Science.gov

Sample records for welded joints obtained

  1. Ultrasonic Welding of Hybrid Joints

    NASA Astrophysics Data System (ADS)

    Wagner, Guntram; Balle, Frank; Eifler, Dietmar

    2012-03-01

    A central research field of the Institute of Materials Science and Engineering at the University of Kaiserslautern (WKK), Germany, is the realization of innovative hybrid joints by ultrasonic metal welding. This article gives an overview of suitable ultrasonic welding systems as well as of essential machine and material parameters, which influence the quality of the welds. Besides the ultrasonic welding of dissimilar metals such as Al to Cu or Al to steels, the welds between newly developed materials like aluminum foam sandwiches or flat flexible cables also can be realized. Moreover, the joining of glass and ceramic to sheet metals is a point of interest at the WKK. By using the ultrasonic metal welding process, it is possible to realize metal/glass welds with tensile shear strengths of 50 MPa. For metal/ceramic joints, the shear strengths values up to 150 MPa were measured. Finally, selected results about the occurring bonding mechanisms will be discussed.

  2. Investigation of the structure and properties of titanium-stainless steel permanent joints obtained by laser welding with the use of intermediate inserts and nanopowders

    NASA Astrophysics Data System (ADS)

    Cherepanov, A. N.; Orishich, A. M.; Pugacheva, N. B.; Shapeev, V. P.

    2015-03-01

    Results of an experimental study of the structure, the phase composition, and the mechanical properties of laser-welded joints of 3-mm thick titanium and 12Kh18N10T steel sheets obtained with the use of intermediate inserts and nanopowdered modifying additives are reported. It is shown that that such parameters as the speed of welding, the radiation power, and the laser-beam focal spot position all exert a substantial influence on the welding-bath process and on the seam structure formed. In terms of chemical composition, most uniform seams with the best mechanical strength are formed at a 1-m/min traverse speed of laser and 2.35-kW laser power, with the focus having been positioned at the lower surface of the sheets. Under all other conditions being identical, uplift of the focus to workpiece surface or to a higher position results in unsteady steel melting, in a decreased depth and reduced degree of the diffusion-induced mixing of elements, and in an interpolate connection formed according to the soldering mechanism in the root portion of the seam. The seam material is an over-saturated copper-based solid solution of alloying elements with homogeneously distributed intermetallic disperse particles (Ti(Fe, Cr)2 and TiCu3) contained in this alloy. Brittle fracture areas exhibiting cleavage and quasi-cleavage facets correspond to coarse Ti(Fe, Cr)2 intermetallic particles or to diffusion zones primarily occurring at the interface with the titanium alloy. The reported data and the conclusions drawn from the numerical calculations of the thermophysical processes of welding of 3-mm thick titanium and steel sheets through an intermediate copper insert are in qualitative agreement with the experimental data. The latter agreement points to adequacy of the numerical description of the melting processes of contacting materials versus welding conditions and focal-spot position in the system.

  3. Jointed Holder For Welding Electrodes

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.

    1991-01-01

    Adjustable-angle holder enables use of standard straight electrode with custom-fabricated bent gas cup for welding in difficult-to-reach places. Electrode replaced easily, without removing cup, with aid of tool loosening miniature collet nut on holder. Consumes fewer electrodes for given amount of welding. Angle of holder continuously adjustable to fit angle of gas cup or geometry of part welded. Holder made double-jointed to accommodate gas cup having compound angles.

  4. Effect of Multi-repair Welding on Fatigue Performance of Aluminum Alloy Profile Welded Joint

    NASA Astrophysics Data System (ADS)

    Diao, You-De; Shi, Chun-Yuan; Tian, Hong-Lei

    2016-05-01

    Aluminum alloy profile has been widely used in the manufacture of the rail vehicles. But it's necessary for the repair welding of the welded joints to be conducted because some defects exist in the weld such as porosity, inclusions and incomplete penetrations in the welding processes. In this paper, the influence of the multi-repair welding of 6005A aluminum alloy profile butt welded joints on the fatigue performance are investigated based on the results of fatigue tests. The parameters of curves and the fatigue strength of the welded joints are calculated, and Goodman fatigue limit diagram is also obtained. The results show that fatigue strength of aluminum alloy profile butt welded joints, in condition of 107 cycle life, meet the standard requirement for the as-welded, repair welded state one time or two times respectively.

  5. Plating To Reinforce Welded Joints

    NASA Technical Reports Server (NTRS)

    Otousa, J. E.

    1982-01-01

    Electrodeposition used to strengthen welded joints gouged, nicked, or suffered other mechanical damage. Plating cell, typically of acrylic plastic such as poly (Methylmetacrylate), is assembled around part to be plated. Areas not to be plated are masked with plater's tape. Weld area is plated in standard nickel-plating process.

  6. Pyrothermal treatment of welded joints

    SciTech Connect

    Serikov, S.V.; Idiyatullin, R.S.; Myakushkin, S.N.; Yaufman, V.V.

    1992-03-01

    The results of investigation of the structure and distribution of residual stresses in welded joints in pipes after heat treatment, which includes heating of the surface being treated due to combustion of plates formed from a thermite-type material of pyrotechnic composition, placed around the perimeter of the welded joint, and also an assessment of the level of residual stresses prior to and after pyrotechnic treatment demonstrated the promising nature of the proposed method. 5 refs., 5 figs.

  7. The distinctive feature of weld joints structure by adding the nanomodifying to the weld pool

    NASA Astrophysics Data System (ADS)

    Shlyakhova, Galina; Danilov, Vladimir; Kuznetsov, Maxim; Zernin, Evgeny; Kartashov, Evgeny

    2015-10-01

    The experimental studies were carried on for the test samples of welds of the steel 12X18H10T; the results are presented. The effect produced by the nanostructured modifying powders added to the weld pool on the quality of weld joints was examined. The weld joints were obtained by arc welding in argon atmosphere using consumable electrode. Due to the weld pool modification, the dendrite size was found to decrease and a more equilibrium microstructure would form in the weld material.

  8. Effect of weld schedule variation on the weldability and durability of AHSS spot weld joints

    NASA Astrophysics Data System (ADS)

    Weishaupt, Eric Raymond

    Tensile strength testing and high cycle fatigue testing of advanced high strength steel spot welded shear lap joints were performed for the various weld conditions. The materials used in this study were DP 980, DP 780 and TRIP 780. The microstructure and microhardness of the shear lap joints were examined in an effort to identify the effect of microstructural changes on the strength and fatigue durability of the spot weld specimens. The occurrence of interfacial failure was recorded for the differing weld processes. Several weld schedules were examined and used to produce shear lap spot weld joints, specifically varying the squeeze force and the average current. The weld force used to produce a spot weld does not have a significant effect on the fracture mode of the specimen given the average current is constant. The average current used to produce a spot weld has a significant effect on the fracture mode of the spot weld for several squeeze forces. Interfacial failure of spot welded TRIP 780 can be mitigated using a certain range of currents when welding. This appears to come as a tradeoff for sacrificing the strength of the joint. Higher values of weld strength were obtainable; however, welds that failed with higher strengths also experienced interfacial failure. A fracture mechanics approach to estimating the high cycle fatigue life of the shear lap specimen is also proposed and represents a conservative estimate of the shear lap specimen durability.

  9. Thermal treatment of dissimilar steels' welded joints

    NASA Astrophysics Data System (ADS)

    Nikulina, A. A.; Denisova, A. S.; Gradusov, I. N.; Ryabinkina, P. A.; Rushkovets, M. V.

    2016-04-01

    In this paper combinations of chrome-nickel steel and high-carbon steel, produced by flash butt welding after heat treatment, are investigated. Light and electron microscopic studies show that the welded joints after heat treatment have a complex structure consisting of several phases as initial welded joints. A martensite structure in welded joints after thermal treatment at 300... 800 °C has been found.

  10. Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials

    NASA Astrophysics Data System (ADS)

    Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Liu, Wei

    2016-11-01

    Dissimilar materials welded joints provide many advantages in power, automotive, chemical, and spacecraft industries. The weld bead integrity which is determined by process parameters plays a significant role in the welding quality during the fiber laser welding (FLW) of dissimilar materials. In this paper, an optimization method by taking the integrity of the weld bead and weld area into consideration is proposed for FLW of dissimilar materials, the low carbon steel and stainless steel. The relationships between the weld bead integrity and process parameters are developed by the genetic algorithm optimized back propagation neural network (GA-BPNN). The particle swarm optimization (PSO) algorithm is taken for optimizing the predicted outputs from GA-BPNN for the objective. Through the optimization process, the desired weld bead with good integrity and minimum weld area are obtained and the corresponding microstructure and microhardness are excellent. The mechanical properties of the optimized joints are greatly improved compared with that of the un-optimized welded joints. Moreover, the effects of significant factors are analyzed based on the statistical approach and the laser power (LP) is identified as the most significant factor on the weld bead integrity and weld area. The results indicate that the proposed method is effective for improving the reliability and stability of welded joints in the practical production.

  11. Polyimide weld bonding for titanium alloy joints

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Kurland, R. M.

    1974-01-01

    Two weld bonding processes were developed for joining titanium alloy; one process utilizes a weld-through technique and the other a capillary-flow technique. The adhesive used for the weld-through process is similar to the P4/A5F system. A new polyimide laminating resin, BFBI/BMPM, was used in the capillary-flow process. Static property information was generated for weld-bonded joints over the temperature range of 219 K (-65 F) to 561 K (+550 F) and fatigue strength information was generated at room temperature. Significant improvement in fatigue strength was demonstrated for weld-bonded joints over spot-welded joints. A demonstration was made of the applicability of the weld-through weld-bonding process for fabricating stringer stiffened skin panels.

  12. Materials participation in welded joints manufacturing

    NASA Astrophysics Data System (ADS)

    Ghenghea, L. D.

    2016-08-01

    Management of materials dilution to form a joint with higher features asked by complex metallic structures is a problem that took attention and efforts of welding processes researchers and this communication will give a little contribution presenting some scientific and experimental results of dilution processes studied by Welding Research Group from Iasi, Romania, TCM Department. Liquid state welding processes have a strong dependence related to dilution of base and filler materials, the most important are for automatic joining using welding. The paper presents a review of some scientific works already published and their contributions, results of dilution coefficient evaluation using weighing, graphics and software applied for shielded metal arc welding process. Paper results could be used for welders’ qualification, welding procedure specification and other welding processes researchers’ activities. The results of Welding Research Group from Iasi, Romania, TCM Department, show dilution coefficient values between 20-30 % of base material and 70-80 % of filler material for studied welding process.

  13. Inspection of thick welded joints using laser-ultrasonic SAFT.

    PubMed

    Lévesque, D; Asaumi, Y; Lord, M; Bescond, C; Hatanaka, H; Tagami, M; Monchalin, J-P

    2016-07-01

    The detection of defects in thick butt joints in the early phase of multi-pass arc welding would be very valuable to reduce cost and time in the necessity of reworking. As a non-contact method, the laser-ultrasonic technique (LUT) has the potential for the automated inspection of welds, ultimately online during manufacturing. In this study, testing has been carried out using LUT combined with the synthetic aperture focusing technique (SAFT) on 25 and 50mm thick butt welded joints of steel both completed and partially welded. EDM slits of 2 or 3mm height were inserted at different depths in the multi-pass welding process to simulate a lack of fusion. Line scans transverse to the weld are performed with the generation and detection laser spots superimposed directly on the surface of the weld bead. A CCD line camera is used to simultaneously acquire the surface profile for correction in the SAFT processing. All artificial defects but also real defects are visualized in the investigated thick butt weld specimens, either completed or partially welded after a given number of passes. The results obtained clearly show the potential of using the LUT with SAFT for the automated inspection of arc welds or hybrid laser-arc welds during manufacturing. PMID:27062646

  14. Inspection of thick welded joints using laser-ultrasonic SAFT.

    PubMed

    Lévesque, D; Asaumi, Y; Lord, M; Bescond, C; Hatanaka, H; Tagami, M; Monchalin, J-P

    2016-07-01

    The detection of defects in thick butt joints in the early phase of multi-pass arc welding would be very valuable to reduce cost and time in the necessity of reworking. As a non-contact method, the laser-ultrasonic technique (LUT) has the potential for the automated inspection of welds, ultimately online during manufacturing. In this study, testing has been carried out using LUT combined with the synthetic aperture focusing technique (SAFT) on 25 and 50mm thick butt welded joints of steel both completed and partially welded. EDM slits of 2 or 3mm height were inserted at different depths in the multi-pass welding process to simulate a lack of fusion. Line scans transverse to the weld are performed with the generation and detection laser spots superimposed directly on the surface of the weld bead. A CCD line camera is used to simultaneously acquire the surface profile for correction in the SAFT processing. All artificial defects but also real defects are visualized in the investigated thick butt weld specimens, either completed or partially welded after a given number of passes. The results obtained clearly show the potential of using the LUT with SAFT for the automated inspection of arc welds or hybrid laser-arc welds during manufacturing.

  15. Thermographic Analysis of Stress Distribution in Welded Joints

    NASA Astrophysics Data System (ADS)

    Piršić, T.; Krstulović Opara, L.; Domazet, Ž.

    2010-06-01

    The fatigue life prediction of welded joints based on S-N curves in conjunction with nominal stresses generally is not reliable. Stress distribution in welded area affected by geometrical inhomogeneity, irregular welded surface and weld toe radius is quite complex, so the local (structural) stress concept is accepted in recent papers. The aim of this paper is to determine the stress distribution in plate type aluminum welded joints, to analyze the reliability of TSA (Thermal Stress Analysis) in this kind of investigations, and to obtain numerical values for stress concentration factors for practical use. Stress distribution in aluminum butt and fillet welded joints is determined by using the three different methods: strain gauges measurement, thermal stress analysis and FEM. Obtained results show good agreement - the TSA mutually confirmed the FEM model and stresses measured by strain gauges. According to obtained results, it may be stated that TSA, as a relatively new measurement technique may in the future become a standard tool for the experimental investigation of stress concentration and fatigue in welded joints that can help to develop more accurate numerical tools for fatigue life prediction.

  16. Measurement of micro weld joint position based on magneto-optical imaging

    NASA Astrophysics Data System (ADS)

    Gao, Xiang-Dong; Chen, Zi-Qin

    2015-01-01

    In a laser butt joint welding process, it is required that the laser beam focus should be controlled to follow the weld joint path accurately. Small focus wandering off the weld joint may result in insufficient penetration or unacceptable welds. Recognition of joint position offset, which describes the deviation between the laser beam focus and the weld joint, is important for adjusting the laser beam focus and obtaining high quality welds. A new method based on the magneto-optical (MO) imaging is applied to measure the micro weld joint whose gap is less than 0.2 mm. The weldments are excited by an external magnetic field, and an MO sensor based on principle of Faraday magneto effect is used to capture the weld joint images. A sequence of MO images which are tested under different magnetic field intensities and different weld joint widths are acquired. By analyzing the MO image characteristics and extracting the weld joint features, the influence of magnetic field intensity and weld joint width on the MO images and detection of weld joint position is observed and summarized. Project supported by the National Natural Science Foundation of China (Grant No. 51175095), the Natural Science Foundation of Guangdong Province, China (Grant No. 10251009001000001), the Guangdong Provincial Project of Science and Technology Innovation of Discipline Construction, China (Grant No. 2013KJCX0063), and the Science and Technology Plan Project of Guangzhou City, China (Grant No. 1563000554).

  17. Microstructure of AA 2024 fixed joints formed by friction stir welding

    NASA Astrophysics Data System (ADS)

    Eliseev, A. A.; Kalashnikova, T. A.; Tarasov, S. Yu.; Rubtsov, V. E.; Fortuna, S. V.; Kolubaev, E. A.

    2015-10-01

    Friction stir welded butt joints on 2024T3 alloy have been obtained using different process parameters. The microstructures of all the weld joint zones have been examined and such structural parameters as grain size, particle size and volume content of particles have been determined in order to find correlations with the microhardness of the corresponding zones of the weld.

  18. Welding technology transfer task/laser based weld joint tracking system for compressor girth welds

    NASA Technical Reports Server (NTRS)

    Looney, Alan

    1991-01-01

    Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.

  19. Virtual Welded-Joint Design Integrating Advanced Materials and Processing Technologies

    SciTech Connect

    Yang, Z.; Dong, P.; Liu, S.; Babu, S.; Olson, G.; DebRoy, T.

    2005-04-15

    The primary goal of this project is to increase the fatigue life of a welded-joint by 10 times and to reduce energy use by 25% through product performance and productivity improvements using an integrated modeling approach. The fatigue strength of a welded-joint is currently the bottleneck to design high performance and lightweight welded structures using advanced materials such as high strength steels. In order to achieve high fatigue strength in a welded-joint it is necessary to manage the weld bead shape for lower stress concentration, produce preferable residual stress distribution, and obtain the desired microstructure for improved material toughness and strength. This is a systems challenge that requires the optimization of the welding process, the welding consumable, the base material, as well as the structure design. The concept of virtual welded-joint design has been proposed and established in this project. The goal of virtual welded-joint design is to develop a thorough procedure to predict the relationship of welding process, microstructure, property, residual stress, and the ultimate weld fatigue strength by a systematic modeling approach. The systematic approach combines five sub-models: weld thermal-fluid model, weld microstructure model, weld material property model, weld residual stress model, and weld fatigue model. The systematic approach is thus based on interdisciplinary applied sciences including heat transfer, computational fluid dynamics, materials science, engineering mechanics, and material fracture mechanics. The sub-models are based on existing models with further development. The results from modeling have been validated with critical experiments. The systematic modeling approach has been used to design high fatigue resistant welds considering the combined effects of weld bead geometry, residual stress, microstructure, and material property. In particular, a special welding wire has been developed in this project to introduce

  20. Low Distortion Welded Joints for NCSX

    SciTech Connect

    M. Denault, M Viola, W. England

    2009-02-19

    The National Compact Stellarator Experiment (NCSX) required precise positioning of the field coils in order to generate suitable magnetic fields. A set of three modular field coils were assembled to form the Half Field-Period Assemblies (HPA). Final assembly of the HPA required a welded shear plate to join individual coils in the nose region due to the geometric limitations and the strength constraints. Each of the modular coil windings was wound on a stainless steel alloy (Stellalloy) casting. The alloy is similar to austenitic 316 stainless steel. During the initial welding trials, severe distortion, of approximately 1/16", was observed in the joint caused by weld shrinkage. The distortion was well outside the requirements of the design. Solutions were attempted through several simultaneous routes. The joint design was modified, welding processes were changed, and specialized heat reduction techniques were utilized. A final joint design was selected to reduce the amount of weld material needed to be deposited, while maintaining adequate penetration and strength. Several welding processes and techniques using Miller Axcess equipment were utilized that significantly reduced heat input. The final assembly of the HPA was successful. Distortion was controlled to 0.012", well within the acceptable design tolerance range of 0.020" over a 3.5 foot length.

  1. METHOD OF OBTAINING AN IMPROVED WELD IN INERT ARC WELDING

    DOEpatents

    Correy, T.B.

    1962-12-11

    A method is reported for inert arc welding. An a-c welding current is applied to the workpiece and welding electrode such that the positive portion of each cycle thereof, with the electrode positive, has only sufficient energy to clean the surface of the workpiece and the negative portion of each cycle thereof, with the electrode negative, contains the energy required to weld. (AEC)

  2. 49 CFR 195.216 - Welding: Miter joints.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding: Miter joints. 195.216 Section 195.216 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.216 Welding: Miter joints. A miter joint is not permitted (not...

  3. 49 CFR 195.216 - Welding: Miter joints.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Miter joints. 195.216 Section 195.216 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.216 Welding: Miter joints. A miter joint is not permitted (not...

  4. 49 CFR 195.216 - Welding: Miter joints.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding: Miter joints. 195.216 Section 195.216 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.216 Welding: Miter joints. A miter joint is not permitted (not...

  5. 49 CFR 195.216 - Welding: Miter joints.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding: Miter joints. 195.216 Section 195.216 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.216 Welding: Miter joints. A miter joint is not permitted (not...

  6. 49 CFR 195.216 - Welding: Miter joints.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding: Miter joints. 195.216 Section 195.216 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.216 Welding: Miter joints. A miter joint is not permitted (not...

  7. Effect of welding process on the microstructure and properties of dissimilar weld joints between low alloy steel and duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Lu, Min-xu; Zhang, Lei; Chang, Wei; Xu, Li-ning; Hu, Li-hua

    2012-06-01

    To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper. The microstructure and corrosion morphology of dissimilar weld joints were observed by scanning electron microscopy (SEM); the chemical compositions in different zones were detected by energy-dispersive spectroscopy (EDS); the mechanical properties were measured by microhardness test, tensile test, and impact test; the corrosion behavior was evaluated by polarization curves. Obvious concentration gradients of Ni and Cr exist between the fusion boundary and the type II boundary, where the hardness is much higher. The impact toughness of weld metal by MIG welding is higher than that by TIG welding. The corrosion current density of TIG weld metal is higher than that of MIG weld metal in a 3.5wt% NaCl solution. Galvanic corrosion happens between low alloy steel and weld metal, revealing the weakness of low alloy steel in industrial service. The quality of joints produced by MIG welding is better than that by TIG welding in mechanical performance and corrosion resistance. MIG welding with the filler metal ER2009 is the suitable welding process for dissimilar metals jointing between UNS S31803 duplex stainless steel and low alloy steel in practical application.

  8. Microstructure and mechanical properties of laser-arc hybrid welding joint of GH909 alloy

    NASA Astrophysics Data System (ADS)

    Liu, Ting; Yan, Fei; Liu, Sang; Li, Ruoyang; Wang, Chunming; Hu, Xiyuan

    2016-06-01

    In this paper, laser-arc hybrid welding of 10 mm thick low-thermal-expansion superalloy GH909 components was carried out to obtain a joint with good performance. This investigation was conducted using an optical microscope, scanning electron microscope, energy diffraction spectrum and other methodologies. The results showed that weld joints with a desirable wineglass-shaped weld profile can be obtained employing appropriate process parameters. The different grains in between the upper central seam and the bottom seam were associated with the temperature gradient, the pool's flow and the welding thermal cycle. MC-type carbides and eutectic phases (γ+Laves) were produced at grain boundaries due to the component segregation during the welding process. In addition, γ‧ strengthening phase presented in the interior of grains, which kept a coherent relationship with the matrix. The lowest hardness value occurred in the weld center, which indicated that it was the weakest section in the whole joint. The average tensile strength of the joints reached to 632.90 MPa, nearly 76.84% of the base metal. The fracture analysis revealed that the fracture mode of the joint was ductile fracture and the main reason for joint failure was as a result of the occurrence of porosities produced in the weld during the welding process.

  9. Virtual Welded - Joint Design Integrating Advanced Materials and Processing Technology

    SciTech Connect

    Yang, Zhishang; Ludewig, Howard W.; Babu, S. Suresh

    2005-06-30

    Virtual Welede-Joint Design, a systematic modeling approach, has been developed in this project to predict the relationship of welding process, microstructure, properties, residual stress, and the ultimate weld fatique strength. This systematic modeling approach was applied in the welding of high strength steel. A special welding wire was developed in this project to introduce compressive residual stress at weld toe. The results from both modeling and experiments demonstrated that more than 10x fatique life improvement can be acheived in high strength steel welds by the combination of compressive residual stress from the special welding wire and the desired weld bead shape from a unique welding process. The results indicate a technology breakthrough in the design of lightweight and high fatique performance welded structures using high strength steels.

  10. Yield detection in aluminum welded joints using photostress

    NASA Technical Reports Server (NTRS)

    Gambrell, S. C., Jr.; Kavikondala, K.

    1994-01-01

    Previous work using photostress to analyze behavior of aluminum welded joints was useful to determine mechanical properties of the weld and parent materials along the centerline of the joint. It was shown that significant differences exist in the stress-strain characteristics at points beginning at the centerline of the weld and extending for a distance of one inch to either side of the weld. Because of the highly variable behavior detected in the previous work, it was decided to extend the work to investigate behavior of joints 1/8, 1/2, and 1.40 inches thick.

  11. Influence of Specific Features of Twin Arc Welding on Properties of Weld Joints

    NASA Astrophysics Data System (ADS)

    Sholokhov, M. A.; Melnikov, A. U.; Fiveyskiy, A. M.

    2016-04-01

    The present article covers the influence of standard and narrow gap twin arc welding on properties of weld joints from high-strength steels. While analyzing microsections we established that distribution of micro structure and phase terms, as well the distribution of micro-hardness, were more homogeneous under narrow gap twin arc welding.

  12. Predicting Welding Distortion in a Panel Structure with Longitudinal Stiffeners Using Inherent Deformations Obtained by Inverse Analysis Method

    PubMed Central

    Liang, Wei; Murakawa, Hidekazu

    2014-01-01

    Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results. PMID:25276856

  13. Predicting welding distortion in a panel structure with longitudinal stiffeners using inherent deformations obtained by inverse analysis method.

    PubMed

    Liang, Wei; Murakawa, Hidekazu

    2014-01-01

    Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results. PMID:25276856

  14. Predicting welding distortion in a panel structure with longitudinal stiffeners using inherent deformations obtained by inverse analysis method.

    PubMed

    Liang, Wei; Murakawa, Hidekazu

    2014-01-01

    Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results.

  15. Models for selecting GMA Welding Parameters for Improving Mechanical Properties of Weld Joints

    NASA Astrophysics Data System (ADS)

    Srinivasa Rao, P.; Ramachandran, Pragash; Jebaraj, S.

    2016-02-01

    During the process of Gas Metal Arc (GMAW) welding, the weld joints mechanical properties are influenced by the welding parameters such as welding current and arc voltage. These parameters directly will influence the quality of the weld in terms of mechanical properties. Even small variation in any of the cited parameters may have an important effect on depth of penetration and on joint strength. In this study, S45C Constructional Steel is taken as the base metal to be tested using the parameters wire feed rate, voltage and type of shielding gas. Physical properties considered in the present study are tensile strength and hardness. The testing of weld specimen is carried out as per ASTM Standards. Mathematical models to predict the tensile strength and depth of penetration of weld joint have been developed by regression analysis using the experimental results.

  16. The Influence of Modes of Deposition of Coatings on the Corrosion Resistance of Welded Joints of Steels in Acidic Media;

    NASA Astrophysics Data System (ADS)

    Saraev, Yu N.; Bezborodov, V. P.; Selivanov, Y. V.

    2016-08-01

    In this work, effect of welding on corrosion of welded joints of austenitic steel 12KH18N10T. It is shown that the use of pulsed - arc welding steel 12KH18N10T allows you to create a protective coating with dispersed structure with less thermal impact on the zone of the welded joint. Coating is of such structure allows 1.5 to 6 times to reduce the corrosion rate of welded joints of steel 12KH18N10T in active chemical environments. Pulse the process of deposition of coatings on welded joint of steels can be effectively used for the protection against corrosion in the repair of equipment of chemical industry. The results obtained can be recommended for use when welding a protective corrosion - resistant coatings on working surfaces of equipment of chemical productions.

  17. Forming Completely Penetrated Welded T-joints when Pulsed Arc Welding

    NASA Astrophysics Data System (ADS)

    Krampit, N. Yu; Krampit, M. A.; Sapozhkov, A. S.

    2016-04-01

    The paper is focused on revealing the influence of welding parameters on weld formation when pulsed arc welding. As an experimental sample a T-joint over 10 mm was selected. Welding was carried out in flat position, which required no edge preparation but provided mono-directional guaranteed root penetration. The following parameters of welding were subjected to investigation: gap in the joint, wire feed rate and incline angles of the torch along and across the weld axis. Technological recommendations have been made with respect to pulsed arc welding; the cost price of product manufacturing can be reduced on their basis due to reduction of labor input required by machining, lowering consumption of welding materials and electric power.

  18. Fatigue Behavior of Friction Stir-Welded Joints Repaired by Grinding

    NASA Astrophysics Data System (ADS)

    Vidal, C.; Infante, V.

    2014-04-01

    Fatigue is undoubtedly the most important design criterion in aeronautic structures. Although friction stir-welded joints are characterized by a high mechanical performance, they can enclose some defects, especially in their root. These defects along with the relatively low residual stresses of the friction stir-welding thermomechanical cycle can turn into primary sources of crack initiation. In this context, this article deals with the fatigue behavior of friction stir-welded joints subjected to surface smoothing by grinding improvement technique. The 4-mm-thick aluminum alloy 2024-T351 was used in this study. The fatigue strength of the base material, joints in the as-welded condition, and the sound and defective friction stir-welded joints improved by grinding were investigated in detail. The tests were carried out with a constant amplitude loading and with a stress ratio of R = 0. The fatigue results show that an improvement in fatigue behavior was obtained in the joints repaired by superficial grinding technique. The weld grinding technique is better especially for lower loads and increases the high cycle fatigue strength. The fatigue strength of the improved welded joints was higher than that of the base material.

  19. Microstructure and Mechanical Properties of Hybrid Welded Joints with Laser and CO2-Shielded Arc

    NASA Astrophysics Data System (ADS)

    Wahba, M.; Mizutani, M.; Katayama, S.

    2016-07-01

    With the objective of reducing the operating costs, argon-rich shielding gas was replaced by 100% CO2 gas in hybrid laser-arc welding of shipbuilding steel. The welding parameters were optimized to obtain buried-arc transfer in order to mitigate spatter formation. Sound butt joints could be successfully produced for plates of 14 and 17 mm thickness in one welding pass. Subsequently, the welded joints were subjected to different tests to evaluate the influence of CO2 shielding gas on the mechanical properties of the welded joints. All tensile-tested specimens failed in the base material, indicating the higher strength of the welded joints. The impact toughness of the welded joints, measured at -20 °C, reached approximately 76% of that of the base material, which was well above the limit set by the relevant standard. The microstructure of the fusion zone consisted of grain boundary ferrite and acicular ferrite uniformly over the plate thickness except for the joint root where the microstructure was chiefly ferrite with an aligned second phase. This resulted in higher hardness in the root region compared with the top and middle parts of the fusion zone.

  20. An inelastic analysis of a welded aluminum joint

    NASA Technical Reports Server (NTRS)

    Vaughan, R. E.

    1994-01-01

    Butt-weld joints are most commonly designed into pressure vessels which then become as reliable as the weakest increment in the weld chain. In practice, weld material properties are determined from tensile test specimen and provided to the stress analyst in the form of a stress versus strain diagram. Variations in properties through the thickness of the weld and along the width of the weld have been suspect but not explored because of inaccessibility and cost. The purpose of this study is to investigate analytical and computational methods used for analysis of welds. The weld specimens are analyzed using classical elastic and plastic theory to provide a basis for modeling the inelastic properties in a finite-element solution. The results of the analysis are compared to experimental data to determine the weld behavior and the accuracy of prediction methods. The weld considered in this study is a multiple-pass aluminum 2219-T87 butt weld with thickness of 1.40 in. The weld specimen is modeled using the finite-element code ABAQUS. The finite-element model is used to produce the stress-strain behavior in the elastic and plastic regimes and to determine Poisson's ratio in the plastic region. The value of Poisson's ratio in the plastic regime is then compared to experimental data. The results of the comparisons are used to explain multipass weld behavior and to make recommendations concerning the analysis and testing of welds.

  1. Mechanical behavior study of laser welded joints for DP steel

    NASA Astrophysics Data System (ADS)

    Yan, Qi

    2008-03-01

    Advanced High Strength Steels (AHSS) are gaining considerable market shares in the automotive industry. The development and application of Dual Phase (DP) steel is just a consistent step towards high-strength steel grades with improved mechanical behavior. Tailor welded blanks with DP steel are promoted in the application of Body-In-White (BIW) structure by the automotive industry. A tailor welded blank consists of several flat sheets that are laser welded together before stamping. Applied cases of tailor welded blanks of high strength steels on the automotive structural parts are investigated in this paper. The mechanical behavior of laser welded joints for DP steel is studied. Microstructure of laser welded joints for DP steel was observed by SEM. Martensite in the weld seam explains the higher strength of welded joints than the base metal. Results show that the strain safety tolerance of laser welded seam for high strength steel can meet the requirement of automobile parts for stamping if the location of laser welded seam is designed reasonably.

