Effect of Weld Tool Geometry on Friction Stir Welded AA2219-T87 Properties
NASA Technical Reports Server (NTRS)
Querin, Joseph A.; Schneider, Judy A.
2008-01-01
In this study, flat panels of AA2219-T87 were friction stir welded (FSWed) using weld tools with tapered pins The three pin geometries of the weld tools included: 0 (straight cylinder), 30 , and 60 angles on the frustum. For each weld tool geometry, the FSW process parameters were optimized to eliminate defects. A constant heat input was maintained while varying the process parameters of spindle rpm and travel speed. This provided a constant heat input for each FSW weld panel while altering the hot working conditions imparted to the workpiece. The resulting mechanical properties were evaluated from tensile test results of the FSW joint.
Pin Tool Geometry Effects in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Querin, J. A.; Rubisoff, H. A.; Schneider, J. A.
2009-01-01
In friction stir welding (FSW) there is significant evidence that material can take one of two different flow paths when being displaced from its original position in front of the pin tool to its final position in the wake of the weld. The geometry of the pin tool, along with the process parameters, plays an important role in dictating the path that the material takes. Each flow path will impart a different thermomechanical history on the material, consequently altering the material microstructure and subsequent weld properties. The intention of this research is to isolate the effect that different pin tool attributes have on the flow paths imparted on the FSWed material. Based on published weld tool geometries, a variety of weld tools were fabricated and used to join AA2219. Results from the tensile properties and microstructural characterization will be presented.
NASA Technical Reports Server (NTRS)
Schneider, Judy; Nunes, Arthur C., Jr.; Brendel, Michael S.
2010-01-01
Although friction stir welding (FSW) was patented in 1991, process development has been based upon trial and error and the literature still exhibits little understanding of the mechanisms determining weld structure and properties. New concepts emerging from a better understanding of these mechanisms enhance the ability of FSW engineers to think about the FSW process in new ways, inevitably leading to advances in the technology. A kinematic approach in which the FSW flow process is decomposed into several simple flow components has been found to explain the basic structural features of FSW welds and to relate them to tool geometry and process parameters. Using this modelling approach, this study reports on a correlation between the features of the weld nugget, process parameters, weld tool geometry, and weld strength. This correlation presents a way to select process parameters for a given tool geometry so as to optimize weld strength. It also provides clues that may ultimately explain why the weld strength varies within the sample population.
Effect of Weld Tool Geometry on Friction Stir Welded Ti-6Al-4V
NASA Technical Reports Server (NTRS)
Querin, Joseph A.; Schneider, Judy A.
2008-01-01
In this study, flat 0.250" thick Ti-6Al-4V panels were friction stir welded (FSWed) using weld tools with tapered pins. The five different pin geometries of the weld tools included: 0 degree (straight cylinder), 15 degree, 30 degree, 45 degree, and 60 degree angles on the frustum. All weld tools had a smooth 7 degree concave shoulder and were made from microwave sintered tungsten carbide. For each weld tool geometry, the FSW process parameters were optimized to eliminate internal defects. All the welds were produced in position control with a 2.5 degree lead angle using a butt joint configuration for the panels. The process parameters of spindle rpm and travel speed were varied, altering the hot working conditions imparted to the workpiece. Load cells on the FSWing machine allowed for the torque, the plunge force, and the plow force to be recorded during welding. Resulting mechanical properties were evaluated from tensile tests results of the FSWjoints. Variations in the material flow were investigated by use of microstructural analysis including optical microscopy (OM), scanning electron microscopy (SEM), and orientation image mapping (aIM).
NASA Astrophysics Data System (ADS)
Zettler, R.; Blanco, A. C.; dos Santos, J. F.; Marya, S.
An increase in the use of magnesium (Mg) in the car manufacturing industry has raised questions concerning its weldability. Friction Stir Welding (FSW) has the advantage of achieving metallic bonding below that of the melting point of the base material thus avoiding many of the metallurgical problems associated with the solidification process. The present study presents the results of a development program carried out to investigate the response of Mg alloys AZ31 and AZ61 to different FSW tool geometries and process parameters. Temperature development across the weld zone was monitored and the produced welds have been subjected to microstructural analysis and mechanical testing. Defect free welds have been produced with optimised FSW-tool and parameters. The micro structure of the welded joint resulted in similar ductility and hardness levels as compared to that of the base material. The results also demonstrated that tool geometry plays a fundamental role in the response of the investigated alloys to the FSW process.
NASA Astrophysics Data System (ADS)
Daneji, A.; Ali, M.; Pervaiz, S.
2018-04-01
Friction stir welding (FSW) is a form of solid state welding process for joining metals, alloys, and selective composites. Over the years, FSW development has provided an improved way of producing welding joints, and consequently got accepted in numerous industries such as aerospace, automotive, rail and marine etc. In FSW, the base metal properties control the material’s plastic flow under the influence of a rotating tool whereas, the process and tool parameters play a vital role in the quality of weld. In the current investigation, an array of square butt joints of 6061 Aluminum alloy was to be welded under varying FSW process and tool geometry related parameters, after which the resulting weld was evaluated for the corresponding mechanical properties and welding defects. The study incorporates FSW process and tool parameters such as welding speed, pin height and pin thread pitch as input parameters. However, the weld quality related defects and mechanical properties were treated as output parameters. The experimentation paves way to investigate the correlation between the inputs and the outputs. The correlation between inputs and outputs were used as tool to predict the optimized FSW process and tool parameters for a desired weld output of the base metals under investigation. The study also provides reflection on the effect of said parameters on a welding defect such as wormhole.
Microstructural Evolution in Friction Stir Welding of Ti-6Al-4V
NASA Technical Reports Server (NTRS)
Rubisoff, H.; Querin, J.; Magee, D.; Schneider, J.
2008-01-01
Friction stir welding (FSW) is a thermo-mechanical process that utilizes a nonconsumable rotating pin tool to consolidate a weld joint. In the conventional FSW process, the pin tool is responsible for generating both the heat required to soften the material and the forces necessary to deform and combine the weld seam. As such, the geometry of the pin tool is important to the quality of the weld and the process parameters required to produce the weld. Because the geometry of the pin tool is limitless, a reduced set of pin tools was formed to systematically study their effect on the weldment with respect to mechanical properties and resultant microstructure. In this study 0deg, 15deg, 30deg, 45deg, and 60deg tapered, microwave sintered, tungsten carbide (WC) pin tools were used to FSW Ti-6Al-4V. Transverse sections of the weld were used to test for mechanical properties and to document the microstructure using optical microscopy. X-ray diffraction (XRD) was also used to characterize the microstructure in the welds. FSW results for the 45deg and 60deg pin tools are reported in this paper.
Friction stir welding tool and process for welding dissimilar materials
Hovanski, Yuri; Grant, Glenn J; Jana, Saumyadeep; Mattlin, Karl F
2013-05-07
A friction stir welding tool and process for lap welding dissimilar materials are detailed. The invention includes a cutter scribe that penetrates and extrudes a first material of a lap weld stack to a preselected depth and further cuts a second material to provide a beneficial geometry defined by a plurality of mechanically interlocking features. The tool backfills the interlocking features generating a lap weld across the length of the interface between the dissimilar materials that enhances the shear strength of the lap weld.
NASA Astrophysics Data System (ADS)
Tikader, Sujoy; Biswas, Pankaj; Puri, Asit Baran
2018-04-01
Friction stir welding (FSW) has been the most attracting solid state welding process as it serves numerous advantages like good mechanical, metallurgical properties etc. Non weldable aluminium alloys like 5XXX, 7XXX series can be simply joined by this process. In this present study a mathematical model has been developed and experiments were successfully performed to evaluate mechanical properties of FSW on similar aluminium alloys i.e. AA1100 for different process parameters and mainly two kind of tool geometry (straight cylindrical and conical or cylindrical tapered shaped pin with flat shoulder). Tensile strength and micro hardness for different process parameters are reported of the welded plate sample. It was noticed that in FSW of similar alloy with tool made of SS-310 tool steel, friction is the major contributor for the heat generation. It was seen that tool geometry, tool rotational speed, plunging force by the tool and traverse speed have significant effect on tensile strength and hardness of friction stir welded joints.
Friction Stir Welding of Magnesium Alloy Type AZ 31
NASA Astrophysics Data System (ADS)
Kupec, Tomáš; Behúlová, Mária; Turňa, Milan; Sahul, Miroslav
The paper deals with welding of Mg alloy of the type AZ 31 by Friction Stir Welding technology (FSW). The FSW technology is at present predominantly used for welding light metals and alloys, as aluminium, magnesium and their alloys. Experimental part consists of performing the simulation and fabrication of welded joints on a new-installed welding equipment available at the Welding Research Institute — Industrial Institute of SR Bratislava. Welding tools made of tool steel type H 13 were used for welding experiments. Geometry of welding tools was designed on the base of literature knowledge. Suitable welding parameters and conditions were determined using numerical simulation. Main emphasis was laid upon the tool revolutions, welding speed and tool bevel angle. The effect of welding parameters on the quality of welded joints was assessed. Assessment of welded joints was carried out by radiography, light microscopy, hardness measurement and EDX microanalysis. Static tensile test was employed for mechanical testing.
NASA Astrophysics Data System (ADS)
Kordestani, F.; Ashenai Ghasemi, F.; Arab, N. B. M.
2017-09-01
Friction stir welding (FSW) is a solid-state welding process, which has successfully been applied in aerospace and automotive industries for joining materials. The friction stir tool is the key element in the FSW process. In this study, the effect of four different tool pin geometries on the mechanical properties of two types of polypropylene composite plates, with 30% glass and carbon fiber, respectively, were investigated. For this purpose, four pins of different geometry, namely, a threaded-tapered pin, square pin, four-flute threaded pin, and threaded-tapered pin with a chamfer were made and used to carry out the butt welding of 5-mm-thick plates. The standard tensile and Izod impact tests were performed to evaluate the tensile strength and impact toughness of welded specimens. The results indicated that the threaded-tapered pin with a chamfer produced welds with a better surface appearance and higher tensile and impact strengths. The tests also showed that, with the threaded-tapered pin with a chamfer, the impact strength of the glass- and carbon-fiber composite welds were about 40 and 50%, respectively, of that of the base materials.
Influence of FSW pin tool geometry on plastic flow of AA7075 T651
NASA Astrophysics Data System (ADS)
Lertora, Enrico; Mandolfino, Chiara; Gambaro, Carla
2016-10-01
In this paper the behaviour of the plastic flow during Friction Stir Welding of AA7075 T651 plates, realized with different shaped tools, has been investigated. In particular, the influence of the shape of three tools was studied using copper strips placed along the welds. After welding, radiography and metallurgical analysis were used in order to investigate the marker movement and its fragmentation.
Friction Stir Welding of Dissimilar Al/Al and Al/Non-Al Alloys: A Review
NASA Astrophysics Data System (ADS)
Wang, Xiangbin; Pan, Yi; Lados, Diana A.
2018-05-01
Friction stir welding is a solid-state welding technique that has many advantages over traditional fusion welding, and has been widely adopted in the aerospace and automotive industries. This article reviews research developments in friction stir welding of dissimilar alloys systems, including combinations of aluminum alloys with Mg alloys, Cu, and steel. Microstructural evolution, hardness, tensile and fatigue properties, residual stresses, and corrosion behavior of dissimilar welds will be reported. The effects of processing parameters such as tool rotation and traverse speeds, tool position, material position, and tool geometry on the weld quality are also presented. Discussions on future research directions in friction stir welding will also be provided in the context of existing literature and future high-integrity applications.
A fundamental study on the structural integrity of magnesium alloys joined by friction stir welding
NASA Astrophysics Data System (ADS)
Rao, Harish Mangebettu
The goal of this research is to study the factors that influence the physical and mechanical properties of lap-shear joints produced using friction stir welding. This study focuses on understanding the effect of tool geometry and weld process parameters including the tool rotation rate, tool plunge depth and dwell time on the mechanical performance of similar magnesium alloy and dissimilar magnesium to aluminum alloy weld joints. A variety of experimental activities were conducted including tensile and fatigue testing, fracture surface and failure analysis, microstructure characterization, hardness measurements and chemical composition analysis. An investigation on the effect of weld process conditions in friction stir spot welding of magnesium to magnesium produced in a manner that had a large effective sheet thickness and smaller interfacial hook height exhibited superior weld strength. Furthermore, in fatigue testing of friction stir spot welded of magnesium to magnesium alloy, lap-shear welds produced using a triangular tool pin profile exhibited better fatigue life properties compared to lap-shear welds produced using a cylindrical tool pin profile. In friction stir spot welding of dissimilar magnesium to aluminum, formation of intermetallic compounds in the stir zone of the weld had a dominant effect on the weld strength. Lap-shear dissimilar welds with good material mixture and discontinues intermetallic compounds in the stir zone exhibited superior weld strength compared to lap-shear dissimilar welds with continuous formation of intermetallic compounds in the stir zone. The weld structural geometry like the interfacial hook, hook orientation and bond width also played a major role in influencing the weld strength of the dissimilar lap-shear friction stir spot welds. A wide scatter in fatigue test results was observed in friction stir linear welds of aluminum to magnesium alloys. Different modes of failure were observed under fatigue loading including crack propagation into the top sheet, into the bottom sheet, and interfacial separation. Investigation of the tested welds revealed that the voids in the weld nugget reduced the weld strength, resulting in lower fatigue life. A thin layer of IMCs formed along the faying surface which accelerated the fatigue failure.
NASA Technical Reports Server (NTRS)
Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)
2007-01-01
A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.
NASA Technical Reports Server (NTRS)
Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)
2007-01-01
A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.
Performance Improvement of Friction Stir Welds by Better Surface Finish
NASA Technical Reports Server (NTRS)
Russell, Sam; Nettles, Mindy
2015-01-01
The as-welded friction stir weld has a cross section that may act as a stress concentrator. The geometry associated with the stress concentration may reduce the weld strength and it makes the weld challenging to inspect with ultrasound. In some cases, the geometry leads to false positive nondestructive evaluation (NDE) indications and, in many cases, it requires manual blending to facilitate the inspection. This study will measure the stress concentration effect and develop an improved phased array ultrasound testing (PAUT) technique for friction stir welding. Post-welding, the friction stir weld (FSW) tool would be fitted with an end mill that would machine the weld smooth, trimmed shaved. This would eliminate the need for manual weld preparation for ultrasonic inspections. Manual surface preparation is a hand operation that varies widely depending on the person preparing the welds. Shaving is a process that can be automated and tightly controlled.
NASA Astrophysics Data System (ADS)
Syafiq, W. M.; Afendi, M.; Daud, R.; Mazlee, M. N.; Majid, M. S. Abdul; Lee, Y. S.
2017-10-01
This paper described the mechanical properties from hardness testing and tensile testing of Friction Stir Welded (FSW) materials. In this project, two materials of aluminium and steel are welded using conventional milling machine and tool designed with different profile and shoulder size. During welding the temperature along the weld line is collected using thermocouples. Threaded pins was found to produce stronger joints than cylindrical pins. 20 mm diameter shoulder tool welded a slightly stronger joint than 18 mm diameter one, as well as softer nugget zone due to higher heat input. Threaded pins also contributed to higher weld temperature than cylindrical pins due to increase in pin contact surface. Generally, higher temperatures were recorded in aluminium side due to pin offset away from steel.
Deconvoluting the Friction Stir Weld Process for Optimizing Welds
NASA Technical Reports Server (NTRS)
Schneider, Judy; Nunes, Arthur C.
2008-01-01
In the friction stir welding process, the rotating surfaces of the pin and shoulder contact the weld metal and force a rotational flow within the weld metal. Heat, generated by the metal deformation as well as frictional slippage with the contact surface, softens the metal and makes it easier to deform. As in any thermo-mechanical processing of metal, the flow conditions are critical to the quality of the weld. For example, extrusion of metal from under the shoulder of an excessively hot weld may relax local pressure and result in wormhole defects. The trace of the weld joint in the wake of the weld may vary geometrically depending upon the flow streamlines around the tool with some geometry more vulnerable to loss of strength from joint contamination than others. The material flow path around the tool cannot be seen in real time during the weld. By using analytical "tools" based upon the principles of mathematics and physics, a weld model can be created to compute features that can be observed. By comparing the computed observations with actual data, the weld model can be validated or adjusted to get better agreement. Inputs to the model to predict weld structures and properties include: hot working properties ofthe metal, pin tool geometry, travel rate, rotation and plunge force. Since metals record their prior hot working history, the hot working conditions imparted during FSW can be quantified by interpreting the final microstructure. Variations in texture and grain size result from variations in the strain accommodated at a given strain rate and temperature. Microstructural data from a variety of FSWs has been correlated with prior marker studies to contribute to our understanding of the FSW process. Once this stage is reached, the weld modeling process can save significant development costs by reducing costly trial-and-error approaches to obtaining quality welds.
Investigating the Effects of Pin Tool Design on Friction Stir Welded Ti-6Al-4V
NASA Technical Reports Server (NTRS)
Rubisoff, H. A.; Querin, J. A.; Schneider, Judy A.; Magee, D.
2009-01-01
Friction stir welding (FSWing), a solid state joining technique, uses a non-consumable rotating pin tool to thermomechanically join materials. Heating of the weldment caused by friction and deformation is a function of the interaction between the pin tool and the work piece. Therefore, the geometry of the pin tool is in part responsible for the resulting microstructure and mechanical properties. In this study microwave sintered tungsten carbide (WC) pin tools with tapers and flats were used to FSW Ti-6Al-4V. Transverse sections of welds were mechanically tested, and the microstructure was characterized using optical microscopy (OM) and scanning election microscopy (SEM). X-ray diffraction (XRD) and electron back-scatter diffraction (EBSD) were used to characterize the texture within the welds produced from the different pin tool designs.
Metal Flow in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Nunes, Arthur C., Jr.
2006-01-01
The plastic deformation field in Friction Stir Welding (FSW) is compared to that in metal cutting. A shear surface around the FSW tool analogous to the metal cutting shear plane is identified and comprises the basis of the "rotating plug" flow field model and the "wiping" model of tool interaction with weld metal. Within the context of these models: The FSW shear rate is estimated to be comparable to metal cutting shear rates. The effect of tool geometry on the FSW shear surface is discussed and related to published torque measurements. Various FS W structural features are explained, including a difference in structure of bimetallic welds when alloys on the advancing and retreating sides of the weld seam are exchanged. The joining mechanism and critical parameters of the FSW process are made clear.
2012-11-26
alloy and High Hardness steel armor (MIL- STD-46100) were successfully joined by the friction stir welding (FSW) process using a tungsten- rhenium ...tungsten- rhenium stir tool. Process parameter variation experiments, which included inductive pre-heating, tool design geometry, plunge and traverse
Self-Reacting Friction Stir Welding for Aluminum Complex Curvature Applications
NASA Technical Reports Server (NTRS)
Brown, Randy J.; Martin, W.; Schneider, J.; Hartley, P. J.; Russell, Carolyn; Lawless, Kirby; Jones, Chip
2003-01-01
This viewgraph representation provides an overview of sucessful research conducted by Lockheed Martin and NASA to develop an advanced self-reacting friction stir technology for complex curvature aluminum alloys. The research included weld process development for 0.320 inch Al 2219, sucessful transfer from the 'lab' scale to the production scale tool and weld quality exceeding strenght goals. This process will enable development and implementation of large scale complex geometry hardware fabrication. Topics covered include: weld process development, weld process transfer, and intermediate hardware fabrication.
NASA Astrophysics Data System (ADS)
Wanare, S. P.; Kalyankar, V. D.
2018-04-01
Friction stir welding is emerging as a promising technique for joining of lighter metal alloys due to its several advantages over conventional fusion welding processes such as low thermal distortion, good mechanical properties, fine weld joint microstructure, etc. This review article mainly focuses on analysis of microstructure and mechanical properties of friction stir welded joints. Various microstructure characterization techniques used by previous researchers such as optical microscopes, x-ray diffraction, electron probe microscope, transmission electron microscope, scanning electron microscopes with electron back scattered diffraction, electron dispersive microscopy, etc. are thoroughly overviewed and their results are discussed. The effects of friction stir welding process parameters such as tool rotational speed, welding speed, tool plunge depth, axial force, tool shoulder diameter to tool pin diameter ratio, tool geometry etc. on microstructure and mechanical properties of welded joints are studied and critical observations are noted down. The microstructure examination carried out by previous researchers on various zones of welded joints such as weld zone, heat affected zone and base metal are studied and critical remarks have been presented. Mechanical performances of friction stir welded joints based on tensile test, micro-hardness test, etc. are discussed. This article includes exhaustive literature review of standard research articles which may become ready information for subsequent researchers to establish their line of action.
Non Destructive Analysis of Fsw Welds using Ultrasonic Signal Analysis
NASA Astrophysics Data System (ADS)
Pavan Kumar, T.; Prabhakar Reddy, P.
2017-08-01
Friction Stir Welding is an evolving metal joining technique and is mostly used in joining materials which cannot be easily joined by other available welding techniques. It is a technique which can be used for welding dissimilar materials also. The strength of the weld joint is determined by the way in which these material are mixing with each other, since we are not using any filler material for the welding process the intermixing has a significant importance. The complication with the friction stir welding process is that there are many process parameters which effect this intermixing process such as tool geometry, rotating speed of the tool, transverse speed etc., In this study an attempt is made to compare the material flow and weld quality of various weldments by changing the parameters. Ultrasonic signal Analysis is used to characterize the microstructure of the weldments. use of ultrasonic waves is a non destructive, accurate and fast way of characterization of microstructure. In this method the relationship between the ultrasonic measured parameters and microstructures are evaluated using background echo and backscattered signal process techniques. The ultrasonic velocity and attenuation measurements are dependent on the elastic modulus and any change in the microstructure is reflected in the ultrasonic velocity. An insight into material flow is essential to determine the quality of the weld. Hence an attempt is made in this study to know the relationship between tool geometry and the pattern of material flow and resulting weld quality the experiments are conducted to weld dissimilar aluminum alloys and the weldments are characterized using and ultra Sonic signal processing. Characterization is also done using Scanning Electron Microscopy. It is observed that there is a good correlation between the ultrasonic signal processing results and Scanning Electron Microscopy on the observed precipitates. Tensile tests and hardness tests are conducted on the weldments and compared for determining the weld quality.
NASA Technical Reports Server (NTRS)
Merry, Josh; Takeshita, Jennifer; Tweedy, Bryan; Burford, Dwight
2006-01-01
In this presentation, the results of a recent study on the effect of pin tool design for friction stir welding thin sheets (0.040") of aluminum alloys 2024 and 7075 are provided. The objective of this study was to investigate and document the effect of tool shoulder and pin diameter, as well as the presence of pin flutes, on the resultant microstructure and mechanical properties at both room temperature and cryogenic temperature. Specifically, the comparison between three tools will include: FSW process load analysis (tool forces required to fabricate the welds), Static Mechanical Properties (ultimate tensile strength, yield strength, and elongation), and Process window documenting the range of parameters that can be used with the three pin tools investigated. All samples were naturally aged for a period greater than 10 days. Prior research has shown 7075 may require post weld heat treatment. Therefore, an additional pair of room temperature and cryogenic temperature samples was post-weld aged to the 7075-T7 condition prior to mechanical testing.
Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints
NASA Astrophysics Data System (ADS)
Patterson, Erin E.; Hovanski, Yuri; Field, David P.
2016-06-01
This work focuses on the microstructural characterization of aluminum to steel friction stir welded joints. Lap weld configuration coupled with scribe technology used for the weld tool have produced joints of adequate quality, despite the significant differences in hardness and melting temperatures of the alloys. Common to friction stir processes, especially those of dissimilar alloys, are microstructural gradients including grain size, crystallographic texture, and precipitation of intermetallic compounds. Because of the significant influence that intermetallic compound formation has on mechanical and ballistic behavior, the characterization of the specific intermetallic phases and the degree to which they are formed in the weld microstructure is critical to predicting weld performance. This study used electron backscatter diffraction, energy dispersive spectroscopy, scanning electron microscopy, and Vickers micro-hardness indentation to explore and characterize the microstructures of lap friction stir welds between an applique 6061-T6 aluminum armor plate alloy and a RHA homogeneous armor plate steel alloy. Macroscopic defects such as micro-cracks were observed in the cross-sectional samples, and binary intermetallic compound layers were found to exist at the aluminum-steel interfaces of the steel particles stirred into the aluminum weld matrix and across the interfaces of the weld joints. Energy dispersive spectroscopy chemical analysis identified the intermetallic layer as monoclinic Al3Fe. Dramatic decreases in grain size in the thermo-mechanically affected zones and weld zones that evidenced grain refinement through plastic deformation and recrystallization. Crystallographic grain orientation and texture were examined using electron backscatter diffraction. Striated regions in the orientations of the aluminum alloy were determined to be the result of the severe deformation induced by the complex weld tool geometry. Many of the textures observed in the weld zone and thermo-mechanically affected zones exhibited shear texture components; however, there were many textures that deviated from ideal simple shear. Factors affecting the microstructure which are characteristic of the friction stir welding process, such as post-recrystallization deformation and complex deformation induced by tool geometry were discussed as causes for deviation from simple shear textures.
Verifying and Validating Proposed Models for FSW Process Optimization
NASA Technical Reports Server (NTRS)
Schneider, Judith
2008-01-01
This slide presentation reviews Friction Stir Welding (FSW) and the attempts to model the process in order to optimize and improve the process. The studies are ongoing to validate and refine the model of metal flow in the FSW process. There are slides showing the conventional FSW process, a couple of weld tool designs and how the design interacts with the metal flow path. The two basic components of the weld tool are shown, along with geometries of the shoulder design. Modeling of the FSW process is reviewed. Other topics include (1) Microstructure features, (2) Flow Streamlines, (3) Steady-state Nature, and (4) Grain Refinement Mechanisms
Design of Friction Stir Welding Tool for Avoiding Root Flaws
Ji, Shude; Xing, Jingwei; Yue, Yumei; Ma, Yinan; Zhang, Liguo; Gao, Shuangsheng
2013-01-01
In order to improve material flow behavior during friction stir welding and avoid root flaws of weld, a tool with a half-screw pin and a tool with a tapered-flute pin are suggested. The effect of flute geometry in tool pins on material flow velocity is investigated by the software ANSYS FLUENT. Numerical simulation results show that high material flow velocity appears near the rotational tool and material flow velocity rapidly decreases with the increase of distance away from the axis of the tool. Maximum material flow velocity by the tool with the tapered-flute pin appears at the beginning position of flute and the velocity decreases with the increase of flow length in flute. From the view of increasing the flow velocity of material near the bottom of the workpiece or in the middle of workpiece, the tool with the half-screw pin and the tool with the tapered-flute pin are both better than the conventional tool. PMID:28788426
Design of Friction Stir Welding Tool for Avoiding Root Flaws.
Ji, Shude; Xing, Jingwei; Yue, Yumei; Ma, Yinan; Zhang, Liguo; Gao, Shuangsheng
2013-12-12
In order to improve material flow behavior during friction stir welding and avoid root flaws of weld, a tool with a half-screw pin and a tool with a tapered-flute pin are suggested. The effect of flute geometry in tool pins on material flow velocity is investigated by the software ANSYS FLUENT. Numerical simulation results show that high material flow velocity appears near the rotational tool and material flow velocity rapidly decreases with the increase of distance away from the axis of the tool. Maximum material flow velocity by the tool with the tapered-flute pin appears at the beginning position of flute and the velocity decreases with the increase of flow length in flute. From the view of increasing the flow velocity of material near the bottom of the workpiece or in the middle of workpiece, the tool with the half-screw pin and the tool with the tapered-flute pin are both better than the conventional tool.
Friction pull plug welding: dual chamfered plate hole
NASA Technical Reports Server (NTRS)
Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)
2001-01-01
Friction Pull Plug Welding (FPPW) is a solid state repair process for defects up to one inch in length, only requiring single sided tooling (OSL) for usage on flight hardware. Early attempts with FPPW followed the matching plug/plate geometry precedence of the successful Friction Push Plug Welding program, however no defect free welds were achieved due to substantial plug necking and plug rotational stalling. The dual chamfered hole has eliminated plug rotational stalling, both upon initial plug/plate contact and during welding. Also, the necking of the heated plug metal under a tensile heating/forging load has been eliminated through the usage of the dual chamfered plate hole.
Influence of the Gap Width on the Geometry of the Welded Joint in Hybrid Laser-Arc Welding
NASA Astrophysics Data System (ADS)
Turichin, G.; Tsibulskiy, I.; Kuznetsov, M.; Akhmetov, A.; Mildebrath, M.; Hassel, T.
The aim of this research was the experimental investigation of the influence of the gap width and speed of the welding wire on the changes of the geometry in the welded joint in the hybrid laser-arc welding of shipbuilding steel RS E36. The research was divided into three parts. First, in order to understand the influence of the gap width on the welded joint geometry, experimental research was done using continuous wave fiber laser IPG YLS-15000 with arc rectifier VDU-1500DC. The second part involved study of the geometry of the welded joint and hardness test results. Three macrosections from each welded joint were obtained. Influence of the gap width and welding wire speed on the welded joint geometry was researched in the three lines: in the right side of the plates, middle welded joint and in the root welded joint.
NASA Astrophysics Data System (ADS)
Moradi Faradonbeh, Alireza; Shamanian, Morteza; Edris, Hossein; Paidar, Moslem; Bozkurt, Yahya
2018-02-01
In this investigation, friction stir welding (FSW) of Al-B4C composite fabricated by 10 cycles accumulative roll bonding was conducted. In order to investigate the influences of pin geometry on microstructure and mechanical properties, four different pin geometries (cylindrical, square, triangular and hexagonal) were selected. It was found that FSW parameters had a major effect on the fragmentation and distribution of reinforcement particles in stir zone. When the tool travel speed was increased, the distribution of B4C particles was become gradually uniform in the aluminum matrix. The effect of tool rotational speed on the peak temperature was determined to be greater than the tool travel speed. The attained data of tensile properties and microhardness tests showed that the tool travel speed had bilateral effect on the tensile strength. The maximum tensile joint efficiency was obtained as 238% for FSWed of Al-2%B4C composite to annealed base Al sheet.
Friction Stir Spot Welding (FSSW) of Advanced High Strength Steel (AHSS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santella, M. L.; Hovanski, Yuri; Pan, Tsung-Yu
Friction stir spot welding (FSSW) is applied to join advanced high strength steels (AHSS): galvannealed dual phase 780 MPa steel (DP780GA), transformation induced plasticity 780 MPa steel (TRIP780), and hot-stamped boron steel (HSBS). A low-cost Si3N4 ceramic tool was developed and used for making welds in this study instead of polycrystalline cubic boron nitride (PCBN) material used in earlier studies. FSSW has the advantages of solid-state, low-temperature process, and the ability of joining dissimilar grade of steels and thicknesses. Two different tool shoulder geometries, concave with smooth surface and convex with spiral pattern, were used in the study. Welds weremore » made by a 2-step displacement control process with weld time of 4, 6, and 10 seconds. Static tensile lap-shear strength achieved 16.4 kN for DP780GA-HSBS and 13.2kN for TRIP780-HSBS, above the spot weld strength requirements by AWS. Nugget pull-out was the failure mode of the joint. The joining mechanism was illustrated from the cross-section micrographs. Microhardness measurement showed hardening in the upper sheet steel (DP780GA or TRIP780) in the weld, but softening of HSBS in the heat-affect zone (HAZ). The study demonstrated the feasibility of making high-strength AHSS spot welds with low-cost tools.« less
Friction Stir Weld Application and Tooling Design for the Multi-purpose Crew Vehicle Stage Adapter
NASA Technical Reports Server (NTRS)
Alcorn, John
2013-01-01
The Multi-Purpose Crew Vehicle (MPCV), commonly known as the Orion capsule, is planned to be the United States' next manned spacecraft for missions beyond low earth orbit. Following the cancellation of the Constellation program and creation of SLS (Space Launch System), the need arose for the MPCV to utilize the Delta IV Heavy rocket for a test launch scheduled for 2014 instead of the previously planned Ares I rocket. As a result, an adapter (MSA) must be used in conjunction with the MPCV to account for the variation in diameter of the launch vehicles; 5.5 meters down to 5.0 meters. Prior to ight article fabrication, a path nder (test article) will be fabricated to ne tune the associated manufacturing processes. The adapter will be comprised of an aluminum frustum (partial cone) that employs isogrid technology and circumferential rings on each end. The frustum will be fabricated by friction stir welding (FSW) three individual panels together on a Vertical Weld Tool (VWT) at NASA Marshall Space Flight Center. Subsequently, each circumferential ring will be friction stir welded to the frustum using a Robotic Weld Tool (RWT). The irregular geometry and large mass of the MSA require that extensive tooling preparation be put into support structures for the friction stir weld. The tooling on the VWT will be comprised of a set of conveyors mounted on pre-existing stanchions so that the MSA will have the ability to be rotated after each of the three friction stir welds. The tooling requirements to friction stir weld the rings with the RWT are somewhat more demanding. To support the mass of the MSA and resist the load of the weld tool, a system of mandrels will be mounted to stanchions and assembled in a circle. The goal of the paper will be to explain the design, fabrication, and assembly of the tooling, to explain the use of friction stir welding on the MSA path nder, and also to discuss the lessons learned and modi cations made in preparation for ight article fabrication in support of the 2014 launch of the Orion MPCV.
Effect of pin tool design on the material flow of dissimilar AA7075-AA6061 friction stir welds
NASA Astrophysics Data System (ADS)
Hasan, Mohammed M.; Ishak, M.; Rejab, M. R. M.
2017-10-01
Tool design is the most influential aspect in the friction stir welding (FSW) technology. Influence of pin tool geometry on material flow pattern are studied in this work during the FSW of dissimilar AA7075 and AA6061 aluminium alloys. Three truncated pin tool profiles (threaded, threaded with single flat, and unthreaded with single flat) were used to prepare the weldments. The workpieces were joined using a custom-made clamping system under 1100 rpm of spindle speed, 300 mm/min of traverse rate and 3° of tilt angle. The metallographic analysis showed that defect-free welds can be produced using the three pin tools with significant changes in the mixing stir zone structure. The results declared that the introducing of the flat on the cone of the probe deviates the pattern of the onion rings without changing the chemical composition of the created layers. This in turn improves the hardness distribution and tensile strength of the welded joint. It was also noted that both heat affected zone (HAZ) and thermal-mechanical affected zone (TMAZ) are similar in composition to their corresponding base materials (BM).
Pearson's Functions to Describe FSW Weld Geometry
NASA Astrophysics Data System (ADS)
Lacombe, D.; Gutierrez-Orrantia, M. E.; Coupard, D.; Tcherniaeff, S.; Girot, F.
2011-01-01
Friction stir welding (FSW) is a relatively new joining technique particularly for aluminium alloys that are difficult to fusion weld. In this study, the geometry of the weld has been investigated and modelled using Pearson's functions. It has been demonstrated that the Pearson's parameters (mean, standard deviation, skewness, kurtosis and geometric constant) can be used to characterize the weld geometry and the tensile strength of the weld assembly. Pearson's parameters and process parameters are strongly correlated allowing to define a control process procedure for FSW assemblies which make radiographic or ultrasonic controls unnecessary. Finally, an optimisation using a Generalized Gradient Method allows to determine the geometry of the weld which maximises the assembly tensile strength.
NASA Technical Reports Server (NTRS)
Bayless, E. O.; Lawless, K. G.; Kurgan, C.; Nunes, A. C.; Graham, B. F.; Hoffman, D.; Jones, C. S.; Shepard, R.
1993-01-01
Fully automated variable-polarity plasma arc VPPA welding system developed at Marshall Space Flight Center. System eliminates defects caused by human error. Integrates many sensors with mathematical model of the weld and computer-controlled welding equipment. Sensors provide real-time information on geometry of weld bead, location of weld joint, and wire-feed entry. Mathematical model relates geometry of weld to critical parameters of welding process.
NASA Astrophysics Data System (ADS)
Ai, Yuewei; Zheng, Kang; Shin, Yung C.; Wu, Benxin
2018-07-01
The laser transmission welding of polyethylene terephthalate (PET) and titanium alloy Ti6Al4V involving the evaluating of the resultant geometry and quality of welds is investigated using a fiber laser in this paper. A 3D transient numerical model considering the melting and fluid flow is developed to predict the weld geometry and porosity formation. The temperature field, molten pool and liquid flow are simulated with varying laser power and welding speed based on the model. It is observed that the weld geometry predictions from the numerical simulation are in good agreement with the experimental data. The results show that the porosity consistently appears in the high temperature region due to the decomposition of PET. In addition, it has also been found that the molten pool with a vortex flow pattern is formed only in the PET layer and the welding processing parameters have significant effects on the fluid flow, which eventually affects the heat transfer, molten pool geometry and weld formation. Consequently, it is shown adopting appropriate welding processing parameters based on the proposed model is essential for the sound weld without defects.
NASA Astrophysics Data System (ADS)
Ji, Shude; Li, Zhengwei; Zhou, Zhenlu; Wu, Baosheng
2017-10-01
This study focused on the effects of thread on hook and cold lap formation, lap shear property and impact toughness of alclad 2024-T4 friction stir lap welding (FSLW) joints. Except the traditional threaded pin tool (TR-tool), three new tools with different thread locations and orientations were designed. Results showed that thread significantly affected hook, cold lap morphologies and lap shear properties. The tool with tip-threaded pin (T-tool) fabricated joint with flat hook and cold lap, which resulted in shear fracture mode. The tools with bottom-threaded pin (B-tool) eliminated the hook. The tool with reverse-threaded pin (R-tool) widened the stir zone width. When using configuration A, the joints fabricated by the three new tools showed higher failure loads than the joint fabricated by the TR-tool. The joint using the T-tool owned the optimum impact toughness. This study demonstrated the significance of thread during FSLW and provided a reference to optimize tool geometry.
Geometry and Material Constraint Effects on Creep Crack Growth Behavior in Welded Joints
NASA Astrophysics Data System (ADS)
Li, Y.; Wang, G. Z.; Xuan, F. Z.; Tu, S. T.
2017-02-01
In this work, the geometry and material constraint effects on creep crack growth (CCG) and behavior in welded joints were investigated. The CCG paths and rates of two kinds of specimen geometry (C(T) and M(T)) with initial cracks located at soft HAZ (heat-affected zone with lower creep strength) and different material mismatches were simulated. The effect of constraint on creep crack initiation (CCI) time was discussed. The results show that there exists interaction between geometry and material constraints in terms of their effects on CCG rate and CCI time of welded joints. Under the condition of low geometry constraint, the effect of material constraint on CCG rate and CCI time becomes more obvious. Higher material constraint can promote CCG due to the formation of higher stress triaxiality around crack tip. Higher geometry constraint can increase CCG rate and reduce CCI time of welded joints. Both geometry and material constraints should be considered in creep life assessment and design for high-temperature welded components.
Microstructures and Mechanical Properties of Friction Stir Spot Welded Aluminum Alloy AA2014
NASA Astrophysics Data System (ADS)
Babu, S.; Sankar, V. S.; Janaki Ram, G. D.; Venkitakrishnan, P. V.; Madhusudhan Reddy, G.; Prasad Rao, K.
2013-01-01
Friction stir spot welding (FSSW) is a relatively recent development, which can provide a superior alternative to resistance spot welding and riveting for fabrication of aluminum sheet metal structures. In the current work, FSSW experiments were conducted in 3-mm thick sheets of aluminum alloy 2014 in T4 and T6 conditions, with and without Alclad layers. The effects of tool geometry and welding process parameters on joint formation were investigated. A good correlation between process parameters, bond width, hook height, joint strength, and fracture mode was observed. The presence of Alclad layers and the base metal temper condition were found to have no major effect on joint formation and joint strength. Friction stir spot welds produced under optimum conditions were found to be superior to riveted joints in lap-shear and cross-tension tests. The prospects of FSSW in aluminum sheet metal fabrication are discussed.
NASA Astrophysics Data System (ADS)
Liu, Shuangyu; Liu, Fengde; Zhang, Hong; Shi, Yan
2012-06-01
In this paper, CO 2 laser-metal active gas (MAG) hybrid welding technique is used to weld high strength steel and the optimized process parameters are obtained. Using LD Pumped laser with an emission wavelength of 532 nm to overcome the strong interference from the welding arc, a computer-based system is developed to collect and visualize the waveforms of the electrical welding parameters and metal transfer processes in laser-MAG. The welding electric signals of hybrid welding processes are quantitatively described and analyzed using the ANALYSATOR HANNOVER. The effect of distance between laser and arc ( DLA) on weld bead geometry, forming process of weld shape, electric signals, arc characteristic and droplet transfer behavior is investigated. It is found that arc characteristic, droplet transfer mode and final weld bead geometry are strongly affected by the distance between laser and arc. The weld bead geometry is changed from "cocktail cup" to "cone-shaped" with the increasing DLA. The droplet transfer mode is changed from globular transfer to projected transfer with the increasing DLA. Projected transfer mode is an advantage for the stability of hybrid welding processes.
NASA Astrophysics Data System (ADS)
Maleki, E.
2015-12-01
Friction stir welding (FSW) is a relatively new solid-state joining technique that is widely adopted in manufacturing and industry fields to join different metallic alloys that are hard to weld by conventional fusion welding. Friction stir welding is a very complex process comprising several highly coupled physical phenomena. The complex geometry of some kinds of joints makes it difficult to develop an overall governing equations system for theoretical behavior analyse of the friction stir welded joints. Weld quality is predominantly affected by welding effective parameters, and the experiments are often time consuming and costly. On the other hand, employing artificial intelligence (AI) systems such as artificial neural networks (ANNs) as an efficient approach to solve the science and engineering problems is considerable. In present study modeling of FSW effective parameters by ANNs is investigated. To train the networks, experimental test results on thirty AA-7075-T6 specimens are considered, and the networks are developed based on back propagation (BP) algorithm. ANNs testing are carried out using different experimental data that they are not used during networks training. In this paper, rotational speed of tool, welding speed, axial force, shoulder diameter, pin diameter and tool hardness are regarded as inputs of the ANNs. Yield strength, tensile strength, notch-tensile strength and hardness of welding zone are gathered as outputs of neural networks. According to the obtained results, predicted values for the hardness of welding zone, yield strength, tensile strength and notch-tensile strength have the least mean relative error (MRE), respectively. Comparison of the predicted and the experimental results confirms that the networks are adjusted carefully, and the ANN can be used for modeling of FSW effective parameters.
Effect of Heat Input on Geometry of Austenitic Stainless Steel Weld Bead on Low Carbon Steel
NASA Astrophysics Data System (ADS)
Saha, Manas Kumar; Hazra, Ritesh; Mondal, Ajit; Das, Santanu
2018-05-01
Among different weld cladding processes, gas metal arc welding (GMAW) cladding becomes a cost effective, user friendly, versatile method for protecting the surface of relatively lower grade structural steels from corrosion and/or erosion wear by depositing high grade stainless steels onto them. The quality of cladding largely depends upon the bead geometry of the weldment deposited. Weld bead geometry parameters, like bead width, reinforcement height, depth of penetration, and ratios like reinforcement form factor (RFF) and penetration shape factor (PSF) determine the quality of the weld bead geometry. Various process parameters of gas metal arc welding like heat input, current, voltage, arc travel speed, mode of metal transfer, etc. influence formation of bead geometry. In the current experimental investigation, austenite stainless steel (316) weld beads are formed on low alloy structural steel (E350) by GMAW using 100% CO2 as the shielding gas. Different combinations of current, voltage and arc travel speed are chosen so that heat input increases from 0.35 to 0.75 kJ/mm. Nine number of weld beads are deposited and replicated twice. The observations show that weld bead width increases linearly with increase in heat input, whereas reinforcement height and depth of penetration do not increase with increase in heat input. Regression analysis is done to establish the relationship between heat input and different geometrical parameters of weld bead. The regression models developed agrees well with the experimental data. Within the domain of the present experiment, it is observed that at higher heat input, the weld bead gets wider having little change in penetration and reinforcement; therefore, higher heat input may be recommended for austenitic stainless steel cladding on low alloy steel.
NASA Astrophysics Data System (ADS)
Arzola, Nelson; Hernández, Edgar
2017-05-01
In this work the experimental characterization of fatigue strength in butt welded joints considering the geometry and the post-weld cooling cycle was performed. ASTM A-36 structural steel was used as the base metal for the shielded metal arc welding process, with welding electrode E6013. Two experimental factors were established: weld bead geometry and the post-weld cooling rate. Two levels for each factor, the welding reinforcement (1 and 3 mm), and the rate of cooling, slow (quiet air) and fast (immersion in water) are evaluated respectively. For the uniaxial fatigue tests, 8 samples were selected for each treatment for a total of 32 specimens. The mechanical and fractomechanical properties of fusion zone, heat affected zone and base metal in relation to the analysis of failure mechanisms were analysed. The fatigue crack growth rates were estimated based on the counting of microstrations. Furthermore, experimental tests, such as uniaxial tension, microindentation hardness, Charpy impact and metallographic analysis, were made to know the influence of the experimental factors in the fatigue strength. On this research, about the 78.13% of the samples obtained a resistance higher than the recommended one by class FAT 100. The results showed that the geometry of the joint is the factor of greatest influence on fatigue strength for butt welded joints; the greater the weld reinforcement the lower the fatigue strength of the joint. Although it is also important to consider other geometric factors of less impact as it is the weld toe radius and the welding chord width.
Modeling of weld bead geometry for rapid manufacturing by robotic GMAW
NASA Astrophysics Data System (ADS)
Yang, Tao; Xiong, Jun; Chen, Hui; Chen, Yong
2015-03-01
Weld-based rapid prototyping (RP) has shown great promises for fabricating 3D complex parts. During the layered deposition of forming metallic parts with robotic gas metal arc welding, the geometry of a single weld bead has an important influence on surface finish quality, layer thickness and dimensional accuracy of the deposited layer. In order to obtain accurate, predictable and controllable bead geometry, it is essential to understand the relationships between the process variables with the bead geometry (bead width, bead height and ratio of bead width to bead height). This paper highlights an experimental study carried out to develop mathematical models to predict deposited bead geometry through the quadratic general rotary unitized design. The adequacy and significance of the models were verified via the analysis of variance. Complicated cause-effect relationships between the process parameters and the bead geometry were revealed. Results show that the developed models can be applied to predict the desired bead geometry with great accuracy in layered deposition with accordance to the slicing process of RP.
Weld bead profile of laser welding dissimilar joints stainless steel
NASA Astrophysics Data System (ADS)
Mohammed, Ghusoon R.; Ishak, M.; Aqida, S. N.; Abdulhadi, Hassan A.
2017-10-01
During the process of laser welding, the material consecutively melts and solidifies by a laser beam with a peak high power. Several parameters such as the laser energy, pulse frequency, pulse duration, welding power and welding speed govern the mode of the welding process. The aim of this paper is to investigate the effect of peak power, incident angle, and welding speed on the weld bead geometry. The first investigation in this context was conducted using 2205-316L stainless steel plates through the varying of the welding speed from 1.3 mm/s to 2.1 mm/s. The second investigation was conducted by varying the peak power from 1100 W to 1500 W. From the results of the experiments, the welding speed and laser power had a significant effect on the geometry of the weld bead, and the variation in the diameter of the bead pulse-size. Due to the decrease in the heat input, welding speed affected penetration depth more than bead width, and a narrow width of heat affected zone was achieved ranging from 0.2 to 0.5 mm. Conclusively, weld bead geometry dimensions increase as a function of peak power; at over 1350 W peak power, the dimensions lie within 30 μm.
FRICTION STIR LAP WELDING OF ALUMINUM - POLYMER USING SCRIBE TECHNOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, Piyush; Hovanski, Yuri; Fifield, Leonard S.
2015-02-16
Friction Stir Scribe (FSS) technology is a relatively new variant of Friction Stir Welding (FSW) which enables lap joining of dissimilar material with very different melting points and different high temperature flow behaviors. The cutter scribe attached at the tip of FSW tool pin effectively cuts the high melting point material such that a mechanically interlocking feature is created between the dissimilar materials. The geometric shape of this interlocking feature determines the shear strength attained by the lap joint. This work presents first use of scribe technology in joining polymers to aluminum alloy. Details of the several runs of scribemore » welding performed in lap joining of ~3.175mm thick polymers including HDPE, filled and unfilled Nylon 66 to 2mm thick AA5182 are presented. The effect of scribe geometry and length on weld interlocking features is presented along with lap shear strength evaluations.« less
Thermal Skin fabrication technology
NASA Technical Reports Server (NTRS)
Milam, T. B.
1972-01-01
Advanced fabrication techniques applicable to Thermal Skin structures were investigated, including: (1) chemical machining; (2) braze bonding; (3) diffusion bonding; and (4) electron beam welding. Materials investigated were nickel and nickel alloys. Sample Thermal Skin panels were manufactured using the advanced fabrication techniques studied and were structurally tested. Results of the program included: (1) development of improved chemical machining processes for nickel and several nickel alloys; (2) identification of design geometry limits; (3) identification of diffusion bonding requirements; (4) development of a unique diffusion bonding tool; (5) identification of electron beam welding limits; and (6) identification of structural properties of Thermal Skin material.
In Process Measurement of Hydrogen in Welding
1986-09-01
Specimen Geometry.........40 Figure 4.8 GTAW Diffusible Hydrogen Specimen Geometry .......... 40 Figure 4.9 Schematic of Specimen Outgassing Container for... GTAW ) and gas metal arc welding (GMAW) have the lowest potentials for hydrogen pickup, while -. the flux-cored arc welding (FCAW) and submerged arc...wire during welding which is the major source of hydrogen in GMAW and GTAW . Although the FCAW process was originally considered an intrinsi- cally low
Emery, John M.; Field, Richard V.; Foulk, James W.; ...
2015-05-26
Laser welds are prevalent in complex engineering systems and they frequently govern failure. The weld process often results in partial penetration of the base metals, leaving sharp crack-like features with a high degree of variability in the geometry and material properties of the welded structure. Furthermore, accurate finite element predictions of the structural reliability of components containing laser welds requires the analysis of a large number of finite element meshes with very fine spatial resolution, where each mesh has different geometry and/or material properties in the welded region to address variability. We found that traditional modeling approaches could not bemore » efficiently employed. Consequently, a method is presented for constructing a surrogate model, based on stochastic reduced-order models, and is proposed to represent the laser welds within the component. Here, the uncertainty in weld microstructure and geometry is captured by calibrating plasticity parameters to experimental observations of necking as, because of the ductility of the welds, necking – and thus peak load – plays the pivotal role in structural failure. The proposed method is exercised for a simplified verification problem and compared with the traditional Monte Carlo simulation with rather remarkable results.« less
Effect of welding position on porosity formation in aluminum alloy welds
NASA Technical Reports Server (NTRS)
Haryung, J.; Wroth, R. S.
1967-01-01
Program investigates the effects of varied welding positions on weld qualities. Progressive changes in bead geometry occur as the weld plane angle is varied from upslope to downslope. The gravitational effect on the weld puddle varies greatly with welding position.
Weld geometry strength effect in 2219-T87 aluminum
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.; Novak, H. L.; Mcilwain, M. C.
1981-01-01
A theory of the effect of geometry on the mechanical properties of a butt weld joint is worked out based upon the soft interlayer weld model. Tensile tests of 45 TIG butt welds and 6 EB beads-on-plate in 1/4-in. 2219-T87 aluminum plate made under a wide range of heat sink and power input conditions are analyzed using this theory. The analysis indicates that purely geometrical effects dominate in determining variations in weld joint strength with heat sink and power input. Variations in weld dimensions with cooling rate are significant as well as with power input. Weld size is suggested as a better indicator of the condition of a weld joint than energy input.
High-Powered, Ultrasonically Assisted Thermal Stir Welding
NASA Technical Reports Server (NTRS)
Ding, Robert
2013-01-01
This method is a solid-state weld process capable of joining metallic alloys without melting. The weld workpieces to be joined by thermal stir welding (TSW) are drawn, by heavy forces, between containment plates past the TSW stir tool that then causes joining of the weld workpiece. TSW is similar to friction stir welding (FSW) in that material is heated into a plastic state (not melted) and stirred using a stir rod. The FSW pin tool is an integrated geometrical structure consisting of a large-diameter shoulder, and a smaller-diameter stir pin protruding from the shoulder. When the pin is plunged into a weld workpiece, the shoulder spins on the surface of the weld workpiece, thus inducing frictional heat into the part. The pin stirs the fraying surfaces of the weld joint, thus joining the weld workpiece into one structure. The shoulder and stir pin of the FSW pin tool must rotate together at a desired rotational speed. The induced frictional energy control and stir pin control of the pin tool cannot be de-coupled. The two work as one integrated unit. TSW, on the other hand, de-couples the heating and stirring of FSW, and allows for independent control of each process element. A uniquely designed induction coil heats the weld workpiece to a desired temperature, and once heated, the part moves into a stir rod whose RPM is also independently controlled. As the weld workpiece moves into the stir rod, the piece is positioned, or sandwiched, between upper and lower containment plates. The plate squeezes together, thus compressing the upper and lower surfaces of the weld workpiece. This compressive force, also called consolidation force, consolidates the plastic material within the weld nugget material as it is being stirred by the stir rod. The stir rod is positioned through the center of the top containment plate and protrudes midway through the opposite lower containment plate where it is mechanically captured. The upper and lower containment plates are separated by a distance equal to the thickness of the material being welded. The TSW process can be significantly improved by reducing the draw forces. This can be achieved by reducing the friction forces between the weld workpieces and the containment plates. High-power ultrasonic (HPU) vibrations of the containment plates achieve friction reduction in the TSW process. Furthermore, integration of the HPU energy into the TSW stir rod can increase tool life of the stir rod, and can reduce shear forces to which the stir rod is subjected during the welding process. TSW has been used to successfully join 0.500-in (˜13-mm) thick commercially pure (CP) titanium, titanium 6AL- 4V, and titanium 6AL-4V ELI in weld joint lengths up to 9 ft (˜2.75-m) long. In addition, the TSW process was used to fabricate a sub-scale hexagonally shaped gun turret component for the U.S. Navy. The turret is comprised of six 0.5000-in (˜13-mm) thick angled welds. Each angled weld joint was prepared by machining the mating surfaces to 120deg. The angled weld joint was then fixtured using an upper and lower containment plate of the same geometry of the angled weld joint. The weld joint was then stirred by the stir rod as it and the upper and lower containment plates traverse through the angled joint prep.
Fundamental Study of Material Flow in Friction Stir Welds
NASA Technical Reports Server (NTRS)
Reynolds, Anthony P.
1999-01-01
The presented research project consists of two major parts. First, the material flow in solid-state, friction stir, butt-welds as been investigated using a marker insert technique. Changes in material flow due to welding parameter as well as tool geometry variations have been examined for different materials. The method provides a semi-quantitative, three-dimensional view of the material transport in the welded zone. Second, a FSW process model has been developed. The fully coupled model is based on fluid mechanics; the solid-state material transport during welding is treated as a laminar, viscous flow of a non-Newtonian fluid past a rotating circular cylinder. The heat necessary for the material softening is generated by deformation of the material. As a first step, a two-dimensional model, which contains only the pin of the FSW tool, has been created to test the suitability of the modeling approach and to perform parametric studies of the boundary conditions. The material flow visualization experiments agree very well with the predicted flow field. Accordingly, material within the pin diameter is transported only in the rotation direction around the pin. Due to the simplifying assumptions inherent in the 2-D model, other experimental data such as forces on the pin, torque, and weld energy cannot be directly used for validation. However, the 2-D model predicts the same trends as shown in the experiments. The model also predicts a deviation from the "normal" material flow at certain combinations of welding parameters, suggesting a possible mechanism for the occurrence of some typical FSW defects. The next step has been the development of a three-dimensional process model. The simplified FSW tool has been designed as a flat shoulder rotating on the top of the workpiece and a rotating, cylindrical pin, which extends throughout the total height of the flow domain. The thermal boundary conditions at the tool and at the contact area to the backing plate have been varied to fit experimental data such as temperature profiles, torque and tool forces. General aspects of the experimentally visualized material flow pattern are confirmed by the 3-D model.
Welding polarity effects on weld spatters and bead geometry of hyperbaric dry GMAW
NASA Astrophysics Data System (ADS)
Xue, Long; Wu, Jinming; Huang, Junfen; Huang, Jiqiang; Zou, Yong; Liu, Jian
2016-03-01
Welding polarity has influence on welding stability to some extent, but the specific relationship between welding polarity and weld quality has not been found, especially under the hyperbaric environment. Based on a hyperbaric dry welding experiment system, gas metal arc welding(GMAW) experiments with direct current electrode positive(DCEP) and direct current electrode negative(DCEN) operations are carried out under the ambient pressures of 0.1 MPa, 0.4 MPa, 0.7 MPa and 1.0 MPa to find the influence rule of different welding polarities on welding spatters and weld bead geometry. The effects of welding polarities on the weld bead geometry such as the reinforcement, the weld width and the penetration are discussed. The experimental results show that the welding spatters gradually grow in quantity and size for GMAW with DCEP, while GMAW with DCEN can produce fewer spatters comparatively with the increase of the ambient pressure. Compared with DCEP, the welding current and arc voltage waveforms for DCEN is more stable and the distribution of welding current probability density for DCEN is more concentrated under the hyperbaric environment. When the ambient pressure is increased from 0.1 MPa to 1.0 MPa, the effects of welding polarities on the reinforcement, the weld width and the penetration are as follows: an increase of 0.8 mm for the weld reinforcement is produced by GMAW with DCEN and 1.3 mm by GMAW with DCEP, a decrease of 7.2 mm for the weld width is produced by DCEN and 6.1 mm by DCEP; and an increase of 3.9 mm for the penetration is produced by DCEN and 1.9 mm by DCEP. The proposed research indicates that the desirable stability in the welding procedure can be achieved by GMAW with DCEN operation under the hyperbaric environment.
Counterrotating-Shoulder Mechanism for Friction Stir Welding
NASA Technical Reports Server (NTRS)
Nunes, Arthur C., Jr.
2007-01-01
A counterrotating-shoulder mechanism has been proposed as an alternative to the mechanism and fixtures used in conventional friction stir welding. The mechanism would internally react most or all of the forces and torques exerted on the workpiece, making it unnecessary to react the forces and torques through massive external fixtures. In conventional friction stir welding, a rotating pin tool is inserted into, and moved along, a weld seam. As the pin tool moves, it stirs together material from the opposite sides of the seam to form the weld. A large axial plunge force must be exerted upon the workpiece through and by the pin tool and a shoulder attached above the pin tool in order to maintain the pressure necessary for the process. The workpiece is secured on top of an anvil, which supports the workpiece against the axial plunge force and against the torque exerted by the pin tool and shoulder. The anvil and associated fixtures must be made heavy (and, therefore, are expensive) to keep the workpiece stationary. In addition, workpiece geometries must be limited to those that can be accommodated by the fixtures. The predecessor of the proposed counterrotating-shoulder mechanism is a second-generation, self-reacting tool, resembling a bobbin, that makes it possible to dispense with the heavy anvil. This tool consists essentially of a rotating pin tool with opposing shoulders. Although the opposing shoulders maintain the necessary pressure without need to externally apply or react a large plunge force, the torque exerted on the workpiece remains unreacted in the absence of a substantial external fixture. Depending on the RPM and the thickness of the workpiece, the torque can be large. The proposed mechanism (see figure) would include a spindle attached to a pin tool with a lower shoulder. The spindle would be coupled via splines to the upper one of three bevel gears in a differential drive. The middle bevel gear would be the power-input gear and would be coupled to the upper and lower bevel gears. The lower bevel gear would be attached to the upper shoulder and would slide and rotate freely over the spindle. The spindle would be fastened by its threaded upper end to an external submechanism that would exert axial tension on the spindle to load the workpiece in compression between the shoulders. By reducing or eliminating (relative to the use of a self reacting tool) the torque that must be reacted externally, the use of the proposed tool would reduce the tendency toward distortion or slippage of the workpiece. To begin a weld, the spindle would be inserted through a hole in the workpiece or run-on tab at the beginning of the seam and fastened to the loading submechanism. Rotation and axial loading would be increased gradually from zero and, after a time to be determined by trial and error, translation along the weld seam would be increased gradually from zero to a steady weld speed. The weld would be ended by running the mechanism off the workpiece or, if the lower shoulder were detachable, by detaching the lower shoulder from the spindle and pulling the pin tool out.
Design of Friction Stir Spot Welding Tools by Using a Novel Thermal-Mechanical Approach
Su, Zheng-Ming; Qiu, Qi-Hong; Lin, Pai-Chen
2016-01-01
A simple thermal-mechanical model for friction stir spot welding (FSSW) was developed to obtain similar weld performance for different weld tools. Use of the thermal-mechanical model and a combined approach enabled the design of weld tools for various sizes but similar qualities. Three weld tools for weld radii of 4, 5, and 6 mm were made to join 6061-T6 aluminum sheets. Performance evaluations of the three weld tools compared fracture behavior, microstructure, micro-hardness distribution, and welding temperature of welds in lap-shear specimens. For welds made by the three weld tools under identical processing conditions, failure loads were approximately proportional to tool size. Failure modes, microstructures, and micro-hardness distributions were similar. Welding temperatures correlated with frictional heat generation rate densities. Because the three weld tools sufficiently met all design objectives, the proposed approach is considered a simple and feasible guideline for preliminary tool design. PMID:28773800
Design of Friction Stir Spot Welding Tools by Using a Novel Thermal-Mechanical Approach.
Su, Zheng-Ming; Qiu, Qi-Hong; Lin, Pai-Chen
2016-08-09
A simple thermal-mechanical model for friction stir spot welding (FSSW) was developed to obtain similar weld performance for different weld tools. Use of the thermal-mechanical model and a combined approach enabled the design of weld tools for various sizes but similar qualities. Three weld tools for weld radii of 4, 5, and 6 mm were made to join 6061-T6 aluminum sheets. Performance evaluations of the three weld tools compared fracture behavior, microstructure, micro-hardness distribution, and welding temperature of welds in lap-shear specimens. For welds made by the three weld tools under identical processing conditions, failure loads were approximately proportional to tool size. Failure modes, microstructures, and micro-hardness distributions were similar. Welding temperatures correlated with frictional heat generation rate densities. Because the three weld tools sufficiently met all design objectives, the proposed approach is considered a simple and feasible guideline for preliminary tool design.
In-field Welding and Coating Protocols
DOT National Transportation Integrated Search
2009-05-12
Gas Technology Institute (GTI) and Edison Welding Institute (EWI) created both laboratory and infield girth weld samples to evaluate the effects of weld geometry and hydrogen off-gassing on the performance of protective coatings. Laboratory made plat...
Friction stir welding of T joints of dissimilar aluminum alloy: A review
NASA Astrophysics Data System (ADS)
Thakare, Shrikant B.; Kalyankar, Vivek D.
2018-04-01
Aluminum alloys are preferred in the mechanical design due to their advantages like high strength, good corrosion resistance, low density and good weldability. In various industrial applications T joints configuration of aluminum alloys are used. In different fields, T joints having skin (horizontal sheet) strengthen by stringers (vertical sheets) were used to increase the strength of structure without increasing the weight. T joints are usually carried out by fusion welding which has limitations in joining of aluminum alloy due to significant distortion and metallurgical defects. Some aluminum alloys are even non weldable by fusion welding. The friction stir welding (FSW) has an excellent replacement of conventional fusion welding for T joints. In this article, FSW of T joints is reviewed by considering aluminum alloy and various joint geometries for defect analysis. The previous experiments carried out on T joints shows the factors such as tool geometry, fixturing device and joint configurations plays significant role in defect free joints. It is essential to investigate the material flow during FSW to know joining mechanism and the formation of joint. In this study the defect occurred in the FSW are studied for various joint configurations and parameters. Also the effect of the parameters and defects occurs on the tensile strength are studied. It is concluded that the T-joints of different joint configurations can be pretended successfully. Comparing to base metal some loss in tensile strength was observed in the weldments as well as overall reduction of the hardness in the thermos mechanically affected zone also observed.
Heat flow in variable polarity plasma arc welds
NASA Technical Reports Server (NTRS)
Abdelmessih, Amanie N.
