treated cannot be modeled without a knowledge of the temperature dependence of the dielectric properties. Often, this data does not exist; however, when it does, only very limited data near room temperature are available. The data collection generated in this study can be used to predict the behavior of a variety of microwave thermal treatment technologies, which have the potential of substantially reducing the volume of the LLLWS that are currently stored at many DOE sites. This information should help the users of the microwave reduction and solidification technology to optimize microwave processes used in the treatment of LLLW. The microwave reduction and solidification technology has clear advantages over other methods of reducing LLLWS. These include the incineration of combustibles, the evaporation of combustibles, the evaporation of liquids, and the compaction of noncombustibles. The handling of radioactive liquid waste is generally carried out within closed systems consisting of highly corrosion-resistant, welded, leak-tight pipes, tanks, and other apparatus. High power microwave processing is a promising technology for reducing risks to the environment and human health, thereby supporting the DOE's decontamination and decommissioning (D&D) objectives.« less

  20. Optimization of Experimental Conditions of the Pulsed Current GTAW Parameters for Mechanical Properties of SDSS UNS S32760 Welds Based on the Taguchi Design Method

    NASA Astrophysics Data System (ADS)

    Yousefieh, M.; Shamanian, M.; Saatchi, A.

    2012-09-01

    Taguchi design method with L9 orthogonal array was implemented to optimize the pulsed current gas tungsten arc welding parameters for the hardness and the toughness of super duplex stainless steel (SDSS, UNS S32760) welds. In this regard, the hardness and the toughness were considered as performance characteristics. Pulse current, background current, % on time, and pulse frequency were chosen as main parameters. Each parameter was varied at three different levels. As a result of pooled analysis of variance, the pulse current is found to be the most significant factor for both the hardness and the toughness of SDSS welds by percentage contribution of 71.81 for hardness and 78.18 for toughness. The % on time (21.99%) and the background current (17.81%) had also the next most significant effect on the hardness and the toughness, respectively. The optimum conditions within the selected parameter values for hardness were found as the first level of pulse current (100 A), third level of background current (70 A), first level of % on time (40%), and first level of pulse frequency (1 Hz), while they were found as the second level of pulse current (120 A), second level of background current (60 A), second level of % on time (60%), and third level of pulse frequency (5 Hz) for toughness. The Taguchi method was found to be a promising tool to obtain the optimum conditions for such studies. Finally, in order to verify experimental results, confirmation tests were carried out at optimum working conditions. Under these conditions, there were good agreements between the predicted and the experimental results for the both hardness and toughness.

Top