  2. Microstructure and mechanical properties of the welding joint filled with microalloying 5183 aluminum welding wires

    NASA Astrophysics Data System (ADS)

    Xu, Zhen; Zhao, Zhi-hao; Wang, Gao-song; Zhang, Chao; Cui, Jian-zhong

    2014-06-01

    In this study, 7A52 aluminum alloy sheets of 4 mm in thickness were welded by tungsten inert gas welding using microalloying welding wires containing traces of Zr and Er. The influence of rare earth elements Zr and Er on the microstructure and mechanical properties of the welded joints was analyzed by optical microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, hardness testing, and tensile mechanical properties testing. Systematic analyses indicate that the addition of trace amounts of Er and Zr leads to the formation of fine Al3Er, Al3Zr, and Al3(Zr,Er) phases that favor significant grain refinement in the weld zone. Besides, the tensile strength and hardness of the welded joints were obviously improved with the addition of Er and Zr, as evidenced by the increase in tensile strength and elongation by 40 MPa and 1.4%, respectively, and by the welding coefficient of 73%.

  3. Autogeneous Laser and Hybrid Laser Arc Welding of T-joint Low Alloy Steel with Fiber Laser Systems

    NASA Astrophysics Data System (ADS)

    Unt, A.; Lappalainen, E.; Salminen, A.

    This paper is focused on the welding of low alloy steels S355 and AH36 in thicknesses 6, 8 and 10 mm in T-joint configuration using either autogeneous laser welding or laser-arc hybrid welding (HLAW) with high power fiber lasers. The aim was to obtain understanding of the factors influencing the size of the fillet and weld geometry through methodologically studying effects of laser power, welding speed, beam alignment relative to surface, air gap, focal point position and order of processes (in case of HLAW) and to get a B quality class welds in all thicknesses after parameter optimization.

  4. Corrosion Behavior of Aluminum-Steel Weld-Brazing Joint

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Li, Jie; Zhang, Gang; Huang, Jiankang; Gu, Yufen

    2016-05-01

    Dissimilar metals of 1060 aluminum and galvanized steel were joined with a lap joint by pulsed double-electrode gas metal arc weld brazing with aluminum-magnesium and aluminum-silicon filler metals. The corrosion behavior of the weld joints was investigated with immersion corrosion and electrochemical corrosion tests, and the corrosion morphology of the joints was analyzed with scanning electron microscopy (SEM). Galvanic corrosion was found to occur when the samples were immersed in corrosive media, and the corrosion rate of joints was increased with increased heat input of the workpiece. Comparison of the corrosion properties of weld joints with different filler wires indicated that the corrosion rate of weld joints with aluminum-silicon filler wire was larger than that of weld joints with aluminum-magnesium filler wire. Results also showed that the zinc-rich zone of weld joints was prone to corrosion. The corrosion behavior of zinc-rich zone was analyzed with SEM equipped with an energy-dispersive x-ray spectroscopy analysis system based on the test results.

  5. Structure and properties of fixed joints formed by ultrasonic-assisted friction-stir welding

    NASA Astrophysics Data System (ADS)

    Fortuna, S. V.; Ivanov, K. V.; Tarasov, S. Yu.; Eliseev, A. A.; Ivanov, A. N.; Rubtsov, V. E.; Kolubaev, E. A.

    2015-10-01

    This paper deals with structure and properties of aluminum alloy 7475 and its joints obtained by friction stir welding including under ultrasonic action. Microhardness measurements show that ultrasonic action increases strength properties of the joints. Optical and transmission electron microscopy reveals that this effect is related to the precipitation of tertiary coherent S-and T-phase particles.

  6. Structure and properties of fixed joints formed by ultrasonic-assisted friction-stir welding

    SciTech Connect

    Fortuna, S. V. Ivanov, K. V. Eliseev, A. A.; Tarasov, S. Yu. Ivanov, A. N. Rubtsov, V. E. Kolubaev, E. A.

    2015-10-27

    This paper deals with structure and properties of aluminum alloy 7475 and its joints obtained by friction stir welding including under ultrasonic action. Microhardness measurements show that ultrasonic action increases strength properties of the joints. Optical and transmission electron microscopy reveals that this effect is related to the precipitation of tertiary coherent S-and T-phase particles.

  7. Microstructural Characteristics and Mechanical Properties of 7050-T7451 Aluminum Alloy Friction Stir-Welded Joints

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Wang, T.; Zhou, W. L.; Li, Z. Y.; Huang, Y. X.; Feng, J. C.

    2016-06-01

    The ultra-high-strength Al-Zn-Mg-Cu alloy, 7050-T7451, was friction stir welded at a constant tool rotation speed of 600 rpm. Defect-free welds were successfully obtained at a welding speed of 100 mm/min, but lack-of-penetration defect was formed at a welding speed of 400 mm/min. The as-received material was mainly composed of coarse-deformed grains with some fine recrystallized grains. Fine equiaxed, dynamic, recrystallized grains were developed in the stir zone, and elongated grains were formed in the thermomechanically affected zone with dynamic recovered subgrains. Grain sizes in different regions of friction stir-welded joints varied depending on the welding speed. The sizes and distributions of precipitates changed in different regions of the joint, and wider precipitation free zone was developed in the heat-affected zone compared to that in the base material. Hardness of the heat-affected zone was obviously lower than that of the base material, and the softening region width was related to the welding speed. The tensile strength of the defect-free joints increased with the increasing welding speed, while the lack-of-penetration defect greatly reduced the tensile strength. The tensile fracture path was significantly influenced by the position and orientation of lack-of-penetration defect.

  8. Limit load solution for electron beam welded joints with single edge weld center crack in tension

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Shi, Yaowu; Li, Xiaoyan; Lei, Yongping

    2012-05-01

    Limit loads are widely studied and several limit load solutions are proposed to some typical geometry of weldments. However, there are no limit load solutions exist for the single edge crack weldments in tension (SEC(T)), which is also a typical geometry in fracture analysis. The mis-matching limit load for thick plate with SEC(T) are investigated and the special limit load solutions are proposed based on the available mis-matching limit load solutions and systematic finite element analyses. The real weld configurations are simplified as a strip, and different weld strength mis-matching ratio M, crack depth/width ratio a/ W and weld width 2H are in consideration. As a result, it is found that there exists excellent agreement between the limit load solutions and the FE results for almost all the mis-matching ration M, a/ W and ligament-to-weld width ratio ( W-a)/ H. Moreover, useful recommendations are given for evaluating the limit loads of the EBW structure with SEC(T). For the EBW joints with SEC(T), the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal, when M changing from 1.6 to 0.6. When M decreasing to 0.4, the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal only for large value of ( W-a)/ H. The recommendations may be useful for evaluating the limit loads of the EBW structures with SEC(T). The engineering simplifications are given for assessing the limit loads of electron beam welded structure with SEC(T).

  9. Reduced heat input keyhole welding through improved joint design

    NASA Technical Reports Server (NTRS)

    Sanders, John M. (Inventor); Harwig, Dennis D. (Inventor)

    1993-01-01

    An improved high energy density welding method for reducing input keyhole welding prepares the weld joint (8) between two edges (10, 14) of at least one member by separating the edges (10, 14) of the member (12, 16) with a controllable gap (22) by a projecting portion (24) selectively positioned on one edge (10, 14) of the member (12, 16). The projecting portion (24) closely abuts the other edge of the member for maintaining the controlled distance (d) of the controllable gap (22) to enhance the welding method.

  10. Apparatus for maintaining alignment of a shrinking weld joint in an electron-beam welding operation

    DOEpatents

    Trent, Jett B.; Murphy, Jimmy L.

    1981-01-01

    The present invention is directed to an apparatus for automatically maintaining a shrinking weld joint in alignment with an electron beam during an electron-beam multipass-welding operation. The apparatus utilizes a biasing device for continually urging a workpiece-supporting face plate away from a carriage mounted base that rotatably supports the face plate. The extent of displacement of the face plate away from the base is indicative of the shrinkage occuring in the weld joint area. This displacement is measured and is used to move the base on the carriage a distance equal to one-half the displacement for aligning the weld joint with the electron beam during each welding pass.

  11. Apparatus for maintaining aligment of a shrinking weld joint in an electron-beam welding operation

    DOEpatents

    Trent, J.B.; Murphy, J.L.

    1980-01-03

    The invention is directed to an apparatus for automatically maintaining a shrinking weld joint in alignement with an electron beam during an electron-beam multipass-welding operation. The apparatus utilizes a bias means for continually urging a workpiece-supporting face plate away from a carriage mounted base that rotatably supports the face plate. The extent of displacement of the face plate away from the base in indicative of the shrinkage occuring in the weld joint area. This displacement is measured and is used to move the base on the carriage a distance equal to one-half the displacement for aligning the weld joint with the electron beam during each welding pass.

  12. Effects of Welding Processes and Post-Weld Aging Treatment on Fatigue Behavior of AA2219 Aluminium Alloy Joints

    NASA Astrophysics Data System (ADS)

    Malarvizhi, S.; Balasubramanian, V.

    2011-04-01

    AA2219 aluminium alloy square butt joints without filler metal addition were fabricated using gas tungsten arc welding (GTAW), electron beam welding (EBW), and friction stir welding (FSW) processes. The fabricated joints were post-weld aged at 175 °C for 12 h. The effect of three welding processes and post-weld aging (PWA) treatment on the fatigue properties is reported. Transverse tensile properties of the welded joints were evaluated. Microstructure analysis was also carried out using optical and electron microscopes. It was found that the post-weld aged FSW joints showed superior fatigue performance compared to EBW and GTAW joints. This was mainly due to the formation of very fine, dynamically recrystallized grains and uniform distribution of fine precipitates in the weld region.

  13. Effects of laser power density on static and dynamic mechanical properties of dissimilar stainless steel welded joints

    NASA Astrophysics Data System (ADS)

    Wei, Yan-Peng; Li, Mao-Hui; Yu, Gang; Wu, Xian-Qian; Huang, Chen-Guang; Duan, Zhu-Ping

    2012-10-01

    The mechanical properties of laser welded joints under impact loadings such as explosion and car crash etc. are critical for the engineering designs. The hardness, static and dynamic mechanical properties of AISI304 and AISI316 L dissimilar stainless steel welded joints by CO2 laser were experimentally studied. The dynamic strain-stress curves at the strain rate around 103 s-1 were obtained by the split Hopkinson tensile bar (SHTB). The static mechanical properties of the welded joints have little changes with the laser power density and all fracture occurs at 316 L side. However, the strain rate sensitivity has a strong dependence on laser power density. The value of strain rate factor decreases with the increase of laser power density. The welded joint which may be applied for the impact loading can be obtained by reducing the laser power density in the case of welding quality assurance.

  14. Hydrogen effects in duplex stainless steel welded joints - electrochemical studies

    NASA Astrophysics Data System (ADS)

    Michalska, J.; Łabanowski, J.; Ćwiek, J.

    2012-05-01

    In this work results on the influence of hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel (DSS) welded joints are described. The results were discussed by taking into account three different areas on the welded joint: weld metal (WM), heat-affected zone (HAZ) and parent metal. The corrosion resistance was qualified with the polarization curves registered in a synthetic sea water. The conclusion is that, hydrogen may seriously deteriorate the passive film stability and corrosion resistance to pitting of 2205 DSS welded joints. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen degradation was dependent on the hydrogen charging conditions. WM region has been revealed as the most sensitive to hydrogen action.

  15. Characterization of Nitinol Laser-Weld Joints by Nondestructive Testing

    NASA Astrophysics Data System (ADS)

    Wohlschlögel, Markus; Gläßel, Gunter; Sanchez, Daniela; Schüßler, Andreas; Dillenz, Alexander; Saal, David; Mayr, Peter

    2015-12-01

    Joining technology is an integral part of today's Nitinol medical device manufacturing. Besides crimping and riveting, laser welding is often applied to join components made from Nitinol to Nitinol, as well as Nitinol components to dissimilar materials. Other Nitinol joining techniques include adhesive bonding, soldering, and brazing. Typically, the performance of joints is assessed by destructive mechanical testing, on a process validation base. In this study, a nondestructive testing method—photothermal radiometry—is applied to characterize small Nitinol laser-weld joints used to connect two wire ends via a sleeve. Two different wire diameters are investigated. Effective joint connection cross sections are visualized using metallography techniques. Results of the nondestructive testing are correlated to data from destructive torsion testing, where the maximum torque at fracture is evaluated for the same joints and criteria for the differentiation of good and poor laser-welding quality by nondestructive testing are established.

  16. Strength of Welded Joints in Tubular Members for Aircraft

    NASA Technical Reports Server (NTRS)

    Whittemore, H L; Brueggeman, W C

    1931-01-01

    The object of this investigation is to make available to the aircraft industry authoritative information on the strength, weight, and cost of a number of types of welded joints. This information will, also, assist the aeronautics branch in its work of licensing planes by providing data from which the strength of a given joint may be estimated. As very little material on the strength of aircraft welds has been published, it is believed that such tests made by a disinterested governmental laboratory should be of considerable value to the aircraft industry. Forty joints were welded under procedure specifications and tested to determine their strengths. The weight and time required to fabricate were also measured for each joint.

  17. Automatic Evaluation of Welded Joints Using Image Processing on Radiographs

    NASA Astrophysics Data System (ADS)

    Schwartz, Ch.

    2003-03-01

    Radiography is frequently used to detect discontinuities in welded joints (porosity, cracks, lack of penetration). Perfect knowledge of the geometry of these defects is an important step which is essential to appreciate the quality of the weld. Because of this, an action improving the interpretation of radiographs by image processing has been undertaken. The principle consists in making a radiograph of the welded joint and of a depth step wedge penetrameter in the material. The radiograph is then finely digitized and an automatic processing of the radiograph of the penetrameter image allows the establishment of a correspondence between grey levels and material thickness. An algorithm based on image processing is used to localize defects in the welded joints and to isolate them from the original image. First, defects detected by this method are characterized in terms of dimension and equivalent thickness. Then, from the image of the healthy welded joint (that is to say without the detected defects), characteristic values of the weld are evaluated (thickness reduction, width).

  18. Fatigue reliability assessment of correlated welded web-frame joints

    NASA Astrophysics Data System (ADS)

    Huang, W.; Garbatov, Y.; Guedes Soares, C.

    2014-03-01

    The objective of this work is to analyze the fatigue reliability of complex welded structures composed of multiple web-frame joints, accounting for correlation effects. A three-dimensional finite element model using the 20-node solid elements is generated. A linear elastic finite element analysis was performed, hotspot stresses in a web-frame joint were analyzed and fatigue damage was quantified employing the S-N approach. The statistical descriptors of the fatigue life of a non-correlated web-frame joint containing several critical hotspots were estimated. The fatigue reliability of a web-frame joint wasmodeled as a series system of correlated components using the Ditlevsen bounds. The fatigue reliability of the entire welded structure with multiple web-frame joints, modeled as a parallel system of non-correlated web-frame joints was also calculated.

  19. Interfacial and Mechanical Behavior of AA5456 Filling Friction-Stir-Welded Lap Joints Using Similar and Dissimilar Pins

    NASA Astrophysics Data System (ADS)

    Behmand, Saleh Alaei; Mirsalehi, Seyyed Ehsan; Omidvar, Hamid; Safarkhanian, Mohammad Ali

    2016-10-01

    In this article, filling friction stir welding (FFSW) of the remaining exit holes of AA5456 alloy friction-stir-welded lap joints was studied. For this purpose, the influences of different rotating speeds, holding times, and pin materials, AA5456 and AA2024, on the metallurgical structure and joint strength were investigated. The observations showed that defect-free lap joints are successfully obtainable by this method using similar and dissimilar consumable pins. The results indicated that the higher rotating speed and holding time adversely affect the weld performance. The best result was achieved for 30 seconds holding time, 500 rpm rotating speed, and AA2024 consumable pin. In this condition, a lap shear strength of 10 pct higher than that of the nonfilled joint, equivalent to about 94 pct of the original defect-free FSW joint, was obtained, whereas the GTAW filled joint showed only approximately 87 pct of the continuous FSW joint strength.

  20. Interfacial and Mechanical Behavior of AA5456 Filling Friction-Stir-Welded Lap Joints Using Similar and Dissimilar Pins

    NASA Astrophysics Data System (ADS)

    Behmand, Saleh Alaei; Mirsalehi, Seyyed Ehsan; Omidvar, Hamid; Safarkhanian, Mohammad Ali

    2016-06-01

    In this article, filling friction stir welding (FFSW) of the remaining exit holes of AA5456 alloy friction-stir-welded lap joints was studied. For this purpose, the influences of different rotating speeds, holding times, and pin materials, AA5456 and AA2024, on the metallurgical structure and joint strength were investigated. The observations showed that defect-free lap joints are successfully obtainable by this method using similar and dissimilar consumable pins. The results indicated that the higher rotating speed and holding time adversely affect the weld performance. The best result was achieved for 30 seconds holding time, 500 rpm rotating speed, and AA2024 consumable pin. In this condition, a lap shear strength of 10 pct higher than that of the nonfilled joint, equivalent to about 94 pct of the original defect-free FSW joint, was obtained, whereas the GTAW filled joint showed only approximately 87 pct of the continuous FSW joint strength.

  1. Numerical Simulation of Tension Properties for Al-Cu Alloy Friction Stir-Welded Joints with GTN Damage Model

    NASA Astrophysics Data System (ADS)

    Sun, Guo-Qin; Sun, Feng-Yang; Cao, Fang-Li; Chen, Shu-Jun; Barkey, Mark E.

    2015-11-01

    The numerical simulation of tensile fracture behavior on Al-Cu alloy friction stir-welded joint was performed with the Gurson-Tvergaard-Needleman (GTN) damage model. The parameters of the GTN model were studied in each region of the friction stir-welded joint by means of inverse identification. Based on the obtained parameters, the finite element model of the welded joint was built to predict the fracture behavior and tension properties. Good agreement can be found between the numerical and experimental results in the location of the tensile fracture and the mechanical properties.

  2. Achieving High Strength Joint of Pure Copper Via Laser-Cold Metal Transfer Arc Hybrid Welding

    NASA Astrophysics Data System (ADS)

    Chen, Yulong; Chen, Cong; Gao, Ming; Zeng, Xiaoyan

    2016-06-01

    Fiber laser-cold metal transfer arc hybrid welding of pure copper was studied. Weld porosity was tested by X-ray nondestructive testing. Microstructure and fracture features were observed by scanning electron microscopy. Mechanical properties were evaluated by cross weld tensile test. Full penetrated and continuous welds were obtained by hybrid welding once the laser power reached 2 kW, while they could not be obtained by laser welding alone, even though the laser power reached 5 kW. The ultimate tensile strength (UTS), the yield strength (YS), and the elongation of the best hybrid weld material were up to 227, 201 MPa, and 21.5 pct, respectively. The joint efficiencies in UTS and YS of hybrid weld were up to 84 and 80 pct of the BM, respectively. The fracture location changes from the fusion zone to the heat-affected zone with the increase of laser power. Besides, the mechanisms of process stability and porosity suppression were clarified by laser-arc interaction and pool behavior. The strengthening mechanism was discussed by microstructure characteristics.

  3. Tensile strength of simulated and welded butt joints in W-Cu composite sheet

    NASA Technical Reports Server (NTRS)

    Moore, Thomas J.; Watson, Gordon K.

    1994-01-01

    The weldability of W-Cu composite sheet was investigated using simulated and welded joints. The welded joints were produced in a vacuum hot press. Tensile test results showed that simulated joints can provide strength and failure mode data which can be used in joint design for actual weldments. Although all of the welded joints had flaws, a number of these joints were as strong as the W-Cu composite base material.

  4. Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints

    NASA Astrophysics Data System (ADS)

    Patterson, Erin E.; Hovanski, Yuri; Field, David P.

    2016-06-01

    This work focuses on the microstructural characterization of aluminum to steel friction stir welded joints. Lap weld configuration coupled with scribe technology used for the weld tool have produced joints of adequate quality, despite the significant differences in hardness and melting temperatures of the alloys. Common to friction stir processes, especially those of dissimilar alloys, are microstructural gradients including grain size, crystallographic texture, and precipitation of intermetallic compounds. Because of the significant influence that intermetallic compound formation has on mechanical and ballistic behavior, the characterization of the specific intermetallic phases and the degree to which they are formed in the weld microstructure is critical to predicting weld performance. This study used electron backscatter diffraction, energy dispersive spectroscopy, scanning electron microscopy, and Vickers micro-hardness indentation to explore and characterize the microstructures of lap friction stir welds between an applique 6061-T6 aluminum armor plate alloy and a RHA homogeneous armor plate steel alloy. Macroscopic defects such as micro-cracks were observed in the cross-sectional samples, and binary intermetallic compound layers were found to exist at the aluminum-steel interfaces of the steel particles stirred into the aluminum weld matrix and across the interfaces of the weld joints. Energy dispersive spectroscopy chemical analysis identified the intermetallic layer as monoclinic Al3Fe. Dramatic decreases in grain size in the thermo-mechanically affected zones and weld zones that evidenced grain refinement through plastic deformation and recrystallization. Crystallographic grain orientation and texture were examined using electron backscatter diffraction. Striated regions in the orientations of the aluminum alloy were determined to be the result of the severe deformation induced by the complex weld tool geometry. Many of the textures observed in the weld

  5. High power laser welding of thick steel plates in a horizontal butt joint configuration

    NASA Astrophysics Data System (ADS)

    Atabaki, M. Mazar; Yazdian, N.; Ma, J.; Kovacevic, R.

    2016-09-01

    In this investigation, two laser-based welding techniques, autogenous laser welding (ALW) and laser welding assisted with a cold wire (LWACW), were applied to join thick plates of a structural steel (A36) in a horizontal narrow gap butt joint configuration. The main practical parameters including welding method and laser power were varied to get the sound weld with a requirement to achieve a full penetration with the reinforcement at the back side of weld in just one pass. The weld-bead shape, cross-section and mechanical properties were evaluated by profilometer, micro-hardness test and optical microscope. In order to investigate the stability of laser-induced plasma plume, the emitted optical spectra was detected and analyzed by the spectroscopy analysis. It was found that at the laser power of 7 kW a fully penetrated weld with a convex back side of weld could be obtained by the LWACW. The microstructural examinations showed that for the ALW the acicular ferrite and for the LWACW the pearlite were formed in the heat affected zone (HAZ). The prediction of microstructure based on continuous cooling transformation (CCT) diagram and cooling curves obtained by thermocouple measurement were in good agreement with each other. According to the plasma ionization values obtained from the spectroscopy analysis the plume for both processes was recognized as dominated weakly ionized plasma including the main vaporized elemental composition. At the optimum welding condition (LWACW at the laser power of 7 kW) the fluctuation of the electron temperature was reduced. The spectroscopy analysis demonstrated that at the higher laser power more of the elemental compositions such as Mn and Fe were evaporated.

  6. Investigation on Mechanical Properties of 9%Cr/CrMoV Dissimilar Steels Welded Joint

    NASA Astrophysics Data System (ADS)

    Liu, Xia; Lu, Fenggui; Yang, Renjie; Wang, Peng; Xu, Xiaojin; Huo, Xin

    2015-04-01

    Advanced 9%Cr steel with good heat resistance and CrMoV with good toughness were chosen as candidate materials to fabricate combined rotor for steam turbine operating at over 620 °C. But the great difference in base metals properties presents a challenge in achieving sound defect-free joint with optimal properties in dissimilar welded rotor. In this paper, appropriate selection of filler metal, welding parameters, and post-weld heat treatment was combined to successfully weld 1100-mm-diameter 9%Cr/CrMoV dissimilar experimental rotor through ultra-narrow gap submerge arc welding. Some properties such as hardness, low-cycle fatigue (LCF), and high-cycle fatigue (HCF) combined with microstructural characterization qualify the integrity of the weld. Microstructural analysis indicated the presence of high-temperature tempered martensite as the phase responsible for the improved properties obtained in the weld. The Coffin-Manson parameters were obtained by fitting the data in LCF test, while the conditional fatigue strength was derived from the HCF test based on S-N curve. Analysis of hardness profile showed that the lowest value occurred at heat-affected zone adjacent to base metal which represents the appropriate location of fracture for the samples after LCF and HCF tests.

  7. Hybrid laser-arc welding of galvanized high-strength steels in a gap-free lap-joint configuration

    NASA Astrophysics Data System (ADS)

    Yang, Shanglu

    ) Modeling of hybrid laser-GTAW as a preheating source welding process of galvanized steels in a gap-free lap joint configuration (Chapter 6). Experimental results demonstrated that completely defect-free lap joints in galvanized high strength steels can be obtained in a gap-free configuration by using the laser welding process with the GTAW torch preheating and hybrid laser-VPGTAW welding technique. Effects of the welding parameters on the weld quality are discussed. The mechanical properties of the welded joints are studied. A machine vision system and an acoustic emission (AE) signal acquisition system are employed to acquire the images of the molten pool and the emitted AE signals on-line. Furthermore, image processing and Short Time Fourier Transform (STFT) techniques are employed to analyze the acquired images of the molten pool and the collected AE signals. The acquisition attempts are composed of (1) monitoring the weld defects by machine vision; (2) monitoring the formation of spatters from the AE signals; (3) detecting the weld modes by the induced plume; and (4) monitoring the instability of the welding process by machine vision. In addition, the numerical results have been validated by the experimental data.

  8. Thermoacoustic method for relaxation of residual stresses in welded joints

    SciTech Connect

    Koshovyi, V.V.; Pakhn`o, M.I.; Tsykhan, O.I.

    1995-01-01

    We propose a thermoacoustic method for the relaxation of residual stresses in welded joints, present a block diagram of a generator of local thermoacoustic pulses designed for implementation of this method, and describe our experiment aimed at relaxation of residual tensile stresses.

  9. Influence of the Strength Mismatch of a Narrow Gap Welded Joint of SA508 on the Plastic η Factor

    NASA Astrophysics Data System (ADS)

    Koo, J. M.; Huh, Y.; Seok, C. S.

    2012-11-01

    In this article, the influence of the strength mismatch of a narrow gap welded joint of SA508 on the η factor was evaluated. The η factor is the principal parameter that determines the plastic portion of the J-integral. The specimens for tensile and hardness tests were collected from piping with narrow gap welding and the stress-strain curve and hardness were obtained from those. From these results, the Ramberg-Osgood (R-O) constant was obtained. Also, the finite element analysis was performed with variations in the strength mismatch and the weld width. The η factor equation considering the strength mismatch and the weld width of a narrow gap welded joint was suggested.

  10. Effects of stress concentration on the fatigue strength of 7003-T5 aluminum alloy butt joints with weld reinforcement

    NASA Astrophysics Data System (ADS)

    Zhu, Zongtao; Li, Yuanxing; Zhang, Mingyue; Hui, Chen

    2015-03-01

    7003-T5 Aluminum (Al) alloy plates with a thickness of 5 mm are welded by gas metal arc welding (GMAW) method in this work. In order to investigate the influence of stress concentration introduced by weld reinforcement on fatigue strength, the stress concentration factor of the butt joint is calculated. Microscopic and X-ray techniques were utilized to make sure there are no weld defects with large size in butt weld, which can induce extra stress concentration. The cyclic stress - number of cycles to failure (S-N) curves of the joints with and without the welder were obtained by fatigue testing, and the results show that the fatigue strength of 7003-T5 Al alloy butt joints with the weld reinforcement is 50 MPa, which is only 45% of the joints without the weld reinforcement. Fracture surface observation indicated that the fatigue source and propagation are dissimilar for the specimens with and without the welder due to the stress concentration at the weld root. The stress concentration with a factor of 1.7 has great effect on the fatigue strength, but little influence on the tensile strength.

  11. Investigation of the Microstructure of Joints of Aluminum Alloys Produced by Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Kolubaev, E. A.

    2015-02-01

    Special features of the microstructure of joints of aluminum-magnesium and aluminum-copper alloys produced by friction stir welding are analyzed. It is demonstrated that a layered structure with ultradisperse grains is produced by friction stir welding at the center of the weld joint. An analogy is drawn between the microstructures of joints produced by friction stir welding and surface layer produced by sliding friction.

  12. Nuclear Technology. Course 28: Welding Inspection. Module 28-4, Weld Joint Verification.

    ERIC Educational Resources Information Center

    Espy, John

    This fourth in a series of ten modules for a course titled Welding Inspection discusses the nomenclature, symbols, and the purposes of most common joint designs, preparations, and fit-ups. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to…

  13. Nondestructive Evaluation of Friction Stir-Welded Aluminum Alloy to Coated Steel Sheet Lap Joint

    NASA Astrophysics Data System (ADS)

    Das, H.; Kumar, A.; Rajkumar, K. V.; Saravanan, T.; Jayakumar, T.; Pal, Tapan Kumar

    2015-11-01

    Dissimilar lap joints of aluminum sheet (AA 6061) of 2 mm thickness and zinc-coated steel sheet of 1 mm thickness were produced by friction stir welding with different combinations of rotational speed and travel speed. Ultrasonic C- and B-scanning, and radiography have been used in a complementary manner for detection of volumetric (cavity and flash) and planar (de bond) defects as the defects are in micron level. Advanced ultrasonic C-scanning did not provide any idea about the defects, whereas B-scanning cross-sectional image showed an exclusive overview of the micron-level defects. A digital x-ray radiography methodology is proposed for quality assessment of the dissimilar welds which provide three-fold increase in signal-to-noise ratio with improved defect detection sensitivity. The present study clearly shows that the weld tool rotational speed and travel speed have a decisive role on the quality of the joints obtained by the friction stir welding process. The suitability of the proposed NDE techniques to evaluate the joint integrity of dissimilar FSW joints is thus established.

  14. GTAW penetration based on electrode tip location versus weld joint center line

    NASA Astrophysics Data System (ADS)

    Daumeyer, G. J., III

    1992-11-01

    Gas Tungsten Arc Welding (GTAW) is often the chosen process for final enclosure welds of heat sensitive electrical and electronic product. GTAW is used to produce welds that satisfy design requirements (usually a penetration requirement) and not expose the product to such high heat that would cause unwanted damage. An important variable in the GTAW process is the location of the Electrode tip over the weld joint center line. This study shows the tolerance of positional location over a narrow scope. Using coupons which represent the W88 container weld joint geometry, penetration vs. electrode tip positional location (offset) is investigated. Results indicate a positional location tolerance of +/- 0.008 in. is acceptable. Several different major components (MC's) supporting various weapons programs require low heat input GTA welds. The electrode tip positional location tolerance is determined by each MC's weld joint tolerances and heat sensitivity. For this short study, the weld joint geometry of a container weld was used. These coupons were welded with the specified weld schedule and one additional weld schedule in order to show the relationship based on both travel speed and gap. Multiple coupon welds were made to eliminate error in the results. Within the scope of this research, a positional tolerance of +/- 0.008 in. of the electrode center over the weld joint center is required. For other MC's this tolerance may be tighter or more relaxed depending upon the specific considerations.

  15. Effect of Nd:YAG laser beam welding on weld morphology and mechanical properties of Ti-6Al-4V butt joints and T-joints

    NASA Astrophysics Data System (ADS)

    Kashaev, Nikolai; Ventzke, Volker; Fomichev, Vadim; Fomin, Fedor; Riekehr, Stefan

    2016-11-01

    A Nd:YAG single-sided laser beam welding process study for Ti-6Al-4V butt joints and T-joints was performed to investigate joining techniques with regard to the process-weld morphology relationship. An alloy compatible filler wire was used to avoid underfills and undercuts. The quality of the butt joints and T-joints was characterized in terms of weld morphology, microstructure and mechanical properties. Joints with regular shapes, without visible cracks, pores, and geometrical defects were achieved. Tensile tests revealed high joint integrity in terms of strength and ductility for both the butt joint and T-joint geometries. Both the butt joints and T-joints showed base material levels of strength. The mechanical performance of T-joints was also investigated using pull-out tests. The performance of the T-joints in such tests was sensitive to the shape and morphology of the welds. Fracture always occurred in the weld without any plastic deformation in the base material outside the weld.

  16. Residual stress in laser welded dissimilar steel tube-to-tube joints

    SciTech Connect

    Sun, Zheng . Lab. of Production Engineering)

    1993-09-01

    Austenitic-ferritic dissimilar steel joints are widely used in power generation systems. Their utilization has proved to be efficient in terms of satisfactory properties and the economics. These types of joints have usually been produced using conventional welding processes, such as tungsten inert gas (TIG) welding. With the rapid development of high power lasers, laser welding has received considerable attention. Laser welding offers many advantages over conventional welding processes, e.g. low heat input, small heat-affected zone (HAZ), small distortion, and welding in an exact and reproducible manner. Residual stress distribution in laser welds may also differ from those made by conventional welding processes due to its special features. Residual stress, particularly tensile residual stress in the weld, can be very important factor in controlling the quality and service life of the welded structure. The formation of tensile residual stress in the weld may result in the initiation of fatigue cracking, stress corrosion cracking or other types of fractures. It is useful, therefore, to understand the distribution of residual stress in austenitic-ferritic laser welds, and thus evaluate the quality of the joints. Although residual stress distribution in the welded joints has been extensively investigated, little data are available for the residual stress distribution in laser welds. The aim of the work was to examine residual stress distribution along laser welds of dissimilar steel tube-to-tube joints, which were made by both autogeneous welding and welding with filler wire. The results were also compared with the joints made by plasma arc and TIG welding.