1992-01-01
The space shuttle external tank and the space station Freedom are fabricated by the variable polarity plasma arc (VPPA) welding. Heat sink effects (taper) are observed when there are irregularities in the work-piece configuration especially if these irregularities are close to the weld bead. These heat sinks affect the geometry of the weld bead, and in extreme cases they could cause defects such as incomplete fusion. Also, different fixtures seem to have varying heat sink effects. The objective of the previous, present, and consecutive research studies is to investigate the effect of irregularities in the work-piece configuration and fixture differences on the weld bead geometry with the ultimate objective to compensate automatically for the heat sink effects and achieve a perfect weld.
Milewski, John O.; Sklar, Edward
1998-01-01
A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables.
Milewski, J.O.; Sklar, E.
1998-06-02
A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables. 34 figs.
Self-Reacting Friction Stir Welding for Aluminum Alloy Circumferential Weld Applications
NASA Technical Reports Server (NTRS)
Bjorkman, Gerry; Cantrell, Mark; Carter, Robert
2003-01-01
Friction stir welding is an innovative weld process that continues to grow in use, in the commercial, defense, and space sectors. It produces high quality and high strength welds in aluminum alloys. The process consists of a rotating weld pin tool that plasticizes material through friction. The plasticized material is welded by applying a high weld forge force through the weld pin tool against the material during pin tool rotation. The high weld forge force is reacted against an anvil and a stout tool structure. A variation of friction stir welding currently being evaluated is self-reacting friction stir welding. Self-reacting friction stir welding incorporates two opposing shoulders on the crown and root sides of the weld joint. In self-reacting friction stir welding, the weld forge force is reacted against the crown shoulder portion of the weld pin tool by the root shoulder. This eliminates the need for a stout tooling structure to react the high weld forge force required in the typical friction stir weld process. Therefore, the self-reacting feature reduces tooling requirements and, therefore, process implementation costs. This makes the process attractive for aluminum alloy circumferential weld applications. To evaluate the application of self-reacting friction stir welding for aluminum alloy circumferential welding, a feasibility study was performed. The study consisted of performing a fourteen-foot diameter aluminum alloy circumferential demonstration weld using typical fusion weld tooling. To accomplish the demonstration weld, weld and tack weld development were performed and fourteen-foot diameter rings were fabricated. Weld development consisted of weld pin tool selection and the generation of a process map and envelope. Tack weld development evaluated gas tungsten arc welding and friction stir welding for tack welding rings together for circumferential welding. As a result of the study, a successful circumferential demonstration weld was produced leading the way for future circumferential weld implementation.
Hybrid FSWeld-bonded joint fatigue behaviour
NASA Astrophysics Data System (ADS)
Lertora, Enrico; Mandolfino, Chiara; Gambaro, Carla; Pizzorni, Marco
2018-05-01
Aluminium alloys, widely used in aeronautics, are increasingly involved in the automotive industry due to the good relationship between mechanical strength and specific weight. The lightening of the structures is the first objective, which allows the decreasing in the weight in motion. The use of aluminium alloys has also seen the introduction of the Friction Stir Welding (FSW) technique for the production of structural overlapping joints. FSW allows us to weld overlap joints free from defects, but with the presence of a structural notch further aggravated by the presence of a "hook" defect near the edge of the weld. Furthermore, FSW presents a weld penetration area connected to the tool geometry and penetration. The experimental activity will be focused on the combination of two different joining techniques, which can synergistically improve the final joint resistance. In particular, the welding and bonding process most commonly known as weld-bonding is defined as a hybrid process, as it combines two different junction processes. In this paper we analyse FSWelded AA6082 aluminium alloy overlapped joint with the aim of quantitatively evaluating the improvement provided by the presence of an epoxy adhesive between the plates. After optimising the weld-bonding process, the mechanical behaviour of welded joints will be analysed by static and dynamic tests. The presence of the adhesive should limit the negative effect of the structural notch inevitable in a FSW overlapped joint.
NASA Astrophysics Data System (ADS)
Mathew, J.; Moat, R. J.; Paddea, S.; Francis, J. A.; Fitzpatrick, M. E.; Bouchard, P. J.
2017-12-01
Economic and safe management of nuclear plant components relies on accurate prediction of welding-induced residual stresses. In this study, the distribution of residual stress through the thickness of austenitic stainless steel welds has been measured using neutron diffraction and the contour method. The measured data are used to validate residual stress profiles predicted by an artificial neural network approach (ANN) as a function of welding heat input and geometry. Maximum tensile stresses with magnitude close to the yield strength of the material were observed near the weld cap in both axial and hoop direction of the welds. Significant scatter of more than 200 MPa was found within the residual stress measurements at the weld center line and are associated with the geometry and welding conditions of individual weld passes. The ANN prediction is developed in an attempt to effectively quantify this phenomenon of `innate scatter' and to learn the non-linear patterns in the weld residual stress profiles. Furthermore, the efficacy of the ANN method for defining through-thickness residual stress profiles in welds for application in structural integrity assessments is evaluated.
Numerical and experimental determination of weld pool shape during high-power diode laser welding
NASA Astrophysics Data System (ADS)
Klimpel, Andrzej; Lisiecki, Aleksander; Szymanski, Andrzej; Hoult, Anthony P.
2003-10-01
In this paper, results of investigations on the shape of weld pool during High Power Diode Laser (HPDL) welding are presented. The results of tests showed that the shape of weld pool and mechanism of laser welding with a rectangular pattern of 808 nm laser radiation differs distinctly from previous laser welding mechanisms. For all power densities the conduction mode welds were observed and weld pool geometry depends significantly on the welding parameters.
Tool For Friction Stir Tack Welding of Aluminum Alloys
NASA Technical Reports Server (NTRS)
Bjorkman, Gerald W.; Dingler, Johnny W.; Loftus, Zachary
2003-01-01
A small friction-stir-welding tool has been developed for use in tack welding of aluminum-alloy workpieces. It is necessary to tack-weld the workpieces in order to hold them together during friction stir welding because (1) in operation, a full-size friction-stir-welding tool exerts a large force that tends to separate the workpieces and (2) clamping the workpieces is not sufficient to resist this force. It is possible to tack the pieces together by gas tungsten arc welding, but the process can be awkward and time-consuming and can cause sufficient damage to necessitate rework. Friction stir tack welding does not entail these disadvantages. In addition, friction stir tack welding can be accomplished by use of the same automated equipment (except for the welding tool) used in subsequent full friction stir welding. The tool for friction stir tack welding resembles the tool for full friction stir welding, but has a narrower shoulder and a shorter pin. The shorter pin generates a smaller workpiece-separating force so that clamping suffices to keep the workpieces together. This tool produces a continuous or intermittent partial-penetration tack weld. The tack weld is subsequently consumed by action of the larger tool used in full friction stir welding tool.
NASA Astrophysics Data System (ADS)
Unt, Anna; Poutiainen, Ilkka; Salminen, Antti
In this paper, a study of laser-arc hybrid welding featuring three different process fibres was conducted to build knowledge about process behaviour and discuss potential benefits for improving the weld properties. The welding parameters affect the weld geometry considerably, as an example the increase in welding speed usually decreases the penetration and a larger beam diameter usually widens the weld. The laser hybrid welding system equipped with process fibres with 200, 300 and 600 μm core diameter were used to produce fillet welds. Shipbuilding steel AH36 plates with 8 mm thickness were welded with Hybrid-Laser-Arc-Welding (HLAW) in inversed T configuration, the effects of the filler wire feed rate and the beam positioning distance from the joint plane were investigated. Based on the metallographic cross-sections, the effect of process parameters on the joint geometry was studied. Joints with optimized properties (full penetration, soundness, smooth transition from bead to base material) were produced with 200 μm and 600 μm process fibres, while fiber with 300 μm core diameter produced welds with unacceptable levels of porosity.
Heat sink effects in variable polarity plasma arc welding
NASA Technical Reports Server (NTRS)
Abdelmessih, Amanie N.
1991-01-01
The Space Shuttle External Tank is fabricated by the variable polarity plasma arc (VPPA) welding process. In VPPA welding, a noble gas, usually argon, is directed through an arc to emerge from the torch as a hot plasma jet. This jet is surrounded by a shielding gas, usually helium, to protect the weld from contamination with air. The high velocity, hot plasma jet completely penetrates the workpiece (resembling a line heat source) when operated in the 'keyhole' mode. The metal melts on touching the side of the jet, as the torch travels in the perpendicular direction to the direction of the jet, and melted metal moves around the plasma jet in the keyhole forming a puddle which solidifies behind the jet. Heat sink effects are observed when there are irregularities in the workpiece configuration, especially, if these irregularities are close to the weld bead. These heat sinks affect the geometry of the weld bead, i.e., in extreme cases they could cause defects such as incomplete fusion. Also, different fixtures seem to have varying heat sink effects. The objective of this research is to study the effect of irregularities in workpiece configuration and fixture differences (heat sink effects) on the weld bead geometry with the ultimate objective to compensate for the heat sink effects and achieve a perfect weld. Experiments were performed on different workpiece geometries and compared to approximate models.
Thermoplastic welding apparatus and method
Matsen, Marc R.; Negley, Mark A.; Geren, William Preston; Miller, Robert James
2017-03-07
A thermoplastic welding apparatus includes a thermoplastic welding tool, at least one tooling surface in the thermoplastic welding tool, a magnetic induction coil in the thermoplastic welding tool and generally encircling the at least one tooling surface and at least one smart susceptor in the thermoplastic welding tool at the at least one tooling surface. The magnetic induction coil is adapted to generate a magnetic flux field oriented generally parallel to a plane of the at least one smart susceptor.
NASA Astrophysics Data System (ADS)
Saldanha, Shamith L.; Kalaichelvi, V.; Karthikeyan, R.
2018-04-01
TIG Welding is a high quality form of welding which is very popular in industries. It is one of the few types of welding that can be used to join dissimilar metals. Here a weld joint is formed between stainless steel and monel alloy. It is desired to have control over the weld geometry of such a joint through the adjustment of experimental parameters which are welding current, wire feed speed, arc length and the shielding gas flow rate. To facilitate the automation of the same, a model of the welding system is needed. However the underlying welding process is complex and non-linear, and analytical methods are impractical for industrial use. Therefore artificial neural networks (ANN) are explored for developing the model, as they are well-suited for modelling non-linear multi-variate data. Feed-forward neural networks with backpropagation training algorithm are used, and the data for training the ANN taken from experimental work. There are four outputs corresponding to the weld geometry. Different training and testing phases were carried out using MATLAB software and ANN approximates the given data with minimum amount of error.
NASA Astrophysics Data System (ADS)
Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Yue, Chen
2015-11-01
The welded joints of dissimilar materials have been widely used in automotive, ship and space industries. The joint quality is often evaluated by weld seam geometry, microstructures and mechanical properties. To obtain the desired weld seam geometry and improve the quality of welded joints, this paper proposes a process modeling and parameter optimization method to obtain the weld seam with minimum width and desired depth of penetration for laser butt welding of dissimilar materials. During the process, Taguchi experiments are conducted on the laser welding of the low carbon steel (Q235) and stainless steel (SUS301L-HT). The experimental results are used to develop the radial basis function neural network model, and the process parameters are optimized by genetic algorithm. The proposed method is validated by a confirmation experiment. Simultaneously, the microstructures and mechanical properties of the weld seam generated from optimal process parameters are further studied by optical microscopy and tensile strength test. Compared with the unoptimized weld seam, the welding defects are eliminated in the optimized weld seam and the mechanical properties are improved. The results show that the proposed method is effective and reliable for improving the quality of welded joints in practical production.
Probing heat transfer, fluid flow and microstructural evolution during fusion welding of alloys
NASA Astrophysics Data System (ADS)
Zhang, Wei
The composition, geometry, structure and properties of the welded joints are affected by the various physical processes that take place during fusion welding. Understanding these processes has been an important goal in the contemporary welding research to achieve structurally sound and reliable welds. In the present thesis research, several important physical processes including the heat transfer, fluid flow and microstructural evolution in fusion welding were modeled based on the fundamentals of transport phenomena and phase transformation theory. The heat transfer and fluid flow calculation is focused on the predictions of the liquid metal convection in the weld pool, the temperature distribution in the entire weldment, and the shape and size of the fusion zone (FZ) and heat affected zone (HAZ). The modeling of microstructural evolution is focused on the quantitative understanding of phase transformation kinetics during welding of several important alloys under both low and high heating and cooling conditions. Three numerical models were developed in the present thesis work: (1) a three-dimensional heat transfer and free surface flow model for the gas metal arc (GMA) fillet welding considering the complex weld joint geometry, (2) a phase transformation model based on the Johnson-Mehl-Avrami (JMA) theory, and (3) a one-dimensional numerical diffusion model considering multiple moving interfaces. To check the capabilities of the developed models, several cases were investigated, in which the predictions from the models were compared with the experimental results. The cases studied are the follows. For the modeling of heat transfer and fluid flow, the welding processes studied included gas tungsten arc (GTA) linear welding, GTA transient spot welding, and GMA fillet welding. The calculated weldment geometry and thermal cycles was validated against the experimental data under various welding conditions. For the modeling of microstructural evolution, the welded materials investigated included AISI 1005 low-carbon steel, 1045 medium-carbon steel, 2205 duplex stainless steel (DSS) and Ti-6Al-4V alloy. The calculated phase transformation kinetics were compared with the experimental results obtained using an x-ray diffraction technique by Dr. John W. Elmer of Lawrence Livermore National Laboratory. (Abstract shortened by UMI.)
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey; Oelgoetz, Peter A.
1999-01-01
The "Auto-Adjustable Pin Tool for Friction Stir Welding", was developed at The Marshall Space Flight Center to address process deficiencies unique to the FSW process. The auto-adjustable pin tool, also called the retractable pin-tool (R.PT) automatically withdraws the welding probe of the pin-tool into the pin-tool's shoulder. The primary function of the auto-adjustable pin-tool is to allow for keyhole closeout, necessary for circumferential welding and localized weld repair, and, automated pin-length adjustment for the welding of tapered material thickness. An overview of the RPT hardware is presented. The paper follows with studies conducted using the RPT. The RPT was used to simulate two capabilities; welding tapered material thickness and closing out the keyhole in a circumferential weld. The retracted pin-tool regions in aluminum- lithium 2195 friction stir weldments were studied through mechanical property testing and metallurgical sectioning. Correlation's can be =de between retractable pin-tool programmed parameters, process parameters, microstructure, and resulting weld quality.
NASA Technical Reports Server (NTRS)
Nunes, Arthur C., Jr.
2008-01-01
Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.
Sensor Fusion to Estimate the Depth and Width of the Weld Bead in Real Time in GMAW Processes
Sampaio, Renato Coral; Vargas, José A. R.
2018-01-01
The arc welding process is widely used in industry but its automatic control is limited by the difficulty in measuring the weld bead geometry and closing the control loop on the arc, which has adverse environmental conditions. To address this problem, this work proposes a system to capture the welding variables and send stimuli to the Gas Metal Arc Welding (GMAW) conventional process with a constant voltage power source, which allows weld bead geometry estimation with an open-loop control. Dynamic models of depth and width estimators of the weld bead are implemented based on the fusion of thermographic data, welding current and welding voltage in a multilayer perceptron neural network. The estimators were trained and validated off-line with data from a novel algorithm developed to extract the features of the infrared image, a laser profilometer was implemented to measure the bead dimensions and an image processing algorithm that measures depth by making a longitudinal cut in the weld bead. These estimators are optimized for embedded devices and real-time processing and were implemented on a Field-Programmable Gate Array (FPGA) device. Experiments to collect data, train and validate the estimators are presented and discussed. The results show that the proposed method is useful in industrial and research environments. PMID:29570698
Sensor Fusion to Estimate the Depth and Width of the Weld Bead in Real Time in GMAW Processes.
Bestard, Guillermo Alvarez; Sampaio, Renato Coral; Vargas, José A R; Alfaro, Sadek C Absi
2018-03-23
The arc welding process is widely used in industry but its automatic control is limited by the difficulty in measuring the weld bead geometry and closing the control loop on the arc, which has adverse environmental conditions. To address this problem, this work proposes a system to capture the welding variables and send stimuli to the Gas Metal Arc Welding (GMAW) conventional process with a constant voltage power source, which allows weld bead geometry estimation with an open-loop control. Dynamic models of depth and width estimators of the weld bead are implemented based on the fusion of thermographic data, welding current and welding voltage in a multilayer perceptron neural network. The estimators were trained and validated off-line with data from a novel algorithm developed to extract the features of the infrared image, a laser profilometer was implemented to measure the bead dimensions and an image processing algorithm that measures depth by making a longitudinal cut in the weld bead. These estimators are optimized for embedded devices and real-time processing and were implemented on a Field-Programmable Gate Array (FPGA) device. Experiments to collect data, train and validate the estimators are presented and discussed. The results show that the proposed method is useful in industrial and research environments.
Modeling of plasma and thermo-fluid transport in hybrid welding
NASA Astrophysics Data System (ADS)
Ribic, Brandon D.
Hybrid welding combines a laser beam and electrical arc in order to join metals within a single pass at welding speeds on the order of 1 m min -1. Neither autonomous laser nor arc welding can achieve the weld geometry obtained from hybrid welding for the same process parameters. Depending upon the process parameters, hybrid weld depth and width can each be on the order of 5 mm. The ability to produce a wide weld bead increases gap tolerance for square joints which can reduce machining costs and joint fitting difficulty. The weld geometry and fast welding speed of hybrid welding make it a good choice for application in ship, pipeline, and aerospace welding. Heat transfer and fluid flow influence weld metal mixing, cooling rates, and weld bead geometry. Cooling rate affects weld microstructure and subsequent weld mechanical properties. Fluid flow and heat transfer in the liquid weld pool are affected by laser and arc energy absorption. The laser and arc generate plasmas which can influence arc and laser energy absorption. Metal vapors introduced from the keyhole, a vapor filled cavity formed near the laser focal point, influence arc plasma light emission and energy absorption. However, hybrid welding plasma properties near the opening of the keyhole are not known nor is the influence of arc power and heat source separation understood. A sound understanding of these processes is important to consistently achieving sound weldments. By varying process parameters during welding, it is possible to better understand their influence on temperature profiles, weld metal mixing, cooling rates, and plasma properties. The current literature has shown that important process parameters for hybrid welding include: arc power, laser power, and heat source separation distance. However, their influence on weld temperatures, fluid flow, cooling rates, and plasma properties are not well understood. Modeling has shown to be a successful means of better understanding the influence of processes parameters on heat transfer, fluid flow, and plasma characteristics for arc and laser welding. However, numerical modeling of laser/GTA hybrid welding is just beginning. Arc and laser welding plasmas have been previously analyzed successfully using optical emission spectroscopy in order to better understand arc and laser plasma properties as a function of plasma radius. Variation of hybrid welding plasma properties with radial distance is not known. Since plasma properties can affect arc and laser energy absorption and weld integrity, a better understanding of the change in hybrid welding plasma properties as a function of plasma radius is important and necessary. Material composition influences welding plasma properties, arc and laser energy absorption, heat transfer, and fluid flow. The presence of surface active elements such as oxygen and sulfur can affect weld pool fluid flow and bead geometry depending upon the significance of heat transfer by convection. Easily vaporized and ionized alloying elements can influence arc plasma characteristics and arc energy absorption. The effects of surface active elements on heat transfer and fluid flow are well understood in the case of arc and conduction mode laser welding. However, the influence of surface active elements on heat transfer and fluid flow during keyhole mode laser welding and laser/arc hybrid welding are not well known. Modeling has been used to successfully analyze the influence of surface active elements during arc and conduction mode laser welding in the past and offers promise in the case of laser/arc hybrid welding. A critical review of the literature revealed several important areas for further research and unanswered questions. (1) The understanding of heat transfer and fluid flow during hybrid welding is still beginning and further research is necessary. (2) Why hybrid welding weld bead width is greater than that of laser or arc welding is not well understood. (3) The influence of arc power and heat source separation distance on cooling rates during hybrid welding are not known. (4) Convection during hybrid welding is not well understood despite its importance to weld integrity. (5) The influence of surface active elements on weld geometry, weld pool temperatures, and fluid flow during high power density laser and laser/arc hybrid welding are not known. (6) Although the arc power and heat source separation distance have been experimentally shown to influence arc stability and plasma light emission during hybrid welding, the influence of these parameters on plasma properties is unknown. (7) The electrical conductivity of hybrid welding plasmas is not known, despite its importance to arc stability and weld integrity. In this study, heat transfer and fluid flow are analyzed for laser, gas tungsten arc (GTA), and laser/GTA hybrid welding using an experimentally validated three dimensional phenomenological model. By evaluating arc and laser welding using similar process parameters, a better understanding of the hybrid welding process is expected. The role of arc power and heat source separation distance on weld depth, weld pool centerline cooling rates, and fluid flow profiles during CO2 laser/GTA hybrid welding of 321 stainless steel are analyzed. Laser power is varied for a constant heat source separation distance to evaluate its influence on weld temperatures, weld geometry, and fluid flow during Nd:YAG laser/GTA hybrid welding of A131 structural steel. The influence of oxygen and sulfur on keyhole and weld bead geometry, weld temperatures, and fluid flow are analyzed for high power density Yb doped fiber laser welding of (0.16 %C, 1.46 %Mn) mild steel. Optical emission spectroscopy was performed on GTA, Nd:YAG laser, and Nd:YAG laser/GTA hybrid welding plasmas for welding of 304L stainless steel. Emission spectroscopy provides a means of determining plasma temperatures and species densities using deconvoluted measured spectral intensities, which can then be used to calculate plasma electrical conductivity. In this study, hybrid welding plasma temperatures, species densities, and electrical conductivities were determined using various heat source separation distances and arc currents using an analytical method coupled calculated plasma compositions. As a result of these studies heat transfer by convection was determined to be dominant during hybrid welding of steels. The primary driving forces affecting hybrid welding fluid flow are the surface tension gradient and electromagnetic force. Fiber laser weld depth showed a negligible change when increasing the (0.16 %C, 1.46 %Mn) mild steel sulfur concentration from 0.006 wt% to 0.15 wt%. Increasing the dissolved oxygen content in weld pool from 0.0038 wt% to 0.0257 wt% increased the experimental weld depth from 9.3 mm to 10.8 mm. Calculated partial pressure of carbon monoxide increased from 0.1 atm to 0.75 atm with the 0.0219 wt% increase in dissolved oxygen in the weld metal and may explain the increase in weld depth. Nd:YAG laser/GTA hybrid welding plasma temperatures were calculated to be approximately between 7927 K and 9357 K. Increasing the Nd:YAG laser/GTA hybrid welding heat source separation distance from 4 mm to 6 mm reduced plasma temperatures between 500 K and 900 K. Hybrid welding plasma total electron densities and electrical conductivities were on the order of 1 x 1022 m-3 and 3000 S m-1, respectively.
Friction Stir Welding of Tapered Thickness Welds Using an Adjustable Pin Tool
NASA Technical Reports Server (NTRS)
Adams, Glynn; Venable, Richard; Lawless, Kirby
2003-01-01
Friction stir welding (FSW) can be used for joining weld lands that vary in thickness along the length of the weld. An adjustable pin tool mechanism can be used to accomplish this in a single-pass, full-penetration weld by providing for precise changes in the pin length relative to the shoulder face during the weld process. The difficulty with this approach is in accurately adjusting the pin length to provide a consistent penetration ligament throughout the weld. The weld technique, control system, and instrumentation must account for mechanical and thermal compliances of the tooling system to conduct tapered welds successfully. In this study, a combination of static and in-situ measurements, as well as active control, is used to locate the pin accurately and maintain the desired penetration ligament. Frictional forces at the pin/shoulder interface were a source of error that affected accurate pin position. A traditional FSW pin tool design that requires a lead angle was used to join butt weld configurations that included both constant thickness and tapered sections. The pitch axis of the tooling was fixed throughout the weld; therefore, the effective lead angle in the tapered sections was restricted to within the tolerances allowed by the pin tool design. The sensitivity of the FSW process to factors such as thickness offset, joint gap, centerline offset, and taper transition offset were also studied. The joint gap and the thickness offset demonstrated the most adverse affects on the weld quality. Two separate tooling configurations were used to conduct tapered thickness welds successfully. The weld configurations included sections in which the thickness decreased along the weld, as well as sections in which the thickness increased along the weld. The data presented here include weld metallography, strength data, and process load data.
A novel ultrasonic NDE for shrink fit welded structures using interface waves.
Lee, Jaesun; Park, Junpil; Cho, Younho
2016-05-01
Reactor vessel inspection is a critical part of safety maintenance in a nuclear power plant. The inspection of shrink fit welded structures in a reactor nozzle can be a challenging task due to the complicated geometry. Nozzle inspection using pseudo interface waves allows us to inspect the nozzle from outside of the nuclear reactor. In this study, layered concentric pipes were manufactured with perfect shrink fit conditions using stainless steel 316. The displacement distributions were calculated with boundary conditions for a shrink fit welded structure. A multi-transducer guided wave phased array system was employed to monitor the welding quality of the nozzle end at a distance from a fixed position. The complicated geometry of a shrink fit welded structure can be overcome by using the pseudo interface waves in identifying the location and size of defects. The experimental results demonstrate the feasibility of detecting weld delamination and defects. Copyright © 2016 Elsevier B.V. All rights reserved.
Retractable Pin Tools for the Friction Stir Welding Process
NASA Technical Reports Server (NTRS)
1998-01-01
Two companies have successfully commercialized a specialized welding tool developed at the Marshall Space Flight Center (MSFC). Friction stir welding uses the high rotational speed of a tool and the resulting frictional heat created from contact to crush, 'stir' together, and forge a bond between two metal alloys. It has had a major drawback, reliance on a single-piece pin tool. The pin is slowly plunged into the joint between two materials to be welded and rotated as high speed. At the end of the weld, the single-piece pin tool is retracted and leaves a 'keyhole,' something which is unacceptable when welding cylindrical objects such as drums, pipes and storage tanks. Another drawback is the requirement for different-length pin tools when welding materials of varying thickness. An engineer at the MSFC helped design an automatic retractable pin tool that uses a computer-controlled motor to automatically retract the pin into the shoulder of the tool at the end of the weld, preventing keyholes. This design allows the pin angle and length to be adjusted for changes in material thickness and results in a smooth hole closure at the end of the weld. Benefits of friction stir welding, using the MSFC retractable pin tool technology, include the following: The ability to weld a wide range of alloys, including previously unweldable and composite materials; provision of twice the fatigue resistance of fusion welds and no keyholes; minimization of material distortion; no creation of hazards such as welding fumes, radiation, high voltage, liquid metals, or arcing; automatic retraction of the pin at the end of the weld; and maintaining full penetration of the pin.
Metal transfer and V-I transients in GMAW of aluminium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, S.; Rao, U.R.K.; Aghakhani, M.
1996-12-31
The mode of metal transfer in arc welding significantly affects the positional weldability; particularly the overhead welding, the chemical composition and properties of weld metal, metallurgy of weld metal, weld pool stability, arc stability, spatter losses, and weld bead geometry. The mode of metal transfer is affected mainly by the type of the arc, welding current, electrode polarity, arc voltage, contact tube to plate distance (CTPD)/Stand-off, type and flow rate of the shielding gas, torch angle and alloying elements in GMAW of aluminium and its alloys.
The Measurement and Monitoring of Resistance Spot Welds Using Infrared Thermography
NASA Astrophysics Data System (ADS)
Brown, Bruce; Bangs, Edmund
1986-03-01
The ability to monitor the spot welding process and provide a real time inspection is of interest to the automotive, aircraft, and aircraft turbine industries. A series of experiments was performed using the infrared radiometer during the welding operation when welding coated and uncoated automotive gage steels. It has been determined that the isotherm radiated at the electrode/base material surface contains apometric information that can be used in the detection of the weld nugget and its quality. Weld nugget measurement and tensile shear tests results show good correlation between isotherm geometry, weld joint strength, and weld nugget size.
Welding of Al6061and Al6082-Cu composite by friction stir processing
NASA Astrophysics Data System (ADS)
Iyer, R. B.; Dhabale, R. B.; Jatti, V. S.
2016-09-01
Present study aims at investigating the influence of process parameters on the microstructure and mechanical properties such as tensile strength and hardness of the dissimilar metal without and with copper powder. Before conducting the copper powder experiments, optimum process parameters were obtained by conducting experiments without copper powder. Taguchi's experimental L9 orthogonal design layout was used to carry out the experiments without copper powder. Threaded pin tool geometry was used for conducting the experiments. Based on the experimental results and Taguchi's analysis it was found that maximum tensile strength of 66.06 MPa was obtained at 1400 rpm spindle speed and weld speed of 20 mm/min. Maximum micro hardness (92 HV) was obtained at 1400 rpm spindle speed and weld speed of 16 mm/min. At these optimal setting of process parameters aluminium alloys were welded with the copper powder. Experimental results demonstrated that the tensile strength (96.54 MPa) and micro hardness (105 HV) of FSW was notably affected by the addition of copper powder when compared with FSW joint without copper powder. Tensile failure specimen was analysed using Scanning Electron Microscopy in order to study the failure mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Haiyan
1.4 mm 2A97 Al-Li alloy thin sheets were welded by friction stir lap welding using the stirring tools with different pin length at different rotational speeds. The influence of pin length and rotational speed on the defect features and mechanical properties of lap joints were investigated in detail. Microstructure observation shows that the hook defect geometry and size mainly varies with the pin length instead of the rotational speed. The size of hook defects on both the advancing side (AS) and the retreating side (RS) increased with increasing the pin length, leading to the effective sheet thickness decreased accordingly. Electronmore » backscatter diffraction analysis reveals that the weld zones, especially the nugget zone (NZ), have the much lower texture intensity than the base metal. Some new texture components are formed in the thermo-mechanical affected zone (TMAZ) and the NZ of joint. Lap shear test results show that the failure load of joints generally decreases with increasing the pin length and the rotational speed. The joints failed during the lap shear tests at three locations: the lap interface, the RS of the top sheet and the AS of the bottom sheet. The fracture locations are mainly determined by the hook defects. - Highlights: • Hook defect size mainly varies with the pin length of stirring tool. • The proportion of LAGBs and substructured grains increases from NZ to TMAZ. • Weld zones, especially the NZ, have the much lower texture intensity than the BM. • Lap shear failure load and fracture location of joints is relative to the hook defects.« less
1998-12-01
Two companies have successfully commercialized a specialized welding tool developed at the Marshall Space Flight Center (MSFC). Friction stir welding uses the high rotational speed of a tool and the resulting frictional heat created from contact to crush, "stir" together, and forge a bond between two metal alloys. It has had a major drawback, reliance on a single-piece pin tool. The pin is slowly plunged into the joint between two materials to be welded and rotated as high speed. At the end of the weld, the single-piece pin tool is retracted and leaves a "keyhole," something which is unacceptable when welding cylindrical objects such as drums, pipes and storage tanks. Another drawback is the requirement for different-length pin tools when welding materials of varying thickness. An engineer at the MSFC helped design an automatic retractable pin tool that uses a computer-controlled motor to automatically retract the pin into the shoulder of the tool at the end of the weld, preventing keyholes. This design allows the pin angle and length to be adjusted for changes in material thickness and results in a smooth hole closure at the end of the weld. Benefits of friction stir welding, using the MSFC retractable pin tool technology, include the following: The ability to weld a wide range of alloys, including previously unweldable and composite materials; provision of twice the fatigue resistance of fusion welds and no keyholes; minimization of material distortion; no creation of hazards such as welding fumes, radiation, high voltage, liquid metals, or arcing; automatic retraction of the pin at the end of the weld; and maintaining full penetration of the pin.
NASA Astrophysics Data System (ADS)
Kamal Babu, Karupannan; Panneerselvam, Kavan; Sathiya, Paulraj; Noorul Haq, Abdul Haq; Sundarrajan, Srinivasan; Mastanaiah, Potta; Srinivasa Murthy, Chunduri Venkata
2018-02-01
Friction stir welding (FSW) process was conducted on cryorolled (CR) AA2219 plate using different tool pin profiles such as cylindrical pin, threaded cylindrical pin, square pin and hexagonal pin profiles. The FSW was carried out with pairs of 6 mm thick CR aluminium plates with different tool pin profiles. The different tool pin profile weld portions' behaviors like mechanical (tensile strength, impact and hardness) and metallurgical characteristics were analyzed. The results of the mechanical analysis revealed that the joint made by the hexagonal pin tool had good strength compared to other pin profiles. This was due to the pulsating action and material flow of the tool resulting in dynamic recrystallization in the weld zone. This was confirmed by the ultra fine grain structure formation in Weld Nugget (WN) of hexagonal pin tool joint with a higher percentage of precipitate dissolution. The fractograph of the hexagonal tool pin weld portion confirmed the finer dimple structure morphology without having any interior defect compared to other tool pin profiles. The lowest weld joint strength was obtained from cylindrical pin profile weld joint due to insufficient material flow during welding. The Transmission Electron Microscope and EDX analysis showed the dissolution of the metastable θ″, θ' (Al2Cu) partial precipitates in the WN and proved the influence of metastable precipitates on enhancement of mechanical behavior of weld. The XRD results also confirmed the Al2Cu precipitation dissolution in the weld zone.
Longitudinal Weld Land Buckling in Compression-Loaded Orthogrid Cylinders
NASA Technical Reports Server (NTRS)
Thornburgh, Robert P.; Hilburger, Mark W.
2010-01-01
Large stiffened cylinders used in launch vehicles (LV), such as the Space Shuttle External Tank, are manufactured by welding multiple curved panel sections into complete cylinders. The effects of the axial weld lands between the panel sections on the buckling load were studied, along with the interaction between the acreage stiffener arrangement and the weld land geometry. This document contains the results of the studies.
Friction Stir Weld System for Welding and Weld Repair
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey (Inventor); Romine, Peter L. (Inventor); Oelgoetz, Peter A. (Inventor)
2001-01-01
A friction stir weld system for welding and weld repair has a base foundation unit connected to a hydraulically controlled elevation platform and a hydraulically adjustable pin tool. The base foundation unit may be fixably connected to a horizontal surface or may be connected to a mobile support in order to provide mobility to the friction stir welding system. The elevation platform may be utilized to raise and lower the adjustable pin tool about a particular axis. Additional components which may be necessary for the friction stir welding process include back plate tooling, fixturing and/or a roller mechanism.
NASA Technical Reports Server (NTRS)
2001-01-01
A new self-adjusting, retractable pin tool for friction stir welding is now used in the manufacturing of components for NASA Space Shuttles. Friction stir welding is a process that makes straight-line welds without bringing the parent material to a liquid state. This is accomplished through high-speed rotation, which generates frictional heat between the welding tool and the piece being welded. This heat causes the material to soften to the point of plasticity without allowing it to melt. The plasticized material is then transferred from the front edge of the welding tool to the trail edge, where it joins the pieces being welded. However, a major flaw of this method is its reliance on a single-piece pin tool. The weld is left unfinished and a hole remains where the pin was inserted. The hole must be covered with a rivet in order to preserve the integrity of the weld. The NASA-developed pin tool, however, eliminates the need for this finishing step, as its retraction allows continuous rewelding at lesser depths, until the hole is completely closed. With this NASA technology, welding of higher strength alloys, as well as non-planer and variable thickness structures can be achieved.
Fine-tuned Remote Laser Welding of Aluminum to Copper with Local Beam Oscillation
NASA Astrophysics Data System (ADS)
Fetzer, Florian; Jarwitz, Michael; Stritt, Peter; Weber, Rudolf; Graf, Thomas
Local beam oscillation in remote laser welding of aluminum to copper was investigated. Sheets of 1 mm thickness were welded in overlap configuration with aluminum as top material. The laser beam was scanned in a sinusoidal mode perpendicular to the direction of feed and the influence of the oscillation parameters frequency and amplitude on the weld geometry was investigated. Scanning frequencies up to 1 kHz and oscillation amplitudes in the range from 0.25 mm to 1 mm were examined. Throughout the experiments the laser power and the feed rate were kept constant. A decrease of welding depth with amplitude and frequency is found. The scanning amplitude had a strong influence and allowed coarse setting of the welding depth into the lower material, while the frequency allowed fine tuning in the order of 10% of the obtained depth. The oscillation parameters were found to act differently on the aluminum sheet compared to copper sheet regarding the amount of fused material. It is possible to influence the geometry of the fused zones separately for both sheets. Therefore the average composition in the weld can be set with high precision via the oscillation parameters. A setting of the generated intermetallics in the weld zone is possible without adjustment of laser power and feed rate.
Versatile Friction Stir Welding/Friction Plug Welding System
NASA Technical Reports Server (NTRS)
Carter, Robert
2006-01-01
A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.
Clamp and Gas Nozzle for TIG Welding
NASA Technical Reports Server (NTRS)
Gue, G. B.; Goller, H. L.
1982-01-01
Tool that combines clamp with gas nozzle is aid to tungsten/inert-gas (TIG) welding in hard-to-reach spots. Tool holds work to be welded while directing a stream of argon gas at weld joint, providing an oxygen-free environment for tungsten-arc welding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Tarasankar DebRoy
In recent years, applications of numerical heat transfer and fluid flow models of fusion welding have resulted in improved understanding of both the welding processes and welded materials. They have been used to accurately calculate thermal cycles and fusion zone geometry in many cases. Here we report the following three major advancements from this project. First, we show how microstructures, grain size distribution and topology of welds of several important engineering alloys can be computed starting from better understanding of the fusion welding process through numerical heat transfer and fluid flow calculations. Second, we provide a conclusive proof that themore » reliability of numerical heat transfer and fluid flow calculations can be significantly improved by optimizing several uncertain model parameters. Third, we demonstrate how the numerical heat transfer and fluid flow models can be combined with a suitable global optimization program such as a genetic algorithm for the tailoring of weld attributes such as attaining a specified weld geometry or a weld thermal cycle. The results of the project have been published in many papers and a listing of these are included together with a list of the graduate thesis that resulted from this project. The work supported by the DOE award has resulted in several important national and international awards. A listing of these awards and the status of the graduate students are also presented in this report.« less
Welding Development: Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Ding, Jeff
2007-01-01
This paper presents the basic understanding of the friction stir welding process. It covers process description, pin tool operation and materials, metal flow theory, mechanical properties, and materials welded using the process. It also discusses the thermal stir welding process and the differences between thermal stir and friction stir welding. MSFC weld tools used for development are also presented.
Automatic control system of high precision welding of workpieces in mechanical engineering
NASA Astrophysics Data System (ADS)
Kuznetsov, I. N.; Zvezdin, V. V.; Israfilov, I. H.; Portnov, S. M.
2014-12-01
In this paper, based on the conducted patent research, the system of laser welding control with different geometry of weld and shapes of parts is developed. The method of monitoring the position of the spot of laser radiation in relation to the curved weld is worked out; it is based on the tracking the edges of the welded parts by low-power laser radiation reflected from the surface of the parts. It allows to make the positioning of the focus of laser radiation in relation to the juncture of the welded parts automatically.
Heat treatment stabilizes welded aluminum jigs and tool structures
NASA Technical Reports Server (NTRS)
Mehnert, R. S.
1966-01-01
Heat treatment processes, applied after welding but before machining, imparts above normal stability to welded aluminum jigs and tool structures. Weight saving will not be realized in these tools if rigidity equal to that of a comparable steel tool is required.
Vision-based weld pool boundary extraction and width measurement during keyhole fiber laser welding
NASA Astrophysics Data System (ADS)
Luo, Masiyang; Shin, Yung C.
2015-01-01
In keyhole fiber laser welding processes, the weld pool behavior is essential to determining welding quality. To better observe and control the welding process, the accurate extraction of the weld pool boundary as well as the width is required. This work presents a weld pool edge detection technique based on an off axial green illumination laser and a coaxial image capturing system that consists of a CMOS camera and optic filters. According to the difference of image quality, a complete developed edge detection algorithm is proposed based on the local maximum gradient of greyness searching approach and linear interpolation. The extracted weld pool geometry and the width are validated by the actual welding width measurement and predictions by a numerical multi-phase model.
The use of electromagnetic body forces to enhance the quality of laser welds
NASA Astrophysics Data System (ADS)
Ambrosy, Guenter; Berger, P.; Huegel, H.; Lindenau, D.
2003-11-01
The use of electromagnetic body forces in laser beam welding of aluminum alloys is a new method to shape the geometry and to enhance the quality of the weld seams. In this new approach, electromagnetic volume forces are utilized by applying magnetic fields and electric currents of various origins. Acting in the liquid metal, they directly affect the flow field and can lead to favourable conditions for the melt dynamics and energy coupling. Numerous welds with full and partial penetration using both CO2 and Nd:YAG lasers demonstrate that this method directly influences the seam geometry and top-bead topography as well as the penetration depth and the evolution of pores and cracks. In the case of full penetration, it is also possible to lift or to lower the weld pool. The method, therefore, can be used to shape the geometry and to enhance the quality of the weld seam. Depending on the orientation of an external magnetic field, significant impacts are achieved in CO2 welding, even without an external current: the shape of the cross-sectional area can be increased of up to 50% and also the seam width is changed. Whereas for such conditions with Nd:YAG lasers no significant effect could be observed, it turned out that, when an external electric current is applied, similar effects are present with both wavelengths. In further investigations, the effect of electromagnetic body forces resulting from the interaction of an external current and its self-induced magnetic field was studied. Hereby, the current was fed into the workpiece via a tungsten electrode or a filler wire. The resulting phenomena are the same independent from wavelength and means of current feed.
NASA Astrophysics Data System (ADS)
Chand, Suresh; Vineetha, S.; Madhusudhan, D.; Sai Krishna, CH; Kusuma Devi, G.; Bhawani; Hemarao, K.; Ganesh Naidu, G.
2018-03-01
The plate of 7.0 mm thickness was double side welded using friction stir welding is investigated. The rotational velocity of friction stir welding tool is used 1400 rpm. The influence of welding speed on the microstructure and microhardness values of Al-0.84Mg-0.69Si-0.76Fe aluminum alloy is presented. Two welding speeds 25 mm/min and 31.5 mm/min are used. The microhardness values of friction stir weld are measured at various locations from the weld interface. The microhardness values in stir zone of weld are found larger than lower welding speed at constant rotational velocity of 1400 rpm of friction stir welding tool. The similar effects on microhardness values are found in the thermo-mechanically affected zone and heat affected zone. The fine microstructure is observed at 31.5 mm/min welding speed compared to the 25 mm/min welding speed at 1400 rpm.
Optimizing friction stir weld parameters of aluminum and copper using conventional milling machine
NASA Astrophysics Data System (ADS)
Manisegaran, Lohappriya V.; Ahmad, Nurainaa Ayuni; Nazri, Nurnadhirah; Noor, Amirul Syafiq Mohd; Ramachandran, Vignesh; Ismail, Muhammad Tarmizizulfika; Ahmad, Ku Zarina Ku; Daruis, Dian Darina Indah
2018-05-01
The joining of two of any particular materials through friction stir welding (FSW) are done by a rotating tool and the work piece material that generates heat which causes the region near the FSW tool to soften. This in return will mechanically intermix the work pieces. The first objective of this study is to join aluminum plates and copper plates by means of friction stir welding process using self-fabricated tools and conventional milling machine. This study also aims to investigate the optimum process parameters to produce the optimum mechanical properties of the welding joints for Aluminum plates and Copper plates. A suitable tool bit and a fixture is to be fabricated for the welding process. A conventional milling machine will be used to weld the aluminum and copper. The most important parameters to enable the process are speed and pressure of the tool (or tool design and alignment of the tool onto the work piece). The study showed that the best surface finish was produced from speed of 1150 rpm and tool bit tilted to 3°. For a 200mm × 100mm Aluminum 6061 with plate thickness of 2 mm at a speed of 1 mm/s, the time taken to complete the welding is only 200 seconds or equivalent to 3 minutes and 20 seconds. The Copper plates was successfully welded using FSW with tool rotation speed of 500 rpm, 700 rpm, 900 rpm, 1150 rpm and 1440 rpm and with welding traverse rate of 30 mm/min, 60 mm/min and 90 mm/min. As the conclusion, FSW using milling machine can be done on both Aluminum and Copper plates, however the weld parameters are different for the two types of plates.
Microstructure Evolution during Friction Stir Welding of Mill-Annealed Ti-6Al-4V (Preprint)
2011-05-01
welding . One of the primary concerns regarding FSW of higher temperature materials like titanium is the welding tool. High temperature materials... welds as compared to aluminum alloys. This is related to the low thermal conductivity of titanium alloys which is typically lower than that of the...of the tools and workpieces in aluminum and titanium friction stir welds . Aluminum has a greater conductivity and thermal diffusivity than the tool
Simultaneous Independent Control of Tool Axial Force and Temperature in Friction Stir Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Kenneth A.; Grant, Glenn J.; Darsell, Jens T.
Maintaining consistent tool depth relative to the part surface is a critical requirement for many Friction stir processing (FSP) applications. Force control is often used with the goal of obtaining a constant weld depth. When force control is used, if weld temperature decreases, flow stress increases and the tool is pushed up. If weld temperature increases, flow stress decreases and the tool dives. These variations in tool depth and weld temperature cause various types of weld defects. Robust temperature control for FSP maintains a commanded temperature through control of the spindle axis only. Robust temperature control and force control aremore » completely decoupled in control logic and machine motion. This results in stable temperature, force and tool depth despite the presence of geometric and thermal disturbances. Performance of this control method is presented for various weld paths and alloy systems.« less
Physics-based process model approach for detecting discontinuity during friction stir welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, Amber; Pfefferkorn, Frank E.; Duffie, Neil A.
2015-02-12
The goal of this work is to develop a method for detecting the creation of discontinuities during friction stir welding. This in situ weld monitoring method could significantly reduce the need for post-process inspection. A process force model and a discontinuity force model were created based on the state-of-the-art understanding of flow around an friction stir welding (FSW) tool. These models are used to predict the FSW forces and size of discontinuities formed in the weld. Friction stir welds with discontinuities and welds without discontinuities were created, and the differences in force dynamics were observed. In this paper, discontinuities weremore » generated by reducing the tool rotation frequency and increasing the tool traverse speed in order to create "cold" welds. Experimental force data for welds with discontinuities and welds without discontinuities compared favorably with the predicted forces. The model currently overpredicts the discontinuity size.« less
Effect of Pulse Parameters on Weld Quality in Pulsed Gas Metal Arc Welding: A Review
NASA Astrophysics Data System (ADS)
Pal, Kamal; Pal, Surjya K.
2011-08-01
The weld quality comprises bead geometry and its microstructure, which influence the mechanical properties of the weld. The coarse-grained weld microstructure, higher heat-affected zone, and lower penetration together with higher reinforcement reduce the weld service life in continuous mode gas metal arc welding (GMAW). Pulsed GMAW (P-GMAW) is an alternative method providing a better way for overcoming these afore mentioned problems. It uses a higher peak current to allow one molten droplet per pulse, and a lower background current to maintain the arc stability. Current pulsing refines the grains in weld fusion zone with increasing depth of penetration due to arc oscillations. Optimum weld joint characteristics can be achieved by controlling the pulse parameters. The process is versatile and easily automated. This brief review illustrates the effect of pulse parameters on weld quality.
Demonstration of a Large-Scale Tank Assembly via Circumferential Friction Stir Welds
NASA Technical Reports Server (NTRS)
Jones, Clyde S.; Adams, Glynn; Colligan, Kevin
2000-01-01
A collaborative effort between NASA/Marshall Space Flight Center and the Michoud Unit of Lockheed Martin Space Systems Company was undertaken to demonstrate assembly of a large-scale aluminum tank using circumferential friction stir welds. The hardware used to complete this demonstration was fabricated as a study of near-net- shape technologies. The tooling used to complete this demonstration was originally designed for assembly of a tank using fusion weld processes. This presentation describes the modifications and additions that were made to the existing fusion welding tools required to accommodate circumferential friction stir welding, as well as the process used to assemble the tank. The tooling modifications include design, fabrication and installation of several components. The most significant components include a friction stir weld unit with adjustable pin length capabilities, a continuous internal anvil for 'open' circumferential welds, a continuous closeout anvil, clamping systems, an external reaction system and the control system required to conduct the friction stir welds and integrate the operation of the tool. The demonstration was intended as a development task. The experience gained during each circumferential weld was applied to improve subsequent welds. Both constant and tapered thickness 14-foot diameter circumferential welds were successfully demonstrated.
Microstructure and Mechanical Performance of Friction Stir Spot-Welded Aluminum-5754 Sheets
NASA Astrophysics Data System (ADS)
Pathak, N.; Bandyopadhyay, K.; Sarangi, M.; Panda, Sushanta Kumar
2013-01-01
Friction stir spot welding (FSSW) is a recent trend of joining light-weight sheet metals while fabricating automotive and aerospace body components. For the successful application of this solid-state welding process, it is imperative to have a thorough understanding of the weld microstructure, mechanical performance, and failure mechanism. In the present study, FSSW of aluminum-5754 sheet metal was tried using tools with circular and tapered pin considering different tool rotational speeds, plunge depths, and dwell times. The effects of tool design and process parameters on temperature distribution near the sheet-tool interface, weld microstructure, weld strength, and failure modes were studied. It was found that the peak temperature was higher while welding with a tool having circular pin compared to tapered pin, leading to a bigger dynamic recrystallized stir zone (SZ) with a hook tip bending towards the upper sheet and away from the keyhole. Hence, higher lap shear separation load was observed in the welds made from circular pin compared to those made from tapered pin. Due to influence of size and hardness of SZ on crack propagation, three different failure modes of weld nugget were observed through optical cross-sectional micrograph and SEM fractographs.
Deformation During Friction Stir Welding
NASA Technical Reports Server (NTRS)
White, Henry J.
2002-01-01
Friction Stir Welding (FSW) is a solid state welding process that exhibits characteristics similar to traditional metal cutting processes. The plastic deformation that occurs during friction stir welding is due to the superposition of three flow fields: a primary rotation of a radially symmetric solid plug of metal surrounding the pin tool, a secondary uniform translation, and a tertiary ring vortex flow (smoke rings) surrounding the tool. If the metal sticks to the tool, the plug surface extends down into the metal from the outer edge of the tool shoulder, decreases in diameter like a funnel, and closes up beneath the pin. Since its invention, ten years have gone by and still very little is known about the physics of the friction stir welding process. In this experiment, an H13 steel weld tool (shoulder diameter, 0.797 in; pin diameter, 0.312 in; and pin length, 0.2506 in) was used to weld three 0.255 in thick plates. The deformation behavior during friction stir welding was investigated by metallographically preparing a plan view sections of the weldment and taking Vickers hardness test in the key-hole region.
Novel Process Revolutionizes Welding Industry
NASA Technical Reports Server (NTRS)
2008-01-01
Glenn Research Center, Delphi Corporation, and the Michigan Research Institute entered into a research project to study the use of Deformation Resistance Welding (DRW) in the construction and repair of stationary structures with multiple geometries and dissimilar materials, such as those NASA might use on the Moon or Mars. Traditional welding technologies are burdened by significant business and engineering challenges, including high costs of equipment and labor, heat-affected zones, limited automation, and inconsistent quality. DRW addresses each of those issues, while drastically reducing welding, manufacturing, and maintenance costs.
Nd:YAG laser welding of coated sheet steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, M.P.; Kerr, H.W.; Weckman, D.C.
1994-12-31
Coated sheet steels are used extensively in the automotive industry for the fabrication of automobile body components; however, their reduced weldability by the traditional welding processes has led to numerous studies into the use of alternate process such as laser welding. In this paper, we present a modified joint geometry which allows high quality lap welds of coated sheet steels to be made by laser welding processes. Hot-dipped galvanized sheet (16 gauge), with a 60 g/m zinc coating was used in this study. A groove was created in the top sheet of a specimen pair by pressing piano wires ofmore » various diameters into the sheet. The specimens were clamped together in a lag-joint configuration such that they were in contacted only along the grove projection. A parametric study was conducted using the variables of welding speed, laser mean power (685 W, 1000 W and 1350 W), and grove size. Weld quality and weld pool dimensions were assessed using metallurgical cross-sections and image analysis techniques. Acceptable quality seam welds were produced in the galvanized sheet steel with both grove sizes when using 1000 W and 1350 W laser mean powers and a range of welding speeds. Results of the shear-tensile tests showed that high loads to failure, with failure occurring in the parent material, were predominately found in welds produced at speeds over 1.2 m/min and when using the high mean laser powers: 1000 W and 1350 W. A modified lap joint geometry, in which a groove is pre-placed in the top sheet of the lap-joint configuration, has been developed which permits laser welding of coated sheet steels. Good quality seam welds have been produced in 16 gauge galvanized sheet steels at speeds up to 2.7 m/min using a 2 kW CW Nd:YAG laser operating at 1350 W laser mean power. Weld quality was not affected by changes in groove size.« less
Sensing the gas metal arc welding process
NASA Technical Reports Server (NTRS)
Carlson, N. M.; Johnson, J. A.; Smartt, H. B.; Watkins, A. D.; Larsen, E. D.; Taylor, P. L.; Waddoups, M. A.
1994-01-01
Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-by-pass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.
Sensing the gas metal arc welding process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, N.M.; Johnson, J.A.; Smartt, H.B.
1992-01-01
Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-bypass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.
Sensing the gas metal arc welding process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, N.M.; Johnson, J.A.; Smartt, H.B.
1992-10-01
Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-bypass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.
NASA Astrophysics Data System (ADS)
Soni, Sourabh Kumar; Thomas, Benedict
2018-04-01
The term "weldability" has been used to describe a wide variety of characteristics when a material is subjected to welding. In our analysis we perform experimental investigation to estimate the tensile strength of welded joint strength and then optimization of welding process parameters by using taguchi method and Artificial Neural Network (ANN) tool in MINITAB and MATLAB software respectively. The study reveals the influence on weldability of steel by varying composition of steel by mechanical characterization. At first we prepare the samples of different grades of steel (EN8, EN 19, EN 24). The samples were welded together by metal inert gas welding process and then tensile testing on Universal testing machine (UTM) was conducted for the same to evaluate the tensile strength of the welded steel specimens. Further comparative study was performed to find the effects of welding parameter on quality of weld strength by employing Taguchi method and Neural Network tool. Finally we concluded that taguchi method and Neural Network Tool is much efficient technique for optimization.
CRADA Final Report: Weld Predictor App
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billings, Jay Jay
Welding is an important manufacturing process used in a broad range of industries and market sectors, including automotive, aerospace, heavy manufacturing, medical, and defense. During welded fabrication, high localized heat input and subsequent rapid cooling result in the creation of residual stresses and distortion. These residual stresses can significantly affect the fatigue resistance, cracking behavior, and load-carrying capacity of welded structures during service. Further, additional fitting and tacking time is often required to fit distorted subassemblies together, resulting in non-value added cost. Using trial-and-error methods to determine which welding parameters, welding sequences, and fixture designs will most effectively reduce distortionmore » is a time-consuming and expensive process. For complex structures with many welds, this approach can take several months. For this reason, efficient and accurate methods of mitigating distortion are in-demand across all industries where welding is used. Analytical and computational methods and commercial software tools have been developed to predict welding-induced residual stresses and distortion. Welding process parameters, fixtures, and tooling can be optimized to reduce the HAZ softening and minimize weld residual stress and distortion, improving performance and reducing design, fabrication and testing costs. However, weld modeling technology tools are currently accessible only to engineers and designers with a background in finite element analysis (FEA) who work with large manufacturers, research institutes, and universities with access to high-performance computing (HPC) resources. Small and medium enterprises (SMEs) in the US do not typically have the human and computational resources needed to adopt and utilize weld modeling technology. To allow an engineer with no background in FEA and SMEs to gain access to this important design tool, EWI and the Ohio Supercomputer Center (OSC) developed the online weld application software tool “WeldPredictor” ( https://eweldpredictor.ewi.org ). About 1400 users have tested this application. This project marked the beginning of development on the next version of WeldPredictor that addresses many outstanding features of the original, including 3D models, allow more material hardening laws, model material phase transformation, and uses open source finite element solvers to quickly solve problems (as opposed to expensive commercial tools).« less
Recent Developments and Research Progress on Friction Stir Welding of Titanium Alloys: An Overview
NASA Astrophysics Data System (ADS)
Karna, Sivaji; Cheepu, Muralimohan; Venkateswarulu, D.; Srikanth, V.
2018-03-01
Titanium and its alloys are joined by various welding processes. However, Fusion welding of titanium alloys resulted solidification problems like porosity, segregation and columnar grains. The problems occurred in conventional welding processes can be resolved using a solid state welding i.e. friction stir welding. Aluminium and Magnesium alloys were welded by friction stir welding. However alloys used for high temperature applications such as titanium alloys and steels are arduous to weld using friction stir welding process because of tool limitations. Present paper summarises the studies on joining of Titanium alloys using friction stir welding with different tool materials. Selection of tool material and effect of welding conditions on mechanical and microstructure properties of weldments were also reported. Major advantage with friction stir welding is, we can control the welding temperature above or below β-transus temperature by optimizing the process parameters. Stir zone in below beta transus condition consists of bi-modal microstructure and microstructure in above β-transus condition has large prior β- grains and α/β laths present in the grain. Welding experiments conducted below β- transus condition has better mechanical properties than welding at above β-transus condition. Hardness and tensile properties of weldments are correlated with the stir zone microstructure.
Innovative Tools Advance Revolutionary Weld Technique
NASA Technical Reports Server (NTRS)
2009-01-01
The iconic, orange external tank of the space shuttle launch system not only contains the fuel used by the shuttle s main engines during liftoff but also comprises the shuttle s backbone, supporting the space shuttle orbiter and solid rocket boosters. Given the tank s structural importance and the extreme forces (7.8 million pounds of thrust load) and temperatures it encounters during launch, the welds used to construct the tank must be highly reliable. Variable polarity plasma arc welding, developed for manufacturing the external tank and later employed for building the International Space Station, was until 1994 the best process for joining the aluminum alloys used during construction. That year, Marshall Space Flight Center engineers began experimenting with a relatively new welding technique called friction stir welding (FSW), developed in 1991 by The Welding Institute, of Cambridge, England. FSW differs from traditional fusion welding in that it is a solid-state welding technique, using frictional heat and motion to join structural components without actually melting any of the material. The weld is created by a shouldered pin tool that is plunged into the seam of the materials to be joined. The tool traverses the line while rotating at high speeds, generating friction that heats and softens but does not melt the metal. (The heat produced approaches about 80 percent of the metal s melting temperature.) The pin tool s rotation crushes and stirs the plasticized metal, extruding it along the seam as the tool moves forward. The material cools and consolidates, resulting in a weld with superior mechanical properties as compared to those weld properties of fusion welds. The innovative FSW technology promises a number of attractive benefits. Because the welded materials are not melted, many of the undesirables associated with fusion welding porosity, cracking, shrinkage, and distortion of the weld are minimized or avoided. The process is more energy efficient, safe (no toxic smoke or shielding gas, liquid metal splatter, arcing, dangerous voltage, or radiation), and environmentally sound (no consumables, fumes, or noise) than fusion welding. Under computer control, an automated FSW machine can create welds with high reproducibility, improving efficiency and overall quality of manufactured materials. The process also allows for welding dissimilar metals as well as those metals considered to be "unweldable" such as the 7xxx series aluminum alloys. Its effectiveness and versatility makes FSW useful for aerospace, rail, automotive, marine, and military applications. A downside to FSW, however, is the keyhole opening left in the weld when the FSW pin tool exits the weld joint. This is a significant problem when using the FSW process to join circumferential structures such as pipes and storage containers. Furthermore, weld joints that taper in material thickness also present problems when using the conventional FSW pin tool, because the threaded pin rotating within the weld joint material is a fixed length. There must be capability for the rotating pin to both increase and decrease in length in real time while welding the tapered material. (Both circumferential and tapered thickness weldments are found in the space shuttle external tank.) Marshall engineers addressed both the keyhole and tapered material thickness problems by developing the auto-adjustable pin tool. This unique piece of equipment automatically withdraws the pin into the tool s shoulder for keyhole closeout. In addition, the auto-adjustable pin tool retracts, or shortens, the rotating pin while welding a weld joint that tapers from one thickness to a thinner thickness. This year, the impact of the Marshall innovation was recognized with an "Excellence in Technology Transfer Award" from the Federal Laboratory Consortium.
A Brief Introduction to the Theory of Friction Stir Welding
NASA Technical Reports Server (NTRS)
Nunes, Arthur C., Jr.
2008-01-01
Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and is already an important welding process for the aerospace industry, where welds of optimal quality are demanded. The structure of welds determines weld properties. The structure of friction stir welds is determined by the flow field in the weld metal in the vicinity of the weld tool. A simple kinematic model of the FSW flow field developed at Marshall Space Flight Center, which enables the basic features of FSW microstructure to be understood and related to weld process parameters and tool design, is explained.
NASA Astrophysics Data System (ADS)
Bakavos, Dimitrios; Chen, Yingchun; Babout, Laurent; Prangnell, Phil
2011-05-01
The requirement for a probe, or pin, in friction stir spot welding (FSSW) leads to an undesirable keyhole and "hooking," which can influence the fracture path and weld strength. Furthermore, the full weld cycle for FSSW is typically longer than ideal for the automotive industry, being 2 to 5 seconds. Here, it is shown that using a novel pinless tool design it is possible to achieve high lap shear strength (~3.4 kN) in thin aluminum sheet (~1 mm thick), with short weld cycle times (<1 second). Several techniques have been exploited to study the material flow and mechanisms of weld formation in pinless FSSW, including high-resolution X-ray tomography, to understand the role of the tool design and weld parameters. Despite the "simple" nature of a pinless tool, material flow in the weld zone was found to be surprisingly complex and strongly influenced by surface features on the tool, which greatly increased the penetration of the plastic zone into the bottom sheet. Because of the rapid thermal cycle and high level of grain refinement, the weld zone was found to develop a higher strength than the parent material with little evidence of a heat affected zone (HAZ) after postweld natural aging.
Weld analysis and control system
NASA Technical Reports Server (NTRS)
Kennedy, Larry Z. (Inventor); Rodgers, Michael H. (Inventor); Powell, Bradley W. (Inventor); Burroughs, Ivan A. (Inventor); Goode, K. Wayne (Inventor)
1994-01-01
The invention is a Weld Analysis and Control System developed for active weld system control through real time weld data acquisition. Closed-loop control is based on analysis of weld system parameters and weld geometry. The system is adapted for use with automated welding apparatus having a weld controller which is capable of active electronic control of all aspects of a welding operation. Enhanced graphics and data displays are provided for post-weld analysis. The system provides parameter acquisition, including seam location which is acquired for active torch cross-seam positioning. Torch stand-off is also monitored for control. Weld bead and parent surface geometrical parameters are acquired as an indication of weld quality. These parameters include mismatch, peaking, undercut, underfill, crown height, weld width, puddle diameter, and other measurable information about the weld puddle regions, such as puddle symmetry, etc. These parameters provide a basis for active control as well as post-weld quality analysis and verification. Weld system parameters, such as voltage, current and wire feed rate, are also monitored and archived for correlation with quality parameters.
Parameters optimization of laser brazing in crimping butt using Taguchi and BPNN-GA
NASA Astrophysics Data System (ADS)
Rong, Youmin; Zhang, Zhen; Zhang, Guojun; Yue, Chen; Gu, Yafei; Huang, Yu; Wang, Chunming; Shao, Xinyu
2015-04-01
The laser brazing (LB) is widely used in the automotive industry due to the advantages of high speed, small heat affected zone, high quality of welding seam, and low heat input. Welding parameters play a significant role in determining the bead geometry and hence quality of the weld joint. This paper addresses the optimization of the seam shape in LB process with welding crimping butt of 0.8 mm thickness using back propagation neural network (BPNN) and genetic algorithm (GA). A 3-factor, 5-level welding experiment is conducted by Taguchi L25 orthogonal array through the statistical design method. Then, the input parameters are considered here including welding speed, wire speed rate, and gap with 5 levels. The output results are efficient connection length of left side and right side, top width (WT) and bottom width (WB) of the weld bead. The experiment results are embed into the BPNN network to establish relationship between the input and output variables. The predicted results of the BPNN are fed to GA algorithm that optimizes the process parameters subjected to the objectives. Then, the effects of welding speed (WS), wire feed rate (WF), and gap (GAP) on the sum values of bead geometry is discussed. Eventually, the confirmation experiments are carried out to demonstrate the optimal values were effective and reliable. On the whole, the proposed hybrid method, BPNN-GA, can be used to guide the actual work and improve the efficiency and stability of LB process.
Gimbaled-shoulder friction stir welding tool
NASA Technical Reports Server (NTRS)
Carter, Robert W. (Inventor); Lawless, Kirby G. (Inventor)
2010-01-01
A gimbaled-shoulder friction stir welding tool includes a pin and first and second annular shoulders coupled to the pin. At least one of the annular shoulders is coupled to the pin for gimbaled motion with respect thereto as the tool is rotated by a friction stir welding apparatus.
The effect of welding parameters on penetration in GTA welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirali, A.A.; Mills, K.C.
1993-07-01
The effect of various welding parameters on the penetration of GTA welds has been investigated. Increases in welding speed were found to reduce penetration; however, increases in welding current were observed to increase the penetration in high sulfur (HS) casts and decrease penetration in low sulfur (LS) steels. Plots of penetration as a function of increasing linear energy (the heat supplied per unit length of weld) revealed a similar trend with increased penetration in HS casts, but the penetration in LS casts was unaffected by increases in linear energy. These results support the Burgardt-Heiple proposition that changes in welding parametersmore » on penetration can be explained in terms of their effect, sequentially, on the temperature gradient and the Marangoni forces operating in the weld pool. Increases in arc length were found to decrease weld penetration regardless of the sulfur concentration of the steel, and the effects of electrode geometry and welding position on weld penetration were also investigated.« less
Inspection tool for butt-welded tubing
NASA Technical Reports Server (NTRS)
Horman, D. P.
1977-01-01
Inspection tool for tubing consists of metal casing housing elastic collar. Collar is clamped around weld site under test. Leakage through weld is contained within chamber and is bled to detector via tubing attached to fitting. Tool, originally designed to detect fluid leakage in tubing, can be used to detect gas leaks.
Autocorrelation Function for Monitoring the Gap between The Steel Plates During Laser Welding
NASA Astrophysics Data System (ADS)
Mrna, Libor; Hornik, Petr
Proper alignment of the plates prior to laser welding represents an important factor that determines the quality of the resulting weld. A gap between the plates in a butt or overlap joint affects the oscillations of the keyhole and the surrounding weld pool. We present an experimental study of the butt and overlap welds with the artificial gap of the different thickness of the plates. The welds were made on a 2 kW fiber laser machine for the steel plates and the various welding parameters settings. The eigenfrequency of the keyhole oscillations and its changes were determined from the light emissions of the plasma plume using an autocorrelation function. As a result, we describe the relations between the autocorrelation characteristics, the thickness of the gap between plates and the weld geometry.
49 CFR 176.54 - Repairs involving welding, burning, and power-actuated tools and appliances.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Repairs involving welding, burning, and power... MATERIALS REGULATIONS CARRIAGE BY VESSEL General Operating Requirements § 176.54 Repairs involving welding..., repairs or work involving welding or burning, or the use of power-actuated tools or appliances which may...
49 CFR 176.54 - Repairs involving welding, burning, and power-actuated tools and appliances.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Repairs involving welding, burning, and power... MATERIALS REGULATIONS CARRIAGE BY VESSEL General Operating Requirements § 176.54 Repairs involving welding..., repairs or work involving welding or burning, or the use of power-actuated tools or appliances which may...
49 CFR 176.54 - Repairs involving welding, burning, and power-actuated tools and appliances.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Repairs involving welding, burning, and power... MATERIALS REGULATIONS CARRIAGE BY VESSEL General Operating Requirements § 176.54 Repairs involving welding..., repairs or work involving welding or burning, or the use of power-actuated tools or appliances which may...
49 CFR 176.54 - Repairs involving welding, burning, and power-actuated tools and appliances.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Repairs involving welding, burning, and power... MATERIALS REGULATIONS CARRIAGE BY VESSEL General Operating Requirements § 176.54 Repairs involving welding..., repairs or work involving welding or burning, or the use of power-actuated tools or appliances which may...
49 CFR 176.54 - Repairs involving welding, burning, and power-actuated tools and appliances.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Repairs involving welding, burning, and power... MATERIALS REGULATIONS CARRIAGE BY VESSEL General Operating Requirements § 176.54 Repairs involving welding..., repairs or work involving welding or burning, or the use of power-actuated tools or appliances which may...
Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam
NASA Astrophysics Data System (ADS)
Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish
2017-09-01
In the present work, AISI 304 stainless steel sheets are laser welded in butt joint configuration using a robotic control 600 W pulsed Nd:YAG laser system. The objective of the work is of twofold. Firstly, the study aims to find out the effect of incident angle on the weld pool geometry, microstructure and tensile property of the welded joints. Secondly, a set of experiments are conducted, according to response surface design, to investigate the effects of process parameters, namely, incident angle of laser beam, laser power and welding speed, on ultimate tensile strength by developing a second order polynomial equation. Study with three different incident angle of laser beam 89.7 deg, 85.5 deg and 83 deg has been presented in this work. It is observed that the weld pool geometry has been significantly altered with the deviation in incident angle. The weld pool shape at the top surface has been altered from semispherical or nearly spherical shape to tear drop shape with decrease in incident angle. Simultaneously, planer, fine columnar dendritic and coarse columnar dendritic structures have been observed at 89.7 deg, 85.5 deg and 83 deg incident angle respectively. Weld metals with 85.5 deg incident angle has higher fraction of carbide and δ-ferrite precipitation in the austenitic matrix compared to other weld conditions. Hence, weld metal of 85.5 deg incident angle achieved higher micro-hardness of ∼280 HV and tensile strength of 579.26 MPa followed by 89.7 deg and 83 deg incident angle welds. Furthermore, the predicted maximum value of ultimate tensile strength of 580.50 MPa has been achieved for 85.95 deg incident angle using the developed equation where other two optimum parameter settings have been obtained as laser power of 455.52 W and welding speed of 4.95 mm/s. This observation has been satisfactorily validated by three confirmatory tests.
T-joints of Ti alloys with hybrid laser-MIG welding: macro-graphic and micro-hardness analyses
NASA Astrophysics Data System (ADS)
Spina, R.; Sorgente, D.; Palumbo, G.; Scintilla, L. D.; Brandizzi, M.; Satriano, A. A.; Tricarico, L.
2012-03-01
Titanium alloys are characterized by high mechanical properties and elevated corrosion resistance. The combination of laser welding with MIG/GMAW has proven to improve beneficial effects of both processes (keyhole, gap-bridging ability) while limiting their drawbacks (high thermal gradient, low mechanical resistance) In this paper, the hybrid Laser-GMAW welding of Ti-6Al-4V 3-mm thick sheets is investigated using a specific designed trailing shield. The joint geometry was the double fillet welded T-joint. Bead morphologies, microstructures and mechanical properties (micro-hardness) of welds were evaluated and compared to those achieved for the base metals.
Hot-crack test for aluminium alloys welds using TIG process
NASA Astrophysics Data System (ADS)
Niel, A.; Deschaux-Beaume, F.; Bordreuil, C.; Fras, G.
2010-06-01
Hot cracking is a critical defect frequently observed during welding of aluminium alloys. In order to better understand the interaction between cracking phenomenon, process parameters, mechanical factors and microstructures resulting from solidification after welding, an original hot-cracking test during welding is developed. According to in-situ observations and post mortem analyses, hot cracking mechanisms are investigated, taking into account the interaction between microstructural parameters, depending on the thermal cycles, and mechanical parameters, depending on geometry and clamping conditions of the samples and on the thermal field on the sample. Finally, a process map indicating the limit between cracking and non-cracking zones according to welding parameters is presented.
Heavy-section welding with very high power laser beams: the challenge
NASA Astrophysics Data System (ADS)
Goussain, Jean-Claude; Becker, Ahim; Chehaibou, A.; Leca, P.
1997-08-01
The 45 kW CO2 laser system of Institut de Soudure was used to evaluate and explore the possibilities offered by the high power laser beams for welding different materials in various thickness and in different welding positions. Stainless steels, low carbon steels, aluminum and titanium alloys were studied. Butt joints in 10 to 35 mm thick plates were achieved and evaluated by radiographic, metallurgical and mechanical tests. Gaps and alignment tolerances were determined with and without filler wire in order to obtain acceptable welds concerning the weld geometry, the aspect on front and end root sides. The main problem raised by heavy section welding concerns weld porosity in the weld which increases drastically with the thickness of the weld. Indications are given on their origin and the way to proceed in order to better control them. Lastly some large parts, recently welded on the system, are presented and discussed before drawing some conclusions on the prospects of very high power laser welding.
Boride Formation Induced by pcBN Tool Wear in Friction-Stir-Welded Stainless Steels
NASA Astrophysics Data System (ADS)
Park, Seung Hwan C.; Sato, Yutaka S.; Kokawa, Hiroyuki; Okamoto, Kazutaka; Hirano, Satoshi; Inagaki, Masahisa
2009-03-01
The wear of polycrystalline cubic boron nitride (pcBN) tool and its effect on second phase formation were investigated in stainless steel friction-stir (FS) welds. The nitrogen content and the flow stress were analyzed in these welds to examine pcBN tool wear. The nitrogen content in stir zone (SZ) was found to be higher in the austenitic stainless steel FS welds than in the ferritic and duplex stainless steel welds. The flow stress of austenitic stainless steels was almost 1.5 times larger than that of ferritic and duplex stainless steels. These results suggest that the higher flow stress causes the severe tool wear in austenitic stainless steels, which results in greater nitrogen pickup in austenitic stainless steel FS welds. From the microstructural observation, a possibility was suggested that Cr-rich borides with a crystallographic structure of Cr2B and Cr5B3 formed through the reaction between the increased boron and nitrogen and the matrix during FS welding (FSW).
Earth boring apparatus with multiple welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolton, J.B.; Crews, S.T.
1981-06-16
A box tool joint member of generally tubular configuration is adapted for securement by welding to one end of a steel tube to form a drill pipe. The box tool joint member comprises a body having a cylindrical outer periphery, an internally threaded socket at one end of the body, and a weld neck of smaller outer diameter than the body adjacent to the other end of the body. A tapered transition piece connecting the neck with the adjacent end of the body provides an elevator shoulder. A correlative pin tool joint member is welded to the opposite end ofmore » the tube to complete the drill pipe. The box tool joint member has an annular band of hard facing over the outer periphery of the transition piece and extending down over the adjacent part of the weld neck and up around the adjacent part of the body. The hard facing is corrosion resistant and has a smooth finished surface. Underneath the hard facing and extending beyond both ends of the hard facing is an annular butter layer of non-hardenable steel. The tool joint member is hardened and tempered after the butter layer is welded into a body groove and before the hard facing is welded on .The butter layer is grooved before the hard facing is welded on.« less
Initial Study of Friction Pull Plug Welding
NASA Technical Reports Server (NTRS)
Rich, Brian S.
1999-01-01
Pull plug friction welding is a new process being developed to conveniently eliminate defects from welded plate tank structures. The general idea is to drill a hole of precise, optimized dimensions and weld a plug into it, filling the hole perfectly. A conically-shaped plug is rotated at high angular velocity as it is brought into contact with the plate material in the hole. As the plug is pulled into the hole, friction rapidly raises the temperature to the point at which the plate material flows plastically. After a brief heating phase, the plug rotation is terminated. The plug is then pulled upon with a forging force, solidly welding the plug into the hole in the plate. Three aspects of this process were addressed in this study. The transient temperature distribution was analyzed based on slightly idealized boundary conditions for different plug geometries. Variations in hole geometry and ram speed were considered, and a program was created to calculate volumes of displaced material and empty space, as well as many other relevant dimensions. The relation between the axially applied forging force and the actual forging pressure between the plate and plug surfaces was determined for various configurations.
Optimization of laser welding thin-gage galvanized steel via response surface methodology
NASA Astrophysics Data System (ADS)
Zhao, Yangyang; Zhang, Yansong; Hu, Wei; Lai, Xinmin
2012-09-01
The increasing demand of light weight and durability makes thin-gage galvanized steels (<0.6 mm) attractive for future automotive applications. Laser welding, well known for its deep penetration, high speed and small heat affected zone, provides a potential solution for welding thin-gage galvanized steels in automotive industry. In this study, the effect of the laser welding parameters (i.e. laser power, welding speed, gap and focal position) on the weld bead geometry (i.e. weld depth, weld width and surface concave) of 0.4 mm-thick galvanized SAE1004 steel in a lap joint configuration has been investigated by experiments. The process windows of the concerned process parameters were therefore determined. Then, response surface methodology (RSM) was used to develop models to predict the relationship between the processing parameters and the laser weld bead profile and identify the correct and optimal combination of the laser welding input variables to obtain superior weld joint. Under the optimal welding parameters, defect-free weld were produced, and the average aspect ratio increased about 30%, from 0.62 to 0.83.
Mechanistic Models of Friction Stir Welding
NASA Technical Reports Server (NTRS)
Stewart, Michael B.
1998-01-01
Friction stir welding is a welding process developed at The Welding Institute (TWI) in England. The method uses very large strain plastic deformation of the material to join two pieces of metal together. The material is deformed using a tool which is forced between the two pieces which rotates causing a bond. Beyond this, very little is actually known although many people working in the field are willing to speculate on the detailed mechanisms involved. Some measurements made using sacrificial thermocouples at the weld joint indicate that the maximum temperature during the weld process is on the order of 370C - well below the melting temperature of the material. However, at this temperature, the material properties are highly temperature dependent, and the yield stress is approximately an order of magnitude less at this temperature than it is at room temperature. As expected, there are many interpretations of the physical mechanisms occurring during the weld process. Although there is very little published concerned with FSW, some of the anecdotal theories will be described. One describes the primary mechanism as frictional heating at the front of the tool caused by slip between the tool and the material. At elevated temperatures, the weld material becomes soft and deforms around the tool but not essentially altered by the tool rotation, similar to an extrusion. As the material meets again at the rear of the tool, the temperatures and pressures are sufficient to cause the material to bond. All other structures seen are secondary and unimportant. Another theory examined last summer at NASA's Marshall Space Flight Center (MSFC) was that there was no slip between the tool and the material resulting in a rotating mass of plastic weld material traveling at a variety of angular velocities - the greatest at the tool surface diminishing to zero at the outer edge of the plastic mass surrounding the tool. This conceptual model was followed by simplified calculations which showed that the balance of moments through the weld plug was not possible under steady state conditions and realistic temperature profiles. This led to some consideration of a quasi-steady oscillating process. Later when force measurements became available some models were modified and new ones were proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Yong Chae; Sanderson, Samuel; Mahoney, Murray
Friction stir welding (FSW) has recently attracted attention as an alternative construction process for gas/oil transportation applications due to advantages compared to fusion welding techniques. A significant advantage is the ability of FSW to weld the entire or nearly the entire wall thickness in a single pass, while fusion welding requires multiple passes. However, when FSW is applied to a pipe or tube geometry, an internal back support anvil is required to resist the plunging forces exerted during FSW. Unfortunately, it may not be convenient or economical to use internal backing support due to limited access for some applications. Tomore » overcome this issue, ExxonMobil recently developed a new concept, combining root arc welding and FSW. That is, a root arc weld is made prior to FSW that supports the normal loads associated with FSW. In the present work, mechanical properties of a FSW + root arc welded pipe steel are reported including microstructure and microhardness.« less
NASA Astrophysics Data System (ADS)
Tenner, F.; Brock, C.; Klämpfl, F.; Schmidt, M.
2015-01-01
The process of laser metal welding is widely used in industry. Nevertheless, there is still a lack of complete process understanding and control. For analyzing the process we used two high-speed cameras. Therefore, we could image the plasma plume (which is directly accessible by a camera) and the keyhole (where most of the process instabilities occur) during laser welding isochronously. Applying different image processing steps we were able to find a correlation between those two process characteristics. Additionally we imaged the plasma plume from two directions and were able to calculate a volume with respect to the vaporized material the plasma plume carries. Due to these correlations we are able to conclude the keyhole stability from imaging the plasma plume and vice versa. We used the found correlation between the keyhole behavior and the plasma plume to explain the effect of changing laser power and feed rate on the keyhole geometry. Furthermore, we tried to outline the phenomena which have the biggest effect on the keyhole geometry during changes of feed rate and laser power.
Multiscale characterization and mechanical modeling of an Al-Zn-Mg electron beam weld
NASA Astrophysics Data System (ADS)
Puydt, Quentin; Flouriot, Sylvain; Ringeval, Sylvain; Parry, Guillaume; De Geuser, Frédéric; Deschamps, Alexis
Welding of precipitation hardening alloys results in multi-scale microstructural heterogeneities, from the hardening nano-scale precipitates to the micron-scale solidification structures and to the component geometry. This heterogeneity results in a complex mechanical response, with gradients in strength, stress triaxiality and damage initiation sites.
Investigation on edge joints of Inconel 625 sheets processed with laser welding
NASA Astrophysics Data System (ADS)
Caiazzo, F.; Alfieri, V.; Cardaropoli, F.; Sergi, V.
2017-08-01
Laser welding of Inconel 625 edge joint beads in square groove configuration was investigated. The use of different weld geometries in new aerospace solutions explains research on edge joints. A structured plan was carried out in order to characterize the process defining the influence of laser power and welding speed and to study possible interactions among the governing factors. As weld pool protection is crucial in order to obtain sound joints when processing superalloys, a special glove box for gas supply was designed to upgrade the welding head. Welded joints were characterized referring to bead profile, microstructure and X-rays. It was found that heat input plays an important role as it affects welding stability, porosity content and bead shape. Results suggest operating with low values of heat input to reduce porosity and guarantee stable bead conformation. Furthermore, a decrease in the grain size has been observed as a consequence of decreasing heat input.
Friction Stir Welding Development at NASA, Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
McGill, Preston; Gentz, Steve (Technical Monitor)
2001-01-01
Friction stir welding (FSW) is a solid state process that pan be used to join materials without melting. The process was invented by The Welding Institute (TWI), Cambridge, England. Friction stir welding exhibits several advantages over fusion welding in that it produces welds with fewer defects and higher joint efficiency and is capable of joining alloys that are generally considered non-weldable with a fusion weld process. In 1994, NASA-Marshall began collaborating with TWI to transform FSW from a laboratory curiosity to a viable metal joining process suitable for manufacturing hardware. While teamed with TWI, NASA-Marshall began its own FSW research and development effort to investigate possible aerospace applications for the FSW process. The work involved nearly all aspects of FSW development, including process modeling, scale-up issues, applications to advanced materials and development of tooling to use FSW on components of the Space Shuttle with particular emphasis on aluminum tanks. The friction stir welding process involves spinning a pin-tool at an appropriate speed, plunging it into the base metal pieces to be joined, and then translating it along the joint of the work pieces. In aluminum alloys the rotating speed typically ranges from 200 to 400 revolutions per minute and the translation speed is approximately two to five inches per minute. The pin-tool is inserted at a small lead angle from the axis normal to the work piece and requires significant loading along the axis of the tool. An anvil or reaction structure is required behind the welded material to react the load along the axis of the pin tool. The process requires no external heat input, filler material, protective shielding gas or inert atmosphere typical of fusion weld processes. The FSW solid-state weld process has resulted in aluminum welds with significantly higher strengths, higher joint efficiencies and fewer defects than fusion welds used to join similar alloys.
SLI Complex Curvature Friction Stir Weld Risk Reduction Program
NASA Technical Reports Server (NTRS)
Hartley, Paula J.; Schneider, Jules; Jones, Chip; Lawless, Kirby; Russell, Carolyn
2003-01-01
The Space Launch Initiative Program (SLI) in conjunction with the National Center for Advanced Manufacturing (NCAM) will demonstrate the ability to produce large-scale complex curvature hardware using the self-reacting friction stir welding process. This multi-phased risk reduction program includes friction stir welding process development and manufacture of a 22-ft diameter quarter dome using a conventional tooling approach; it culminates in a 27.5-ft diameter quarter dome demonstration performed on a 5-axis Universal Weld System. The design, fabrication, and installation of the Universal Weld System is made possible through a collaboration between the State of Louisiana, NASA, and the University of New Orleans. The Universal Weld System, manufactured by MTS Systems Corporation, will be installed at the Michoud Assembly Facility in New Orleans, Louisiana, and will be capable of manufacturing domes up to 30 ft in diameter. All welding will be accomplished using the Adaptable Adjustable Pin Tool (AdAPT) weld head and controller manufactured by MTS. Weld parameters will be developed for an aluminum alloy in gauges ranging from 0.320 to 0.400 in. thick. Weld quality will be verified through radiography, mechanical property testing at ambient and LN2 temperatures, and metallurgical analysis. The AdAPT weld head will then be mounted on a 22-ft diameter dome tool, which will be modified to include a welding track and drive system for moving the AdAPT weld head along the weld joint. This tool will then be used to manufacture a 22-ft diameter dome of an aluminum alloy, with 0.320-in. constant thickness joints, consisting of three individual gore panels. Finally, the 27.5-ft diameter quarter dome will be welded on the Universal Weld System. The quarter dome will consist of three individual gore panels with weld lands tapering from 0.320 to 0.360 in. in thickness. With the demonstration of these welds, the ability to manufacture large diameter domes using the friction stir weld process in conjunction with a universal weld system provides a low risk approach to the fabrication of aluminum tanks for future launch vehicle applications.
NASA Astrophysics Data System (ADS)
Gowtham, K. N.; Vasudevan, M.; Maduraimuthu, V.; Jayakumar, T.
2011-04-01
Modified 9Cr-1Mo ferritic steel is used as a structural material for steam generator components of power plants. Generally, tungsten inert gas (TIG) welding is preferred for welding of these steels in which the depth of penetration achievable during autogenous welding is limited. Therefore, activated flux TIG (A-TIG) welding, a novel welding technique, has been developed in-house to increase the depth of penetration. In modified 9Cr-1Mo steel joints produced by the A-TIG welding process, weld bead width, depth of penetration, and heat-affected zone (HAZ) width play an important role in determining the mechanical properties as well as the performance of the weld joints during service. To obtain the desired weld bead geometry and HAZ width, it becomes important to set the welding process parameters. In this work, adaptative neuro fuzzy inference system is used to develop independent models correlating the welding process parameters like current, voltage, and torch speed with weld bead shape parameters like depth of penetration, bead width, and HAZ width. Then a genetic algorithm is employed to determine the optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width.
Computational modeling of heat transfer and visco-plastic flow in friction stir welding
NASA Astrophysics Data System (ADS)
Nandan, Rituraj
With a focus to develop a quantitative understanding of the FSW process, a comprehensive three dimensional heat transfer and plastic flow model is developed. The model can predict variables such as temperature and velocity fields and torque based on the given welding parameters like weld velocity, tool rotational speed and axial pressure. It considers tool design dependent spatially variable heat generation rates, deformational work, non-Newtonian viscosity as a function of local strain rate, temperature and the nature of the material and temperature dependent thermal conductivity, specific heat capacity and yield stress. It is shown that the temperature fields, cooling rates, the plastic flow fields and the geometry of the thermo-mechanically affected zone (TMAZ) can be adequately described by solving the equations of conservation of mass, momentum and energy in three dimensions with appropriate boundary conditions and constitutive equations for viscosity. The model is tested for four different alloys: (1) AA 6061-T6, (2) 1018 Mn steel, (3) 304L stainless steel and (4) Ti-6Al-4V which have widely different thermophysical and rheological properties. Numerically computed temperature fields, variations of peak temperatures with FSW variables and TMAZ geometry were compared with the experimental results. Currently, due to unknown parameters in existing transport phenomena based models, the computed temperature and velocity fields and torque may not always agree with the corresponding experimentally determined values and may not show the same trend as experimental results for a range of welding variables. Here, it is shown that this problem can be solved by combining the rigorous phenomenological process sub-model with a multivariable optimization scheme called Differential Evolution. The values of the uncertain model input parameters from a limited volume of independent experimental data which includes temperature measurements obtained using thermocouples and torque measured using dynamometers. This approach resulted in agreement between the phenomenological model and the experimental results with a greater degree of certainty. It is tested for FSW of: (1) dissimilar AA 6061-T6 to AA 1200, (2) 1018 Mn steel and (3) Ti-6Al-4V. Independent thermocouple and dynamometer measurements are also used for validation and verification of results. Improvement in the reliability of the numerical model is an important first step towards increasing its practical usefulness. Also, one of the reasons why current models do not find extensive applications is because they cannot be used to tailor weld attributes. The aim of the present research is to develop a reliable bi-directional model which can find wide use in manufacturing and process control. It is shown that by coupling a reliable model with an evolutionary search algorithm, we can find multiple sets of welding parameters to achieve a target peak temperature and cooling rate in welds. The model is tested for dissimilar welds of AA 6351 and AA 1200. FSW is being increasingly used for dissimilar metal joining. Models are needed to calculate the redistribution of alloying elements when two alloys with dissimilar alloying element contents are joined. The transport and mixing of magnesium from Mg-rich AA 6061 alloy into a commercially pure aluminum AA 1200 was examined experimentally and numerically at various locations in the welded workpiece. The concentration of the solute is measured in transverse cross-sections across the weld-center line at various depths from the top surface of the workpiece. The measurement was done using electron probe micro-analysis (EPMA) of polished transverse-cut friction-stir welded samples. The comparison of the experimental and computed concentration profiles of magnesium shows imperfect mixing of the plasticized alloys during FSW. The plasticized material seem to move in layers without significant diffusive interlayer mixing. A comprehensive model for FSW is developed with capability of calculating temperature fields, material flow patterns and concentration fields in both similar and dissimilar welds in three dimensions. The model is tested for the FSW of alloys with widely different thermophysical properties. A mechanism for improving reliability and ability to provide guidance to tailor weld attributes is incorporated into the model to increase its practical usefulness. This is done by by combining the transport phenomena based model with Differential Evolution algorithm to minimize the objective function based on limited volume of experimental thermal cycles and torque measurements. (Abstract shortened by UMI.)
Microstructure and Mechanical Characterization of Friction-Stir-Welded Dual-Phase Brass
NASA Astrophysics Data System (ADS)
Ramesh, R.; Dinaharan, I.; Akinlabi, E. T.; Murugan, N.
2018-03-01
Friction stir welding (FSW) is an ideal process to join brass to avoid the evaporation of zinc. In the present investigation, 6-mm-thick dual-phase brass plates were joined efficiently using FSW at various tool rotational speeds. The microstructures were studied using optical microscopy, electron backscattered diffraction and transmission electron microscopy. The optical micrographs revealed the evolution of various zones across the joint line. The microstructure of the heat-affected zone was similar to that of base metal. The weld zone exhibited finer grains due to dynamic recrystallization. The recrystallization was inhomogeneous and the inhomogeneity reduced with increased tool rotational speed. The dual phase was preserved in the weld zone due to the retention of zinc. The severe plastic deformation created a lot of dislocations in the weld zone. The weld zone was strengthened after welding. The role of tool rotational speed on the joint strength is further reported.
Control of Structure in Conventional Friction Stir Welds through a Kinematic Theory of Metal Flow
NASA Technical Reports Server (NTRS)
Rubisoff, H.A.; Schneider, J.A.; Nunes, A.C.
2009-01-01
In friction stir welding (FSW), a rotating pin is translated along a weld seam so as to stir the sides of the seam together. Metal is prevented from flowing up the pin, which would result in plowing/cutting instead of welding, by a shoulder on the pin. In conventional FSW, the weld metal rests on an "anvil", which supports the heavy "plunge" load on the tool. In this study, both embedded tungsten wires along and copper plating on the faying surfaces were used to trace the flow of AA2219 weld metal around the C-FSW tool. The effect of tool rotational speed, travel speed, plunge load, and pin thread pitch on the resulting weld metal flow was evaluated. Plan, longitudinal, and transverse section x-ray radiographs were examined to trace the metal flow paths. The results are interpreted in terms of a kinematic theory of metal flow in FSW.
Evaluation of Forces on the Welding Probe of the Automated Retractable Pin-Tool (RPT)
NASA Technical Reports Server (NTRS)
Ding, R. J.
2001-01-01
The NASA invention entitled 'The Hydraulic Controlled Auto-Adjustable Pin Tool for Friction Stir Welding' (US Patent 5,893,507), better known as the Retractable Pin-Tool (RPT), has been instrumented with a load-detecting device allowing the forces placed on the welding probe to be measured. As the welding probe is plunged into the material, the forces placed on the probe can now be characterized. Of particular interest are those forces experienced as the welding probe comes within close proximity to the back-up anvil. For a given material, it is believed that unique forces are generated relative to the distance between the welding probe and the anvil. The forces have been measured and characterized for several materials, and correlations have been made between these forces and the pin's position relative to the backside of the weld material.
Tool Forces Developed During Friction Stir Welding
NASA Technical Reports Server (NTRS)
Melendez, M.; Tang, W.; Schmidt, C.; McClure, J. C.; Nunes, A. C.; Murr, L. E.
2003-01-01
This paper will describe a technique for measuring the various forces and the torque that exist on the Friction Stir Welding pin tool. Results for various plunge depths, weld speeds, rotational speed, and tool configurations will be presented. Welds made on 6061 aluminum with typical welding conditions require a downward force of 2800 lbs. (12.5 kN) a longitudinal force in the direction of motion of 300 lbs (1.33 kN), a transverse force in the omega x v direction of 30 lbs (135 N). Aluminum 2195 under typical weld conditions requires a downward force of 3100 lbs. (1.38 kN), a longitudinal force of 920 lbs. (4.1 kN), and a transverse force of 45 lbs. (200 N) in the omega x v direction.
SLAM examination of solar cells and solar cell welds. [Scanning Laser Acoustic Microscope
NASA Technical Reports Server (NTRS)
Stella, P. M.; Vorres, C. L.; Yuhas, D. E.
1981-01-01
The scanning laser acoustic microscope (SLAM) has been evaluated for non-destructive examination of solar cells and interconnector bonds. Using this technique, it is possible to view through materials in order to reveal regions of discontinuity such as microcracks and voids. Of particular interest is the ability to evaluate, in a unique manner, the bonds produced by parallel gap welding. It is possible to not only determine the area and geometry of the bond between the tab and cell, but also to reveal any microcracks incurred during the welding. By correlating the SLAM results with conventional techniques of weld evaluation a more confident weld parameter optimization can be obtained.
The Effect of Tool Profiles on Mechanical Properties of Friction Stir Welded Al5052 T-Joints.
Kim, Byeong-Jin; Bang, Hee-Seon; Bang, Han-Sur
2018-03-01
Al5052 T butt joints with two skins (5 mm) and one stringer (3 mm) has been successfully welded by friction stir welding (FSW). Notably, this paper has been investigated the effect of tool shape on welded formation mechanism and mechanical properties. The used shapes of tool pin are two types which are cylinder (type 1) and frustum (type 2). Dimension on two types of tool pin shape is respectively pin length of 4.7 mm and pin diameter of frustum type of top (5 mm) and bottom (3 mm). The results of experiment show that inner defects in FSWed T-joints increase significantly in accordance with traverse speed. The maximum tensile strength of welded joint fabricated using type 1 is equivalent to 85% that of the base metal, which is approximately 10% higher than that of type 2. Because welded joint of type 1 has more smoothly plastic flow in comparison with type 2. Consequently, the results show that type 1 is better appropriate for friction stir welded Al5052 T butt joints than type 2.
Hot Forging of a Cladded Component by Automated GMAW Process
NASA Astrophysics Data System (ADS)
Rafiq, Muhammad; Langlois, Laurent; Bigot, Régis
2011-01-01
Weld cladding is employed to improve the service life of engineering components by increasing corrosion and wear resistance and reducing the cost. The acceptable multi-bead cladding layer depends on single bead geometry. Hence, in first step, the relationship between input process parameters and the single bead geometry is studied and in second step a comprehensive study on multi bead clad layer deposition is carried out. This paper highlights an experimental study carried out to get single layer cladding deposited by automated Gas Metal Arc Welding (GMAW) process and to find the possibility of hot forming of the cladded work piece to get the final hot formed improved structure. GMAW is an arc welding process that uses an arc between a consumable electrode and the welding pool with an external shielding gas and the cladding is done by alongside deposition of weld beads. The experiments for single bead were conducted by varying the three main process parameters wire feed rate, arc voltage and welding speed while keeping other parameters like nozzle to work distance, shielding gas and its flow rate and torch angle constant. The effect of bead spacing and torch orientation on the cladding quality of single layer from the results of single bead deposition was studied. Effect of the dilution rate and nominal energy on the cladded layer hot bending quality was also performed at different temperatures.
Metal Cutting Theory and Friction Stir Welding Tool Design
NASA Technical Reports Server (NTRS)
Payton, Lewis N.
2003-01-01
Friction Stir Welding (FSW) is a relatively new industrial process that was invented at The Weld Institute (TWI, United Kingdom) and patented in 1992 under research funded by in part by the National Aeronautics and Space Administration (NASA). Often quoted advantages of the process include good strength and ductility along with minimization of residual stress and distortion. Less well advertised are the beneficial effects of this solid state welding process in the field of occupational and environmental safety. It produces superior weld products in difficult to weld materials without producing any toxic fumes or solid waste that must be controlled as hazardous waste. In fact, it reduces noise pollution in the workspace as well. In the early days of FSW, most welding was performed on modified machine tools, in particular on milling machines with modified milling cutters. In spite of the obvious milling heritage of the process, the techniques and lessons learned from almost 250 years of successful metalworking with milling machines have not been applied in the field of modern Friction Stir Welding. The goal of the current research was to study currently successful FSW tools and parameterize the process in such a way that the design of new tools for new materials could be accelerated. Along the way, several successful new tooling designs were developed for current issues at the Marshall Space Flight Center with accompanying patent disclosures
Role of Tool Shoulder End Features on Friction Stir Weld Characteristics of 6082 Aluminum Alloy
NASA Astrophysics Data System (ADS)
Mugada, Krishna Kishore; Adepu, Kumar
2018-03-01
Understanding the temperature generation around the tool shoulder contact is one of the important aspects of the friction stir welding process. In the present study, the effects of various tool shoulder end feature on the temperature and mechanical properties of the 6082 aluminum alloy were investigated. The experimental results show that the axial force during the welding is considerably reduced by using tools with shoulder end features. The detailed observation revealed that around the tool shoulder contact, the amount of heat generation is higher between trialing edge (TE) to retreating side-leading edge corner (RS-LE) counter clockwise direction and lower between RS-LE to TE clockwise direction. Out of the four shoulder end featured tools, the welds produced with ridges shoulder tool resulted in superior properties with significantly lower axial force (approximately 32%) compared to plane shoulder tool.
NASA Astrophysics Data System (ADS)
Devrient, M.; Da, X.; Frick, T.; Schmidt, M.
Laser transmission welding is a well known joining technology for thermoplastics. Because of the needs of lightweight, cost effective and green production thermoplastics are usually filled with glass fibers. These lead to higher absorption and more scattering within the upper joining partner with a negative influence on the welding process. Here an experimental method for the characterization of the scattering behavior of semi crystalline thermoplastics filled with short glass fibers and a finite element model of the welding process capable to consider scattering as well as an analytical model are introduced. The experimental data is used for the numerical and analytical investigation of laser transmission welding under consideration of scattering. The scattering effects of several thermoplastics onto the calculated temperature fields as well as weld seam geometries are quantified.
Investigation of Laser Welding of Ti Alloys for Cognitive Process Parameters Selection.
Caiazzo, Fabrizia; Caggiano, Alessandra
2018-04-20
Laser welding of titanium alloys is attracting increasing interest as an alternative to traditional joining techniques for industrial applications, with particular reference to the aerospace sector, where welded assemblies allow for the reduction of the buy-to-fly ratio, compared to other traditional mechanical joining techniques. In this research work, an investigation on laser welding of Ti⁻6Al⁻4V alloy plates is carried out through an experimental testing campaign, under different process conditions, in order to perform a characterization of the produced weld bead geometry, with the final aim of developing a cognitive methodology able to support decision-making about the selection of the suitable laser welding process parameters. The methodology is based on the employment of artificial neural networks able to identify correlations between the laser welding process parameters, with particular reference to the laser power, welding speed and defocusing distance, and the weld bead geometric features, on the basis of the collected experimental data.
Investigation of Laser Welding of Ti Alloys for Cognitive Process Parameters Selection
2018-01-01
Laser welding of titanium alloys is attracting increasing interest as an alternative to traditional joining techniques for industrial applications, with particular reference to the aerospace sector, where welded assemblies allow for the reduction of the buy-to-fly ratio, compared to other traditional mechanical joining techniques. In this research work, an investigation on laser welding of Ti–6Al–4V alloy plates is carried out through an experimental testing campaign, under different process conditions, in order to perform a characterization of the produced weld bead geometry, with the final aim of developing a cognitive methodology able to support decision-making about the selection of the suitable laser welding process parameters. The methodology is based on the employment of artificial neural networks able to identify correlations between the laser welding process parameters, with particular reference to the laser power, welding speed and defocusing distance, and the weld bead geometric features, on the basis of the collected experimental data. PMID:29677114
Studying heat-affected zone deformations of electric arc welding
NASA Astrophysics Data System (ADS)
Suleimanov, R. I.; Zainagalina, L. Z.; Khabibullin, M. Ya; Zaripova, L. M.; Kovalev, N. O.
2018-03-01
The paper studies the influence of the most common defects in permanent electric arc welds made during the welding butt joints in infield oil pipelines, onto the strength characteristics of the welded pipe material around the heat-affected zone. A specimen of a butt weld with an obvious defect was used as a subject of the study. The changes in the geometric parameters of the weld were measured with the standard means; Rockwell hardness in the heat-affected zone was determined in certain areas with justification for the weld process modes. The cause of softening was found to be an increased width of the hot spot on the one side of the weld, where an enlarged crystalline structure appears as a result of the pipe material recrystallization under the influence of heat. Changes in the geometry of the thermal action area are determined by accumulation of molten filler on the one side of the weld when the welding rate is decreased. Some recommendations are given to prevent destruction of the welded structures and appearance of emergencies in infield oil pipelines.
In temperature forming of friction stir lap welds in aluminium alloys
NASA Astrophysics Data System (ADS)
Bruni, Carlo; Cabibbo, Marcello; Greco, Luciano; Pieralisi, Massimiliano
2018-05-01
The objective of such investigation is the study in depth of the forming phase of welds realized on three sheet metal blanks in aluminium alloys by friction stir lap welding. Such forming phase was performed by upsetting at different constant forming temperatures varying from 200°C to 350°C with constant ram velocities of 0.01 and 0.1 mm/s. The temperature values were obtained by the use of heating strips applied on the upper tool and on the lower tool. It was observed an increase in the friction factor, acting at the upsetting tool-workpiece interface, with increasing temperature that is very useful in producing the required localized deformation with which to improve the weld. It was also confirmed that the forming phase allows to realize a required thickness in the weld area allowing to neglect the surficial perturbation produced by the friction stir welding tool shoulder. The obtained thickness could be subjected to springback when too low temperatures are considered.
More About Cutting Tool For Shaving Weld Beads
NASA Technical Reports Server (NTRS)
Oelgoetz, Peter A.; Davis, William M.
1996-01-01
Report describes modification and testing of proposed tool discussed in "Cutting Tool For Shaving Weld Beads" (MFS-30056). Modified version of commercial pneumatically driven rotary cutting tool removes such hard metals as nickel alloys, titanium, and stainless steels.
Effect of rotation speed and welding speed on Friction Stir Welding of AA1100 Aluminium alloy
NASA Astrophysics Data System (ADS)
Raja, P.; Bojanampati, S.; Karthikeyan, R.; Ganithi, R.
2018-04-01
Aluminum AA1100 is the most widely used grade of Aluminium due to its excellent corrosion resistance, high ductility and reflective finish, the selected material was welded with Friction Stir Welding (FSW) process on a CNC machine, using a combination of different tool rotation speed (1500 rpm, 2500 rpm, 3500 rpm) and welding speed (10 mm/min, 30 mm/min, 50 mm/min) as welding parameters. The effect of FSW using this welding parameter was studied by measuring the ultimate tensile strength of the welded joints. A high-speed steel tool was prepared for welding the Aluminium AA1100 alloy having an 8mm shoulder diameter and pin dimension of 4mm diameter and 2.8 mm length. The welded joints were tested using the universal testing machine. It was found that Ultimate Tensile Strength of FSW specimen was highest with a value of 98.08 MPa when the weld was performed at rotation speed of 1500 RPM and welding speed of 50 mm/min.
Ferrous friction stir weld physical simulation
NASA Astrophysics Data System (ADS)
Norton, Seth Jason
2006-04-01
Traditional fusion welding processes have several drawbacks associated with the melting and solidification of metal. Weld defects associated with the solidification of molten metal may act as initiation sites for cracks. Segregation of alloying elements during solidification may cause local changes in resistance to corrosion. The high amount of heat required to produce the molten metal in the weld can produce distortion from the intended position on cooling. The heat from the electric arc commonly used to melt metal in fusion welds may also produce metal fumes which are a potential health hazard. Friction stir welding is one application which has the potential to make full thickness welds in a single pass, while eliminating fume, reducing distortion, and eliminating solidification defects. Currently the friction stir welding process is used in the aerospace industry on aluminum alloys. Interest in the process by industries which rely on iron and its alloys for structural material is increasing. While friction stir welding has been shown to be feasible with iron alloys, the understanding of friction stir welding process effects on these materials is in its infancy. This project was aimed to better that understanding by developing a procedure for physical simulation of friction stir welding. Friction stir weld material tracer experiments utilizing stainless steel markers were conducted with plates of ingot iron and HSLA-65. Markers of 0.0625" diameter 308 stainless steel worked well for tracing the end position of material moved by the friction stir welding tool. The markers did not produce measurable increases in the loading of the tool in the direction of travel. Markers composed of 0.25" diameter 304 stainless steel did not perform as well as the smaller markers and produced increased loads on the friction stir welding tool. The smaller markers showed that material is moved in a curved path around the tool and deposited behind the tool. Material near the surface is moved a greater distance as it is acted upon by the tool shoulder. A friction stir weld was made on a plate of HSLA-65 which had 0.0625" Inconel sheathed thermocouples embedded in the tool path at seven positions. Thermocouples on the top of the plate acquired data at the desired position until encountering the shoulder, at which point they were sheared by the shoulder and stirred behind the tool. Thermocouples on the bottom of the plate were deformed a relatively small amount and acquired data throughout the welding process. Heating rates calculated from the slope of the acquired temperature data show that the peak heating rate (˜1100°C on top and ˜500°C on the bottom) occurs on both the top and bottom of the weld at temperatures between 350°C and 500°C. An increase in the heating rate occurring at elevated temperature was associated with the transformation from ferrite to austenite. Comparison of phase transformation data acquired in rapid heating in the GleebleRTM suggests that austenite transforms back to ferrite at higher temperatures in the presence of strain than in its absence. Peak temperatures on the top of the plate exceeded 1200°C and peak temperatures acquired on the bottom exceeded 1000°C. The heating rate method of data analysis was sensitive enough to pick up variations in the heating rate which occurred at the same frequency as the rotation rate of the tool. (Abstract shortened by UMI.)
Laser-Assisted Stir Welding of 25-mm-Thick HSLA-65 Plate
NASA Astrophysics Data System (ADS)
Williamson, Keith M.
2002-12-01
Laser-assisted stir welding is a hybrid process that combines energy from a laser with functional heating and mechanical energy to join materials in the solid state. The technology is an adaptation of friction stir welding which is particularly suited for joining thick plates. Aluminum plates up to 75 mm thick have been successfully joined using friction stir welding. Since joining occurs in the solid state, stir technology offers the capability for fabricating full penetration joints in thick plates with better mechanical properties and less weld distortion than is possible by fusion processes. Currently friction stir welding is being used in several industries to improve productivity, reduce weight, and increase the strength of welded structures. Examples include: (a) the aircraft/aerospace industry where stir technology is currently being used to fabricate the space shuttle's external tank as well as components of the Delta family of rockets; (b) the shipping industry where container manufacturers are using stir technology to produce lighter containers with more payload capacity; and (c) the oil industry where offshore platform manufactures are using automated stir welding plants to fabricate large panels and structures up to 16 meters long with widths as required. In all these cases, stir technology has been restricted to aluminum alloys; however, stainless and HSLA 65 steels have been recently stir welded with friction as the primary heat source. One of the difficulties in adapting stir welding to steel is tool wear aggravated by the high tool rubbing velocities needed to provide frictional heat input into the material. Early work showed that the tool shoulder reached temperatures above 1000 C and the weld seam behind the tool stayed within this temperature range for up to 25 mm behind the tool. Cross sections of stir welded samples showed that the heat-affected zone is relatively wide and follows the profile of the tool shoulder. Besides minimizing the tool wear by increasing the energy into the material, another benefit of the proposed Laser Assisted Stir Welding (LASW is to reduce the width of the heat affected zone which typically has the lowest hardness in the weld region. Additionally, thermal modeling of the friction stir process shows that the heat input is asymmetric and suggests that the degree of asymmetry could improve the efficiency of the process. These asymmetries occur because the leading edge of the tool supplies heat to cold material while the trailing edge provides heat to material already preheated by the leading edge. As a result, flow stresses on the advancing side of the joint are lower than corresponding values on the retreating side. The proposed LASW process enhances these asymmetries by providing directional heating to increase the differential in flow stress across the joint and improve the stir tool efficiency. Theoretically the LASW process can provide the energy input to allow the flow stresses on the advancing side to approach zero and the stir efficiency to approach 100 percent. Reducing the flow stresses on the advancing side of the weld creates the greatest pressure differential across the stir weld and eliminates the possibility of voids on the advancing side of the joint. Small pressure differentials result in poor stir welds because voids on the advancing side are not filled by the plastic flow of material from the retreating side.
Friction Stir Spot Welding of Advanced High Strength Steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovanski, Yuri; Grant, Glenn J.; Santella, M. L.
Friction stir spot welding techniques were developed to successfully join several advanced high strength steels. Two distinct tool materials were evaluated to determine the effect of tool materials on the process parameters and joint properties. Welds were characterized primarily via lap shear, microhardness, and optical microscopy. Friction stir spot welds were compared to the resistance spot welds in similar strength alloys by using the AWS standard for resistance spot welding high strength steels. As further comparison, a primitive cost comparison between the two joining processes was developed, which included an evaluation of the future cost prospects of friction stir spotmore » welding in advanced high strength steels.« less
Friction Stir Welding of Steel Alloys
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey; Munafo, Paul M. (Technical Monitor)
2001-01-01
The friction stir welding process has been developed primarily for the welding of aluminum alloys. Other higher melting allows such, as steels are much more difficult to join. Special attention must be given to pin tool material selection and welding techniques. This paper addresses the joining of steels and other high melting point materials using the friction stir welding process. Pin tool material and welding parameters will be presented. Mechanical properties of weldments will also be presented. Significance: There are many applications for the friction stir welding process other than low melting aluminum alloys. The FSW process can be expanded for use with high melting alloys in the pressure vessel, railroad and ship building industries.
NASA Astrophysics Data System (ADS)
Liu, Huijie; Hu, Yanying; Zhao, Yunqiang; Fujii, Hidetoshi
2017-09-01
Friction stir welding (FSW) is a very promising technique for joining particle-reinforced aluminum-matrix composites (PRAMCs), but with increase in the volume fraction of reinforcing particles, their distribution in welds becomes inhomogeneous. This leads to an inconsistent deformation of welds and their destruction at low stresses. In order to improve the weld microstructure, a smooth pin tool was used for the friction stir welding of AC4A + 30 vol.% SiC particle-reinforced aluminum-matrix composites. The present work describes the effect of welding parameters on the characteristics of particle distribution and the mechanical properties of welds. The ultimate strength of weld reached, 309 MPa, was almost 190% of that of the basic material. The mechanism of SiC particle conglomeration is clearly illustrated by means of schematic illustrations.
The Effect of Ultrasonic Peening on Service Life of the Butt-Welded High-Temperature Steel Pipes
NASA Astrophysics Data System (ADS)
Daavari, Morteza; Vanini, Seyed Ali Sadough
2015-09-01
Residual stresses introduced by manufacturing processes such as casting, forming, machining, and welding have harmful effects on the mechanical behavior of the structures. In addition to the residual stresses, weld toe stress concentration can play a determining effect. There are several methods to improve the mechanical properties such as fatigue behavior of the welded structures. In this paper, the effects of ultrasonic peening on the fatigue life of the high-temperature seamless steel pipes, used in the petrochemical environment, have been investigated. These welded pipes are fatigued due to thermal and mechanical loads caused by the cycle of cooling, heating, and internal pressure fluctuations. Residual stress measurements, weld geometry estimation, electrochemical evaluations, and metallography investigations were done as supplementary examinations. Results showed that application of ultrasonic impact treatment has led to increased fatigue life, fatigue strength, and corrosion resistance of A106-B welded steel pipes in petrochemical corrosive environment.
Process control of GMAW by detection of discontinuities in the molten weld pool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, N.M.; Kunerth, D.C.; Johnson, J.A.
1988-01-01
The use of ultrasonic sensors to detect discontinuities associated with the molten pool is one phase of a project to automate the welding process. In this work, ultrasonic sensors were used to interrogate the region around the molten/solid interface during gas metal arc welding (GMAW). The ultrasonic echoes from the interface and the molten pool provide information about the quality of the fusion zone and the molten pool. This information can be sent to a controller that can vary the welding parameters to correct the process. Previously ultrasonic shear waves were used to determine if the geometry of the molten/solidmore » interface was indicative of an acceptable weld. In this work, longitudinal waves were used to interrogate the molten weld pool for discontinuities. Unacceptable welding conditions that can result in porosity, incomplete penetration, or undercut were detected. 8 refs., 4 figs.« less
Ceschini, Lorella; Boromei, Iuri; Morri, Alessandro; Nardi, Diego; Sighinolfi, Gianluca; Degidi, Marco
2015-06-01
The electric resistance welding procedure is used to join a titanium bar with specific implant abutments in order to produce a framework directly in the oral cavity of the patient. This investigation studied the effects of the welding process on microstructure and hardness properties of commercially pure (CP2 and CP4) Ti components. Different welding powers and cooling procedures were applied to bars and abutments, normally used to produce the framework, in order to simulate the clinical intraoral welding procedure. The analyses highlighted that the joining process did not induce appreciable changes in the geometry of the abutments. However, because of unavoidable microstructural modifications in the welded zones, the hardness decreased to values lower than those of the unwelded CP2 and CP4 Ti grades, irrespective of the welding environments and parameters. © IMechE 2015.
Vision-sensing image analysis for GTAW process control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, D.D.
1994-11-01
Image analysis of a gas tungsten arc welding (GTAW) process was completed using video images from a charge coupled device (CCD) camera inside a specially designed coaxial (GTAW) electrode holder. Video data was obtained from filtered and unfiltered images, with and without the GTAW arc present, showing weld joint features and locations. Data Translation image processing boards, installed in an IBM PC AT 386 compatible computer, and Media Cybernetics image processing software were used to investigate edge flange weld joint geometry for image analysis.
High-precision and high-speed laser microjoining for electronics and microsystems
NASA Astrophysics Data System (ADS)
Gillner, Arnold; Olowinsky, Alexander; Klages, Kilian; Gedicke, Jens; Sari, Fahri
2006-02-01
The joining processes in electronic device manufacturing are today still dominated by conventional joining techniques like press fitting, crimping and resistance welding. Laser beam joining techniques have been under intensive investigations and subsequently new processes for mass manufacturing and high accuracy assembling were established. With the newly developed SHADOW (R) welding technology technical aspects such as tensile strength, geometry and precision of the weld could be improved. This technology provides highest flexibility in weld geometry with a minimum welding time as well as new possibilities in using application adapted materials. Different parts and even different metals can be joined by a non-contact process. The application of a relative movement between the laser beam and the part to be joined at feed rates of up to 60 m/min produces weld seams with a length from 0.6 mm to 15.7 mm using a pulsed Nd:YAG laser with a pulse duration of up to 50 ms. Due to the low energy input, typically 1 J to 6 J, a weld width as small as 50 μm and a weld depth as small as 20 pm have been attained. This results in low distortion of the joined watch components. Within this paper this new welding process will be explained and several examples of joined components will be presented with respect to fundamentals and the sustainable implementation of the SHADOW (R) welding technique into watch manufacturing and electronic industry. For microsystem applications the laser joining technology is modified to join even silicon and glass parts without any melting based on the formation of a thermally induced oxygen bond. New fields of applications for joining different materials such as steel to brass or steel to copper for electrical interconnects will be discussed. Here the SHADOW (R) welding technique offers new possibilities for the combination of good electrical properties of copper with high mechanical stiffness of steel. The paper will give a closer look to microjoining applications especially using the SHADOW (R) welding technique. Basics of the process as well as its application on dedicated examples will be shown for small parts such as axis-wheel combinations and electrical connectors.
Manual adjustable probe tool for friction stir welding
NASA Technical Reports Server (NTRS)
Oelgoetz, Peter A. (Inventor); Ding, Jeff (Inventor)
2000-01-01
A friction stir welding tool is provided generally comprising three parts: a rotatable welding tool body (22) that has an outer threaded surface (32) and a probe (24) extending from a distal end of the body, a shoulder (26), which has a threaded inner surface (40) and a bore (36) at a distal end of the shoulder, and a jam nut (28), which has a threaded inner surface (42). The shoulder is threaded onto the tool body such that the probe extends from the shoulder through the bore by a preferred length. The jam nut is then threaded onto the tool body to secure the shoulder. The tool is operatively connected to a drive motor for rotating the tool body. The shoulder may include a knife edge projecting from the distal end (38) thereof adjacent the bore. The knife edge inhibits the weld material from migrating along the probe to intrude inside the shoulder, where it may prevent separation of the tool body and the shoulder when readjustment of the tool is necessary.
NASA Astrophysics Data System (ADS)
Jain, Rahul; Pal, Surjya Kanta; Singh, Shiv Brat
2017-02-01
Friction Stir Welding (FSW) is a solid state joining process and is handy for welding aluminum alloys. Finite Element Method (FEM) is an important tool to predict state variables of the process but numerical simulation of FSW is highly complex due to non-linear contact interactions between tool and work piece and interdependency of displacement and temperature. In the present work, a three dimensional coupled thermo-mechanical method based on Lagrangian implicit method is proposed to study the thermal history, strain distribution and thermo-mechanical process in butt welding of Aluminum alloy 2024 using DEFORM-3D software. Workpiece is defined as rigid-visco plastic material and sticking condition between tool and work piece is defined. Adaptive re-meshing is used to tackle high mesh distortion. Effect of tool rotational and welding speed on plastic strain is studied and insight is given on asymmetric nature of FSW process. Temperature distribution on the workpiece and tool is predicted and maximum temperature is found in workpiece top surface.
Solid State Joining of Magnesium to Steel
NASA Astrophysics Data System (ADS)
Jana, Saumyadeep; Hovanski, Yuri; Pilli, Siva P.; Field, David P.; Yu, Hao; Pan, Tsung-Yu; Santella, M. L.
Friction stir welding and ultrasonic welding techniques were applied to join automotive magnesium alloys to steel sheet. The effect of tooling and process parameters on the post-weld microstructure, texture and mechanical properties was investigated. Static and dynamic loading were utilized to investigate the joint strength of both cast and wrought magnesium alloys including their susceptibility and degradation under corrosive media. The conditions required to produce joint strengths in excess of 75% of the base metal strength were determined, and the effects of surface coatings, tooling and weld parameters on weld properties are presented.
Tool simplifies machining of pipe ends for precision welding
NASA Technical Reports Server (NTRS)
Matus, S. T.
1969-01-01
Single tool prepares a pipe end for precision welding by simultaneously performing internal machining, end facing, and bevel cutting to specification standards. The machining operation requires only one milling adjustment, can be performed quickly, and produces the high quality pipe-end configurations required to ensure precision-welded joints.
Development of a gas pressure bonded four-pole alternator rotor
NASA Technical Reports Server (NTRS)
Lessmann, G. G.; Bryant, W. A.
1972-01-01
Methods were developed for fabrication of a solid four pole alternator rotor by hot isostatic pressure welding. The rotor blanks welded in this program had complex geometrical mating interfaces and were of considerable bulk, being approximately 3-1/2 inches (0.089 meters) in diameter and 14 inches (0.356 meters) long. Magnetic end pieces were machined from AlSl 4340 steel, while the non-magnetic central section was of Inconel 718. Excellent welds were produced which were shown to be responsive to post weld heat treatments which substantially improved joint strength. Prior to welding the rotors, test specimens of complex geometry were welded to demonstrate that complex surfaces with intentional mechanical misfit could be readily joined using HIP welding. This preliminary work demonstrated not only that interface compliance is achieved during welding but that welding pressure is developed in these thick sections sufficient to produce sound joints. Integral weld-heat treatment cycles were developed that permitted the attainment of magnetic properties while minimizing residual stress associated with the allotropic transformation of 4340 steel.
Friction Stir Welding of Large Scale Cryogenic Tanks for Aerospace Applications
NASA Technical Reports Server (NTRS)
Russell, Carolyn; Ding, R. Jeffrey
1998-01-01
The Marshall Space Flight Center (MSFC) has established a facility for the joining of large-scale aluminum cryogenic propellant tanks using the friction stir welding process. Longitudinal welds, approximately five meters in length, have been made by retrofitting an existing vertical fusion weld system, designed to fabricate tank barrel sections ranging from two to ten meters in diameter. The structural design requirements of the tooling, clamping and travel system will be described in this presentation along with process controls and real-time data acquisition developed for this application. The approach to retrofitting other large welding tools at MSFC with the friction stir welding process will also be discussed.
Evaluation Of Four Welding Arc Processes Applied To 6061 Aluminium Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benoit, A.; Laboratoire de Genie des Materiaux et Procedes Associes; Paillard, P.
At a time when greenhouse gas emissions must be reduced, the use of the aluminium alloys is expanding, in particular in the transportation industry. In order to extend the possibilities of aluminium assembly design, new Metal Inert Gas (MIG) welding processes have been conceived. They work at lower temperatures than usual arc processes (classic MIG or Tungsten Inert Gas). This study compares four arc welding processes, applied to the 6061 aluminium alloy. These four weld processes have been studied through the metallurgical analysis of the weld beads. Metallography, micro-hardness testings, X Ray radiography have been carried out on the producedmore » weld beads. The processes are classified according to the quality of the beads like geometry of beads, size of the heat affected zone and presence of defects.« less
NASA Astrophysics Data System (ADS)
Satyanarayana, G.; Narayana, K. L.; Boggarapu, Nageswara Rao
2018-03-01
In the nuclear industry, a critical welding process is joining of an end plate to a fuel rod to form a fuel bundle. Literature on zirconium welding in such a critical operation is limited. A CFD model is developed and performed for the three-dimensional non-linear thermo-fluid analysis incorporating buoyancy and Marnangoni stress and specifying temperature dependent properties to predict weld geometry and temperature field in and around the melt pool of laser spot during welding of a zirconium alloy E110 endplate with a fuel rod. Using this method, it is possible to estimate the weld pool dimensions for the specified laser power and laser-on-time. The temperature profiles will estimate the HAZ and microstructure. The adequacy of generic nature of the model is validated with existing experimental data.
Study the Effect of SiO2 Based Flux on Dilution in Submerged Arc Welding
NASA Astrophysics Data System (ADS)
kumar, Aditya; Maheshwari, Sachin
2017-08-01
This paper highlights the method for prediction of dilution in submerged arc welding (SAW). The most important factors of weld bead geometry are governed by the weld dilution which controls the chemical and mechanical properties. Submerged arc welding process is used generally due to its very easy control of process variables, good penetration, high weld quality, and smooth finish. Machining parameters, with suitable weld quality can be achieved with the different composition of the flux in the weld. In the present study Si02-Al2O3-CaO flux system was used. In SiO2 based flux NiO, MnO, MgO were mixed in various proportions. The paper investigates the relationship between the process parameters like voltage, % of flux constituents and dilution with the help of Taguchi’s method. The experiments were designed according to Taguchi L9 orthogonal array, while varying the voltage at two different levels in addition to alloying elements. Then the optimal results conditions were verified by confirmatory experiments.
Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System
NASA Astrophysics Data System (ADS)
Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo
This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.
Towards Fast Tracking of the Keyhole Geometry
NASA Astrophysics Data System (ADS)
Brock, C.; Hohenstein, R.; Schmidt, M.
We describe a sensor principle permitting the fast online measurement of the position of the optical process emissions in deep penetration laser welding. Experiments show a strong correlation between the position of the vapour plume and the keyhole geometry, demonstrated here by varying the penetration depth of the weld. In order to achieve an absolute position measurement, the sensor was calibrated using a light source with well defined characteristics. The setup for the calibration measurements and the corresponding data evaluation methods are discussed. The precision of the calibration with a green LED is 6 μm in lateral and 55 μm in axial direction, for a working distance of 200 mm.
Implicit Geometry Meshing for the simulation of Rotary Friction Welding
NASA Astrophysics Data System (ADS)
Schmicker, D.; Persson, P.-O.; Strackeljan, J.
2014-08-01
The simulation of Rotary Friction Welding (RFW) is a challenging task, since it states a coupled problem of phenomena like large plastic deformations, heat flux, contact and friction. In particular the mesh generation and its restoration when using a Lagrangian description of motion is of significant severity. In this regard Implicit Geometry Meshing (IGM) algorithms are promising alternatives to the more conventional explicit methods. Because of the implicit description of the geometry during remeshing, the IGM procedure turns out to be highly robust and generates spatial discretizations of high quality regardless of the complexity of the flash shape and its inclusions. A model for efficient RFW simulation is presented, which is based on a Carreau fluid law, an Augmented Lagrange approach in mapping the incompressible deformations, a penalty contact approach, a fully regularized Coulomb-/fluid friction law and a hybrid time integration strategy. The implementation of the IGM algorithm using 6-node triangular finite elements is described in detail. The techniques are demonstrated on a fairly complex friction welding problem, demonstrating the performance and the potentials of the proposed method. The techniques are general and straight-forward to implement, and offer the potential of successful adoption to a wide range of other engineering problems.
NASA Astrophysics Data System (ADS)
Miles, M.; Karki, U.; Hovanski, Y.
2014-10-01
Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11-14 kN. Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge® software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within 4%, and the position of the joint interface to within 10%, of the experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miles, Michael; Karki, U.; Hovanski, Yuri
Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11–14 kN.more » Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge* software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within percent, and the position of the joint interface to within 10 percent, of the experimental results.« less
NASA Astrophysics Data System (ADS)
Kamal Babu, K.; Panneerselvam, K.; Sathiya, P.; Noorul Haq, A.; Sundarrajan, S.; Mastanaiah, P.; Srinivasa Murthy, C. V.
The purpose of this paper is to present the corrosion behavior of the Cryorolled (CR) material and its Friction Stir Welded joints. Due to the thermal cycles of Friction Stir Welding (FSW) process, the corrosion behavior of the material gets affected. Here, the cryorolling process was carried out on AA2219 alloy and CR material was joined by FSW process using four different pin tool profiles such as cylindrical, threaded cylindrical, square and hexagonal pin. The FSW joints were analyzed by corrosion resistance with the help of potentiodynamic polarization test with 3.5% NaCl solution. From the analysis, it is found that CR AA2219 material exhibits good corrosion resistance compared to the base AA2219 material, and also a hexagonal pin profile FSW joint exhibits high corrosion resistance. Among the weld joints created by four different tools, the lowest corrosion resistance was found in the cylindrical pin tool FSW welds. Further, the corroded samples were investigated through metallurgical investigations like OM, Transmission Electron Microscopy (TEM), Energy-Dispersive X-ray Spectroscopy (EDX) and X-Ray Diffraction (XRD). It was found that the amount of dissolution of Al2Cu precipitate was present in the weld nugget. The amount of dissolution of Al2Cu precipitate is higher in the weld nugget produced by hexagonal pin tool. This is due to the enhancement of the corrosion resistance.
NASA Astrophysics Data System (ADS)
Paidar, Moslem; Asgari, Ali; Ojo, Olatunji Oladimeji; Saberi, Abbas
2018-03-01
Grain growth inhibition at the heat-affected zone, improved weld strength and superior tribological properties of welds are desirable attributes of modern manufacturing. With the focused on these attributes, tungsten carbide (WC) nanoparticles were employed as reinforcements for the friction stir welding of 5-mm-thick AA5182 aluminum alloy by varying tool traverse speeds. The microstructure, microhardness, ultimate tensile strength, fracture and wear behavior of the resultant WC-reinforced welds were investigated, while unreinforced AA5182 welds were employed as controls for the study. The result shows that the addition of WC nanoparticles causes substantial grain refinement within the weld nugget. A decrease in traverse speed caused additional particle fragmentation, improved hardness value and enhanced weld strength in the reinforced welds. Improved wear rate and friction coefficient of welds were attained at a reduced traverse speed of 100 mm/min in the WC-reinforced welds. This improvement is attributed to the effects of reduced grain size/grain fragmentation and homogeneous dispersion of WC nanoparticles within the WC-reinforced weld nugget.