  17. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing.

    PubMed

    Villegas, Irene F; Palardy, Genevieve

    2016-02-11

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints.

  18. Welding method combining laser welding and MIG welding

    SciTech Connect

    Hamasaki, M.

    1985-03-26

    Welding of deep penetration is obtained in a sustrate by a method which comprises first melting the joint portion of the substrates by MIG welding and then focusing a laser beam in the bottom surface of a crater formed in consequence of the MIG welding thereby effecting laser welding of the crater.

  19. Fatigue strength improvement of MIG-welded joint by shot peening

    NASA Astrophysics Data System (ADS)

    Azida Che Lah, Nur; Ali, Aidy

    2011-02-01

    In this study, the effect of controlled shot peening (CSP) treatment on the fatigue strength of an ASTM A516 grade 70 carbon steel MIG-welded joint has been studied quantitatively. Metallurgical modifications, hardness, elemental compositions, and internal discontinuities, such as porosity and inclusions found in treated and untreated fusion welded joints, were characterized. The fatigue results of as-welded and peened skimmed joints were compared. It was observed that the effect of the CSP and skimming processes improved the fatigue life of the fusion weld by 63% on MIG-welded samples.

  20. Prediction of Welded Joint Strength in Plasma Arc Welding: A Comparative Study Using Back-Propagation and Radial Basis Neural Networks

    NASA Astrophysics Data System (ADS)

    Srinivas, Kadivendi; Vundavilli, Pandu R.; Manzoor Hussain, M.; Saiteja, M.

    2016-09-01

    Welding input parameters such as current, gas flow rate and torch angle play a significant role in determination of qualitative mechanical properties of weld joint. Traditionally, it is necessary to determine the weld input parameters for every new welded product to obtain a quality weld joint which is time consuming. In the present work, the effect of plasma arc welding parameters on mild steel was studied using a neural network approach. To obtain a response equation that governs the input-output relationships, conventional regression analysis was also performed. The experimental data was constructed based on Taguchi design and the training data required for neural networks were randomly generated, by varying the input variables within their respective ranges. The responses were calculated for each combination of input variables by using the response equations obtained through the conventional regression analysis. The performances in Levenberg-Marquardt back propagation neural network and radial basis neural network (RBNN) were compared on various randomly generated test cases, which are different from the training cases. From the results, it is interesting to note that for the above said test cases RBNN analysis gave improved training results compared to that of feed forward back propagation neural network analysis. Also, RBNN analysis proved a pattern of increasing performance as the data points moved away from the initial input values.

  1. Ultrasonic spot welding of dissimilar materials: characterization of welded joints and parametric optimization

    NASA Astrophysics Data System (ADS)

    Satpathy, M. P.; Sahoo, S. K.

    2016-02-01

    Material joining is one of the key manufacturing processes used to assemble metallic and non-metallic parts for several applications. But the industries are facing many difficulties in joining of thin sheets of dissimilar metals by the conventional welding process because of their differences in chemical composition, physical and mechanical properties. Thus, ultrasonic welding is a solid state joining process used for joining of small elements in microelectronics industries. In this process, acoustic horn and booster are the important assets. The accuracy and strength of the welding depend mainly on their geometry. This proposed work deals with the design and modelling of an acoustic stepped sonotrode with booster using finite element analysis (FEA). From this analysis, the actual length of the horn is obtained by gradually decreasing its theoretical length. The quality of the weld is reckoned by its weld strength and the combinations of different process parameters. These are examined using the principal components coupled with grey relational analysis approach which is showing good agreement between the predicted values with experimental results. Fractographic examination of weld zone and hardness are also used to explore the weld quality.

  2. Structural and mechanical properties of welded joints of reduced activation martensitic steels

    NASA Astrophysics Data System (ADS)

    Filacchioni, G.; Montanari, R.; Tata, M. E.; Pilloni, L.

    2002-12-01

    Gas tungsten arc welding and electron beam welding methods were used to realise welding pools on plates of reduced activation martensitic steels. Structural and mechanical features of these simulated joints have been investigated in as-welded and post-welding heat-treated conditions. The research allowed to assess how each welding technique affects the original mechanical properties of materials and to find suitable post-welding heat treatments. This paper reports results from experimental activities on BATMAN II and F82H mod. steels carried out in the frame of the European Blanket Project - Structural Materials Program.

  3. Tensile Properties of Under-Matched Weld Joints for 950 MPa Steel.

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kouji; Arakawa, Toshiaki; Akazawa, Nobuki; Yamamoto, Kousei; Matsuo, Hiroki; Nakagara, Kiyoyuki; Suita, Yoshikazu

    In welding of 950 MPa-class high tensile strength steel, preheating is crucial in order to avoid cold cracks, which, however, eventually increases welding deformations. One way to decrease welding deformations is lowering preheating temperature by using under-matched weld metal. Toyota and others clarify that although breaking elongation can decrease due to plastic constraint effect under certain conditions, static tensile of under-matched weld joints is comparable to that of base metal. However, there has still been no report about joint static tensile of under-matched weld joints applied to 950 MPa-class high tensile strength steel. In this study, we aim to research tensile strength and fatigue strength of under-matched weld joints applied to 950 MPa-class high tensile steel.

  4. Numerical and experimental evaluation of Nd:YAG laser welding efficiency in AZ31 magnesium alloy butt joints

    NASA Astrophysics Data System (ADS)

    Scintilla, Leonardo Daniele; Tricarico, Luigi

    2013-02-01

    In this paper, energy aspects related to the efficiency of laser welding process using a 2 kW Nd:YAG laser were investigated and reported. AZ31B magnesium alloy sheets 3.3 mm thick were butt-welded without filler using Helium and Argon as shielding gases. A three-dimensional and semi-stationary finite element model was developed to evaluate the effect of laser power and welding speed on the absorption coefficient, the melting and welding efficiencies. The modeled volumetric heat source took into account a scale factor, and the shape factors given by the attenuation of the beam within the workpiece and the beam intensity distribution. The numerical model was calibrated using experimental data on the basis of morphological parameters of the weld bead. Results revealed a good correspondence between experiment and simulation analysis of the energy aspects of welding. Considering results of mechanical characterization of butt joints previously obtained, the optimization of welding condition in terms of mechanical properties and energy parameters was performed. The best condition is represented by the lower laser power and higher welding speed that corresponds to the lower heat input given to the joint.

  5. Effect of Boric Acid Concentration on Viscosity of Slag and Property of Weld Metal Obtained from Underwater Wet Welding

    NASA Astrophysics Data System (ADS)

    Guo, Ning; Guo, Wei; Xu, Changsheng; Du, Yongpeng; Feng, Jicai

    2015-06-01

    Underwater wet welding is a crucial repair and maintenance technology for nuclear plant. A boric acid environment raises a new challenge for the underwater welding maintenance of nuclear plant. This paper places emphasis on studying the influence of a boric acid environment in nuclear plant on the underwater welding process. Several groups of underwater wet welding experiments have been conducted in boric acid aqueous solution with different concentration (0-35000 ppm). The viscosity of the welding slag and the mechanical properties of welds, such as the hardness, strength, and elongation, have been studied. The results show that with increasing boric acid concentration, the viscosity of the slag decreases first and then increases at a lower temperature (less than 1441 °C). However, when the temperature is above 1480 °C, the differences between the viscosity measurements become less pronounced, and the viscosity tends to a constant value. The hardness and ductility of the joints can be enhanced significantly, and the maximum strength of the weld metal can be reached at 2300 ppm.

  6. Effect of a copper filler metal on the microstructure and mechanical properties of electron beam welded titanium-stainless steel joint

    SciTech Connect

    Wang, Ting; Zhang, Binggang; Feng, Jicai; Tang, Qi

    2012-11-15

    Cracking in an electron beam weld of titanium to stainless steel occurred during the cooling process because of internal thermal stress. Using a copper filler metal, a crack free joint was obtained, which had a tensile strength of 310 MPa. To determine the reasons for cracking in the Ti/Fe joint and the function of the copper filler metal on the improvement of the cracking resistance of the Ti/Cu/Fe joint, the microstructures of the joints were studied by optical microscopy, scanning electron microscopy and X-ray diffraction. The cracking susceptibilities of the joints were evaluated with microhardness tests on the cross-sections. In addition, microindentation tests were used to compare the brittleness of the intermetallics in the welds. The results showed that the Ti/Fe joint was characterized by continuously distributed brittle intermetallics such as TiFe and TiFe(Cr){sub 2} with high hardness ({approx} 1200 HV). For the Ti/Cu/Fe joint, most of the weld consisted of a soft solid solution of copper with dispersed TiFe intermetallics. The transition region between the weld and the titanium alloy was made up of a relatively soft Ti-Cu intermetallic layer with a lower hardness ({approx} 500 HV). The formation of soft phases reduced the cracking susceptibility of the joint. - Highlights: Black-Right-Pointing-Pointer Electron beam welded Ti/Fe joint cracked for the brittleness and residual stress. Black-Right-Pointing-Pointer Electron beam welded Ti/Cu/Fe joint with tensile strength of 310 MPa was obtained. Black-Right-Pointing-Pointer Cu diluted Ti and Fe contents in weld and separated the TiFe{sub 2} into individual blocks. Black-Right-Pointing-Pointer Interfacial hard Ti-Fe compounds were replaced by soft Ti-Cu compounds in the weld. Black-Right-Pointing-Pointer A large amount of solid solution of copper formed in the weld.

  7. Structure and properties of joints produced by ultrasound-assisted explosive welding

    NASA Astrophysics Data System (ADS)

    Peev, A. P.; Kuz'min, S. V.; Lysak, V. I.; Kuz'min, E. V.; Dorodnikov, A. N.

    2015-08-01

    This paper presents the results of the effect of ultrasound on explosion welded materials. It has been established that simultaneous treatment with ultrasonic vibrations and explosion welding of the materials to be welded has a significant effect on the structure and properties of the heat-affected zone of formed joints.

  8. 46 CFR 154.524 - Piping joints: Welded and screwed couplings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... lengths without flanges must be joined by one of the following: (a) A butt welded joint with complete penetration at the weld root except that for design temperatures colder than −10 °C (14 °F) the butt weld...

  9. 46 CFR 154.524 - Piping joints: Welded and screwed couplings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... lengths without flanges must be joined by one of the following: (a) A butt welded joint with complete penetration at the weld root except that for design temperatures colder than −10 °C (14 °F) the butt weld...

  10. 46 CFR 154.524 - Piping joints: Welded and screwed couplings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... lengths without flanges must be joined by one of the following: (a) A butt welded joint with complete penetration at the weld root except that for design temperatures colder than −10 °C (14 °F) the butt weld...

  11. 46 CFR 154.524 - Piping joints: Welded and screwed couplings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... lengths without flanges must be joined by one of the following: (a) A butt welded joint with complete penetration at the weld root except that for design temperatures colder than −10 °C (14 °F) the butt weld...

  12. 46 CFR 154.524 - Piping joints: Welded and screwed couplings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... lengths without flanges must be joined by one of the following: (a) A butt welded joint with complete penetration at the weld root except that for design temperatures colder than −10 °C (14 °F) the butt weld...

  13. Electrochemical impedance spectroscopy study on the corrosion of the weld zone of 3Cr steel welded joints in CO2 environments

    NASA Astrophysics Data System (ADS)

    Xu, Li-ning; Zhu, Jin-yang; Lu, Min-xu; Zhang, Lei; Chang, Wei

    2015-05-01

    The welded joints of 3Cr pipeline steel were fabricated with commercial welding wire using the gas tungsten arc welding (GTAW) technique. Potentiodynamic polarization curves, linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and energy-dispersive spectrometry (EDS) were used to investigate the corrosion resistance and the growth of a corrosion film on the weld zone (WZ). The changes in electrochemical characteristics of the film were obtained through fitting of the EIS data. The results showed that the average corrosion rate of the WZ in CO2 environments first increased, then fluctuated, and finally decreased gradually. The formation of the film on the WZ was divided into three stages: dynamic adsorption, incomplete-coverage layer formation, and integral layer formation.

  14. Study of mechanical joint strength of aluminum alloy 7075-T6 and dual phase steel 980 welded by friction bit joining and weld-bonding under corrosion medium

    SciTech Connect

    Lim, Yong Chae; Squires, Lile; Pan, Tsung-Yu; Miles, Michael; Song, Guang-Ling; Wang, Yanli; Feng, Zhili

    2014-12-30

    We have employed a unique solid-sate joining process, called friction bit joining (FBJ), to spot weld aluminum alloy (AA) 7075-T6 and dual phase (DP) 980 steel. Static joint strength was studied in the lap shear tension configuration. In addition, weld-bonding (adhesive + FBJ) joints were studied in order to evaluate the ability of adhesive to mitigate the impact of corrosion on joint properties. Accelerated laboratory cyclic corrosion tests were carried out for both FBJ only and weld-bonding joints. Furthermore, the FBJ only joints that emerged from corrosion testing had lap shear failure loads that were significantly lower than freshly prepared joints. However, weld-bonding specimens retained more than 80% of the lap shear failure load of the freshly prepared weld-bonding specimens. Moreover, examination of joint cross sections confirmed that the presence of adhesive in the weld-bonding joints mitigated the effect of the corrosion environment, compared to FBJ only joints.

  15. X-Ray Structural Study of 09Nn2Si Steel Welded Joints

    NASA Astrophysics Data System (ADS)

    Golikov, N. I.; Platonov, A. A.; Saraev, Y. N.

    2015-09-01

    The article is devoted to handling a vital scientific and technical problem of improving operational reliability and safety of critical constructions, exploited in Siberia and Far North, by developing of new technological approaches to welding. In the article results of X-ray diffraction examinations of 09Mn2Si steel welded joints are given, produced by different welding operations. Resulting from researches, the authors have concluded that pulse-arc welding is the most preferred welding process as compared with direct current welding.

  16. Characteristics of microstructure and fatigue resistance of hybrid fiber laser-MIG welded Al-Mg alloy joints

    NASA Astrophysics Data System (ADS)

    Yan, Shaohua; Nie, Yuan; Zhu, Zongtao; Chen, Hui; Gou, Guoqing; Yu, Jinpeng; Wang, Guiguo

    2014-04-01

    In this study, the microstructures, mechanical properties and fatigue strengths of the hybrid laser-MIG welded joints were investigated. The detailed microstructures of the hybrid welded joints were carried out using OM and TEM. The causes of the strengths loss of the hybrid welded joints were studied from aspects of solute strengthening, precipitates hardening, and grain boundary strengthening. The fatigue strengths of the hybrid welded joints, MIG welded joints, and base metals were investigated. The results showed that the fatigue strength of the hybrid welded joints was better than that of the MIG welded joint. The conditional fatigue strength (Nf > 107) of the hybrid welded joints could reach up to 84.6% of the base metal's conditional fatigue strength (130 MPa). The fatigue fracture surfaces were examined by SEM, and the result showed that the main reason for the decrease of the fatigue strength was porosity.

  17. Grinding assembly, grinding apparatus, weld joint defect repair system, and methods

    DOEpatents

    Larsen, Eric D.; Watkins, Arthur D.; Bitsoi, Rodney J.; Pace, David P.

    2005-09-27

    A grinding assembly for grinding a weld joint of a workpiece includes a grinder apparatus, a grinder apparatus includes a grinding wheel configured to grind the weld joint, a member configured to receive the grinding wheel, the member being configured to be removably attached to the grinder apparatus, and a sensor assembly configured to detect a contact between the grinding wheel and the workpiece. The grinding assembly also includes a processing circuitry in communication with the grinder apparatus and configured to control operations of the grinder apparatus, the processing circuitry configured to receive weld defect information of the weld joint from an inspection assembly to create a contour grinding profile to grind the weld joint in a predetermined shape based on the received weld defect information, and a manipulator having an end configured to carry the grinder apparatus, the manipulator further configured to operate in multiple dimensions.

  18. Fracture toughness of partially welded joints of SUS316 in high magnetic field at 4K

    SciTech Connect

    Nishimura, A.; Yamamoto, J.; Motojima, O.

    1997-06-01

    Two kinds of partially welded austenitic stainless steel joints were prepared using SUS 316, 75 mm thick. One joint was fabricated using tungsten inert gas welding and metal arc gas welding, and the other was electron beam welded. Compact tension specimens for fracture toughness tests were machined out from these welded plates in the thickness direction. The fracture toughness tests of these specimens with natural cracks were carried out in 0, 8, and 14 T fields at 4 K. The test results show that there is no strong effect of the high magnetic field on the fracture toughness of these joints, and the electron beam welded joints give a very low toughness in any case because of the complicated natural crack front shape.

  19. Evaluation of Tensile Strength of Partial Penetration Butt Welded Joints by Ultrasonic Testing

    NASA Astrophysics Data System (ADS)

    Matsuura, Hiroshi; Kaji, Atsushi

    Partial penetration butt welded joints are widely used because they require relatively less weld metal for fabrication. However, incomplete penetration acts as a crack-like flaw. When the size of flaw in a material is known, the tensile strength of the material can be evaluated using fracture mechanics. This paper deals with a practical method of estimating the size of flaw (the incomplete penetration of a partial penetration butt welded joint) by ultrasonic testing (UT). The refraction angle of the probe and the method of UT are discussed. In addition, tensile strengths of welded joints are evaluated using fracture mechanics, and are found to be in good agreement with experimental results.

  20. High-cycle Fatigue Properties of Alloy718 Base Metal and Electron Beam Welded Joint

    NASA Astrophysics Data System (ADS)

    Ono, Yoshinori; Yuri, Tetsumi; Nagashima, Nobuo; Sumiyoshi, Hideshi; Ogata, Toshio; Nagao, Naoki

    High-cycle fatigue properties of Alloy 718 plate and its electron beam (EB) welded joint were investigated at 293 K and 77 K under uniaxial loading. At 293 K, the high-cycle fatigue strength of the EB welded joint with the post heat treatment exhibited somewhat lower values than that of the base metal. The fatigue strengths of both samples basically increased at 77 K. However, in longer life region, the EB welded joint fractured from a blow hole formed in the welded zone, resulting in almost the same fatigue strength at 107 cycles as that at 293 K.

  1. Type IV Creep Damage Behavior in Gr.91 Steel Welded Joints

    NASA Astrophysics Data System (ADS)

    Hongo, Hiromichi; Tabuchi, Masaaki; Watanabe, Takashi

    2012-04-01

    Modified 9Cr-1Mo steel (ASME Grade 91 steel) is used as a key structural material for boiler components in ultra-supercritical (USC) thermal power plants at approximately 873 K (600 °C). The creep strength of welded joints of this steel decreases as a result of Type IV creep cracking that forms in the heat-affected zone (HAZ) under long-term use at high temperatures. The current article aims to elucidate the damage processes and microstructural degradations that take place in the HAZ of these welded joints. Long-term creep tests for base metal, simulated HAZ, and welded joints were conducted at 823 K, 873 K, and 923 K (550 °C, 600 °C, and 650 °C). Furthermore, creep tests of thick welded joint specimens were interrupted at several time steps at 873 K (600 °C) and 90 MPa, after which the distribution and evolution of creep damage inside the plates were measured quantitatively. It was found that creep voids are initiated in the early stages (0.2 of life) of creep rupture life, which coalesce to form a crack at a later stage (0.8 of life). In a fine-grained HAZ, creep damage is concentrated chiefly in an area approximately 20 pct below the surface of the plate. The experimental creep damage distributions coincide closely with the computed results obtained by damage mechanics analysis using the creep properties of a simulated fine-grained HAZ. Both the concentration of creep strain and the high multiaxial stress conditions in the fine-grained HAZ influence the distribution of Type IV creep damage.

  2. Metallurgical Effects of Shunting Current on Resistance Spot-Welded Joints of AA2219 Sheets

    NASA Astrophysics Data System (ADS)

    Jafari Vardanjani, M.; Araee, A.; Senkara, J.; Jakubowski, J.; Godek, J.

    2016-08-01

    Shunting effect is the loss of electrical current via the secondary circuit provided due to the existence of previous nugget in a series of welding spots. This phenomenon influences on metallurgical aspects of resistance spot-welded (RSW) joints in terms of quality and performance. In this paper RSW joints of AA2219 sheets with 1 mm thickness are investigated metallurgically for shunted and single spots. An electro-thermal finite element analysis is performed on the RSW process of shunted spot and temperature distribution and variation are obtained. These predictions are then compared with experimental micrographs. Three values of 5 mm, 20 mm, and infinite (i.e., single spot) are assumed for welding distance. Numerical and experimental results are matching each other in terms of nugget and HAZ geometry as increasing distance raised nugget size and symmetry of HAZ. In addition, important effect of shunting current on nugget thickness, microstructure, and Copper segregation on HAZ grain boundaries were discovered. A quantitative analysis is also performed about the influence of welding distance on important properties including ratio of nugget thickness and diameter ( r t), ratio of HAZ area on shunted and free side of nugget ( r HA), and ratio of equivalent segregated and total amount of Copper, measured in sample ( r Cu) on HAZ. Increasing distance from 5 mm to infinite, indicated a gain of 111.04, -45.55, and -75.15% in r t, r HA, and r Cu, respectively, while obtained ratios for 20 mm welding distance was suitable compared to single spot.

  3. Metallurgical Effects of Shunting Current on Resistance Spot-Welded Joints of AA2219 Sheets

    NASA Astrophysics Data System (ADS)

    Jafari Vardanjani, M.; Araee, A.; Senkara, J.; Jakubowski, J.; Godek, J.

    2016-06-01

    Shunting effect is the loss of electrical current via the secondary circuit provided due to the existence of previous nugget in a series of welding spots. This phenomenon influences on metallurgical aspects of resistance spot-welded (RSW) joints in terms of quality and performance. In this paper RSW joints of AA2219 sheets with 1 mm thickness are investigated metallurgically for shunted and single spots. An electro-thermal finite element analysis is performed on the RSW process of shunted spot and temperature distribution and variation are obtained. These predictions are then compared with experimental micrographs. Three values of 5 mm, 20 mm, and infinite (i.e., single spot) are assumed for welding distance. Numerical and experimental results are matching each other in terms of nugget and HAZ geometry as increasing distance raised nugget size and symmetry of HAZ. In addition, important effect of shunting current on nugget thickness, microstructure, and Copper segregation on HAZ grain boundaries were discovered. A quantitative analysis is also performed about the influence of welding distance on important properties including ratio of nugget thickness and diameter (r t), ratio of HAZ area on shunted and free side of nugget (r HA), and ratio of equivalent segregated and total amount of Copper, measured in sample (r Cu) on HAZ. Increasing distance from 5 mm to infinite, indicated a gain of 111.04, -45.55, and -75.15% in r t, r HA, and r Cu, respectively, while obtained ratios for 20 mm welding distance was suitable compared to single spot.

  4. Effect of Multipass TIG and Activated TIG Welding Process on the Thermo-Mechanical Behavior of 316LN Stainless Steel Weld Joints

    NASA Astrophysics Data System (ADS)

    Ganesh, K. C.; Balasubramanian, K. R.; Vasudevan, M.; Vasantharaja, P.; Chandrasekhar, N.

    2016-04-01

    The primary objective of this work was to develop a finite element model to predict the thermo-mechanical behavior of an activated tungsten inert gas (ATIG)-welded joint. The ATIG-welded joint was fabricated using 10 mm thickness of 316LN stainless steel plates in a single pass. To distinguish the merits of ATIG welding process, it was compared with manual multipass tungsten inert gas (MPTIG)-welded joint. The ATIG-welded joint was fabricated with square butt edge configuration using an activating flux developed in-house. The MPTIG-welded joint was fabricated in thirteen passes with V-groove edge configuration. The finite element model was developed to predict the transient temperature, residual stress, and distortion of the welded joints. Also, microhardness, impact toughness, tensile strength, ferrite measurement, and microstructure were characterized. Since most of the recent publications of ATIG-welded joint was focused on the molten weld pool dynamics, this research work gives an insight on the thermo-mechanical behavior of ATIG-welded joint over MPTIG-welded joint.

  5. The Diagnostic Method of Inner Parts of Welded Joints at Nuclear Power Plant

    SciTech Connect

    Bednarova, O.; Janovec, J.

    2010-06-22

    There is no possibility to check any inner part at real welded joint at nuclear power station (NPS) during operation because any destructive test cannot be used. In practice there is checked surface of weld. There are used four methodical instructions for the check of real welds: 1. The visual inspection, 2. The measurement of hardness, 3. The chemical composition checking and 4. The microstructure replica analysis. It is necessary to know how these information of weld surface are in accordance with characteristics of inner parts of weld. If there is not any difference between surface weld microstructure and internal weld microstructure of experimental weld it is supposed to that there is not any difference in other measured properties of welds. If is changed structural characteristics of microstructure, it is changed also hardness, chemical analysis etc. It was observed that the microstructure of real welds is almost the same with simulated weld and also the surface microstructure of experimental weld is in accordance with microstructure of inner parts of this weld. It can be supposed extension of lifetime of NPS if there is not any difference between replicas microstructure taken after six year operation of NPS and microstructure of inner parts of simulated weld is almost the same with surface microstructure.

  6. Influences of post weld heat treatment on tensile properties of friction stir welded AA2519-T87 aluminium alloy joints

    NASA Astrophysics Data System (ADS)

    Sabari, S. Sree; Balasubramanian, V.; Malarvizhi, S.; Reddy, G. Madusudhan

    2015-12-01

    AA 2519-T87 is an aluminium alloy that principally contains Cu as an alloying element and is a new grade of Al-Cu alloy system. This material is a potential candidate for light combat military vehicles. Fusion welding of this alloy leads to hot cracking, porosity and alloy segregation in the weld metal region. Friction stir welding (FSW) is a solid state joining process which can overcome the above mentioned problems. However, the FSW of age hardenable aluminium alloys results in poor tensile properties in the as-welded condition (AW). Hence, post weld heat treatment (PWHT) is used to enhance deteriorated tensile properties of FSW joints. In this work, the effect of PWHT, namely artificial ageing (AA) and solution treatment (ST) followed by ageing (STA) on the microstructure, tensile properties and microhardness were systematically investigated. The microstructural features of the weld joints were characterised using an optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The tensile strength and microhardness of the joints were correlated with the grain size, precipitate size, shape and its distribution. From the investigation, it was found that STA treatment is beneficial in enhancing the tensile strength of the FSW joints of AA2519-T87 alloy and this is mainly due to the presence of fine and densely distributed precipitates in the stir zone.

  7. Crack propagation analysis of welded thin-walled joints using boundary element method

    NASA Astrophysics Data System (ADS)

    Mashiri, F. R.; Zhao, Xiao-Ling; Grundy, P.

    Tube-to-plate nodal joints under cyclic bending are widely used in the road transport and agricultural industry. The square hollow sections (SHS) used in these constructions are thin-walled and cold formed, and they have thicknesses of less than 4mm. Some fatigue failures have been observed. The weld undercut may affect the fatigue life of welded tubular joints especially for thin-walled sections. The undercut dimensions were measured using the silicon imprint technique. Modelling of thin-walled cruciform joints, as a simplification of welded tubular joints, is described in this paper to determine the effect of weld undercut on fatigue propagation life. The Boundary Element Analysis System Software (BEASY) is used. The results of the effect of weld toe undercut from this analysis are compared with results from previous research to determine the comparative reduction in fatigue life between thin-walled joints (T=3mm) and those made of thicker sections (T=20mm). The loss in fatigue strength of the thin-walled joints is found to be relatively more than that for thicker walled joints. A 3D model of a tube to plate T-joint is also modelled using the boundary element software, BEASY. The nodal joint consists of a square hollow section, 50×50×3 SHS, fillet welded to a 10-mm thick plate, and subjected to cyclic bending stress. Fatigue analyses are carried out and the results are compared with the only available S-N design curve.

  8. Effects of Sealing Run Welding with Defocused Laser Beam on the Quality of T-joint Fillet Weld

    NASA Astrophysics Data System (ADS)

    Unt, Anna; Poutiainen, Ilkka; Salminen, Antti

    Fillet weld is the predominant weld type used for connecting different elements e.g. in shipbuilding, offshore and bridge structures. One of prevalent research questions is the structural integrity of the welded joint. Post weld improvement techniques are being actively researched, as high stress areas like an incomplete penetration on the root side or fluctuations in penetration depth cannot be avoided. Development of laser and laser-arc hybrid welding processes have greatly contributed to increase of production capacity and reduction of heat-induced distortions by producing single pass full penetration welds in thin- and medium thickness structural steel parts. Present study addresses the issue of how to improve the quality of the fillet welds by welding the sealing run on the root side with defocused laser beam. Welds having incomplete or excessive penetration were produced with several beam angles and laser beam spot sizes on surface. As a conclusion, significant decrease or even complete elimination of the seam irregularities, which act as the failure starting points during service, is achieved.

  9. Study on microstructure and mechanical properties of 304 stainless steel joints by TIG, laser and laser -TIG hybrid welding

    NASA Astrophysics Data System (ADS)

    Yan, Jun; Gao, Ming; Zeng, Xiaoyan

    2010-04-01

    This paper investigated the microstructure and mechanical properties of 304 stainless steel joints by tungsten inert gas (TIG) welding, laser welding and laser-TIG hybrid welding. The X-ray diffraction was used to analyze the phase composition, while the microscopy was conducted to study the microstructure characters of joints. Finally, tensile tests were performed and the fracture surfaces were analyzed. The results showed that the joint by laser welding had highest tensile strength and smallest dendrite size in all joints, while the joint by TIG welding had lowest tensile strength, biggest dendrite size. Furthermore, transition zone and heat affected zone can be observed in the joint of TIG welding. The fractograph observation showed that the TIG welding joint existed as cup-cone shaped fracture, while the laser welding and hybrid welding joints existed as pure-shear fracture. The laser welding and hybrid welding are suitable for welding 304 stainless steel owing to their high welding speed and excellent mechanical properties.

  10. Qualification of electron-beam welded joints between copper and stainless steel for cryogenic application

    NASA Astrophysics Data System (ADS)

    Lusch, C.; Borsch, M.; Heidt, C.; Magginetti, N.; Sas, J.; Weiss, K.-P.; Grohmann, S.

    2015-12-01

    Joints between copper and stainless steel are commonly applied in cryogenic systems. A relatively new and increasingly important method to combine these materials is electron-beam (EB) welding. Typically, welds in cryogenic applications need to withstand a temperature range from 300K down to 4K, and pressures of several MPa. However, few data are available for classifying EB welds between OFHC copper and 316L stainless steel. A broad test program was conducted in order to qualify this kind of weld. The experiments started with the measurement of the hardness in the weld area. To verify the leak-tightness of the joints, integral helium leak tests at operating pressures of 16 MPa were carried out at room- and at liquid nitrogen temperature. The tests were followed by destructive tensile tests at room temperature, at liquid nitrogen and at liquid helium temperatures, yielding information on the yield strength and the ultimate tensile strength of the welds at these temperatures. Moreover, nondestructive tensile tests up to the yield strength, i.e. the range in which the weld can be stressed during operation, were performed. Also, the behavior of the weld upon temperature fluctuations between room- and liquid nitrogen temperature was tested. The results of the qualification indicate that EB welded joints between OFHC copper and 316L stainless steel are reliable and present an interesting alternative to other technologies such as vacuum brazing or friction welding.

  11. Integrity of Polymethylmethacrylate (PMMA) Chemically Welded Joints Examined

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Thesken, John C.; Bunnell, Charles T.; Kurta, Carol E.; Sydenstricker, Mike

    2005-01-01

    NASA Glenn Research Center s Capillary Flow Experiments (CFE) program is developing experiment payloads to explore fluid interfaces in microgravity on the International Space Station. The information to be gained from the CFE is relevant to the design of fluid-bearing systems in which capillary forces predominate, for example in the passive positioning of liquids in spacecraft fuel tanks. To achieve the science goals of CFE, Glenn researchers constructed several types of experiment vessels. One type of vessel, known as the interior corner flow (ICF), will be used to determine important transients for low-gravity liquid management in a two-phase system. Each vessel has a cylindrical fluid reservoir connected to each end of the test chamber by internal transport tubes, each with a quarter-turn shutoff valve (see the following photograph). These multipiece vessels are made from polymethylmethacrylate (PMMA) because of its excellent optical properties (i.e., the fluids can be observed easily in the vessel). Because of the complexity of certain vessels, the test chamber had to be manufactured in pieces and welded chemically. Some past experience with adhesive bonded plastic showed that the experiment fluid degraded the adhesive to the point of failure. Therefore, it was necessary to see if the fluid also degraded the chemically welded PMMA joints.

  12. A Study on the compensation margin on butt welding joint of Large Steel plates during Shipbuilding construction.

    NASA Astrophysics Data System (ADS)

    Kim, J.; Jeong, H.; Ji, M.; Jeong, K.; Yun, C.; Lee, J.; Chung, H.

    2015-09-01

    This paper examines the characteristics of butt welding joint shrinkage for shipbuilding and marine structures main plate. The shrinkage strain of butt welding joint which is caused by the process of heat input and cooling, results in the difference between dimensions of the actual parent metal and the dimensions of design. This, in turn, leads to poor quality in the production of ship blocks and reworking through period of correction brings about impediment on improvement of productivity. Through experiments on butt welding joint's shrinkage strain on large structures main plate, the deformation of welding residual stress in the form of I, Y, V was obtained. In addition, the results of experiments indicate that there is limited range of shrinkage in the range of 1 ∼ 2 mm in 11t ∼ 21.5t thickness and the effect of heat transfer of weld appears to be limited within 1000 mm based on one side of seam line so there was limited impact of weight of parent metal on the shrinkage. Finally, it has been learned that Shrinkage margin needs to be applied differently based on groove phenomenon in the design phase in order to minimize shrinkage.

  13. Tensile Properties and Work Hardening Behavior of Laser-Welded Dual-Phase Steel Joints

    NASA Astrophysics Data System (ADS)

    Farabi, N.; Chen, D. L.; Zhou, Y.

    2012-02-01

    The aim of this investigation was to evaluate the microstructural change after laser welding and its effect on the tensile properties and strain hardening behavior of DP600 and DP980 dual-phase steels. Laser welding led to the formation of martensite and significant hardness rise in the fusion zone because of the fast cooling, but the presence of a soft zone in the heat-affected zone was caused by partial vanishing and tempering of the pre-existing martensite. The extent of softening was much larger in the DP980-welded joints than in the DP600-welded joints. Despite the reduction in ductility, the ultimate tensile strength (UTS) remained almost unchanged, and the yield strength (YS) indeed increased stemming from the appearance of yield point phenomena after welding in the DP600 steel. The DP980-welded joints showed lower YS and UTS than the base metal owing to the appearance of severe soft zone. The YS, UTS, and strain hardening exponent increased slightly with increasing strain rate. While the base metals had multi-stage strain hardening, the welded joints showed only stage III hardening. All the welded joints failed in the soft zone, and the fracture surfaces exhibited characteristic dimple fracture.

  14. Distortion and residual stresses in laser beam weld shaft-hub joints

    NASA Astrophysics Data System (ADS)

    Buschenhenke, F.; Hofmann, M.; Seefeld, T.; Vollertsen, F.

    In laser beam welding, a serious challenge is to control the distortion during the process. Understanding the whole process chain in view of different distortion potentials applied in each processing step provides the ability to control the distortion of the welded components. Every manufacturing step induces residual stresses in the component which can be released by the heat of the welding process, while further residual stresses are introduced into the welded parts upon cooling. The laser beam sources of the new generation permit a high power welding process and high beam quality at the same time. These laser beams are capable of producing deep and narrow seams. Thus the thermal strains of the joined parts are expected to be minimized. Especially axial welded shaft-hub joints show an irregular distribution of bending deformation, which is caused by the self-influencing welding gap. This work deals with the investigation of different laser beam sources and their effect on the welding distortion in axial welded shafthub joints made of steel (20MnCr5). The aim of the work done was to achieve minimal distortion after the welding process. To characterize the influences on the distortion behaviour of the welded parts, residual stresses have been determined by neutron diffraction.

  15. Ultrasonic Impact Treatment to Improve Stress Corrosion Cracking Resistance of Welded Joints of Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Yu, J.; Gou, G.; Zhang, L.; Zhang, W.; Chen, H.; Yang, Y. P.

    2016-07-01

    Stress corrosion cracking is one of the major issues for welded joints of 6005A-T6 aluminum alloy in high-speed trains. High residual stress in the welded joints under corrosion results in stress corrosion cracking. Ultrasonic impact treatment was used to control the residual stress of the welded joints of 6005A-T6 aluminum alloy. Experimental tests show that ultrasonic impact treatment can induce compressive longitudinal and transverse residual stress in the welded joint, harden the surface, and increase the tensile strength of welded joints. Salt-fog corrosion tests were conducted for both an as-welded sample and an ultrasonic impact-treated sample. The surface of the treated sample had far fewer corrosion pits than that of the untreated sample. The treated sample has higher strength and lower tensile residual stress than the untreated sample during corrosion. Therefore, ultrasonic impact treatment is an effective technique to improve the stress corrosion cracking resistance of the welded joints of 6005A-T6 aluminum alloy.

  16. Effect of welding parameters on the mechanical and microstructural properties of friction stir welded AA- 2014 joints

    NASA Astrophysics Data System (ADS)

    Khan, R.; Bhatty, M. B.; Iqbal, F.; Zaigham, H.; Salam, I.

    2016-08-01

    In this study, the effect of processing parameters on the mechanical and microstructural properties of aluminum AA2014-T6 joints produced by friction stir welding was analyzed. Friction stir welding was carried out on a milling machine. Different samples were produced by varying the tool rotational rates (700, 1000 rpm) and travel speeds (45-105 mm/min). Tensile tests performed at room temperature were used to evaluate the mechanical properties of the joints. In order to analyze the microstructural evolution of the material, the welds’ cross-sections were observed under optical microscope. The results shows that the resulting microstructure is free of defects and tensile strength of the welded joints is upto 75% of the base metal strength.

  17. Electrical resistance determination of actual contact area of cold welded metal joints

    NASA Technical Reports Server (NTRS)

    Hordon, M. J.

    1970-01-01

    Method measures the area of the bonded zone of a compression weld by observing the electrical resistance of the weld zone while the load changes from full compression until the joint ruptures under tension. The ratio of bonding force to maximum tensile load varies considerably.

  18. Effects of activating fluxes on the weld penetration and corrosion resistant property of laser welded joint of ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Wang, Yonghui; Hu, Shengsun; Shen, Junqi

    2015-10-01

    This study was based on the ferritic stainless steel SUS430. Under the parallel welding conditions, the critical penetration power values (CPPV) of 3mm steel plates with different surface-coating activating fluxes were tested. Results showed that, after coating with activating fluxes, such as ZrO2, CaCO3, CaF2 and CaO, the CPPV could reduce 100~250 W, which indicating the increases of the weld penetrations (WP). Nevertheless, the variation range of WP with or without activating fluxes was less than 16.7%. Compared with single-component ones, a multi-component activating flux composed of 50% ZrO2, 12.09% CaCO3, 10.43% CaO, and 27.49% MgO was testified to be much more efficient, the WP of which was about 2.3-fold of that without any activating fluxes. Furthermore, a FeCl3 spot corrosion experiment was carried out with samples cut from weld zone to test the effects of different activating fluxes on the corrosion resistant (CR) property of the laser welded joints. It was found that all kinds of activating fluxes could improve the CR of the welded joints. And, it was interesting to find that the effect of the mixed activating fluxes was inferior to those single-component ones. Among all the activating fluxes, the single-component of CaCO3 seemed to be the best in resisting corrosion. By means of Energy Dispersive Spectrometer (EDS) testing, it was found that the use of activating fluxes could effectively restrain the loss of Cr element of weld zone in the process of laser welding, thus greatly improving the CR of welded joints.

  19. Experiments and simulation for 6061-T6 aluminum alloy resistance spot welded lap joints

    NASA Astrophysics Data System (ADS)

    Florea, Radu Stefanel

    This comprehensive study is the first to quantify the fatigue performance, failure loads, and microstructure of resistance spot welding (RSW) in 6061-T6 aluminum (Al) alloy according to welding parameters and process sensitivity. The extensive experimental, theoretical and simulated analyses will provide a framework to optimize the welding of lightweight structures for more fuel-efficient automotive and military applications. The research was executed in four primary components. The first section involved using electron back scatter diffraction (EBSD) scanning, tensile testing, laser beam profilometry (LBP) measurements, and optical microscopy(OM) images to experimentally investigate failure loads and deformation of the Al-alloy resistance spot welded joints. Three welding conditions, as well as nugget and microstructure characteristics, were quantified according to predefined process parameters. Quasi-static tensile tests were used to characterize the failure loads in specimens based upon these same process parameters. Profilometer results showed that increasing the applied welding current deepened the weld imprints. The EBSD scans revealed the strong dependency between the grain sizes and orientation function on the process parameters. For the second section, the fatigue behavior of the RSW'ed joints was experimentally investigated. The process optimization included consideration of the forces, currents, and times for both the main weld and post-heating. Load control cyclic tests were conducted on single weld lap-shear joint coupons to characterize the fatigue behavior in spot welded specimens. Results demonstrate that welding parameters do indeed significantly affect the microstructure and fatigue performance for these welds. The third section comprised residual strains of resistance spot welded joints measured in three different directions, denoted as in-plane longitudinal, in-plane transversal, and normal, and captured on the fusion zone, heat affected zone

  20. Microstructure and Mechanical Properties of Dissimilar Welded Ti3Al/Ni-Based Superalloy Joint Using a Ni-Cu Filler Alloy

    NASA Astrophysics Data System (ADS)

    Chen, Bing-Qing; Xiong, Hua-Ping; Guo, Shao-Qing; Sun, Bing-Bing; Chen, Bo; Tang, Si-Yi

    2015-02-01

    Dissimilar welding of a Ti3Al-based alloy and a Ni-based superalloy (Inconel 718) was successfully carried out using gas tungsten arc welding technology in this study. With a Ni-Cu alloy as filler material, sound joints have been obtained. The microstructure evolution along the cross section of the dissimilar joint has been revealed based on the results of scanning electron microscopy and X-ray energy dispersive spectroscopy as well as X-ray diffractometer. It is found that the weld/Ti3Al interface is composed of Ti2AlNb matrix dissolved with Ni and Cu, Al(Cu, Ni)2Ti, (Cu, Ni)2Ti, (Nb, Ti) solid solution, and so on. The weld and In718/weld interface mainly consist of (Cu, Ni) solid solutions. The weld exhibits higher microhardness than the two base materials. The average room-temperature tensile strength of the joints reaches 242 MPa and up to 73.6 pct of the value can be maintained at 873 K (600 °C). The brittle intermetallic phase of Ti2AlNb matrix dissolved with Ni and Cu at the weld/Ti3Al interface is the weak link of the joint.

  1. Influence of Welding With Two-Jet Gas Shielding On the Shaping of a Welding Joint

    NASA Astrophysics Data System (ADS)

    Chinakhov, D. A.; Chinakhova, E. D.; Grichin, S. V.; Gotovschik, Y. M.

    2016-04-01

    The author considers gas-dynamic influence upon microhardness and weld configuration of single-pass welds from steel 30HGSA when welding with consumable electrode under double-jet shielding. The relations to the chosen controlled welding parameters (Q, L, I) are developed and the controlling influence of the gas-dynamic affect of dynamic shield gas jet over formation of welds from alloy-treated steel 30HGSA is determined.

  2. Multi-Response Optimization of Friction-Stir-Welded AA1100 Aluminum Alloy Joints

    NASA Astrophysics Data System (ADS)

    Rajakumar, S.; Balasubramanian, V.

    2012-06-01

    AA1100 aluminum alloy has gathered wide acceptance in the fabrication of light weight structures. Friction stir welding process (FSW) is an emerging solid state joining process in which the material that is being welded does not melt and recast. The process and tool parameters of FSW play a major role in deciding the joint characteristics. In this research, the relationships between the FSW parameters (rotational speed, welding speed, axial force, shoulder diameter, pin diameter, and tool hardness) and the responses (tensile strength, hardness, and corrosion rate) were established. The optimal welding conditions to maximize the tensile strength and minimize the corrosion rate were identified for AA1100 aluminum alloy and reported here.

  3. Transient thermal analysis and mechanical strength testing of pulsed laser welded ribbons to feedthru joints

    NASA Astrophysics Data System (ADS)

    Lin, Yaomin; Jiang, Guangqiang

    2012-03-01

    In this work, a laser welding process for attaching conducting ribbons to a miniaturized feedthru is introduced. A pulsed 1064nm Nd:YAG laser was used as an example in this study. A numerical simulation by means of finite element method (FEM) for the prediction of temperatures in the feedthru assembly is presented. The approach used was intended to solve the energy balance equation with appropriate initial and boundary conditions. A laser weld joint strength test was conducted using a Mechanical Strength Tester. The influence of processing parameters, such as laser power and pulse duration, on the temperature distribution and the weld joint strength are investigated and discussed.

  4. Joint strength in high speed friction stir spot welded DP 980 steel

    SciTech Connect

    Saunders, Nathan; Miles, Michael; Hartman, Trent; Hovanski, Yuri; Hong, Sung Tae; Steel, Russell

    2014-05-01

    High speed friction stir spot welding was applied to 1.2 mm thick DP 980 steel sheets under different welding conditions, using PCBN tools. The range of vertical feed rates used during welding was 2.5 mm – 102 mm per minute, while the range of spindle speeds was 2500 – 6000 rpm. Extended testing was carried out for five different sets of welding conditions, until tool failure. These welding conditions resulted in vertical welding loads of 3.6 – 8.2 kN and lap shear tension failure loads of 8.9 – 11.1 kN. PCBN tools were shown, in the best case, to provide lap shear tension fracture loads at or above 9 kN for 900 spot welds, after which tool failure caused a rapid drop in joint strength. Joint strength was shown to be strongly correlated to bond area, which was measured from weld cross sections. Failure modes of the tested joints were a function of bond area and softening that occurred in the heat-affected zone.

  5. Nickel aluminide-copper backing for butt joint welding

    SciTech Connect

    Raghavan, S.; Muszynski, M.; Chin, B.A.; Nagarajan, S.

    1996-12-31

    Single-side full penetration welding is the primary welding process in shipbuilding. This process requires the use of a backing to support the molten metal. Conventionally, copper has been used as the backing material in the shop and ceramic tiles for jobs on the field. However, copper has shown to contaminate the weld and produce adverse effects and ceramics have shown to produce porosities in the weld. A new backing with an intermetallic layer (NiAl) on the copper surface has been fabricated. The results indicate that this backing could alleviate the contamination problems and produce quality welds.

  6. Evaluation of Laser Braze-welded Dissimilar Al-Cu Joints

    NASA Astrophysics Data System (ADS)

    Schmalen, Pascal; Plapper, Peter

    The thermal joining of Aluminum and Copper is a promising technology towards automotive battery manufacturing. The dissimilar metals Al-Cu are difficult to weld due to their different physicochemical characteristics and the formation of intermetallic compounds (IMC), which have reduced mechanical and electric properties. There is a critical thickness of the IMCs where the favored mechanical properties of the base material can be preserved. The laser braze welding principle uses a position and power oscillated laser-beam to reduce the energy input and the intermixture of both materials and therefore achieves minimized IMCs thickness. The evaluation of the weld seam is important to improve the joint performance and enhance the welding process. This paper is focused on the characterization and quantification of the IMCs. Mechanical, electrical and metallurgical methods are presented and performed on Al1050 and SF-Cu joints and precise weld criteria are developed.

  7. Relation between hardness and ultrasonic velocity on pipeline steel welded joints

    NASA Astrophysics Data System (ADS)

    Carreón, H.; Barrera, G.; Natividad, C.; Salazar, M.; Contreras, A.

    2016-04-01

    In general, the ultrasonic techniques have been used to determine the mechanical properties of materials based on their relationship with metallurgical characteristics. In this research work, the relationship between ultrasonic wave velocity, hardness and the microstructure of steel pipeline welded joints is investigated. Measurements of ultrasonic wave velocity were made as a function of the location across the weld. Hardness measurements were performed in an attempt to correlate with ultrasonic response. In addition, the coarse and dendritic grain structure of the weld material is extreme and unpredictably anisotropic. Thus, due to the acoustic anisotropy of the crystal, weld material of studied joints is anisotropic too. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of conventional ultrasonic phased array techniques becomes desirable. This technique is proposed to assist pipeline operators in estimating the hardness through ultrasonic measures to evaluate the susceptibility to stress sulphide cracking and hydrogen-induced cracking due to hard spots in steel pipeline welded joints in service. Sound wave velocity and hardness measurements have been carried out on a steel welded joint. For each section of the welding, weld bead, fusion zone, heat affected zone and base metal were found to correspond particular values of the ultrasound velocity. These results were correlated with electron microscopy observations of the microstructure and sectorial scan view of welded joints by ultrasonic phased array.

  8. Improved TIG weld joint strength in aluminum alloy 2219-T87 by filler metal substitution

    NASA Technical Reports Server (NTRS)

    Poorman, R. M.; Lovoy, C. V.

    1972-01-01

    The results of an investigation on weld joint characteristics of aluminum alloy 2219-T87 are given. Five different alloys were utilized as filler material. The mechanical properties of the joints were determined at ambient and cryogenic temperatures for weldments in the as-welded condition and also, for weldments after elevated temperature exposures. Other evaluations included hardness surveys, stress corrosion susceptibility, and to a limited extent, the internal metallurgical weld structures. The overall results indicate that M-943 filler weldments are superior in strength to weldments containing either the standard 2319 filler or fillers 2014, 2020, and a dual wire feed consisting of three parts 2319 and one part 5652. In addition, no deficiencies were evident in M-934 filler weldments with regard to ductility, joint strength after elevated temperature exposure, weld hardness, metallographic structures, or stress corrosion susceptibility.

  9. Microstructure of friction stir welded joints of 2017A aluminium alloy sheets.

    PubMed

    Mroczka, K; Dutkiewicz, J; Pietras, A

    2010-03-01

    The present study examines a friction stir welded 2017A aluminium alloy. Transmission electron microscope investigations of the weld nugget revealed the average grain size of 5 microm, moderate density of dislocations as well as the presence of nanometric precipitates located mostly in grains interiors. Scanning electron microscope observations of fractures showed the presence of ductile fracture in the region of the weld nugget with brittle precipitates in the lower part. The microhardness analysis performed on the cross-section of the joints showed fairly small changes; however, after the artificial ageing process an increase in hardness was observed. The change of the joint hardness subject to the ageing process indicates partial supersaturation in the material during friction stir welding and higher precipitation hardening of the joint.

  10. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Technical Reports Server (NTRS)

    Rule, William K.

    1992-01-01

    In the future, some spacecraft will be so large that they must be assembled on-orbit. These spacecraft will be used for such tasks as manned missions to Mars or used as orbiting platforms for monitoring the Earth or observing the universe. Some large spacecraft will probably consist of planar truss structures to which will be attached special purpose, self-contained modules. The modules will most likely be taken to orbit fully outfitted and ready for use in heavy-lift launch vehicles. The truss members will also similarly be taken to orbit, but most unassembled. The truss structures will need to be assembled robotically because of the high costs and risks of extra-vehicular activities. Some missions will involve very large loads. To date, very few structures of any kind have been constructed in space. Two relatively simple trusses were assembled in the Space Shuttle bay in late 1985. Here the development of a design of a welded joint for on-orbit, robotic truss assembly is described. Mechanical joints for this application have been considered previously. Welded joints have the advantage of allowing the truss members to carry fluids for active cooling or other purposes. In addition, welded joints can be made more efficient structurally than mechanical joints. Also, welded joints require little maintenance (will not shake loose), and have no slop which would cause the structure to shudder under load reversal. The disadvantages of welded joints are that a more sophisticated assembly robot is required, weld flaws may be difficult to detect on-orbit, the welding process is hazardous, and welding introduces contamination to the environment. In addition, welded joints provide less structural damping than do mechanical joints. Welding on-orbit was first investigated aboard a Soyuz-6 mission in 1969 and then during a Skylab electron beam welding experiment in 1973. A hand held electron beam welding apparatus is currently being prepared for use on the MIR space station

  11. Investigation of corrosion of welded joints of austenitic and duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Topolska, S.

    2016-08-01

    Investigation of corrosion resistance of materials is one of the most important tests that allow determining their functional properties. Among these tests the special group consist electrochemical investigations, which let to accelerate the course of the process. These investigations allow rapidly estimating corrosion processes occurring in metal elements under the influence of the analysed environment. In the paper are presented results of investigations of the resistance to pitting corrosion of the steel of next grades: austenitic 316L and duplex 2205. It was also analysed the corrosion resistance of welded joints of these grades of steel. The investigations were conducted in two different corrosion environments: in the neutral one (3.5 % sodium chloride) and in the aggressive one (0.1 M sulphuric acid VI). The obtained results indicate different resistance of analysed grades of steel and their welded joints in relation to the corrosion environment. The austenitic 316L steel characterizes by the higher resistance to the pitting corrosion in the aggressive environment then the duplex 2205 steel. In the paper are presented results of potentiodynamic tests. They showed that all the specimens are less resistant to pitting corrosion in the environment of sulphuric acid (VI) than in the sodium chloride one. The 2205 steel has higher corrosion resistance than the 316L stainless steel in 3.5% NaCl. On the other hand, in 0.1 M H2SO4, the 316L steel has a higher corrosion resistance than the 2205 one. The weld has a similar, very good resistance to pitting corrosion like both steels.

  12. Effect of post-weld heat treatment on the mechanical properties of electron beam welded joints for CLAM steel

    NASA Astrophysics Data System (ADS)

    Wu, Qingsheng; Zheng, Shuhui; Liu, Shaojun; Li, Chunjing; Huang, Qunying

    2013-11-01

    In this paper the microstructure and mechanical properties of electron beam weld (EBW) joints for China low activation martensitic (CLAM) steel, which underwent a series of different post weld heat treatments (PWHTs) were studied. The aim of the study was to identify suitable PWHTs that give a good balance between strength and toughness of the EBW joints. The microstructural analyses were performed by means of optical microscope (OM) and scanning electron microscope (SEM). The mechanical properties were determined via tensile tests and Charpy impact tests. The results showed that the tensile strength of the as-weld joint (i.e. without any PWHT) were close to that of the base metal, but the impact toughness was only 13% of that of the base metal due to the existence of a delta-ferrite microstructure. To achieve a significant improvement in toughness a PWHT needs to be performed. If a one-step PWHT is applied tempering at 760 °C for 2 h gives EBW joints with high strength at a still acceptable toughness level. If a two-step PWHT is applied, a process involving quenching at 980 °C for 0.5 h followed by tempering at 740 °C or 760 °C for 2 h gives EBW joints with high strength and toughness properties. Whenever possible a two-step PWHT should be applied in favor of a one-step process, because of higher resulting strength and toughness properties.

  13. A portable ultrasonic phased array device for tabular joint weld inspection of offshore platform structures

    NASA Astrophysics Data System (ADS)

    Shan, Baohua; Li, Jingan; Duan, Zhongdong; Ou, Jinping; Shen, Wei

    2012-05-01

    To meet the inspection need for complex tabular joints weld of offshore platform structures, a portable ultrasonic phased array inspection device is developed. The integrated device is small and portable. As designed, the device can implement different algorithm of the ultrasonic phased array inspection technology. With proposed inspection plan, the experiment of Y tubular joint model was performed in lab. Experiment results indicate that the possible ultrasonic phased array inspection device can detect and visualize the flaws on Y tubular joint weld, which are nearly consistent with the actual condition.

  14. Effect of Welding Current and Time on the Microstructure, Mechanical Characterizations, and Fracture Studies of Resistance Spot Welding Joints of AISI 316L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kianersi, Danial; Mostafaei, Amir; Mohammadi, Javad

    2014-09-01

    This article aims at investigating the effect of welding parameters, namely, welding current and welding time, on resistance spot welding (RSW) of the AISI 316L austenitic stainless steel sheets. The influence of welding current and welding time on the weld properties including the weld nugget diameter or fusion zone, tensile-shear load-bearing capacity of welded materials, failure modes, energy absorption, and microstructure of welded nuggets was precisely considered. Microstructural studies and mechanical properties showed that the region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. Electron microscopic studies indicated different types of delta ferrite in welded nuggets including skeletal, acicular, and lathy delta ferrite morphologies as a result of nonequilibrium phases, which can be attributed to a fast cooling rate in the RSW process. These morphologies were explained based on Shaeffler, WRC-1992, and pseudo-binary phase diagrams. The optimum microstructure and mechanical properties were achieved with 8-kA welding current and 4-cycle welding time in which maximum tensile-shear load-bearing capacity or peak load of the welded materials was obtained at 8070 N, and the failure mode took place as button pullout with tearing from the base metal. Finally, fracture surface studies indicated that elongated dimples appeared on the surface as a result of ductile fracture in the sample welded in the optimum welding condition.

  15. Effect of Activated Flux on the Microstructure, Mechanical Properties, and Residual Stresses of Modified 9Cr-1Mo Steel Weld Joints

    NASA Astrophysics Data System (ADS)

    Maduraimuthu, V.; Vasudevan, M.; Muthupandi, V.; Bhaduri, A. K.; Jayakumar, T.

    2012-02-01

    A novel variant of tungsten inert gas (TIG) welding called activated-TIG (A-TIG) welding, which uses a thin layer of activated flux coating applied on the joint area prior to welding, is known to enhance the depth of penetration during autogenous TIG welding and overcomes the limitation associated with TIG welding of modified 9Cr-1Mo steels. Therefore, it is necessary to develop a specific activated flux for enhancing the depth of penetration during autogeneous TIG welding of modified 9Cr-1Mo steel. In the current work, activated flux composition is optimized to achieve 6 mm depth of penetration in single-pass TIG welding at minimum heat input possible. Then square butt weld joints are made for 6-mm-thick and 10-mm-thick plates using the optimized flux. The effect of flux on the microstructure, mechanical properties, and residual stresses of the A-TIG weld joint is studied by comparing it with that of the weld joints made by conventional multipass TIG welding process using matching filler wire. Welded microstructure in the A-TIG weld joint is coarser because of the higher peak temperature in A-TIG welding process compared with that of multipass TIG weld joint made by a conventional TIG welding process. Transverse strength properties of the modified 9Cr-1Mo steel weld produced by A-TIG welding exceeded the minimum specified strength values of the base materials. The average toughness values of A-TIG weld joints are lower compared with that of the base metal and multipass weld joints due to the presence of δ-ferrite and inclusions in the weld metal caused by the flux. Compressive residual stresses are observed in the fusion zone of A-TIG weld joint, whereas tensile residual stresses are observed in the multipass TIG weld joint.

  16. Detailed Microstructural Characterization and Restoration Mechanisms of Duplex and Superduplex Stainless Steel Friction-Stir-Welded Joints

    NASA Astrophysics Data System (ADS)

    Santos, T. F. A.; Torres, E. A.; Lippold, J. C.; Ramirez, A. J.

    2016-10-01

    Duplex stainless steels are successfully used in a wide variety of applications in areas such as the food industry, petrochemical installations, and sea water desalination plants, where high corrosion resistance and high mechanical strength are required. However, during fusion welding operations, there can be changes to the favorable microstructure of these materials that compromise their performance. Friction stir welding with a non-consumable pin enables welded joints to be obtained in the solid state, which avoids typical problems associated with solidification of the molten pool, such as segregation of alloying elements and the formation of solidification and liquefaction cracks. In the case of superduplex stainless steels, use of the technique can avoid unbalanced proportions of ferrite and austenite, formation of deleterious second phases, or growth of ferritic grains in the heat-affected zone. Consolidated joints with full penetration were obtained for 6-mm-thick plates of UNS S32101 and S32205 duplex stainless steels, and S32750 and S32760 superduplex steels. The welding heat cycles employed avoided the conditions required for formation of deleterious phases, except in the case of the welded joint of the S32760 steel, where SEM images indicated the formation of secondary phases, as corroborated by decreased mechanical performance. Analysis using EBSD and transmission electron microscopy revealed continuous dynamic recrystallization by the formation of cellular arrays of dislocations in the ferrite and discontinuous dynamic recrystallization in the austenite. Microtexture evaluation indicated the presence of fibers typical of shear in the thermomechanically affected zone. These fibers were not obviously present in the stir zone, probably due to the intensity of microstructural reformulation to which this region was subjected.

  17. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Technical Reports Server (NTRS)

    Rule, W. K.; Thomas, F. P.

    1992-01-01

    A preliminary design for a weldable truss joint for on-orbit assembly of large space structures is described. The joint was designed for ease of assembly, for structural efficiency, and to allow passage of fluid (for active cooling or other purposes) along the member through the joint. The truss members were assumed to consist of graphite/epoxy tubes to which were bonded 2219-T87 aluminum alloy end fittings for welding on-orbit to truss nodes of the same alloy. A modified form of gas tungsten arc welding was assumed to be the welding process. The joint was designed to withstand the thermal and structural loading associated with a 120-ft diameter tetrahedral truss intended as an aerobrake for a mission to Mars.

  18. Analysis and Comparison of Aluminum Alloy Welded Joints Between Metal Inert Gas Welding and Tungsten Inert Gas Welding

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Guan, Yingchun; Wang, Qiang; Cong, Baoqiang; Qi, Bojin

    2015-09-01

    Surface contamination usually occurs during welding processing and it affects the welds quality largely. However, the formation of such contaminants has seldom been studied. Effort was made to study the contaminants caused by metal inert gas (MIG) welding and tungsten inert gas (TIG) welding processes of aluminum alloy, respectively. SEM, FTIR and XPS analysis was carried out to investigate the microstructure as well as surface chemistry. These contaminants were found to be mainly consisting of Al2O3, MgO, carbide and chromium complexes. The difference of contaminants between MIG and TIG welds was further examined. In addition, method to minimize these contaminants was proposed.

  19. 46 CFR 56.30-5 - Welded joints.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... types of butt welding end preparations are shown in ASME B16.25 (incorporated by reference; see 46 CFR... rings will result in undesirable conditions such as severe stress concentrations, corrosion or erosion...) Each socket weld must conform to ASME B16.11 (incorporated by reference; see 46 CFR 56.01-2),...

  20. Microstructural Characterization of Internal Welding Defects and Their Effect on the Tensile Behavior of FSW Joints of AA2198 Al-Cu-Li Alloy

    NASA Astrophysics Data System (ADS)

    Le Jolu, Thomas; Morgeneyer, Thilo F.; Denquin, Anne; Sennour, Mohamed; Laurent, Anne; Besson, Jacques; Gourgues-Lorenzon, Anne-Françoise

    2014-09-01

    Internal features and defects such as joint line remnant, kissing bond, and those induced by an initial gap between the two parent sheets were investigated in AA2198-T851 friction stir welded joints. They were compared with the parent material and to defect-free welds obtained using a seamless sheet. The cross-weld tensile strength was reduced by the defects by less than 6 pct. The fracture elongation was not significantly affected in view of experimental scatter. Fracture location, however, changed from the thermomechanically affected zone (retreating side) to the defect in the weld nugget for the welds bearing a kissing bond and for some of the gap welds. The kissing bond was shown by EBSD to be an intergranular feature; it fractured under a normal engineering stress close to 260 MPa during an in situ SEM tensile test. Synchrotron tomography after interrupted tensile testing confirmed opening of the kissing bond. For an initial gap of 23 pct of the sheet thickness, intergranular fracture of copper-enriched or oxide-bearing grain boundaries close to the nugget root was evidenced. The stress and strain state of cross-weld specimens loaded under uniaxial tension was assessed using a 3D finite element, multi-material model, determined on the basis of experimental data obtained on the same specimens using digital image correlation.

  1. Microstructural Characterization of Internal Welding Defects and Their Effect on the Tensile Behavior of FSW Joints of AA2198 Al-Cu-Li Alloy

    NASA Astrophysics Data System (ADS)

    Le Jolu, Thomas; Morgeneyer, Thilo F.; Denquin, Anne; Sennour, Mohamed; Laurent, Anne; Besson, Jacques; Gourgues-Lorenzon, Anne-Françoise

    2014-11-01

    Internal features and defects such as joint line remnant, kissing bond, and those induced by an initial gap between the two parent sheets were investigated in AA2198-T851 friction stir welded joints. They were compared with the parent material and to defect-free welds obtained using a seamless sheet. The cross-weld tensile strength was reduced by the defects by less than 6 pct. The fracture elongation was not significantly affected in view of experimental scatter. Fracture location, however, changed from the thermomechanically affected zone (retreating side) to the defect in the weld nugget for the welds bearing a kissing bond and for some of the gap welds. The kissing bond was shown by EBSD to be an intergranular feature; it fractured under a normal engineering stress close to 260 MPa during an in situ SEM tensile test. Synchrotron tomography after interrupted tensile testing confirmed opening of the kissing bond. For an initial gap of 23 pct of the sheet thickness, intergranular fracture of copper-enriched or oxide-bearing grain boundaries close to the nugget root was evidenced. The stress and strain state of cross-weld specimens loaded under uniaxial tension was assessed using a 3D finite element, multi-material model, determined on the basis of experimental data obtained on the same specimens using digital image correlation.