Thermo-Mechanical Processing in Friction Stir Welds
NASA Technical Reports Server (NTRS)
Schneider, Judy
2003-01-01
Friction stir welding is a solid-phase joining, or welding process that was invented in 1991 at The Welding Institute (TWI). The process is potentially capable of joining a wide variety of aluminum alloys that are traditionally difficult to fusion weld. The friction stir welding (FSW) process produces welds by moving a non-consumable rotating pin tool along a seam between work pieces that are firmly clamped to an anvil. At the start of the process, the rotating pin is plunged into the material to a pre-determined load. The required heat is produced by a combination of frictional and deformation heating. The shape of the tool shoulder and supporting anvil promotes a high hydrostatic pressure along the joint line as the tool shears and literally stirs the metal together. To produce a defect free weld, process variables (RPM, transverse speed, and downward force) and tool pin design must be chosen carefully. An accurate model of the material flow during the process is necessary to guide process variable selection. At MSFC a plastic slip line model of the process has been synthesized based on macroscopic images of the resulting weld material. Although this model appears to have captured the main features of the process, material specific interactions are not understood. The objective of the present research was to develop a basic understanding of the evolution of the microstructure to be able to relate it to the deformation process variables of strain, strain rate, and temperature.
Wiping Metal Transfer in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Nunes, Arthur C., Jr.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Much evidence suggests that as the friction stir pin-tool moves along a weld seam the displacement of metal takes place by a wiping action at the surface of a plug of metal that rotates with the tool. The wiping model is explained and some consequences for the friction stir welding process are drawn.
NASA Astrophysics Data System (ADS)
Ferasat, Keyvan; Aashuri, Hossein; Kokabi, Amir Hossein; Nikzad, Siamak; Shafizadeh, Mahdi
2015-02-01
In this research, the semisolid stir joining method was used to overcome the problem of hot cracking in welding aluminum and silicon bronzes. Moreover, the effects of grooved and cylindrical tools on the microstructure and mechanical properties of samples were examined. After welding specimens, mechanical tests were carried out to find differences between the cast and welded samples. Optical microscopy and scanning electron microscopy were used to study microstructure. X-ray diffraction was used to investigate compounds formed during casting and welding. The solidus and liquidus temperatures of the alloy were measured by differential scanning calorimetry. In this study, the temperature of the work pieces was raised to 1203 K (930 °C) that is in the semisolid region, and the weld seams were stirred by two different types of tools at the speed of 1600 rpm. Macro and micro-structural analyses show uniformity in the phase distribution for specimens welded by cylindrical tool. Desirable and uniform mechanical properties obtained when the cylindrical tool was used.
Molecular dynamics modeling of bonding two materials by atomic scale friction stir welding
NASA Astrophysics Data System (ADS)
Konovalenko S., Iv.; Konovalenko, Ig. S.; Psakhie, S. G.
2017-12-01
Molecular dynamics model of atomic scale friction stir welding has been developed. Formation of a butt joint between two crystallites was modeled by means of rotating rigid conical tool traveling along the butt joint line. The formed joint had an intermixed atomic structure composed of atoms initially belonged to the opposite mated piece of metal. Heat removal was modeled by adding the extra viscous force to peripheral atomic layers. This technique provides the temperature control in the tool-affected zone during welding. Auxiliary vibration action was added to the rotating tool. The model provides the variation of the tool's angular velocity, amplitude, frequency and direction of the auxiliary vibration action to provide modeling different welding modes.
Quantification of Microtexture at Weld Nugget of Friction Stir-Welded Carbon Steel
NASA Astrophysics Data System (ADS)
Husain, Md M.; Sarkar, R.; Pal, T. K.; Ghosh, M.; Prabhu, N.
2017-05-01
Friction stir welding of C-Mn steel was carried out under 800-1400 rpm tool rotation. Tool traversing speed of 50 mm/min remained same for all joints. Effect of thermal state and deformation on texture and microstructure at weld nugget was investigated. Weld nugget consisted of ferrite + bainite/Widmanstatten ferrite with different matrix grain sizes depending on peak temperature. A texture around ( ϕ 2 = 0°, φ = 30°, ϕ 2 = 45°) was developed at weld nugget. Grain boundary misorientation at weld nugget indicated that continuous dynamic recrystallization influenced the development of fine equiaxed grain structure. Pole figures and orientation distribution function were used to determine crystallographic texture at weld nugget and base metal. Shear texture components D1, D2 and F were present at weld nugget. D1 shear texture was more prominent among all. Large number of high-angle grain boundaries ( 60-70%) was observed at weld nugget and was the resultant of accumulation of high amount of dislocation, followed by subgrain formation.
Use of eddy current mixes to solve a weld examination application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, R.C.; LaBoissonniere, A.
1995-12-31
The augmentation of typical nondestructive (i.e., ultrasound) weld inspection techniques by the use of eddy current tools may significantly enhance the quality and reliability of weld inspections. One recent example is the development of an eddy current technique for use in the examination of BWR core shroud welds, where multi-frequency mixes are used to eliminate signals coming from the weld material so that the examination of the heat affected zone is enhanced. An analysis tool most commonly associated with ultrasound examinations, the C-Scan based on gated information, may be implemented with eddy current data to enhance analysis.
The Evolution of Friction Stir Welding Theory at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Nunes, Arthur C.
2012-01-01
From 1995 to the present the friction stir welding (FSW) process has been under study at Marshall Space Flight Center (MSFC). This is an account of the progressive emergence of a set of conceptual tools beginning with the discovery of the shear surface, wiping metal transfer, and the invention of a kinematic model and making possible a treatment of both metallurgical structure formation and process dynamics in friction stir welding from a unified point of view. It is generally observed that the bulk of the deformation of weld metal around the FSW pin takes place in a very narrow, almost discontinuous zone with high deformation rates characteristic of metal cutting. By 1999 it was realized that this zone could be treated as a shear surface like that in simple metal cutting models. At the shear surface the seam is drawn out and compressed and pressure and flow conditions determine whether or not a sound weld is produced. The discovery of the shear surface was followed by the synthesis of a simple 3- flow kinematic model of the FSW process. Relative to the tool the flow components are: (1) an approaching translational flow at weld speed V, (2) a rotating cylindrical plug flow with the angular velocity of the tool , and (3) a relatively slow ring vortex flow (like a smoke ring) encircling the tool and driven by shoulder scrolls and pin threads. The rotating plug flow picks up an element of weld metal, rotates it around with the tool, and deposits it behind the tool ( wiping metal transfer ); it forms plan section loops in tracers cut through by the tool. Radially inward flow from the ring vortex component retains metal longer in the rotating plug and outward flow expels metal earlier; this interaction forms the looping weld seam trace and the tongue and groove bimetallic weld contour. The radial components of the translational and ring vortex flows introduce parent metal intrusions into the small grained nugget material close to the tool shoulder; if this feature is pronounced, nugget collapse may result. Certain weld features, in particular internal banding seen in transverse section as onion rings and associated surface ridges called tool marks , have long implied an oscillation flow component, but have only recently been attributed in the literature to tool eccentricity. Rotating plug shape, typically a hollow cylinder flared at the end where it sticks to the shoulder, varies as pressure distribution on the tool determines where sticking occurs. Simplified power input estimates balanced against heat loss estimates give reasonable temperature estimates, explain why the power requirement changes hardly at all over a wide range of RPM s, and yield isotherms that seem to fall along boundaries of parameter windows of operation.
ERIC Educational Resources Information Center
Fortney, Clarence; Gregory, Mike
This curriculum guide provides six units of instruction on basic welding. Addressed in the individual units of instruction are the following topics: employment opportunities for welders, welding safety and first aid, welding tools and equipment, basic metals and metallurgy, basic math and measuring, and procedures for applying for a welding job.…
Aligning Plasma-Arc Welding Oscillations
NASA Technical Reports Server (NTRS)
Norris, Jeff; Fairley, Mike
1989-01-01
Tool aids in alignment of oscillator probe on variable-polarity plasma-arc welding torch. Probe magnetically pulls arc from side to side as it moves along joint. Tensile strength of joint depends on alignment of weld bead and on alignment of probe. Operator installs new tool on front of torch body, levels it with built-in bubble glass, inserts probe in slot on tool, and locks probe in place. Procedure faster and easier and resulting alignment more accurate and repeatable.
Campanelli, Sabina Luisa; Casalino, Giuseppe; Casavola, Caterina; Moramarco, Vincenzo
2013-01-01
Friction Stir Welding (FSW) is a solid-state joining process; i.e., no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force. PMID:28788430
Campanelli, Sabina Luisa; Casalino, Giuseppe; Casavola, Caterina; Moramarco, Vincenzo
2013-12-18
Friction Stir Welding (FSW) is a solid-state joining process; i.e. , no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force.
Detection and Sizing of Fatigue Cracks in Steel Welds with Advanced Eddy Current Techniques
NASA Astrophysics Data System (ADS)
Todorov, E. I.; Mohr, W. C.; Lozev, M. G.
2008-02-01
Butt-welded specimens were fatigued to produce cracks in the weld heat-affected zone. Advanced eddy current (AEC) techniques were used to detect and size the cracks through a coating. AEC results were compared with magnetic particle and phased-array ultrasonic techniques. Validation through destructive crack measurements was also conducted. Factors such as geometry, surface treatment, and crack tightness interfered with depth sizing. AEC inspection techniques have the potential of providing more accurate and complete sizing flaw data for manufacturing and in-service inspections.
Keyhole and weld shapes for plasma arc welding under normal and zero gravity
NASA Technical Reports Server (NTRS)
Keanini, R. G.; Rubinsky, B.
1990-01-01
A first order study of the interfacial (keyhole) shape between a penetrating argon plasma arc jet and a stationary liquid metal weld pool is presented. The interface is determined using the Young-Laplace equation by assuming that the plasma jet behaves as a one-dimensional ideal gas flow and by neglecting flow within the weld pool. The solution for the keyhole shape allows an approximate determination of the liquid-solid metal phase boundary location based on the assumption that the liquid melt is a stagnant thermal boundary layer. Parametric studies examine the effect of plasma mass flow rate, initial plasma enthalpy, liquid metal surface tension, and jet shear on weldment shape under both normal and zero gravity. Among the more important findings of this study is that keyhole and weld geometries are minimally affected by gravity, suggesting that data gathered under gravity can be used in planning in-space welding.
Welding Tools. Pre-Apprenticeship Phase 1 Training.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This student training module on welding tools is one of three modules (see CE 032 889-891) on welding developed for Pre-Apprenticeship Phase 1 Training. (A companion instructor's guide is available separately as CE 032 888.) The modules are designed to introduce trade knowledge and skills to the student. This module contains a cover sheet listing…
Limit load solution for electron beam welded joints with single edge weld center crack in tension
NASA Astrophysics Data System (ADS)
Lu, Wei; Shi, Yaowu; Li, Xiaoyan; Lei, Yongping
2012-05-01
Limit loads are widely studied and several limit load solutions are proposed to some typical geometry of weldments. However, there are no limit load solutions exist for the single edge crack weldments in tension (SEC(T)), which is also a typical geometry in fracture analysis. The mis-matching limit load for thick plate with SEC(T) are investigated and the special limit load solutions are proposed based on the available mis-matching limit load solutions and systematic finite element analyses. The real weld configurations are simplified as a strip, and different weld strength mis-matching ratio M, crack depth/width ratio a/ W and weld width 2H are in consideration. As a result, it is found that there exists excellent agreement between the limit load solutions and the FE results for almost all the mis-matching ration M, a/ W and ligament-to-weld width ratio ( W-a)/ H. Moreover, useful recommendations are given for evaluating the limit loads of the EBW structure with SEC(T). For the EBW joints with SEC(T), the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal, when M changing from 1.6 to 0.6. When M decreasing to 0.4, the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal only for large value of ( W-a)/ H. The recommendations may be useful for evaluating the limit loads of the EBW structures with SEC(T). The engineering simplifications are given for assessing the limit loads of electron beam welded structure with SEC(T).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konovalenko, Ivan S., E-mail: ivkon@ispms.tsc.ru; Konovalenko, Igor S., E-mail: igkon@ispms.tsc.ru; Kolubaev, Evgeniy A., E-mail: eak@ispms.tsc.ru
2015-10-27
A molecular dynamics model was constructed to describe material loading on the atomic scale by the mode identical to friction stir welding. It was shown that additional vibration applied to the tool during the loading mode provides specified intensity values and continuous thermomechanical action during welding. An increase in additional vibration intensity causes an increase both in the force acting on the workpiece from the rotating tool and in temperature within the welded area.
Real weld geometry determining mechanical properties of high power laser welded medium plates
NASA Astrophysics Data System (ADS)
Liu, Sang; Mi, Gaoyang; Yan, Fei; Wang, Chunming; Li, Peigen
2018-06-01
Weld width is commonly used as one of main factors to assess joint performances in laser welding. However, it changes significantly through the thickness direction in conditions of medium or thick plates. In this study, high-power autogenous laser welding was conducted on 7 mm thickness 201 stainless steel to elucidate the factor of whole weld transverse shape critically affecting the mechanical properties with the aim of predicting the performance visually through the weld appearance. The results show that single variation of welding parameters could result in great changes of weld pool figures and subsequently weld transverse shapes. All the obtained welds are composed of austenite containing small amount of cellular dendritic δ-Ferrite. The 0.2% proof stresses of Nail- and Peanut-shaped joint reach 458 MPa and 454 MPa, 88.2% and 87.5% of the base material respectively, while that of Wedge-shaped joint only comes to 371 MPa, 71.5% of the base material. The deterioration effect is believed to be caused by the axial grain zone in the weld center. The fatigue strength of joint P is a bit lower than N, but much better than W. Significant deformation incompatibility through the whole thickness and microstructure resistance to crack initiation should be responsible for the poor performance of W-shaped joints.
Advances in Solid State Joining of Haynes 230 High Temperature Alloy
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey; Schneider, Judy; Walker, Bryant
2010-01-01
The J-2X engine is being designed for NASA s new class of crew and launch vehicles, the Ares I and Ares V. The J-2X is a LOX/Hydrogen upper stage engine with 294,000 lbs of thrust and a minimum Isp of 448 seconds. As part of the design criteria to meet the performance requirements a large film-cooled nozzle extension is being designed to further expand the hot gases and increases the specific impulse. The nozzle extension is designed using Haynes 230, a nickel-chromium-tungsten-molybdenum superalloy. The alloy was selected for its high strength at elevated temperatures and resistance to hydrogen embrittlement. The nozzle extension is manufactured from Haynes 230 plate spun-forged to form the contour and chemically-milled pockets for weight reduction. Currently fusion welding is being evaluated for joining the panels which are then mechanically etched and thinned to required dimensions for the nozzle extension blank. This blank is then spun formed into the parabolic geometry required for the nozzle. After forming the nozzle extension, weight reduction pockets are chemically milled into the nozzle. Fusion welding of Haynes results in columnar grains which are prone to hot cracking during forming processes. This restricts the ability to use spin forging to produce the nozzle contour. Solid state joining processes are being pursued as an alternative process to produce a structure more amenable to spin forming. Solid state processes have been shown to produce a refined grain structure within the joint regions as illustrated in Figure 1. Solid state joining processes include friction stir welding (FSW) and a patented modification termed thermal stir welding (TSW). The configuration of TSWing utilizes an induction coil to preheat the material minimizing the burden on the weld tool extending its life. This provides the ability to precisely select and control the temperature. The work presented in this presentation investigates the feasibility of joining the Haynes 230 alloy using the solid state welding processes of FSW and TSW. Process descriptions and attributes of each weld process will be presented. Weld process set-up and welding techniques will be discussed leading to the challenges experienced in joining the superalloy. Mechanical property data will also be presented.
NASA Technical Reports Server (NTRS)
Loftus, Zachary; Arbegast, W. J.; Hartley, P. J.
1998-01-01
Friction Stir Welding (FSW) is a new and innovative solid-state joining process which can be applied to difficult-to- weld aluminum alloys. However, the large forces involved with the process have posed a production tooling challenge. Lockheed Martin Michoud Space Systems has overcome many of these challenges on the Super Lightweight External Tank (ET) program. Utilizing Aluminum-Copper-Lithium alloy 2195 in the form of plate and extrusions, investigations of FSW process parameters have been completed. Major loading mechanisms are discussed in conjunction with deflection measurements. Since the ET program is a cryogenic application, a brief comparison of cryogenic material properties with room temperature material properties is offered for both FSW and fusion welds. Finally, a new approach to controlling the FSW process from a load perspective is introduced. Emphasis will be put on tooling development, as well as the impact of tooling design and philosophy on Friction Stir Weld success probability.
NASA Astrophysics Data System (ADS)
Acherjee, Bappa; Kuar, Arunanshu S.; Mitra, Souren; Misra, Dipten
2012-04-01
The influence of the carbon black on temperature distribution and weld profile, during laser transmission welding of polymers, is investigated in the present research work. A transient numerical model, based on conduction mode heat transfer, is developed to analyze the process. The heat input to the model is considered to be the volumetric Gaussian heat source. The computation of temperature field during welding is carried out for polycarbonates having different proportion of carbon black in polymer matrix. The temperature dependent material properties of polycarbonate are taken into account for modeling. The finite element code ANSYS ® is employed to obtain the numerical results. The numerically computed results of weld pool dimensions are compared with the experimental results. The comparison shows a fair agreement between them, which gives confidence to use the developed model for intended investigation with acceptable accuracy. The results obtained have revealed that the carbon black has considerable influence on the temperature field distribution and the formation of the weld pool geometry.
Optimization of laser butt welding parameters with multiple performance characteristics
NASA Astrophysics Data System (ADS)
Sathiya, P.; Abdul Jaleel, M. Y.; Katherasan, D.; Shanmugarajan, B.
2011-04-01
This paper presents a study carried out on 3.5 kW cooled slab laser welding of 904 L super austenitic stainless steel. The joints have butts welded with different shielding gases, namely argon, helium and nitrogen, at a constant flow rate. Super austenitic stainless steel (SASS) normally contains high amount of Mo, Cr, Ni, N and Mn. The mechanical properties are controlled to obtain good welded joints. The quality of the joint is evaluated by studying the features of weld bead geometry, such as bead width (BW) and depth of penetration (DOP). In this paper, the tensile strength and bead profiles (BW and DOP) of laser welded butt joints made of AISI 904 L SASS are investigated. The Taguchi approach is used as a statistical design of experiment (DOE) technique for optimizing the selected welding parameters. Grey relational analysis and the desirability approach are applied to optimize the input parameters by considering multiple output variables simultaneously. Confirmation experiments have also been conducted for both of the analyses to validate the optimized parameters.
Rabby, Reza; Tang, Wei; Reynolds, A. P.
2015-05-13
In this article, the effect of pin features and orientation/placement of the materials on advancing side were investigated for friction stir welding (FSW) of dissimilar aluminum alloys AA2050 and AA6061. Pins for FSW were produced with a 2.12 mm pitch thread having three flats/flutes. Three sets of rotational speed/welding speed were used to perform a series of welds in a butt joint arrangement. The results show that, joint quality, process response variables and welding temperature are highly affected by pin features and material orientation in FSW. Defect free joints with effective material transportation in the weld nugget zone were obtainedmore » when welding was performed with AA2050 on the advancing side. The tool also encounters less in-plane reaction force for welding with 2050 on the advancing side. Pin with thread+3 flats produces quality welds at low rotational and travel speed regardless of the location of alloys on advancing or retreating side.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabby, Reza; Tang, Wei; Reynolds, A. P.
In this article, the effect of pin features and orientation/placement of the materials on advancing side were investigated for friction stir welding (FSW) of dissimilar aluminum alloys AA2050 and AA6061. Pins for FSW were produced with a 2.12 mm pitch thread having three flats/flutes. Three sets of rotational speed/welding speed were used to perform a series of welds in a butt joint arrangement. The results show that, joint quality, process response variables and welding temperature are highly affected by pin features and material orientation in FSW. Defect free joints with effective material transportation in the weld nugget zone were obtainedmore » when welding was performed with AA2050 on the advancing side. The tool also encounters less in-plane reaction force for welding with 2050 on the advancing side. Pin with thread+3 flats produces quality welds at low rotational and travel speed regardless of the location of alloys on advancing or retreating side.« less
Closed circuit TV system monitors welding operations
NASA Technical Reports Server (NTRS)
Gilman, M.
1967-01-01
TV camera system that has a special vidicon tube with a gradient density filter is used in remote monitoring of TIG welding of stainless steel. The welding operations involve complex assembly welding tools and skates in areas of limited accessibility.
ERIC Educational Resources Information Center
Lesch, Gerald E.
In 1972, the welding department personnel at Blackhawk Technical Institute in Wisconsin undertook the project of updating the curriculum of their one-year welding degree program. A study was conducted of local welding industries to determine hiring policies, the tools and equipment a beginning welder should purchase, the types of welding processes…
Friction Stir Process Mapping Methodology
NASA Technical Reports Server (NTRS)
Kooney, Alex; Bjorkman, Gerry; Russell, Carolyn; Smelser, Jerry (Technical Monitor)
2002-01-01
In FSW (friction stir welding), the weld process performance for a given weld joint configuration and tool setup is summarized on a 2-D plot of RPM vs. IPM. A process envelope is drawn within the map to identify the range of acceptable welds. The sweet spot is selected as the nominal weld schedule. The nominal weld schedule is characterized in the expected manufacturing environment. The nominal weld schedule in conjunction with process control ensures a consistent and predictable weld performance.
NASA Astrophysics Data System (ADS)
Ahmed, Hossain
The joining of thermoplastics through welding, a specific form of fusion bonding, offers numerous advantages over mechanical joining. It eliminates the use of costly fasteners and has only a limited effect on the strength of the parts being joined since it does not require the introduction of holes and loading pins, and it does not create significant stress concentrations. A specific form of welding, Friction Stir Welding, was investigated for the creation of butt joints of unreinforced polyphenylene sulfide (PPS) and short carbon fiber reinforced polyetheretherketone (PEEK) plates. Friction stir welding requires a rotating pin, a shoulder arrangement, relative movement between the tool and the weld piece and a clamping mechanism to hold the weld piece in place. Analytical models and experimental results show that the heat generated by the FSW tool is insufficient to produce the heat required to weld thermoplastic materials which makes FSW of polymers different from FSW of metals. A second heat source is required for preheating the thermoplastic parts prior to welding. A resistance type surface heater was placed at the bottom of two identical weld pieces for the experiments. Two types of shoulder design i.e. a rotating shoulder and a stationary shoulder were developed. Taguchi's Design of Experiment method was utilized to investigate the welding process, where duration of heating, process temperature, tool rotational speed and tool traverse speed were used as the welding parameters. The quality of the welding process was assumed to be indicated by the weld strength. DoE revealed that one of the process parameters, tool traverse speed, had significant influence on the tensile strength of PPS samples. While PPS sample showed relatively lower tensile strength with higher traverse speed, short carbon fiber reinforced PEEK samples had higher tensile strength with higher traverse speeds. In addition to tensile tests on dog bone shaped specimen, fracture toughness tests were performed for both PPS and PEEK samples to identify the fracture toughness of these materials. Presence of un-welded section in the welded specimen due to the setup of the experiments yielded notched tensile strengths during the tensile test process. With the help of fracture toughness values of these materials, notched tensile strengths of the welded samples were compared with the notched tensile strengths or residual tensile strengths of the base materials. In this study, residual joint efficiency of PEEK samples was found higher than that of PPS samples. Additionally, notched tensile strengths of the welded samples were compared with un-notched tensile strengths of the materials. The notched tensile strengths of PPS and PEEK were found about 80% and 75% of the respective base materials. Micrographs of PEEK samples showed the presence of more voids and cracks in the weld line compared to the un-welded samples. In this study, continuous friction stir welding process has been developed for butt joining of unreinforced PPS and short carbon fiber reinforced PEEK. The process parameters and the experimental setup can be utilized to investigate the weldability of different types of thermoplastic composites and various types of joint configurations.
The Plunge Phase of Friction Stir Welding
NASA Technical Reports Server (NTRS)
Nunes, Arthur; McClure, John; Avila, Ricardo
2005-01-01
Torque and plunge force during the initial plunge phase in Friction Stir Welding were measured for a 0.5 inch diameter pin entering a 2219 aluminum alloy plate. Weld structures were preserved for metallographic observation by making emergency stops at various plunge depths. The plunging pin tool is seen to be surrounded by a very fine grained layer of recrystallized metal extending substantially below the bottom of the pin, implying a shear interface in the metal below and not at the tool-metal interface. Torque and plunge force during the initial plunge phase in Friction Stir Welding are calculated from a straight forward model based on a concept to plastic flow in the vicinity of the plunging tool compatible with structural observations. The concept: a disk of weld metal seized to and rotating with the bottom of the pin is squeezed out laterally by the plunge force and extruded upwards in a hollow cylinder around the tool. As the shear surface separating rotating disk from stationary weld metal engulfs fresh metal, the fresh metal is subjected to severe shear deformation, which results in its recrystallization. Encouraging agreement between computations and measured torque and plunge force is obtained.
NASA Astrophysics Data System (ADS)
Shin, Hyung-Seop; Jung, Yoon-Chul; Lee, Jin-Kyu
2012-08-01
A small-scale joining technique of dissimilar friction stir spot welding (FSSW) between bulk metallic glass and Mg alloy sheet has been tried using an apparatus which was devised with a CNC milling machine to give a precise control of tool speeds. The influence of tool speeds on the joining characteristics during FSSW was investigated. As a result, it was found that the rotation speed and plunge speed of a tool during FSSW significantly influenced the welding performance of dissimilar FSSW between bulk metallic glasses and Mg alloy.
NASA Technical Reports Server (NTRS)
Guirguis, Kamal; Price, Daniel S.
1990-01-01
Hand-held power tool shaves excess metal from inside circumference of welded duct. Removes excess metal deposited by penetration of tungsten/inert-gas weld or by spatter from electron-beam weld. Produces smooth transition across joint. Easier to use and not prone to overshaving. Also cuts faster, removing 35 in. (89 cm) of weld bead per hour.
Introduction to Welding. Instructor Edition. Introduction to Construction Series.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This document contains the materials necessary to teach four instructional units on welding that are designed to prepare learners for entry-level employment. The following instructional units are presented: (1) welding materials; (2) welding tools; (3) welding layout and basic skills; and (4) oxyacetylene cutting. The document begins with a copy…
Mechanism for Self-Reacted Friction Stir Welding
NASA Technical Reports Server (NTRS)
Venable, Richard; Bucher, Joseph
2004-01-01
A mechanism has been designed to apply the loads (the stirring and the resection forces and torques) in self-reacted friction stir welding. This mechanism differs somewhat from mechanisms used in conventional friction stir welding, as described below. The tooling needed to apply the large reaction loads in conventional friction stir welding can be complex. Self-reacted friction stir welding has become popular in the solid-state welding community as a means of reducing the complexity of tooling and to reduce costs. The main problems inherent in self-reacted friction stir welding originate in the high stresses encountered by the pin-and-shoulder assembly that produces the weld. The design of the present mechanism solves the problems. The mechanism includes a redesigned pin-and-shoulder assembly. The welding torque is transmitted into the welding pin by a square pin that fits into a square bushing with set-screws. The opposite or back shoulder is held in place by a Woodruff key and high-strength nut on a threaded shaft. The Woodruff key reacts the torque, while the nut reacts the tensile load on the shaft.
MODELING OF HIGH SPEED FRICTION STIR SPOT WELDING USING A LAGRANGIAN FINITE ELEMENT APPROACH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miles, Michael; Karki, U.; Woodward, C.
2013-09-03
Friction stir spot welding (FSSW) has been shown to be capable of joining steels of very high strength, while also being very flexible in terms of controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding (RSW) if tool life is sufficiently high, and if machine spindle loads are sufficiently low so that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8kN, but FSSW at tool speeds of less than 3000 rpm cause loads that aremore » too high, in the range of 11-14 kN. Therefore, in the current work tool speeds of 3000 rpm and higher were employed, in order to generate heat more quickly and to reduce welding loads to acceptable levels. The FSSW process was modeled using a finite element approach with the Forge® software package. An updated Lagrangian scheme with explicit time integration was employed to model the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate [3]. The modeling approach can be described as two-dimensional, axisymmetric, but with an aspect of three dimensions in terms of thermal boundary conditions. Material flow was calculated from a velocity field which was two dimensional, but heat generated by friction was computed using a virtual rotational velocity component from the tool surface. An isotropic, viscoplastic Norton-Hoff law was used to model the evolution of material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures and the movement of the joint interface with reasonable accuracy for the welding of a dual phase 980 steel.« less
Manufacture of thin-walled clad tubes by pressure welding of roll bonded sheets
NASA Astrophysics Data System (ADS)
Schmidt, Hans Christian; Grydin, Olexandr; Stolbchenko, Mykhailo; Homberg, Werner; Schaper, Mirko
2017-10-01
Clad tubes are commonly manufactured by fusion welding of roll bonded metal sheets or, mechanically, by hydroforming. In this work, a new approach towards the manufacture of thin-walled tubes with an outer diameter to wall thickness ratio of about 12 is investigated, involving the pressure welding of hot roll bonded aluminium-steel strips. By preparing non-welded edges during the roll bonding process, the strips can be zip-folded and (cold) pressure welded together. This process routine could be used to manufacture clad tubes in a continuous process. In order to investigate the process, sample tube sections with a wall thickness of 2.1 mm were manufactured by U-and O-bending from hot roll bonded aluminium-stainless steel strips. The forming and welding were carried out in a temperature range between RT and 400°C. It was found that, with the given geometry, a pressure weld is established at temperatures starting above 100°C. The tensile tests yield a maximum bond strength at 340°C. Micrograph images show a consistent weld of the aluminium layer over the whole tube section.
NASA Astrophysics Data System (ADS)
Kashaev, Nikolai; Ventzke, Volker; Fomichev, Vadim; Fomin, Fedor; Riekehr, Stefan
2016-11-01
A Nd:YAG single-sided laser beam welding process study for Ti-6Al-4V butt joints and T-joints was performed to investigate joining techniques with regard to the process-weld morphology relationship. An alloy compatible filler wire was used to avoid underfills and undercuts. The quality of the butt joints and T-joints was characterized in terms of weld morphology, microstructure and mechanical properties. Joints with regular shapes, without visible cracks, pores, and geometrical defects were achieved. Tensile tests revealed high joint integrity in terms of strength and ductility for both the butt joint and T-joint geometries. Both the butt joints and T-joints showed base material levels of strength. The mechanical performance of T-joints was also investigated using pull-out tests. The performance of the T-joints in such tests was sensitive to the shape and morphology of the welds. Fracture always occurred in the weld without any plastic deformation in the base material outside the weld.
Tolle, Charles R.; Clark, Denis E.; Barnes, Timothy A.
2008-04-15
A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.
Friction Stir Process Mapping Methodology
NASA Technical Reports Server (NTRS)
Bjorkman, Gerry; Kooney, Alex; Russell, Carolyn
2003-01-01
The weld process performance for a given weld joint configuration and tool setup is summarized on a 2-D plot of RPM vs. IPM. A process envelope is drawn within the map to identify the range of acceptable welds. The sweet spot is selected as the nominal weld schedule The nominal weld schedule is characterized in the expected manufacturing environment. The nominal weld schedule in conjunction with process control ensures a consistent and predictable weld performance.
NASA Astrophysics Data System (ADS)
Wang, X.-N.; Zhang, S.-H.; Zhou, J.; Zhang, M.; Chen, C.-J.; Misra, R. D. K.
2017-04-01
Hybrid fiber laser-arc welding (HLAW) process was applied to a novel hot-rolled Nb-Ti-Mo microalloyed steels of 8 mm thickness. The steel is primarily used to manufacture automotive and construction machinery components, etc. To elucidate the effect of heat input on geometry, microstructure and mechanical properties, different heat inputs (3.90, 5.20 and 7.75 kJ/cm) were used by changing the welding speeds. With increased heat input, the depth/width of penetration was decreased, and the geometry of fusion zone (FZ) changed to "wine cup-like" shape. In regard to the microstructural constituents, the martensite content was decreased, but granular bainite (GB) content was increased. The main microstructural difference was in the FZ cross-section at 7.75 kJ/cm because of the effect of thermal source on the top and bottom. The microstructure of the top part consisted of GB, grain boundary ferrite, and acicular ferrite, while the bottom part was primarily lath martensite. The hardness distribution was similar for different heat inputs. Hardness in FZ, coarse-grained HAZ and mixed-grained HAZ was higher than the base metal (BM), but for the fine-grained HAZ was similar or marginally less than the base metal (BM). Tensile strain was concentrated in the BM such that the fracture occurred in this region. In summary, the geometry, microstructure, and mechanical properties of weld joints were superior at heat input of 5.20 kJ/cm.
Grinding Parts For Automatic Welding
NASA Technical Reports Server (NTRS)
Burley, Richard K.; Hoult, William S.
1989-01-01
Rollers guide grinding tool along prospective welding path. Skatelike fixture holds rotary grinder or file for machining large-diameter rings or ring segments in preparation for welding. Operator grasps handles to push rolling fixture along part. Rollers maintain precise dimensional relationship so grinding wheel cuts precise depth. Fixture-mounted grinder machines surface to quality sufficient for automatic welding; manual welding with attendant variations and distortion not necessary. Developed to enable automatic welding of parts, manual welding of which resulted in weld bead permeated with microscopic fissures.
Analysis and design of friction stir welding tool
NASA Astrophysics Data System (ADS)
Jagadeesha, C. B.
2016-12-01
Since its inception no one has done analysis and design of FSW tool. Initial dimensions of FSW tool are decided by educated guess. Optimum stresses on tool pin have been determined at optimized parameters for bead on plate welding on AZ31B-O Mg alloy plate. Fatigue analysis showed that the chosen FSW tool for the welding experiment has not ∞ life and it has determined that the life of FSW tool is 2.66×105 cycles or revolutions. So one can conclude that any arbitrarily decided FSW tool generally has finite life and cannot be used for ∞ life. In general, one can determine the suitability of tool and its material to be used in FSW of the given workpiece materials in advance by this analysis in terms of fatigue life of the tool.
Phase-field simulation of weld solidification microstructure in an Al Cu alloy
NASA Astrophysics Data System (ADS)
Farzadi, A.; Do-Quang, M.; Serajzadeh, S.; Kokabi, A. H.; Amberg, G.
2008-09-01
Since the mechanical properties and the integrity of the weld metal depend on the solidification behaviour and the resulting microstructural characteristics, understanding weld pool solidification is of importance to engineers and scientists. Thermal and fluid flow conditions affect the weld pool geometry and solidification parameters. During solidification of the weld pool, a columnar grain structure develops in the weld metal. Prediction of the formation of the microstructure during welding may be an important and supporting factor for technology optimization. Nowadays, increasing computing power allows direct simulations of the dendritic and cell morphology of columnar grains in the molten zone for specific temperature conditions. In this study, the solidification microstructures of the weld pool at different locations along the fusion boundary are simulated during gas tungsten arc welding of Al-3wt%Cu alloy using the phase-field model for the directional solidification of dilute binary alloys. A macroscopic heat transfer and fluid flow model was developed to assess the solidification parameters, notably the temperature gradient and solidification growth rate. The effect of the welding speed is investigated. Computer simulations of the solidification conditions and the formation of a cellular morphology during the directional solidification in gas tungsten arc welding are described. Moreover, the simulation results are compared with existing theoretical models and experimental findings.
An investigation on capability of hybrid Nd:YAG laser-TIG welding technology for AA2198 Al-Li alloy
NASA Astrophysics Data System (ADS)
Faraji, Amir Hosein; Moradi, Mahmoud; Goodarzi, Massoud; Colucci, Pietro; Maletta, Carmine
2017-09-01
This paper surveys the capability of the hybrid laser-arc welding in comparison with lone laser welding for AA2198 aluminum alloy experimentally. In the present research, a continuous Nd:YAG laser with a maximum power of 2000 W and a 350 A electric arc were used as two combined welding heat sources. In addition to the lone laser welding experiments, two strategies were examined for hybrid welding; the first one was low laser power (100 W) accompanied by high arc energy, and the second one was high laser power (2000 W) with low arc energy. Welding speed and arc current varied in the experiments. The influence of heat input on weld pool geometry was surveyed. The macrosection, microhardness profile and microstructure of the welded joints were studied and compared. The results indicated that in lone laser welding, conduction mode occurred and keyhole was not formed even in low welding speeds and thus the penetration depth was so low. It was also found that the second approach (high laser power accompanied with low arc energy) is superior to the first one (low laser power accompanied with high arc energy) in hybrid laser-arc welding of Al2198, since lower heat input was needed for full penetration weld and as a result a smaller HAZ was created.
Real time computer controlled weld skate
NASA Technical Reports Server (NTRS)
Wall, W. A., Jr.
1977-01-01
A real time, adaptive control, automatic welding system was developed. This system utilizes the general case geometrical relationships between a weldment and a weld skate to precisely maintain constant weld speed and torch angle along a contoured workplace. The system is compatible with the gas tungsten arc weld process or can be adapted to other weld processes. Heli-arc cutting and machine tool routing operations are possible applications.
NASA Astrophysics Data System (ADS)
Kumar, R.; Balasubramanian, M.
The main purpose of the current research work is to identify and investigate a novel method of holding an intermediate metal and to evaluate its metallurgical and mechanical properties. Copper was used as an interlayer material for the welding of this dissimilar Ti-6Al-4V (Ti alloy) and 304L stainless steel (SS). The study shows that the input parameters and surface geometry played a very significant role in producing a good quality joints with minimum heat affected zone and metal loss. A sound weld was achieved between Ti-6Al-4V and SS304L, on the basis of the earlier experiments conducted by the authors in their laboratory, by using copper rod as intermediate metal. Box-Behnken method was used for performing a minimum number of experiments for the study. In the present study, Ti-6Al-4V alloy and SS304L were joined by a novel method of holding the interlayer and new surface geometry for the interlayer. Initially, the drop test was used for determining the quality of the fabricated joint and, subsequently, non-destructive techniques like radiography and C-scan were used. Further optical micrograph, SEM-EDS, hardness and tensile test were done for understanding the performance of the joint.
The Light Plane Calibration Method of the Laser Welding Vision Monitoring System
NASA Astrophysics Data System (ADS)
Wang, B. G.; Wu, M. H.; Jia, W. P.
2018-03-01
According to the aerospace and automobile industry, the sheet steels are the very important parts. In the recent years, laser welding technique had been used to weld the sheet steel part. The seam width between the two parts is usually less than 0.1mm. Because the error of the fixture fixed can’t be eliminated, the welding parts quality can be greatly affected. In order to improve the welding quality, the line structured light is employed in the vision monitoring system to plan the welding path before welding. In order to improve the weld precision, the vision system is located on Z axis of the computer numerical control (CNC) tool. The planar pattern is placed on the X-Y plane of the CNC tool, and the structured light is projected on the planar pattern. The vision system stay at three different positions along the Z axis of the CNC tool, and the camera shoot the image of the planar pattern at every position. Using the calculated the sub-pixel center line of the structure light, the world coordinate of the center light line can be calculated. Thus, the structured light plane can be calculated by fitting the structured light line. Experiment result shows the effective of the proposed method.
Optimization of Laser Keyhole Welding Strategies of Dissimilar Metals by FEM Simulation
NASA Astrophysics Data System (ADS)
Garcia Navas, Virginia; Leunda, Josu; Lambarri, Jon; Sanz, Carmen
2015-07-01
Laser keyhole welding of dissimilar metals has been simulated to study the effect of welding strategies (laser beam displacements and tilts) and combination of metals to be welded on final quality of the joints. Molten pool geometry and welding penetration have been studied but special attention has been paid to final joint material properties, such as microstructure/phases and hardness, and especially to the residual stress state because it greatly conditions the service life of laser-welded components. For a fixed strategy (laser beam perpendicular to the joint) austenitic to carbon steel laser welding leads to residual stresses at the joint area very similar to those obtained in austenitic to martensitic steel welding, but welding of steel to Inconel 718 results in steeper residual stress gradients and higher area at the joint with detrimental tensile stresses. Therefore, when the difference in thermo-mechanical properties of the metals to be welded is higher, the stress state generated is more detrimental for the service life of the component, and consequently more relevant is the optimization of welding strategy. In laser keyhole welding of austenitic to martensitic stainless steel and austenitic to carbon steel, the optimum welding strategy is displacing the laser beam 1 mm toward the austenitic steel. In the case of austenitic steel to Inconel welding, the optimum welding strategy consists in setting the heat source tilted 45 deg and moved 2 mm toward the austenitic steel.
Process Model for Friction Stir Welding
NASA Technical Reports Server (NTRS)
Adams, Glynn
1996-01-01
Friction stir welding (FSW) is a relatively new process being applied for joining of metal alloys. The process was initially developed by The Welding Institute (TWI) in Cambridge, UK. The FSW process is being investigated at NASA/MSEC as a repair/initial weld procedure for fabrication of the super-light-weight aluminum-lithium shuttle external tank. The FSW investigations at MSFC were conducted on a horizontal mill to produce butt welds of flat plate material. The weldment plates are butted together and fixed to a backing plate on the mill bed. A pin tool is placed into the tool holder of the mill spindle and rotated at approximately 400 rpm. The pin tool is then plunged into the plates such that the center of the probe lies at, one end of the line of contact, between the plates and the shoulder of the pin tool penetrates the top surface of the weldment. The weld is produced by traversing the tool along the line of contact between the plates. A lead angle allows the leading edge of the shoulder to remain above the top surface of the plate. The work presented here is the first attempt at modeling a complex phenomenon. The mechanical aspects of conducting the weld process are easily defined and the process itself is controlled by relatively few input parameters. However, in the region of the weld, plasticizing and forging of the parent material occurs. These are difficult processes to model. The model presented here addresses only variations in the radial dimension outward from the pin tool axis. Examinations of the grain structure of the weld reveal that a considerable amount of material deformation also occurs in the direction parallel to the pin tool axis of rotation, through the material thickness. In addition, measurements of the axial load on the pin tool demonstrate that the forging affect of the pin tool shoulder is an important process phenomenon. Therefore, the model needs to be expanded to account for the deformations through the material thickness and the forging affect of the shoulder. The energy balance at the boundary of the plastic region with the environment required that energy flow away from the boundary in both radial directions. One resolution to this problem may be to introduce a time dependency into the process model, allowing the energy flow to oscillate across this boundary. Finally, experimental measurements are needed to verify the concepts used here and to aid in improving the model.
2195 Aluminum-Copper-Lithium Friction Plug Welding Development
NASA Technical Reports Server (NTRS)
Takeshita, Rike P.; Hartley, Paula J.; Baker, Kent S.
1997-01-01
Technology developments and applications of friction plug welding is presented. This friction repair welding technology is being studied for implementation on the Space Transportation System's Super Light Weight External Tank. Single plug repairs will be used on a vast majority of weld defects, however, linear defects of up to several inches can be repaired by overlapping plug welds. Methods and results of tensile, bend, simulated service, surface crack tension and other tests at room and cryogenic temperatures is discussed. Attempts to implement Friction Plug Welding has led to both tool and process changes in an attempt to minimize expansive tooling and lengthy implementation times. Process control equipment and data storage methods intended for large scale production will also be addressed. Benefits include increased strength and toughness, decreased weld repair time, automated and highly reliable process, and a lower probability of having to re-repair defect locations.
Study of gas tungsten arc welding procedures for tantalum alloy T-111 (Ta-8 W-2Hf) plate
NASA Technical Reports Server (NTRS)
Gold, R. E.; Kesterson, R. L.
1973-01-01
Methods of eliminating or reducing underbread cracking in multipass GTA welds in thick T-111 plate were studied. Single V butt welds prepared using experimental filler metal compositions and standard weld procedures resulted in only moderate success in reducing underbread cracking. Subsequent procedural changes incorporating manual welding, slower weld speeds, and three or fewer fill passes resulted in crack-free single V welds only when the filler metal was free of hafnium. The double V joint design with successive fill passes on opposite sides of the joint produced excellent welds. The quality of each weld was determined metallographically since the cracking, when present, was very slight and undetectable using standard NDT techniques. Tensile and bend tests were performed on selected weldments. The inherent filler metal strength and the joint geometry determined the strength of the weldment. Hardness and electron beam microprobe traverses were made on selected specimens with the result that significant filler metal-base metal dilution as well as hafnium segregation was detected. A tentative explanation of T-111 plate underbread cracking is presented based on the intrinsic effects of hafnium in the weldment.
Grinding Inside A Toroidal Cavity
NASA Technical Reports Server (NTRS)
Mayer, Walter; Adams, James F.; Burley, Richard K.
1987-01-01
Weld lines ground smooth within about 0.001 in. Grinding tool for smoothing longitudinal weld lines inside toroidal cavity includes curved tunnel jig to guide grinding "mouse" along weld line. Curvature of tunnel jig matched to shape of toroid so grinding ball in mouse follows circular arc of correct radius as mouse is pushed along tunnel. Tool enables precise control of grindout shape, yet easy to use.
Pin Load Control Applied to Retractable Pin Tool Technology and its Characterization
NASA Technical Reports Server (NTRS)
Oelgoetz, Peter A.
2000-01-01
Until the development of retractable pin tool (RPT) technology, friction stir welding (FSW) was limited to constant thickness joining of aluminum materials and the choices of keyhole elimination focused on traditional fusion and plug weld repair techniques. An invention, US Patent Number 5,893,507, "Auto-Adjustable Pin Tool for Friction Stir Welding" assigned to NASA, demonstrated an approach to resolve these serious drawbacks. This approach brings forth a technique that allows the crater, or keyhole, to be closed out automatically at the end of the weld joint without adding any additional equipment or material. Also the probe length can be varied automatically in the weld joint to compensate for material thickness changes, such as, in a tapered joint. This paper reports the effects of pin extension and retraction rates in the weld joint and its correlation to weld quality. The investigation utilized a pin load-detecting device that was integrated in the Phase 2A RPT designed by Boeing for NASA/MSFC. The RPT modification provided pin load data that was accessed and used to eliminate root side indications and determine pin manipulation rates necessary to produce consistence homogeneous joints.
Pin Load Control Applied to Retractable Pin Tool Technology and its Characterization
NASA Technical Reports Server (NTRS)
Oelgoetz, Peter
2000-01-01
Until the development of retractable pin tool (RPT) technology, friction stir welding (FSW) was limited to constant thickness joining of aluminum materials and the choices of keyhole elimination focused on traditional fusion and plug weld repair techniques. An invention, US Patent Number 5,893.507, "Auto-Adjustable Pin Tool for Friction Stir Welding" assigned to NASA, demonstrated an approach to resolve these serious drawbacks. This approach brings forth a technique that allows the crater, or keyhole, to be closed out automatically at the end of the weld joint without adding any additional equipment or material. Also the probe length can be varied automatically in the weld joint to compensate for material thickness changes, such as, in a tapered joint. This paper reports the effects of pin extension and retraction rates in the weld joint and its correlation to weld quality. The investigation utilized a pin load-detecting device that was integrated in the Phase 2A RPT designed by Boeing for NASA/MSFC. The RPT modification provided pin load data that was accessed and used to eliminate root side indications and determine pin manipulation rates necessary to produce consistence homogeneous joints.
Pin Load Control Applied to Retractable Pin Tool Technology and Its Characterization
NASA Technical Reports Server (NTRS)
Olegoetz, P.
1999-01-01
Until the development of retractable pin tool (RPT) technology, friction stir welding (FSW) was limited to constant thickness joining of aluminum materials and the choices of keyhole elimination focused on traditional fusion and plug weld repair techniques. An invention, US Patent Number 5,893,507, "Auto-Adjustable Pin Tool for Friction Stir Welding" assigned to NASA, demonstrated an approach to resolve these serious drawbacks. This approach brings forth a technique that allows the crater, or keyhole, to be closed out automatically at the end of the weld joint without adding any additional equipment or material. Also the probe length can be varied automatically in the weld joint to compensate for material thickness changes, such as, in a tapered joint. This paper reports the effects of pin extension and retraction rates in the weld joint and its correlation to weld quality. The investigation utilized a pin load-detecting device that was integrated in the Phase IIA RPT designed by Boeing for NASA/MSFC. The RPT modification provided pin load data that was accessed and used to eliminate root side indications and determine pin manipulation rates necessary to produce consistence homogeneous joints.
Multiple pass and multiple layer friction stir welding and material enhancement processes
Feng, Zhili [Knoxville, TN; David, Stan A [Knoxville, TN; Frederick, David Alan [Harriman, TN
2010-07-27
Processes for friction stir welding, typically for comparatively thick plate materials using multiple passes and multiple layers of a friction stir welding tool. In some embodiments a first portion of a fabrication preform and a second portion of the fabrication preform are placed adjacent to each other to form a joint, and there may be a groove adjacent the joint. The joint is welded and then, where a groove exists, a filler may be disposed in the groove, and the seams between the filler and the first and second portions of the fabrication preform may be friction stir welded. In some embodiments two portions of a fabrication preform are abutted to form a joint, where the joint may, for example, be a lap joint, a bevel joint or a butt joint. In some embodiments a plurality of passes of a friction stir welding tool may be used, with some passes welding from one side of a fabrication preform and other passes welding from the other side of the fabrication preform.
Emission of nanoparticles during friction stir welding (FSW) of aluminium alloys.
Gomes, J F; Miranda, R M; Santos, T J; Carvalho, P A
2014-01-01
Friction stir welding (FSW) is now well established as a welding process capable of joining some different types of metallic materials, as it was (1) found to be a reliable and economical way of producing high quality welds, and (2) considered a "clean" welding process that does not involve fusion of metal, as is the case with other traditional welding processes. The aim of this study was to determine whether the emission of particles during FSW in the nanorange of the most commonly used aluminum (Al) alloys, AA 5083 and AA 6082, originated from the Al alloy itself due to friction of the welding tool against the item that was being welded. Another goal was to measure Al alloys in the alveolar deposited surface area during FSW. Nanoparticles dimensions were predominantly in the 40- and 70-nm range. This study demonstrated that microparticles were also emitted during FSW but due to tool wear. However, the biological relevance and toxic manifestations of these microparticles remain to be determined.
NASA Astrophysics Data System (ADS)
Li, Zhengwei; Gao, Shuangsheng; Ji, Shude; Yue, Yumei; Chai, Peng
2016-04-01
Refill friction stir spot welding (RFSSW) was successfully used to weld alclad 2024 aluminum alloy with different thicknesses. Effects of tool rotational speed on the weld formation, microstructure, and mechanical properties of the RFSSW welds were mainly discussed. Results show that keyhole is successfully refilled and welding defects such as flash, annular groove, and material adhesion can be observed. A bright contrast bonding ligament is found embedded in the weld and it is thicker in the center. Defects of hook, void, lack of mixing, and incomplete refilling can be found at the thermo-mechanically affected zone/stir zone (TMAZ/SZ) interface, which can be attributed to weak metallurgical bonding effect. With increasing the tool rotational speed, thickness of the bonding ligament decreases, grains in the SZ coarsen, hardness of the SZ decreases, and lap shear load of the welds decreases. When changing the rotating speed, impact strength shows rather complicated variation trend.
NASA Technical Reports Server (NTRS)
Fragomeni, James M.
1996-01-01
In 1997, the United States [NASA] and the Paton Electric Welding Institute are scheduled to cooperate in a flight demonstration on the U.S. Space Shuttle to demonstrate the feasibility of welding in space for a possible repair option for the International Space Station Alpha. This endeavor, known as the International Space Welding Experiment (ISWE), will involve astronauts performing various welding exercises such as brazing, cutting, welding, and coating using an electron beam space welding system that was developed by the E.O. Paton Electric Welding Institute (PWI), Kiev Ukraine. This electron beam welding system known as the "Universal Weld System" consists of hand tools capable of brazing, cutting, autogeneous welding, and coating using an 8 kV (8000 volts) electron beam. The electron beam hand tools have also been developed by the Paton Welding Institute with greater capabilities than the original hand tool, including filler wire feeding, to be used with the Universal Weld System on the U.S. Space Shuttle Bay as part of ISWE. The hand tool(s) known as the Ukrainian Universal Hand [Electron Beam Welding] Tool (UHT) will be utilized for the ISWE Space Shuttle flight welding exercises to perform welding on various metal alloy samples. A total of 61 metal alloy samples, which include 304 stainless steel, Ti-6AI-4V, 2219 aluminum, and 5456 aluminum alloys, have been provided by NASA for the ISWE electron beam welding exercises using the UHT. These samples were chosen to replicate both the U.S. and Russian module materials. The ISWE requires extravehicular activity (EVA) of two astronauts to perform the space shuttle electron beam welding operations of the 61 alloy samples. This study was undertaken to determine if a hazard could exist with ISWE during the electron beam welding exercises in the Space Shuttle Bay using the Ukrainian Universal Weld System with the UHT. The safety issue has been raised with regard to molten metal detachments as a result of several possible causes such as welder procedural error, externally applied impulsive forces(s), filler wire entrainment and snap-out, cutting expulsion, and puddle expulsion. Molten metal detachment from either the weld/cut substrate or weld wire could present harm to a astronaut in the space environment it the detachment was ti burn through the fabric of the astronaut Extravehicular Mobility Unit (EMC). In this paper an experimental test was performed in a 4 ft. x 4 ft. vacuum chamber at MSFC enabling protective garment to be exposed to the molten metal drop detachments to over 12 inches. The chamber was evacuated to vacuum levels of at least 1 x 10(exp -5) torr (50 micro-torr) during operation of the 1.0 kW Universal Hand Tool (UHT). The UHT was manually operated at the power mode appropriate for each material and thickness. The space suit protective welding garment, made of Teflon fabric (10 oz. per yard) with a plain weave, was placed on the floor of the vacuum chamber to catch the molten metal drop detachments. A pendulum release mechanism consisting of four hammers, each weighing approximately 3.65 lbs, was used to apply an impact forces to the weld sample/plate during both the electron beam welding and cutting exercises. Measurements were made of the horizontal fling distances of the detached molten metal drops. The volume of a molten metal drop can also be estimated from the size of the cut. Utilizing equations, calculations were made to determine chande in surafec area (Delat a(surface)) for 304 stainless steel for cutting based on measurements of metal drop sizes at the cut edges. For the cut sample of 304 stainless steel based on measurement of the drop size at the edge, Delta-a(surface) was determined to be 0.0054 2 in . Calculations have indicated only a small amount of energy is required to detach a liquid metal drop. For example, approximately only 0.000005 ft-lb of energy is necessary to detach a liquid metal steel drop based on the above theoretical analysis. However, some of the energy will be absorbed by the plate before it reaches the metal drop. Based on the theoretical calculations, it was determined that during a weld cutting exercise, the titanium alloy would be the most difficult to detach molten metal droplets followed by stainless steel and then by aluminum. The results of the experimental effort have shown that molten metal will detach if large enough of a hammer blow is applied to the weld sample plate during the full penetration welding and cutting exercises. However, no molten metal detachments occurred as a result of the filler wire snap-out tests from the weld puddle since it was too difficult to cause the metal to flick-out from the pool. Molten metal detachments, though not large in size, did result from the direct application of the electron beam on the end of the filler weld wire.
Anzehaee, Mohammad Mousavi; Haeri, Mohammad
2011-07-01
New estimators are designed based on the modified force balance model to estimate the detaching droplet size, detached droplet size, and mean value of droplet detachment frequency in a gas metal arc welding process. The proper droplet size for the process to be in the projected spray transfer mode is determined based on the modified force balance model and the designed estimators. Finally, the droplet size and the melting rate are controlled using two proportional-integral (PI) controllers to achieve high weld quality by retaining the transfer mode and generating appropriate signals as inputs of the weld geometry control loop. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Understanding Friction Stir Welding
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.
2018-01-01
This Technical Memorandum explains the friction stir welding process in terms of two basic concepts: the concentration of deformation in a shear surface enveloping the tool and the composition of the overall plastic flow field around the tool from simple flow field components. It is demonstrated how weld structure may be understood and torque, drag, and lateral tool forces may be estimated using these concepts. Some discrepancies between computations and accompanying empirical data are discussed in the text. This work is intended to be helpful to engineers in diagnosing problems and advancing technology.
NASA Astrophysics Data System (ADS)
Mirakhorli, Fatemeh; Cao, Xinjin; Pham, Xuan-Tan; Wanjara, Priti; Fihey, Jean-Luc
2016-07-01
Cast CA6NM martensitic stainless steel plates, 10 mm in thickness, were welded using hybrid laser-arc welding. The effect of different welding speeds on the as-welded joint integrity was characterized in terms of the weld bead geometry, defects, microstructure, hardness, ultimate tensile strength, and impact energy. Significant defects such as porosity, root humping, underfill, and excessive penetration were observed at a low welding speed (0.5 m/min). However, the underfill depth and excessive penetration in the joints manufactured at welding speeds above 0.75 m/min met the specifications of ISO 12932. Characterization of the as-welded microstructure revealed untempered martensite and residual delta ferrite dispersed at prior-austenite grain boundaries in the fusion zone. In addition, four different heat-affected zones in the weldments were differentiated through hardness mapping and inference from the Fe-Cr-Ni ternary phase diagram. The tensile fracture occurred in the base metal for all the samples and fractographic analysis showed that the crack path is within the martensite matrix, along primary delta ferrite-martensite interfaces and within the primary delta ferrite. Additionally, Charpy impact testing demonstrated slightly higher fracture energy values and deeper dimples on the fracture surface of the welds manufactured at higher welding speeds due to grain refinement and/or lower porosity.
Friction stir weld tools having fine grain structure
Grant, Glenn J.; Frye, John G.; Kim, Jin Yong; Lavender, Curt A.; Weil, Kenneth Scott
2016-03-15
Tools for friction stir welding can be made with fewer process steps, lower cost techniques, and/or lower cost ingredients than other state-of-the-art processes by utilizing improved compositions and processes of fabrication. Furthermore, the tools resulting from the improved compositions and processes of fabrication can exhibit better distribution and homogeneity of chemical constituents, greater strength, and/or increased durability. In one example, a friction stir weld tool includes tungsten and rhenium and is characterized by carbide and oxide dispersoids, by carbide particulates, and by grains that comprise a solid solution of the tungsten and rhenium. The grains do not exceed 10 micrometers in diameter.
Auto-adjustable pin tool for friction stir welding
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey (Inventor); Oelgoetz, Peter A. (Inventor)
1999-01-01
An auto-adjusting pin tool for friction stir welding is presented wherein the pin tool automatically adjusts for welding materials of varying thicknesses, and the pin can be incrementally withdrawn from the workpieces thus eliminating any crater or keyhole in the weld. The inventive apparatus is comprised of a welding head housing a motor connected to a controller instrument package and an arbor supported by bearings. The arbor forms an interior cylinder and is encircled by a stationary slip ring though which are ported hydraulic passageways into the interior cylinder of the arbor such that a piston housed therein may be moved axially. Coupled to the piston is a pin tool which is treaded on its lower end and which is moveably seated in, and extending through, a shoulder housing having concave lower face. When welding, the rotating treaded end of the pin enters and stirs the workpieces while the lower face of the shoulder housing compacts the workpieces. As the welding head traverses the shoulder housing the controller senses any rising pressure on the lower face of the shoulder housing and withdraws the arbor to keep the pressure constant. At the same time, the piston moves towards the workpieces thus extending the pin further from the shoulder. This keeps the pin at a proper depth in the workpieces regardless of their thicknesses. As the weld terminates this same operation can be used to incrementally withdraw the pin during the final part of the traverse, thus eliminating any keyhole or crater that would otherwise be created.
ERIC Educational Resources Information Center
Lehigh County Area Vocational-Technical School, Schnecksville, PA.
This curriculum guide provides materials for a 12-unit secondary course in welding. Purpose stated for the flexible entry and exit course is to help students master manipulative skills to develop successful welding techniques and to gain an understanding of the specialized tools and equipment used in the welding field. Units cover oxyacetylene…
Real-Time Measurement of Width and Height of Weld Beads in GMAW Processes.
Pinto-Lopera, Jesús Emilio; S T Motta, José Mauricio; Absi Alfaro, Sadek Crisostomo
2016-09-15
Associated to the weld quality, the weld bead geometry is one of the most important parameters in welding processes. It is a significant requirement in a welding project, especially in automatic welding systems where a specific width, height, or penetration of weld bead is needed. This paper presents a novel technique for real-time measuring of the width and height of weld beads in gas metal arc welding (GMAW) using a single high-speed camera and a long-pass optical filter in a passive vision system. The measuring method is based on digital image processing techniques and the image calibration process is based on projective transformations. The measurement process takes less than 3 milliseconds per image, which allows a transfer rate of more than 300 frames per second. The proposed methodology can be used in any metal transfer mode of a gas metal arc welding process and does not have occlusion problems. The responses of the measurement system, presented here, are in a good agreement with off-line data collected by a common laser-based 3D scanner. Each measurement is compare using a statistical Welch's t-test of the null hypothesis, which, in any case, does not exceed the threshold of significance level α = 0.01, validating the results and the performance of the proposed vision system.
Welding technology transfer task/laser based weld joint tracking system for compressor girth welds
NASA Technical Reports Server (NTRS)
Looney, Alan
1991-01-01
Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.
NASA Astrophysics Data System (ADS)
Constantin, M. A.; Boșneag, A.; Nitu, E.; Iordache, M.
2017-10-01
Welding copper and its alloys is usually difficult to join by conventional fusion welding processes because of high thermal diffusivity of the copper, alloying elements, necessity of using a shielding gas and a clean surface. To overcome this inconvenience, Friction Stir Welding (FSW), a solid state joining process that relies on frictional heating and plastic deformation, is used as a feasible welding process. In order to achieve an increased welding speed and a reduction in tool wear, this process is assisted by another one (WIG) which generates and adds heat to the process. The aim of this paper is to identify the influence of the additional heat on the process parameters and on the welding joint properties (distribution of the temperature, hardness and roughness). The research includes two experiments for the FSW process and one experiment for tungsten inert gas assisted FSW process. The outcomes of the investigation are compared and analysed for both welding variants. Adding a supplementary heat source, the plates are preheated and are obtain some advantages such as reduced forces used in process and FSW tool wear, faster and better plasticization of the material, increased welding speed and a proper weld quality.
Study on Surface Depression of Ti-6Al-4V with Ultrahigh-Frequency Pulsed Gas Tungsten Arc Welding
NASA Astrophysics Data System (ADS)
Mingxuan, Yang; Zhou, Yang; Bojin, Qi
2015-08-01
Molten pool surface depression was observed with the arc welding process that was caused by arc pressure. It was supposed to have a significant effect on fluid in the molten pool that was important for the microstructure and joint properties. The impact of arc force was recognized as the reason for the surface depression during arc welding. The mathematical distribution of arc force was produced with the exponent and parabola models. Different models showed different concentrations and attenuations. The comparison between them was discussed with the simulation results. The volume of fluid method was picked up with the arc force distribution model. The surface depression was caused by the arc force. The geometry of the surface depression was discussed with liquid metal properties. The welding process was carried out with different pulsed frequencies. The results indicated the forced depression exists in molten pool and the geometry of depression was hugely due to the arc force distribution. The previous work calculated the depression in the center with force balance at one point. The other area of gas shielding was resistant by the reverse gravity from the feedback of liquid metal that was squeezed out. The article discusses the pressure effect with free deformation that allowed resistance of liquid and was easy to compare with different distributions. The curve profiles were studied with the arc force distributions, and exponent model was supposed to be more accurate to the as-weld condition.
Absorbed Dose Determination Using Experimental and Analytical Predictions of X-Ray Spectra
NASA Technical Reports Server (NTRS)
Edwards, D. L.; Carruth, Ralph (Technical Monitor)
2001-01-01
Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the U.S. Space Shuttle. This series of experiments was named the international space welding experiment (ISWE). The hardware associated with the ISWE was leased to NASA by the Paton Welding Institute (PWI) in Ukraine for ground-based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used thermoluminescence dosimeters (TLD's) shielded with material currently used by astronauts during extravehicular activities to measure the radiation dose. The TLD's were exposed to x-ray radiation generated by operation of the ISWE in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure, then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the ISWE in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in agreement with the measured TLD values.