  2. Influence of Cu-Interlayer Thickness on Microstructures and Mechanical Properties of MIG-Welded Mg-Steel Joints

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Sun, D. Q.; Sun, Y.

    2016-03-01

    The joining of AZ31B Mg alloy to Q235 steel was realized by metal inert-gas arc welding using Cu-interlayer. Microstructure characteristics and mechanical properties of Mg-steel joints with Cu-interlayer of different thicknesses were investigated. The results indicated that acceptable joints with sound appearance could be obtained by adjusting the thickness to the range of 0.1-0.2 mm. In particular, at the thickness of 0.15 mm, the average tensile strength reached a maximum of 190 MPa, representing a 79% joint efficiency relative to the Mg base metal. Further increasing the thickness would cause more formation of coarse and thick Mg-Cu eutectic structure and Mg-Al-Cu ternary phase, which resulted in the decrease of joint strength. Therefore, the best thickness of Cu-interlayer to obtain high strength of Mg-steel MIG-welded joint was in the range of 0.1-0.15 mm. The average microhardness reached the maximum value in the reaction layer because of the presence of FeAl intermetallic compounds.

  3. Study of mechanical joint strength of aluminum alloy 7075-T6 and dual phase steel 980 welded by friction bit joining and weld-bonding under corrosion medium

    DOE PAGES

    Lim, Yong Chae; Squires, Lile; Pan, Tsung-Yu; Miles, Michael; Song, Guang-Ling; Wang, Yanli; Feng, Zhili

    2014-12-30

    We have employed a unique solid-sate joining process, called friction bit joining (FBJ), to spot weld aluminum alloy (AA) 7075-T6 and dual phase (DP) 980 steel. Static joint strength was studied in the lap shear tension configuration. In addition, weld-bonding (adhesive + FBJ) joints were studied in order to evaluate the ability of adhesive to mitigate the impact of corrosion on joint properties. Accelerated laboratory cyclic corrosion tests were carried out for both FBJ only and weld-bonding joints. Furthermore, the FBJ only joints that emerged from corrosion testing had lap shear failure loads that were significantly lower than freshly preparedmore » joints. However, weld-bonding specimens retained more than 80% of the lap shear failure load of the freshly prepared weld-bonding specimens. Moreover, examination of joint cross sections confirmed that the presence of adhesive in the weld-bonding joints mitigated the effect of the corrosion environment, compared to FBJ only joints.« less

  4. Eutectic structures in friction spot welding joint of aluminum alloy to copper

    NASA Astrophysics Data System (ADS)

    Shen, Junjun; Suhuddin, Uceu F. H.; Cardillo, Maria E. B.; dos Santos, Jorge F.

    2014-05-01

    A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl2 eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting.

  5. Eutectic structures in friction spot welding joint of aluminum alloy to copper

    SciTech Connect

    Shen, Junjun Suhuddin, Uceu F. H.; Cardillo, Maria E. B.; Santos, Jorge F. dos

    2014-05-12

    A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl{sub 2} eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting.

  6. The effect of postprocessing on tensile property and microstructure evolution of friction stir welding aluminum alloy joint

    SciTech Connect

    Hu, Z.L.; Wang, X.S.; Pang, Q.; Huang, F.; Qin, X.P.; Hua, L.

    2015-01-15

    Friction stir welding is an efficient manufacturing method for joining aluminum alloy and can dramatically reduce grain size conferring excellent plastic deformation properties. Consequently, friction stir welding is used to manufacture tailor welded blanks to optimize weight or performance in the final component. In the study, the microstructural evolution and mechanical properties of friction stir welding joint during plastic forming and subsequent heat treatment were investigated. The microstructural characteristics of the friction stir welding joints were studied by Electron Backscattered Diffraction and Transmission Electron Microscopy. The mechanical properties were evaluated by tensile and microhardness tests. It is found that the tensile and yield strengths of friction stir welding joints are significantly improved after severe plastic deformation due to the grain refinement. Following heat treatment, the strength of the friction stir welding joints significantly decrease due to the obvious abnormal grain growth. Careful attention must be given to the processing route of any friction stir welding joint intended for plastic forming, especially the annealing between forming passes. Severe plastic deforming of the friction stir welding joint leads to a high level of stored energy/dislocation density, which causes the abnormal grain growth during subsequent heat treatment, and consequently reduce the mechanical properties of the friction stir welding joint. - Highlights: • Great changes are observed in the microstructure of FSW joint after postprocessing. • Postprocessing shows great effect on the microstructure stability of FSW joint. • The weld shows more significant decrease in strength than the BM due to the AGG. • Attention must be given to the processing route of FSW joint for plastic forming.

  7. Development of Laser Welding of Ni based Superalloys for Aeronautic Engine Applications (Experimental Process and Obtained Properties).

    NASA Astrophysics Data System (ADS)

    Zapirain, Fidel; Zubiri, Fidel; Garciandía, Fermín; Tolosa, Itziar; Chueca, Samuel; Goiria, Aimar

    Superalloys are designed for service at temperatures above 540 °C. Due to their properties at high temperatures, this family of materials is used in different aircraft engine components. Aeronautic components demand reliable joining technologies. The laser welding of three different superalloys have been performed and analysed. Due to reduced extension of the heat affected zone (HAZ), and high quality and ratio "depth/width" of welded seams, laser welding has been a first joining technology candidate to new designs of components for new engines. The laser welding trials results, properties obtained, and development of the homologation of laser welding process are described.

  8. Creep Strength of Dissimilar Welded Joints Using High B-9Cr Steel for Advanced USC Boiler

    NASA Astrophysics Data System (ADS)

    Tabuchi, Masaaki; Hongo, Hiromichi; Abe, Fujio

    2014-10-01

    The commercialization of a 973 K (700 °C) class pulverized coal power system, advanced ultra-supercritical (A-USC) pressure power generation, is the target of an ongoing research project initiated in Japan in 2008. In the A-USC boiler, Ni or Ni-Fe base alloys are used for high-temperature parts at 923 K to 973 K (650 °C to 700 °C), and advanced high-Cr ferritic steels are planned to be used at temperatures lower than 923 K (650 °C). In the dissimilar welds between Ni base alloys and high-Cr ferritic steels, Type IV failure in the heat-affected zone (HAZ) is a concern. Thus, the high B-9Cr steel developed at the National Institute for Materials Science, which has improved creep strength in weldments, is a candidate material for the Japanese A-USC boiler. In the present study, creep tests were conducted on the dissimilar welded joints between Ni base alloys and high B-9Cr steels. Microstructures and creep damage in the dissimilar welded joints were investigated. In the HAZ of the high B-9Cr steels, fine-grained microstructures were not formed and the grain size of the base metal was retained. Consequently, the creep rupture life of the dissimilar welded joints using high B-9Cr steel was 5 to 10 times longer than that of the conventional 9Cr steel welded joints at 923 K (650 °C).

  9. Strength analysis of laser welded lap joint for ultra high strength steel

    NASA Astrophysics Data System (ADS)

    Jeong, Young Cheol; Kim, Cheol Hee; Cho, Young Tae; Jung, Yoon Gyo

    2013-12-01

    Several industries including the automotive industry have recently applied the process of welding high strength steel. High strength steel is steel that is harder than normal high strength steel, making it much stronger and stiffer. HSS can be formed in pieces that can be up to 10 to 15 percent thinner than normal steel without sacrificing strength, which enables weight reduction and improved fuel economy. Furthermore, HSS can be formed into complex shapes that can be welded into structural areas. This study is based on previous experiments and is aimed at establishing the stress distribution for laser welded high strength steel. Research on the stress distribution for laser welded high strength steel is conducted by using Solid Works, a program that analyzes the stress of a virtual model. In conclusion, we found that the stress distribution is changed depending on the shape of welded lap joint. In addition, the Influence of the stress distribution on welded high strength steel can be used to standard for high energy welding of high strength steel, and we can also predict the region in welded high strength steel that may cracked.

  10. Structural health monitoring of multi-spot welded joints using a lead zirconate titanate based active sensing approach

    NASA Astrophysics Data System (ADS)

    Yao, Ping; Kong, Qingzhao; Xu, Kai; Jiang, Tianyong; Huo, Lin-sheng; Song, Gangbing

    2016-01-01

    Failures of spot welded joints directly reduce the load capacity of adjacent structures. Due to their complexity and invisibility, real-time health monitoring of spot welded joints is still a challenge. In this paper, a lead zirconate titanate (PZT) based active sensing approach was proposed to monitor the structural health of multi-spot welded joints in real time. In the active sensing approach, one PZT transducer was used as an actuator to generate a guided stress wave, while another one, as a sensor, detected the wave response. Failure of a spot welded joint reduces the stress wave paths and attenuates the wave propagation energy from the actuator to the sensor. A total of four specimens made of dual phase steel with spot welds, including two specimens with 20 mm intervals of spot welded joints and two with 25 mm intervals, were designed and fabricated for this research. Under tensile tests, the spot welded joints successively failed, resulting in the PZT sensor reporting decreased received energy. The energy attenuations due to the failures of joints were clearly observed by the PZT sensor signal in both the time domain and frequency domain. In addition, a wavelet packet-based spot-weld failure indicator was developed to quantitatively evaluate the failure condition corresponding to the number of failed joints.

  11. 46 CFR 56.30-5 - Welded joints.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... types of butt welding end preparations are shown in ASME B16.25 (incorporated by reference; see 46 CFR...) Each socket weld must conform to ASME B16.11 (incorporated by reference; see 46 CFR 56.01-2), to applicable standards listed in 46 CFR 56.60-1, Table 56.60-1(b), and to Figure 127.4.4C in ASME...

  12. 46 CFR 56.30-5 - Welded joints.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... types of butt welding end preparations are shown in ASME B16.25 (incorporated by reference; see 46 CFR...) Each socket weld must conform to ASME B16.11 (incorporated by reference; see 46 CFR 56.01-2), to applicable standards listed in 46 CFR 56.60-1, table 56.60-1(b), and to Figure 127.4.4C in ASME...

  13. 46 CFR 56.30-5 - Welded joints.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... types of butt welding end preparations are shown in ASME B16.25 (incorporated by reference; see 46 CFR...) Each socket weld must conform to ASME B16.11 (incorporated by reference; see 46 CFR 56.01-2), to applicable standards listed in 46 CFR 56.60-1, Table 56.60-1(b), and to Figure 127.4.4C in ASME...

  14. 46 CFR 56.30-5 - Welded joints.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... types of butt welding end preparations are shown in ASME B16.25 (incorporated by reference; see 46 CFR...) Each socket weld must conform to ASME B16.11 (incorporated by reference; see 46 CFR 56.01-2), to applicable standards listed in 46 CFR 56.60-1, table 56.60-1(b), and to Figure 127.4.4C in ASME...

  15. Microstructural investigation of hardfacing weld deposit obtained from CrB paste

    SciTech Connect

    Kr. Ray, S.; Sarker, B.; Kr. Bhattacharya, S. )

    1989-05-01

    Hardfacing weld deposits are used as a protective layer on engineering components and tools subjected to different modes of wear. Cheaper iron-based alloys with chromium and carbon or relatively expensive alloys with some niobium or titanium have long been used as standard hardfacing materials. In recent years boron has substituted the costlier alloying elements and the newly developed Fe-B-C alloys have shown encouraging results. The microstructure of the welded hardfacing deposit is one of the most important factors that determine its performance. The amount, size, distribution and hardness of the individual constituents play important roles in imparting the desired properties. Recently Colomonoy sweat on paste containing fine CrB particles (of about 12 {mu}m average size) suspended in an organic binder has been marketed as the new generation hardfacing material. A thin coating of the paste is applied on the component surface, allowed to dry and welded. The welded deposit has been found to offer good wear resistance in many industrial applications. This paper reports the microstructural investigation of the welded deposit obtained from this paste.

  16. Effect of Welding Parameters on Microstructure, Thermal, and Mechanical Properties of Friction-Stir Welded Joints of AA7075-T6 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Lotfi, Amir Hossein; Nourouzi, Salman

    2014-06-01

    A high-strength Al-Zn-Mg-Cu alloy AA7075-T6 was friction-stir welded with various process parameter combinations incorporating the design of the experiment to investigate the effect of welding parameters on the microstructure and mechanical properties. A three-factors, five-level central composition design (CCD) has been used to minimize the number of experimental conditions. The friction-stir welding parameters have significant influence on the heat input and temperature profile, which in turn regulates the microstructural and mechanical properties of the joints. The weld thermal cycles and transverse distribution of microhardness of the weld joints were measured, and the tensile properties were tested. The fracture surfaces of tensile specimens were observed by a scanning electron microscope (SEM), and the formation of friction-stir processing zone has been analyzed macroscopically. Also, an equation was derived to predict the final microhardness and tensile properties of the joints, and statistical tools are used to develop the relationships. The results show that the peak temperature during welding of all the joints was up to 713 K (440 °C), which indicates the key role of the tool shoulder diameter in deciding the maximum temperature. From this investigation, it was found that the joint fabricated at a rotational speed of 1050 rpm, welding speed of 100 mm/min, and shoulder diameter of 14 mm exhibited higher mechanical properties compared to the other fabricated joints.

  17. Experimental study of steel welded joints localization with using fiber Bragg grating strain sensor

    NASA Astrophysics Data System (ADS)

    Harasim, Damian

    2015-12-01

    Optical sensing systems has a not weakening research and development in recent years. Because of its unique properties of being unsusceptible to electromagnetic interference, having wide range of operational temperature and having extreme small physical dimensions, optical fiber sensors has increasing acceptance. Fiber Bragg Gratings (FBG) is the most frequently used type of optical sensor types because of its huge multiplexing potential and potentiality of being embedded into composite material (e.g. in structural health monitoring) or attached into measured structure. Embedding or attaching FBG into an inhomogeneous environment, spectral characteristic of the sensing grating do not retain full symmetry, which is due to related differences in the distribution of the axial stress of the grating. When periodicity of the grating is constant, the peak of FBG reflection spectrum should be narrow and sharp. An inhomogeneous axial strain distribution will cause a distorsion in measured transmission or reflection spectrum. This paper shows an distorsions in FBG reflection spectrum measured from sensor attached on surface with welded joint. The sensor strain-to-wavelength shift processing characteristics obtained for homogeneous and welded steel samples were compared.

  18. Simulation of the elastic deformation of laser-welded joints of an austenitic corrosion-resistant steel and a titanium alloy with an intermediate copper insert

    NASA Astrophysics Data System (ADS)

    Pugacheva, N. B.; Myasnikova, M. V.; Michurov, N. S.

    2016-02-01

    The macro- and microstructures and the distribution of elements and of the values of the microhardness and contact modulus of elasticity along the height and width of the weld metal and heat-affected zone of austenitic corrosion-resistant 12Kh18N10T steel (Russian analog of AISI 321) and titanium alloy VT1-0 (Grade 2) with an intermediate copper insert have been studied after laser welding under different conditions. The structural inhomogeneity of the joint obtained according to one of the regimes selected has been shown: the material of the welded joint represents a supersaturated solid solution of Fe, Ni, Cr, and Ti in the crystal lattice of copper with a uniformly distributed particles of intermetallic compounds Ti(Fe,Cr) and TiCu3. At the boundaries with steel and with the titanium alloy, diffusion zones with thicknesses of 0.1-0.2 mm are formed that represent supersaturated solid solutions based on iron and titanium. The strength of such a joint was 474 MPa, which corresponds to the level of strength of the titanium alloy. A numerical simulation of the mechanical behavior of welded joints upon the elastic tension-compression has been performed taking into account their structural state, which makes it possible to determine the amplitude values of the deformations of the material of the weld.

  19. Microstructure and Mechanical Properties of Laser-Welded Joints of Ti-22Al-25Nb/TA15 Dissimilar Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Li, Dalong; Hu, Shengsun; Shen, Junqi; Zhang, Hao; Bu, Xianzheng

    2016-05-01

    Laser beam welding (LBW) was applied to join 1-mm-thick dissimilar titanium alloys, Ti-22Al-25Nb (at.%) and TA15, and the microstructure and mechanical properties of the welded joints were systematically analyzed. Defect-free joints were obtained, and the fusion zone mainly consisted of B2 and martensitic α' phases because of the uneven distribution of the β phase stabilizer and rapid cooling rate of LBW. The phase compositions of the heat-affected zone varied with the different thermal cycles during the welding process. The different microstructures of the dissimilar titanium alloys led to an unsymmetrical hardness profile, with the welded seam exhibiting the lowest value of 271 HV. In room-temperature tensile tests, the fractures all occurred preferentially in the fusion zone. The strengths of the joints were close to those of the base metal but with prominently decreasing ductility. In tensile tests performed at 550 °C, all the joints fractured in the TA15 base metal, and the strength and plasticity of the welds were equivalent to those of the TA15 base metal.

  20. Structure and microhardness of cu-ta joints produced by explosive welding.

    PubMed

    Maliutina, Iu N; Mali, V I; Bataev, I A; Bataev, A A; Esikov, M A; Smirnov, A I; Skorokhod, K A

    2013-01-01

    The structure and microhardness of Cu-Ta joints produced by explosive welding were studied. It was found that, during explosive welding, an intermediate layer 20⋯40  μ m thick with a finely dispersed heterophase structure, formed between the welded copper and tantalum plates. The structure of the layer was studied by scanning and transmission electron microscopy. Microvolumes with tantalum particles distributed in a copper matrix and microvolumes of copper particles in a tantalum matrix were detected. The tantalum particles in copper have a size of 5⋯500 nm, with a predominance of 5⋯50 nm particles. A mechanism for the formation of the finely dispersed heterophase structure in explosive welding is proposed. The microhardness of interlayers with the heterophase structure reaches 280 HV, which far exceeds the microhardness of copper (~130 HV) and tantalum (~160 HV). Many twins of deformation origin were found in the structure of the copper plate. The effect of heating temperature in the range from 100 to 900°C on the microhardness of copper, tantalum, and the Cu-Ta welded joint was studied. Upon heating to 900°C, the microhardness of the intermediate layer decreases from 280 to 150 HV. The reduction in the strength properties of the weld material is mainly due to structural transformations in copper. PMID:24453818

  1. Structure and Microhardness of Cu-Ta Joints Produced by Explosive Welding

    PubMed Central

    Maliutina, Iu. N.; Mali, V. I.; Bataev, I. A.; Bataev, A. A.; Esikov, M. A.; Smirnov, A. I.; Skorokhod, K. A.

    2013-01-01

    The structure and microhardness of Cu-Ta joints produced by explosive welding were studied. It was found that, during explosive welding, an intermediate layer 20⋯40 μm thick with a finely dispersed heterophase structure, formed between the welded copper and tantalum plates. The structure of the layer was studied by scanning and transmission electron microscopy. Microvolumes with tantalum particles distributed in a copper matrix and microvolumes of copper particles in a tantalum matrix were detected. The tantalum particles in copper have a size of 5⋯500 nm, with a predominance of 5⋯50 nm particles. A mechanism for the formation of the finely dispersed heterophase structure in explosive welding is proposed. The microhardness of interlayers with the heterophase structure reaches 280 HV, which far exceeds the microhardness of copper (~130 HV) and tantalum (~160 HV). Many twins of deformation origin were found in the structure of the copper plate. The effect of heating temperature in the range from 100 to 900°C on the microhardness of copper, tantalum, and the Cu-Ta welded joint was studied. Upon heating to 900°C, the microhardness of the intermediate layer decreases from 280 to 150 HV. The reduction in the strength properties of the weld material is mainly due to structural transformations in copper. PMID:24453818

  2. The microstructure of aluminum A5083 butt joint by friction stir welding

    SciTech Connect

    Jasri, M. A. H. M.; Afendi, M.; Ismail, A.; Ishak, M.

    2015-05-15

    This study presents the microstructure of the aluminum A5083 butt joint surface after it has been joined by friction stir welding (FSW) process. The FSW process is a unique welding method because it will not change the chemical properties of the welded metals. In this study, MILKO 37 milling machine was modified to run FSW process on 4 mm plate of aluminum A5083 butt joint. For the experiment, variables of travel speed and tool rotational speed based on capability of machine were used to run FSW process. The concentrated heat from the tool to the aluminum plate changes the plate form from solid to plastic state. Two aluminum plates is merged to become one plate during plastic state and return to solid when concentrated heat is gradually further away. After that, the surface and cross section of the welded aluminum were investigated with a microscope by 400 x multiplication zoom. The welding defect in the FSW aluminum was identified. Then, the result was compared to the American Welding Society (AWS) FSW standard to decide whether the plate can be accepted or rejected.

  3. The microstructure of aluminum A5083 butt joint by friction stir welding

    NASA Astrophysics Data System (ADS)

    Jasri, M. A. H. M.; Afendi, M.; Ismail, A.; Ishak, M.

    2015-05-01

    This study presents the microstructure of the aluminum A5083 butt joint surface after it has been joined by friction stir welding (FSW) process. The FSW process is a unique welding method because it will not change the chemical properties of the welded metals. In this study, MILKO 37 milling machine was modified to run FSW process on 4 mm plate of aluminum A5083 butt joint. For the experiment, variables of travel speed and tool rotational speed based on capability of machine were used to run FSW process. The concentrated heat from the tool to the aluminum plate changes the plate form from solid to plastic state. Two aluminum plates is merged to become one plate during plastic state and return to solid when concentrated heat is gradually further away. After that, the surface and cross section of the welded aluminum were investigated with a microscope by 400 x multiplication zoom. The welding defect in the FSW aluminum was identified. Then, the result was compared to the American Welding Society (AWS) FSW standard to decide whether the plate can be accepted or rejected.

  4. Weld Bead Size, Microstructure and Corrosion Behavior of Zirconium Alloys Joints Welded by Pulsed Laser Spot Welding

    NASA Astrophysics Data System (ADS)

    Cai, Chuang; Li, Liqun; Tao, Wang; Peng, Genchen; Wang, Xian

    2016-07-01

    Pulsed laser spot welding of intersection points of zirconium alloys straps was performed. Weld bead size, microstructure and the corrosion behavior of weld bead were investigated. With the increasing laser peak power or number of shots, the weld width of the beads increased, the protrusion decreased and the dimple increased with further increase in heat input. The fusion zone consisted of a mixture of αZr and residual βZr phases. After annealing treatment, βNb and Zr(Fe, Nb)2 second phase particles were precipitated inter- and intragranular of αZr grains adequately. The oxide thickness of annealed weld bead was about 3.90 μm, decreased by about 18.1% relative to the 4.76 μm of as-welded specimen corroded at 400 °C and 10.3 MPa for 20 days. The corrosion resistance of annealed specimen was better than that of as-welded specimen, since the second phase particles exerted better corrosion resistance, and the content of Nb in βZr and the fraction of βZr decreased after the annealing treatment.

  5. Weld Bead Size, Microstructure and Corrosion Behavior of Zirconium Alloys Joints Welded by Pulsed Laser Spot Welding

    NASA Astrophysics Data System (ADS)

    Cai, Chuang; Li, Liqun; Tao, Wang; Peng, Genchen; Wang, Xian

    2016-09-01

    Pulsed laser spot welding of intersection points of zirconium alloys straps was performed. Weld bead size, microstructure and the corrosion behavior of weld bead were investigated. With the increasing laser peak power or number of shots, the weld width of the beads increased, the protrusion decreased and the dimple increased with further increase in heat input. The fusion zone consisted of a mixture of αZr and residual βZr phases. After annealing treatment, βNb and Zr(Fe, Nb)2 second phase particles were precipitated inter- and intragranular of αZr grains adequately. The oxide thickness of annealed weld bead was about 3.90 μm, decreased by about 18.1% relative to the 4.76 μm of as-welded specimen corroded at 400 °C and 10.3 MPa for 20 days. The corrosion resistance of annealed specimen was better than that of as-welded specimen, since the second phase particles exerted better corrosion resistance, and the content of Nb in βZr and the fraction of βZr decreased after the annealing treatment.

  6. A Combined Experimental/Computational Analysis of the Butt-Friction-Stir-Welded AA2139-T8 Joints

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Snipes, J. S.; Ramaswami, S.; Yen, C.-F.

    2016-07-01

    Combined experimental and computational investigations are carried out of the mechanical properties of materials residing in different weld zones of friction stir-welded (FSW) joints of thick plates of AA2139-T8. The experimental portion of the work comprised (a) identification of the weld zones within the FSW joints, through the use of optical-microscopy characterization of a transverse section; (b) validation of the weld zones identified in (a) via the generation of a micro-hardness field over the same transverse section; (c) extracting and subsequently testing miniature tensile specimens from different weld zones; and (d) extracting and testing a larger-size tensile specimen spanning transversely the FSW weld. The computational portion of the work comprised (i) validation of the mechanical properties, as determined experimentally using the miniature tensile specimens, of the material residing within different zones of the FSW joint; and (ii) clarification of the benefits yielded by the knowledge of the local material properties within the FSW joint. These benefits arise from the fact that (a) joint mechanical properties are generally inferior to those of the base metal; (b) the width of the weld in thick metallic-armor is often comparable to the armor thickness, and therefore may represent a significant portion of the armor exposed-surface area; and (c) modeling of the weld-material structural response under loading requires the availability of high-fidelity/validated material constitutive models, and the development of such models requires knowledge of the local weld-material mechanical properties.

  7. A Study on Tooling and Its Effect on Heat Generation and Mechanical Properties of Welded Joints in Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Tikader, Sujoy; Biswas, Pankaj; Puri, Asit Baran

    2016-06-01

    Friction stir welding (FSW) has been the most attracting solid state welding process as it serves numerous advantages like good mechanical, metallurgical properties etc. Non weldable aluminium alloys like 5XXX, 7XXX series can be simply joined by this process. In this present study a mathematical model has been developed and experiments were successfully performed to evaluate mechanical properties of FSW on similar aluminium alloys i.e. AA1100 for different process parameters and mainly two kind of tool geometry (straight cylindrical and conical or cylindrical tapered shaped pin with flat shoulder). Tensile strength and micro hardness for different process parameters are reported of the welded plate sample. It was noticed that in FSW of similar alloy with tool made of SS-310 tool steel, friction is the major contributor for the heat generation. It was seen that tool geometry, tool rotational speed, plunging force by the tool and traverse speed have significant effect on tensile strength and hardness of friction stir welded joints.

  8. Metallurgical and Corrosion Characterization of POST Weld Heat Treated Duplex Stainless Steel (uns S31803) Joints by Friction Welding Process

    NASA Astrophysics Data System (ADS)

    Asif M., Mohammed; Shrikrishna, Kulkarni Anup; Sathiya, P.

    2016-02-01

    The present study focuses on the metallurgical and corrosion characterization of post weld heat treated duplex stainless steel joints. After friction welding, it was confirmed that there is an increase in ferrite content at weld interface due to dynamic recrystallization. This caused the weldments prone to pitting corrosion attack. Hence the post weld heat treatments were performed at three temperatures 1080∘C, 1150∘C and 1200∘C with 15min of aging time. This was followed by water and oil quenching. The volume fraction of ferrite to austenite ratio was balanced and highest pit nucleation resistance were achieved after PWHT at 1080∘C followed by water quench and at 1150∘C followed by oil quench. This had happened exactly at parameter set containing heating pressure (HP):40 heating time (HT):4 upsetting pressure (UP):80 upsetting time (UP):2 (experiment no. 5). Dual phase presence and absence of precipitates were conformed through TEM which follow Kurdjumov-Sachs relationship. PREN of ferrite was decreasing with increase in temperature and that of austenite increased. The equilibrium temperature for water quenching was around 1100∘C and that for oil quenching was around 1140∘C. The pit depths were found to be in the range of 100nm and width of 1.5-2μm.

  9. Joints, fissures, and voids in rhyolite welded ash-flow tuff at Teton damsite, Idaho

    USGS Publications Warehouse

    Prostka, Harold J.

    1977-01-01

    Several kinds of joints, fissures, and voids are present in densely welded rhyolite ash-flow tuff at Teton damsite. Older fissures and voids probably were formed in the ash-flow sheet during secondary flowage, which probably was caused by differential compaction or settling over irregular topography. The younger, more abundant fissures are mostly steep cooling joints that probably have been opened farther by horizontal tectonic extension and gravitational creep, perhaps aided by lateral stress relief.

  10. Structural Performance Evaluation of Composite-To-Steel Weld Bonded Joint

    SciTech Connect

    Shah, Bhavesh; Frame, Barbara J; Dove, Caroline; Fuchs, Hannes

    2010-01-01

    The Automotive Composites Consortium (ACC), a collaboration of Chrysler, Ford, General Motors, and the US Department of Energy is conducting a focal project to demonstrate the use of composite materials in high volume structural applications such as an underbody capable of carrying crash loads. One of the critical challenges is to attach the composite part to the steel structure in a high-volume automotive manufacturing environment and meet the complex requirements for crash. Weld-bonding, a combination of adhesive bonding and spot welding, was selected as the primary joining method. A novel concept of bonding doubler steel strips to composite enabled the spot welding to the steel structure, ensuring the compability with the OEM assembly processes. The structural performance of the joint, including durability, was assessed via analytical and physical testing under quasi-static loading at various temperatures. This paper discusses the results of the experiments designed to generate key modeling parameters for Finite Element Analysis of the joint.

  11. Analysis of factors responsible for the accelerated creep rupture of 12% Cr martensitic steel weld joints

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, A. S.; Okhapkin, K. A.; Mikhailov, M. S.; Skutin, V. S.; Zubova, G. E.; Fedotov, B. V.

    2016-06-01

    In the process of the investigation of the heat resistance of a 0.07C-12Cr-Ni-Mo-V-Nb steel of the martensitic-ferritic class, a reduction was revealed in the long-term strength of its welded joints to below the level of the strength of the base metal. To establish the causes for the accelerated failure of the welded joints, an imitation of the thermal cycles was carried out that produce the structure of the heataffected zone using a dilatometer. In the samples with the structure that corresponds to that of the heataffected zone, a local zone of softening was revealed. The investigations of the metal structure using transmission electron microscopy have shown that the reduction in the creep rupture strength was caused by structural changes under the conditions of the thermal cycle of welding upon the staying of the steel in the temperature range between the Ac 1 and Ac 3 points.

  12. High-power Laser Welding of Thick Steel-aluminum Dissimilar Joints

    NASA Astrophysics Data System (ADS)

    Lahdo, Rabi; Springer, André; Pfeifer, Ronny; Kaierle, Stefan; Overmeyer, Ludger

    According to the Intergovernmental Panel on Climate Change (IPCC), a worldwide reduction of CO2-emissions is indispensable to avoid global warming. Besides the automotive sector, lightweight construction is also of high interest for the maritime industry in order to minimize CO2-emissions. Using aluminum, the weight of ships can be reduced, ensuring lower fuel consumption. Therefore, hybrid joints of steel and aluminum are of great interest to the maritime industry. In order to provide an efficient lap joining process, high-power laser welding of thick steel plates (S355, t = 5 mm) and aluminum plates (EN AW-6082, t = 8 mm) is investigated. As the weld seam quality greatly depends on the amount of intermetallic phases within the joint, optimized process parameters and control are crucial. Using high-power laser welding, a tensile strength of 10 kN was achieved. Based on metallographic analysis, hardness tests, and tensile tests the potential of this joining method is presented.

  13. Deformation Mechanism and Microstructure Evolution of T92/S30432 Dissimilar Welded Joint During Creep

    NASA Astrophysics Data System (ADS)

    Xu, Lianyong; Wang, Yongfa; Jing, Hongyang; Zhao, Lei; Han, Yongdian

    2016-09-01

    The cross dissimilar welds between T92 martensitic steel and S30432 austenitic steel were crept at 625 °C with different applied stresses, and the creep deformation and microstructure behaviors were characterized. The results revealed that the creep deformation behavior of dissimilar weld joint was controlled by its martensitic T92 part due to the Ni-based filler metal employed. The fracture positions of crept dissimilar welded joints were located in base metal of T92 steel as the applied stress over than 140 MPa. The fracture type was mainly caused by plastic deformation and characterized by dimples and surface necking. In contrast, as applied stress was <140 MPa, fractured location was transferred into the fine-grained heat-affected zone of T92 part identified to be the intergranular brittle fracture. This phenomenon was controlled by creep deformation and related to undissolved carbides, fine grain size and constraint effect induced by creep deformation inconsistent in this zone.