NASA Technical Reports Server (NTRS)
Edwards, David L.
1999-01-01
In-vacuum electron beam welding is a technology that NASA considered as a joining technique for manufacture of space structures. The interaction of energetic electrons with metal produces x-rays. The radiation exposure to astronauts performing the in-vacuum electron beam welding must be characterized and minimized to insure safe operating conditions. This investigation characterized the x-ray environment due to operation of an in-vacuum electron beam welding tool. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the United States Space Shuttle. This series of experiments was named the International Space Welding Experiment (ISWE). The hardware associated with the ISWE was leased to NASA, by the Paton Welding Institute (PWI) in Ukraine, for ground based welding experiments in preparation for flight. Two tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests consisted of Thermoluminescence Dosimeters (TLD's) shielded with material currently used by astronauts during Extra Vehicular Activities (EVA) and exposed to x-ray radiation generated by operation of an in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x-rays of energy less than 10 KeV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by electron impact with metal. These x-ray spectra were used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in good agreement with the TLD values.
Development of Real Time Ultrasonic Imaging
1999-01-01
piezoelectric material known as poly vinyl difluoride ( PVDF ) which enables the conversion of mechanical energy to charge the CCD chip. The system...geometries such as curved (wing) surfaces. Other future applications might include heavy gauge welds in plate, corrosion in piping, welds in piping...Harrison, G. "A Novel High Speed, High Resolution Ultrasound Imaging System", QNDE Review of Progress In Quantitative NDE, Plenum Press, Volume 17B, pp
ERIC Educational Resources Information Center
Genits, Joseph C.
This guide is intended for use in helping students gain a fundamental background on the major aspects of the welding trade. The course emphasis is on mastery of the manipulative skills necessary to develop successful welding techniques and on acquisition of an understanding of the specialized tools and equipment used in welding. The first part…
Friction-Stir Welding of Aluminum For the Space Program
NASA Technical Reports Server (NTRS)
Jones, Clyde S.; Smelser, Jerry W. (Technical Monitor)
2002-01-01
The Marshall Space Flight Center is developing and characterizing the friction stir welding process for the Space Shuttle and other space programs. This revolutionary process, invented and patented by The Weld Institute in England, offers tremendous advantages for joining aluminum for high performance applications. It is particularly suited for advanced aluminum-lithium alloys, such as 2195, the primary structural alloy used in the External Tank. The friction stir welding process joins metals with minimal heat input, resulting in high-strength joints with high ductility. It is a simple process to demonstrate using a common milling machine for sample parts, but relatively expensive to implement on large-scale hardware, due to the high cost of tooling needed to handle the high forging pressures characteristic of the process. Recent developments at the Marshall Space Flight Center have demonstrated friction stir welding on linear joints up to 5 meters (15 ft.), with material thickness ranging between 2.5 mm and 16.5 mm (0.100" to 0.650"). High efficiency weld joints have been produced in aluminum from the 2000, 5000, and 6000 series alloy systems. A "retractable pin tool" system was patented by MSFC that allows use of friction stir welding for joints with changing material thickness, and with less rigid tooling than previously considered. This presentation will describe the details of alloys welded to-date and technical advances under development at MSFC. These developments could have substantial benefit to industrial applications for welding aluminum.
Numerical analysis on temperature field in single-wire flux-aided backing-submerged arc welding
NASA Astrophysics Data System (ADS)
Pu, Juan; Wu, Ming Fang; Pan, Haichao
2017-07-01
Single-wire flux-aided backing-submerged arc welding (FAB-SAW) technology has been widely used to weld thick steel plate due to its easy assembly and high heat input. The microstructure and property of welded joint are closely related to the thermal field of FAB-SAW process. In this research, the feature of thermal field for single-wire FAB-SAW was investigated. Based on the heat transfer mechanism, a three-dimensional transient model for thermal field was developed based on the influence of steel thickness, groove angle and ceramic backing. The temperature profile in single-wire FAB-SAW of D36 steel under different welding conditions was simulated by ANSYS. The characteristic of thermal field was analyzed and the influences of groove angle on temperature field for different plate thicknesses were discussed. The calculated geometries and dimensions of weld cross-section under different conditions show a good agreement with the experimental results. This newly built model can describe the thermal field accurately, which would be helpful to understanding the thermophysical mechanism of FAB-SAW and optimizing the welding process.
Investigation on the Interface Morphologies of Explosive Welding of Inconel 625 to Steel A516 Plates
NASA Astrophysics Data System (ADS)
Mousavi, S. A. A. Akbari; Zareie, H. R.
2011-01-01
The purpose of this study is to produce composite plates by explosive cladding process. This is a process in which the controlled energy of explosives is used to create a metallic bond between two similar or dissimilar materials. The welding conditions were tailored through parallel geometry route with different operational parameters. In this investigation, a two-pronged study was adopted to establish the conditions required for producing successful solid state welding: (a) Analytical calculations to determine the weldability domain or welding window; (b) Metallurgical investigations of explosive welding experiments carried out under different explosive ratios to produce both wavy and straight interfaces. The analytical calculations confirm the experimental results. Optical microscopy studies show that a transition from a smooth to wavy interface occurs with an increase in explosive ratio. SEM studies show that the interface was outlined by characteristic sharp transition between two materials.
Improving the Quality of Welding Seam of Automatic Welding of Buckets Based on TCP
NASA Astrophysics Data System (ADS)
Hu, Min
2018-02-01
Since February 2014, the welding defects of the automatic welding line of buckets have been frequently appeared. The average repair time of each bucket is 26min, which seriously affects the production efficiency and welding quality. We conducted troubleshooting, and found the main reasons for the welding defects of the buckets were the deviations of the center points of the robot tools and the poor quality of the locating welding. We corrected the gripper, welding torch, and accuracy of repeat positioning of robots to control the quality of positioning welding. The welding defect rate of buckets was reduced greatly, ensuring the production efficiency and welding quality.
NASA Technical Reports Server (NTRS)
Martukanitz, R. P.; Jan. R.
1996-01-01
Based on the potential for decreasing costs of joining stiffeners to skin by laser beam welding, a fundamental research program was conducted to address the impediments identified during an initial study involving laser beam welding of aluminum-lithium alloys. Initial objectives of the program were the identification of governing mechanism responsible for process related porosity while establishing a multivariant relationship between process parameters and fusion zone geometry for laser beam welds of alloy 2195. A three-level fractional factorial experiment was conducted to establish quantitative relationships between primary laser beam processing parameters and critical weld attributes. Although process consistency appeared high for welds produced during partial completion of this study, numerous cracks on the top-surface of the welds were discovered during visual inspection and necessitated additional investigations concerning weld cracking. Two experiments were conducted to assess the effect of filler alloy additions on crack sensitivity: the first experiment was used to ascertain the effects of various filler alloys on cracking and the second experiment involved modification to process parameters for increasing filler metal dilution. Results indicated that filler alloys 4047 and 4145 showed promise for eliminating cracking.
Study of fatigue behavior of longitudinal welded pipes
NASA Astrophysics Data System (ADS)
Simion, P.; Dia, V.; Istrate, B.; Hrituleac, G.; Hrituleac, I.; Munteanu, C.
2016-08-01
During transport and storage of the various fluids, welded pipes are subjected to cyclic loading due to pressure fluctuations that often exceed the prescribed values for normal operation. These cyclic loading can significantly reduce the life of the pipes; as a result the design should be based on the fatigue strength not only on static resistance. In general the fatigue strength of pipes is dependent by strength, pipe geometry and surface quality. In case of the electric longitudinal welded pipes, the fatigue strength is significantly limited by concentration of residual stress and the size of existing defects in the weld seam. This paper presents the fatigue behaviour of the electric welded pipes by high frequency, under conditions that simulate real operating conditions pipes. Fatigue testing was performed on welded pipes made of micro alloyed carbon steels. Some of these pipes were previously subjected to a heat treatment of normalization, in order to also determine the influence of heat treatment on the fatigue strength of welded pipes. To determine and correlate the different factors affecting the fatigue strength, welded pipes were also subjected to various tests: tensile tests, impact tests, measurement of micro hardness, microstructural analysis by optical microscopy and scanning electron microscopy.
Technology of welding aluminum alloys-IV
NASA Technical Reports Server (NTRS)
Ginez, R.; Lewis, J. R.; Millett, A. U.; Saenger, K. A.; Skelly, J. K.; Standiford, V. E.; Whiteman, J. O.
1978-01-01
Skate-weld carriage and track assembly were developed for controlled fusion welding on compound-curvature surfaces. Unlike fixed-position carriage used for vertical, horizontal, and circumferential welding, carriage has suspension system that permits angular positioning of weld head on carriage. It also has carriage-and-drive track mechanism capable of traveling over compound curvatures. Carriage is designed with universal mounting platform so that slim tools, weld heads, or X-ray units can be interchanged without need for realinement.
Gimballed Shoulders for Friction Stir Welding
NASA Technical Reports Server (NTRS)
Carter, Robert; Lawless, Kirby
2008-01-01
In a proposed improvement of tooling for friction stir welding, gimballed shoulders would supplant shoulders that, heretofore, have been fixedly aligned with pins. The proposal is especially relevant to self-reacting friction stir welding. Some definitions of terms, recapitulated from related prior NASA Tech Briefs articles, are prerequisite to a meaningful description of the proposed improvement. In friction stir welding, one uses a tool that includes (1) a rotating shoulder on top (or front) of the workpiece and (2) a pin that rotates with the shoulder and protrudes from the shoulder into the depth of the workpiece. In conventional friction stir welding, the main axial force exerted by the tool on the workpiece is reacted through a ridged backing anvil under (behind) the workpiece. When conventional friction stir welding is augmented with an auto-adjustable pin-tool (APT) capability, the depth of penetration of the pin into the workpiece is varied in real time by a position- or forcecontrol system that extends or retracts the pin as needed to obtain the desired effect. In self-reacting (also known as self-reacted) friction stir welding as practiced heretofore, there are two shoulders: one on top (or front) and one on the bottom (or back) of the workpiece. In this case, a threaded shaft protrudes from the tip of the pin to beyond the back surface of the workpiece. The back shoulder is held axially in place against tension by a nut on the threaded shaft. Both shoulders rotate with the pin and remain aligned coaxially with the pin. The main axial force exerted on the workpiece by the tool and front shoulder is reacted through the back shoulder and the threaded shaft into the friction-stir-welding machine head, so that a backing anvil is no longer needed. A key transmits torque between the bottom shoulder and the threaded shaft, so that the bottom shoulder rotates with the shaft. This concludes the prerequisite definitions of terms.
Characterization of the Micro Textures in a Friction Stir Weld
NASA Technical Reports Server (NTRS)
Schneider, Judy; Nunes, Arthur C.
2004-01-01
In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. The Dynamically-Recrystallized-Zone (DXZ) of a polished and etched FSW cross-section exhibits contrasting bands (the "onion-ring" structure), the origins of which are unclear. An orientation image mapping (OIM) study suggests that the corresponding bands may correspond respectively to a "straight-through" current of metal bypassing the pin tool in a single rotation or less and a "maelstrom" current rotating a number of times around the pin tool.
Upgrading weld quality of a friction stir welded aluminum alloys AMG6
NASA Astrophysics Data System (ADS)
Chernykh, I. K.; Vasil'ev, E. V.; Matuzko, E. N.; Krivonos, E. V.
2018-01-01
In the course of introduction of FSW technology into the industry there is a keen interest in this process; there are issues such as how does joining take place, what is the structure of the joint, and where there are dangerous zones. The objective of this research is to obtain information about the structure of the joint, what are the temperatures that arise during the joining, what strength is apply to the tool when joining the material, what tensile strength of joint, and where fracture tended to occur. Specimens were produced at different modes of welding at a tool rotation speed of 315 to 625 rpm and tool travel speed of 40 to 125 mm/min. During the experiment, the strength applied to the tool was measured, which reached 800016000 N (Fz) and 400-1400 N (Fx) and the temperature on the surface of the tool, which is in the range 250-400°C. Before the welding process the tool was heated to a temperature in the range of 100-250 degrees, but the tensile strength is not had a tangible impact. The tensile strength is about 80 % of that of the aluminum alloy base metal tensile strength, and fracture tended is occur not at the line of joint but follow the shape of the tool. In the transverse cross section of a FSW material there is a microstructural regions such as weld nugget, thermomechanically affected zone and heat-affected zone with parent material.
Computed Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.
2005-01-01
In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and is carried with the macro-flow of the weld metal. By using CT images, a 3-dimensional (3D) image of the lead flow pattern can be reconstructed. CT imaging was found to be a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.
Computer Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.
2004-01-01
In friction stir welding, a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. This solid-state technique has been successfully used in the joining of materials that are difficult to fusion weld such as aluminum alloys. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and thus tracks the aluminum deformation flow paths in a unique 3-dimensional manner. CT scanning is a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.
NASA Astrophysics Data System (ADS)
Khodadadi, Ali; Shamanian, Morteza; Karimzadeh, Fathallah
2017-05-01
In the present study, St37 low-carbon steel and 304 stainless steel were welded successfully, with the thickness of 2 mm, by a friction stir spot welding process carried out at the tool dwell time of 6 s and two different tool rotational speeds of 630 and 1250 rpm. Metallographic examinations revealed four different zones including SZ and HAZ areas of St37 steel and SZ and TMAZ regions of 304 stainless steel in the weld nugget, except the base metals. X-ray diffraction and energy-dispersive x-ray spectroscopy experiments were used to investigate the possible formation of such phases as chromium carbide. Based on these experiments, no chromium carbide precipitation was found. The recrystallization of the weld nugget in the 304 steel and the phase transformations of the weld regions in the St37 steel enhanced the hardness of the weld joint. Hardness changes of joint were acceptable and approximately uniform, as compared to the resistance spot weld. In this research, it was also observed that the tensile/shear strength, as a crucial factor, was increased with the rise in the tool rotational speed. The bond length along the interface between metals, as an effective parameter to increase the tensile/shear strength, was also determined. At higher tool rotational speeds, the bond length was found to be improved, resulting in the tensile/shear strength of 6682 N. Finally, two fracture modes were specified through the fracture mode analysis of samples obtained from the tensile/shear test consisting of the shear fracture mode and the mixed shear/tensile fracture mode.
Gas Metal Arc Welding and Flux-Cored Arc Welding. Teacher Edition. Second Edition.
ERIC Educational Resources Information Center
Fortney, Clarence; Gregory, Mike
These instructional materials are designed to improve instruction in Gas Metal Arc Welding (GMAW) and Flux-Cored Arc Welding (FCAW). The following introductory information is included: use of this publication; competency profile; instructional/task analysis; related academic and workplace skills list; tools, materials, and equipment list; and…
Vocational English as a Second Language for Welding.
ERIC Educational Resources Information Center
Gujral, Liveleen K.; And Others
This curriculum is designed to for use with adult refugees studying welding. The first portion of the guide includes 21 lessons in which students are given the opportunity to develop aural comprehension and reading skills while studying such topics as body parts and clothing, safety, welding tools, arc and gas welding, fractions and measurements,…
Introduction to Construction Welding. Instructor Edition. Introduction to Construction Series.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This instructor's guide contains the materials required to teach a competency-based introductory course in construction welding to students who have chosen to explore careers in construction. It contains three units: welding materials, welding tools, and applied skills. Each instructional unit includes some or all of the basic components of a unit…
Thermographic Analysis of Stress Distribution in Welded Joints
NASA Astrophysics Data System (ADS)
Piršić, T.; Krstulović Opara, L.; Domazet, Ž.
2010-06-01
The fatigue life prediction of welded joints based on S-N curves in conjunction with nominal stresses generally is not reliable. Stress distribution in welded area affected by geometrical inhomogeneity, irregular welded surface and weld toe radius is quite complex, so the local (structural) stress concept is accepted in recent papers. The aim of this paper is to determine the stress distribution in plate type aluminum welded joints, to analyze the reliability of TSA (Thermal Stress Analysis) in this kind of investigations, and to obtain numerical values for stress concentration factors for practical use. Stress distribution in aluminum butt and fillet welded joints is determined by using the three different methods: strain gauges measurement, thermal stress analysis and FEM. Obtained results show good agreement - the TSA mutually confirmed the FEM model and stresses measured by strain gauges. According to obtained results, it may be stated that TSA, as a relatively new measurement technique may in the future become a standard tool for the experimental investigation of stress concentration and fatigue in welded joints that can help to develop more accurate numerical tools for fatigue life prediction.
Cutting Tool For Shaving Weld Beads
NASA Technical Reports Server (NTRS)
Hoffman, David S.; Mcferrin, David C.; Daniel, Ronald L., Jr.; Coby, John B., Jr.; Dawson, Sidney G.
1995-01-01
Cutting tool proposed for use in shaving weld beads flush with adjacent surfaces of weldments. Modified version of commercial pneumatically driven rotary cutting tool, cutting wheel of which turns at speeds sufficient for machining nickel alloys, titanium, and stainless steels. Equipped with forward-mounted handle and rear-mounted skid plate to maximize control and reduce dependence on skill of technician.
Weldability of extruded aluminum-alumina composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gedeon, S.A.; Lane, C.; Altshuller, B.
1994-12-31
Acceptable procedure were developed for welding the following types of aluminum particle-reinforced aluminum: 6061/Al{sub 2}O{sub 3}/10p-T6, 6061/Al{sub x}/O{sub 3}20p-T6, and 7005Al{sub 2}O{sub 3}/10p-T6,. Automated and manual procedures were developed and using both gas tungsten arc welding (GTAW), with a cold wire feed, and gas metal arc welding (GMAW). The effect of welding procedures on porosity, reinforcing particulate distribution, and mechanical properties was determined. Postweld heat treatment and microhardness testing were used to understand the effect of the welded microstructure on the strength and ductility of the joint. Fracture surfaces and transverse microsections of mechanical test specimens were examined to determinemore » the origins and mechanisms of failure. Cleanliness of the joint and weld wire were found to be essential to eliminate porosity. Based on these experimentally determined data, general guidelines for welding aluminum oxide particle-reinforced aluminum composites are proposed. Discussion includes proper selection of weld joint geometry, filler metals, travel speed, voltage, and current ranges. These parameters are compared to those used in an actual production environment for composite products. Distinctions between welding these composites and others produced via powder metallurgy or with silicon carbide reinforcements are also discussed.« less
NASA Astrophysics Data System (ADS)
Ahiale, Godwin Kwame; Oh, Yong-Jun; Choi, Won-Doo; Lee, Kwang-Bok; Jung, Jae-Gyu; Nam, Soo Woo
2013-09-01
This study presents the microstructure and high cycle fatigue performance of lap shear joints of dual phase steel (DP590) welded using gas metal arc welding (GMAW) and plasma arc welding (PAW) processes. High cycle fatigue tests were conducted on single and double lap joints under a load ratio of 0.1 and a frequency of 20 Hz. In order to establish a basis for comparison, both weldments were fabricated to have the same weld depth in the plate thickness. The PAW specimens exhibited a higher fatigue life, a gentle S-N slope, and a higher fatigue limit than the GMAW specimens. The improvement in the fatigue life of the PAW specimens was primarily attributed to the geometry effect that exhibited lower and wider beads resulting in a lower stress concentration at the weld toe where cracks initiate and propagate. Furthermore, the microstructural constituents in the heat-affected zone (HAZ) of the PAW specimens contributed to the improvement. The higher volume fraction of acicular ferrite in the HAZ beneath the weld toe enhanced the PAW specimen's resistance to fatigue crack growth. The double lap joints displayed a higher fatigue life than the single lap joints without changing the S-N slope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denys, R.M.; Martin, J.T.
1995-02-01
Modern pipeline standards contain alternative methodologies for determining the acceptable defect size in pipeline welds. Through the use of fracture mechanics and plastic collapse assessments, the mechanical and toughness properties of the defective region relate to the applied stress at the defect and defect geometry. The assumptions made in these methodologies are not always representative of the situation accurring in pipeline girth welds. To determine the effect of the various input parameters on acceptable defect size, The Welding Supervisory Committee of the American Gas Association commenced in 1990, in collaboration with the Laboratorium Soete of the University Gent, Belgium, amore » series of small scale (Charpy V impact and CTOD) and large scale (fatigue pre-cracked wide plate) tests. All the experimental investigations were intended to evaluate the effects of weld metal mis-match, temperature, defect size, defect type, defect interaction, pipe wall thickness and yield to tensile ratio on girth weld fracture behaviour. The aim of this report was to determine how weld metal yield strength overmatching or undermatching influences girth weld defect size prediction. A further analysis was conducted using the newly revised PD6493:1991 to provide a critical analysis with the objective of explaining the behaviour of the wide plate tests.« less
NASA Astrophysics Data System (ADS)
Correa, Nekane; Vadillo, Ernesto G.; Santamaria, Javier; Blanco-Lorenzo, Julio
2018-01-01
This study investigates the influence on the wheel-rail contact forces of the running speed and the shape and position of weld defects along the track. For this purpose, a vertical dynamic model in the space domain is used. The model is obtained from the transformation between the domains of frequency and space using a Rational Fraction Polynomials (RFP) method, which is modified with multiobjective genetic algorithms in order to improve the fitting of track receptance and to assist integration during simulations. This produces a precise model with short calculation times, which is essential to this study. The wheel-rail contact is modelled using a non-linear Hertz spring. The contact forces are studied for several types of characteristic welds. The way in which forces vary as a function of weld position and running speed is studied for each type of weld. This paper studies some of the factors that affect the maximum forces when the vehicle moves over a rail weld, such as weld geometry, parametric excitation and contact stiffness. It is found that the maximum force in the wheel-rail contact when the vehicle moves over a weld is not always proportional to the running speed. The paper explains why it is not proportional in specific welds.
Araque, Oscar; Arzola, Nelson; Hernández, Edgar
2018-04-12
This research deals with the fatigue behavior of butt-welded joints, by considering the geometry and post-welding cooling cycles, as a result of cooling in quiet air and immersed in water. ASTM A-36 HR structural steel was used as the base metal for the shielded metal arc welding (SMAW) process with welding electrode E6013. The welding reinforcement was 1 mm and 3 mm, respectively; axial fatigue tests were carried out to determine the life and behavior in cracks propagation of the tested welded joints, mechanical characterization tests of properties in welded joints such as microhardness, Charpy impact test and metallographic analysis were carried out. The latter were used as input for the analysis by finite elements which influence the initiation and propagation of cracks and the evaluation of stress intensity factors (SIF). The latter led to obtaining the crack propagation rate and the geometric factor. The tested specimens were analyzed, by taking photographs of the cracks at its beginning in order to make a count of the marks at the origin of the crack. From the results obtained and the marks count, the fatigue crack growth rate and the influence of the cooling media on the life of the welded joint are validated, according to the experimental results. It can be concluded that the welded joints with a higher weld reinforcement have a shorter fatigue life. This is due to the stress concentration that occurs in the vicinity of the weld toe.
Arzola, Nelson; Hernández, Edgar
2018-01-01
This research deals with the fatigue behavior of butt-welded joints, by considering the geometry and post-welding cooling cycles, as a result of cooling in quiet air and immersed in water. ASTM A-36 HR structural steel was used as the base metal for the shielded metal arc welding (SMAW) process with welding electrode E6013. The welding reinforcement was 1 mm and 3 mm, respectively; axial fatigue tests were carried out to determine the life and behavior in cracks propagation of the tested welded joints, mechanical characterization tests of properties in welded joints such as microhardness, Charpy impact test and metallographic analysis were carried out. The latter were used as input for the analysis by finite elements which influence the initiation and propagation of cracks and the evaluation of stress intensity factors (SIF). The latter led to obtaining the crack propagation rate and the geometric factor. The tested specimens were analyzed, by taking photographs of the cracks at its beginning in order to make a count of the marks at the origin of the crack. From the results obtained and the marks count, the fatigue crack growth rate and the influence of the cooling media on the life of the welded joint are validated, according to the experimental results. It can be concluded that the welded joints with a higher weld reinforcement have a shorter fatigue life. This is due to the stress concentration that occurs in the vicinity of the weld toe. PMID:29649117
Force measurement-based discontinuity detection during friction stir welding
Shrivastava, Amber; Zinn, Michael; Duffie, Neil A.; ...
2017-02-23
Here, the objective of this work is to develop a method for detecting the creation of discontinuities ( i.e., voids, volume defects) during friction stir welding. Friction stir welding is inherently cost effective, however, the need for significant weld inspection can make the process cost prohibitive. A new approach to weld inspection is required in which an in situ characterization of weld quality can be obtained, reducing the need for postprocess inspection. To this end, friction stir welds with subsurface voids and without voids were created. The subsurface voids were generated by reducing the friction stir tool rotation frequency andmore » increasing the tool traverse speed in order to create “colder” welds. Process forces were measured during welding, and the void sizes were measured postprocess by computerized tomography ( i.e., 3D X-ray imaging). Two parameters, based on frequency domain content and time-domain average of the force signals, were found to be correlated with void size. Criteria for subsurface void detection and size prediction were developed and shown to be in good agreement with experimental observations. Furthermore, with the proper choice of data acquisition system and frequency analyzer the occurrence of subsurface voids can be detected in real time.« less
Force measurement-based discontinuity detection during friction stir welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, Amber; Zinn, Michael; Duffie, Neil A.
Here, the objective of this work is to develop a method for detecting the creation of discontinuities ( i.e., voids, volume defects) during friction stir welding. Friction stir welding is inherently cost effective, however, the need for significant weld inspection can make the process cost prohibitive. A new approach to weld inspection is required in which an in situ characterization of weld quality can be obtained, reducing the need for postprocess inspection. To this end, friction stir welds with subsurface voids and without voids were created. The subsurface voids were generated by reducing the friction stir tool rotation frequency andmore » increasing the tool traverse speed in order to create “colder” welds. Process forces were measured during welding, and the void sizes were measured postprocess by computerized tomography ( i.e., 3D X-ray imaging). Two parameters, based on frequency domain content and time-domain average of the force signals, were found to be correlated with void size. Criteria for subsurface void detection and size prediction were developed and shown to be in good agreement with experimental observations. Furthermore, with the proper choice of data acquisition system and frequency analyzer the occurrence of subsurface voids can be detected in real time.« less
NASA Astrophysics Data System (ADS)
Ahn, J.; Chen, L.; Davies, C. M.; Dear, J. P.
2016-11-01
In this work thin sheets of Ti-6Al-4V were full penetration welded using a 5 kW fibre laser in order to evaluate the effectiveness of high power fibre laser as a welding processing tool for welding Ti-6Al-4V with the requirements of the aircraft industry and to determine the effect of welding parameters including laser power, welding speed and beam focal position on the weld microstructure, bead profile and weld quality. It involved establishing an understanding of the influence of welding parameters on microstructural change, welding defects, and the characteristics of heat affected zone (HAZ) and weld metal (WM) of fibre laser welded joints. The optimum range of welding parameters which produced welds without cracking and porosity were identified. The influence of the welding parameters on the weld joint heterogeneity was characterised by conducting detailed microstructural analysis.
Controlling Force and Depth in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Adams, Glynn; Loftus, Zachary; McCormac, Nathan; Venable, Richard
2005-01-01
Feedback control of the penetration force applied to a pin tool in friction stir welding has been found to be a robust and reliable means for controlling the depth of penetration of the tool. This discovery has made it possible to simplify depth control and to weld with greater repeatability, even on workpieces with long weld joints. Prior to this discovery, depths of penetration in friction stir welding were controlled by hard-tooled roller assemblies or by depth actuators controlled by feedback from such external sensors as linear variable-differential transformers or laser-based devices. These means of control are limited: A hard-tooled roller assembly confines a pin tool to a preset depth that cannot be changed easily during the welding process. A measurement by an external sensor is only an indirect indicative of the depth of penetration, and computations to correlate such a measurement with a depth of penetration are vulnerable to error. The present force-feedback approach exploits the proportionality between the depth and the force of penetration Unlike a depth measurement taken by an external sensor, a force measurement can be direct because it can be taken by a sensor coupled directly to the pin tool. The reading can be processed through a modern electronic servo control system to control an actuator to keep the applied penetration force at the desired level. In comparison with the older depth-control methods described above, this method offers greater sensitivity to plasticizing of the workpiece metal and is less sensitive to process noise, resulting in a more consistent process. In an experiment, a tapered panel was friction stir welded while controlling the force of penetration according to this method. The figure is a plot of measurements taken during the experiment, showing that force was controlled with a variation of 200 lb (890 N), resulting in control of the depth of penetration with a variation of 0.004 in. (0.1 mm).
NASA Astrophysics Data System (ADS)
Moghadam, Danial Ghahremani; Farhangdoost, Khalil; Nejad, Reza Masoudi
2016-06-01
Friction stir welding was conducted on 8-mm-thick plates made of AA2024-T351 aluminum alloy at tool traverse speeds between 8 and 31.5 mm/minutes and tool rotational speed between 400 and 800 rpm. Metallographic analyses and mechanical tests including hardness, tensile, residual stress, and fracture toughness tests were carried out to evaluate the microstructural and mechanical properties of the joints as a function of the process parameters. The finite element simulation of the FSW process was also performed using a thermal model. The hardness test results show that the increase in rotational speed or decrease in traverse speed of the tool would cause a decrease in weld zone hardness. The best tensile properties are obtained at rotational/traverse speed ratio between 20 and 32. Also, the longitudinal residual stress profiles were evaluated by employing X-ray diffraction method. The numerical and experimental results showed that the increase in a traverse or rotational speed would increase the residual stress of the weld zone. From the fracture toughness results, it was found that the welding process decreases the joints fracture toughness 18 to 49 pct with respect to the base metal.
Real-Time Measurement of Width and Height of Weld Beads in GMAW Processes
Pinto-Lopera, Jesús Emilio; S. T. Motta, José Mauricio; Absi Alfaro, Sadek Crisostomo
2016-01-01
Associated to the weld quality, the weld bead geometry is one of the most important parameters in welding processes. It is a significant requirement in a welding project, especially in automatic welding systems where a specific width, height, or penetration of weld bead is needed. This paper presents a novel technique for real-time measuring of the width and height of weld beads in gas metal arc welding (GMAW) using a single high-speed camera and a long-pass optical filter in a passive vision system. The measuring method is based on digital image processing techniques and the image calibration process is based on projective transformations. The measurement process takes less than 3 milliseconds per image, which allows a transfer rate of more than 300 frames per second. The proposed methodology can be used in any metal transfer mode of a gas metal arc welding process and does not have occlusion problems. The responses of the measurement system, presented here, are in a good agreement with off-line data collected by a common laser-based 3D scanner. Each measurement is compare using a statistical Welch’s t-test of the null hypothesis, which, in any case, does not exceed the threshold of significance level α = 0.01, validating the results and the performance of the proposed vision system. PMID:27649198
Manufacturing Challenges Associated with the Use of Metal Matrix Composites in Aerospace Structures
NASA Technical Reports Server (NTRS)
Prater, Tracie
2014-01-01
Metal Matrix Composites (MMCs) consist of a metal alloy reinforced with ceramic particles or fibers. These materials possess a very high strength to weight ratio, good resistance to impact and wear, and a number of other properties which make them attractive for use in aerospace and defense applications. MMCs have found use in the space shuttle orbiter's structural tubing, the Hubble Space Telescope's antenna mast, control surfaces and propulsion systems for aircraft, and tank armors. The size of MMC components is severely limited by difficulties encountered in joining these materials using fusion welding. Melting of the material results in formation of an undesirable phase (formed when molten Aluminum reacts with the reinforcement) which leaves a strength depleted region along the joint line. Friction Stir Welding (FSW) is a relatively nascent solid state joining technique developed at The Welding Institute (TWI) in 1991. The process was first used at NASA to weld the super lightweight external tank for the Space Shuttle. Today FSW is used to join structural components of the Delta IV, Atlas V, and Falcon IX rockets as well as NASA's Orion Crew Exploration Vehicle and Space Launch System. A current focus of FSW research is to extend the process to new materials, such as MMCs, which are difficult to weld using conventional fusion techniques. Since Friction Stir Welding occurs below the melting point of the workpiece material, this deleterious phase is absent in FSW-ed MMC joints. FSW of MMCs is, however, plagued by rapid wear of the welding tool, a consequence of the large discrepancy in hardness between the steel tool and the reinforcement material. This chapter summarizes the challenges encountered when joining MMCs to themselves or to other materials in structures. Specific attention is paid to the influence of process variables in Friction Stir Welding on the wear process characterizes the effect of process parameters (spindle speed, traverse rate, and length of joint) on the wear process. A phenomenological model of the wear process was constructed based on the rotating plug model of Friction Stir Welding. The effectiveness of harder tool materials (such as Tungsten Carbide, high speed steel, and tools with diamond coatings) to combat abrasive wear is also explored. In-process force, torque, and vibration signals are analyzed to assess the feasibility of in situ monitoring of tool shape changes as a result of wear (an advancement which would eliminate the need for off-line evaluation of tool condition during joining). Monitoring, controlling, and reducing tool wear in FSW of MMCs is essential to implementation of these materials in structures (such as launch vehicles) where they would be of maximum benefit. The work presented here is extendable to machining of MMCs, where wear of the tool is also a limiting factor.
NASA Astrophysics Data System (ADS)
Karwande, Amit H.; Rao, Seeram Srinivasa
2018-04-01
Friction stir welding (FSW) a welding process in which metals are joint by melting them at their solid state. In different engineering areas such as civil, mechanical, naval and aeronautical engineering beams are widely used of the magnesium alloys for different applications and that are joined by conventional inert gas welding process. Magnesium metal has less density and low melting point for that reason large heat generation in the common welding process so its necessity to adapt new welding process. FSW process increases the weld quality which observed under various mechanical testing by using different tool size.
NASA Astrophysics Data System (ADS)
Almoussawi, M.; Smith, A. J.
2018-05-01
Poly Crystalline Boron Nitride (PCBN) tool wear during the friction stir welding of high melting alloys is an obstacle to commercialize the process. This work simulates the friction stir welding process and tool wear during the plunge/dwell period of 14.8 mm EH46 thick plate steel. The Computational Fluid Dynamic (CFD) model was used for simulation and the wear of the tool is estimated from temperatures and shear stress profile on the tool surface. Two sets of tool rotational speeds were applied including 120 and 200 RPM. Seven plunge/dwell samples were prepared using PCBN FSW tool, six thermocouples were also embedded around each plunge/dwell case in order to record the temperatures during the welding process. Infinite focus microscopy technique was used to create macrographs for each case. The CFD result has been shown that a shear layer around the tool shoulder and probe-side denoted as thermo-mechanical affected zone (TMAZ) was formed and its size increase with tool rotational speed increase. Maximum peak temperature was also found to increase with tool rotational speed increase. PCBN tool wear under shoulder was found to increase with tool rotational speed increase as a result of tool's binder softening after reaching to a peak temperature exceeds 1250 °C. Tool wear also found to increase at probe-side bottom as a result of high shear stress associated with the decrease in the tool rotational speed. The amount of BN particles revealed by SEM in the TMAZ were compared with the CFD model.
Pulsed infrared thermography for assessment of ultrasonic welds
NASA Astrophysics Data System (ADS)
McGovern, Megan E.; Rinker, Teresa J.; Sekol, Ryan C.
2018-03-01
Battery packs are a critical component in electric vehicles. During pack assembly, the battery cell tab and busbar are ultrasonically welded. The properties of the welds ultimately affect battery pack durability. Quality inspection of these welds is important to ensure durable battery packs. Pack failure is detrimental economically and could also pose a safety hazard, such as thermal runaway. Ultrasonic welds are commonly checked by measuring electrical resistance or auditing using destructive mechanical testing. Resistance measurements are quick, but sensitive to set-up changes. Destructive testing cannot represent the entire weld set. It is possible for a weak weld to satisfy the electrical requirement check, because only sufficient contact between the tabs and busbar is required to yield a low resistance measurement. Laboratory techniques are often not suitable for inline inspection, as they may be time-consuming, use couplant, or are only suitable for coupons. The complex surface geometry also poses difficulties for conventional nondestructive techniques. A method for inspection of ultrasonic welds is proposed using pulsed infrared thermography to identify discrepant welds in a manufacturing environment. Thermal measurements of welds were compared to electrical and mechanical measurements. The heat source distribution was calculated to obtain thermal images with high temporal and spatial resolution. All discrepant welds were readily identifiable using two thermographic techniques: pixel counting and the gradient image. A positive relationship between pixel count and mechanical strength was observed. The results demonstrate the potential of pulsed thermography for inline inspection, which can complement, or even replace, conventional electrical resistance measurements.
Development of Weld Inspection of the Ares I Crew Launch Vehicle Upper Stage
NASA Technical Reports Server (NTRS)
Russell, Sam; Ezell, David
2010-01-01
NASA is designing a new crewed launch vehicle called Ares I to replace the Space Shuttle after its scheduled retirement in 2010. This new launch vehicle will build on the Shuttle technology in many ways including using a first stage based upon the Space Shuttle Solid Rocket Booster, advanced aluminum alloys for the second stage tanks, and friction stir welding to assemble the second stage. Friction stir welding uses a spinning pin that is inserted in the joint between two panels that are to be welded. The pin mechanically mixes the metal together below the melting temperature to form the weld. Friction stir welding allows high strength joints in metals that would otherwise lose much of their strength as they are melted during the fusion welding process. One significant change from the Space Shuttle that impacts NDE is the implementation of self-reacting friction stir welding for non-linear welds on the primary metallic structure. The self-reacting technique differs from the conventional technique because the load of the pin tool pressing down on the metal being joined is reacted by a nut on the end of the tool rather than an anvil behind the part. No spacecraft has ever flown with a self-reacting friction stir weld, so this is a major advancement in the manufacturing process, bringing with it a whole new set of challenges for NDE to overcome. The metal microstructure and possible defects are different from other weld processes. Friction plug welds will be used to close out the hole remaining in the radial welds when friction stir welded. This plug welding also has unique challenges in inspection. The current state of development of these inspections will be presented, along with other information pertinent to NDE of the Ares I.
NASA Astrophysics Data System (ADS)
DijuSamuel, G.; Raja Dhas, J. Edwin
2017-10-01
This paper focus on impact of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite. For fabrication of metal matrix composite AA6061 is used as matrix and activated carbon is used as reinforcement and it is casted using modified stir casting technique. After casting metal matrix composite has undergone various microstructure tests like SEM,EDAX and XRD. FSW is carried out in this metal matrix composite by choosing various tool pin profile like square,round,Threaded round, hexagon and taper. The quality of welded plates is measured in terms of ultimate tensile strength and hardness.
Absorbed dose determination using experimental and analytical predictions of x-ray spectra
NASA Astrophysics Data System (ADS)
Edwards, David Lee
1999-10-01
Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. The interaction of energetic electrons with metal produces x-rays. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate radiation shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the United States Space Shuttle. This series of experiments was named the International Space Welding Experiment (ISWE). The hardware associated with the ISWE was leased to NASA, by the Paton Welding Institute (PWI) in Ukraine, for ground based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used Thermoluminescence Dosimeters (TLD's) shielded with material currently used by astronauts during Extra Vehicular Activities (EVA) to measure the radiation dose. The TLD's were exposed to x- ray radiation generated by operation of the ISWE in- vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x-rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the ISWE in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in good agreement with the measured TLD values.
Increasing of the lifetime of large forging dies by repairwelding
NASA Astrophysics Data System (ADS)
Duchek, M.; Koukolikova, M.; Kotous, J.; Majer, M.
2018-02-01
Repair welding is often used for rebuilding discarded or failed forging dies. It saves the cost of new tools. Increased useful life of repaired dies is another motivation for repair welding. This article focuses on the development of new filler materials for this purpose. The main goal was to prolong the life of tools of DIN 1.2714 material. Filler wires of two chemistries were made and several samples were experimentally welded. Metallographic and tribological analyses were carried out.
Alining Large Cylinders for Welding
NASA Technical Reports Server (NTRS)
Ehl, J. H.
1985-01-01
Special tooling alines and holds internally-stiffened large-diameter cylindrical parts for welding. Alinement brackets attached to strengthening fins on insides of cylindrical tank sections. Jackscrews on brackets raised or lowered to eliminate mismatches between adjacent sections. Tooling substantially reduces costs while allowing more precise control and improved quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, B.
1994-12-31
This paper describes an elastic-plastic fracture mechanics (EPFM) study of shallow weld-toe cracks. Two limiting crack configurations, plane strain edge crack and semi-circular surface crack in fillet welded T-butt plate joint, were analyzed using the finite element method. Crack depth ranging from 2 to 40% of plate thickness were considered. The elastic-plastic analysis, assuming power-law hardening relationship and Mises yield criterion, was based on incremental plasticity theory. Tension and bending loads applied were monotonically increased to a level causing relatively large scale yielding at the crack tip. Effects of weld-notch geometry and ductile material modeling on prediction of fracture mechanicsmore » characterizing parameter were assessed. It was found that the weld-notch effect reduces and the effect of material modeling increases as crack depth increases. Material modeling is less important than geometric modeling in analysis of very shallow cracks but is more important for relatively deeper cracks, e.g. crack depth more than 20% of thickness. The effect of material modeling can be assessed using a simplified structural model. Weld magnification factors derived assuming linear elastic conditions can be applied to EPFM characterization.« less
Modeling the Formation of Transverse Weld during Billet-on-Billet Extrusion
Mahmoodkhani, Yahya; Wells, Mary; Parson, Nick; Jowett, Chris; Poole, Warren
2014-01-01
A comprehensive mathematical model of the hot extrusion process for aluminum alloys has been developed and validated. The plasticity module was developed using a commercial finite element package, DEFORM-2D, a transient Lagrangian model which couples the thermal and deformation phenomena. Validation of the model against industrial data indicated that it gave excellent predictions of the pressure during extrusion. The finite element predictions of the velocity fields were post-processed to calculate the thickness of the surface cladding as one billet is fed in after another through the die (i.e., the transverse weld). The mathematical model was then used to assess the effect a change in feeder dimensions would have on the shape, thickness and extent of the transverse weld during extrusion. Experimental measurements for different combinations of billet materials show that the model is able to accurately predict the transverse weld shape as well as the clad surface layer to thicknesses of 50 μm. The transverse weld is significantly affected by the feeder geometry shape, but the effects of ram speed, billet material and temperature on the transverse weld dimensions are negligible. PMID:28788629
NASA Astrophysics Data System (ADS)
Astarita, A.; Squillace, A.; Nele, L.
2016-01-01
Butt welds formed by arc welding in inert gas with nonconsumable electrode (tungsten inert gas (TIG) welding) and by friction stir welding (FSW) from aluminum alloy AA6061 T6 are studied. Comparative analysis of the structures and mechanical properties of the welded joints is performed using the results of optical and electron microscopy, tensile tests, tests for residual bending ductility, and measurements of microhardness. The changes in the microstructure in different zones and the degrees of degradation of the mechanical properties after the welding are determined. It is shown that the size of the tool for the friction stir welding affects the properties of the welds. Quantitative results showing the relation between the microscopic behavior of the alloy and the welding-induced changes in the microstructure are obtained. Friction stir welding is shown to provide higher properties of the welds.
Cezar-Vaz, Marta Regina; Bonow, Clarice Alves; Cezar Vaz, Joana
2015-01-01
This study’s aim was to assess the perceptions of welding apprentices concerning welding fumes being associated with respiratory and cardiovascular disorders and assess the implementation of risk communication as a primary prevention tool in the welding training process. This quasi-experimental, non-randomized study with before-and-after design was conducted with 84 welding apprentices in Southern Brazil. Poisson Regression analysis was used. Relative Risk was the measure used with a 95% confidence interval and 5% (p ≤ 0.05) significance level. Significant association was found between perceptions of worsened symptoms of respiratory disorders caused by welding fumes and educational level (p = 0.049), the use of goggles to protect against ultraviolet rays (p = 0.023), and access to services in private health facilities without insurance coverage (p = 0.001). Apprentices younger than 25 years old were 4.9 times more likely to perceive worsened cardiovascular symptoms caused by welding fumes after risk communication (RR = 4.91; CI 95%: 1.09 to 22.2). The conclusion is that risk communication as a primary preventive measure in continuing education processes implemented among apprentices, who are future welders, was efficacious. Thus, this study confirms that risk communication can be implemented as a primary prevention tool in welding apprenticeships. PMID:25607606
Cezar-Vaz, Marta Regina; Bonow, Clarice Alves; Vaz, Joana Cezar
2015-01-19
This study's aim was to assess the perceptions of welding apprentices concerning welding fumes being associated with respiratory and cardiovascular disorders and assess the implementation of risk communication as a primary prevention tool in the welding training process. This quasi-experimental, non-randomized study with before-and-after design was conducted with 84 welding apprentices in Southern Brazil. Poisson Regression analysis was used. Relative Risk was the measure used with a 95% confidence interval and 5% (p ≤ 0.05) significance level. Significant association was found between perceptions of worsened symptoms of respiratory disorders caused by welding fumes and educational level (p = 0.049), the use of goggles to protect against ultraviolet rays (p = 0.023), and access to services in private health facilities without insurance coverage (p = 0.001). Apprentices younger than 25 years old were 4.9 times more likely to perceive worsened cardiovascular symptoms caused by welding fumes after risk communication (RR = 4.91; CI 95%: 1.09 to 22.2). The conclusion is that risk communication as a primary preventive measure in continuing education processes implemented among apprentices, who are future welders, was efficacious. Thus, this study confirms that risk communication can be implemented as a primary prevention tool in welding apprenticeships.
Auto-Adjustable Tool for Self-Reacting and Conventional Friction Stir Welding
NASA Technical Reports Server (NTRS)
Carter, Robert W. (Inventor)
2002-01-01
A friction stir welding dcvice that is configured to perform convention friction stir welding as well as self-reacting friction stir welding is described. A pin passes hrough an upper shoulder and can selectively attach 10 and detach from a lower shoulder in a preferred embodiment. A controller maintains thc discrete position of, and/or force applied by, the upper and lower shoulders during self-reacting friction stir welding, or maintains the pin at a desired depth and/or applied force during conventional friction stir welding.
Manufacturing of 5.5 Meter Diameter Cryogenic Fuel Tank Domes for the NASA Ares I Rocket
NASA Technical Reports Server (NTRS)
Jones, Ronald E.; Carter, Robert W.
2012-01-01
The Ares I rocket is the first launch vehicle scheduled for manufacture under the National Aeronautic and Space Administration s (NASA s) Constellation program. A series of full-scale Ares I development articles have been constructed on the Robotic Weld Tool at the NASA George C. Marshall Space Flight Center in Huntsville, Alabama. The Robotic Weld Tool is a 100 ton, 7-axis, robotic manufacturing system capable of machining and friction stir welding large-scale space hardware. This presentation will focus on the friction stir welding of 5.5m diameter cryogenic fuel tank components; specifically, the liquid hydrogen forward dome (LH2 MDA) and the common bulkhead manufacturing development articles (CBMDA). The LH2 MDA was the first full-scale, flight-like Ares I hardware produced under the Constellation Program. It is a 5.5m diameter elliptical dome assembly consisting of eight gore panels, a y-ring stiffener and a manhole fitting. All components are made from aluminum-lithium alloy 2195. Conventional and self-reacting friction stir welding was used on this article. Manufacturing solutions will be discussed including the implementation of photogrammetry, an advanced metrology technique, as well as fixtureless welding. The LH2 MDA is the first known fully friction stir welded dome ever produced. The completion of four Common Bulkhead Manufacturing Development Articles (CBMDA) will also be highlighted. Each CBMDA consists of a 5.5m diameter spun-formed dome friction stir welded to a y-ring stiffener. The domes and y-rings are made of aluminum 2014 and 2219 respectively. An overview of CBMDA manufacturing processes and the effect of tooling on weld defect formation will be discussed.
Effects of weld damage on the dynamics of energy-absorbing lanyards.
Katona, David N; Bennett, Charlie R; McKoryk, Michael; Brisson, Andre L; Sparrey, Carolyn J
2017-12-01
Manufacturers recommend removing fall protection system components from service for any indication of weld spatter or tool damage; however, little is known about the specific effects of lanyard damage on fall arrest dynamics. Thirty-two energy-absorbing lanyards were drop tested after being damaged with weld spatter, plasma torches and cutting tools and compared with new, undamaged lanyards. Two lanyards damaged with a plasma torch failed completely without deploying the energy absorber while weld spatter damage and tool cuts, up to two-thirds through the width of the webbing, had no effect on fall arrest dynamics. The results highlight the catastrophic implications of high-temperature damage to lanyard webbing resulting from plasma torches - which require immediate removal from service. In addition, the integrated energy absorber design in bungee-style lanyards makes them more susceptible to damage anywhere along the length. We therefore recommended against bungee lanyards for ironworkers and welders.
NASA Technical Reports Server (NTRS)
Jones, Ronald E.; Carter, Robert W.
2012-01-01
The Ares I rocket was the first launch vehicle scheduled for manufacture under the National Aeronautic and Space Administration's Constellation program. A series of full-scale Ares I development articles were constructed on the Robotic Weld Tool at the NASA George C. Marshall Space Flight Center in Huntsville, Alabama. The Robotic Weld Tool is a 100 ton, 7- axis, robotic manufacturing system capable of machining and friction stir welding large-scale space hardware. This paper will focus on the friction stir welding of 18-ft (5.5m) diameter cryogenic fuel tank components; specifically, the liquid hydrogen forward dome and two common bulkhead manufacturing development articles.
Investigation of Friction Stir Welding of Al Metal Matrix Composite Materials
NASA Technical Reports Server (NTRS)
Diwan, Ravinder M.
2003-01-01
The innovative process of Friction Stir Welding (FSW) has generated tremendous interest since its inception about a decade or so ago since the first patent in 1991 by TWI of Cambridge, England. This interest has been seen in many recent international conferences and publications on the subject and relevant published literature. Still the process needs both intensive basic study of deformation mechanisms during this FSW process and analysis and feasibility study to evaluate production methods that will yield high quality strong welds from the stirring action of the appropriate pin tool into the weld plate materials. Development of production processes is a complex task that involves effects of material thickness, materials weldability, pin tool design, pin height, and pin shoulder diameter and related control conditions. The frictional heating with rotational speeds of the pin tool as it plunges into the material and the ensuing plastic flow arising during the traverse of the welding faying surfaces provide the known special advantages of the FSW process in the area of this new advanced joining technology.
Examinations on Laser Remote Welding of Ultra-thin Metal Foils Under Vacuum Conditions
NASA Astrophysics Data System (ADS)
Petrich, Martin; Stambke, Martin; Bergmann, Jean Pierre
Metal foils are commonly used for catalytic converters, vacuum insulations, in medical and electrical industry as well as for sensor applications and packaging. The investigations in this paper determine the influence of reduced atmospheric pressure during the welding process with a highly brilliant 400 W single-mode fiber laser combined with a 2D-scanning system. The laser beam is transmitted through a highly transparent glass into a vacuum chamber, where AISI 304 stainless steel foils with a thickness of 25 μm, 50 μm and 100 μm are positioned. The effects of reduced atmospheric pressure on the plasma formation are investigated by means of high-speed videography. Furthermore, the geometry of the weld seam is compared to atmospheric conditions as well as means of the process stability and the process efficiency. The welds were also evaluated by means of metallography. The research is a contribution for extending the range of micro welding applications and shows new aspects for future developments.
Quality evaluation and control of end cap welds in PHWR fuel elements by ultrasonic examination
NASA Astrophysics Data System (ADS)
Choi, M. S.; Yang, M. S.
1991-02-01
The current quality control procedure of nuclear fuel end cap weld is mainly dependent on the destructive metallographic examination. A nondestructive examination technique, i.e., ultrasonic examination, has been developed to identify and evaluate weld discontinuities. A few interesting results of the weld quality evaluation by applying the developed ultrasonic examination technique to PHWR fuel welds are presented. In addition, the feasibility of the weld quality control by the ultrasonic examination is discussed. This study shows that the ultrasonic examination is effective and reliable method for detecting abnormal weld contours and weld discontinuities such as micro-fissure, crack, upset split and expulsion, and can be used as a quality control tool for the end cap welding process.
Confined Tube Crimp Using Portable Hand Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, Joseph James; Pereyra, R. A.; Archuleta, Jeffrey Christopher
2016-04-04
The Lawrence Radiation Laboratory developed handheld tools that crimp a 1/16 inch OD tube, forming a leak tight seal1 (see Figure 1). The leak tight seal forms by confining the 1/16 inch OD tubing inside a die while applying crimp pressure. Under confined pressure, the tube walls weld at the crimp. The purpose of this study was to determine conditions for fabricating a leak tight tube weld. The equipment was used on a trial-and-error basis, changing the conditions after each attempt until successful welds were fabricated. To better confine the tube, the die faces were polished. Polishing removed a fewmore » thousandths of an inch from the die face, resulting in a tighter grip on the tubing wall. Using detergent in an ultrasonic bath, the tubing was cleaned. Also, the time under crimp pressure was increased to 30 seconds. With these modifications, acceptable cold welds were fabricated. After setting the conditions for an acceptable cold weld, the tube was TIG welded across the crimped face.« less
Fraser, Kirk A.; St-Georges, Lyne; Kiss, Laszlo I.
2014-01-01
Recognition of the friction stir welding process is growing in the aeronautical and aero-space industries. To make the process more available to the structural fabrication industry (buildings and bridges), being able to model the process to determine the highest speed of advance possible that will not cause unwanted welding defects is desirable. A numerical solution to the transient two-dimensional heat diffusion equation for the friction stir welding process is presented. A non-linear heat generation term based on an arbitrary piecewise linear model of friction as a function of temperature is used. The solution is used to solve for the temperature distribution in the Al 6061-T6 work pieces. The finite difference solution of the non-linear problem is used to perform a Monte-Carlo simulation (MCS). A polynomial response surface (maximum welding temperature as a function of advancing and rotational speed) is constructed from the MCS results. The response surface is used to determine the optimum tool speed of advance and rotational speed. The exterior penalty method is used to find the highest speed of advance and the associated rotational speed of the tool for the FSW process considered. We show that good agreement with experimental optimization work is possible with this simplified model. Using our approach an optimal weld pitch of 0.52 mm/rev is obtained for 3.18 mm thick AA6061-T6 plate. Our method provides an estimate of the optimal welding parameters in less than 30 min of calculation time. PMID:28788627
Fraser, Kirk A; St-Georges, Lyne; Kiss, Laszlo I
2014-04-30
Recognition of the friction stir welding process is growing in the aeronautical and aero-space industries. To make the process more available to the structural fabrication industry (buildings and bridges), being able to model the process to determine the highest speed of advance possible that will not cause unwanted welding defects is desirable. A numerical solution to the transient two-dimensional heat diffusion equation for the friction stir welding process is presented. A non-linear heat generation term based on an arbitrary piecewise linear model of friction as a function of temperature is used. The solution is used to solve for the temperature distribution in the Al 6061-T6 work pieces. The finite difference solution of the non-linear problem is used to perform a Monte-Carlo simulation (MCS). A polynomial response surface (maximum welding temperature as a function of advancing and rotational speed) is constructed from the MCS results. The response surface is used to determine the optimum tool speed of advance and rotational speed. The exterior penalty method is used to find the highest speed of advance and the associated rotational speed of the tool for the FSW process considered. We show that good agreement with experimental optimization work is possible with this simplified model. Using our approach an optimal weld pitch of 0.52 mm/rev is obtained for 3.18 mm thick AA6061-T6 plate. Our method provides an estimate of the optimal welding parameters in less than 30 min of calculation time.
Use of Ultrasound in Reconditioning by Welding of Tools Used in the Process of Regenerating Rubber.
Dobrotă, Dan; Petrescu, Valentin
2018-02-10
Addressing the problem of reconditioning large parts is of particular importance, due to their value and to the fact that the technologies for their reconditioning are very complex. The tools used to refine regenerated rubber which measure 660 mm in diameter and 2130 mm in length suffer from a rather fast dimensional wear. Within this research, the authors looked for a welding reconditioning procedure that would allow a very good adhesion between the deposited material layer and the base material. In this regard, the MAG (Metal Active Gas) welding process was used, but the ultrasonic activation of the welding process was also considered. Thus, the wire used for welding was activated considering a variation of the frequency of ultrasounds in the range f = 18-22 kHz respectively of the oscillation amplitude A = 30-60 μm. Under these conditions it was found that the presence of ultrasonic waves during the welding cladding process results in uniform deposition of hard carbons at the grain boundary and in the elimination of any existing oxides on the deposition surface, but at the same time increases the adhesion between the base material and the additional material, all of which positively influence the wear and corrosion resistance of the tools used to refine the regenerated rubber.
System for Controlling the Stirring Pin of a Friction Stir Welding Apparatus
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey (Inventor); Romine, Peter L. (Inventor); Oelgoetz, Peter A. (Inventor)
2002-01-01
A control is provided for a friction stir welding apparatus comprising a pin tool which includes a shoulder and a rotating pin extending outwardly from the shoulder of the pin tool and which, in use, is plunged into a workpiece formed contacting workpiece members to stir weld the members together. The control system controls the penetration of the pin tool into the workpiece members which are mounted on a support anvil. The control system includes a pin length controller for controlling pin length relative to the shoulder and for producing a corresponding pin length signal. A pin force sensor senses the force being exerted on the pin during welding and produces a corresponding actual pin force signal. A probe controller controls a probe extending outwardly from the pin, senses a parameter related to the distance between the probe and the supporting anvil and produces a corresponding probe signal. A workpiece standoff sensor senses the standoff distance between the workpiece and the standoff sensor and produces a corresponding standoff signal. A control unit receives the various signals, together with a weld schedule, and, based on these signals and the weld schedule, controls the pin length controller so as to control pin penetration into the workpiece.
A New Perspective on Fatigue Performance of Advanced High- Strength Steels (AHSS) GMAW Joints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Zhili; Chiang, Dr. John; Kuo, Dr. Min
2008-01-01
Weld fatigue performance is a critical aspect for application of advanced high-strength steels (AHSS) in automotive body structures. A comparative study has been conducted to evaluate the fatigue life of AHSS welds. The material studied included seven AHSS of various strength levels - DP 600, DP 780, DP 980, M130, M220, solution annealed boron and fully hardened boron steels. Two conventional steels, HSLA 590 and DR 210, were also included for baseline comparison. Lap fillet welds were made on 2-mm nominal thick sheets by the gas metal arc welding process (GMAW). Fatigue test was conducted under a number of stressmore » levels to obtain the S/N curves of the weld joints. It was found that, unlike in the static and impact loading conditions, the fatigue performance of AHSS is not influenced by the HAZ softening in AHSS. There are appreciable differences in the fatigue lives among different AHSS. Changes in weld parameters can influence the fatigue life of the weld joints, particularly of these of higher strength AHSS. A model is developed to predict the fatigue performance of AHSS welds. The validity of the model is benchmarked with the experimental results. This model is capable to capture the effects of weld geometry and weld microstructure and strength on the fatigue performance experimentally observed. The theoretical basis and application of the newly developed fatigue modeling methodology will be discussed.« less
Unraveling the Processing Parameters in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Schneider, Judy; Nunes, Arthur C., Jr.
2005-01-01
In friction stir welding (FSW), a rotating threaded pin tool is translated along a weld seam, literally stirring the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path or paths is required. In this study, various markers are used to trace the flow paths of the metal. X-ray radiographs record the segmentation and position of the wire. Several variations in the trajectories can be differentiated within the weld zone.
Inert-gas welding and brazing enclosure fabricated from sheet plastic
NASA Technical Reports Server (NTRS)
Wisner, J. P.
1965-01-01
Custom-fabricated plastic bag maintains an inert-gas atmosphere for welding and brazing certain metals. The bag fits over part of the workpieces and the welding and brazing tools. It is also used for metal brazing and fusion plating which require an inert-gas atmosphere.
ERIC Educational Resources Information Center
John H. Hinds Area Vocational School, Elwood, IN.
This book contains a task inventory, a task analysis of 150 tasks from that inventory, and a tool list for performance-based welding courses in the state of Indiana. The task inventory and tool list reflect 28 job titles found in Indiana. In the first part of the guide, tasks are listed by these domains: carbon-arc, electron beam, G.M.A.W., gas…
Lightweight solar array blanket tooling, laser welding and cover process technology
NASA Technical Reports Server (NTRS)
Dillard, P. A.
1983-01-01
A two phase technology investigation was performed to demonstrate effective methods for integrating 50 micrometer thin solar cells into ultralightweight module designs. During the first phase, innovative tooling was developed which allows lightweight blankets to be fabricated in a manufacturing environment with acceptable yields. During the second phase, the tooling was improved and the feasibility of laser processing of lightweight arrays was confirmed. The development of the cell/interconnect registration tool and interconnect bonding by laser welding is described.
Welding. Module 8 of the Vocational Education Readiness Test (VERT).
ERIC Educational Resources Information Center
Thomas, Edward L., Comp.
Focusing on welding, this module is one of eight included in the Vocational Education Readiness Tests (VERT). The module begins by listing the objectives of the module and describing tools and equipment needed. The remainder of the module contains sections on manipulative skills, trade vocabulary, tool identification, trade computational skills,…
Wear-Induced Changes in FSW Tool Pin Profile: Effect of Process Parameters
NASA Astrophysics Data System (ADS)
Sahlot, Pankaj; Jha, Kaushal; Dey, G. K.; Arora, Amit
2018-06-01
Friction stir welding (FSW) of high melting point metallic (HMPM) materials has limited application due to tool wear and relatively short tool life. Tool wear changes the profile of the tool pin and adversely affects weld properties. A quantitative understanding of tool wear and tool pin profile is crucial to develop the process for joining of HMPM materials. Here we present a quantitative wear study of H13 steel tool pin profile for FSW of CuCrZr alloy. The tool pin profile is analyzed at multiple traverse distances for welding with various tool rotational and traverse speeds. The results indicate that measured wear depth is small near the pin root and significantly increases towards the tip. Near the pin tip, wear depth increases with increase in tool rotational speed. However, change in wear depth near the pin root is minimal. Wear depth also increases with decrease in tool traverse speeds. Tool pin wear from the bottom results in pin length reduction, which is greater for higher tool rotational speeds, and longer traverse distances. The pin profile changes due to wear and result in root defect for long traverse distance. This quantitative understanding of tool wear would be helpful to estimate tool wear, optimize process parameters, and tool pin shape during FSW of HMPM materials.
Prediction of guided wave scattering by defects in rails using numerical modelling
NASA Astrophysics Data System (ADS)
Long, Craig S.; Loveday, Philip W.
2014-02-01
A guided wave based monitoring system for welded freight rail, has previously been developed. The current arrangement consists of alternating transmit and receive stations positioned roughly 1 km apart, and is designed to reliably detect complete breaks in a rail. Current research efforts are focused on extending this system to include a pulse-echo mode of operation in order to detect, locate, monitor and possibly characterize damage, before a complete break occurs. For monitoring and inspection applications, it is beneficial to be able to distinguish between scattering defects which do not represent damage (such as welds) and cracks which could result in rail breaks. In this paper we investigate the complex interaction between selected propagating modes and various weld and crack geometries in an attempt to relate scattering behaviour to defect geometry. An efficient hybrid method is employed which models the volume containing the defect with conventional solid finite elements, while the semi-infinite incoming and outgoing waveguides are accounted for using the SAFE method. Four candidate modes, suitable for long range propagation, are identified and evaluated. A weighted average reflection coefficient is used as a measure to quantify mode conversion between these four modes, and results are represented graphically in the form of reflection maps. The results show that it should be possible to distinguish between a large crack in the crown of the rail and a weld. We also show that there may be difficulties associated with reliably identifying cracks in the web as well as cracks in the crown which occur at a thermite weld. We suspect that it will be difficult to detect damage in the foot of the rail.
Energy Losses Estimation During Pulsed-Laser Seam Welding
NASA Astrophysics Data System (ADS)
Sebestova, Hana; Havelkova, Martina; Chmelickova, Hana
2014-06-01
The finite-element tool SYSWELD (ESI Group, Paris, France) was adapted to simulate pulsed-laser seam welding. Besides temperature field distribution, one of the possible outputs of the welding simulation is the amount of absorbed power necessary to melt the required material volume including energy losses. Comparing absorbed or melting energy with applied laser energy, welding efficiencies can be calculated. This article presents achieved results of welding efficiency estimation based on the assimilation both experimental and simulation output data of the pulsed Nd:YAG laser bead on plate welding of 0.6-mm-thick AISI 304 stainless steel sheets using different beam powers.
Development of a Fiber Laser Welding Capability for the W76, MC4702 Firing Set
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samayoa, Jose
2010-05-12
Development work to implement a new welding system for a Firing Set is presented. The new system is significant because it represents the first use of fiber laser welding technology at the KCP. The work used Six-Sigma tools for weld characterization and to define process performance. Determinations of workable weld parameters and comparison to existing equipment were completed. Replication of existing waveforms was done utilizing an Arbitrary Pulse Generator (APG), which was used to modulate the fiber laser’s exclusive continuous wave (CW) output. Fiber laser weld process capability for a Firing Set is demonstrated.
NASA Astrophysics Data System (ADS)
Parsa, M. H.; Davari, H.; Hadian, A. M.; Ahmadabadi, M. Nili
2007-05-01
Hybrid Rotary Friction Welding is a modified type of common rotary friction welding processes. In this welding method parameters such as pressure, angular velocity and time of welding control temperature, stress, strain and their variations. These dependent factors play an important rule in defining optimum process parameters combinations in order to improve the design and manufacturing of welding machines and quality of welded parts. Thermo-mechanical simulation of friction welding has been carried out and it has been shown that, simulation is an important tool for prediction of generated heat and strain at the weld interface and can be used for prediction of microstructure and evaluation of quality of welds. For simulation of Hybrid Rotary Friction Welding, a commercial finite element program has been used and the effects of pressure and rotary velocity of rotary part on temperature and strain variations have been investigated.
Advances in Solid State Joining of High Temperature Alloys
NASA Technical Reports Server (NTRS)
Ding, R. Jeff; Schneider, Judy; Walker, Bryant
2011-01-01
Many of the metals used in the oil and gas industry are difficult to fusion weld including titanium and its alloys. Thus solid state joining processes, such as friction stir welding (FSWing) and a patented modification termed thermal stir welding (TSWing), are being pursued as alternatives to produce robust structures more amenable to high pressure applications. Unlike the FSWing process where the tool is used to heat the workpiece, TSWing utilizes an induction coil to preheat the material prior to stirring thus minimizing the burden on the weld tool and thereby extending its life. This study reports on the initial results of using a hybrid (H)-TSW process to join commercially pure, 1.3cm thick panels of titanium (CP Ti) Grade 2.
Efficient Welding Fabrication of Extruded Aluminum Mat Panels
1991-09-01
3-34 Fig. 3-18 Measured hydrogen contents of 3003 and 2219 alloy welds deposited by GTAW with contaminated shielding gas...downhill, and (c) overhead welds (Ref. 34) ..................................... 3-37 Fig. 3-21 Effect of GTAW current on weld porosity and the rate of...radius, connecting a slight tapered section to a straight one at the metal exit point. AISI H Class, air hardening chromium hot work tool steel, is a
Heat Transfer Analysis of Localized Heat-Treatment for Grade 91 Steel
NASA Astrophysics Data System (ADS)
Walker, Jacob D.
Many of the projects utilizing Grade 91 steel are large in scale, therefore it is necessary to assemble on site. The assembly of the major pieces requires welding in the assembly; this drastically changes the superior mechanical properties of Grade 91 steel that it was specifically developed for. Therefore, because of the adverse effects of welding on the mechanical properties of Grade 91, it is necessary to do a localized post weld heat treatment. As with most metallic materials grade 91 steel requires a very specific heat treatment process. This process includes a specific temperature and duration at that temperature to achieve the heat treatment desired. Extensive research has been done to determine the proper temperatures and duration to provide the proper microstructure for the superior mechanical properties that are inherent to Grade 91 steel. The welded sections are typically large structures that require local heat treatments and cannot be placed in an oven. The locations of these structures vary from indoors in a controlled environment to outdoors with unpredictable environments. These environments can be controlled somewhat, however in large part the surrounding conditions are unchangeable. Therefore, there is a need to develop methods to accurately apply the surrounding conditions and geometries to a theoretical model in order to provide the proper requirements for the local heat treatment procedure. Within this requirement is the requirement to define unknowns used in the heat transfer equations so that accurate models can be produced and accurate results predicted. This study investigates experimentally and numerically the heat transfer and temperature fields of Grade 91 piping in a local heat treatment. The objective of this thesis research is to determine all of the needed heat transfer coefficients. The appropriate heat transfer coefficients are determined through the inverse heat conduction method utilizing a ceramic heat blanket. This will be done through an inverse method by collecting actual data from different conditions and temperatures. Then the heat transfer coefficients are used to set up a model to determine the appropriate post-weld heat treatment conditions for Grade 91 steel. This will enable one to use the derived coefficients to run a forward analysis with the specific geometry and conditions they will encounter in the heat treatment process for their application. The analysis will provide a theoretical determination of time and temperatures needed to maintain the temperature for the proper time needed to properly heat treat the welded section in the desired areas that have been joined together through a welding process. Finally time and temperature combinations are compared with experimentally measured data. The forward model code applied to the parameters of the heat-treatment can then appropriately assist to determine the proper post-weld heat treatment conditions for the desired toughness and creep properties. This research is very beneficial to the joining of metals industry because it provides a way to ensure the method used to heat treat the welded section is being properly done, and the required heat treatment is achieved. It is applicable to many different geometries so that it can be modified to specific situations.
Effect of Pin Tool Shape on Metal Flow During Friction Stir Welding
NASA Technical Reports Server (NTRS)
McClure, J. C.; Coronado, E.; Aloor, S.; Nowak, B.; Murr, L. M.; Nunes, Arthur C., Jr.; Munafo, Paul M. (Technical Monitor)
2002-01-01
It has been shown that metal moves behind the rotating Friction Stir Pin Tool in two separate currents or streams. One current, mostly on the advancing side, enters a zone of material that rotates with the pin tool for one or more revolutions and eventually is abandoned behind the pin tool in crescent-shaped pieces. The other current, largely on the retreating side of the pin tool is moved by a wiping process to the back of the pin tool and fills in between the pieces of the rotational zone that have been shed by the rotational zone. This process was studied by using a faying surface copper trace to clarify the metal flow. Welds were made with pin tools having various thread pitches. Decreasing the thread pitch causes the large scale top-to-bottorn flow to break up into multiple vortices along the pin and an unthreaded pin tool provides insufficient vertical motion for there to be a stable rotational zone and flow of material via the rotational zone is not possible leading to porosity on the advancing side of the weld.
Friction Stir Welding of Metal Matrix Composites for use in aerospace structures
NASA Astrophysics Data System (ADS)
Prater, Tracie
2014-01-01
Friction Stir Welding (FSW) is a relatively nascent solid state joining technique developed at The Welding Institute (TWI) in 1991. The process was first used at NASA to weld the super lightweight external tank for the Space Shuttle. Today FSW is used to join structural components of the Delta IV, Atlas V, and Falcon IX rockets as well as the Orion Crew Exploration Vehicle. A current focus of FSW research is to extend the process to new materials which are difficult to weld using conventional fusion techniques. Metal Matrix Composites (MMCs) consist of a metal alloy reinforced with ceramics and have a very high strength to weight ratio, a property which makes them attractive for use in aerospace and defense applications. MMCs have found use in the space shuttle orbiter's structural tubing, the Hubble Space Telescope's antenna mast, control surfaces and propulsion systems for aircraft, and tank armors. The size of MMC components is severely limited by difficulties encountered in joining these materials using fusion welding. Melting of the material results in formation of an undesirable phase (formed when molten Aluminum reacts with the reinforcement) which leaves a strength depleted region along the joint line. Since FSW occurs below the melting point of the workpiece material, this deleterious phase is absent in FSW-ed MMC joints. FSW of MMCs is, however, plagued by rapid wear of the welding tool, a consequence of the large discrepancy in hardness between the steel tool and the reinforcement material. This work characterizes the effect of process parameters (spindle speed, traverse rate, and length of joint) on the wear process. Based on the results of these experiments, a phenomenological model of the wear process was constructed based on the rotating plug model for FSW. The effectiveness of harder tool materials (such as Tungsten Carbide, high speed steel, and tools with diamond coatings) to combat abrasive wear is explored. In-process force, torque, and vibration signals are analyzed to assess the feasibility of on-line monitoring of tool shape changes as a result of wear (an advancement which would eliminate the need for off-line evaluation of tool condition during joining). Monitoring, controlling, and reducing tool wear in FSW of MMCs is essential to the implementation of these materials in structures (such as launch vehicles) where they would be of maximum benefit.
A comparison of LBW and GTAW processes in miniature closure welds
NASA Astrophysics Data System (ADS)
Knorovsky, G. A.; Fuerschbach, P. W.; Gianoulakis, S. E.; Burchett, S. N.
When small electronic components with glass-to-metal seals are closure welded, the residual stresses that develop in the glass are of concern. If these stresses exceed allowable tensile levels' the resulting weld-induced seal failure may cause the entire component to be scrapped or reworked at a substantial cost. Conventional wisdom says the best welding process for these applications is that which provides the least heat input, and so in that respect, Laser Beam Welding (LBW) provides less heat input than Gas Tungsten Arc Welding (GTAW), however, other concerns, such as weld fit-up, part variability, and material weldability, can modify the final choice of a welding process. In this paper, we compare the characteristic levels of heat input and the residual stresses generated in glass seals for two processes (as calculated by a 3D Finite Element Analysis) as a function of heat input and travel speed, and contrast some of the other manufacturing decisions that must be made in choosing a production process. The geometry chosen is that of a standing edge corner weld in a cylindrical container about 20 mm diameter by 35 mm tall. Four metal pins are glassed into the part lid. The stresses calculated from the resulting from continuous wave CO2 LBW are compared with those resulting from GTAW. The total energy required by the laser weld is significantly less than that needed for the equivalent size GTA weld. The energy input requirements for a given size weld is inversely proportional to the travel speed, but approaches a saturation level as the travel speed increases. LBW travel speeds ranging from 10 mm/s to 50 mm/s were examined.
The microstructure of aluminum A5083 butt joint by friction stir welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasri, M. A. H. M.; Afendi, M.; Ismail, A.
This study presents the microstructure of the aluminum A5083 butt joint surface after it has been joined by friction stir welding (FSW) process. The FSW process is a unique welding method because it will not change the chemical properties of the welded metals. In this study, MILKO 37 milling machine was modified to run FSW process on 4 mm plate of aluminum A5083 butt joint. For the experiment, variables of travel speed and tool rotational speed based on capability of machine were used to run FSW process. The concentrated heat from the tool to the aluminum plate changes the platemore » form from solid to plastic state. Two aluminum plates is merged to become one plate during plastic state and return to solid when concentrated heat is gradually further away. After that, the surface and cross section of the welded aluminum were investigated with a microscope by 400 x multiplication zoom. The welding defect in the FSW aluminum was identified. Then, the result was compared to the American Welding Society (AWS) FSW standard to decide whether the plate can be accepted or rejected.« less
NASA Astrophysics Data System (ADS)
Kumar, K. S. Anil; Murigendrappa, S. M.; Kumar, Hemantha; Shekhar, Himanshu
2018-04-01
Friction stir welding (FSW) dissimilar joints of aluminium alloys of 2024-T351 and 7075-T651 were produced by reinforcing silicon carbide nano particle (SiCNP) in the rectangular cut groove made on the adjoining surface of the two dissimilar alloy plates joined in the butt configuration. A FSW tool of taper threaded cylindrical shape is used for producing the FSW dissimilar joints reinforced with SiCNP in the weld nugget zone (WNZ) and to produce metal matrix nano composite (MMNC) at the WNZ. In the experimental investigation, the constant FSW tool traverse speed of 40 mm/min and tool plunge depth of 6.2 mm/min is kept as constant, while the FSW tool rotation speed was varied from 400 rpm to 1800 rpm. The effect continuous varying tool rotation speed range from 400 rpm to 1800 rpm along the weld length and on the distribution of SiCNP in WNZ is analysed by conducting macro and microstructure study using optical microscopy (OM) and scanning electron microscopy (SEM) provided with energy dispersive spectrometry (EDS). In the experimental investigation, the combination of continuous varying FSW tool rotation speed range from 900rpm to 1150 rpm, constant tool traverse speed range 40 mm/min and tool plunge depth of 6.2 mm results in defect free, proper distribution of SiCNP and highest tensile properties for the FSW dissimilar joints. The highest ultimate tensile strength (UTS) of 380 MPa and yield strength (YS) of 150 MPa was observed for the combination of FSW tool rotation speed of 1000 rpm and tool traverse speed of 40 mm/min. The increasing in FSW tool rotation speed above 1250 rpm results in non homogeneous distribution of SiCNP in WNZ, excessive flash in the weld crown area and shows decreasing tendency in the tensile properties of the FSW dissimilar weld joints produced with reinforcing the SiCNP in the WNZ.
Numerical simulation of metallic wire arc additive manufacturing (WAAM)
NASA Astrophysics Data System (ADS)
Graf, M.; Pradjadhiana, K. P.; Hälsig, A.; Manurung, Y. H. P.; Awiszus, B.
2018-05-01
Additive-manufacturing technologies have been gaining tremendously in popularity for some years in the production of single-part series with complex, close-to-final-contour geometries and the processing of special or hybrid materials. In principle, the processes can be subdivided into wire-based and powder-based processes in accordance with the Association of German Engineers (VDI) Guideline 3405. A further subdivision is made with respect to the smelting technology. In all of the processes, the base material is applied in layers at the points where it is needed in accordance with the final contour. The process that was investigated was wire-based, multi-pass welding by means of gas-metal arc welding. This was accomplished in the present study by determining the material parameters (thermo-mechanical and thermo-physical characteristics) of the welding filler G3Si1 (material number: 1.5125) that were necessary for the numerical simulation and implementing them in a commercial FE program (MSC Marc Mentat). The focus of this paper was on simulation and validation with respect to geometry and microstructural development in the welding passes. The resulting minimal deviation between reality and simulation was a result of the measurement inertia of the thermocouples. In general, however, the FE model can be used to make a very good predetermination of the cooling behaviour, which affects the microstructural development and thus the mechanical properties of the joining zone, as well as the geometric design of the component (distortion, etc.).
Tamjidy, Mehran; Baharudin, B. T. Hang Tuah; Paslar, Shahla; Matori, Khamirul Amin; Sulaiman, Shamsuddin; Fadaeifard, Firouz
2017-01-01
The development of Friction Stir Welding (FSW) has provided an alternative approach for producing high-quality welds, in a fast and reliable manner. This study focuses on the mechanical properties of the dissimilar friction stir welding of AA6061-T6 and AA7075-T6 aluminum alloys. The FSW process parameters such as tool rotational speed, tool traverse speed, tilt angle, and tool offset influence the mechanical properties of the friction stir welded joints significantly. A mathematical regression model is developed to determine the empirical relationship between the FSW process parameters and mechanical properties, and the results are validated. In order to obtain the optimal values of process parameters that simultaneously optimize the ultimate tensile strength, elongation, and minimum hardness in the heat affected zone (HAZ), a metaheuristic, multi objective algorithm based on biogeography based optimization is proposed. The Pareto optimal frontiers for triple and dual objective functions are obtained and the best optimal solution is selected through using two different decision making techniques, technique for order of preference by similarity to ideal solution (TOPSIS) and Shannon’s entropy. PMID:28772893
Tamjidy, Mehran; Baharudin, B T Hang Tuah; Paslar, Shahla; Matori, Khamirul Amin; Sulaiman, Shamsuddin; Fadaeifard, Firouz
2017-05-15
The development of Friction Stir Welding (FSW) has provided an alternative approach for producing high-quality welds, in a fast and reliable manner. This study focuses on the mechanical properties of the dissimilar friction stir welding of AA6061-T6 and AA7075-T6 aluminum alloys. The FSW process parameters such as tool rotational speed, tool traverse speed, tilt angle, and tool offset influence the mechanical properties of the friction stir welded joints significantly. A mathematical regression model is developed to determine the empirical relationship between the FSW process parameters and mechanical properties, and the results are validated. In order to obtain the optimal values of process parameters that simultaneously optimize the ultimate tensile strength, elongation, and minimum hardness in the heat affected zone (HAZ), a metaheuristic, multi objective algorithm based on biogeography based optimization is proposed. The Pareto optimal frontiers for triple and dual objective functions are obtained and the best optimal solution is selected through using two different decision making techniques, technique for order of preference by similarity to ideal solution (TOPSIS) and Shannon's entropy.
Flaw depth sizing using guided waves
NASA Astrophysics Data System (ADS)
Cobb, Adam C.; Fisher, Jay L.
2016-02-01
Guided wave inspection technology is most often applied as a survey tool for pipeline inspection, where relatively low frequency ultrasonic waves, compared to those used in conventional ultrasonic nondestructive evaluation (NDE) methods, propagate along the structure; discontinuities cause a reflection of the sound back to the sensor for flaw detection. Although the technology can be used to accurately locate a flaw over long distances, the flaw sizing performance, especially for flaw depth estimation, is much poorer than other, local NDE approaches. Estimating flaw depth, as opposed to other parameters, is of particular interest for failure analysis of many structures. At present, most guided wave technologies estimate the size of the flaw based on the reflected signal amplitude from the flaw compared to a known geometry reflection, such as a circumferential weld in a pipeline. This process, however, requires many assumptions to be made, such as weld geometry and flaw shape. Furthermore, it is highly dependent on the amplitude of the flaw reflection, which can vary based on many factors, such as attenuation and sensor installation. To improve sizing performance, especially depth estimation, and do so in a way that is not strictly amplitude dependent, this paper describes an approach to estimate the depth of a flaw based on a multimodal analysis. This approach eliminates the need of using geometric reflections for calibration and can be used for both pipeline and plate inspection applications. To verify the approach, a test set was manufactured on plate specimens with flaws of different widths and depths ranging from 5% to 100% of total wall thickness; 90% of these flaws were sized to within 15% of their true value. A description of the initial multimodal sizing strategy and results will be discussed.
NASA Astrophysics Data System (ADS)
Besler, Florian A.; Grant, Richard J.; Schindele, Paul; Stegmüller, Michael J. R.
2017-12-01
Joining sheet metal can be problematic using traditional friction welding techniques. Friction crush welding (FCW) offers a high speed process which requires a simple edge preparation and can be applied to out-of-plane geometries. In this work, an implementation of FCW was employed using an additional wire to weld sheets of EN AW5754 H22, DC01, and Cu-DHP. The joint is formed by bringing together two sheet metal parts, introducing a wire into the weld zone and employing a rotating disk which is subject to an external force. The requirements of the welding preparation and the fundamental process variables are shown. Thermal measurements were taken which give evidence about the maximum temperature in the welding center and the temperature in the periphery of the sheet metals being joined. The high welding speed along with a relatively low heat input results in a minimal distortion of the sheet metal and marginal metallurgical changes in the parent material. In the steel specimens, this FCW implementation produces a fine grain microstructure, enhancing mechanical properties in the region of the weld. Aluminum and copper produced mean bond strengths of 77 and 69 pct to that of the parent material, respectively, whilst the steel demonstrated a strength of 98 pct. Using a wire offers the opportunity to use a higher-alloyed additional material and to precisely adjust the additional material volume appropriate for a given material alignment and thickness.
NASA Astrophysics Data System (ADS)
Wu, Dongsheng; Hua, Xueming; Ye, Youxiong; Huang, Lijin; Li, Fang; Huang, Ye
2018-05-01
A laser welding experiment with glass is conducted to directly observe the keyhole behavior and spatter formation in fiber laser welding of aluminum alloy. A 3D model is developed to investigate the spatter formation and composition change. An additional conservation equation is introduced to describe the Mg element distribution, and the Mg element loss due to evaporation is also considered. Based on numerical and experimental results, it is found that the keyhole geometry in laser welding of aluminum alloy is different from that in laser welding of steel. There are three required steps for spatter formation around the keyhole. The high momentum of the molten metal, the high recoil pressure and vapor shear stress, and the low surface tension around the keyhole contribute to the easy formation of spatter. The in-homogeneous distribution of Mg element in the weld can be attributable to the continuous evaporation of Mg element at the top surface of keyhole rear, the upward flow of low Mg element region from the bottom of the keyhole to the top surface of keyhole rear along the fusion line, the collapse of the keyhole, and the ejection of spatters.
NASA Astrophysics Data System (ADS)
Bendaoud, Issam; Matteï, Simone; Cicala, Eugen; Tomashchuk, Iryna; Andrzejewski, Henri; Sallamand, Pierre; Mathieu, Alexandre; Bouchaud, Fréderic
2014-03-01
The present study is dedicated to the numerical simulation of an industrial case of hybrid laser-MIG welding of high thickness duplex steel UR2507Cu with Y-shaped chamfer geometry. It consists in simulation of heat transfer phenomena using heat equivalent source approach and implementing in finite element software COMSOL Multiphysics. A numerical exploratory designs method is used to identify the heat sources parameters in order to obtain a minimal required difference between the numerical results and the experiment which are the shape of the welded zone and the temperature evolution in different locations. The obtained results were found in good correspondence with experiment, both for melted zone shape and thermal history.
Motion Simulation Analysis of Rail Weld CNC Fine Milling Machine
NASA Astrophysics Data System (ADS)
Mao, Huajie; Shu, Min; Li, Chao; Zhang, Baojun
CNC fine milling machine is a new advanced equipment of rail weld precision machining with high precision, high efficiency, low environmental pollution and other technical advantages. The motion performance of this machine directly affects its machining accuracy and stability, which makes it an important consideration for its design. Based on the design drawings, this article completed 3D modeling of 60mm/kg rail weld CNC fine milling machine by using Solidworks. After that, the geometry was imported into Adams to finish the motion simulation analysis. The displacement, velocity, angular velocity and some other kinematical parameters curves of the main components were obtained in the post-processing and these are the scientific basis for the design and development for this machine.
Friction Stir Welding (FSW) of Aged CuCrZr Alloy Plates
NASA Astrophysics Data System (ADS)
Jha, Kaushal; Kumar, Santosh; Nachiket, K.; Bhanumurthy, K.; Dey, G. K.
2018-01-01
Friction Stir Welding (FSW) of Cu-0.80Cr-0.10Zr (in wt pct) alloy under aged condition was performed to study the effects of process parameters on microstructure and properties of the joint. FSW was performed over a wide range of process parameters, like tool-rotation speed (from 800 to 1200 rpm) and tool-travel speed (from 40 to 100 mm/min), and the resulting thermal cycles were recorded on both sides (advancing and retreating) of the joint. The joints were characterized for their microstructure and tensile properties. The welding process resulted in a sound and defect-free weld joint, over the entire range of the process parameters used in this study. Microstructure of the stir zone showed fine and equiaxed grains, the scale of which varied with FSW process parameters. Grain size in the stir zone showed direct correlation with tool rotation and inverse correlation with tool-travel speed. Tensile strength of the weld joints was ranging from 225 to 260 MPa, which is substantially lower than that of the parent metal under aged condition ( 400 MPa), but superior to that of the parent material under annealed condition ( 220 MPa). Lower strength of the FSW joint than that of the parent material under aged condition can be attributed to dissolution of the precipitates in the stir zone and TMAZ. These results are presented and discussed in this paper.
Use of Ultrasound in Reconditioning by Welding of Tools Used in the Process of Regenerating Rubber
Dobrotă, Dan; Petrescu, Valentin
2018-01-01
Addressing the problem of reconditioning large parts is of particular importance, due to their value and to the fact that the technologies for their reconditioning are very complex. The tools used to refine regenerated rubber which measure 660 mm in diameter and 2130 mm in length suffer from a rather fast dimensional wear. Within this research, the authors looked for a welding reconditioning procedure that would allow a very good adhesion between the deposited material layer and the base material. In this regard, the MAG (Metal Active Gas) welding process was used, but the ultrasonic activation of the welding process was also considered. Thus, the wire used for welding was activated considering a variation of the frequency of ultrasounds in the range f = 18–22 kHz respectively of the oscillation amplitude A = 30–60 μm. Under these conditions it was found that the presence of ultrasonic waves during the welding cladding process results in uniform deposition of hard carbons at the grain boundary and in the elimination of any existing oxides on the deposition surface, but at the same time increases the adhesion between the base material and the additional material, all of which positively influence the wear and corrosion resistance of the tools used to refine the regenerated rubber. PMID:29439400
Friction Stir Welding at MSFC: Kinematics
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.
2001-01-01
In 1991 The Welding Institute of the United Kingdom patented the Friction Stir Welding (FSW) process. In FSW a rotating pin-tool is inserted into a weld seam and literally stirs the faying surfaces together as it moves up the seam. By April 2000 the American Welding Society International Welding and Fabricating Exposition featured several exhibits of commercial FSW processes and the 81st Annual Convention devoted a technical session to the process. The FSW process is of interest to Marshall Space Flight Center (MSFC) as a means of avoiding hot-cracking problems presented by the 2195 aluminum-lithium alloy, which is the primary constituent of the Lightweight Space Shuttle External Tank. The process has been under development at MSFC for External Tank applications since the early 1990's. Early development of the FSW process proceeded by cut-and-try empirical methods. A substantial and complex body of data resulted. A theoretical model was wanted to deal with the complexity and reduce the data to concepts serviceable for process diagnostics, optimization, parameter selection, etc. A first step in understanding the FSW process is to determine the kinematics, i.e., the flow field in the metal in the vicinity of the pin-tool. Given the kinematics, the dynamics, i.e., the forces, can be targeted. Given a completed model of the FSW process, attempts at rational design of tools and selection of process parameters can be made.
NASA Astrophysics Data System (ADS)
Manugula, Vijaya L.; Rajulapati, Koteswararao V.; Reddy, G. Madhusudhan; Mythili, R.; Bhanu Sankara Rao, K.
2017-08-01
The effects of tool rotational speed (200 and 700 rpm) on evolving microstructure during friction stir welding (FSW) of a reduced activation ferritic-martensitic steel (RAFMS) in the stir zone (SZ), thermo-mechanically affected zone (TMAZ), and heat-affected zone (HAZ) have been explored in detail. The influence of post-weld direct tempering (PWDT: 1033 K (760 °C)/ 90 minutes + air cooling) and post-weld normalizing and tempering (PWNT: 1253 K (980 °C)/30 minutes + air cooling + tempering 1033 K (760 °C)/90 minutes + air cooling) treatments on microstructure and mechanical properties has also been assessed. The base metal (BM) microstructure was tempered martensite comprising Cr-rich M23C6 on prior austenite grain and lath boundaries with intra-lath precipitation of V- and Ta-rich MC precipitates. The tool rotational speed exerted profound influence on evolving microstructure in SZ, TMAZ, and HAZ in the as-welded and post-weld heat-treated states. Very high proportion of prior austenitic grains and martensite lath boundaries in SZ and TMAZ in the as-welded state showed lack of strengthening precipitates, though very high hardness was recorded in SZ irrespective of the tool speed. Very fine-needle-like Fe3C precipitates were found at both the rotational speeds in SZ. The Fe3C was dissolved and fresh precipitation of strengthening precipitates occurred on both prior austenite grain and sub-grain boundaries in SZ during PWNT and PWDT. The post-weld direct tempering caused coarsening and coalescence of strengthening precipitates, in both matrix and grain boundary regions of TMAZ and HAZ, which led to inhomogeneous distribution of hardness across the weld joint. The PWNT heat treatment has shown fresh precipitation of M23C6 on lath and grain boundaries and very fine V-rich MC precipitates in the intragranular regions, which is very much similar to that prevailed in BM prior to FSW. Both the PWDT and PWNT treatments caused considerable reduction in the hardness of SZ. In the as-welded state, the 200 rpm joints have shown room temperature impact toughness close to that of BM, whereas 700 rpm joints exhibited very poor impact toughness. The best combination of microstructure and mechanical properties could be obtained by employing low rotational speed of 200 rpm followed by PWNT cycle. The type and size of various precipitates, grain size, and evolving dislocation substructure have been presented and comprehensively discussed.
NASA Astrophysics Data System (ADS)
Ovchinnikov, V. V.; Drits, A. M.; Gureeva, M. A.; Malov, D. V.
2017-12-01
The effect of the initial grain size in the structure of the aluminum 1565chM alloy on the mechanical properties of the welded joints formed by friction stir welding and on the grain size in the weld core is studied. It is shown that the design of tool and, especially, the parameters of a screw groove exert a great effect on the grain size in the weld core.
NASA Technical Reports Server (NTRS)
Wang, Peter Hor-Ching
1996-01-01
This study is a continuation of the summer research of 1995 NASA/ASEE Summer Faculty Fellowship Program. This effort is to provide the infrastructure of an integrated Virtual Reality (VR) environment for the International Space Welding Experiment (ISWE) Analytical Tool and Trainer and the Microgravity Science Glovebox (MSG) Analytical Tool study. Due to the unavailability of the MSG CAD files and the 3D-CAD converter, little was done to the MSG study. However, the infrastructure of the integrated VR environment for ISWE is capable of performing the MSG study when the CAD files become available. Two primary goals are established for this research. First, the essential peripheral devices for an integrated VR environment will be studied and developed for the ISWE and MSG studies. Secondly, the training of the flight crew (astronaut) in general orientation, procedures, and location, orientation, and sequencing of the welding samples and tools are built into the VR system for studying the welding process and training the astronaut.
Auto Mechanics I. Learning Activity Packets (LAPs). Section A--Orientation and Safety.
ERIC Educational Resources Information Center
Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This document contains seven learning activity packets (LAPs) that outline the study activities for the orientation and safety instructional area for an Auto Mechanics I course. The seven LAPs cover the following topics: orientation, safety, hand tools, arc welding, oxyacetylene cutting, oxyacetylene fusion welding, and oxyacetylene braze welding.…
Laser penetration spike welding: a welding tool enabling novel process and design opportunities
NASA Astrophysics Data System (ADS)
Dijken, Durandus K.; Hoving, Willem; De Hosson, J. Th. M.
2002-06-01
A novel method for laser welding for sheet metal. is presented. This laser spike welding method is capable of bridging large gaps between sheet metal plates. Novel constructions can be designed and manufactured. Examples are light weight metal epoxy multi-layers and constructions having additional strength with respect to rigidity and impact resistance. Its capability to bridge large gaps allows higher dimensional tolerances in production. The required laser systems are commercially available and are easily implemented in existing production lines. The lasers are highly reliable, the resulting spike welds are quickly realized and the cost price per weld is very low.
Influence of Processing Parameters on the Flow Path in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Schneider, J. A.; Nunes, A. C., Jr.
2006-01-01
Friction stir welding (FSW) is a solid phase welding process that unites thermal and mechanical aspects to produce a high quality joint. The process variables are rpm, translational weld speed, and downward plunge force. The strain-temperature history of a metal element at each point on the cross-section of the weld is determined by the individual flow path taken by the particular filament of metal flowing around the tool as influenced by the process variables. The resulting properties of the weld are determined by the strain-temperature history. Thus to control FSW properties, improved understanding of the processing parameters on the metal flow path is necessary.
Effects of thread interruptions on tool pins in friction stir welding of AA6061
Reza-E-Rabby, Md.; Tang, Wei; Reynolds, Anthony P.
2017-06-21
In this paper, effects of pin thread and thread interruptions (flats) on weld quality and process response parameters during friction stir welding (FSW) of 6061 aluminium alloy were quantified. Otherwise, identical smooth and threaded pins with zero to four flats were adopted for FSW. Weldability and process response variables were examined. Results showed that threads with flats significantly improved weld quality and reduced in-plane forces. A three-flat threaded pin led to production of defect-free welds under all examined welding conditions. Spectral analyses of in-plane forces and weld cross-sectional analysis were performed to establish correlation among pin flats, force dynamics andmore » defect formation. Finally, the lowest in-plane force spectra amplitudes were consistently observed for defect-free welds.« less
Effects of thread interruptions on tool pins in friction stir welding of AA6061
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reza-E-Rabby, Md.; Tang, Wei; Reynolds, Anthony P.
In this paper, effects of pin thread and thread interruptions (flats) on weld quality and process response parameters during friction stir welding (FSW) of 6061 aluminium alloy were quantified. Otherwise, identical smooth and threaded pins with zero to four flats were adopted for FSW. Weldability and process response variables were examined. Results showed that threads with flats significantly improved weld quality and reduced in-plane forces. A three-flat threaded pin led to production of defect-free welds under all examined welding conditions. Spectral analyses of in-plane forces and weld cross-sectional analysis were performed to establish correlation among pin flats, force dynamics andmore » defect formation. Finally, the lowest in-plane force spectra amplitudes were consistently observed for defect-free welds.« less
NASA Astrophysics Data System (ADS)
Fu, Yanshu; Qiu, Yaohui; Li, Yulong
2018-03-01
The mechanical anisotropy of an explosive welding composite plate made of 304 stainless steel/245 steel was studied through shear experiments performed on explosively welded wavy interfaces along several orientation angles. The results indicated that the strength and the fracture energy of samples significantly varied with the orientation angles. The fracture surfaces of all samples were observed using a scanning electron microscope and through three-dimensional structure microscopy. The periodic features of all the fracture surfaces were clearly shown in different fracture modes. The fractal dimension of the fracture surfaces was calculated based on the fractal geometry by the box-counting method in MATLAB. The cohesive element model was used to analyze the fracture energy according to the physical dependence of the fractal dimension on thermodynamic entropy and interface separation energy. The fracture energy was an exponential function of the fractal dimension value, which was in good agreement with the experimental results. All results were validated for effective use in the application of anisotropy analysis to the welded interface and structural optimization of explosively welded composite plates.
NASA Astrophysics Data System (ADS)
Fu, Yanshu; Qiu, Yaohui; Li, Yulong
2018-05-01
The mechanical anisotropy of an explosive welding composite plate made of 304 stainless steel/245 steel was studied through shear experiments performed on explosively welded wavy interfaces along several orientation angles. The results indicated that the strength and the fracture energy of samples significantly varied with the orientation angles. The fracture surfaces of all samples were observed using a scanning electron microscope and through three-dimensional structure microscopy. The periodic features of all the fracture surfaces were clearly shown in different fracture modes. The fractal dimension of the fracture surfaces was calculated based on the fractal geometry by the box-counting method in MATLAB. The cohesive element model was used to analyze the fracture energy according to the physical dependence of the fractal dimension on thermodynamic entropy and interface separation energy. The fracture energy was an exponential function of the fractal dimension value, which was in good agreement with the experimental results. All results were validated for effective use in the application of anisotropy analysis to the welded interface and structural optimization of explosively welded composite plates.
Friction Stir Welding Development
NASA Technical Reports Server (NTRS)
Romine, Peter L.
1998-01-01
The research of this summer was a continuation of work started during the previous summer faculty fellowship period. The Friction Stir Welding process (FSW) patented by The Welding Institute (TWI), in Great Britain, has become a popular topic at the Marshall Space Flight Center over the past year. Last year it was considered a novel approach to welding but few people took it very seriously as a near term solution. However, due to continued problems with cracks in the new aluminum-lithium space shuttle external tank (ET), the friction stir process is being mobilized at full speed in an effort to mature this process for the potential manufacture of flight hardware. It is now the goal of NASA and Lockheed-Martin Corporation (LMC) to demonstrate a full-scale friction stir welding system capable of welding ET size barrel sections. The objectives this summer were: (1) Implementation and validation of the rotating dynamometer on the MSFC FSW system; (2) Collection of data for FSW process modeling efforts; (3) Specification development for FSW implementation on the vertical weld tool; (4) Controls and user interface development for the adjustable pin tool; and (5) Development of an instrumentation system for the planishing process. The projects started this summer will lead to a full scale friction stir welding system that is expected to produce a friction stir welded shuttle external tank type barrel section. The success of this could lead to the implementation of the friction stir process for manufacturing future shuttle external tanks.
2011-01-01
expensive post-weld machining; and (g) low 102 environmental impact . However, some disadvantages of the 103 FSW process have also been identified such as (a...material. Its 443 density and thermal properties are next set to that of AISI- H13 , 444 a hot-worked tool steel, frequently used as the FSW-tool 445
2011-12-30
which reduces the need for expensive post-weld machining; and (g) low environmental impact . However, some disadvantages of the FSW process have also...next set to that of AISI- H13 , a hot-worked tool steel, frequently used as the FSW-tool material (Ref 16). The work-piece material is assumed to be
Texture Development in a Friction Stir Lap-Welded AZ31B Magnesium Alloy
NASA Astrophysics Data System (ADS)
Naik, B. S.; Chen, D. L.; Cao, X.; Wanjara, P.
2014-09-01
The present study was aimed at characterizing the microstructure, texture, hardness, and tensile properties of an AZ31B-H24 Mg alloy that was friction stir lap welded (FSLWed) at varying tool rotational rates and welding speeds. Friction stir lap welding (FSLW) resulted in the presence of recrystallized grains and an associated hardness drop in the stir zone (SZ). Microstructural investigation showed that both the AZ31B-H24 Mg base metal (BM) and SZ contained β-Mg17Al12 and Al8Mn5 second phase particles. The AZ31B-H24 BM contained a type of basal texture (0001)<110> with the (0001) plane nearly parallel to the rolled sheet surface and <110> directions aligned in the rolling direction. FSLW resulted in the formation of another type of basal texture (0001)<100> in the SZ, where the basal planes (0001) became slightly tilted toward the transverse direction, and the prismatic planes (100) and pyramidal planes (101) exhibited a 30 deg + ( n - 1) × 60 deg rotation ( n = 1, 2, 3, …) with respect to the rolled sheet normal direction, due to the shear plastic flow near the pin surface that occurred from the intense local stirring. With increasing tool rotational rate and decreasing welding speed, the maximum intensity of the basal poles (0001) in the SZ decreased due to a higher degree of dynamic recrystallization that led to a weaker or more random texture. The tool rotational rate and welding speed had a strong effect on the failure load of FSLWed joints. A combination of relatively high welding speed (20 mm/s) and low tool rotational rate (1000 rpm) was observed to be capable of achieving a high failure load. This was attributed to the relatively small recrystallized grains and high intensity of the basal poles in the SZ arising from the low heat input as well as the presence of a small hooking defect.
NASA Astrophysics Data System (ADS)
Baghdadi, Amir Hossein; Fazilah Mohamad Selamat, Nor; Sajuri, Zainuddin
2017-09-01
Automotive and aerospace industries are attempting to produce lightweight structure by using materials with low density such as aluminum and magnesium alloys to increase the fuel efficiency and consequently reduce the environmental pollution. It can be beneficial to join Mg to Al to acquire ideal performance in special applications. Friction stir welding (FSW) is solid state welding processes and relatively lower temperature of the process compared to fusion welding processes. This makes FSW a potential joining technique for joining of the dissimilar materials. In this study, Mg-Al butt joints were performed by FSW under different tool offset conditions, rotation rates (500-600 rpm) and traverse speeds (20 mm/min) with tool axis offset 1 mm shifted into AZ31B or Al6061 (T6), and without offset. During the welding process AZ31B was positioned at the advancing side (AS) and Al6061 (T6) was located at the retreating side (RS). Defect free AZ31B-Al6061 (T6) dissimilar metal FSW joints with good mechanical properties were obtained with the combination of intermediate rotation rate and low traverse speed pin is in the middle. When tool positioned in -1 mm or +1 mm offsetting, some defects were found in SZ of dissimilar FSWed joints such as cavity, tunnel, and crack. Furthermore, a thin layer of intermetallic compounds was observed in the stir zone at the interface between Mg-Al plates. The strength of the joint was influenced by FSW parameters. Good mechanical properties obtained with the combination of intermediate rotational speed of 600 rpm and low travelling speed of 20 mm/min by locating Mg on advancing side when pin is in the middle. Also, Joint efficiency of the welds prepared in the present study was between 29% and 68% for the different welding parameters.
The keyhole region in VPPA welds
NASA Technical Reports Server (NTRS)
Walsh, Daniel W.
1988-01-01
The morphology and properties of the Variable Polarity Plasma Arc (VPPA) weld composite zone are intimately related to the physical processes associated with the keyhole. The effects of microsegregation and transient weld stress on macrosegregation in the weld tool are examined. In addition the electrical character of straight and reverse polarity portions of the arc cycle were characterized. The results of the former study indicate that alloy 2219 is weldable because large liquid volumes are available during latter stages of weld solidification. Strains in the pool region, acting in conjunction with weld microsegregation can produce macrosegregation great enough to produce radiographic contrast effects in welds. Mechanisms of surface copper enrichment were identified. The latter study has demonstrated that increased heat is delivered to workpieces if the reverse polarity proportion of the weld cycle is increased. Current in the straight polarity portion of the welding cycle increased as the reverse cycle proportion increased. Voltage during reverse polarity segments is large.
NASA Astrophysics Data System (ADS)
Ghosh, M.; Gupta, R. K.; Husain, M. M.
2014-02-01
Joining of dissimilar materials is always a global challenge. Sometimes it is unavoidable to execute multifarious activities by a single component. In the present investigation, 6061 aluminum alloy and 304 stainless steel were joined by friction stir welding (FSW) at different tool rotational rates. Welded joints were characterized in optical and scanning electron microscopes. Reaction products in the stirring zone (SZ) were confirmed through X-ray diffraction. Joint strength was evaluated by tensile testing. It was found that the increment in average heat input and temperature at the weld nugget (WN) facilitated iron enrichment near the interface. Enhancement in the concentration of iron shifted the nature of intermetallics from the Fe2Al5 to Fe-rich end of the Fe-Al binary phase diagram. The peak microhardness and ultimate tensile strength were found to be maxima at the intermediate tool rotational rate, where Fe3Al and FeAl2 appeared along with Fe2Al5.
NASA Astrophysics Data System (ADS)
AlShaer, A. W.; Li, L.; Mistry, A.
2014-12-01
Laser welding of aluminium alloys typically results in porosity in the fusion zones, leading to poor mechanical and corrosion performances. Mechanical and chemical cleaning of surfaces has been used previously to remove contaminants for weld joint preparations. However, these methods are slow, ineffective (e.g. due to hydrogen trapping) or lead to environmental hazards. This paper reports the effects of short pulsed laser surface cleaning on porosity formation and reduction in laser welding of AC-170PX (AA6014) aluminium sheets (coated with Ti/Zr and lubricated using a dry lubricant AlO70) with two types of joints: fillet edge and flange couch, using an AA4043 filler wire for automotive component assembly. The effect of laser cleaning on porosity reduction during laser welding using a filler wire has not been reported before. In this work, porosity and weld fusion zone geometry were examined prior to and after laser cleaning. The nanosecond pulsed Nd:YAG laser cleaning was found to reduce porosity significantly in the weld fusion zones. For the fillet edge welds, porosity was reduced to less than 0.5% compared with 10-80% without laser cleaning. For flange couch welds, porosity was reduced to 0.23-0.8% with laser cleaning from 0.7% to 4.3% without laser cleaning. This has been found to be due to the elimination of contaminations and oxide layers that contribute to the porosity formation. The laser cleaning is based on thermal ablation. This research focuses on porosity reduction in laser welding of aluminium alloy. Weld quality was investigated for two joints, fillet edge and flange couch joints. The effect of laser cleaning on porosity reduction after welding was investigated. It was found that laser cleaning reduced porosity less than 1% in both joints. Weld dimensions and strength were evaluated and discussed for both types of joints.
NASA Astrophysics Data System (ADS)
He, Xiuli
Nd: YAG Laser welding with hundreds of micrometers in laser beam diameter is widely used for assembly and closure of high reliability electrical and electronic packages for the telecommunications, aerospace and medical industries. However, certain concerns have to be addressed to obtain defect-free and structurally sound welds. During laser welding, Because of the high power density used, the pressures at the weld pool surface can be greater than the ambient pressure. This excess pressure provides a driving force for the vaporization to take place. As a result of vaporization for different elements, the composition in the weld pool may differ from that of base metal, which can result in changes in the microstructure and degradation of mechanical properties of weldments. When the weld pool temperatures are very high, the escaping vapor exerts a large recoil force on the weld pool surface, and as a consequence, tiny liquid metal particles may be expelled from the weld pool. Vaporization of alloying elements and liquid metal expulsion are the two main mechanisms of material loss. Besides, for laser welds with small length scale, heat transfer and fluid flow are different from those for arc welds with much larger length scale. Because of small weld pool size, rapid changes of temperature and very short duration of the laser welding process, physical measurements of important parameters such as temperature and velocity fields, weld thermal cycles, solidification and cooling rates are very difficult. The objective of the research is to quantitatively understand the influences of various factors on the heat transfer, fluid flow, vaporization of alloying elements and liquid metal expulsion in Nd:YAG laser welding with small length scale of 304 stainless steel. In this study, a comprehensive three dimensional heat transfer and fluid flow model based on the mass, momentum and energy conservation equations is relied upon to calculate temperature and velocity fields in the weld pool, weld thermal cycle, weld pool geometry and solidification parameters. Surface tension and buoyancy forces were considered for the calculation of transient weld pool convection. Very fine grids and small time steps were used to achieve accuracy in the calculations. The calculated weld pool dimensions were compared with the corresponding measured values to validate the model. (Abstract shortened by UMI.)
The Mechanical Behavior of Friction-Stir Spot Welded Aluminum Alloys
NASA Astrophysics Data System (ADS)
Güler, Hande
2014-10-01
Aluminum and alloys are widely used in the automotive industry due to the light weight, good formability, and malleability. Spot welding is the most commonly used joining method of these materials, but the high current requirements and the inconsistent quality of the final welds make this process unsuitable. An alternative welding technique, the friction-stir spot welding process, can also be successfully used in joining of aluminum and alloys. In this study, 1-mm-thick AA5754 Al-alloy plates in the H-111 temper conditions were joined by friction-stir spot welding using two different weld parameters such as tool rotational speed and dwell time. Mechanical properties of the joints were obtained with extensive hardness measurements and tensile shear tests. The effect of these parameters on the failure modes of welded joints was also determined.
Friction-Stir Welding of Large Scale Cryogenic Fuel Tanks for Aerospace Applications
NASA Technical Reports Server (NTRS)
Jones, Clyde S., III; Venable, Richard A.
1998-01-01
The Marshall Space Flight Center has established a facility for the joining of large-scale aluminum-lithium alloy 2195 cryogenic fuel tanks using the friction-stir welding process. Longitudinal welds, approximately five meters in length, were made possible by retrofitting an existing vertical fusion weld system, designed to fabricate tank barrel sections ranging from two to ten meters in diameter. The structural design requirements of the tooling, clamping and the spindle travel system will be described in this paper. Process controls and real-time data acquisition will also be described, and were critical elements contributing to successful weld operation.
TEM study of the FSW nugget in AA2195-T81
NASA Technical Reports Server (NTRS)
Schneider, J. A.; Nunes, A. C., Jr.; Chen, P. S.; Steele, G.
2004-01-01
During fiiction stir welding (FSW) the material being joined is subjected to a thermal- mechanical process in which the temperature, strain and strain rates are not completely understood. To produce a defect fiee weld, process parameters for the weld and tool pin design must be chosen carefully. The ability to select the weld parameters based on the thermal processing requirements of the material, would allow optimization of mechanical properties in the weld region. In this study, an attempt is made to correlate the microstructure with the variation in thermal history the material experiences during the FSW process.
The Plastic Flow Field in the Vicinity of the Pin-Tool During Friction Stir Welding
NASA Technical Reports Server (NTRS)
Bernstein, E. L.; Nunes, A. C., Jr.
2000-01-01
The plastic flow field in the vicinity of the pin-tool during Friction Stir Welding (FSW) needs to be understood if a theoretical understanding of the process is to be attained. The structure of welds does not exhibit the flow field itself, but consists in a residue of displacements left by the plastic flow field. The residue requires analysis to extract from it the instantaneous flow field around the pin-tool. A simplified merry-go-round model makes sense of some tracer experiments reported in the literature. A quantitative comparison is made of the displacements of copper wire markers with displacements computed from a hypothetical plastic flow field. The hypothetical plastic flow field consists in a circular rotation field about a translating pin tool with angular velocity varying with radius from the pin centerline. A sharply localized rotational field comprising slip on a surface around the tool agreed better with observations than a distributed slip field occupying a substantial volume around the tool. Both the tracer and the wire displacements support the "rotating plug" model, originally invoked or thermal reasons, of the FSW process.
Damage Tolerance Assessment of Friction Pull Plug Welds
NASA Technical Reports Server (NTRS)
McGill, Preston; Burkholder, Jonathan
2012-01-01
Friction stir welding is a solid state welding process developed and patented by The Welding Institute in Cambridge, England. Friction stir welding has been implemented in the aerospace industry in the fabrication of longitudinal welds in pressurized cryogenic propellant tanks. As the industry looks to implement friction stir welding in circumferential welds in pressurized cryogenic propellant tanks, techniques to close out the termination hole associated with retracting the pin tool are being evaluated. Friction pull plug welding is under development as a one means of closing out the termination hole. A friction pull plug weld placed in a friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite, plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size in the test or service environments. Test data relating residual strength capability to flaw size in two aluminum alloy friction plug weld configurations is presented.
Friction pull plug welding: top hat plug design
NASA Technical Reports Server (NTRS)
Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)
2001-01-01
Friction Pull Plug Welding is a solid state repair process for defects up to one inch in length, only requiring single sided tooling, or outside skin line (OSL), for preferred usage on flight hardware. The most prevalent defect associated with Friction Pull Plug Welding (FPPW) was a top side or inside skin line (ISL) lack of bonding. Bonding was not achieved at this location due to the reduction in both frictional heat and welding pressure between the plug and plate at the end of the weld. Thus, in order to eliminate the weld defects and increase the plug strength at the plug `top` a small `hat` section is added to the pull plug for added frictional heating and pressure.
Friction pull plug welding: top hat plug design
NASA Technical Reports Server (NTRS)
Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)
2002-01-01
Friction Pull Plug Welding is a solid state repair process for defects up to one inch in length, only requiring single sided tooling, or outside skin line (OSL), for preferred usage on flight hardware. The most prevalent defect associated with Friction Pull Plug Welding (FPPW) was a top side or inside skin line (ISL) lack of bonding. Bonding was not achieved at this location due to the reduction in both frictional heat and welding pressure between the plug and plate at the end of the weld. Thus, in order to eliminate the weld defects and increase the plug strength at the plug `top` a small `hat` section is added to the pull plug for added frictional heating and pressure.
NASA Astrophysics Data System (ADS)
Liang, Zhiyuan; Chen, Ke; Wang, Xiaona; Yao, Junshan; Yang, Qi; Zhang, Lanting; Shan, Aidang
2013-08-01
Friction stir welding (FSW) is a promising solid-state joining technique for producing effective welds between Al alloy and Mg alloy. However, previously reported Al/Mg dissimilar FSW joints generally have limited strength or barely any ductility with relatively high strength, which was blamed on the brittle intermetallics formed during welding. In this study, effective joints with comparably high strength (163 MPa) and large elongation (~6 pct) were obtained. Three crucial/weak zones were identified in the welds: (1) Al/Mg bottom interface (BI) zone that resulted from the insufficient materials' intermixing and interdiffusion; (2) banded structure (BS) zone which contains intermetallic particles possibly formed by constitutional liquation; and (3) softened Al alloy to the retreating side (SAA-RS) zone due to the dissolution and coarsening of the strengthening precipitates. Three fracture modes observed in the tensile specimens perpendicular to the weld seam were found closely related to these zones. Their microstructure evolution with the change of tool rotational speed and tool offset was characterized and the consequent effect on the fracture mode alteration was studied. It turned out that enhancing the strengths of all these zones, but keeping the strength of the SAA lowest, is an effective way for enhancing ductility while keeping comparatively high strength in Al/Mg FSW joints. Also, suggestions for further improving the mechanical property of the Al/Mg dissimilar FSW joints were made accordingly for practical applications.
Efficacy of dry-ice blasting in preventive maintenance of auto robotic assemblies
NASA Astrophysics Data System (ADS)
Baluch, Nazim; Mohtar, Shahimi; Abdullah, Che Sobry
2016-08-01
Welding robots are extensively applied in the automotive assemblies and `Spot Welding' is the most common welding application found in the auto stamping assembly manufacturing. Every manufacturing process is subject to variations - with resistance welding, these include; part fit up, part thickness variations, misaligned electrodes, variations in coating materials or thickness, sealers, weld force variations, shunting, machine tooling degradation; and slag and spatter damage. All welding gun tips undergo wear; an elemental part of the process. Though adaptive resistance welding control automatically compensates to keep production and quality up to the levels needed as gun tips undergo wear so that the welds remain reliable; the system cannot compensate for deterioration caused by the slag and spatter on the part holding fixtures, sensors, and gun tips. To cleanse welding robots of slag and spatter, dry-ice blasting has proven to be an effective remedy. This paper describes Spot welding process, analyses the slag and spatter formation during robotic welding of stamping assemblies, and concludes that the dry ice blasting process's utility in cleansing of welding robots in auto stamping plant operations is paramount and exigent.
Friction-Stir Welding and Mathematical Modeling
NASA Technical Reports Server (NTRS)
Rostant, Victor D.
1999-01-01
The friction-stir welding process is a remarkable way for making butt and lap joints in aluminum alloys. This process operates by passing a rotating tool between two closely butted plates. Through this process it generates a lot of heat and heated material is stirred from both sides of the plates in which the outcome will one high quality weld. My research has been done to study the FSW through mathematical modeling, and using modeling to better understand what take place during the friction-stir weld.
The Establishment of a New Friction Stir Welding Process Development Facility at NASA/MSFC
NASA Technical Reports Server (NTRS)
Carter, Robert W.
2009-01-01
Full-scale weld process development is being performed at MSFC to develop the tools, fixtures, and facilities necessary for Ares I production. Full scale development in-house at MSFC fosters technical acuity within the NASA engineering community, and allows engineers to identify and correct tooling and equipment shortcomings before they become problems on the production floor. Finally, while the new weld process development facility is currently being outfitted in support of Ares I development, it has been established to support all future Constellation Program needs. In particular, both the RWT and VWT were sized with the larger Ares V hardware in mind.
Thermo-Mechanical Processing in Friction Stir Welds
NASA Technical Reports Server (NTRS)
Schneider, J. A.; Nunes, A. C., Jr.
2002-01-01
In Friction Stir Welding (FSW) a rotating pin-tool inserted into a weld seam literally stirs the edges of the seam together. In this study, two flow paths are proposed that define the FWS zone. Studies using a longitudinal tungsten wire (0.0025 dia.) were used to visualize and document the material flow. The material flow path is described using a mathematical model.
2013-05-31
fusion welding and virtually eliminates the material porosity inherent with liquid alloy processes. Also because less heat is input to the material...Fe intermetallic present. Mechanical load testing determined that the bimetallic FSP joint was stronger than similar AA6061-to-AA6061 fusion- welded and...5 b) Weld Coupon Fixture ........................................................................................ 5 2. Friction Stir Tools
Characterization of nitrogen effects in high energy density weldments of Nitronic 40 stainless steel
NASA Astrophysics Data System (ADS)
Pfeif, Erik Andrew
Variation in the welding environment for laser beam welding and electron beam welding can alter the resulting weld chemical composition, microstructure and therefore the mechanical properties. The room temperature mechanical properties of Nitronic 40 stainless steel weld metal from three different heats containing 0.24, 0.28, and 0.31 wt. pct. nitrogen were evaluated for continuous mode Ytterbium doped Fiber laser welds conducted with argon and nitrogen shielding gases, and for electron beam welds. The bulk nitrogen contents were monitored and the resulting properties were then related to microstructural features measured using Electron BackScatter Diffraction (EBSD). Traditional tensile testing of weld metal is conducted on composite tensile bars consisting of base metal and weld metal often leading to failure in the region adjacent to the weld due to strength mismatch at the weld interface. These tests provide composite strength but do not specifically determine the mechanical properties of the heterogeneous weld metal. In this research, microtensile testing was conducted to characterize the properties of the different regions of the weld. The microtensile testing procedures were developed using two geometries of tensile bars measuring the properties through the thickness of 3 mm full penetration welds. In all cases an increase in the strength of the weld metal was found to occur, though the electron beam welds exhibited a higher strength than the laser welds. Standard predictive equations were found to under-predict the strength of the laser welds, even when average grain size or intercept distances were measured. The contribution of nitrogen solid solution strengthening was consistent at approximately 513 MPa per wt. pct. nitrogen. Similar cooling rates and heat inputs allow for a comparison across high energy density welding techniques. Though microstructural differences through the depth of the weld metal were observed as nitrogen vaporization decreased and cooling rates increased. Vermicular ferrite, lacy ferrite and intercellular ferrite were identified as predicted in prior research done on high nitrogen austenitic stainless steels. The resulting laser weld metal microstructures were analyzed with EBSD for grain size and ferrite content measurements, while grain boundary character was determined for a Hansen model used for multi-scale mechanical property measurements. It was found that the low angle grain boundaries were the predominant microstructural feature responsible for strengthening within the weld metal and that this contribution must be accounted for when predicting yield strength of the weld metal.
NASA Astrophysics Data System (ADS)
Krejsa, M.; Brozovsky, J.; Mikolasek, D.; Parenica, P.; Koubova, L.
2018-04-01
The paper is focused on the numerical modeling of welded steel bearing elements using commercial software system ANSYS, which is based on the finite element method - FEM. It is important to check and compare the results of FEM analysis with the results of physical verification test, in which the real behavior of the bearing element can be observed. The results of the comparison can be used for calibration of the computational model. The article deals with the physical test of steel supporting elements, whose main purpose is obtaining of material, geometry and strength characteristics of the fillet and butt welds including heat affected zone in the basic material of welded steel bearing element. The pressure test was performed during the experiment, wherein the total load value and the corresponding deformation of the specimens under the load was monitored. Obtained data were used for the calibration of numerical models of test samples and they are necessary for further stress and strain analysis of steel supporting elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hempel, Nico; Bunn, Jeffrey R; Nitschke-Pagel, Thomas
This paper is dedicated to the thorough experimental analysis of the residual stresses in the vicinity of tubular welds and the mechanisms involved in their formation. Pipes made of a ferritic-pearlitic structural steel and an austenitic stainless steel are investigated in this study. The pipes feature a similar geometry and are MAG welded with two passes and comparable parameters. Residual strain mappings are carried out using X-ray and neutron diffraction. The combined use of both techniques permits both near-surface and through-wall analyses of the residual stresses. The findings allow for a consistent interpretation of the mechanisms accounting for the formationmore » of the residual stress fields due to the welding process. Since the results are similar for both materials, it can be concluded that residual stresses induced by phase transformations, which can occur in the structural steel, play a minor role in this regard.« less
Robotic Manufacturing of 5.5 Meter Cryogenic Fuel Tank Dome Assemblies for the NASA Ares I Rocket
NASA Technical Reports Server (NTRS)
Jones, Ronald E.
2012-01-01
The Ares I rocket is the first launch vehicle scheduled for manufacture under the National Aeronautic and Space Administration's (NASA's) Constellation program. A series of full-scale Ares I development articles have been constructed on the Robotic Weld Tool at the NASA George C. Marshall Space Flight Center in Huntsville, Alabama. The Robotic Weld Tool is a 100 ton, 7-axis, robotic manufacturing system capable of machining and friction stir welding large-scale space hardware. This presentation will focus on the friction stir welding of 5.5m diameter cryogenic fuel tank components; specifically, the liquid hydrogen forward dome (LH2 MDA), the common bulkhead manufacturing development articles (CBMDA) and the thermal protection system demonstration dome (TPS Dome). The LH2 MDA was the first full-scale, flight-like Ares I hardware produced under the Constellation Program. It is a 5.5m diameter elliptical dome assembly consisting of eight gore panels, a y-ring stiffener and a manhole fitting. All components are made from aluminumlithium alloy 2195. Conventional and self-reacting friction stir welding was used on this article. An overview of the manufacturing processes will be discussed. The LH2 MDA is the first known fully friction stir welded dome ever produced. The completion of four Common Bulkhead Manufacturing Development Articles (CBMDA) and the TPS Dome will also be highlighted. Each CBMDA and the TPS Dome consists of a 5.5m diameter spun-formed dome friction stir welded to a y-ring stiffener. The domes and y-rings are made of aluminum 2014 and 2219 respectively. The TPS Dome has an additional aluminum alloy 2195 barrel section welded to the y-ring. Manufacturing solutions will be discussed including "fixtureless" welding with self reacting friction stir welding.
The Plunge Phase of Friction Stir Welding
NASA Technical Reports Server (NTRS)
McClure, John C.
2005-01-01
The many advantages of Friction Stir Welding have led to a relatively rapid acceptance in the often conservative welding community. Because the process is so different from traditional fusion welding, with which most investigators are most familiar, there remain many aspects of FSW for which there is no clear consensus. For example, the well known onion rings seen in transverse sections have been variously interpreted as grain size variations, variation in density of second phase particles and parts of the carousel of material rotating with the pin that have been shed from the carousel. Using Orientation Imaging Microscopy, Schneider has recently noted that the onion rings have a different orientation (and hence etch differently) than the surrounding material, and this orientation is consistent with slip plane orientations at the edge of the carousel. Likewise, the forces and torque exerted by the FSW tool on the work piece largely remain unaccounted for. Although these forces are routinely measured by investigators with commercial instrumented welders, they are rarely reported or even qualitatively analyzed. This paper will introduce a model based on a carousel or disk of material that rotates with the tool to estimate the torque and plunge force required to plunge a tool into the work piece. A stationary tool is modeled rather than the moving tool because effects such as thermal transients and metallurgical changes in the sample (primarily aging in aluminum) can be more easily accounted for. It is believed, however, that with some modifications the model should be applicable to a moving tool also.
NASA Astrophysics Data System (ADS)
Kramer, Thorsten; Olowinsky, Alexander M.
2003-07-01
Conventional joining techniques like press fitting or crimping require the application of mechanical forces to the parts which, in combination with the tolerances of both parts to be joined, lead to imprecision and poor tensile strength. In contrast, laser beam micro welding provides consistent joining and high flexibility and it acts as an alternative as long as press fitting, crimping, screwing or gluing are not capable of batch production. Different parts and even different metals can be joined in a non-contact process at feed rates of up to 60 m/min and with weld seam lengths from 0.6 mm to 15.7 mm. Due to the low energy input, typically 1 J to 6 J, a weld width as small as 50 μm and a weld depth as small as 20 μm have been attained. This results in low distortion of the joined watch components. Since the first applications of laser beam micro welding of watch components showed promising results, the process has further been enhanced using the SHADOW technique. Aspects of the technique such as tensile strength, geometry and precision of the weld seam as well as the acceptance amongst the -mostly conservative- watch manufacturers have been improved.
Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys
NASA Astrophysics Data System (ADS)
Grujicic, M.; Arakere, G.; Pandurangan, B.; Ochterbeck, J. M.; Yen, C.-F.; Cheeseman, B. A.; Reynolds, A. P.; Sutton, M. A.
2012-09-01
Workpiece material flow and stirring/mixing during the friction stir welding (FSW) process are investigated computationally. Within the numerical model of the FSW process, the FSW tool is treated as a Lagrangian component while the workpiece material is treated as an Eulerian component. The employed coupled Eulerian/Lagrangian computational analysis of the welding process was of a two-way thermo-mechanical character (i.e., frictional-sliding/plastic-work dissipation is taken to act as a heat source in the thermal-energy balance equation) while temperature is allowed to affect mechanical aspects of the model through temperature-dependent material properties. The workpiece material (AA5059, solid-solution strengthened and strain-hardened aluminum alloy) is represented using a modified version of the classical Johnson-Cook model (within which the strain-hardening term is augmented to take into account for the effect of dynamic recrystallization) while the FSW tool material (AISI H13 tool steel) is modeled as an isotropic linear-elastic material. Within the analysis, the effects of some of the FSW key process parameters are investigated (e.g., weld pitch, tool tilt-angle, and the tool pin-size). The results pertaining to the material flow during FSW are compared with their experimental counterparts. It is found that, for the most part, experimentally observed material-flow characteristics are reproduced within the current FSW-process model.