  14. Microstructure and Properties of TIG/FSW Welded Joints of a New Al-Zn-Mg-Sc-Zr Alloy

    NASA Astrophysics Data System (ADS)

    Lei, Xuefeng; Deng, Ying; Peng, Yongyi; Yin, Zhimin; Xu, Guofu

    2013-09-01

    A new Al-Zn-Mg-Sc-Zr alloy with low Sc content was welded by tungsten inert gas (TIG) and friction stir welding (FSW) techniques. The microstructure and properties of those two welded joints were investigated by property tests and microstructural observations. The results show that the new Al-Zn-Mg-Sc-Zr alloy has desirable welding property. The ultimate tensile strength and welding coefficient of the TIG joint reach 405 MPa and 76.7%, respectively, and in FSW joint those property values reach 490 MPa and 92.6%, respectively. The studied base metal has a deformed fibrous subgrains structure, many nano-scaled Al3(Sc,Zr) particles, and very fine aging precipitates. In the TIG joint, the fusion zone consists of coarsened dendritic grains and the heat-affected zone (HAZ) has fibrous micro-scaled subgrains. The FSW welded joint is characterized by a weld nugget zone, thermo-mechanically affected zone (TMAZ), and HAZ. Due to plastic deformation around the rotating pin and anti-recrystallized effectiveness of Al3(Sc,Zr) particles, the weld nugget zone has a very fine subgrain structure. The TMAZ experiences some dissolution of aging precipitates. Coarsening of aging precipitates was observed in the HAZ. The better mechanical properties of the FSW joint are derived from a fine subgrain structure and homogeneous chemical compositions.

  15. T-joints of Ti alloys with hybrid laser-MIG welding: macro-graphic and micro-hardness analyses

    NASA Astrophysics Data System (ADS)

    Spina, R.; Sorgente, D.; Palumbo, G.; Scintilla, L. D.; Brandizzi, M.; Satriano, A. A.; Tricarico, L.

    2012-03-01

    Titanium alloys are characterized by high mechanical properties and elevated corrosion resistance. The combination of laser welding with MIG/GMAW has proven to improve beneficial effects of both processes (keyhole, gap-bridging ability) while limiting their drawbacks (high thermal gradient, low mechanical resistance) In this paper, the hybrid Laser-GMAW welding of Ti-6Al-4V 3-mm thick sheets is investigated using a specific designed trailing shield. The joint geometry was the double fillet welded T-joint. Bead morphologies, microstructures and mechanical properties (micro-hardness) of welds were evaluated and compared to those achieved for the base metals.

  16. Effect of friction stir welding parameters on defect formation

    NASA Astrophysics Data System (ADS)

    Tarasov, S. Yu.; Rubtsov, V. E.; Eliseev, A. A.; Kolubaev, E. A.; Filippov, A. V.; Ivanov, A. N.

    2015-10-01

    Friction stir welding is a perspective method for manufacturing automotive parts, aviation and space technology. One of the major problems is the formation of welding defects and weld around the welding zone. The formation of defect is the main reason failure of the joint. A possible way to obtain defect-free welded joints is the selection of the correct welding parameters. Experimental results describing the effect of friction stir welding process parameters on the defects of welded joints on aluminum alloy AMg5M have been shown. The weld joint defects have been characterized using the non-destructive radioscopic and ultrasound phase array methods. It was shown how the type and size of defects determine the welded joint strength.

  17. A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel PART I : Proposal of a heat source model

    NASA Astrophysics Data System (ADS)

    Kim, Jae Woong; Jang, Beom Seon; Kim, Yong Tai; Chun, Kwang San

    2013-09-01

    The use of I-Core sandwich panel has increased in cruise ship deck structure since it can provide similar bending strength with conventional stiffened plate while keeping lighter weight and lower web height. However, due to its thin plate thickness, i.e. about 4~6 mm at most, it is assembled by high power CO2 laser welding to minimize the welding deformation. This research proposes a volumetric heat source model for T-joint of the I-Core sandwich panel and a method to use shell element model for a thermal elasto-plastic analysis to predict welding deformation. This paper, Part I, focuses on the heat source model. A circular cone type heat source model is newly suggested in heat transfer analysis to realize similar melting zone with that observed in experiment. An additional suggestion is made to consider negative defocus, which is commonly applied in T-joint laser welding since it can provide deeper penetration than zero defocus. The proposed heat source is also verified through 3D thermal elasto-plastic analysis to compare welding deformation with experimental results. A parametric study for different welding speeds, defocus values, and welding powers is performed to investigate the effect on the melting zone and welding deformation. In Part II, focuses on the proposed method to employ shell element model to predict welding deformation in thermal elasto-plastic analysis instead of solid element model.

  18. Impact of the Weld Geometry on the Stress Intensity Factor of the Welded T-Joint Exposed to the Tensile Force and the Bending Moment

    NASA Astrophysics Data System (ADS)

    Djoković, Jelena M.; Nikolić, Ružica R.; Bujňák, Ján

    2015-12-01

    In this paper it is analyzed the welded T-joint exposed to the axial tensile force and the bending moment, for determining the impact of the weld geometry on the fracture mechanics parameters. The stress intensity factor was calculated analytically, based on the concept of the linear elastic fracture mechanics (LEFM), by application of the Mathematica® programming routine. The presence of the weld was taken into account through the corresponding correction factors. The results show that increase of the size of the triangular welds leads to decrease of the stress intensity factor, while the SIF increases with increase of the welds' width. The ratio of the two welded plates' thicknesses shows that plate thicknesses do not exhibit significant influence on the stress intensity factor behavior.

  19. Microstructure evolution of Al/Mg butt joints welded by gas tungsten arc with Zn filler metal

    SciTech Connect

    Liu Fei; Zhang Zhaodong; Liu Liming

    2012-07-15

    Based on the idea of alloying welding seam, Gas tungsten arc welding method with pure Zn filler metal was chosen to join Mg alloy and Al alloy. The microstructures, phases, element distribution and fracture morphology of welding seams were examined. The results indicate that there was a transitional zone in the width of 80-100 {mu}m between the Mg alloy substrate and fusion zone. The fusion zone was mainly composed of MgZn{sub 2}, Zn-based solid solution and Al-based solid solution. The welding seam presented distinct morphology in different location owning to the quite high cooling rate of the molten pool. The addition of Zn metal could prevent the formation of Mg-Al intermetallics and form the alloyed welding seam during welding. Therefore, the tensile strengths of joints have been significantly improved compared with those of gas tungsten arc welded joints without Zn metal added. Highlights: Black-Right-Pointing-Pointer Mg alloy AZ31B and Al alloy 6061 are welded successfully. Black-Right-Pointing-Pointer Zinc wire is employed as a filler metal to form the alloyed welding seam. Black-Right-Pointing-Pointer An alloyed welding seam is benefit for improving of the joint tensile strength.

  20. Development of phased array ultrasonic testing in lieu of radiography for testing complete joint penetration (CJP) welds

    NASA Astrophysics Data System (ADS)

    Haldipur, P.; Boone, Shane D.

    2014-04-01

    The past decade has seen new, emerging innovation of Ultrasonic Testing (UT). Specifically, multiple manufacturers have produced Phased Array Ultrasonic Testing (PAUT) systems. The PAUT systems embed a matrix of multiple (some up to 128) single transducers into one probe used for scanning elastic materials. Simultaneously exciting multiple transducers offers distinct advantages; depending on the sequencing of transducer excitation, the ultrasonic beam could be steered within the material and multiple beams help develop extra dimensional data to assist with visualization of possible flaws including the discontinuity size, shape and location. Unfortunately, there has not been broad acceptance of PAUT in the bridge fabrication industry because it is currently not a recognized inspection technology in AWS D1.5. One situation in which the technology would excel would be inspection of Complete Joint Penetration (CJP) butt welds. Currently, AWS D1.5 required CJP welds subjected to tensile or reversal stresses only be inspected by Radiographic Testing (RT). However, discontinuities normally seen by RT can also be seen with PAUT. Until specification language is adopted into D1.5, there will continue to be hesitancy to use PAUT for the inspection of CJP butt welds. Developmental work must first be performed to develop the acceptance criteria and the specification language. The developmental work from the inspections carried out on butt-weld specimens and transition butt-weld specimens are presented in this paper. Specific scan plans were developed using the ES-Beam simulation software for each of the test specimens. In depth analysis of PAUT data obtained to determine exact location and sizing information of the defects was performed. The results also present the comparison of results from PAUT to those obtained using conventional UT and radiography.

  1. On the Critical Technological Issues of Friction Stir Welding T-Joints of Dissimilar Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Astarita, A.; Squillace, A.; Scala, A.; Prisco, A.

    2012-08-01

    In this article, friction stir welded T-joints of innovative dissimilar aluminum alloys have been produced and tested with the aim to investigate the feasibility of using this joining technique, in this configuration, in the aerospace field with the final aim to save weight. The introduction of both this new welding technique and innovative alloys, such as AA 2198 and AA 6056, could allow making lighter and stronger structures. Some experiments, carried out previously, have shown that the fixturing device, the tool geometry, and the tilt angle play a significant role in the joint soundness. A wide experimental characterization has been carried out on FSW T-joints of AA 6056 T4 extrudes to AA 2198 T3 rolled plates. The results attained allow to put in evidence some critical issues on the investigated configuration and can be considered as a further acquired knowledge in the understanding and the design of friction stir processes.

  2. Experimental and numerical evaluation of the fatigue behaviour in a welded joint

    NASA Astrophysics Data System (ADS)

    Almaguer, P.; Estrada, R.

    2014-07-01

    Welded joints are an important part in structures. For this reason, it is always necessary to know the behaviour of them under cyclic loads. In this paper a S - N curve of a butt welded joint of the AISI 1015 steel and Cuban manufacturing E6013 electrode is showed. Fatigue tests were made in an universal testing machine MTS810. The stress ratio used in the test was 0,1. Flaws in the fatigue specimens were characterized by means of optical and scanning electron microscopy. SolidWorks 2013 software was used to modeling the specimens geometry, while to simulate the fatigue behaviour Simulation was used. The joint fatigue limit is 178 MPa, and a cut point at 2 039 093 cycles. Some points of the simulations are inside of the 95% confidence band.

  3. Integrity assessment of the ferritic / austenitic dissimilar weld joint between intermediate heat exchanger and steam generator in fast reactor

    SciTech Connect

    Jayakumar, T.; Laha, K.; Chandravathi, K. S.; Parameswaran, P.; Goyal, S.; Kumar, J. G.; Mathew, M. D.

    2012-07-01

    Integrity of the modified 9Cr-1Mo / alloy 800 dissimilar joint welded with Inconel 182 electrodes has been assessed under creep condition based on the detailed analysis of microstructure and stress distribution across the joint by finite element analysis. A hardness peak at the ferritic / austenitic weld interface and a hardness trough at the inter-critical heat affected zone (HAZ) in ferritic base metal developed. Un-tempered martensite was found at the ferritic / austenitic weld interface to impart high hardness in it; whereas annealing of martensitic structure of modified 9Cr-1Mo steel by inter-critical heating during welding thermal cycle resulted in hardness tough in the inter-critical HAZ. Creep tests were carried out on the joint and ferritic steel base metal at 823 K over a stress range of 160-320 MPa. The joint possessed lower creep rupture strength than its ferritic steel base metal. Failure of the joint at relatively lower stresses occurred at the ferritic / austenitic weld interface; whereas it occurred at inter-critical region of HAZ at moderate stresses. Cavity nucleation associated with the weld interface particles led to premature failure of the joint. Finite element analysis of stress distribution across the weld joint considering the micro-mechanical strength inhomogeneity across it revealed higher von-Mises and principal stresses at the weld interface. These stresses induced preferential creep cavitation at the weld interface. Role of precipitate in enhancing creep cavitation at the weld interface has been elucidated based on the FE analysis of stress distribution across it. (authors)

  4. Estimate of the allowable dimensions of diagnosed defects in category III and IV welded pipeline joints{sup 1}

    SciTech Connect

    Grin', E. A.; Bochkarev, V. I.

    2013-01-15

    An approach for estimating the permissible dimensions of technological defects in butt welded joints in category III and IV pipelines is described. The allowable size of a welding defect is determined from the condition of compliance with the specifications on strength for a reference cross section (damaged joint) of the pipeline taking into account its weakening by a given defect.With regard to the fairly widespread discovery of technological defects in butt welded joints during diagnostics of auxiliary pipelines for thermal electric power plants, the proposed approach can be used in practice by repair and consulting organizations.

  5. Laser-assisted friction stir welding of aluminum alloy lap joints: microstructural and microhardness characterizations

    NASA Astrophysics Data System (ADS)

    Casalino, Giuseppe; Campanelli, Sabina L.; Contuzzi, Nicola; Angelastro, Andrea; Ludovico, Antonio D.

    2014-02-01

    Friction Stir Welding (FSW) is a solid-state joining process; i.e., no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. The laser Assisted Friction Stir Welding (LAFSW) combines a Friction Stir Welding machine and a laser system. Laser power is used to preheat and to plasticize the volume of the workpiece ahead of the rotating tool; the workpiece is then joined in the same way as in the conventional FSW process. In this work an Ytterbium fiber laser with maximum power of 4 kW and a commercial FSW machine were coupled. Both FSW and LAFSW tests were conducted on 3 mm thick 5754H111 aluminum alloy plates in lap joint configuration with a constant tool rotation rate and with different feed rates. The two processes were compared and evaluated in terms of differences in the microstructure and in the micro-hardness profile.

  6. Welding.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This curriculum guide is designed for use by South Carolina vocational education teachers as a continuing set of lesson plans for a two-year course on welding. Covered in the individual sections of the guide are the following topics: an orientation to welding, oxyacetylene welding, advanced oxyacetylene welding, shielded metal arc welding, TIG…

  7. Synchrotron X-ray CT characterization of friction-welded joints in tial turbocharger components

    NASA Astrophysics Data System (ADS)

    Sun, J. G.; Kropf, A. J.; Vissers, D. R.; Sun, W. M.; Katsoudas, J.; Yang, N.; Fei, D.

    2012-05-01

    Titanium aluminide (TiAl) is an advanced intermetallic material and is being investigated for application in turbocharger components for diesel engines. A TiAl turbocharger rotor consists of a cast TiAl turbine wheel and a Ti-alloy shaft that are joined by friction welding. Although friction welding is an established industrial process, it is still challenging to join dissimilar materials especially for brittle intermetallics. These joints are therefore required to be inspected using a nondestructive evaluation (NDE) method. In this study, synchrotron X-ray computed tomography (CT) developed at the Advanced Photon Source at Argonne National Laboratory was used for NDE characterization of friction-welded joint in three TiAl turbocharger rotors. The filtered synchrotron X-ray source has high peak energies to penetrate thick metallic materials, and the detector (imager) has high spatial resolutions to resolve small flaws. The CT inspections revealed detailed 3D crack distributions within poorly welded joints. The crack detection sensitivity and resolution was calibrated and found to be correlated well with destructive examination.

  8. Effects of neutron irradiation on strength of fusion reactor materials and their electron beam welded joints

    NASA Astrophysics Data System (ADS)

    Kaga, S.; Tamura, T.; Yoshida, H.; Miyata, K.

    1991-03-01

    Several aluminum alloys (A7N01, A5083 and A6061) and a ferritic martensitic steel (JFMS) were used in the present study of the effects of neutron irradiation on the strength of base materials and their electron beam welded joints. Neutron irradiation tests were performed using the core irradiation facility at Kyoto University Reactor (KUR). Neutron fluences were 2.0 × 10 22 9.1 × 10 22 and 1.7 × 10 23n/ m2 ( E > 0.1 MeV). Tensile tests were performed at 4.2, 77 and 293 K on miniature specimens prepared from both the base and welded materials. Aluminum alloys exhibit serrations in the nominal stress-nominal strain curve at 4.2 K. Little effect of neutron irradiation on the serration is observed. The ductility decrease of base metal and welded joints of aluminum alloys by neutron irradiation is smaller than that of JFMS. JFMS, especially welded joints, showed strong radiation embrittlement at cryogenic temperatures.

  9. 78 FR 47486 - Joint Failure on Continuous Welded Rail Track

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... CWR are considered one of the weakest elements of track structure. The track components at a joint are subject to stresses in vertical, lateral, and longitudinal planes. Although the number of CWR joint-caused... accident. On March 18, 2013, an empty Long Island Rail Road (LIRR) passenger train derailed in Forest...

  10. Microstructure- and Strain Rate-Dependent Tensile Behavior of Fiber Laser-Welded DP980 Steel Joint

    NASA Astrophysics Data System (ADS)

    Jia, Qiang; Guo, Wei; Peng, Peng; Li, Minggao; Zhu, Ying; Zou, Guisheng

    2016-02-01

    DP980 steels were butt-welded by fiber laser welding. The microstructures, microhardness distribution, and tensile behavior of the joint were investigated. The results showed that the fusion zone (FZ) consisted of fully martensite with higher hardness compared to the base metal (BM). A softened zone (20 HV0.2 drop) was produced in heat-affected zone due to martensite tempering during the laser welding. The ultimate tensile strength (UTS) and yield strength (YS) of the laser-welded joint were not degraded compared to BM with the existence of softened zone. The UTS and YS of the welded joint increased with the increase of tensile strain rate. The work hardening exponents of the BM and welded joint showed weak positive strain rate dependence. The deformation of softened zone was restrained by the hardened FZ during loading, resulting in a higher work hardening rate of softened zone than that of BM. The failure of welded joint occurred in the BM instead of softened zone. The fracture surfaces of the joint exhibited typical ductile fracture over strain rate from 0.0001 to 0.1 s-1.

  11. Mechanical characteristics and microstructure of weld joint of high-temperature martensitic steel containing 9% Cr

    NASA Astrophysics Data System (ADS)

    Shakhova, Ya. E.; Belyakov, A. N.; Kaibyshev, R. O.

    2016-04-01

    The structure and mechanical characteristics of a weld joint of 10Kh9K3V2MFBR steel (0.097 C, 0.17.Si, 0.54 Mn, 8.75 Cr, 0.21 Ni, 0.51 Mo, 0.07 Nb, 0.23 V, 0.004 N, 0.003 B, 1.6 W, 0.15 Cu, and Fe for balance, wt %) have been studied; the joint was produced by hand welding in an argon atmosphere using 03Kh20N45M7G6B welding wire (0.3 C, 20 Cr, 45 Ni, 7 Mo, 6 Mn, and 1 Nb, wt %). The weld joint is divided into the zone of the base metal, a thermal effect zone, which consists of zones that contain fine and coarse original austenitic grains, and the zone of seam metal. It has been shown that the weld joint of 10Kh9K3V2MFBR steel possesses high strength characteristics at the room temperature under static loading and a satisfactorily impact toughness, which has the minimum value of 30 J/cm2 in the zone of the seam metal and does not depend on the temperature. With a decrease in the temperature from the room temperature to 253 K, a ductile-brittle transition occurs in the thermal effect zone. Creep tests carried out at the temperature of 923 K have shown that the long-term strength of the weld seam is lower than that of the base material in the entire stress range being tested. At stresses of 140 MPa or higher, the acceleration of creep in the weld seam is observed, while at low stresses of about 120 MPa, the rates of creep in the weld seam and in the base metal remain similar until the transition to the stage of accelerated fracture occurs. The difference in the values of the long-term strength is due to premature fracture, which occurs in the thermal effect zone with the finegrained structure.

  12. Evaluation of Bending Strength in Friction Welded Alumina/mild Steel Joints by Applying Factorial Technique

    NASA Astrophysics Data System (ADS)

    Jesudoss Hynes, N. Rajesh; Nagaraj, P.; Vivek Prabhu, M.

    Joining of metal with ceramics has become significant in many applications, because they combine properties like ductility with high hardness and wear resistance. By friction welding technique, alumina can be joined to mild steel with AA1100 sheet of 1mm thickness as interlayer. In the present work, investigation of the effect of friction time on interlayer thickness reduction and bending strength is carried out by factorial design. By using ANOVA, a statistical tool, regression modeling is done. The regression model predicts the bending strength of welded ceramic/metal joints accurately with ± 2% deviation from the experimental values.

  13. Numerical investigation on friction welding of alumina / AA 6063 T6 joints

    NASA Astrophysics Data System (ADS)

    Hynes, N. Rajesh Jesudoss; Velu, P. Shenbaga; Tharmaraj, R.; Kumar, R.

    2016-05-01

    Friction welding is the most suitable candidate for joining the dissimilar materials such as AA 6063 T6 alloy/Alumina for critical situations in high temperature and high corrosion resistance applications. In the present work, the numerical simulation was carried out to understand the mechanism of joining of AA 6063 T6 alloy/ Alumina rod by friction welding process. The developed thermo mechanical model is a highly nonlinear due to the interaction between the temperature fields and time dependent of the material properties. The developed numerical tool could be used to predict the temperature distribution, stress, strain and deformation of the dissimilar joints.

  14. Analysing the strength of friction stir spot welded joints of aluminium alloy by fuzzy logic

    NASA Astrophysics Data System (ADS)

    Vaira Vignesh, R.; Padmanaban, R.; Arivarasu, M.; Karthick, K. P.; Abirama Sundar, A.; Gokulachandran, J.

    2016-09-01

    Friction stir spot welding (FSSW) is a recent joining technique developed for spot welding of thin metal sheets. This process currently finds application in automotive, aerospace, marine and sheet metal industry. In this work, the effect of FSSW process parameters namely tool rotation speed, shoulder diameter and dwell time on Tensile shear failure load (TSFL) is investigated. Box-Behnken design is selected for conducting experiments. Fuzzy based soft computing is used to develop a model for TSFL of AA6061 joints fabricated by FSSW. The interaction of the process parameters on TSFL is also presented.

  15. Friction stir welding joint of dissimilar materials between AZ31B magnesium and 6061 aluminum alloys: Microstructure studies and mechanical characterizations

    SciTech Connect

    Mohammadi, J.; Behnamian, Y.; Mostafaei, A.; Izadi, H.; Saeid, T.; Kokabi, A.H.; Gerlich, A.P.

    2015-03-15

    Friction stir welding is an efficient manufacturing method for joining dissimilar alloys, which can dramatically reduce grain sizes and offer high mechanical joint efficiency. Lap FSW joints between dissimilar AZ31B and Al 6061 alloy sheets were made at various tool rotation and travel speeds. Rotation and travel speeds varied between 560–1400 r/min and 16–40 mm/min respectively, where the ratio between these parameters was such that nearly constant pitch distances were applied during welding. X-ray diffraction pattern (XRD), optical microscopy images (OM), electron probe microanalysis (EPMA) and scanning electron microscopy equipped with an energy-dispersive X-ray spectroscopy (SEM-EDS) were used to investigate the microstructures of the joints welded. Intermetallic phases including Al{sub 12}Mg{sub 17} (γ) and Al{sub 3}Mg{sub 2} (β) were detected in the weld zone (WZ). For different tool rotation speeds, the morphology of the microstructure in the stir zone changed significantly with travel speed. Lap shear tensile test results indicated that by simultaneously increasing the tool rotation and travel speeds to 1400 r/min and 40 mm/min, the joint tensile strength and ductility reached a maximum. Microhardness measurements and tensile stress–strain curves indicated that mechanical properties were affected by FSW parameters and mainly depended on the formation of intermetallic compounds in the weld zone. In addition, a debonding failure mode in the Al/Mg dissimilar weld nugget was investigated by SEM and surface fracture studies indicated that the presence of intermetallic compounds in the weld zone controlled the failure mode. XRD analysis of the fracture surface indicated the presence of brittle intermetallic compounds including Al{sub 12}Mg{sub 17} (γ) and Al{sub 3}Mg{sub 2} (β). - Highlights: • Dissimilar Al/Mg joint was obtained by lap friction stir welding technique. • Effect of rotation and travel speeds on the formation of intermetallic

  16. Numerical and experimental study of the weld joints formation in welding foam materials

    SciTech Connect

    Bezginov, Roman O. E-mail: rakrekt@mail.ru; Krektuleva, Raisa A. E-mail: rakrekt@mail.ru; Mishin, Mikhail A. E-mail: rakrekt@mail.ru; Cherepanov, Oleg I. Cherepanov, Roman O.

    2014-11-14

    A numerical analysis of fusion welding of steel- and aluminum-based foam materials is carried out. The schemes of the structured and stochastic pore distribution are considered. The research results were used to conduct the experiments which confirmed the reliability of the numerical calculations.

  17. SRμCT study of crack propagation within laser-welded aluminum-alloy T-joints

    NASA Astrophysics Data System (ADS)

    Herzen, J.; Beckmann, F.; Riekehr, S.; Bayraktar, F. S.; Haibel, A.; Staron, P.; Donath, T.; Utcke, S.; Kocak, M.; Schreyer, A.

    2008-08-01

    Using laser welding in fabrication of metallic airframes reduces the weight and hence fuel consumption. Currently only limited parts of the airframes are welded. To increase laser beam welded parts, there is the need for a better understanding of crack propagation and crack-pore interaction within the welds. Laser beam welded Al-alloys may contain isolated small process pores and their role and interaction with growing crack need to be investigated. The present paper presents the first results of a crack propagation study in laser beam welded (LBW) Al-alloy T-joints using synchrotron radiation based micro computed tomography (SRμCT). A region-of-interest technique was used, since the specimens exceeded the field of view of the X-ray detector. As imaging with high density resolution at high photon energies is very challenging, a feasibility measurement on a small laser weld, cut cylindrically from the welded region of a T-joint, was done before starting the crack-propagation study. This measurement was performed at the beamline HARWI-II at DESY to demonstrate the potential of the SRμCT as non-destructive testing method. The result has shown a high density resolution, hence, the different Al alloys used in the T-joint and the weld itself were clearly separated. The quantitative image analysis of the 3D data sets allows visualizing non-destructively and calculating the pore size distribution.

  18. Mechanical Properties of the Assembly Welded Joint of the Oil Transportation Tank After a Long-Term Service

    NASA Astrophysics Data System (ADS)

    Pimnev, A. L.; Zemenkova, M. Yu; Zemenkov, Yu D.; Iljyashchenko, D. P.

    2016-04-01

    The paper provides results of studying a change in mechanical properties of the design elements metal and assembly welded joints of a vertical steel tank after a long-term service in oil transport facilities.

  19. Modification of Structure and Strength Properties of Permanent Joints Under Laser Beam Welding with Application of Nanopowder Modifiers

    NASA Astrophysics Data System (ADS)

    Cherepanov, A. N.; Orishich, A. M.; Malikov, A. G.; Ovcharenko, V. E.

    2016-08-01

    In the paper we present the results of experimental study of specially prepared nanosize metal-ceramic compositions impact upon structure, microhardness and mechanical properties of permanent joints produced by laser-beam welding of steel and titanium alloy plates.

  20. Effects of the Heterogeneity in the Electron Beam Welded Joint on Mechanical Properties of Ti6Al4V Alloy

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Gao, Xiao-Long; Zhang, Lin-Jie; Zhang, Jian-Xun

    2015-01-01

    The aim of this investigation was to evaluate the effect of microstructure heterogeneity on the tensile and low cycle fatigue properties of electron beam welded (EBW) Ti6Al4V sheets. To achieve this goal, the tensile and low cycle fatigue property in the EBW joints and base metal (BM) specimens is compared. During the tensile testing, digital image correlation technology was used to measure the plastic strain field evolution within the specimens. The experimental results showed that the tensile ductility and low cycle fatigue strength of EBW joints are lower than that of BM specimens, mainly because of the effect of microstructure heterogeneity of the welded joint. Moreover, the EBW joints exhibit the cyclic hardening behavior during low fatigue process, while BM specimens exhibit the cyclic softening behavior. Compared with the BM specimens with uniform microstructure, the heterogeneity of microstructure in the EBW joint is found to decrease the mechanical properties of welded joint.

  1. Mechanical and interfacial characterization of laser welded Co-Cr alloy with different joint configurations

    PubMed Central

    Kokolis, John; Chakmakchi, Makdad; Theocharopoulos, Antonios; Prombonas, Anthony

    2015-01-01

    PURPOSE The mechanical and interfacial characterization of laser welded Co-Cr alloy with two different joint designs. MATERIALS AND METHODS Dumbbell cast specimens (n=30) were divided into 3 groups (R, I, K, n=10). Group R consisted of intact specimens, group I of specimens sectioned with a straight cut, and group K of specimens with a 45° bevel made at the one welding edge. The microstructure and the elemental distributions of alloy and welding regions were examined by an SEM/EDX analysis and then specimens were loaded in tension up to fracture. The tensile strength (TS) and elongation (ε) were determined and statistically compared among groups employing 1-way ANOVA, SNK multiple comparison test (α=.05) and Weibull analysis where Weibull modulus m and characteristic strength σο were identified. Fractured surfaces were imaged by a SEM. RESULTS SEM/EDX analysis showed that cast alloy consists of two phases with differences in mean atomic number contrast, while no mean atomic number was identified for welded regions. EDX analysis revealed an increased Cr and Mo content at the alloy-joint interface. All mechanical properties of group I (TS, ε, m and σο) were found inferior to R while group K showed intermediated values without significant differences to R and I, apart from elongation with group R. The fractured surfaces of all groups showed extensive dendritic pattern although with a finer structure in the case of welded groups. CONCLUSION The K shape joint configuration should be preferred over the I, as it demonstrates improved mechanical strength and survival probability. PMID:25722836

  2. Evaluation of near-surface stress distributions in dissimilar welded joint by scanning acoustic microscopy.

    PubMed

    Kwak, Dong Ryul; Yoshida, Sanichiro; Sasaki, Tomohiro; Todd, Judith A; Park, Ik Keun

    2016-04-01

    This paper presents the results from a set of experiments designed to ultrasonically measure the near surface stresses distributed within a dissimilar metal welded plate. A scanning acoustic microscope (SAM), with a tone-burst ultrasonic wave frequency of 200 MHz, was used for the measurement of near surface stresses in the dissimilar welded plate between 304 stainless steel and low carbon steel. For quantitative data acquisition such as leaky surface acoustic wave (leaky SAW) velocity measurement, a point focus acoustic lens of frequency 200 MHz was used and the leaky SAW velocities within the specimen were precisely measured. The distributions of the surface acoustic wave velocities change according to the near-surface stresses within the joint. A three dimensional (3D) finite element simulation was carried out to predict numerically the stress distributions and compare with the experimental results. The experiment and FE simulation results for the dissimilar welded plate showed good agreement. This research demonstrates that a combination of FE simulation and ultrasonic stress measurements using SAW velocity distributions appear promising for determining welding residual stresses in dissimilar material joints.

  3. High Temperature Plasticity of Bimetallic Magnesium and Aluminum Friction Stir Welded Joints

    NASA Astrophysics Data System (ADS)

    Regev, Michael; El Mehtedi, Mohamad; Cabibbo, Marcello; Quercetti, Giovanni; Ciccarelli, Daniele; Spigarelli, Stefano

    2014-02-01

    The high temperature deformation of a bimetallic AZ31/AA6061 Friction Stir Welded joint was investigated in the present study by constant load creep experiments carried out at 473 K (200 °C). The microstructural analysis revealed the strongly inhomogeneous nature of the weld, which was characterized by an extremely fine grain size in the magnesium-rich zones and by the extensive presence of intermetallic phases. In the high stress regime, the creep strain was concentrated in the refined and particle-rich microstructure of the weld zone, while the AA6061 base metal remained undeformed. In the low stress regime, deformation became more homogeneously distributed between the AZ31 base metal and the weld zone. The creep behavior of the weld was found to obey the constitutive equation describing the minimum creep rate dependence on applied stress for the base AZ31, slightly modified to take into account the finer microstructure and the role of secondary phase particles, i.e., the retardation of grain growth and the obstruction of grain boundary sliding.

  4. Comparative analysis of the friction stir welded aluminum-magnesium alloy joint grain structure

    NASA Astrophysics Data System (ADS)

    Zaikina, A. A.; Sizova, O. V.; Novitskaya, O. S.

    2015-10-01

    A comparative test of the friction stir welded aluminum-magnesium alloy joint microstructure for plates of a different thickness was carried out. Finding out the structuring regularities in the weld nugget zone, that is the strongest zone of the weld, the effects of temperature-deformational conditions on the promotion of a metal structure refinement mechanism under friction stir welding can be determined. In this research friction stir welded rolled plates of an AMg5M alloy; 5 and 8 mm thick were investigated. Material fine structure pictures of the nugget zone were used to identify and measure subgrain and to define a second phase location. By means of optical microscopy it was shown that the fine-grained structure developed in the nugget zone. The grain size was 5 flm despite the thickness of the plates. In the sample 5.0 mm thick grains were coaxial, while in the sample 8.0 mm thick grains were elongate at a certain angle to the tool travel direction.