Global and Local Mechanical Properties of Autogenously Laser Welded Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Cao, Xinjin; Kabir, Abu Syed H.; Wanjara, Priti; Gholipour, Javad; Birur, Anand; Cuddy, Jonathan; Medraj, Mamoun
2014-03-01
Ti-6Al-4V sheets, 3.2-mm in thickness, were butt welded using a continuous wave 4 kW Nd:YAG laser welding system. The effect of two main process parameters, laser power and welding speed, on the joint integrity was characterized in terms of the joint geometry, defects, microstructure, hardness, and tensile properties. In particular, a digital image correlation technique was used to determine the local tensile properties of the welds. It was determined that a wide range of heat inputs can be used to fully penetrate the Ti-6Al-4V butt joints during laser welding. At high laser power levels, however, significant defects such as underfill and porosity, can occur and cause marked degradation in the joint integrity and performance. At low welding speeds, however, significant porosity occurs due to its growth and the potential collapse of instable keyholes. Intermediate to relatively high levels of heat input allow maximization of the joint integrity and performance by limiting the underfill and porosity defects. In considering the effect of the two main defects on the joint integrity, the underfill defect was found to be more damaging to the mechanical performance of the weldment than the porosity. Specifically, it was determined that the maximum tolerable underfill depth for Ti-6Al-4V is approximately 6 pct of the workpiece thickness, which is slightly stricter than the value of 7 pct specified in AWS D17.1 for fusion welding in aerospace applications. Hence, employing optimized laser process parameters allows the underfill depth to be maintained within the tolerable limit (6 pct), which in turn prevents degradation in both the weld strength and ductility. To this end, the ability to maintain weld ductility in Ti-6Al-4V by means of applying a high energy density laser welding process presents a significant advantage over conventional arc welding for the assembly of aerospace components.
Robotic and automatic welding development at the Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Jones, C. S.; Jackson, M. E.; Flanigan, L. A.
1988-01-01
Welding automation is the key to two major development programs to improve quality and reduce the cost of manufacturing space hardware currently undertaken by the Materials and Processes Laboratory of the NASA Marshall Space Flight Center. Variable polarity plasma arc welding has demonstrated its effectiveness on class 1 aluminum welding in external tank production. More than three miles of welds were completed without an internal defect. Much of this success can be credited to automation developments which stabilize the process. Robotic manipulation technology is under development for automation of welds on the Space Shuttle's main engines utilizing pathfinder systems in development of tooling and sensors for the production applications. The overall approach to welding automation development undertaken is outlined. Advanced sensors and control systems methodologies are described that combine to make aerospace quality welds with a minimum of dependence on operator skill.
Advances in Solid State Joining of High Temperature Alloys
NASA Technical Reports Server (NTRS)
Ding, Jeff; Schneider, Judy
2011-01-01
Many of the metals used in the oil and gas industry are difficult to fusion weld including Titanium and its alloys. Solid state joining processes are being pursued as an alternative process to produce robust structures more amenable to high pressure applications. Various solid state joining processes include friction stir welding (FSW) and a patented modification termed thermal stir welding (TSW). The configuration of TSWing utilizes an induction coil to preheat the material minimizing the burden on the weld tool extending its life. This provides the ability to precisely select and control the temperature to avoid detrimental changes to the microstructure. The work presented in this presentation investigates the feasibility of joining various titanium alloys using the solid state welding processes of FSW and TSW. Process descriptions and attributes of each weld process will be presented. Weld process set ]up and welding techniques will be discussed leading to the challenges experienced. Mechanical property data will also be presented.
Friction stir scribe welding technique for dissimilar joining of aluminium and galvanised steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Tianhao; Sidhar, Harpreet; Mishra, Rajiv S.
Friction stir scribe technology, a derivative of friction stir welding, was applied for the dissimilar lap welding of an aluminum alloy and galvanized mild steel sheets. During the process, the rotating tool with a cobalt steel scribe first penetrated the top material — aluminum — and then the scribe cut the bottom material — steel. The steel was displaced into the upper material to produce a characteristic hook feature. Lap welds were shear tested, and their fracture paths were studied. Welding parameters affected the welding features including hook height, which turned out to be highly related to fracture position. Therefore,more » in this paper, the relationships among welding parameters, hook height, joint strength and fracture position are presented. In addition, influence of zinc coating on joint strength was also studied. Keywords: friction stir scribe technology; dissimilar material welding; zinc coating; hook height; joint strength; fracture position« less
Hardening Potential of an Al-Cu-Li Friction Stir Weld
NASA Astrophysics Data System (ADS)
Ivanov, Rosen; Boselli, Julien; Denzer, Diana; Larouche, Daniel; Gauvin, Raynald; Brochu, Mathieu
The evolution of the microstructure during friction stir welding of a third generation AA2199 Al-Li alloy has been described and related to the mechanical properties of welds. The coupling of electron microscopy and micro-hardness have helped generate an understanding of the relationship between grain structure, precipitate density and morphology behind the observed changes in mechanical properties during post weld artificial ageing. The ability of welds to recover hardness and strength during post weld heat treatment was linked to the limited formation of large scale precipitates which act as sinks for alloying elements. Welds obtained with high tool rotation speed (within parameters studied) showed ultimate tensile strength levels of about 93% of the base metal, an elongation of 6% at fracture, and hardness values ranging between 120-140 HV in the stir zone, thermo-mechanically affected zone, and heat affected zone upon post weld heat treatment.
Origins of Line Defects in Self-Reacting Friction Stir Welds and Their Impact on Weld Quality
NASA Technical Reports Server (NTRS)
Schneider, Judy; Nunes, Arthur C., Jr.
2016-01-01
Friction stir welding (FSWing) is a solid state joining technique which reduces the occurrence of typical defects formed in fusion welds, especially of highly alloyed metals. Although the process is robust for aluminum alloys, occasional reductions in the strength of FSWs have been observed. Shortly after the NASA-MSFC implemented a variation of FSW called self-reacting (SR), low strength properties were observed. At that time, this reduction in strength was attributed to a line defect. At that time, the limited data suggested that the line defect was related to the accumulation of native oxides that form on the weld lands and faying surfaces. Through a series of improved cleaning methods, tool redesign, and process parameter modifications, the reduction in the strength of the SR-FSWs was eliminated. As more data has been collected, the occasional reduction in the strength of SR-FSW still occurs. These occasional reductions indicate a need to reexamine the underlying causes. This study builds off a series of self reacting (SR)-FSWs that were made in 3 different thickness panels of AA2219 (0.95, 1.27 and 1.56 cm) at 2 different weld pitches. A bead on plate SR-FSW was also made in the 1.56 cm thick panel to understand the contribution of the former faying surfaces. Copper tracer studies were used to understand the flow lines associated with the weld tool used. The quality of the SR-FSWs was evaluated from tensile testing at room temperature. Reductions in the tensile strength were observed in some weldments, primarily at higher weld pitch or tool rotations. This study explores possible correlations between line defects and the reduction of strength in SR-FSWs. Results from this study will assist in a better understand of the mechanisms responsible for reduced tensile strength and provide methodology for minimizing their occurrence.
3D finite element simulation of TIG weld pool
NASA Astrophysics Data System (ADS)
Kong, X.; Asserin, O.; Gounand, S.; Gilles, P.; Bergheau, J. M.; Medale, M.
2012-07-01
The aim of this paper is to propose a three-dimensional weld pool model for the moving gas tungsten arc welding (GTAW) process, in order to understand the main factors that limit the weld quality and improve the productivity, especially with respect to the welding speed. Simulation is a very powerful tool to help in understanding the physical phenomena in the weld process. A 3D finite element model of heat and fluid flow in weld pool considering free surface of the pool and traveling speed has been developed for the GTAW process. Cast3M software is used to compute all the governing equations. The free surface of the weld pool is calculated by minimizing the total surface energy. The combined effects of surface tension gradient, buoyancy force, arc pressure, arc drag force to drive the fluid flow is included in our model. The deformation of the weld pool surface and the welding speed affect fluid flow, heat flow and thus temperature gradients and molten pool dimensions. Welding trials study is presented to compare our numerical results with macrograph of the molten pool.
An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in Space
NASA Technical Reports Server (NTRS)
Fragomeni, James M.; Nunes, Arthur C., Jr.
1998-01-01
The safety issue has been raised with regards to potential molten metal detachments from the weld pool and cold filler wire during electron beam welding in space. This investigation was undertaken to evaluate if molten metal could detach and come in contact with astronauts and burn through the fabric of the astronauts' Extravehicular Mobility Unit (EMU) during electron beam welding in space. Molten metal detachments from either the weld/cut substrate or weld wire could present harm to a astronaut if the detachment was to burn through the fabric of the EMU. Theoretical models were developed to predict the possibility and size of the molten metal detachment hazards during the electron beam welding exercises at Low Earth Orbit (LEO). The primary molten metal detachment concerns were those cases of molten metal separation from the metal surface due to metal cutting, weld pool splashing, entrainment and release of molten metal due to filler wire snap-out from the weld puddle, and molten metal accumulation and release from the end of the weld wire. Some possible ways of obtaining molten metal drop detachments would include an impulse force, or bump, to the weld sample, cut surface, or filler wire. Theoretical models were developed for these detachment concerns from principles of impact and kinetic energies, surface tension, drop geometry, surface energies, and particle dynamics. The surface tension represents the force opposing the liquid metal drop from detaching whereas the weight of the liquid metal droplet represents a force that is tending to detach the molten metal drop. Theoretical calculations have indicated that only a small amount of energy is required to detach a liquid metal drop; however, much of the energy of an impact is absorbed in the sample or weld plate before it reaches the metal drop on the cut edge or surface. The tendency for detachment is directly proportional to the weld pool radius and metal density and inversely proportional to the surface tension of the liquid metal. For a detachment the initial kinetic energy of the weld pool with respect to the plate has to exceed the energy to form the extra surface required for the detachment of the pool. The difficulty is in transferring the energy from the point of impact through the plate and sample to the cut edge. It is likely that not all of the kinetic energy is available for detaching the pool; some may be sequestered in weld pool oscillations. The coefficient of restitution for the collision will be lower than one if irreversible deformation, for example plastic flow deformation, takes place during the collision. Thus determining the amount of energy from an impact that actually reaches the molten metal droplet is critical. Various molten metal detachment scenarios were tested experimentally in an enclosed vacuum chamber using the Ukrainian Universal Hand Tool, an electron beam welder designed for space welding. The experimental testing was performed in a 4 ft. X 4 ft. vacuum chamber at Marshall Space Flight Center, evacuated to vacuum levels of at least 50 microTorr, and also some welding garment material was utilized to observe the effect of the molten metal detachments on the material. A "carillon" apparatus consisting of four pendulum hammer strikers, each weighing approximately 3.65 lbs, raised to predetermined specific heights was used to apply an impact force to the weld sample/plate during electron beam welding and cutting exercises. The strikers were released by switching on an electric motor to rotate a pin holding wires retaining the strikers at desired heights. The specimens were suspended so as to be free to respond to the blows with a sudden velocity increment. The specimens were mounted on a hinged plate for minimizing effective mass with the option to fasten it down so as to raise its effective mass closer to that anticipated for an actual space welding scenario. Measurements were made of the impact energy and the horizontal fling distances of the detached metal drops. It was not particularly easy to generate the detachments fo
Fracture Mechanics Evaluation of B-1 Materials. Volume I. Text
1976-10-01
4V Microstructures 2-37 P.4-1 TIG Welding Setup 2-60 2.4-2 Macrographs Showing Transverse Cross- 2-61 Sections of Typical Weld Joints 2.4-3 Diffusion...concavity. k. PAW welding parameters were: Keyhole Mode (First Pass) 1fWelding-Amperage - 185 Pilot Arc Amperage - P5 1/5" Diameter Tungsten -P% Thoria...of tooling employed. 2. • r a • 4 .fA A A ~ . - 4N. I 141Eb,~..0 1171 :41ýI t4, 1. r "I j, O~ vN;I ___4 A Ad2 Figuire 2.4-1i TIG Welding , Setup
Spatially resolved positron annihilation spectroscopy on friction stir weld induced defects.
Hain, Karin; Hugenschmidt, Christoph; Pikart, Philip; Böni, Peter
2010-04-01
A friction stir welded (FSW) Al alloy sample was investigated by Doppler broadening spectroscopy (DBS) of the positron annihilation line. The spatially resolved defect distribution showed that the material in the joint zone becomes completely annealed during the welding process at the shoulder of the FSW tool, whereas at the tip, annealing is prevailed by the deterioration of the material due to the tool movement. This might be responsible for the increased probability of cracking in the heat affected zone of friction stir welds. Examination of a material pairing of steel S235 and the Al alloy Silafont36 by coincident Doppler broadening spectroscopy (CDBS) indicates the formation of annealed steel clusters in the Al alloy component of the sample. The clear visibility of Fe in the CDB spectra is explained by the very efficient trapping at the interface between steel cluster and bulk.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-12
... that the friction welding of the pipe to the tool joint occurs in the UAE instead of the PRC. The... merchandise before the assembly performed by Almansoori/Hilong in the UAE, which consists of friction welding... Petitioners argue that for the purposes of section 781(b)(1)(C) of the Act, the process of friction welding...
NASA Technical Reports Server (NTRS)
Russell, C. K.; Malone, T. W.; Cato, S. N.
2004-01-01
The international space welding experiment was designed to evaluate the universal handtool (UHT) functions as a welding, brazing, coating, and cutting tool for in-space operations. The UHT is an electron beam welding system developed by the Paton Welding Institute (PWI), Kiev, Ukraine, and operated a 8 kV with up to 1 kW of power. In preparation for conducting the space welding experiment, cosmonauts were trained to properly operate the UHT and correctly process samples. This Technical Memorandum presents the results of the destructive and nondestructive evaluation of the training samples made in Russia in 1998. It was concluded that acceptable welds can be made with the UHT despite the constraints imposed by a space suit. The lap joint fillet weld configuration was more suitable than the butt joint configuration for operators with limited welding experience. The tube braze joint configuration designed by the PWI was easily brazed in a repeatable manner.
Joining of thin glass with semiconductors by ultra-fast high-repetition laser welding
NASA Astrophysics Data System (ADS)
Horn, Alexander; Mingaeev, Ilja; Werth, Alexander; Kachel, Martin
2008-02-01
Lighting applications like OLED or on silicon for electro-optical applications need a reproducible sealing process. The joining has to be strong, the permeability for gasses and humidity very low and the process itself has to be very localized not affecting any organic or electronic parts inside the sealed region. The actual sealing process using glue does not fulfil these industrial needs. A new joining process using ultra-fast laser radiation offers a very precise joining with geometry dimensions smaller than 50 μm. Ultra-fast laser radiation is absorbed by multi-photon absorption in the glass. Due to the very definite threshold for melting and ablation the process of localized heating can be controlled without cracking. Repeating the irradiation at times smaller than the heat diffusion time the temperature in the focus is increased by heat accumulation reaching melting of the glass. Mowing the substrate relatively to the laser beam generates a seal of re-solidified glass. Joining of glass is achieved by positioning the laser focus at the interface. A similar approach is used for glass-silicon joining. The investigations presented will demonstrate the joining geometry by microscopy of cross-sections achieved by welding two glass plates (Schott D263 and AF45) with focused IR femtosecond laser radiation (wavelength λ = 1045nm, repetition rate f = 1 MHz, pulse duration t p = 500 fs, focus diameter w 0 = 4 μm, feeding velocity v= 1-10 mm/s). The strength of the welding seam is measured by tensile stress measurements and the gas and humidity is detected. A new diagnostic method for the on-line detection of the welding seam properties will be presented. Using a non-interferometric technique by quantitative phase microscopy the refractive index is measured during welding of glass in the time regime 0-2 μs. By calibration of the measured refractive index with a relation between refractive index and temperature a online-temperature detection can be achieved.
NASA Astrophysics Data System (ADS)
Murugan, Balamagendiravarman; Thirunavukarasu, Gopinath; Kundu, Sukumar; Kailas, Satish V.; Chatterjee, Subrata
2018-05-01
In the present investigation, friction stir welding of commercially pure aluminum and 304 stainless steel was carried out at varying tool rotational speeds from 200 to 1000 rpm in steps of 200 rpm using 60 mm/min traverse speed at 2 (degree) tool tilt angle. Microstructural characterization of the interfacial zone was carried out using optical microscope and scanning electron microscope. Energy-dispersive spectroscopy indicated the presence of FeAl3 intermetallic phase. Thickness of the intermetallic layer increased with the increase in tool rotational speed. X-ray diffraction studies indicated the formation of intermetallic phases like FeAl2, Fe4Al13, Fe2Al5, and FeAl3. A maximum tensile strength of 90% that of aluminum along with 4.5% elongation was achieved with the welded sample at tool rotational speed of 400 rpm. The stir zone showed higher hardness as compared to base metals, heat affected zone, and thermo-mechanically affected zone due to the presence of intermetallics. The maximum hardness value at the stir zone was achieved at 1000 rpm tool rotational speed.
NASA Astrophysics Data System (ADS)
Ji, Shude; Huang, Ruofei; Meng, Xiangchen; Zhang, Liguo; Huang, Yongxian
2017-05-01
In order to increase cooling rate and then reduce the amounts of intermetallic compounds, external non-rotational shoulder tool system derived from traditional tool in friction stir welding was used to join dissimilar Al and Mg alloys. In this study, based on the external non-rotational shoulder, the weldability of Al and Mg alloys was significantly improved. The non-rotational shoulder tool is propitious to make more materials into weld, increase cooling rate and then reduce material adhesion of rotational pin, obtaining sound joint with smaller flashes and smooth surface. Importantly, the thickness of intermetallic compounds layer is reduced compared with traditional tool. Meanwhile, hardness values of dissimilar joint present uneven distribution, resulting from complex intercalated structures in nugget zone (NZ) featured by intermetallic compound layers and fine recrystallized Mg and Al grains. Compared with traditional tool, non-rotational shoulder is beneficial to higher tensile properties of joint. Due to the intermetallic compound layer formed in the interface of Al-Mg, the welding joint easily fractures at the NZ, presenting the typical brittle fracture mode.
NASA Astrophysics Data System (ADS)
Gemme, Frederic
The aim of the present research project is to increase the amount of fundamental knowledge regarding the process by getting a better understanding of the physical phenomena involved in friction stir welding (FSW). Such knowledge is required to improve the process in the context of industrial applications. In order to do so, the first part of the project is dedicated to a theoretical study of the process, while the microstructure and the mechanical properties of welded joints obtained in different welding conditions are measured and analyzed in the second part. The combination of the tool rotating and translating movements induces plastic deformation and heat generation of the welded material. The material thermomechanical history is responsible for metallurgical phenomena occurring during FSW such as recrystallization and precipitate dissolution and coarsening. Process modelling is used to reproduce this thermomechanical history in order to predict the influence of welding on the material microstructure. It is helpful to study heat generation and heat conduction mechanisms and to understand how joint properties are related to them. In the current work, a finite element numerical model based on solid mechanics has been developed to compute the thermomechanical history of the welded material. The computation results were compared to reference experimental data in order to validate the model and to calibrate unknown physical parameters. The model was used to study the effect of the friction coefficient on the thermomechanical history. Results showed that contact conditions at the workpiece/tool interface have a strong effect on relative amounts of heat generated by friction and by plastic deformation. The comparison with the experimental torque applied by the tool for different rotational speeds has shown that the friction coefficient decreases when the rotational speed increases. Consequently, heat generation is far more important near the material/tool interface and the material deformation is shallower, increasing the lack of penetration probability. The variation of thermomechanical conditions with regards to the rotational speed is responsible for the variation of the nugget shape, as recrystallization conditions are not reached in the same volume of material. The second part of the research project was dedicated to a characterization of the welded joints microstructure and mechanical properties. Sound joints were obtained by using a manufacturing procedure involving process parameters optimization and quality control of the joint integrity. Five different combinations of rotational and advancing speeds were studied. Microstructure observations have shown that the rotational speed has an effect on recrystallization conditions because of the variation of the contact conditions at the material/tool interface. On the other hand, the advancing speed has a strong effect on the precipitation state in the heat affected zone (HAZ). The heat input increases when the advancing speed decreases. The material softening in the HAZ is then more pronounced. Mechanical testing of the welded joints showed that the fatigue resistance increases when the rotational speed increases and the advancing speed decreases. The fatigue resistance of FSW joints mainly depends on the ratio of the advancing speed on the rotational speed, called the welding pitch k. When the welding pitch is high (k ≥ 0,66 mm/rev), the fatigue resistance depends on crack initiation at the root of circular grooves left by the tool on the weld surface. The size of these grooves is directly related to the welding pitch. When the welding pitch is low (k ≤ 0,2 mm/rev), the heat input is high and the fatigue resistance is limited by the HAZ softening. The fatigue resistance is optimized when k stands in the 0,25-0,30 mm/rev range. Outside that range, the presence of small lateral lips is critical. The results of the characterization part of the project showed that the effects of the applied vertical force on the formation of lateral lips should be submitted to further investigations. The elimination of the lateral lip, which could be achieved with a more precise adjustment of the vertical force, could lead to an improved fatigue resistance. The elimination of lateral lips, but also the circular grooves left by the tool, may be obtained by developing an appropriate surfacing technique and could lead to an improved fatigue resistance without reducing the advancing speed. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Balan, A. V.; Shivasankaran, N.; Magibalan, S.
2018-04-01
Low carbon steels used in chemical industries are frequently affected by corrosion. Cladding is a surfacing process used for depositing a thick layer of filler metal in a highly corrosive materials to achieve corrosion resistance. Flux cored arc welding (FCAW) is preferred in cladding process due to its augmented efficiency and higher deposition rate. In this cladding process, the effect of corrosion can be minimized by controlling the output responses such as minimizing dilution, penetration and maximizing bead width, reinforcement and ferrite number. This paper deals with the multi-objective optimization of flux cored arc welding responses by controlling the process parameters such as wire feed rate, welding speed, Nozzle to plate distance, welding gun angle for super duplex stainless steel material using simulated annealing technique. Regression equation has been developed and validated using ANOVA technique. The multi-objective optimization of weld bead parameters was carried out using simulated annealing to obtain optimum bead geometry for reducing corrosion. The potentiodynamic polarization test reveals the balanced formation of fine particles of ferrite and autenite content with desensitized nature of the microstructure in the optimized clad bead.
Behaviour of several fatigue prone bridge details
NASA Astrophysics Data System (ADS)
Kubiš, Petr; Ryjáček, Pavel
2017-09-01
Three fatigue welded bridge joints analysed in this work are the alternative details of the bottom flange connection. This construction detail is mainly used for the erection connection for steel and composite bridges. If applied in the place, where live load is significant, the fatigue becomes the main design criterion. The detail category is thus very important factor. The aim of this paper is to analyse the possibilities of the improving the behaviour of this detail, by various methods. First solution is to modify the shape of the cope hole to the elliptic shape. Second option is to use the “Olemutz” fully welded detail. This detail is often used in bridge designing despite there is no exact information about the fatigue category, and doubts of the performance exists. “Olemutz” is a long web plate slit that is filled by the double bevel weld after the execution of the bottom flange weld. The last detail is the elliptic cope hole filled by the plate-cap welded into an empty hole. The geometry is the same, as in the first case. The conclusion of the numerical analysis and the pilot fatigue experiments is discussed with several practical recommendations for designing.
Rheology, thermography, and interlayer welding in polymer extrusion 3D printing
NASA Astrophysics Data System (ADS)
Seppala, Jonathan; Davis, Chelsea; Migler, Kalman
In polymer extrusion 3D printing, thermoplastic filament is extruded though a rastering nozzle onto previously deposited layers. The resulting strength of the 3D produced part is limited by the strength of the weld between each layer. During this thermal processing, the temperature of the interface between layers dictates the chain mobility, interdiffusion, entanglement, and thus weld strength. In quiescent welding experiments, it has been found that the weld strength in symmetric linear polymer systems scales with t 0.25, where t is the isothermal annealing time, before plateauing to the bulk strength. However, 3D printing is highly non isothermal and we calculated an equivalent isothermal annealing time using a combination of in situ infrared thermography and horizontal shift factors from offline rheological measurements of the neat polymer. Interlayer adhesion energy was measured directly by mode III fracture using a simplified geometry limiting the measurement to a single interlayer. Since the processing conditions are known a prioi this approach provides the data needed to estimate the final build strength at time of design. The resulting agreement between annealing time and adhesion energy for a range of printing conditions and thermoplastics are discussed.
NASA Astrophysics Data System (ADS)
Kühn-Kauffeldt, M.; Marques, J.-L.; Forster, G.; Schein, J.
2013-10-01
The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned.
Closed-Loop Control System for Friction Stir Welding Retractable Pin Tool
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey; Romine, Peter L.; Munafo, Paul M. (Technical Monitor)
2001-01-01
NASA invention disclosure, NASA Case No. MFS-31413, entitled "System for Controlling the Stirring Pin of a Friction Stir Welding Apparatus", (Patent Pending) authored by Jeff Ding, Dr Peter Romine and Pete Oelgoetz, addresses the precision control of the friction stir welding process. The closed-loop control system automatically adjusts the spinning welding pin, real-time, to maintain a precise penetration ligament (i.e., distance between pin-tip and weld panel backside surface). A specific pin length can be maintained while welding constant thickness or tapered material thickness weld panels. The closed-loop control system provides operator data and information relative to the exact position of the welding pin inside the weld joint. This paper presents the closed-loop RPT control system that operates using the auto-feedback of force signals sensed by the tip and shoulder of the welding pin. Significance: The FSW process can be successfully used in a production environment only if there is a method or technique that informs the FSW operator the precise location of the welding pin inside the weld joint. This is essential for applications in aerospace, automotive, pressure vessel, commercial aircraft and other industries.
Thermographic Assessment of the HAZ Properties and Structure of Thermomechanically Treated Steel
NASA Astrophysics Data System (ADS)
Górka, Jacek; Janicki, Damian; Fidali, Marek; Jamrozik, Wojciech
2017-12-01
Thermomechanically processed steels are materials of great mechanical properties connected with more than good weldability. This mixture makes them interesting for different types of industrial applications. When creating welded joints, a specified amount of heat is introduced into the welding area and a so called heat-affected zone (HAZ) is formed. The key issue is to reduce the width of the HAZ, because properties of the material in the HAZ are worse than in the base material. In the paper, thermographic measurements of HAZ temperatures were presented as a potential tool for quality assuring the welding process in terms of monitoring and control. The main issue solved was the precise temperature measurement in terms of varying emissivity during a welding thermal cycle. A model of emissivity changes was elaborated and successfully applied. Additionally, material in the HAZ was tested to reveal its properties and connect changes of those properties with heating parameters. The obtained results prove that correctly modeled emissivity allows measurement of temperature, which is a valuable tool for welding process monitoring.
NASA Astrophysics Data System (ADS)
Psyk, Verena; Scheffler, Christian; Linnemann, Maik; Landgrebe, Dirk
2017-10-01
Compared to conventional joining techniques, electromagnetic pulse welding offers important advantages especially when it comes to dissimilar material connections as e.g. copper aluminum welds. However, due to missing guidelines and tools for process design, the process has not been widely implemented in industrial production, yet. In order to contribute to overcoming this obstacle, a combined numerical and experimental process analysis for electromagnetic pulse welding of Cu-DHP and EN AW-1050 was carried out and the results were consolidated in a quantitative collision parameter based process window.
A Combined Experimental and Analytical Modeling Approach to Understanding Friction Stir Welding
NASA Technical Reports Server (NTRS)
Nunes, Arthur C., Jr.; Stewart, Michael B.; Adams, Glynn P.; Romine, Peter
1998-01-01
In the Friction Stir Welding (FSW) process a rotating pin tool joins the sides of a seam by stirring them together. This solid state welding process avoids problems with melting and hot-shortness presented by some difficult-to weld high-performance light alloys. The details of the plastic flow during the process are not well understood and are currently a subject of research. Two candidate models of the FSW process, the Mixed Zone (MZ) and the Single Slip Surface (S3) model are presented and their predictions compared to experimental data.
Laser based spot weld characterization
NASA Astrophysics Data System (ADS)
Jonietz, Florian; Myrach, Philipp; Rethmeier, Michael; Suwala, Hubert; Ziegler, Mathias
2016-02-01
Spot welding is one of the most important joining technologies, especially in the automotive industry. Hitherto, the quality of spot welded joints is tested mainly by random destructive tests. A nondestructive testing technique offers the benefit of cost reduction of the testing procedure and optimization of the fabrication process, because every joint could be examined. This would lead to a reduced number of spot welded joints, as redundancies could be avoided. In the procedure described here, the spot welded joint between two zinc-coated steel sheets (HX340LAD+Z100MB or HC340LA+ZE 50/50) is heated optically on one side. Laser radiation and flash light are used as heat sources. The melted zone, the so called "weld nugget" provides the mechanical stability of the connection, but also constitutes a thermal bridge between the sheets. Due to the better thermal contact, the spot welded joint reveals a thermal behavior different from the surrounding material, where the heat transfer between the two sheets is much lower. The difference in the transient thermal behavior is measured with time resolved thermography. Hence, the size of the thermal contact between the two sheets is determined, which is directly correlated to the size of the weld nugget, indicating the quality of the spot weld. The method performs well in transmission with laser radiation and flash light. With laser radiation, it works even in reflection geometry, thus offering the possibility of testing with just one-sided accessibility. By using heating with collimated laser radiation, not only contact-free, but also remote testing is feasible. A further convenience compared to similar thermographic approaches is the applicability on bare steel sheets without any optical coating for emissivity correction. For this purpose, a proper way of emissivity correction was established.
Experimental and numerical evaluation of the fatigue behaviour in a welded joint
NASA Astrophysics Data System (ADS)
Almaguer, P.; Estrada, R.
2014-07-01
Welded joints are an important part in structures. For this reason, it is always necessary to know the behaviour of them under cyclic loads. In this paper a S - N curve of a butt welded joint of the AISI 1015 steel and Cuban manufacturing E6013 electrode is showed. Fatigue tests were made in an universal testing machine MTS810. The stress ratio used in the test was 0,1. Flaws in the fatigue specimens were characterized by means of optical and scanning electron microscopy. SolidWorks 2013 software was used to modeling the specimens geometry, while to simulate the fatigue behaviour Simulation was used. The joint fatigue limit is 178 MPa, and a cut point at 2 039 093 cycles. Some points of the simulations are inside of the 95% confidence band.
On-orbit NDE: A novel approach to tube weld inspection
NASA Technical Reports Server (NTRS)
Michaels, Kerry; Hughes, Greg
1994-01-01
The challenge of fabrication and repair of structures in space must be met if we are to utilize and maintain long-duration space facilities. Welding techniques have been demonstrated to provide the most reliable means to accomplish this task. Over the past few years, methods have been developed to perform orbital tube welding employing space-based welding technology pioneered by the former Soviet Union. Welding can result in the formation of defects, which threaten the structural integrity of the welded joint. Implementation of welding on-orbit, therefore, must also include methods to evaluate the quality and integrity of the welded joints. To achieve this goal, the development of an on-orbit tube weld inspection system, utilizing alternating current field measurement (ACFM) technology, has been under taken. This paper describes the development of the ACFM on-orbit tube weld inspection tool. Topics discussed include: requirements for on-orbit NDE, basic theory of ACFM, its advantages over other NDE methods for on-orbit applications, and the ACFM NDE system design. System operation and trial inspection results are also discussed. Future work with this technology is also considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammadi, J.; Behnamian, Y.; Mostafaei, A., E-mail: amir.mostafaei@gmail.com
2015-03-15
Friction stir welding is an efficient manufacturing method for joining dissimilar alloys, which can dramatically reduce grain sizes and offer high mechanical joint efficiency. Lap FSW joints between dissimilar AZ31B and Al 6061 alloy sheets were made at various tool rotation and travel speeds. Rotation and travel speeds varied between 560–1400 r/min and 16–40 mm/min respectively, where the ratio between these parameters was such that nearly constant pitch distances were applied during welding. X-ray diffraction pattern (XRD), optical microscopy images (OM), electron probe microanalysis (EPMA) and scanning electron microscopy equipped with an energy-dispersive X-ray spectroscopy (SEM-EDS) were used to investigatemore » the microstructures of the joints welded. Intermetallic phases including Al{sub 12}Mg{sub 17} (γ) and Al{sub 3}Mg{sub 2} (β) were detected in the weld zone (WZ). For different tool rotation speeds, the morphology of the microstructure in the stir zone changed significantly with travel speed. Lap shear tensile test results indicated that by simultaneously increasing the tool rotation and travel speeds to 1400 r/min and 40 mm/min, the joint tensile strength and ductility reached a maximum. Microhardness measurements and tensile stress–strain curves indicated that mechanical properties were affected by FSW parameters and mainly depended on the formation of intermetallic compounds in the weld zone. In addition, a debonding failure mode in the Al/Mg dissimilar weld nugget was investigated by SEM and surface fracture studies indicated that the presence of intermetallic compounds in the weld zone controlled the failure mode. XRD analysis of the fracture surface indicated the presence of brittle intermetallic compounds including Al{sub 12}Mg{sub 17} (γ) and Al{sub 3}Mg{sub 2} (β). - Highlights: • Dissimilar Al/Mg joint was obtained by lap friction stir welding technique. • Effect of rotation and travel speeds on the formation of intermetallic compounds • Microstructure and chemical studies including metallography, XRD, SEM-EDS, and EPMA • Mechanical property tests such as stress–strain curves, failure load and hardness • IMCs as Al{sub 3}Mg{sub 2} and Al{sub 12}Mg{sub 17} were identified in weld nugget and at Al/Mg interface.« less
Modeling macro-and microstructures of Gas-Metal-Arc Welded HSLA-100 steel
NASA Astrophysics Data System (ADS)
Yang, Z.; Debroy, T.
1999-06-01
Fluid flow and heat transfer during gas-metal-arc welding (GMAW) of HSLA-100 steel were studied using a transient, three-dimensional, turbulent heat transfer and fluid flow model. The temperature and velocity fields, cooling rates, and shape and size of the fusion and heat-affected zones (HAZs) were calculated. A continuous-cooling-transformation (CCT) diagram was computed to aid in the understanding of the observed weld metal microstructure. The computed results demonstrate that the dissipation of heat and momentum in the weld pool is significantly aided by turbulence, thus suggesting that previous modeling results based on laminar flow need to be re-examined. A comparison of the calculated fusion and HAZ geometries with their corresponding measured values showed good agreement. Furthermore, “finger” penetration, a unique geometric characteristic of gas-metal-arc weld pools, could be satisfactorily predicted from the model. The ability to predict these geometric variables and the agreement between the calculated and the measured cooling rates indicate the appropriateness of using a turbulence model for accurate calculations. The microstructure of the weld metal consisted mainly of acicular ferrite with small amounts of bainite. At high heat inputs, small amounts of allotriomorphic and Widmanstätten ferrite were also observed. The observed microstructures are consistent with those expected from the computed CCT diagram and the cooling rates. The results presented here demonstrate significant promise for understanding both macro-and microstructures of steel welds from the combination of the fundamental principles from both transport phenomena and phase transformation theory.
Tensile Properties of Friction Stir Welded Joints of AA 2024-T6 Alloy at Different Welding Speeds
NASA Astrophysics Data System (ADS)
Avula, Dhananjayulu; Devuri, Venkateswarlu; Cheepu, Muralimohan; Dwivedi, Dheerendra Kumar
2018-03-01
The influence of welding speed on the friction stir welded joint properties of hardness, tensile properties, defects and microstructure characterization are studied in the present study. The friction stir welding was conducted on AA2014-T6 heat treated alloy with 5 mm thickness plate in butt joint configuration. The welding speed was varied from 8 mm/min to 120 mm/min at the fixed travel speed and load conditions. It is observed that the welding speeds at higher rate with wide range can be possible to weld this alloy at higher rates of tool revolution suggesting that the inherent capability of friction stir welding technique for aluminum 2014 alloys. The strength of the joints gradually increases with enhancing of welding speed. The micro structural observations exhibited the formation of equiaxed grains in the stir zone and slightly in the thermo-mechanically affected zone. In addition, the size of the grains decreases with increase in welding speed owing to the presence of low heat input. Hence the hardness of the joints slightly increased in the stir zones over the other zones of the weld nugget. The joint strength initially increases with the welding speed and starts to decreases after reaching to the maximum value. The relationship between the welding conditions and friction stir welded joint properties has been discussed.
Sensor control of robot arc welding
NASA Technical Reports Server (NTRS)
Sias, F. R., Jr.
1985-01-01
A basic problem in the application of robots for welding which is how to guide a torch along a weld seam using sensory information was studied. Improvement of the quality and consistency of certain Gas Tungsten Arc welds on the Space Shuttle Main Engine (SSME) that are too complex geometrically for conventional automation and therefore are done by hand was examined. The particular problems associated with space shuttle main egnine (SSME) manufacturing and weld-seam tracking with an emphasis on computer vision methods were analyzed. Special interface software for the MINC computr are developed which will allow it to be used both as a test system to check out the robot interface software and later as a development tool for further investigation of sensory systems to be incorporated in welding procedures.
NASA Astrophysics Data System (ADS)
Schmidt, Hans Christian; Homberg, Werner; Orive, Alejandro Gonzalez; Grundmeier, Guido; Hordych, Illia; Maier, Hans Jürgen
2018-05-01
In this study the manufacture of aluminium-steel blanks by cold pressure welding and their preparation for a welding process through electrochemical surface treatment are investigated and discussed. The cold pressure welding process was done with an incremental rolling tool that allows for the partial pressure welding of two blanks along a prepared path. The influence of the surface preparation by electrochemical deposition of bond promoting organosilane-based agents and roughening on a nano-scale is investigated and compared to conventional surface treatments. Coating the surfaces with a thin organosilane-based film incorporating specific functional groups should promote additional bonding between the mating oxide layers; its influence on the total weld strength is studied. Pressure welding requires suitable process strategies, and the current advances in the proposed incremental rolling process for the combination of mild steel and aluminium are presented.
Hybrid friction stir welding for dissimilar materials through electro-plastic effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xun; Lan, Shuhuai; Ni, Jun
A hybrid Friction Stir Welding approach and device for dissimilar materials joining employing Electro-Plastic Effect. The approach and device include an introduction of high density, short period current pulses into traditional friction stir welding process, which therefore can generate a localized softened zone in the workpiece during plastic stirring without significant additional temperature increase. This material softened zone is created by high density current pulses based on Electro-Plastic Effect and will move along with the friction stir welding tool. Smaller downward force, larger processing window and better joint quality for dissimilar materials are expected to be achieved through this hybridmore » welding technique.« less
NASA Astrophysics Data System (ADS)
Liberini, Mariacira; Esposito, Sara; Reshad, Kambitz; Previtali, Barbara; Viola, Marco; Squillace, Antonino
2016-10-01
Every manufacturing process leaves on the surface of the piece a typical "technology signature". In particular, the laser welding leaves a feature at the edge of the weld bead called "undercut". In this work an experimental campaign has been conducted on Ti6Al4V butt joints. In particular a Central Composite Design (CCD) with the central point repeated three times has been investigated. In the CCD there are two factors (power and speed of the fiber laser) and five levels for each factor. This paper deals with the investigation about the correlation between the severity of the undercut and the process parameters of the laser welding. In particular, through the confocal microscopy, the original geometry of the joint was accurately acquired and rebuilt in order to make a FEM model and simulate the mechanical behavior using Ansys14.5. Moreover, response surfaces and level curves were carried out to understand and predict the depth and the width of the undercut starting from the power and the speed of the laser. At last a mathematic and geometry regression was performed in order to find a unique conical curve that interpolates all the different undercuts and that varies its parameters according to the process parameters. It is established that the process with higher speed minimizes and optimizes the undercut in the joints.
Space Shuttle ET Friction Stir Weld Machines
NASA Technical Reports Server (NTRS)
Thompson, Jack M.
2003-01-01
NASA and Lockheed-Martin approached the FSW machine vendor community with a specification for longitudinal barrel production FSW weld machines and a shorter travel process development machine in June of 2000. This specification was based on three years of FSW process development on the Space Shuttle External Tank alloys, AL2 195-T8M4 and AL22 19-T87. The primary motivations for changing the ET longitudinal welds from the existing variable polarity Plasma Arc plasma weld process included: (1) Significantly reduced weld defect rates and related reduction in cycle time and uncertainty; (2) Many fewer process variables to control (5 vs. 17); (3) Fewer manufacturing steps; (4) Lower residual stresses and distortion; (5) Improved weld strengths, particularly at cryogenic temperatures; (6) Fewer hazards to production personnel. General Tool was the successful bidder. The equipment is at this writing installed and welding flight hardware. This paper is a means of sharing with the rest of the FSW community the unique features developed to assure NASA/L-M of successful production welds.
NASA Astrophysics Data System (ADS)
Romoli, L.; Rashed, C. A. A.; Lovicu, G.; Ishak, R.
2015-05-01
Laser beam welding of dissimilar AISI 440C and AISI 430F stainless steels was investigated in a circular constrained configuration. The beam incidence angle and the offset of the focusing position respect to the contact point between the two materials were used as main control parameters to vary the melting ratio inside the seam. The objective of the study is twofold: to avoid surface microcracks related to the high percentage of carbon of the martensitic steel and to enhance the shear strength of the weld by making it less brittle. To reach this scope the effects of incidence angle and offset on weld bead geometry and melting ratio were studied by means of metallographic analyses, microstructure and microhardness characterization. As last step, the weld mechanical strength was tested by tensile-shear stress test on the whole seam. Experiments demonstrated that varying incidence angle and offsetting the focal position is a reliable method to modify the melting ratio and maintaining the expected resistance length at the material interface, as well. It was found that increasing the percentage of ferritic steel into the joint has beneficial effects on the weld quality and on the shear resistance. The critical carbon content determining the mechanical properties in the fusion zone can be calculated by taking into account the melting ratio.
NASA Astrophysics Data System (ADS)
Konovalenko, Ivan S.; Konovalenko, Igor S.
2015-10-01
Metal behavior under loading conditions that reproduce friction stir welding was studied on the atomic scale. Calculations were conducted based on molecular dynamics simulation with potentials calculated within the embedded atom method. The loading of the interface between two crystallites, whose structure corresponded to aluminum alloy 2024, was simulated by the motion of a cone-shaped tool along the interface with constant angular and translational velocities. The motion of the rotating tool causes fracture of the workpiece crystal structure with subsequent mixing of surface atoms of the interfacing crystallites. It is shown that the resistance force acting on the moving tool from the workpiece and the process of structural defect formation in the workpiece depend on the tool shape.
Fundamentals of Welding. Teacher Edition.
ERIC Educational Resources Information Center
Fortney, Clarence; And Others
These instructional materials assist teachers in improving instruction on the fundamentals of welding. The following introductory information is included: use of this publication; competency profile; instructional/task analysis; related academic and workplace skills list; tools, materials, and equipment list; and 27 references. Seven units of…
Thermomechanical conditions and stresses on the friction stir welding tool
NASA Astrophysics Data System (ADS)
Atthipalli, Gowtam
Friction stir welding has been commercially used as a joining process for aluminum and other soft materials. However, the use of this process in joining of hard alloys is still developing primarily because of the lack of cost effective, long lasting tools. Here I have developed numerical models to understand the thermo mechanical conditions experienced by the FSW tool and to improve its reusability. A heat transfer and visco-plastic flow model is used to calculate the torque, and traverse force on the tool during FSW. The computed values of torque and traverse force are validated using the experimental results for FSW of AA7075, AA2524, AA6061 and Ti-6Al-4V alloys. The computed torque components are used to determine the optimum tool shoulder diameter based on the maximum use of torque and maximum grip of the tool on the plasticized workpiece material. The estimation of the optimum tool shoulder diameter for FSW of AA6061 and AA7075 was verified with experimental results. The computed values of traverse force and torque are used to calculate the maximum shear stress on the tool pin to determine the load bearing ability of the tool pin. The load bearing ability calculations are used to explain the failure of H13 steel tool during welding of AA7075 and commercially pure tungsten during welding of L80 steel. Artificial neural network (ANN) models are developed to predict the important FSW output parameters as function of selected input parameters. These ANN consider tool shoulder radius, pin radius, pin length, welding velocity, tool rotational speed and axial pressure as input parameters. The total torque, sliding torque, sticking torque, peak temperature, traverse force, maximum shear stress and bending stress are considered as the output for ANN models. These output parameters are selected since they define the thermomechanical conditions around the tool during FSW. The developed ANN models are used to understand the effect of various input parameters on the total torque and traverse force during FSW of AA7075 and 1018 mild steel. The ANN models are also used to determine tool safety factor for wide range of input parameters. A numerical model is developed to calculate the strain and strain rates along the streamlines during FSW. The strain and strain rate values are calculated for FSW of AA2524. Three simplified models are also developed for quick estimation of output parameters such as material velocity field, torque and peak temperature. The material velocity fields are computed by adopting an analytical method of calculating velocities for flow of non-compressible fluid between two discs where one is rotating and other is stationary. The peak temperature is estimated based on a non-dimensional correlation with dimensionless heat input. The dimensionless heat input is computed using known welding parameters and material properties. The torque is computed using an analytical function based on shear strength of the workpiece material. These simplified models are shown to be able to predict these output parameters successfully.
NASA Astrophysics Data System (ADS)
Tang, Bingtao; Wang, Qiaoling; Wei, Zhaohui; Meng, Xianju; Yuan, Zhengjun
2016-05-01
Ultra-high-strength in sheet metal parts can be achieved with hot stamping process. To improve the crash performance and save vehicle weight, it is necessary to produce components with tailored properties. The use of tailor-welded high-strength steel is a relatively new hot stamping process for saving weight and obtaining desired local stiffness and crash performance. The simulation of hot stamping boron steel, especially tailor-welded blanks (TWBs) stamping, is more complex and challenging. Information about thermal/mechanical properties of tools and sheet materials, heat transfer, and friction between the deforming material and the tools is required in detail. In this study, the boron-manganese steel B1500HS and high-strength low-alloy steel B340LA are tailor welded and hot stamped. In order to precisely simulate the hot stamping process, modeling and simulation of hot stamping tailor-welded high-strength steels, including phase transformation modeling, thermal modeling, and thermal-mechanical modeling, is investigated. Meanwhile, the welding zone of tailor-welded blanks should be sufficiently accurate to describe thermal, mechanical, and metallurgical parameters. FE simulation model using TWBs with the thickness combination of 1.6 mm boron steel and 1.2 mm low-alloy steel is established. In order to evaluate the mechanical properties of the hot stamped automotive component (mini b-pillar), hardness and microstructure at each region are investigated. The comparisons between simulated results and experimental observations show the reliability of thermo-mechanical and metallurgical modeling strategies of TWBs hot stamping process.
Automatic welding detection by an intelligent tool pipe inspection
NASA Astrophysics Data System (ADS)
Arizmendi, C. J.; Garcia, W. L.; Quintero, M. A.
2015-07-01
This work provide a model based on machine learning techniques in welds recognition, based on signals obtained through in-line inspection tool called “smart pig” in Oil and Gas pipelines. The model uses a signal noise reduction phase by means of pre-processing algorithms and attribute-selection techniques. The noise reduction techniques were selected after a literature review and testing with survey data. Subsequently, the model was trained using recognition and classification algorithms, specifically artificial neural networks and support vector machines. Finally, the trained model was validated with different data sets and the performance was measured with cross validation and ROC analysis. The results show that is possible to identify welding automatically with an efficiency between 90 and 98 percent.
Detection and assessment of flaws in friction stir welded metallic plates
NASA Astrophysics Data System (ADS)
Fakih, Mohammad Ali; Mustapha, Samir; Tarraf, Jaafar; Ayoub, Georges; Hamade, Ramsey
2017-04-01
Investigated is the ability of ultrasonic guided waves to detect flaws and assess the quality of friction stir welds (FSW). AZ31B magnesium plates were friction stir welded. While process parameters of spindle speed and tool feed were fixed, shoulder penetration depth was varied resulting in welds of varying quality. Ultrasonic waves were excited at different frequencies using piezoelectric wafers and the fundamental symmetric (S0) mode was selected to detect the flaws resulting from the welding process. The front of the first transmitted wave signal was used to capture the S0 mode. A damage index (DI) measure was defined based on the amplitude attenuation after wave interaction with the welded zone. Computed Tomography (CT) scanning was employed as a nondestructive testing (NDT) technique to assess the actual weld quality. Derived DI values were plotted against CT-derived flaw volume resulting in a perfectly linear fit. The proposed approach showed high sensitivity of the S0 mode to internal flaws within the weld. As such, this methodology bears great potential as a future predictive method for the evaluation of FSW weld quality.
Assembly of 5.5-Meter Diameter Developmental Barrel Segments for the Ares I Upper Stage
NASA Technical Reports Server (NTRS)
Carter, Robert W.
2011-01-01
Full scale assembly welding of Ares I Upper Stage 5.5-Meter diameter cryogenic tank barrel segments has been performed at the Marshall Space Flight Center (MSFC). One full-scale developmental article produced under the Ares 1 Upper Stage project is the Manufacturing Demonstration Article (MDA) Barrel. This presentation will focus on the welded assembly of this barrel section, and associated lessons learned. Among the MDA articles planned on the Ares 1 Program, the Barrel was the first to be completed, primarily because the process of manufacture from piece parts (barrel panels) utilized the most mature friction stir process planned for use on the Ares US program: Conventional fixed pin Friction Stir Welding (FSW). This process is in use on other space launch systems, including the Shuttle s External Tank, the Delta IV common booster core, the Delta II, and the Atlas V rockets. The goals for the MDA Barrel development were several fold: 1) to prove out Marshall Space Flight Center s new Vertical Weld Tool for use in manufacture of cylindrical barrel sections, 2) to serve as a first run for weld qualification to a new weld specification, and 3) to provide a full size cylindrical section for downstream use in precision cleaning and Spray-on Foam Insulation development. The progression leading into the welding of the full size barrel included sub scale panel welding, subscale cylinder welding, a full length confidence weld, and finally, the 3 seamed MDA barrel processing. Lessons learned on this MDA program have been carried forward into the production tooling for the Ares 1 US Program, and in the use of the MSFC VWT in processing other large scale hardware, including two 8.4 meter diameter Shuttle External Tank barrel sections that are currently being used in structural analysis to validate shell buckling models.
NASA Astrophysics Data System (ADS)
Ľuptáčiková, Veronika; Ťavodová, Miroslava
2017-12-01
Instruments working in the cultivation of forest areas, for example under the guidance of high stress, are exposed to factors of heterogeneous environment which are soil, wood, various types of rocks, sometimes waste - metal, plastics or glass as well. The mulching tool body, the forging, deforms and worsens rapidly after loss of the WC toe-caps. Currently used tools have a non-heat-treated body material with a ferritic-pearlitic structure that has low abrasion resistance. One of the possibilities is to heat the tool body. Another possibility is to apply suitable welds to exposed areas. By correctly selecting the thermal mode of the tool material or by applying the welded material to the exposed body part of the tool, we can ensure that the tool's operating time is increased.
The structural significance of HAZ sigma phase formation in welded 25%Cr super duplex pipework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiesner, C.S.; Garwood, S.J.; Bowden, P.L.
1993-12-31
The welding of 25%Cr duplex stainless steel can lead to the formation of sigma phase in both weld metal and heat affected zone (HAZ) regions. It has generally been accepted that this can be avoided by the adoption of appropriate welding procedure controls, generally aimed at reducing heat input and promoting rapid cooling rates. However, experience during pipe spool fabrication for the Marathon East Brae Project has shown that it is extremely difficult to satisfy a welding specification requiring sigma free HAZs. This has proved a particular problem with thin wall pipe welds made in the 2G/5G or 6G fixedmore » positions, where the joint geometry reduces heat flow away from the weld and welding conditions tend to result in the use of higher heat inputs. This paper examines the effect of sigma phase on the fracture toughness of 25%Cr super duplex steel (UNS S32760). It is shown that the CTOD toughness at {minus}20 C decreases as soon as any sigma phase is present and continues to decrease with increasing sigma levels. The toughness of the sigmatized specimens produced by heat treatment was shown to be conservative compared to the toughness measured in the HAZ of 14.2mm and 7.1mm thick pipe weldments, made with welding parameters chosen to enhance HAZ sigma phase formation. Based on the CTOD versus percent sigma level relationship derived from the laboratory specimens, fracture assessment calculations of tolerable flaw sizes were performed. These demonstrated that under the severest design conditions, assuming the maximum flaw sizes which could remain undetected in the pipework, sigma levels up to 2.5% can be tolerated safely. The conservatism of the fracture assessments for predicting the performance of weldments was demonstrated by full scale tensile testing of 2 inch nominal bore x 2.77 mm wall thickness pipe butt welds containing through-thickness circumferential fatigue cracks located in the sigmatized HAZ.« less
NASA Technical Reports Server (NTRS)
Lee, J. A.; Carter, R. W.; Ding, J.
1999-01-01
This technical memorandum describes an investigation of using friction stir welding (FSW) process for joining a variety of aluminum metal matrix composites (MMC's) reinforced with discontinuous silicon-carbide (SiC) particulate and functional gradient materials. Preliminary results show that FSW is feasible to weld aluminum MMC to MMC or to aluminum-lithium 2195 if the SiC reinforcement is <25 percent by volume fraction. However, a softening in the heat-affected zone was observed and is known to be one of the major limiting factors for joint strength. The pin tool's material is made from a low-cost steel tool H-13 material, and the pin tool's wear was excessive such that the pin tool length has to be manually adjusted for every 5 ft of weldment. Initially, boron-carbide coating was developed for pin tools, but it did not show a significant improvement in wear resistance. Basically, FSW is applicable mainly for butt joining of flat plates. Therefore, FSW of cylindrical articles such as a flange to a duct with practical diameters ranging from 2-5 in. must be fully demonstrated and compared with other proven MMC joining techniques for cylindrical articles.
Dynamic behavior of the weld pool in stationary GMAW
NASA Astrophysics Data System (ADS)
Chapuis, J.; Romero, E.; Bordreuil, C.; Soulié, F.; Fras, G.
2010-06-01
Because hump formation limits welding productivity, better understanding of the humping phenomena during the welding process is needed to access to process modifications that decrease the tendency for hump formation and then allow higher productivity welding. From a physical point of view, the mechanism identified is the Rayleigh instability initiated by strong surface tension gradient which induces a variation of kinetic flow. But the causes of the appearance of this instability are not yet well explained. Because of the phenomena complex and multi-physics, we chose in first step to conduct an analysis of the characteristic times involved in weld pool in pulsed stationary GMAW. The goal is to study the dynamic behavior of the weld pool, using our experimental multi physics approach. The experimental tool and methodology developed to understand these fast phenomena are presented first: frames acquisition with high speed digital camera and specific optical devices, numerical library. The analysis of geometric parameters of the weld pool during welding operation are presented in the last part: we observe the variations of wetting angles (or contact lines angles), the base and the height of the weld pool (macro-drop) versus weld time.
NASA Astrophysics Data System (ADS)
Lempe, B.; Taudt, C.; Baselt, T.; Rudek, F.; Maschke, R.; Basan, F.; Hartmann, P.
2014-02-01
The production of complex titanium components for various industries using laser welding processes has received growing attention in recent years. It is important to know whether the result of the cohesive joint meets the quality requirements of standardization and ultimately the customer requirements. Erroneous weld seams can have fatal consequences especially in the field of car manufacturing and medicine technology. To meet these requirements, a real-time process control system has been developed which determines the welding quality through a locally resolved temperature profile. By analyzing the resulting weld plasma received data is used to verify the stability of the laser welding process. The determination of the temperature profile is done by the detection of the emitted electromagnetic radiation from the material in a range of 500 nm to 1100 nm. As detectors, special high dynamic range CMOS cameras are used. As the emissivity of titanium depends on the wavelength, the surface and the angle of radiation, measuring the temperature is a problem. To solve these a special pyrometer setting with two cameras is used. That enables the compensation of these effects by calculating the difference between the respective pixels on simultaneously recorded images. Two spectral regions with the same emissivity are detected. Therefore the degree of emission and surface effects are compensated and canceled out of the calculation. Using the spatially resolved temperature distribution the weld geometry can be determined and the laser process can be controlled. The active readjustment of parameters such as laser power, feed rate and inert gas injection increases the quality of the welding process and decreases the number of defective goods.
Mössbauer characterization of joints of steel pieces in transient liquid phase bonding experiences
NASA Astrophysics Data System (ADS)
di Luozzo, N.; Martínez Stenger, P. F.; Canal, J. P.; Fontana, M. R.; Arcondo, B.
2011-11-01
Joining of seamless, low carbon, steel tubes were performed by means of Transient Liquid Phase Bonding process employing a foil of Fe-Si-B metallic glass as filler material. The influence of the main parameters of the process was evaluated: temperature, holding time, pressure and post weld heat treatment. Powder samples were obtained from the joint of tubes and characterized employing Mössbauer Spectroscopy in transmission geometry. The sampling was performed both in tubes successfully welded and in those which show joint defects. The results obtained are correlated with the obtained microstructure and the diffusion of Si and B during the process.
van der Veen, F; Regensburg, R E
1990-04-01
Quality tools should be designed from the starting point of adjusting tasks and equipment to human possibilities and limitations. Companies should consider an investment in ergonomic equipment as a profitable addition to indispensable productive machinery. As an example to support this statement, the authors describe the health risks of welders and the possible solutions. As the result of investigations a list of requirements was drafted for a product that would have less of the disadvantages of the products mentioned. The designed product, the 'ergonomic welding-table', aims to be a quality tool for welders working at small and medium-sized tasks. The product consists of a cabin (2.35 m wide) with a built-in ventilator for very efficient welding-fume extraction (90%-95%). Welders can set their preferred working height at any time. Another advantage is the option of performing the welding task while standing or sitting. The results of user-evaluation among welders and purchasers indicates considerable satisfaction.
Diode Lasers used in Plastic Welding and Selective Laser Soldering - Applications and Products
NASA Astrophysics Data System (ADS)
Reinl, S.
Aside from conventional welding methods, laser welding of plastics has established itself as a proven bonding method. The component-conserving and clean process offers numerous advantages and enables welding of sensitive assemblies in automotive, electronic, medical, human care, food packaging and consumer electronics markets. Diode lasers are established since years within plastic welding applications. Also, soft soldering using laser radiation is becoming more and more significant in the field of direct diode laser applications. Fast power controllability combined with a contactless temperature measurement to minimize thermal damage make the diode laser an ideal tool for this application. These advantages come in to full effect when soldering of increasingly small parts in temperature sensitive environments is necessary.
Weld Bead Geometry of Ni-Based Alloy Deposited by PTA Process for Pipe Conduction of Shale Gas
NASA Astrophysics Data System (ADS)
Echavarria-Figueroa, C.; García-Vázquez, F.; Ruiz-Mondragón, J.; Hernández-García, H. M.; González-González, D.; Vargas, A.
The transportation of shale gas has the problem that the piping used for the extraction does not resist the erosion generated by the amount of solids causing cracks over the surface and it is necessary to extend the life of the pipelines. Plasma transferred arc (PTA) welded coatings are used to improve the surface properties of mechanical parts. Therefore, in this paper is studied the use of Ni-based filler metal as weld bead deposits on A36 steel substrates by PTA. In order to determine the suitable conditions to ensure coating quality on the substrate a design of experiments (DOE) was determined. Welding current, feed rate, and travel speed were used as input parameters and the dilution percentage as the response variable. The composition and properties of hardfacing or overlay deposited are strongly influenced by the dilution obtained. Control of dilution is important, where typically low dilution is desirable. When the dilution is low, the final deposit composition will be closer to that of the filler metal, and the wear and corrosion resistance of the hardfacing will also be maintained. To evaluate the features on the weld beads/substrate interface a microstructural characterization was performed by using scanning electron microscopy and to evaluate the mechanical properties was carried out hardness test.
NASA Astrophysics Data System (ADS)
Roma, Maria; Vidal-Royo, Oskar; McClay, Ken; Ferrer, Oriol; Muñoz, Josep Anton
2017-04-01
The formation of hagingwall syncline basins is basically constrained by the geometry of the basement-involved fault, but also by salt distribution . The formation of such basins is common around the Iberian Peninsula (e.g. Lusitanian, Parentis, Basque-Cantabian, Cameros and Organyà basins) where Upper Triassic (Keuper) salt governed their polyphasic Mesozoic extension and their subsequent Alpine inversion. In this scenario, a precise interpretation of the sub-salt faults geometry and a reconstruction of the initial salt thickness are key to understand the kinematic evolution of such basins. Using an experimental approach (sandbox models) and these Mesozoic basins as natural analogues, the aim of this work is to: 1) investigate the main parameters that controlled the formation and evolution of hagingwall syncline basins analyzing the role of syn-kinematic salt during extension and subsequent inversion; and 2) quantify the deformation and salt mobilization based on restoration of analog model cross sections. The experimental results demonstrate that premature welds are developed by salt deflation with consequent upward propagation of the basal fault in salt-bearing rift systems with a large amount of extension,. In contrast, thicker salt inhibits the upward fault propagation, which results into a further salt migration and development of a hagingwall syncline basins flanked by salt walls. The inherited extensional architecture as well as salt continuity dramatically controlled subsequent inversion. Shortening initially produced the folding and the uplift of the synclinal basins. Minor reverse faults form as a consequence of overtightening of welded diapir stems. However, no trace of reverse faulting is found around diapirs stems, as ductile unit is still available for extrusion, squeezing and accommodation of shortening. Restoration of the sandbox models has demonstrated that this is a powerful tool to unravel the complex structures in the models and this may similarly be applied to the seismic interpretation of the natural complex salt structures.
Modeling macro-and microstructures of gas-metal-arc welded HSLA-100 steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Z.; Debroy, T.
1999-06-01
Fluid flow and heat transfer during gas-metal-arc welding (GMAW) of HSLA-100 steel were studied using a transient, three-dimensional, turbulent heat transfer and fluid flow model. The temperature and velocity fields, cooling rates, and shape and size of the fusion and heat-affected zones (HAZs) were calculated. A continuous-cooling-transformation (CCT) diagram was computed to aid in the understanding of the observed weld metal microstructure. The computed results demonstrate that the dissipation of heat and momentum in the weld pool is significantly aided by turbulence,m thus suggesting that previous modeling results based on laminar flow need to be re-examined. A comparison of themore » calculated fusion and HAZ geometries with their corresponding measured values showed good agreement. Furthermore, finger penetration, a unique geometric characteristic of gas-metal-arc weld pools, could be satisfactorily predicted from the model. The ability to predict these geometric variables and the agreement between the calculated and the measured cooling rates indicate the appropriateness of using a turbulence model for accurate calculations. The microstructure of the weld metal consisted mainly of acicular ferrite with small amounts of bainite. At high heat inputs, small amounts of allotriomorphic and Widmanstaetten ferrite were also observed. The observed microstructures are consistent with those expected from the computed CCT diagram and the cooling rates. The results presented here demonstrate significant promise for understanding both macro-and microstructures of steel welds from the combination of the fundamental principles from both transport phenomena and phase transformation theory.« less
[New welding processes and health effects of welding].
La Vecchia, G Marina; Maestrelli, Piero
2011-01-01
This paper describes some of the recent developments in the control technology to enhance capability of Pulse Gas Metal Arc Welding. Friction Stir Welding (FSW) processing has been also considered. FSW is a new solid-state joining technique. Heat generated by friction at the rotating tool softens the material being welded. FSW can be considered a green and energy-efficient technique without deleterious fumes, gas, radiation, and noise. Application of new welding processes is limited and studies on health effects in exposed workers are lacking. Acute and chronic health effects of conventional welding have been described. Metal fume fever and cross-shift decline of lung function are the main acute respiratory effects. Skin and eyes may be affected by heat, electricity and UV radiations. Chronic effects on respiratory system include chronic bronchitis, a benign pneumoconiosis (siderosis), asthma, and a possible increase in the incidence of lung cancer. Pulmonary infections are increased in terms of severity, duration, and frequency among welders.
Friction stir welding process to repair voids in aluminum alloys
NASA Technical Reports Server (NTRS)
Rosen, Charles D. (Inventor); Litwinski, Edward (Inventor); Valdez, Juan M. (Inventor)
1999-01-01
The present invention provides an in-process method to repair voids in an aluminum alloy, particularly a friction stir weld in an aluminum alloy. For repairing a circular void or an in-process exit hole in a weld, the method includes the steps of fabricating filler material of the same composition or compatible with the parent material into a plug form to be fitted into the void, positioning the plug in the void, and friction stir welding over and through the plug. For repairing a longitudinal void (30), the method includes machining the void area to provide a trough (34) that subsumes the void, fabricating filler metal into a strip form (36) to be fitted into the trough, positioning the strip in the trough, and rewelding the void area by traversing a friction stir welding tool longitudinally through the strip. The method is also applicable for repairing welds made by a fusing welding process or voids in aluminum alloy workpieces themselves.
NASA Astrophysics Data System (ADS)
Nguyen Van Do, Vuong
2018-04-01
In this study, a development of nonlinear continuum damage mechanics (CDM) model for multiaxial high cycle fatigue is proposed in which the cyclic plasticity constitutive model has been incorporated in the finite element (FE) framework. T-joint FE simulation of fillet welding is implemented to characterize sequentially coupled three-dimensional (3-D) of thermo-mechanical FE formulation and simulate the welding residual stresses. The high cycle fatigue damage model is then taken account into the fillet weld joints under the various cyclic fatigue load types to calculate the fatigue life considering the residual stresses. The fatigue crack initiation and the propagation in the present model estimated for the total fatigue is compared with the experimental results. The FE results illustrated that the proposed high cycle fatigue damage model in this study could become a powerful tool to effectively predict the fatigue life of the welds. Parametric studies in this work are also demonstrated that the welding residual stresses cannot be ignored in the computation of the fatigue life of welded structures.
Virtual reality welder training
NASA Astrophysics Data System (ADS)
White, Steven A.; Reiners, Dirk; Prachyabrued, Mores; Borst, Christoph W.; Chambers, Terrence L.
2010-01-01
This document describes the Virtual Reality Simulated MIG Lab (sMIG), a system for Virtual Reality welder training. It is designed to reproduce the experience of metal inert gas (MIG) welding faithfully enough to be used as a teaching tool for beginning welding students. To make the experience as realistic as possible it employs physically accurate and tracked input devices, a real-time welding simulation, real-time sound generation and a 3D display for output. Thanks to being a fully digital system it can go beyond providing just a realistic welding experience by giving interactive and immediate feedback to the student to avoid learning wrong movements from day 1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Gaoqiang; Feng, Zhili; Zhu, Yucan
For better application of numerical simulation in optimization and design of friction stir welding (FSW), this paper presents a new frictional boundary condition at the tool/workpiece interface for computational fluid dynamics (CFD) modeling of FSW. The proposed boundary condition is based on an implementation of the Coulomb friction model. Using the new boundary condition, the CFD simulation yields non-uniform distribution of contact state over the tool/workpiece interface, as validated by the experimental weld macrostructure. It is found that interfacial sticking state is present over large area at the tool-workpiece interface, while significant interfacial sliding occurs at the shoulder periphery, themore » lower part of pin side, and the periphery of pin bottom. Due to the interfacial sticking, a rotating flow zone is found under the shoulder, in which fast circular motion occurs. The diameter of the rotating flow zone is smaller than the shoulder diameter, which is attributed to the presence of the interfacial sliding at the shoulder periphery. For the simulated welding condition, the heat generation due to friction and plastic deformation makes up 54.4 and 45.6% of the total heat generation rate, respectively. In conclusion, the simulated temperature field is validated by the good agreement to the experimental measurements.« less
Chen, Gaoqiang; Feng, Zhili; Zhu, Yucan; ...
2016-07-11
For better application of numerical simulation in optimization and design of friction stir welding (FSW), this paper presents a new frictional boundary condition at the tool/workpiece interface for computational fluid dynamics (CFD) modeling of FSW. The proposed boundary condition is based on an implementation of the Coulomb friction model. Using the new boundary condition, the CFD simulation yields non-uniform distribution of contact state over the tool/workpiece interface, as validated by the experimental weld macrostructure. It is found that interfacial sticking state is present over large area at the tool-workpiece interface, while significant interfacial sliding occurs at the shoulder periphery, themore » lower part of pin side, and the periphery of pin bottom. Due to the interfacial sticking, a rotating flow zone is found under the shoulder, in which fast circular motion occurs. The diameter of the rotating flow zone is smaller than the shoulder diameter, which is attributed to the presence of the interfacial sliding at the shoulder periphery. For the simulated welding condition, the heat generation due to friction and plastic deformation makes up 54.4 and 45.6% of the total heat generation rate, respectively. In conclusion, the simulated temperature field is validated by the good agreement to the experimental measurements.« less
A material based approach to creating wear resistant surfaces for hot forging
NASA Astrophysics Data System (ADS)
Babu, Sailesh
Tools and dies used in metal forming are characterized by extremely high temperatures at the interface, high local pressures and large metal to metal sliding. These harsh conditions result in accelerated wear of tooling. Lubrication of tools, done to improve metal flow drastically quenches the surface layers of the tools and compounds the tool failure problem. This phenomenon becomes a serious issue when parts forged at complex and are expected to meet tight tolerances. Unpredictable and hence uncontrolled wear and degradation of tooling result in poor part quality and premature tool failure that result in high scrap, shop downtime, poor efficiency and high cost. The objective of this dissertation is to develop a computer-based methodology for analyzing the requirements hot forging tooling to resist wear and plastic deformation and wear and predicting life cycle of forge tooling. Development of such is a system is complicated by the fact that wear and degradation of tooling is influenced by not only the die material used but also numerous process controls like lubricant, dilution ratio, forging temperature, equipment used, tool geometries among others. Phenomenological models available u1 the literature give us a good thumb rule to selecting materials but do not provide a way to evaluate pits performance in field. Once a material is chosen, there are no proven approaches to create surfaces out of these materials. Coating approaches like PVD and CVD cannot generate thick coatings necessary to withstand the conditions under hot forging. Welding cannot generate complex surfaces without several secondary operations like heat treating and machining. If careful procedures are not followed, welds crack and seldom survive forging loads. There is a strong need for an approach to selectively, reliably and precisely deposit material of choice reliably on an existing surface which exhibit not only good tribological properties but also good adhesion to the substrate. Dissertation outlines development of a new cyclic contact test design to recreate intermittent tempering seen in hot forging. This test has been used to validate the use of tempering parameters in modeling of in-service softening of tool steel surfaces. The dissertation also outlines an industrial case study, conducted at a forging company, to validate the wear model. This dissertation also outlines efforts at Ohio State University, to deposit Nickel Aluminide on AISI H13 substrate, using Laser Engineered Net Shaping (LENS). Dissertation reports results from an array of experiments conducted using LENS 750 machine, at various power levels, table speeds and hatch spacing. Results pertaining to bond quality, surface finish, compositional gradients and hardness are provided. Also, a thermal-based finite element numerical model that was used to simulate the LENS process is presented, along with some demonstrated results.
General Mechanical Trades: A Curriculum Guide. Revised Edition.
ERIC Educational Resources Information Center
Henderson, W. Charles; And Others
The guide contains six sections, each consisting of one or more units of general mechanical trades instruction. The sections cover: safety and tools, measuring and blueprint reading, gas welding, arc welding, small engines, and metal work. Each unit includes performance objectives stated as terminal objectives, indicating the subject matter to be…
NDE Development for Inspection of the Ares I Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Richter, Joel; Russell, Sam S.
2007-01-01
NASA is designing a new crewed launch vehicle called Ares I to replace the Space Shuttle after its scheduled retirement in 2010. This new launch vehicle will build on the Shuttle technology in many ways including using a first stage based upon the Space Shuttle Solid Rocket Booster, advanced aluminum alloys for the second stage tanks, and friction stir welding to assemble the second stage. Friction stir welding uses a spinning pin that is inserted in the joint between two panels that are to be welded. The pin mechanically mixes the metal together below the melting temperature to form the weld. Friction stir welding allows high strength joints in metals that would otherwise lose much of their strength as they are melted during the fusion welding process. One significant change from the Space Shuttle that impacts NDE is the implementation of self-reacting friction stir welding for non-linear welds on the primary metallic structure. The self-reacting technique differs from the conventional technique because the load of the pin tool pressing down on the metal being joined is reacted by a nut on the end of the tool rather than an anvil behind the part. No spacecraft has ever flown with a self-reacting friction stir weld, so this is a major advancement in the manufacturing process, bringing with it a whole new set of challenges for NDE to overcome. Another impact is the proposed usage of an aluminum face sheet, phenolic honeycomb sandwich structure for a common bulkhead between the fuel and oxidizer tanks. This design was used on the second stage of Saturn IB and the second and third stages of Saturn V, but both the manufacturing and subsequent inspection were very costly and time consuming so a more efficient inspection method is sought. The current state of development of these inspections will be presented, along with other information pertinent to NDE of the Ares I.
Characterization of disk-laser dissimilar welding of titanium alloy Ti-6Al-4V to aluminum alloy 2024
NASA Astrophysics Data System (ADS)
Caiazzo, Fabrizia; Alfieri, Vittorio; Cardaropoli, Francesco; Corrado, Gaetano; Sergi, Vincenzo
2013-02-01
Both technical and economic reasons suggest to join dissimilar metals, benefiting from the specific properties of each material in order to perform flexible design. Adhesive bonding and mechanical joining have been traditionally used although adhesives fail to be effective in high-temperature environments and mechanical joining are not adequate for leak-tight joints. Friction stir welding is a valid alternative, even being difficult to perform for specific joint geometries and thin plates. The attention has therefore been shifted to laser welding. Interest has been shown in welding titanium to aluminum, especially in the aviation industry, in order to benefit from both corrosive resistance and strength properties of the former, and low weight and cost of the latter. Titanium alloy Ti-6Al-4V and aluminum alloy 2024 are considered in this work, being them among the most common ones in aerospace and automotive industries. Laser welding is thought to be particularly useful in reducing the heat affected zones and providing deep penetrative beads. Nevertheless, many challenges arise in welding dissimilar metals and the aim is further complicated considering the specific features of the alloys in exam, being them susceptible to oxidation on the upper surface and porosity formation in the fused zone. As many variables are involved, a systematic approach is used to perform the process and to characterize the beads referring to their shape and mechanical features, since a mixture of phases and structures is formed in the fused zone after recrystallization.
NASA Astrophysics Data System (ADS)
Juengert, Anne; Dugan, Sandra; Homann, Tobias; Mitzscherling, Steffen; Prager, Jens; Pudovikov, Sergey; Schwender, Thomas
2018-04-01
Austenitic stainless steel welds as well as dissimilar metal welds with nickel alloy filler material, used in safety relevant parts of nuclear power plants, still challenge the ultrasonic inspection. The weld material forms large oriented grains that lead, on the one hand, to high sound scattering and, on the other hand, to inhomogeneity and to the acoustic anisotropy of the weld structure. The ultrasonic wave fronts do not propagate linearly, as in ferritic weld joints, but along the curves, which depend on the specific grain structure of the weld. Due to the influence of these phenomena, it is difficult to analyze the inspection results and to classify the ultrasonic indications, which could be both from the weld geometry and from the material defects. A correct flaw sizing is not possible. In an ongoing research project, different techniques to improve the reliability of ultrasonic testing at these kinds of welds are investigated. In a first step (in the previous research project) two ultrasonic inspection techniques were developed and validated on plane test specimens with artificial and realistic flaws. In the ongoing project, these techniques are applied to circumferential pipe welds with longitudinal and transverse flaws. The technique developed at the Federal Institute for Materials Research and Testing (BAM) in Germany uses a combination of ray tracing and synthetic aperture focusing technique (SAFT). To investigate the unknown grain structure, the velocity distribution of weld-transmitting ultrasound waves is measured and used to model the weld by ray tracing. The second technique, developed at the Fraunhofer Institute for Nondestructive Testing (IZFP) in Germany, uses Sampling Phased Array (Full Matrix Capture) combined with the reverse phase matching (RPM) and the gradient elastic constant descent algorithm (GECDM). This inspection method is able to estimate the elastic constants of the columnar grains in the weld and offers an improvement of the reliability of ultrasonic testing through the correction of the sound field distortion. The unknown inhomogeneity and anisotropy are investigated using a reference indication and the special optimization algorithm. Both reconstruction techniques give quantitative inspection results and allow the defect sizing. They have been compared to conventional ultrasonic testing with techniques that are state of the art for components in nuclear power plants. The improvement will be quantified by the comparison of the probability of detection (POD) of each technique.
Solid cartridge for a pulse weld forming electrode and method of joining tubular members
Bonnen, John Joseph Francis; Golovashchenko, Sergey Fedorovich; Mamutov, Alexander; Maison, Lloyd Douglas; Dawson, Scott Alwyn; deVries, James
2016-02-23
A cartridge assembly is disclosed for a pulse welding a first tube supported on a mandrel to a second tube. An outer tool is assembled over the second tube and a stored charge is discharged in the cartridge assembly. The cartridge comprises an annular conductor and a solid casing enveloping the conductor. The stored charge is electrically connected to the conductor and discharged through the conductor to compress the second tube and pulse weld the second tube to the first tube.
Side-welded fast response sheathed thermocouple
Carr, K.R.
A method of fabricating the measuring junction of a grounded-junction sheathed thermocouple to obtain fast time response and good thermal cycling performance is provided. Slots are tooled or machined into the sheath wall at the measuring junction, the thermocouple wires are laser-welded into the slots. A thin metal closure cap is then laser-welded over the end of the sheath. Compared to a conventional grounded-junction thermocouple, the response time is 4 to 5 times faster and the thermal shock and cycling capabilities are substantially improved.
Side-welded fast response sheathed thermocouple
Carr, Kenneth R.
1981-01-01
A method of fabricating the measuring junction of a grounded-junction sheathed thermocouple to obtain fast time response and good thermal cycling performance is provided. Slots are tooled or machined into the sheath wall at the measuring junction, the thermocouple wires are laser-welded into the slots. A thin metal closure cap is then laser-welded over the end of the sheath. Compared to a conventional grounded-junction thermocouple, the response time is 4-5 times faster and the thermal shock and cycling capabilities are substantially improved.
Flow in the Proximity of the Pin-Tool in Friction Stir Welding and Its Relation to Weld Homogeneity
NASA Technical Reports Server (NTRS)
Nunes, Arthur C., Jr.
2000-01-01
In the Friction Stir Welding (FSW) process a rotating pin inserted into a seam literally stirs the metal from each side of the seam together. It is proposed that the flow in the vicinity of the pin-tool comprises a primary rapid shear over a cylindrical envelope covering the pin-tool and a relatively slow secondary flow taking the form of a ring vortex about the tool circumference. This model is consistent with a plastic characterization of metal flow, where discontinuities in shear flow are allowed but not viscous effects. It is consistent with experiments employing several different kinds of tracer: atomic markers, shot, and wire. If a rotating disc with angular velocity w is superposed on a translating continuum with linear velocity omega, the trajectories of tracer points become circular arcs centered upon a point displaced laterally a distance v/omega from the center of rotation of the disc in the direction of the advancing side of the disc. In the present model a stream of metal approaching the tool (taken as the coordinate system of observation) is sheared at the slip surface, rapidly rotated around the tool, sheared again on the opposite side of the tool, and deposited in the wake of the tool. Local shearing rates are high, comparable to metal cutting in this model. The flow patterns in the vicinity of the pin-tool determine the level of homogenization and dispersal of contaminants that occurs in the FSW process. The approaching metal streams enfold one another as they are rotated around the tool. Neglecting mixing they return to the same lateral position in the wake of the tool preserving lateral tracer positions as if the metal had flowed past the tool like an extrusion instead of being rotated around it. (The seam is, however, obliterated.) The metal stream of thickness approximately that of the tool diameter D is wiped past the tool at elevated temperatures drawn out to a thickness of v/2(omega) in the wiping zone. Mixing distances in the wiping zone are multiplied in the unfolded metal. Inhomogeneities on a smaller scale than the mixing length are obliterated, but structure on a larger scale may be transmitted to the wake of a FSW weld.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haddadi, Farid, E-mail: farid.haddadi@gmail.com
High power ultrasonic spot welding (HPUSW) is a joining technique which is performed within less than a second and provides a more energy-efficient alternative to friction stir spot welding (FSSW), which is considered a longer cycle manufacturing process for joining automotive alloys. To date, only a few reports exist on the deformation mechanisms that take place during high power ultrasonic spot welding. In this work, dynamic recrystallization and grain growth were examined using electron backscatter diffraction (EBSD). HPUSW causes extensive deformation within the weld zone where the temperature increases to 440 °C. An ultra-fine grain structure was observed in amore » thin band of flat weld interface within a short welding time of 0.10 s. With increasing welding time the interface was displaced and ‘folds’ or ‘crests’ appeared together with shear bands. The weld interface progressively changed from flat to sinusoidal and eventually to a convoluted wave-like pattern when the tool fully penetrated the workpiece, having a wavelength of ~ 1 mm after 0.40 s. Finally, the microstructure and texture varied significantly depending on the location within the weld. Although the texture near the weld interface was relatively weak, a shift was observed with increasing welding time from an initially Cube-dominated texture to one where the typical β-fibre Brass component prevailed. - Highlights: •Lap shear strength of ~2.9 kN was achieved in 0.30 sec welding time. •Temperature approached 440 °C along the weld centreline for the highest welding time. •The texture near the teeth was dominated by Brass, P and S components at optimum condition. •The weld interface showed typical β-fibre deformation texture at optimum condition.« less
NASA Astrophysics Data System (ADS)
Prasad Satpathy, Mantra; Das Mohapatra, Kasinath; Sahoo, Ananda Kumar; Sahoo, Susanta Kumar
2018-03-01
Ultrasonic welding is one of the promising solid state welding methods which have been widely used to join highly conductive materials like aluminum and copper. Despite these applications in the automotive field, other industries also have a strong interest to adopt this process for joining of various advanced alloys. In some of its applications, poor weld strength and sticking of the workpiece to the tool are issues. Thus, an attempt has been taken in the present study to overcome these issues by performing experiments with a suitable range of weld parameters. The major objectives of this study are to obtain a good joint strength with a reduced sticking phenomenon and microstructure of Al-Cu weld coupons. The results uncovered the mechanical strength of the joint increased up to 0.34 sec of weld time and afterward, it gradually decreased. Meantime, the plastic deformation in the weld zone enhanced the formation of an intermetallic layer of 1.5 μm thick, and it is composed of mainly Al2Cu compound. The temperature evolved during the welding process is also measured by thermocouples to show its relationship with the plastic deformation. The present work exemplifies a finer understanding of the failure behavior of joints and provides an insight of ultrasonic welding towards the improvement in the quality of weld.
Characterization of Friction Stir Welded Tubes by Means of Tube Bulge Test
NASA Astrophysics Data System (ADS)
D'Urso, G.; Longo, M.; Giardini, C.
2011-05-01
Mechanical properties of friction stir welded joints are generally evaluated by means of conventional tensile test. This testing method might provide insufficient information because maximum strain obtained in tensile test before necking is small; moreover, the application of tensile test is limited when the joint path is not linear or even when the welds are executed on curved surfaces. Therefore, in some cases, it would be preferable to obtain the joints properties from other testing methods. Tube bulge test can be a valid solution for testing circumferential or longitudinal welds executed on tubular workpieces. The present work investigates the mechanical properties and the formability of friction stir welded tubes by means of tube bulge tests. The experimental campaign was performed on tubular specimens having a thickness of 3 mm and an external diameter of 40 mm, obtained starting from two semi-tubes longitudinally friction stir welded. The first step, regarding the fabrication of tubes, was performed combining a conventional forming process and friction stir welding. Sheets in Al-Mg-Si-Cu alloy AA6060 T6 were adopted for this purpose. Plates having a dimension of 225×60 mm were bent (with a bending axis parallel to the main dimension) in order to obtain semi-tubes. A particular care was devoted to the fabrication of forming devices (punch and die) in order to minimize the springback effects. Semi-tubes were then friction stir welded by means of a CNC machine tool. Some preliminary tests were carried out by varying the welding parameters, namely feed rate and rotational speed. A very simple tool having flat shoulder and cylindrical pin was used. The second step of the research was based on testing the welded tubes by means of tube bulge test. A specific equipment having axial actuators with a conical shape was adopted for this study. Some analyses were carried out on the tubes bulged up to a certain pressure level. In particular, the burst pressure and the wall thickness were measured for each tested tube.
Investigation of effects of process parameters on properties of friction stir welded joints
NASA Astrophysics Data System (ADS)
Chauhan, Atul; Soota, Tarun; Rajput, S. K.
2018-03-01
This work deals with application of friction stir welding (FSW) using application of Taguchi orthogonal array. FSW procedure is used for joining the aluminium alloy AA6063-T0 plates in butt configuration with orthogonal combination of factors and their levels. The combination of factors involving tool rotation speed, tool travel speed and tool pin profile are used in three levels. Grey relational analysis (GRA) has been applied to select optimum level of factors for optimising UTS, ductility and hardness of joint. Experiments have been conducted with two different tool materials (HSS and HCHCr steel) with various factors level combinations for joining AA6063-T0. On the basis of grey relational grades at different levels of factors and analysis of variance (ANOVA) ideal combination of factors are determined. The influence of tool material is also studied.
Alignment Tool For Inertia Welding
NASA Technical Reports Server (NTRS)
Snyder, Gary L.
1991-01-01
Compact, easy-to-use tool aligns drive bar of inertia welder over hole in stub. Ensures drive bar concentric to hole within 0.002 in. (0.051 mm.). Holds two batteries and light bulb. Electrical circuit completed, providing current to bulb when pin in contact with post. When pin centered in post hole, it does not touch post, and lamp turns off. Built for use in making repair welds on liquid-oxygen-injector posts in Space Shuttle main engine. Version having suitably modified dimensions used to facilitate alignment in other forests of post.
NASA Astrophysics Data System (ADS)
Yang, Zhibin; Tao, Wang; Li, Liqun; Chen, Yanbin; Shi, Chunyuan
2017-06-01
In comparison with conventional laser beam welding, double-sided laser beam welding has two laser heat sources simultaneously and symmetrically loaded from both sides makes it to be a more complicated coupled heat transport and fluid flow process. In this work, in order to understand the heat transfer and fluid flow, a three-dimensional model was developed and validated with the experimental results. The temperature field, fluid flow field, and keyhole characteristic were calculated using the developed model by FLUENT software. Calculated results indicated that the temperature and fluid flow fields were bilateral symmetry along the stringer center, and the molten pool maximum length was located near the keyhole intersection position. The skin side had higher temperature and faster cooling speed. Several characteristic flow patterns in the weld pool cross section, including the vortexes flows near the keyhole opening position, the convection flows above the keyhole intersection location, the regularity downward flows at the molten pool bottom. And in the lengthwise section, a distinct vortex flow below the keyhole, and the liquid metal behind the keyhole first flowed to near the molten pool maximum length location and then to the molten pool surface. Perpendicular to and along welding direction the keyhole liquid metal flowed to the weld molten pool surface and around the keyhole, respectively. The special temperature fields and fluid flow patterns were closely related to the effects of the double sides' laser energy coupling and enhancement. The calculated weld pool geometry basically in good agreement with the experimental results indicated that the developed model was validity and reasonable.
Electrode cartridge for pulse welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonnen, John Joseph Francis; Golovashchenko, Sergey Fedorovich; Mamutov, Alexander
A cartridge assembly for a tool includes a cartridge body or casing that contains a conductor. A conductor is connected to a pulse generator or source of stored charge that is discharged to vaporize the conductor and create an electro-hydraulic or electro-magnetic shockwave that is used to impact or pulse weld two parts together.
High Power Laser Processing Of Materials
NASA Astrophysics Data System (ADS)
Martyr, D. R.; Holt, T.
1987-09-01
The first practical demonstration of a laser device was in 1960 and in the following years, the high power carbon dioxide laser has matured as an industrial machine tool. Modern carbon dioxide gas lasers can be used for cutting, welding, heat treatment, drilling, scribing and marking. Since their invention over 25 years ago they are now becoming recognised as highly reliable devices capable of achieving huge savings in production costs in many situations. This paper introduces the basic laser processing techniques of cutting, welding and heat treatment as they apply to the most common engineering materials. Typical processing speeds achieved with a wide range of laser powers are reported. Accuracies achievable and fit-up tolerances required are presented. Methods of integrating lasers with machine tools are described and their suitability in a wide range of manufacturing industries is described by reference to recent installations. Examples from small batch manufacturing, high volume production using dedicated laser welding equipment, and high volume manufacturing using 'flexible' automated laser welding equipment are described Future applications of laser processing are suggested by reference to current process developments.
New developments in surface technology and prototyping
NASA Astrophysics Data System (ADS)
Himmer, Thomas; Beyer, Eckhard
2003-03-01
Novel lightweight applications in the automotive and aircraft industries require advanced materials and techniques for surface protection as well as direct and rapid manufacturing of the related components and tools. The manufacturing processes presented in this paper are based on multiple additive and subtractive technologies such as laser cutting, laser welding, direct laser metal deposition, laser/plasma hybrid spraying technique or CNC milling. The process chain is similar to layer-based Rapid Prototyping Techniques. In the first step, the 3D CAD geometry is sliced into layers by a specially developed software. These slices are cut by high speed laser cutting and then joined together. In this way laminated tools or parts are built. To improve surface quality and to increase wear resistance a CNC machining center is used. The system consists of a CNC milling machine, in which a 3 kW Nd:YAG laser, a coaxial powder nozzle and a digitizing system are integrated. Using a new laser/plasma hybrid spraying technique, coatings can be deposited onto parts for surface protection. The layers show a low porosity and high adhesion strength, the thickness is up to 0.3 mm, and the lower effort for preliminary surface preparation reduces time and costs of the whole process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiscocks, J., E-mail: j.hiscocks@queensu.ca
Many studies of friction stir welding have shown that periodicity of metal flow around the tool pin may result in the formation of periodic differences in microstructure and texture in the weld nugget area correlated with the weld pitch. The current work investigates the periodicity of magnesium weld microtexture in the nugget region and its association with material flow using optical and electron microscopy. Two welds created in AZ80 at different processing conditions are presented in detail, one illustrating periodic longitudinal texture change, and one showing for the first time that periodic variations in texture, grain size, or composition aremore » not defining features of periodic nugget flow. While nugget texture is dominated by shear deformation, it was found here to be affected to a lesser degree by compaction of material behind the welding tool, which led to reduction in intensity of the shear texture fiber. The decreased tendency for magnesium based alloys to form periodic patterns as compared to aluminum based alloys is explained with reference to the shear textures. - Highlights: •It is shown here that periodic material flow in the nugget does not necessitate longitudinal texture patterns. •Longitudinal texture patterns are shown to be present or absent in Mg AZ80 based on processing conditions. •Texture in the nugget is mainly dictated by shear deformation, but has measurable effects from other deformation modes. •Explanation of why longitudinal texture change is frequently reported in aluminum but not magnesium alloys is provided. •A new vector visualization of material flow based on EBSD data analysis is shown.« less
Optical sensing in laser machining
NASA Astrophysics Data System (ADS)
Smurov, Igor; Doubenskaia, Maria
2009-05-01
Optical monitoring of temperature evolution and temperature distribution in laser machining provides important information to optimise and to control technological process under study. The multi-wavelength pyrometer is used to measure brightness temperature under the pulsed action of Nd:YAG laser on stainless steel substrates. Specially developed "notch" filters (10-6 transparency at 1.06 μm wavelength) are applied to avoid the influence of laser radiation on temperature measurements. The true temperature is restored based on the method of multi-colour pyrometry. Temperature monitoring of the thin-walled gilded kovar boxes is applied to detect deviation of the welding seam from its optimum position. The pyrometers are used to control CO2-laser welding of steel and Ti plates: misalignment of the welded plates, variation of the welding geometry, internal defects, deviation of the laser beam trajectory from the junction, etc. The temperature profiles along and across the welding axis are measured by the 2D pyrometer. When using multi-component powder blends in laser cladding, for example metal matrix composite with ceramic reinforcement, one needs to control temperature of the melt to avoid thermal decomposition of certain compounds (as WC) and to assure melting of the base metal (as Co). Infra-red camera FLIR Phoenix RDAS provides detailed information on distribution of brightness temperature in laser cladding zone. CCD-camera based diagnostic system is used to measure particles-in-flight velocity and size distribution.
Impact of friction stir welding on the microstructure of ODS steel
NASA Astrophysics Data System (ADS)
Dawson, H.; Serrano, M.; Cater, S.; Iqbal, N.; Almásy, L.; Tian, Q.; Jimenez-Melero, E.
2017-04-01
We have assessed the impact of the welding parameters on the nano-sized oxide dispersion and the grain size in the matrix of an ODS steel after friction stir welding. Our results, based on combined small angle neutron scattering and electron microscopy, reveal a decrease in the volume fraction of the particles smaller than 80 nm in the welds, mainly due to particle agglomeration. The increase in tool rotation speed or decrease in transverse speed leads to a higher reduction in nano-sized particle fraction, and additionally to the occurrence of particle melting. The dependence of the average grain size in the matrix on the particle volume fraction follows a Zener pinning-type relationship. This result points to the principal role that the particles have in pinning grain boundary movement, and consequently in controlling the grain size during welding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konovalenko, Ivan S., E-mail: ivkon@ispms.tsc.ru; Konovalenko, Igor S., E-mail: igkon@ispms.tsc.ru; National Research Tomsk Polytechnic University, Tomsk, 634050
2015-10-27
Metal behavior under loading conditions that reproduce friction stir welding was studied on the atomic scale. Calculations were conducted based on molecular dynamics simulation with potentials calculated within the embedded atom method. The loading of the interface between two crystallites, whose structure corresponded to aluminum alloy 2024, was simulated by the motion of a cone-shaped tool along the interface with constant angular and translational velocities. The motion of the rotating tool causes fracture of the workpiece crystal structure with subsequent mixing of surface atoms of the interfacing crystallites. It is shown that the resistance force acting on the moving toolmore » from the workpiece and the process of structural defect formation in the workpiece depend on the tool shape.« less
Macrostructure of Friction Stir Welds
NASA Technical Reports Server (NTRS)
Aloor, S.; Nowak, B.; Vargas, R.; McClure, J. C.; Murr, L. E.; Nunes, A. C.; Munafo, Paul M. (Technical Monitor)
2002-01-01
This paper will discuss two of the well know large scale features of friction stir welds: the "onion rings" seen in transverse sections, and the striations on the surface of the work piece. It will be shown that the surface features (sometimes called "tool marks") are the result of irregularities on the rotating shoulder of the pin tool and disappear when the shoulder is polished. The "onion ring" structure seen in transverse cross sections is formed by parts of the "carousel", the zone of material adjacent to and rotating with the pin tool, that are shed off in each rotation. The relation between the carousel and the "ring vortex", a rotational flow extending both in and out of the carousel and resembling a smoke-ring with the hole centered on the pin tool, will be discussed.
Formation of Oxides in the Interior of Friction Stir Welds
NASA Technical Reports Server (NTRS)
Schneider, Judy; Chen, Po; Nunes, Arthur C., Jr.
2016-01-01
In friction stir welding (FSWing) the actual solid state joining takes place between the faying surfaces which form the weld seam. Thus the seam trace is often investigated for clues when the strength of the weld is reduced. Aluminum and its alloys are known to form a native, protective oxide on the surface. If these native surface oxides are not sufficiently broken up during the FSW process, they are reported to remain in the FSW interior and weaken the bond strength. This type of weld defect has been referred to as a lazy "S", lazy "Z", joint line defect, kissing bond, or residual oxide defect. Usually these defects are mitigated by modification of the process parameters, such as increased tool rotation rate, which causes a finer breakup of the native oxide particles. This study proposes that there may be an alternative mechanism for formation of oxides found within the weld nugget. As the oxidation rate increases at elevated temperatures above 400ºC, it may be possible for enhanced oxidation to occur on the interior surfaces during the FSW process from entrained air entering the seam gap. Normally, FSWs of aluminum alloys are made without a purge gas and it is unknown how process parameters and initial fit up could affect a potential air path into the interior during the processing. In addition, variations in FSW parameters, such as the tool rotation, are known to have a strong influence on the FSW temperature which may affect the oxidation rate if internal surfaces are exposed to entrained air. A series of FSWs were made in 3 different thickness panels of AA2219 (0.95, 1.27 and 1.56 cm) at 2 different weld pitches. As the thickness of the panels increased, there was an increased tendency for a gap to form in advance of the weld tool. If sufficient air is able to enter the workpiece gap prior to consolidation, the weld temperature can increase the oxidation rate on the interior surfaces. These oxidation rates would also be accelerated in areas of localized liquation. Metallographs from the weld panels showed indications of liquation at the grain boundaries. In FSWs of thicker panels, these regions of liquation were found to be heavily oxidized. The quality of the FSWs was evaluated from tensile testing at room temperature. As the panel thickness increased, a slight decrease in tensile strength was observed which was attributed to the presence of oxides. No oxide formation was observed in the thinner workpieces, although there were indications of localized liquation at the grain boundaries. Results from this study will assist in a better understand of the mechanisms of oxide formation in FSW interiors and provide methodology for minimizing their occurrence.
Microstructural Evolution and Fracture Behavior of Friction-Stir-Welded Al-Cu Laminated Composites
NASA Astrophysics Data System (ADS)
Beygi, R.; Kazeminezhad, Mohsen; Kokabi, A. H.
2014-01-01
In this study, we attempt to characterize the microstructural evolution during friction stir butt welding of Al-Cu-laminated composites and its effect on the fracture behavior of the joint. Emphasis is on the material flow and particle distribution in the stir zone. For this purpose, optical microscopy and scanning electron microscopy (SEM) images, energy-dispersive spectroscopy EDS and XRD analyses, hardness measurements, and tensile tests are carried out on the joints. It is shown that intermetallic compounds exist in lamellas of banding structure formed in the advancing side of the welds. In samples welded from the Cu side, the banding structure in the advancing side and the hook formation in the retreating side determine the fracture behavior of the joint. In samples welded from the Al side, a defect is formed in the advancing side of the weld, which is attributed to insufficient material flow. It is concluded that the contact surface of the laminate (Al or Cu) with the shoulder of the FSW tool influences the material flow and microstructure of welds.
NASA Astrophysics Data System (ADS)
Matteini, Paolo; Ratto, Fulvio; Rossi, Francesca; Cicchi, Riccardo; Stringari, Chiara; Kapsokalyvas, Dimitrios; Pavone, Francesco S.; Pini, Roberto
2009-02-01
The structural modifications in the collagen lattice of corneal stroma induced by near-infrared laser welding were investigated with second-harmonic generation (SHG) imaging. The corneal laser welding procedure is performed by staining the wound edges with a saturated water solution of Indocyanine Green (ICG) followed by irradiation with a 810 nm diode laser operated in continuous (CWLW: continuous wave laser welding) or pulsed (PLW: pulsed laser welding) mode. Both these procedures can provide closure of corneal wounds by inducing different structural modifications in the extracellular matrix. SHG imaging of native corneal stroma revealed collagen bundles composed of many regularly aligned collagen fibrils. After CWLW the regular lamellar arrangement was lost; collagen bundles appeared densely packed with an increasing disordered arrangement toward the welded cut. The weld was characterized by a loss of details; nevertheless, the observation of the second harmonic signal at this site indicated the lack of collagen denaturation. By contrast, PLW mode produced welding spots at the interface between donor and recipient corneal layers, which were characterized by a severe loss of the SHG signal, suggesting the occurrence of a complete collagen denaturation. SHG imaging appeared to be a powerful tool for visualizing the supramolecular morphological modifications in the collagen matrix after laser welding.
NASA Astrophysics Data System (ADS)
Kumar, T. Senthil; Balasubramanian, V.; Babu, S.; Sanavullah, M. Y.
2007-08-01
AA6061 aluminium alloy (Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of food processing equipment, chemical containers, passenger cars, road tankers, and railway transport systems. The preferred process for welding these aluminium alloys is frequently Gas Tungsten Arc (GTA) welding due to its comparatively easy applicability and lower cost. In the case of single pass GTA welding of thinner sections of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current processes. The use of pulsed current parameters has been found to improve the mechanical properties of the welds compared to those of continuous current welds of this alloy due to grain refinement occurring in the fusion zone. In this investigation, an attempt has been made to develop a mathematical model to predict the fusion zone grain diameter incorporating pulsed current welding parameters. Statistical tools such as design of experiments, analysis of variance, and regression analysis are used to develop the mathematical model. The developed model can be effectively used to predict the fusion grain diameter at a 95% confidence level for the given pulsed current parameters. The effect of pulsed current GTA welding parameters on the fusion zone grain diameter of AA 6061 aluminium alloy welds is reported in this paper.
Metallurgical Effects of Shunting Current on Resistance Spot-Welded Joints of AA2219 Sheets
NASA Astrophysics Data System (ADS)
Jafari Vardanjani, M.; Araee, A.; Senkara, J.; Jakubowski, J.; Godek, J.
2016-08-01
Shunting effect is the loss of electrical current via the secondary circuit provided due to the existence of previous nugget in a series of welding spots. This phenomenon influences on metallurgical aspects of resistance spot-welded (RSW) joints in terms of quality and performance. In this paper RSW joints of AA2219 sheets with 1 mm thickness are investigated metallurgically for shunted and single spots. An electro-thermal finite element analysis is performed on the RSW process of shunted spot and temperature distribution and variation are obtained. These predictions are then compared with experimental micrographs. Three values of 5 mm, 20 mm, and infinite (i.e., single spot) are assumed for welding distance. Numerical and experimental results are matching each other in terms of nugget and HAZ geometry as increasing distance raised nugget size and symmetry of HAZ. In addition, important effect of shunting current on nugget thickness, microstructure, and Copper segregation on HAZ grain boundaries were discovered. A quantitative analysis is also performed about the influence of welding distance on important properties including ratio of nugget thickness and diameter ( r t), ratio of HAZ area on shunted and free side of nugget ( r HA), and ratio of equivalent segregated and total amount of Copper, measured in sample ( r Cu) on HAZ. Increasing distance from 5 mm to infinite, indicated a gain of 111.04, -45.55, and -75.15% in r t, r HA, and r Cu, respectively, while obtained ratios for 20 mm welding distance was suitable compared to single spot.
Intelligent Weld Manufacturing: Role of Integrated Computational Welding Engineering
David, Stan A.; Chen, Jian; Feng, Zhili; ...
2017-12-02
A master welder uses his sensory perceptions to evaluate the process and connect them with his/her knowledge base to take the necessary corrective measures with his/her acquired skills to make a good weld. All these actions must take place in real time. Success depends on intuition and skills, and the procedure is labor-intensive and frequently unreliable. The solution is intelligent weld manufacturing. The ultimate goal of intelligent weld manufacturing would involve sensing and control of heat source position, weld temperature, weld penetration, defect formation and ultimately control of microstructure and properties. This involves a solution to a problem (welding) withmore » many highly coupled and nonlinear variables. The trend is to use an emerging tool known as intelligent control. This approach enables the user to choose a desirable end factor such as properties, defect control, or productivity to derive the selection of process parameters such as current, voltage, or speed to provide for appropriate control of the process. Important elements of intelligent manufacturing are sensing and control theory and design, process modeling, and artificial intelligence. Significant progress has been made in all these areas. Integrated computational welding engineering (ICWE) is an emerging field that will aid in the realization of intelligent weld manufacturing. The paper will discuss the progress in process modeling, microstructure, properties, and process control and automation and the importance of ICWE. Also, control and automation strategies for friction stir welding will be discussed.« less
Intelligent Weld Manufacturing: Role of Integrated Computational Welding Engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Stan A.; Chen, Jian; Feng, Zhili
A master welder uses his sensory perceptions to evaluate the process and connect them with his/her knowledge base to take the necessary corrective measures with his/her acquired skills to make a good weld. All these actions must take place in real time. Success depends on intuition and skills, and the procedure is labor-intensive and frequently unreliable. The solution is intelligent weld manufacturing. The ultimate goal of intelligent weld manufacturing would involve sensing and control of heat source position, weld temperature, weld penetration, defect formation and ultimately control of microstructure and properties. This involves a solution to a problem (welding) withmore » many highly coupled and nonlinear variables. The trend is to use an emerging tool known as intelligent control. This approach enables the user to choose a desirable end factor such as properties, defect control, or productivity to derive the selection of process parameters such as current, voltage, or speed to provide for appropriate control of the process. Important elements of intelligent manufacturing are sensing and control theory and design, process modeling, and artificial intelligence. Significant progress has been made in all these areas. Integrated computational welding engineering (ICWE) is an emerging field that will aid in the realization of intelligent weld manufacturing. The paper will discuss the progress in process modeling, microstructure, properties, and process control and automation and the importance of ICWE. Also, control and automation strategies for friction stir welding will be discussed.« less
NASA Astrophysics Data System (ADS)
Mokhtabad Amrei, Mohsen
13Cr4Ni martensitic stainless steels are known for their outstanding performances in the hydroelectric industry, where they are mainly used in the construction of turbine components. Considering the size and geometry of turbine runners and blades, multi-pass welding procedures are commonly used in the fabrication and repair of such turbines. The final microstructure and mechanical properties of the weld are sensitive to the welding process parameters and thermal history. In the case of 13Cr4Ni steel, the thermal cycles imposed by the multi-pass welding operation have significant effects on the complex weld microstructure. Additionally, post-weld heat treatments are commonly used to reduce weld heterogeneity and improve the material's mechanical properties by tempering the microstructure and by forming a "room-temperature-stable austenite." In the first phase of this research, the microstructures and crystallographic textures of aswelded single-pass and double-pass welds were studied as a basis to studying the more complex multi-pass weld microstructure. This study found that the maximum hardness is obtained in high temperature heat affected zone inside the base metal. In particular, the results showed that the heat cycle exposed by the second pass increases the hardness of the previous pass because it produces a finer martensite microstructure. In areas of heat affected zone, a tempering effect is reported from 3 up to 6 millimeters far from the fusion line. Finding austenite phase in these areas are matter of interest and it can be indicative of the microstructure complexity of multi-pass welds. In the second phase of research, the microstructure of multi-pass welds was found to be more heterogeneous than that of single- and double-pass welds. Any individual pass in a multi-pass weld consists of several regions formed by adjacent weld passes heat cycle. Results showed that former austenite grains modification occurred in areas close to the subsequent weld passes. Furthermore, low angle interface laths were observed inside martensite sub-blocks over different regions. The hardness profile of a multi-pass weld was explained by the overlaying heat effects of surrounding passes. In some regions, a tempered matrix was observed, while in other regions a double-quenched microstructure was found. The final aspect of this study focused on the effects of post-weld heat treatments on reformed austenite and carbide formations, and evolution of hardness. The effects of tempering duration and temperature on microstructure were investigated. The study found that nanometer-sized carbides form at martensite lath interfaces and sub-block boundaries. Additionally, it was determined that for any holding duration, the maximum austenite percentage is achievable by tempering at 610 °C. Similarly, the maximum softening was reported for tempering at 610 °C, for any given holding period.
NASA Technical Reports Server (NTRS)
Garcia, J.
1984-01-01
Tool with stepped shoulders alines tubes for machining in preparation for welding. Alinement with machine tool axis accurate to within 5 mils (0.13mm) and completed much faster than visual setup by machinist.
Process Modeling and Validation for Metal Big Area Additive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simunovic, Srdjan; Nycz, Andrzej; Noakes, Mark W.
Metal Big Area Additive Manufacturing (mBAAM) is a new additive manufacturing (AM) technology based on the metal arc welding. A continuously fed metal wire is melted by an electric arc that forms between the wire and the substrate, and deposited in the form of a bead of molten metal along the predetermined path. Objects are manufactured one layer at a time starting from the base plate. The final properties of the manufactured object are dependent on its geometry and the metal deposition path, in addition to depending on the basic welding process parameters. Computational modeling can be used to acceleratemore » the development of the mBAAM technology as well as a design and optimization tool for the actual manufacturing process. We have developed a finite element method simulation framework for mBAAM using the new features of software ABAQUS. The computational simulation of material deposition with heat transfer is performed first, followed by the structural analysis based on the temperature history for predicting the final deformation and stress state. In this formulation, we assume that two physics phenomena are coupled in only one direction, i.e. the temperatures are driving the deformation and internal stresses, but their feedback on the temperatures is negligible. The experiment instrumentation (measurement types, sensor types, sensor locations, sensor placements, measurement intervals) and the measurements are presented. The temperatures and distortions from the simulations show good correlation with experimental measurements. Ongoing modeling work is also briefly discussed.« less
Working, Welding and Structural Drafting, Drafting--Intermediate: 9255.03.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
The course introduces the student to working welding drawings, both detail and assembly, as related to all fields of drafting and structural drafting, and provides him with the opportunity to work with various types of tools and equipment. Prior to entry in this course, the vocational student must display mastery of the skills indicated in…
2009 Navy ManTech Project Book
2009-01-01
pieces which are welded together, filled with syntactic foam , and welded to the sail and hull structure. The ManTech project was successful in...cladding has demonstrated the required performance characteristics . The testing demonstrated manufacturability of optical fibers with enhanced hard...using Liquid Injection Molding Simulation (LIMS) and Polyworx software tools for infusion set-up optimization. Test articles fabricated are
ERIC Educational Resources Information Center
Lauritzen, Louis Dee
2014-01-01
Machine shop students face the daunting task of learning the operation of complex three-dimensional machine tools, and welding students must develop specific motor skills in addition to understanding the complexity of material types and characteristics. The use of consumer technology by the Millennial generation of vocational students, the…
NASA Astrophysics Data System (ADS)
Darmawan, Tofiq Dwiki; Priadythama, Ilham; Herdiman, Lobes
2018-02-01
Welding and drilling are main processes of making chair frame from metal material. Commonly, chair frame construction includes many arcs which bring difficulties for its welding and drilling process. In UNS industrial engineering integrated practicum there are welding fixtures which use to fixing frame component position for welding purpose. In order to achieve exact holes position for assembling purpose, manual drilling processes were conducted after the frame was joined. Unfortunately, after it was welded the frame material become hard and increase drilling tools wear rate as well as reduce holes position accuracy. The previous welding fixture was not equipped with clamping system and cannot accommodate drilling process. To solve this problem, our idea is to reorder the drilling process so that it can be execute before welding. Thus, this research aims to propose conceptual design of modular fixture which can integrate welding and drilling process. We used Generic Product Development Process to address the design concept. We collected design requirements from 3 source, jig and fixture theoretical concepts, user requirements, and clamping part standards. From 2 alternatives fixture tables, we propose the first which equipped with mounting slots instead of holes. We test the concept by building a full sized prototype and test its works by conducting welding and drilling of a student chair frame. Result from the welding and drilling trials showed that the holes are on precise position after welding. Based on this result, we conclude that the concept can be a consideration for application in UNS Industrial Engineering Integrated Practicum.
Study of issues in difficult-to-weld thick materials by hybrid laser arc welding
NASA Astrophysics Data System (ADS)
Mazar Atabaki, Mehdi
There is a high interest for the high strength-to-weight ratio with good ductility for the welds of advanced alloys. The concern about the welding of thick materials (Advanced high strength steels (AHSS) and 5xxx and 6xxx series of aluminum alloys) has stimulated the development of manufacturing processes to overcome the associated issues. The need to weld the dissimilar materials (AHSS and aluminum alloys) is also required for some specific applications in different industries. Hence, the requirement in the development of a state-of-the-art welding procedure can be helpful to fulfill the constraints. Among the welding methods hybrid laser/arc welding (HLAW) has shown to be an effective method to join thick and difficult-to-weld materials. This process benefits from both advantages of the gas metal arc welding (GMAW) and laser welding processes. The interaction of the arc and laser can help to have enough penetration of weld in thick plates. However, as the welding of dissimilar aluminum alloys and steels is very difficult because of the formation of brittle intermetallics the present work proposed a procedure to effectively join the alloys. The reports showed that the explosively welded aluminum alloys to steels have the highest toughness, and that could be used as an "insert" (TRICLAD) for welding the thick plates of AHSS to aluminum alloys. Therefore, the HLAW of the TRICLAD-Flange side (Aluminum alloy (AA 5456)) to the Web side (Aluminum alloys (AA 6061 and AA 5456)) and the TRICLAD-Flange side (ASTM A516) to the Web side (AHSS) was studied in the present work. However, there are many issues related to HLAW of the dissimilar steels as well as dissimilar aluminum alloys that have to be resolved in order to obtain sound welds. To address the challenges, the most recent welding methods for joining aluminum alloys to steels were studied and the microstructural development, mechanical properties, and on-line monitoring of the welding processes were discussed as well. The heat and mass transfer and the issues in joining of dissimilar alloys by the hybrid laser/arc welding process (HLAW) were explicitly explained in details. A finite element model was developed to simulate the heat transfer in HLAW of the aluminum alloys. Two double-ellipsoidal heat source models were considered to describe the heat input of the gas metal arc welding and laser welding processes. An experimental procedure was also developed for joining thick advanced high strength steel plates by using the HLAW, by taking into consideration different butt joint configurations. The geometry of the weld groove was optimized according to the requirements of ballistic test, where the length of the softened heat affected zone should be less than 15.9 mm measured from the weld centerline. Since the main issue in HLAW of the AHSS was the formation of the pores, the possible mechanisms of the pores formation and their mitigation methods during the welding process were investigated. Mitigation methods were proposed to reduce the pores inside in the weld area and the influence of each method on the process stability was investigated by an on-line monitoring system of the HLAW process. The groove angle was optimized for the welding process based on the allowed amount of heat input along the TRICLADRTM interface generated by an explosive welding. The weld was fractured in the heat affected zone of the aluminum side in the tensile test. The microharness was shown that the temperature variation caused minor softening in the heat affected zone satisfying the requirement that the width of the softened heat affected zone in the steel side falls within 15.9 mm far away from the weld centerline. The microstructure analysis showed the presence of tempered martensite at the vicinity of the weld area, which it was a cause of softening in the heat affected zone.
Friction Stir Welding of SiC/Aluminum Metal Matrix Composites
NASA Technical Reports Server (NTRS)
Lee, Jonathan A.
1999-01-01
Friction Stir Welding (FSW) is a new solid state process for joining metals by plasticizing and consolidating materials around the bond line using thermal energy producing from frictional forces. A feasibility study for FSW of Metal Matrix Composites (MMC) was investigated using aluminum 6092 alloy reinforced with 17% SiC particulates. FSW process consists of a special rotating pin tool that is positioned to plunge into the MMC surface at the bond line. As the tool rotates and move forward along the bond line, the material at the bond line is heated up and forced to flow around the rotating tip to consolidate on the tip's backside to form a solid state joint. FSW has the potential for producing sound welds with MMC because the processing temperature occurs well below the melting point of the metal matrix; thereby eliminating the reinforcement-to-matrix solidification defects, reducing the undesirable chemical reactions and porosity problems.
Power-Tool Adapter For T-Handle Screws
NASA Technical Reports Server (NTRS)
Deloach, Stephen R.
1992-01-01
Proposed adapter enables use of pneumatic drill, electric drill, electric screwdriver, or similar power tool to tighten or loosen T-handled screws. Notched tube with perpendicular rod welded to it inserted in chuck of tool. Notched end of tube slipped over screw handle.
Tool for Two Types of Friction Stir Welding
NASA Technical Reports Server (NTRS)
Carter, Robert
2006-01-01
A tool that would be useable in both conventional and self-reacting friction stir welding (FSW) has been proposed. The tool would embody both a prior tooling concept for self-reacting FSW and an auto-adjustable pin-tool (APT) capability developed previously as an augmentation for conventional FSW. Some definitions of terms are prerequisite to a meaningful description of the proposed tool. In conventional FSW, depicted in Figure 1, one uses a tool that includes (1) a rotating shoulder on top (or front) of the workpiece and (2) a rotating pin that protrudes from the shoulder into the depth of the workpiece. The main axial force exerted by the tool on the workpiece is reacted through a ridged backing anvil under (behind) the workpiece. When conventional FSW is augmented with an APT capability, the depth of penetration of the pin into the workpiece is varied in real time by a position- or force-control system that extends or retracts the pin as needed to obtain the desired effect. In self-reacting (also known as self-reacted) friction stir welding (SR-FSW), there are two rotating shoulders: one on top (or front) and one on the bottom (or back) of the workpiece. In this case, a threaded shaft protrudes from the tip of the pin to beyond the back surface of the workpiece. The back shoulder is held axially in place against tension by a nut on the threaded shaft. The main axial force exerted on the workpiece by the tool and front shoulder is reacted through the back shoulder and the threaded shaft, back into the FSW machine head, so that a backing anvil is no longer needed. A key transmits torque between the bottom shoulder and the threaded shaft, so that the bottom shoulder rotates with the shaft. A tool for SRFSW embodying this concept was reported in "Mechanism for Self-Reacted Friction Stir Welding" (MFS-31914), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 53. In its outward appearance, the proposed tool (see Figure 2) would fit the above description of an SR-FSW tool. In this case, the FSW machine would have an APT capability and the pin would be modified to accept a bottom shoulder. The APT capability could be used to vary the distance between the front and back shoulders in real time to accommodate process and workpiece-thickness variations. The tool could readily be converted to a conventional FSW tool, with or without APT capability, by simply replacing the modified pin with a conventional FSW pin.
Reducing tool wear by partial cladding of critical zones in hot form tool by laser metal deposition
NASA Astrophysics Data System (ADS)
Vollmer, Robert; Sommitsch, Christof
2017-10-01
This paper points out a production method to reduce tool wear in hot stamping applications. Usually tool wear can be observed at locally strongly stressed areas superimposed with gliding movement between blank and tool surface. The shown solution is based on a partial laser cladding of the tool surface with a wear resistant coating to increase the lifespan of tool inserts. Preliminary studies showed good results applying a material combination of tungsten carbide particles embedded in a metallic matrix. Different Nickel based alloys welded on hot work tool steel (1.2343) were tested mechanically in the interface zone. The material with the best bonding characteristic is chosen and reinforced with spherical tungsten carbide particles in a second laser welding step. Since the machining of tungsten carbides is very elaborate a special manufacturing strategy is developed to reduce the milling effort as much as possible. On special test specimens milling tests are carried out to proof the machinability. As outlook a tool insert of a b-pillar is coated to perform real hot forming tests.
Automatic weld torch guidance control system
NASA Technical Reports Server (NTRS)
Smaith, H. E.; Wall, W. A.; Burns, M. R., Jr.
1982-01-01
A highly reliable, fully digital, closed circuit television optical, type automatic weld seam tracking control system was developed. This automatic tracking equipment is used to reduce weld tooling costs and increase overall automatic welding reliability. The system utilizes a charge injection device digital camera which as 60,512 inidividual pixels as the light sensing elements. Through conventional scanning means, each pixel in the focal plane is sequentially scanned, the light level signal digitized, and an 8-bit word transmitted to scratch pad memory. From memory, the microprocessor performs an analysis of the digital signal and computes the tracking error. Lastly, the corrective signal is transmitted to a cross seam actuator digital drive motor controller to complete the closed loop, feedback, tracking system. This weld seam tracking control system is capable of a tracking accuracy of + or - 0.2 mm, or better. As configured, the system is applicable to square butt, V-groove, and lap joint weldments.
NASA Astrophysics Data System (ADS)
Tahaei, Ali; Horley, Paul; Merlin, Mattia; Torres-Torres, David; Garagnani, Gian Luca; Praga, Rolando; Vázquez, Felipe J. García; Arizmendi-Morquecho, Ana
2017-03-01
This work is dedicated to optimization of carbide particle system in a weld bead deposited by PTAW technique over D2 tool steel with high chromium content. The paper reports partial melting of the original carbide grains of the Ni-based filling powder, and growing of the secondary carbide phase (Cr, Ni)_3W_3C in the form of dendrites with wide branches that enhanced mechanical properties of the weld. The optimization of bead parameters was made with design of experiment methodology complemented by a complex sample characterization including SEM, EDXS, XRD, and nanoindentation measurements. It was shown that the preheat of the substrate to a moderate temperature 523 K (250° C) establishes linear pattern of metal flow in the weld pool, resulting in the most homogeneous distribution of the primary carbides in the microstructure of weld bead.
High Power Laser Hybrid Welding - Challenges and Perspectives
NASA Astrophysics Data System (ADS)
Nielsen, Steen Erik
High power industrial lasers at power levels up to 100 kW is now available on the market. Therefore, welding of thicker materials has become of interest for the heavy metal industry e.g. shipyards and wind mill producers. Further, the power plant industry, producers of steel pipes, heavy machinery and steel producers are following this new technology with great interest. At Lindø Welding Technology (LWT), which is a subsidiary to FORCE Technology, a 32-kwatt disc laser is installed. At this laser facility, welding procedures related to thick section steel applications are developed. Material thicknesses between 40 and 100 mm are currently of interest. This paper describes some of the challenges that are related to the development of the high power hybrid laser welding process as well as to the perspectives for the technology as a production tool for the heavy metal industry.
Microstructure, crystallographic texture and mechanical properties of friction stir welded AA2017A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, M.M.Z., E-mail: mohamed_ahmed4@s-petrol.suez.edu.eg; Department of Metallurgical and Materials Engineering, Suez Canal University, Suez 43721; Wynne, B.P.
2012-02-15
In this study a thick section (20 mm) friction stir welded AA2017A-T451 has been characterized in terms of microstructure, crystallographic texture and mechanical properties. For microstructural analysis both optical and scanning electron microscopes have been used. A detailed crystallographic texture analysis has been carried out using the electron back scattering diffraction technique. Crystallographic texture has been examined in both shoulder and probe affected regions of the weld NG. An entirely weak texture is observed at the shoulder affected region which is mainly explained by the effect of the sequential multi pass deformation experienced by both tool probe and tool shoulder.more » The texture in the probe dominated region at the AS side of the weld is relatively weak but still assembles the simple shear texture of FCC metals with B/B{sup Macron} and C components existing across the whole map. However, the texture is stronger at the RS than at the AS of the weld, mainly dominated byB/B{sup Macron} components and with C component almost absent across the map. An alternating bands between (B) components and (B{sup Macron }) component are observed only at the AS side of the weld. - Highlights: Black-Right-Pointing-Pointer Detailed investigation of microstructure and crystallographic texture. Black-Right-Pointing-Pointer The grain size is varied from the top to the bottom of the NG. Black-Right-Pointing-Pointer An entirely weak texture is observed at the shoulder affected region. Black-Right-Pointing-Pointer The texture in the probe affected region is dominated by simple shear texture.« less
NASA Astrophysics Data System (ADS)
Khalkhali, Abolfazl; Ebrahimi-Nejad, Salman; Geran Malek, Nima
2018-06-01
Friction stir welding (FSW) process overcomes many difficulties arising in conventional fusion welding processes of aluminum alloys. The current paper presents a comprehensive investigation on the effects of rotational speed, traverse speed, tool tilt angle and tool pin profile on the longitudinal force, axial force, maximum temperature, tensile strength, percent elongation, grain size, micro-hardness of welded zone and welded zone thickness of AA1100 aluminum alloy sheets. Design of experiments (DOE) was applied using the Taguchi approach and subsequently, effects of the input parameter on process outputs were investigated using analysis of variance (ANOVA). A perceptron neural network model was developed to find a correlation between the inputs and outputs. Multi-objective optimization using modified NSGA-II was implemented followed by NIP and TOPSIS approaches to propose optimum points for each of the square, pentagon, hexagon, and circular pin profiles. Results indicate that the optimization process can reach horizontal and vertical forces as low as 1452 N and 2913 N, respectively and a grain size as low as 2 μm. This results in hardness values of up to 57.2 and tensile strength, elongation and joint thickness of 2126 N, 5.9% and 3.7 mm, respectively. The maximum operating temperature can also reach a sufficiently high value of 374 °C to provide adequate material flow.
Wear of Cutting Tool with Excel Geometry in Turning Process of Hardened Steel
NASA Astrophysics Data System (ADS)
Samardžiová, Michaela
2016-09-01
This paper deals with hard turning using a cutting tool with Xcel geometry. This is one of the new geometries, and there is not any information about Xcel wear in comparison to the conventional geometry. It is already known from cutting tools producers that using the Xcel geometry leads to higher quality of machined surface, perticularly surface roughness. It is possible to achieve more than 4 times lower Ra and Rz values after turning than after using conventional geometry with radius. The workpiece material was 100Cr6 hardened steel with hardness of 60 ± 1 HRC. The machine used for the experiment was a lathe with counter spindle DMG CTX alpha 500, which is located in the Centre of Excellence of 5-axis Machining at the Faculty of Materials Science and Technology in Trnava. The cutting tools made by CBN were obtained from Sandvik COROMANT Company. The aim of this paper is to investigate the cutting tool wear in hard turning process by the Xcel cutting tool geometry.
Welding induced residual stress evaluation using laser-generated Rayleigh waves
NASA Astrophysics Data System (ADS)
Ye, Chong; Zhou, Yuanlai; Reddy, Vishnu V. B.; Mebane, Aaron; Ume, I. Charles
2018-04-01
Welding induced residual stress could affect the dimensional stability, fatigue life, and chemical resistance of the weld joints. Ultrasonic method serves as an important non-destructive tool for the residual stress evaluation due to its easy implementation, low cost and wide application to different materials. Residual stress would result in the ultrasonic wave velocity variation, which is the so called acoustoelastic effect. In this paper, Laser/EMAT ultrasonic technique was proposed to experimentally study the relative velocity variation ΔV/V of Rayleigh wave, which has the potential to evaluate surface/subsurface longitudinal residual stress developed during the Gas Metal Arc Welding process. Broad band ultrasonic waves were excited by pulsed Q-Switched Nd: YAG laser. An electromagnetic acoustic transducer (EMAT) attached to the welded plates was used to capture the Rayleigh wave signals propagating along the weld seam direction. Different time of flight measurements were conducted by varying the distance between the weld seam and Rayleigh wave propagating path in the range of 0 to 45 mm. The maximum relative velocity difference was found on the weld seam. With the increasing distance away from the weld seam, the relative velocity difference sharply decreased to negative value. With further increase in distance, the relative velocity difference slowly increased and approached zero. The distribution of relative velocity variations indicates that tensile stress appears in the melted zone as it becomes compressive near the heat-affected zone.
NASA Astrophysics Data System (ADS)
Imam, Murshid; Sun, Yufeng; Fujii, Hidetoshi; Ma, Ninshu; Tsutsumi, Seiichiro; Murakawa, Hidekazu
2017-01-01
Joining thick sections of aluminum alloys by friction stir welding (FSW) in a single pass needs to overcome many challenges before it comes to full-scale industrial use. Important parameters controlling the structure-properties relationships both across weld cross-section and through thickness direction were investigated through mechanical testing, electron backscatter diffraction technique, transmission electron microscopy, and occurrence of serrated plastic flow. The evolution of the properties in the weld cross-section shows that the presence of undissolved and fragmented Al_6MnFe particles cause discrepancies in establishing the Hall-Petch relationship, and derive the strengthening from the Orowan strengthening mechanism. A `stop action' friction stir weld has been prepared to understand the role of geometrical features of the tool probe in the development of the final microstructure after complete weld. Sectioning through the `stop action' weld with the probe in situ displays the individual effect of thread and flat on the grain structure formation. The material at the thread surface experiences more severe deformation than the material at flat surface. Both the high-angle boundaries and mean grain size are found to be higher at the thread surface. The strain hardening capacity, stress serration amplitude, and frequency are observed to be higher in the stir zone than other weld regions.
NASA Astrophysics Data System (ADS)
Bonazzi, Enrico; Colombini, Elena; Panari, Davide; Vergnano, Alberto; Leali, Francesco; Veronesi, Paolo
2017-01-01
The integration of experiments with numerical simulations can efficiently support a quick evaluation of the welded joint. In this work, the MIG welding operation on aluminum T-joint thin plate has been studied by the integration of both simulation and experiments. The aim of the paper is to enlarge the global database, to promote the use of thin aluminum sheets in automotive body industries and to provide new data. Since the welding of aluminum thin plates is difficult to control due to high speed of the heat source and high heat flows during heating and cooling, a simulation model could be considered an effective design tool to predict the real phenomena. This integrated approach enables new evaluation possibilities on MIG-welded thin aluminum T-joints, as correspondence between the extension of the microstructural zones and the simulation parameters, material hardness, transient 3D temperature distribution on the surface and inside the material, stresses, strains, and deformations. The results of the mechanical simulations are comparable with the experimental measurements along the welding path, especially considering the variability of the process. The results could well predict the welding-induced distortion, which together with local heating during welding must be anticipated and subsequently minimized and counterbalance.
Lasers in automobile production
NASA Astrophysics Data System (ADS)
Pizzi, P.
There is a trend in mechanical equipment to replace complicated mechanical components with electronics, especially microprocessors, laser technology represents an important new tool. The effects of laser technology can be seen in production systems concerned with cutting, welding, heat treatment, and the alloying of mechanical components. Applications in the automobile industry today are not very widespread and are concerned essentially with welding and cutting.