  5. Uniaxial Tensile and Simple Shear Behavior of Resistance Spot-Welded Dual-Phase Steel Joints

    NASA Astrophysics Data System (ADS)

    Tao, Hong; Tong, Wei; Hector, Louis G.; Zavattieri, Pablo D.

    2008-08-01

    Small test coupons were machined from single spot welds in a dual-phase steel (DP600) to investigate deformation and failure of weld joints in both tension and shear. Quasi-static ( ifmmodeexpandafterdotelseexpandafter\\.fi{\\upvarepsilon } ˜ 10^{{ - 4}} 1/{text{s}} ) testing was conducted in a miniature tensile stage with a custom image acquisition system. Strain accumulation in each weld was analyzed where fracture occurred, which was typically outside the fusion zone. A few shear test coupons that failed in the fusion zone were found to have the same spheroidal defects noted in previous work, and thus, severely limited weld strength and ductility. A novel strain mapping method based upon digital image correlation was employed to generate two-dimensional deformation maps, from which local stress-strain curves to failure were computed. As an important first step toward incorporation of material models into weld simulations, a preliminary finite element analysis of a tension test successfully reproduced the experimental results with material models for the base, heat-affected, and fusion zone materials generated from prior work.

  6. Numerical study of electron beam welded butt joints with the GTN model

    NASA Astrophysics Data System (ADS)

    Tu, Haoyun; Schmauder, Siegfried; Weber, Ulrich

    2012-08-01

    The fracture behavior of S355NL electron beam welded steel joints is investigated experimentally and numerically. The simulation of crack propagation in an electron beam welded steel joint was performed with the Gurson-Tvergaard-Needleman (GTN) damage model. A parameter study of the GTN model was adopted which reveals the influence of parameters on the material behavior of notched round and compact tension specimens. Based on the combined method of metallographic investigations and numerical calibration, the GTN parameters were fixed. The same parameters were used to predict the ductile fracture of compact tension specimens with the initial crack located at different locations. Good match can be found between the numerical and experimental results in the form of force versus Crack Opening Displacement as well as fracture resistance curves.

  7. Microstructure and creep characteristics of dissimilar T91/TP316H martensitic/austenitic welded joint with Ni-based weld metal

    SciTech Connect

    Falat, Ladislav; Svoboda, Milan; Vyrostkova, Anna; Petryshynets, Ivan; Sopko, Martin

    2012-10-15

    This paper deals with characterization of microstructure and creep behavior of dissimilar weldment between the tempered martensitic steel T91 and the non-stabilized austenitic steel TP316H with Ni-based weld metal (Ni WM). Microstructure analyses were performed using light microscopy, scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy. The martensitic part of the welded joint exhibited a wide heat-affected zone (HAZ) with typical microstructural gradient from its coarse-grained to the fine-grained/intercritical region. In contrast, the HAZ of austenitic steel was limited to only a narrow region with coarsened polygonal grains. The microstructure of Ni WM was found to be very heterogeneous with respect to the size, morphology and distribution of grain boundaries and MC-type precipitates as a result of strong weld metal dilution effects and fast non-equilibrium solidification. Cross-weld creep tests were carried out in a temperature range from 600 to 650 Degree-Sign C at applied stresses from 60 to 140 MPa. The obtained values of apparent stress exponents and creep activation energies indicate thermally activated dislocation glide to be the governing creep deformation mechanism within the range of used testing conditions. The creep samples ruptured in the T91 intercritical HAZ region by the 'type IV cracking' failure mode and the creep fracture mechanism was identified to be the intergranular dimple tearing by microvoid coalescence at grain boundaries. The TEM observations revealed pronounced microstructural differences between the critical HAZ region and the T91 base material before as well as after the creep exposure. - Highlights: Black-Right-Pointing-Pointer Phase transformations affect the microstructures of T91 and TP316H HAZ regions. Black-Right-Pointing-Pointer High weld metal dilution results in heterogeneous microstructure with MC carbides. Black-Right-Pointing-Pointer Creep behavior of the studied weldment is controlled

  8. Experimental and numerical studies on the issues in laser welding of light-weight alloys in a zero-gap lap joint configuration

    NASA Astrophysics Data System (ADS)

    Harooni, Masoud

    It is advantageous for the transportation industry to use lightweight components in the structure in order to save mass and reduce CO2 emissions. One of the lightest structural metals, magnesium, fulfills the need for mass reduction within the automotive industry. Many of the body structure components in the automotive industry are assembled using joining processes such as fusion welding. Furthermore, laser welding offers a low heat impact, high process rate, joining method which is becoming increasingly popular as the cost for laser systems continues to decrease. However, there is a limited body of work investigating the laser welding of magnesium and therefore, in the current study, different techniques and methods for laser welding of magnesium alloys are numerically and experimentally studied in order to optimize process parameters to achieve high quality welds. A feasibility study was designed in order to study the effect of various laser welding process parameters (such as laser power levels and welding speeds) on weld quality. Three regression models were developed to find the best fit model that relates process parameters to the shear load of the weld. Furthermore, to understand the effect of laser welding parameters on temperature distribution in laser welding of AZ31B magnesium alloy, a numerical model was developed. A rotary Gaussian volumetric body heat source was applied in this study to obtain the temperature history during the laser welding process. Cross-sectional views of the weld beads, temperature history recorded by thermocouples, and temperature history recorded by infrared camera were used to validate the numerical model. In order to study the real-time dynamic behavior of the molten pool and the keyhole during the welding process, a high speed charge-coupled device (CCD) assisted with a green laser as an illumination source was used. In order to observe the presence of pores, prior studies destructively evaluated the weld bead however; in the

  9. Microstructures and Mechanical Properties of Laser Welding Joint of a CLAM Steel with Revised Chemical Compositions

    NASA Astrophysics Data System (ADS)

    Chen, Shuhai; Huang, Jihua; Lu, Qi; Zhao, Xingke

    2016-05-01

    To suppress the tendency to form delta ferrite in weld metal (WM) of China low activation martensitic (CLAM) steel joint, a CLAM steel with revised chemical compositions was designed. Laser welding of the CLAM steel was investigated. The microstructures of the WM and heat-affected zone were analyzed. The impact toughness of the WM was evaluated by a Charpy impact test method with three V notches. The influence of temper temperature on mechanical properties was analyzed. It was found that the delta ferrite was eliminated almost completely in laser WM of CLAM steel with revised chemical compositions which has lower tendency to form delta ferrite than original chemical compositions. The joint has higher tensile strength than the parent metal. With increasing the heat input, the impact toughness of the joint is approximatively equal with that of parent metal first and then decreases obviously. Temper treatment could effectively improve mechanical property of the joint. When the temper temperature exceeds 600 °C, the impact toughness of the joint is higher than that of the parent metal.

  10. Study on weld bead surface profile and angular distortion in 6 mm thick butt weld joints of SS304 using fiber laser

    NASA Astrophysics Data System (ADS)

    Bhargava, P.; Paul, C. P.; Mundra, G.; Premsingh, C. H.; Mishra, S. K.; Nagpure, D.; Kumar, Atul; Kukreja, L. M.

    2014-02-01

    We deployed a 2 kW continuous wave fiber laser integrated with the 5-axis workstation to understand the effect of various processing parameters (laser power, welding speed, beam spot size and chamfer at welded edges) on depth of penetration, angular distortion and welded bead surface profile during autogenous laser welding of 6 mm thick austenitic stainless steel type 304 plates. Full penetration with reduced weld bead surface undulation (<100 µm) and least angular distortion (<0.8°) was achieved for butt joints having chamfered edges of 0.8 mm. The microscopic studies revealed grossly defect-free fusion zone with a few porosities at isolated locations. The microstructure at the fusion zone was largely austenitic with few ferrites and the direction of growth was epitaxial towards the fusion line. The measured values of microhardness at base material and fusion zone were 208±4 HV0.1 and 235±10 HV0.1 respectively. The tensile testing of laser welded samples indicated the ultimate strength >605 MPa and these samples could be bent for an angle >170° without noticeable crack during bend test. The study opened the avenues for the deployment of fiber laser welding technology for applications demanding critical values of surface weld bead profile and distortion.

  11. Improvement of ultrasonic characteristics in butt-welded joint of austenitic stainless steel using magnetic stirring method

    SciTech Connect

    Tanosaki, M.; Yoshikawa, K.; Arakawa, T.

    1995-08-01

    Magnetic Stirring Method of Tungsten Inert Gas(TIG) Welding are applied to butt-welded joint of austenitic stainless steel. The purpose of this method is to refine the welded structure and to improve the ultrasonic characteristics. In the conventional method of ultrasonic test in austenitic stainless steel weldments, dendritic solidification structure of weldment prevents smooth ultrasonic beam transmission. The tests are performed in three welding conditions; One is conventional TIG welding (without magnetic stirring), the other two are TIG welding using magnetic stirring method. Each test piece is evaluated by observing macro structure of cross section and by several ultrasonic tests examining pulse amplitudes, beam path length and proceeding beam direction. The detectability of artificial notches in weldment is also investigated and compared.

  12. The use of ion beam cleaning to obtain high quality cold welds with minimal deformation

    NASA Technical Reports Server (NTRS)

    Sater, B. L.; Moore, T. J.

    1978-01-01

    A variation of cold welding is described which utilizes an ion beam to clean mating surfaces prior to joining in a vacuum environment. High quality solid state welds were produced with minimal deformation.

  13. Physical Nature of the Processes in Structure Forming, Phase and Chemical Composition of pipe Permanent Joints when MMA Welding

    NASA Astrophysics Data System (ADS)

    Il'yaschenko, D. P.; Chinakhov, D. A.; Danilov, V. I.; Sadykov, I. D.

    2016-04-01

    The paper outlines peculiarities of structure formation, phase and chemical composition in regard to heat content in molten electrode metal beads when pipe steel (steel 09G2S) welding using power sources with various energy characteristics. Mathematical calculations indicate an inverter power source provides minor heat content into the bead of electrode metal when welding. Experimental research has pointed at 4-9 % increase in impact strength of joints produced using an inverter power source in comparison with samples produced applying a diode rectifier. The following factors can possibly give rise to the increasing impact strength: difference in microstructures of weld joints, up to 50% shortening ferritic plates in metal of weld joint, change in dimensions of ferritic grains in the heat-affected zone by as much as 17.5 %, and decrease in the extent of heat-affected zone by 50%.

  14. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-06-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  15. Mechanical and microstructural characterization of single and double pass Aluminum AA6061 friction stir weld joints

    NASA Astrophysics Data System (ADS)

    Othman, N. H.; Shah, L. H.; Ishak, M.

    2015-12-01

    This study focuses on the effect of single pass (SP), double sided pass (DSP) and normal double pass (NDP) method on friction stir welding of aluminum AA6061. Two pieces of AA6061 alloy with thickness of 6 mm were friction stir welded by using conventional milling machine. The rotational speeds that were used in this study were 800 rpm, 1000 rpm and 1200 rpm, respectively. The welding speed is fixed to 100 mm/min. Microstructure observation of welded area was studied by using optical microscope. Tensile test and Vickers hardness test were used to evaluate the mechanical properties of this specimen. Mechanical property analysis results indicate that at low rotational speeds, defects such as surface lack of fill and tunneling in the welded area can be observed. Vickers hardness of specimens however did not vary much when rotational speed is varied. Welded specimens using single pass method shows higher tensile strength and hardness value compared to both double pass methods up to 180.61 MPa. Moreover, DSP showed better tensile test and hardness test compared to NDP method. The optimum parameters were found to be single pass method with 1200 rpm of rotational speed. Therefore economically sound to only perform SP method to obtain maximum tensile strength for AA6061 FSW with thickness of 6 mm.

  16. Reactor cooling water expansion joint bellows: The role of the seam weld in fatigue crack development

    SciTech Connect

    West, S.L.; Nelson, D.Z.; Louthan, M.R. Jr.

    1992-12-01

    The secondary cooling water system pressure boundary of Savannah River Site reactors includes expansion joints utilizing a thin-wall bellows. While successfully used for over thirty years, an occasional replacement has been required because of the development of small, circumferential fatigue cracks in a bellows convolute. One such crack was recently shown to have initiated from a weld heat-affected zone liquation microcrack. The crack, initially open to the outer surface of the rolled and seam welded cylindrical bellows section, was closed when cold forming of the convolutes placed the outer surface in residual compression. However, the bellows was placed in tension when installed, and the tensile stresses reopened the microcrack. This five to eight grain diameter microcrack was extended by ductile fatigue processes. Initial extension was by relatively rapid propagation through the large-grained weld metal, followed by slower extension through the fine-grained base metal. A significant through-wall crack was not developed until the crack extended into the base metal on both sides of the weld. Leakage of cooling water was subsequently detected and the bellows removed and a replacement installed.

  17. Reactor cooling water expansion joint bellows: The role of the seam weld in fatigue crack development

    SciTech Connect

    West, S.L.; Nelson, D.Z.; Louthan, M.R. Jr.

    1992-01-01

    The secondary cooling water system pressure boundary of Savannah River Site reactors includes expansion joints utilizing a thin-wall bellows. While successfully used for over thirty years, an occasional replacement has been required because of the development of small, circumferential fatigue cracks in a bellows convolute. One such crack was recently shown to have initiated from a weld heat-affected zone liquation microcrack. The crack, initially open to the outer surface of the rolled and seam welded cylindrical bellows section, was closed when cold forming of the convolutes placed the outer surface in residual compression. However, the bellows was placed in tension when installed, and the tensile stresses reopened the microcrack. This five to eight grain diameter microcrack was extended by ductile fatigue processes. Initial extension was by relatively rapid propagation through the large-grained weld metal, followed by slower extension through the fine-grained base metal. A significant through-wall crack was not developed until the crack extended into the base metal on both sides of the weld. Leakage of cooling water was subsequently detected and the bellows removed and a replacement installed.

  18. Experimental and numerical investigations of hybrid laser arc welding of aluminum alloys in the thick T-joint configuration

    NASA Astrophysics Data System (ADS)

    Mazar Atabaki, M.; Nikodinovski, M.; Chenier, P.; Ma, J.; Liu, W.; Kovacevic, R.

    2014-07-01

    In the present investigation, a numerical finite element model was developed to simulate the hybrid laser arc welding of different aluminum alloys, namely 5××× to 6××× series. The numerical simulation has been considered two double-ellipsoidal heat sources for the gas metal arc welding and laser welding. The offset distance of the metal arc welding and laser showed a significant effect on the molten pool geometry, the heat distribution and penetration depth during the welding process. It was confirmed that when the offset distance is within the critical distance the laser and arc share the molten pool and specific amount of penetration and dilution can be achieved. The models and experiments show that the off-distance between the two heat sources and shoulder width have considerable influence on the penetration depth and appearance of the weld beads. The experiments also indicate that the laser power, arc voltage and type of the filler metal can effectively determine the final properties of the bonds, specifically the bead appearance and microhardness of the joints. The experiments verified the numerical simulation as the thermocouples assist to comprehend the amount of heat distribution on the T-joint coupons. The role of the welding parameters on the mechanism of the hybrid laser welding of the aluminum alloys was also discussed.

  19. Double global optimum genetic algorithm-particle swarm optimization-based welding robot path planning

    NASA Astrophysics Data System (ADS)

    Wang, Xuewu; Shi, Yingpan; Ding, Dongyan; Gu, Xingsheng

    2016-02-01

    Spot-welding robots have a wide range of applications in manufacturing industries. There are usually many weld joints in a welding task, and a reasonable welding path to traverse these weld joints has a significant impact on welding efficiency. Traditional manual path planning techniques can handle a few weld joints effectively, but when the number of weld joints is large, it is difficult to obtain the optimal path. The traditional manual path planning method is also time consuming and inefficient, and cannot guarantee optimality. Double global optimum genetic algorithm-particle swarm optimization (GA-PSO) based on the GA and PSO algorithms is proposed to solve the welding robot path planning problem, where the shortest collision-free paths are used as the criteria to optimize the welding path. Besides algorithm effectiveness analysis and verification, the simulation results indicate that the algorithm has strong searching ability and practicality, and is suitable for welding robot path planning.

  20. Assessment of Creep Strain Distribution Across Base Metal of 316LN Austenitic Stainless Steel Weld Joint by an EBSD-Based Parameter

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Ganesan, V.; Ganesh Kumar, J.; Parameswaran, P.; Naveena; Laha, K.

    2015-11-01

    Electron backscatter diffraction (EBSD) analysis has been used to estimate the accumulated strain in base metal region of 316LN austenitic stainless steel weld joints, creep tested at 923 K (650 °C), and at stresses of 175 and 225 MPa. The variation in strength of weld metal, heat-affected zone (HAZ), and base metal-induced stress and strain gradients across the weld joint under creep exposure. Finite element analysis (FEA) of von-Mises stress distribution across the joint has been carried out on incorporating strength of different constituents of the joint, derived by miniature specimen testing techniques. The FEA simulations revealed preferential accumulation of von-Mises stress in the base metal region near to HAZ. The variation in accumulated plastic strain across the base metal has been estimated using a `crystal deformation' ( C d) parameter which quantifies the orientation spread within a grain. This parameter was obtained by EBSD analysis carried out using a scanning electron microscope. The trend in variation of accumulated plastic strain across the base metal accounted well with the von-Mises stress variation, which causes plastic deformation. The plastic strain in the base metal in both the stress levels was found to accumulate preferentially near to the HAZ and reduced steadily toward the ridge at the end of specimen. Transmission electron microscopic study has been carried out to substantiate the findings of the EBSD investigation.

  1. Effects of aging treatment and heat input on the microstructures and mechanical properties of TIG-welded 6061-T6 alloy joints

    NASA Astrophysics Data System (ADS)

    Peng, Dong; Shen, Jun; Tang, Qin; Wu, Cui-ping; Zhou, Yan-bing

    2013-03-01

    Aging treatment and various heat input conditions were adopted to investigate the microstructural evolution and mechanical properties of TIG welded 6061-T6 alloy joints by microstructural observations, microhardness tests, and tensile tests. With an increase in heat input, the width of the heat-affected zone (HAZ) increases and grains in the fusion zone (FZ) coarsen. Moreover, the hardness of the HAZ decreases, whereas that of the FZ decreases initially and then increases with an increase in heat input. Low heat input results in the low ultimate tensile strength of the welded joints due to the presence of partial penetrations and pores in the welded joints. After a simple artificial aging treatment at 175°C for 8 h, the microstructure of the welded joints changes slightly. The mechanical properties of the welded joints enhance significantly after the aging process as few precipitates distribute in the welded seam.

  2. Impact of tool wear on joint strength in friction stir spot welding of DP 980 steel

    SciTech Connect

    Miles, Michael; Ridges, Chris; Hovanski, Yuri; Peterson, Jeremy; Santella, M. L.; Steel, Russel

    2011-09-14

    Friction stir spot welding has been shown to be a viable method of joining ultra high strength steel (UHSS), both in terms of joint strength and process cycle time. However, the cost of tooling must be reasonable in order for this method to be adopted as an industrial process. Recently a new tool alloy has been developed, using a blend of PCBN and tungsten rhenium (W-Re) in order to improve the toughness of the tool. Wear testing results are presented for two of these alloys: one with a composition of 60% PCBN and 40% W-Re, and one with 70% PCBN and 30% W-Re. The sheet material used for all wear testing was 1.4 mm DP 980. Lap shear testing was used to show the relationship between tool wear and joint strength. The Q70 tool provided the best combination of wear resistance and joint strength.

  3. Welding.

    ERIC Educational Resources Information Center

    Lehigh County Area Vocational-Technical School, Schnecksville, PA.

    This curriculum guide provides materials for a 12-unit secondary course in welding. Purpose stated for the flexible entry and exit course is to help students master manipulative skills to develop successful welding techniques and to gain an understanding of the specialized tools and equipment used in the welding field. Units cover oxyacetylene…

  4. EFFECT OF TOOL FEATURE ON THE JOINT STRENGTH OF DISSIMILAR FRICTION STIR LAP WELDS

    SciTech Connect

    Jana, Saumyadeep; Hovanski, Yuri; Grant, Glenn J.; Mattlin, Karl F.

    2011-04-25

    Several variations of friction stir tools were used to investigate the effects on the joint strengths of dissimilar friction stir lap welds. In the present lap weld configuration the top sheet was a 2.32 mm thick Mg (AZ 31) alloy. The bottom sheet consisted of two different steels, a (i) 0.8 mm thick electro-galvanized (EG) mild steel, or a (ii) 1.5 mm thick hot dip galvanized (HDG) high strength low alloy (HSLA) steel. Initially the tool shape was modified to accommodate the material, at which point the tool geometry was fixed. With a fixed tool geometry an additional feature was added to the pin bottom on one of the tools by incorporating a short hard insert, which would act as a stronger bottom sheet cutter. The effects of such modification on the unguided lap shear strength, and associated microstructural changes are discussed in this study.

  5. Effect of Heat Input Pulse on the Structure and Properties of Welded Joints of Steels Ferritic-Pearlitic Class, Operating Under Low-Frequency Temperature-Force Loading

    NASA Astrophysics Data System (ADS)

    Saraev, Y. N.; Bezborodov, V. P.; Putilova, E. A.

    2015-09-01

    We have investigated the influence of the modes of adaptive pulse-arc welding and surfacing on the structure and physical-mechanical properties of welded joints of steel 09Mn2Si and the surfaced composition of this steel coated with modified powder material of chromium carbide with the submicrocrystalline structure. It is shown that the pulsed mode of welding and surfacing can improve the homogeneity of the structure of the welded joint of steel and surfaced coating and reduce the grain size of metals in both of them. Structural changes lead to the increase in ductility and toughness of the weld metal.

  6. Microstructural Variations Across a Dissimilar 316L Austenitic: 9Cr Reduced Activation Ferritic Martensitic Steel Weld Joint

    NASA Astrophysics Data System (ADS)

    Thomas Paul, V.; Karthikeyan, T.; Dasgupta, Arup; Sudha, C.; Hajra, R. N.; Albert, S. K.; Saroja, S.; Jayakumar, T.

    2016-03-01

    This paper discuss the microstructural variations across a dissimilar weld joint between SS316 and 9Cr-RAFM steel and its modifications on post weld heat treatments (PWHT). Detailed characterization showed a mixed microstructure of austenite and martensite in the weld which is in agreement with the phases predicted using Schaeffler diagram based on composition measurements. The presence of very low volume fraction of δ-ferrite in SS316L has been identified employing state of the art electron back-scattered diffraction technique. PWHT of the ferritic steel did not reduce the hardness in the weld metal. Thermal exposure at 973 K (700 °C) showed a progressive reduction in hardness of weld joint with duration of treatment except in austenitic base metal. However, diffusion annealing at 1073 K (800 °C) for 100 hours resulted in an unexpected increase in hardness of weld metal, which is a manifestation of the dilution effects and enrichment of Ni on the transformation characteristics of the weld zone. Migration of carbon from ferritic steel aided the precipitation of fine carbides in the austenitic base metal on annealing at 973 K (700 °C); but enhanced diffusion at 1073 K (880 °C) resulted in coarsening of carbides and thereby reduction of hardness.

  7. The Effect of Constant and Pulsed Current Gas Tungsten Arc Welding on Joint Properties of 2205 Duplex Stainless Steel to 316L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Neissi, R.; Shamanian, M.; Hajihashemi, M.

    2016-05-01

    In this study, dissimilar 316L austenitic stainless steel/2205 duplex stainless steel (DSS) joints were fabricated by constant and pulsed current gas tungsten arc welding process using ER2209 DSS as a filler metal. Microstructures and joint properties were characterized using optical and electron scanning microscopy, tensile, Charpy V-notch impact and micro-hardness tests, and cyclic polarization measurements. Microstructural observations confirmed the presence of chromium nitride and delta ferrite in the heat-affected zone of DSS and 316L, respectively. In addition, there was some deviation in the austenite/ferrite ratio of the surface welding pass in comparison to the root welding pass. Besides having lower pitting potential, welded joints produced by constant current gas tungsten arc welding process, consisted of some brittle sigma phase precipitates, which resulted in some impact energy reduction. The tensile tests showed high tensile strength for the weld joints in which all the specimens were broken in 316L base metal.

  8. Specifics of Mode Parameters Choice Under Twin Arc Welding of Fillet Welds

    NASA Astrophysics Data System (ADS)

    Melnikov, A. U.; Fiveyskiy, A. M.; Sholokhov, M. A.

    2016-04-01

    The present article covers the specifics of mode parameters choice under twin arc welding of fillet welds. The necessity of mode parameters adjustment at the second arc due to heated metal of the first arc was proven. The obtained correction indexes allow us to determine with satisfactory accuracy the mode parameters under given dimensions of weld joint.

  9. Effects of laser heat treatment on the fracture morphologies of X80 pipeline steel welded joints by stress corrosion

    NASA Astrophysics Data System (ADS)

    Kong, De-jun; Ye, Cun-dong

    2014-09-01

    The surfaces of X80 pipeline steel welded joints were processed with a CO2 laser, and the effects of laser heat treatment (LHT) on H2S stress corrosion in the National Association of Corrosion Engineers (NACE) solution were analyzed by a slow strain rate test. The fracture morphologies and chemical components of corrosive products before and after LHT were analyzed by scanning electron microscopy and energy-dispersive spectroscopy, respectively, and the mechanism of LHT on stress corrosion cracking was discussed. Results showed that the fracture for welded joints was brittle in its original state, while it was transformed to a ductile fracture after LHT. The tendencies of hydrogen-induced corrosion were reduced, and the stress corrosion sensitivity index decreased from 35.2% to 25.3%, indicating that the stress corrosion resistance of X80 pipeline steel welded joints has been improved by LHT.

  10. Influences of post weld heat treatment on tensile strength and microstructure characteristics of friction stir welded butt joints of AA2014-T6 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Rajendran, C.; Srinivasan, K.; Balasubramanian, V.; Balaji, H.; Selvaraj, P.

    2016-08-01

    Friction stir welded (FSWed) joints of aluminum alloys exhibited a hardness drop in both the advancing side (AS) and retreating side (RS) of the thermo-mechanically affected zone (TMAZ) due to the thermal cycle involved in the FSW process. In this investigation, an attempt has been made to overcome this problem by post weld heat treatment (PWHT) methods. FSW butt (FSWB) joints of Al-Cu (AA2014-T6) alloy were PWHT by two methods such as simple artificial aging (AA) and solution treatment followed by artificial aging (STA). Of these two treatments, STA was found to be more beneficial than the simple aging treatment to improve the tensile properties of the FSW joints of AA2014 aluminum alloy.

  11. Tensile properties of a titanium modified austenitic stainless steel and the weld joints after neutron irradiation

    SciTech Connect

    Shiba, K.; Ioka, I.; Jitsukawa, S.; Hamada, A.; Hishinuma, A.

    1996-10-01

    Tensile specimens of a titanium modified austenitic stainless steel and its weldments fabricated with Tungsten Inert Gas (TIG) and Electron Beam (EB) welding techniques were irradiated to a peak dose of 19 dpa and a peak helium level of 250 appm in the temperature range between 200 and 400{degrees}C in spectrally tailored capsules in the Oak Ridge Research Reactor (ORR) and the High Flux Isotope Reactor (HFIR). The He/dpa ratio of about 13 appm/dpa is similar to the typical helium/dpa ratio of a fusion reactor environment. The tensile tests were carried out at the irradiation temperature in vacuum. The irradiation caused an increase in yield stress to levels between 670 and 800 MPa depending on the irradiation temperature. Total elongation was reduced to less than 10%, however the specimens failed in a ductile manner. The results were compared with those of the specimens irradiated using irradiation capsules producing larger amount of He. Although the He/dpa ratio affected the microstructural change, the impact on the post irradiation tensile behavior was rather small for not only base metal specimens but also for the weld joint and the weld metal specimens.

  12. Application of laser in seam welding of dissimilar steel to aluminium joints for thick structural components

    NASA Astrophysics Data System (ADS)

    Meco, S.; Pardal, G.; Ganguly, S.; Williams, S.; McPherson, N.

    2015-04-01

    Laser welding-brazing technique, using a continuous wave (CW) fibre laser with 8000 W of maximum power, was applied in conduction mode to join 2 mm thick steel (XF350) to 6 mm thick aluminium (AA5083-H22), in a lap joint configuration with steel on the top. The steel surface was irradiated by the laser and the heat was conducted through the steel plate to the steel-aluminium interface, where the aluminium melts and wets the steel surface. The welded samples were defect free and the weld micrographs revealed presence of a brittle intermetallic compounds (IMC) layer resulting from reaction of Fe and Al atoms. Energy Dispersive Spectroscopy (EDS) analysis indicated the stoichiometry of the IMC as Fe2Al5 and FeAl3, the former with maximum microhardness measured of 1145 HV 0.025/10. The IMC layer thickness varied between 4 to 21 μm depending upon the laser processing parameters. The IMC layer showed an exponential growth pattern with the applied specific point energy (Esp) at a constant power density (PD). Higher PD values accelerate the IMC layer growth. The mechanical shear strength showed a narrow band of variation in all the samples (with the maximum value registered at 31.3 kN), with a marginal increase in the applied Esp. This could be explained by the fact that increasing the Esp results into an increase in the wetting and thereby the bonded area in the steel-aluminium interface.

  13. Changes in the Structure and Properties of Welded Joints of Low-Alloy Steels, Subjected to Cyclic Loads

    NASA Astrophysics Data System (ADS)

    Kuskov, V. N.; Kovenskiy, I. M.; Kuskov, K. V.

    2016-04-01

    Time-varying loads negatively affect the properties and structure of materials. Structural failures typically occur at loads below the yield point. In this work, fatigue tests of welded joints of low-alloy steels were carried out in an asymmetric cycle at loads of 60 and 80% of the yield strength. The stress ratio was 0.8-0.9. On the basis of the results of the tests, equations linking the number of cycles to failure with test parameters were obtained. Such equations can be used for estimating the residual life of elements both under construction and in operation. It has been found that the failure is not instantaneous. Specimens of steels continue to resist variable loads for 4000 - 26000 cycles to failure, depending on steel grade and the parameters of the test. Under operating conditions, it gives an opportunity to discover the onset of failure and dispose of the defective part or to replace the entire structure. A standard technique was used to measure the microhardness on the fractured specimens. The distance between the nearest indentations was 0.2 mm. The results of the measurements were plotted in graphs of ahardness change characteristic for all steels under study. A microhardness “step” has been discovered in areas with high dislocation density, as evidenced by x-ray diffraction and transmission electron microscopy. An intermediate stage of the investigation is the development of recommendations for determining the moment of failure of welded constructions with a probability of 95%.

  14. Hardness analysis of welded joints of austenitic and duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Topolska, S.

    2016-08-01

    Stainless steels are widely used in the modern world. The continuous increase in the use of stainless steels is caused by getting greater requirements relating the corrosion resistance of all types of devices. The main property of these steels is the ability to overlap a passive layer of an oxide on their surface. This layer causes that they become resistant to oxidation. One of types of corrosion-resistant steels is ferritic-austenitic steel of the duplex type, which has good strength properties. It is easily formable and weldable as well as resistant to erosion and abrasive wear. It has a low susceptibility to stress-corrosion cracking, to stress corrosion, to intercrystalline one, to pitting one and to crevice one. For these reasons they are used, among others, in the construction of devices and facilities designed for chemicals transportation and for petroleum and natural gas extraction. The paper presents the results which shows that the particular specimens of the ][joint representing both heat affected zones (from the side of the 2205 steel and the 316L one) and the weld are characterized by higher hardness values than in the case of the same specimens for the 2Y joint. Probably this is caused by machining of edges of the sections of metal sheets before the welding process, which came to better mixing of native materials and the filler metal. After submerged arc welding the 2205 steel still retains the diphase, austenitic-ferritic structure and the 316L steel retains the austenitic structure with sparse bands of ferrite σ.

  15. Columnar jointing in vapor-phase-altered, non-welded Cerro Galán Ignimbrite, Paycuqui, Argentina

    USGS Publications Warehouse

    Wright, Heather M.; Lesti, Chiara; Cas, Ray A.F.; Porreca, Massimiliano; Viramonte, Jose G.; Folkes, Christopher B.; Giordano, Guido

    2011-01-01

    Columnar jointing is thought to occur primarily in lavas and welded pyroclastic flow deposits. However, the non-welded Cerro Galán Ignimbrite at Paycuqui, Argentina, contains well-developed columnar joints that are instead due to high-temperature vapor-phase alteration of the deposit, where devitrification and vapor-phase crystallization have increased the density and cohesion of the upper half of the section. Thermal remanent magnetization analyses of entrained lithic clasts indicate high emplacement temperatures, above 630°C, but the lack of welding textures indicates temperatures below the glass transition temperature. In order to remain below the glass transition at 630°C, the minimum cooling rate prior to deposition was 3.0 × 10−3–8.5 × 10−2°C/min (depending on the experimental data used for comparison). Alternatively, if the deposit was emplaced above the glass transition temperature, conductive cooling alone was insufficient to prevent welding. Crack patterns (average, 4.5 sides to each polygon) and column diameters (average, 75 cm) are consistent with relatively rapid cooling, where advective heat loss due to vapor fluxing increases cooling over simple conductive heat transfer. The presence of regularly spaced, complex radiating joint patterns is consistent with fumarolic gas rise, where volatiles originated in the valley-confined drainage system below. Joint spacing is a proxy for cooling rates and is controlled by depositional thickness/valley width. We suggest that the formation of joints in high-temperature, non-welded deposits is aided by the presence of underlying external water, where vapor transfer causes crystallization in pore spaces, densifies the deposit, and helps prevent welding.

  16. Narrow gap laser welding

    DOEpatents

    Milewski, J.O.; Sklar, E.

    1998-06-02

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables. 34 figs.

  17. Narrow gap laser welding

    DOEpatents

    Milewski, John O.; Sklar, Edward

    1998-01-01

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables.

  18. Influence of Filler Wire Feed Rate in Laser-Arc Hybrid Welding of T-butt Joint in Shipbuilding Steel with Different Optical Setups

    NASA Astrophysics Data System (ADS)

    Unt, Anna; Poutiainen, Ilkka; Salminen, Antti

    In this paper, a study of laser-arc hybrid welding featuring three different process fibres was conducted to build knowledge about process behaviour and discuss potential benefits for improving the weld properties. The welding parameters affect the weld geometry considerably, as an example the increase in welding speed usually decreases the penetration and a larger beam diameter usually widens the weld. The laser hybrid welding system equipped with process fibres with 200, 300 and 600 μm core diameter were used to produce fillet welds. Shipbuilding steel AH36 plates with 8 mm thickness were welded with Hybrid-Laser-Arc-Welding (HLAW) in inversed T configuration, the effects of the filler wire feed rate and the beam positioning distance from the joint plane were investigated. Based on the metallographic cross-sections, the effect of process parameters on the joint geometry was studied. Joints with optimized properties (full penetration, soundness, smooth transition from bead to base material) were produced with 200 μm and 600 μm process fibres, while fiber with 300 μm core diameter produced welds with unacceptable levels of porosity.

  19. A new perspective on the influence of thickness and post-weld heat treatment for large scale welded joints

    SciTech Connect

    Hancock, P.; Chubb, J.P.; Spurrier, J.

    1995-04-01

    CTOD, Charpy, and wide plate results from welded constructional steels are collected from nine companies. The resulting large data bank is analyzed statistically to identify general trends in properties of welded constructional steels. The present paper uses the data bank to review the effect of post-weld heat treatment (PWHT) on the fracture behavior of the weldments. Analysis shows the beneficial effect of PWHT at all thicknesses. The results are subsequently used to question the normal practice of post-weld heat treating weldments of 50 mm and above in thickness while leaving weldments of below 50 mm thick in the as welded condition. It is suggested that there is no significant difference in as welded fracture properties in weldments until thicknesses are well in excess of 100 mm.

  20. Genesis of the columnar joints from welded tuff in Mount Mudeung National Geopark, Republic of Korea

    NASA Astrophysics Data System (ADS)

    Lim, Chungwan; Huh, Min; Yi, Keewook; Lee, Changyeol

    2015-09-01

    Mount Mudeung National Geopark (MMNG), Gwangju, Republic of Korea (1187 masl), is known for its huge, broad occurrences of columnar jointed colonnades in the Cretaceous Mudeungsan Tuff. To understand the genesis of columnar joints infilling a volcanic vent, integrated geochemical and geophysical studies were conducted. Most colonnades in the Geopark are located in regions higher than 700 masl and show elevation-dependent variations in the mean face width of the columns. These mean widths are approximately 1.7, 1.3, 2.9, and 1.2 m for the summit (>1100 masl), upper (950-1100 masl), lower (850-950 masl), and lowest (700-850 masl) colonnades, respectively. This variation implies that columnar jointing resulted from discontinuous tuff depositions on relatively planar ground, which is associated with caldera structures and landslides from the emptied caldera rim. Geochemical analyses of major, minor, and trace elements show that the andesitic-dacitic Mudeungsan Tuff resulted from the arc magmatism associated with subduction of the Izanagi Plate and involved crustal components. Few geochemical variations of the Mudeungsan Tuff indicate that tuff originated from a single magma chamber. U-Pb age dating indicates that the Mudeungsan Tuff was deposited at ~85 Ma except for the Chotdae-bong colonnades, which were dated to ~87 Ma. However, a scaling analysis of the elevation-dependent variations of face widths and simplified numerical model calculations indicate that the variation in face widths with elevation indicates the sequential emplacement, cooling, and compaction of separate welded tuffs. Thus, the welded tuffs of MMNG can be thought to be formed by three discontinuous large explosive eruptions with periods of repose after each eruption. These tuffs include 1) the highest-elevation columnar joints of colonnades in the summit area (>1100 m), corresponding to the lower colonnades of the third tuff; 2) the intermediate-elevation columnar joints of colonnades

  1. Microstructure and Low-Temperature Mechanical Properties of 304 Stainless Steel Joints by PAW + GTAW Combined Welding

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Li, Yajiang; Wang, Juan

    2016-08-01

    The combined double-pass process of plasma arc welding (PAW) + gas tungsten arc welding (GTAW) was performed on 304 austenitic stainless steel with the thickness of 12 mm. Results indicated that two different morphologies of ferrite (e.g., lathy δ-ferrite and skeletal δ-ferrite) were formed within the austenite matrix in PAW weld metal (PAW-WM). GTAW weld metal (GTAW-WM) was mainly composed of fine austenite and skeletal δ-ferrite. In transition zone between PAW-WM and GTAW-WM, epitaxial growth contributed to cellular dendritic crystals transforming into columnar crystals. The tensile strength of joint is about 700 MPa. The impact toughness of WM varied from 281 J (20 °C) to 122 (-196 °C), while the impact toughness of heat-affected zone (HAZ) varied from 205 J (20 °C) to 112 J (-196 °C).

  2. Microstructure and Low-Temperature Mechanical Properties of 304 Stainless Steel Joints by PAW + GTAW Combined Welding

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Li, Yajiang; Wang, Juan

    2016-10-01

    The combined double-pass process of plasma arc welding (PAW) + gas tungsten arc welding (GTAW) was performed on 304 austenitic stainless steel with the thickness of 12 mm. Results indicated that two different morphologies of ferrite (e.g., lathy δ-ferrite and skeletal δ-ferrite) were formed within the austenite matrix in PAW weld metal (PAW-WM). GTAW weld metal (GTAW-WM) was mainly composed of fine austenite and skeletal δ-ferrite. In transition zone between PAW-WM and GTAW-WM, epitaxial growth contributed to cellular dendritic crystals transforming into columnar crystals. The tensile strength of joint is about 700 MPa. The impact toughness of WM varied from 281 J (20 °C) to 122 (-196 °C), while the impact toughness of heat-affected zone (HAZ) varied from 205 J (20 °C) to 112 J (-196 °C).

  3. Formation mechanism of linear friction welded Ti-6Al-4V alloy joint based on microstructure observation

    SciTech Connect

    Ma Tiejun; Chen Tao Li Wenya; Wang Shiwei; Yang Siqian

    2011-01-15

    The microstructure of the linear friction welded Ti-6Al-4V titanium alloy joint was investigated by optical microscope, scanning electronic microscope and transmission electron microscope. Results show that the dynamic recovery and recrystallization resulting from the intensive plastic deformation and fast heating and cooling processes during linear friction welding account for the superfine {alpha} + {beta} grains in the weld center. Fine {alpha} grains distribute in the {beta} matrix or at the boundaries of {beta} grains. A mass of dislocations networks and metastructures present within the {alpha} and {beta} grains. - Research Highlights: {yields} TEM is employed in the analysis. {yields} The dynamic recovery is the main mechanism in thermal deformation of TC4. {yields} Superfine grains in the weld result from dynamic recovery and dynamic recrystallizaion, but the recrystallization is inadequate.

  4. Influence of Temperature and Chloride Concentration on Passivation Mechanism and Corrosion of a DSS2209 Welded Joint

    NASA Astrophysics Data System (ADS)

    Hachemi, Hania; Azzaz, Mohamed; Djeghlal, Mohamed Elamine

    2016-08-01

    The passivity behavior of a 2209 duplex stainless steel welded joint was investigated using potentiodynamic polarization, Mott-Schottky analysis and EIS measurements. In order to evaluate the contribution of temperature, chloride concentration and microstructure, a sequence of polarization tests were carried out in aerated NaCl solutions selected according to robust design of a three level-three factors Taguchi L9 orthogonal array. Analysis of signal-to-noise ratio and ANOVA were achieved on all measured data, and the contribution of every control factor was estimated. The results showed that the corrosion resistance of 2209 duplex stainless steel welded joint is related to the evolution of the passive film formed on the surface. It was found that the passive film on the welded zone possessed n- and p-type semiconductor characteristics. With the increase of solution temperature and chlorides concentration, the corrosion resistance of the passive film is more affected in the weldment than in the base metal.

  5. Influence of Temperature and Chloride Concentration on Passivation Mechanism and Corrosion of a DSS2209 Welded Joint

    NASA Astrophysics Data System (ADS)

    Hachemi, Hania; Azzaz, Mohamed; Djeghlal, Mohamed Elamine

    2016-10-01

    The passivity behavior of a 2209 duplex stainless steel welded joint was investigated using potentiodynamic polarization, Mott-Schottky analysis and EIS measurements. In order to evaluate the contribution of temperature, chloride concentration and microstructure, a sequence of polarization tests were carried out in aerated NaCl solutions selected according to robust design of a three level-three factors Taguchi L9 orthogonal array. Analysis of signal-to-noise ratio and ANOVA were achieved on all measured data, and the contribution of every control factor was estimated. The results showed that the corrosion resistance of 2209 duplex stainless steel welded joint is related to the evolution of the passive film formed on the surface. It was found that the passive film on the welded zone possessed n- and p-type semiconductor characteristics. With the increase of solution temperature and chlorides concentration, the corrosion resistance of the passive film is more affected in the weldment than in the base metal.

  6. Development of Mathematic Model of Cold Welding at Drawing-up the Flange Joint of Pneumohydraulic Systems

    NASA Astrophysics Data System (ADS)

    Boyko, Y. S.

    2002-01-01

    Provision of high airtightness of joints of pipe- lines of pneumohydraulic systems (PHS) operating under high pressure, is an important task for designing and operation of launch vehicles. In the process of assembly and tests of PHS of launch vehicles, it was found that detachable flange joints do not lose their airtightness after removal of fastening elements, even in conditions of standard loads. The task of this work is in studying a phenomenon connected with initiation of the observed effect of adhesion and also stresses in the zone of contact at drawing- up the flange detachable joints with a plastic gasket. Investigations have shown that density of the joint is kept due to cold welding, as the created conditions are helpful for that process. As a result of the investigations performed, we have developed a mathematic model which is based on application of the theory of metal bonds; that theory explains the essence of the effect observed. Basic factors which provide optimum mode of cold welding, are effort which can cause microplastic deformation and form maximum contact, and also quality of processing the material of the surfaces joined. Strength of all- metal joint depends on factual area of contact. So, surface processing quality defines a configuration of microbulges which come into contact not simultaneously, and their stressed state is different, and it influences the character of dependence of the contact area on loading. Results of calculations by the mathematic model are expressed by dependencies of factual area of contact and a single diameter of the contact spot on the load applied which compresses the materials with various physical properties, and on the surface processing quality. The mathematic model allows to explain the common character of the cold welding process in detachable flange joints with the plastic gasket, to determine the nature and the character of acting forces, to define kinetics and the mechanism of formation of cold welding of

  7. Finite element analysis for the initiation of lamellar tearing in welded joints

    SciTech Connect

    Krieg, R.D.; Thomas, R.K.

    1980-01-01

    A numerical procedure using the finite element method is presented for predicting the initiation of lamellar tearing in fillet welded T-joints commonly employed in large structures. Starting with a prescribed geometry, the welding process is approximated by a known time-dependent volumetric heat source which simulates the arc heating and deposition of liquid metal. The transient nonlinear thermal and stress problems are then solved using finite element computer codes. Results of the elastic-plastic stress analysis are presented showing a predicted region of incipient lamellar tearing based on a ductile fracture theory which qualitatively agrees with the size and location of tears typically observed in photomicrographs. Additional insight into post failure crack length and stability is presented based on a simplified linear elastic fracture mechanics approach. Although the analysis procedure shows signs of promise, several weak points in the model are pointed out which must be improved before lamellar tearing can be quantified in an approach of this general type.

  8. Microstructure and Fatigue Properties of Ultrasonic Spot Welded Joints of Aluminum 5754 Alloy

    NASA Astrophysics Data System (ADS)

    Mirza, F. A.; Macwan, A.; Bhole, S. D.; Chen, D. L.

    2016-05-01

    The purpose of this investigation was to evaluate the microstructural change, lap shear tensile load, and fatigue resistance of ultrasonic spot welded joints of aluminum 5754 alloy for automotive applications. A unique "necklace"-type structure with very fine equiaxed grains was observed to form along the weld line due to the mechanical interlocking coupled with the occurrence of dynamic recrystallization. The maximum lap shear tensile strength of 85 MPa and the fatigue limit of about 0.5 kN (at 1 × 107 cycles) were achieved. The tensile fracture occurred at the Al/Al interface in the case of lower energy inputs, and at the edge of nugget zone in the case of higher energy inputs. The maximum cyclic stress for the transition of fatigue fracture mode from the transverse through-thickness crack growth to the interfacial failure increased with increasing energy input. Fatigue crack propagation was mainly characterized by the formation of fatigue striations, which usually appeared perpendicular to the fatigue crack propagation.

  9. Multiscale Characterization of Deformation Mechanisms in the Weld Joint of a Nickel-based Superalloy

    SciTech Connect

    Barabash, Oleg M.; Horton, Joe; Babu, Suresh; Vitek, John; David, Stan; Ice, Gene; Barabash, Rozaliya

    2007-12-19

    Multiscale plastic deformation in the heat affected zone (HAZ) of a Ni-based single crystal superalloy has been characterized using white microbeam synchrotron diffraction measurements together with OIM imaging, electron and optical microscopy. Characteristic length scales on the macro, meso and nano scale are determined. Dissolution of the {gamma} - phase particles during heating and secondary precipitation of {gamma} - phase during cooling is found, as well as formation and multiplication of dislocations. This process is more intense as one approaches the fusion line (FL). In the regions immediately neighboring the FL, {gamma} - phase particles dissolve completely and re-precipitate from the solid solution in the form of very small (50-70nm) particles. In the immediate vicinity of the FL, the temperature gradient and the rate of it's change reaches maximal values and causes the formation of large amounts of dislocations. Dislocations are concentrated in the ? matrix of the single crystal superalloy. X-ray Laue diffraction (both conventional and microbeam) and electron microscopy show that alternating dislocations slip systems dominate in the HAZ with typical Burgers vector b=[110]. Local lattice rotations in different zones of the weld joint are linking with the microslip events in different zones of the weld.

  10. Multiscale Characterization of Deformation Mechanisms in the Weld Joint of a Nickel-based Superalloy

    SciTech Connect

    Barabash, Oleg M

    2005-01-01

    Multiscale plastic deformation in the heat affected zone (HAZ) of a Ni-based single crystal superalloy has been characterized using white microbeam synchrotron diffraction measurements together with OIM imaging, electron and optical microscopy. Characteristic length scales on the macro, meso and nano scale are determined. Dissolution of the {gamma}{prime} - phase particles during heating and secondary precipitation of {gamma}{prime} - phase during cooling is found, as well as formation and multiplication of dislocations. This process is more intense as one approaches the fusion line (FL). In the regions immediately neighboring the FL, {gamma}{prime} - phase particles dissolve completely and re-precipitate from the solid solution in the form of very small (50-70nm) particles. In the immediate vicinity of the FL, the temperature gradient and the rate of it's change reaches maximal values and causes the formation of large amounts of dislocations. Dislocations are concentrated in the {gamma} matrix of the single crystal superalloy. X-ray Laue diffraction (both conventional and microbeam) and electron microscopy show that alternating dislocations slip systems dominate in the HAZ with typical Burgers vector b=[110]. Local lattice rotations in different zones of the weld joint are linking with the microslip events in different zones of the weld.

  11. Multiscale characterization of deformation mechanisms in the weld joint of a nickel-based superalloy

    SciTech Connect

    Barabash, Oleg M; Horton Jr, Joe A; Babu, Sudarsanam S; Vitek, John Michael; David, Stan A; Ice, Gene E; Barabash, Rozaliya

    2005-01-01

    Multiscale plastic deformation in the heat affected zone (HAZ) of a Ni-based single crystal superalloy has been characterized using white microbeam synchrotron diffraction measurements together with OIM imaging, electron and optical microscopy. Characteristic length scales on the macro, meso and nano scale are determined. Dissolution of the gamma' - phase particles during heating and secondary precipitation of gamma' during cooling is found, as well as formation and multiplication of dislocations. This process is more intense as one approaches the fusion line (FL). In the regions immediately neighboring the FL, gamma' - phase particles dissolve completely and re-precipitate from the solid solution in the form of very small (10-20nm) particles. In the immediate vicinity of the FL, the temperature gradient and the rate of it's change reaches maximal values and causes the formation of large amounts of dislocations. Dislocations are concentrated in the gamma matrix of the single crystal superalloy. X-ray Laue diffraction (both conventional and microbeam) and electron microscopy show that alternating dislocations slip systems dominate in the HAZ with Burgers vector b=[110] and dislocation lines [1-12] and [1-1-2] ; or b=[-110], dislocation lines [112] and [11-2] . Each of these two dislocation groups forms two Z-shaped dislocation lines fluctuating around two cubic directions [100] and [010]. Local lattice rotations in different zones of the weld joint are linking with the microslip events in different zones of the weld.

  12. A Fatigue Life Prediction Model of Welded Joints under Combined Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Goes, Keurrie C.; Camarao, Arnaldo F.; Pereira, Marcos Venicius S.; Ferreira Batalha, Gilmar

    2011-01-01

    A practical and robust methodology is developed to evaluate the fatigue life in seam welded joints when subjected to combined cyclic loading. The fatigue analysis was conducted in virtual environment. The FE stress results from each loading were imported to fatigue code FE-Fatigue and combined to perform the fatigue life prediction using the S x N (stress x life) method. The measurement or modelling of the residual stresses resulting from the welded process is not part of this work. However, the thermal and metallurgical effects, such as distortions and residual stresses, were considered indirectly through fatigue curves corrections in the samples investigated. A tube-plate specimen was submitted to combined cyclic loading (bending and torsion) with constant amplitude. The virtual durability analysis result was calibrated based on these laboratory tests and design codes such as BS7608 and Eurocode 3. The feasibility and application of the proposed numerical-experimental methodology and contributions for the technical development are discussed. Major challenges associated with this modelling and improvement proposals are finally presented.

  13. Change of nonlinear acoustics in ASME grade 122 steel welded joint during creep

    NASA Astrophysics Data System (ADS)

    Ohtani, Toshihiro; Honma, Takumi; Ishii, Yutaka; Tabuchi, Masaaki; Hongo, Hiromichi; Hirao, Masahiko

    2016-02-01

    In this paper, we described the changes of two nonlinear acoustic characterizations; resonant frequency shift and three-wave interaction, with electromagnetic acoustic resonance (EMAR) throughout the creep life in the welded joints of ASME Grade 122, one of high Cr ferritic heat resisting steels. EMAR was a combination of the resonant acoustic technique with a non-contact electromagnetic acoustic transducer (EMAT). These nonlinear acoustic parameters decreased from the start to 50% of creep life. After slightly increased, they rapidly increased from 80% of creep life to rupture. We interpreted these phenomena in terms of dislocation recovery, recrystallization, and restructuring related to the initiation and growth of creep void, with support from the SEM and TEM observation.

  14. Weld penetration and defect control

    SciTech Connect

    Chin, B.A.

    1992-05-15

    Highly engineered designs increasingly require the use of improved materials and sophisticated manufacturing techniques. To obtain optimal performance from these engineered products, improved weld properties and joint reliability are a necessarily. This requirement for improved weld performance and reliability has led to the development of high-performance welding systems in which pre-programmed parameters are specified before any welding takes place. These automated systems however lack the ability to compensate for perturbations which arise during the welding process. Hence the need for systems which monitor and control the in-process status of the welding process. This report discusses work carried out on weld penetration indicators and the feasibility of using these indicators for on-line penetration control.

  15. Microstructural characterization and mechanical properties of high power ultrasonic spot welded aluminum alloy AA6111–TiAl6V4 dissimilar joints

    SciTech Connect

    Zhang, C.Q. Robson, J.D.; Ciuca, O.; Prangnell, P.B.

    2014-11-15

    Aluminum alloy AA6111 and TiAl6V4 dissimilar alloys were successfully welded by high power ultrasonic spot welding. No visible intermetallic reaction layer was detected in as-welded AA6111/TiAl6V4 welds, even when transmission electron microscopy was used. The effects of welding time and natural aging on peak load and fracture energy were investigated. The peak load and fracture energy of welds increased with an increase in welding time and then reached a plateau. The lap shear strength (peak load) can reach the same level as that of similar Al–Al joints. After natural aging, the fracture mode of welds transferred from ductile fracture of the softened aluminum to interfacial failure due to the strength recovery of AA6111. - Highlights: • Dissimilar Al/Ti welds were produced by high power ultrasonic spot welding. • No visible intermetallic reaction layer was detected on weld interface. • The lap shear strength can reach the same level as that of similar Al–Al joints. • The fracture mode becomes interfacial failure after natural aging.

  16. Analysis of Formation and Interfacial WC Dissolution Behavior of WC-Co/Invar Laser-TIG Welded Joints

    NASA Astrophysics Data System (ADS)

    Xu, P. Q.; Ren, J. W.; Zhang, P. L.; Gong, H. Y.; Yang, S. L.

    2013-02-01

    During the valve fabrication, hard metal is welded to stainless steel or invar alloy for sealing purposes because of its good heat resistance operating at 500 °C. However, WC (tungsten carbide) dissolution in weld pool softens the hard metal and decreases mechanical properties near the hard metal/weld interface. In order to analyze the WC dissolution in welded joint, joining of hard metal and invar alloy was carried out using laser-tungsten inert gas hybrid welding method. Microstructures of the weld region, chemical composition were investigated using optical microscope, scanning electron microscopy, and EDAX, respectively. Mechanical properties such as microhardness and four-point bend strength test were performed. Larger and smaller WC dissolution and WC dissolution through transition layer based on thermo-dynamics were discussed. The results thus indicate that WC dissolution led to cellular microstructure, columnar crystal, and transition layer under the effect of laser beam and tungsten arc. WC dissolution was affected by metal ions Fe+, Ni+, Co+ exchange in W-M-C system, and WC grain growth was driven by forces caused by laser beam and tungsten arc in larger WC, smaller WC, and liquid Fe, Ni systems.

  17. Characterization and morphology of pulsed electron beam welding on 21-6-9 stainless steel

    SciTech Connect

    Kautz, D.D.

    1987-01-01

    The purpose of this work was to investigate the usefulness of pulsed electron beam welding in an industrial setting. The author wished to find out whether a pulsed welding source would decrease the power input needed to obtain a given depth of weld penetration, without compromising the quality of the final weldment. The author also was interested in the use of pulsed electron beam welding of thin to thick sections. For this application, a decrease in the weld toe width was considered to be an improvement in the finished weld. The results of this work indicated that some increase in the weld penetration for a given power input could be obtained with pulsed electron beam welding. However, the fraction of penetration increase in the welds decreased as the power input to the welds was increased. The weld toe width also decreased as the incremental power input to a given length of weldment also decreased. These gains from the use of a pulsed electron beam welding source, were overwhelmed by the poor quality of the finished welds. The welds exhibited a much greater concentration of discontinuities than the continuous wave electron beam welds. The stability of the pulsed electron beam welds was also poor when compared with the continuous wave welds. This author would recommend against using pulsed electron beam welding for typical welding situations. In most cases, weld joint designs can be made to allow for the use of continuous wave electron beam welding. 47 refs., 20 figs., 7 tabs.

  18. Investigations on Laser Beam Welding of Different Dissimilar Joints of Steel and Aluminum Alloys for Automotive Lightweight Construction

    NASA Astrophysics Data System (ADS)

    Seffer, Oliver; Pfeifer, Ronny; Springer, André; Kaierle, Stefan

    Due to the enormous potential of weight saving, and the consequential reduction of pollutant emissions, the use of hybrid components made of steel and aluminum alloys is increasing steadily, especially concerning automotive lightweight construction. However, thermal joining of steel and aluminum is still being researched, due to a limited solubility of the binary system of iron and aluminum causing the formation of hard and brittle intermetallic phases, which decrease the strength and the formability of the dissimilar seam. The presented results show the investigation of laser beam welding for joining different dissimilar hybrid components of the steel materials HX220LAD+Z100, 22MnB5+AS150 and 1.4301, as well as the aluminum alloy AA6016-T4 as a lap joint. Among other things, the influences of the energy per unit length, the material grade, the sheet thickness t, the weld type (lap weld, fillet weld) and the arrangement of the base materials in a lap joint (aluminum-sided irradiation, steel-sided irradiation) on the achievable strengths are analyzed. The characterization of the dissimilar joints includes tensile shear tests and metallographic analyses, depending on the energy per unit length.

  19. Improvement of localised corrosion resistance of AISI 2205 Duplex Stainless Steel joints made by gas metal arc welding under electromagnetic interaction of low intensity

    NASA Astrophysics Data System (ADS)

    García-Rentería, M. A.; López-Morelos, V. H.; García-Hernández, R.; Dzib-Pérez, L.; García-Ochoa, E. M.; González-Sánchez, J.

    2014-12-01

    The resistance to localised corrosion of AISI 2205 duplex stainless steel plates joined by Gas Metal Arc Welding (GMAW) under the effect of electromagnetic interaction of low intensity (EMILI) was evaluated with sensitive electrochemical methods. Welds were made using two shielding gas mixtures: 98% Ar + 2% O2 (M1) and 97% Ar + 3% N2 (M2). Plates were welded under EMILI using the M1 gas with constant welding parameters. The modified microstructural evolution in the high temperature heat affected zone and at the fusion zone induced by application of EMILI during welding is associated with the increase of resistance to localised corrosion of the welded joints. Joints made by GMAW using the shielding gas M2 without the application of magnetic field presented high resistance to general corrosion but high susceptibility to undergo localised attack.

  20. Effect of Nd:YAG Laser Welding Parameters on the Hardness of lap joint: experimental and numerical approach

    NASA Astrophysics Data System (ADS)

    Seang, C.; David, A. Kouadr; Ragneau, E.

    The observation on microstructure and microhardness has been evaluated by experimental methods and also approached to simulation work. One found out higher volume fraction of martensite inside the HAZ and the FZ that is the main cause of higher hardness insides these zones and no softening zone created by laser Nd: YAG on sheet metal of dual phase steel DP600. So the precaution during laser welding Nd: YAG at any welding speed, focal point position and power should be considered in order to prevent a crack and fracture of laser lap joint DP600 during service.

  1. Fatigue Strength and Related Characteristics of Aircraft Joints I : Comparison of Spot-Weld and Rivet Patterns in 24s-t Alclad and 75s-t Alclad

    NASA Technical Reports Server (NTRS)

    Russell, H W; Jackson, L R; Grover, H J; Beaver, W W

    1944-01-01

    Report contains detailed results of a number of fatigue tests on spot-welded joints in aluminum alloys. The tests described include: (1) fatigue tests on spot-welded lap joints in sheets of unequal thickness of alclad 24s-t. These tests indicate that the fatigue strength of a spot-welded joint in sheets of two different gages is slightly higher than that of a similar joint in two sheets of the thinner gage but definitely lower than that of a similar joint in two sheets of the thicker gage. (2) Fatigue tests on spot-welded alclad 75s-t spot-welded lap-joint specimens of alclad 75s-t were not any stronger in fatigue than similar specimens of alclad 24s-t. (3) Fatigue tests on lap-joint specimens spot -welded after various surface preparations--these included ac welding wire-brushed surfaces, dc welding wire-brushed surfaces, and dc welding chemically cleaned surfaces. While the ac welds were strongest statically, the dc welds on wire-brushed surfaces were strongest in fatigue. Specimens prepared in this way were very nearly as strong as the best riveted specimens tested for comparison. (4) Fatigue tests on specimens spot-welded with varying voltage so as to include a wide range of static spot-weld strengths. The fatigue strengths were in the same order as the static strengths but showed less range. (author)

  2. Influence of the Introduction of Carbon-Fluorine Additive to the Slag of the Production of Silicomanganese on the Weld Joint Quality

    NASA Astrophysics Data System (ADS)

    Kozyrev, N. A.; Krukov, R. E.; Kozyreva, O. E.; Zernin, E. A.; Kartsev, D. S.

    2016-08-01

    In the paper a possibility in principle is outlined to use a silicomanganese by-product ladle slag and a gas purification dust of aluminum production for manufacturing welding fluxes. The appropriate component concentration in welding fluxes is determined. The results of metallographic research are provided. The use of carbon-fluorine additive makes it possible to reduce the level of non-metallic impurities in the weld joint.

  3. Welding.

    ERIC Educational Resources Information Center

    Cowan, Earl; And Others

    The curriculum guide for welding instruction contains 16 units presented in six sections. Each unit is divided into the following areas, each of which is color coded: terminal objectives, specific objectives, suggested activities, and instructional materials; information sheet; transparency masters; assignment sheet; test; and test answers. The…

  4. Welding.

    ERIC Educational Resources Information Center

    Baldwin, Harold; Whitney, Gregory

    This curriculum guide is intended to assist vocational instructors in preparing students for entry-level employment as welders and preparing them for advanced training in the workplace. The package contains an overview of new and emerging welding technologies, a competency/skill and task list, an instructor's guide, and an annotated bibliography.…

  5. The Anti-fatigue Mechanisms on Alterations of Structures and Performances of Alloy Welded Joints with Ultrasonic Impact Treatment

    NASA Astrophysics Data System (ADS)

    Li, Z. M.; Zhu, Y. L.; Du, X. K.

    The specimens of aluminum alloy welded joint were prepared by gas tungsten arc welding using 2A12 sheets and ER5356 welding wires. Some specimens were full coverage strengthened by ultrasonic impact treatment and the others were not strengthened. The surface layer microstructures of the ultrasonic impact treated and untreated specimens were investigated by optical microscopy and transmission electron microscopy. The surface layer hardness and residual stress distributions along the thickness direction were measured by micro-hardness tester and X-ray diffraction method. The results showed that a grain refinement layer which depth extended up to about 150∼200 μm was produced by ultrasonic impact treatment. The average hardness value of the treated specimens was up to 110 HV, increasing by 45% compared with 76 HV of the untreated specimen. A residual compressive stress layer was also produced by ultrasonic impact treatment, and the depth was close to 900 μm. The maximum residual compressive stress was -285 MPa. At the same time, the anti-fatigue mechanisms on grain refinement, work hardening and residual compressive stress of aluminum alloy welded joint with ultrasonic impact treatment were also discussed.

  6. Laser-based welding of 17-4 PH martensitic stainless steel in a tubular butt joint configuration with a built-in backing bar

    NASA Astrophysics Data System (ADS)

    Ma, Junjie; Atabaki, Mehdi Mazar; Liu, Wei; Pillai, Raju; Kumar, Biju; Vasudevan, Unnikrishnan; Kovacevic, Radovan

    2016-08-01

    Laser-based welding of thick 17-4 precipitation hardening (PH) martensitic stainless steel (SS) plates in a tubular butt joint configuration with a built-in backing bar is very challenging because the porosity and cracks are easily generated in the welds. The backing bar blocked the keyhole opening at the bottom surface through which the entrapped gas could escape, and the keyhole was unstable and collapsed overtime in a deep partially penetrated welding conditions resulting in the formation of pores easily. Moreover, the fast cooling rate prompted the ferrite transform to austenite which induced cracking. Two-pass welding procedure was developed to join 17-4 PH martensitic SS. The laser welding assisted by a filler wire, as the first pass, was used to weld the groove shoulder. The added filler wire could absorb a part of the laser beam energy; resulting in the decreased weld depth-to-width ratio and relieved intensive restraint at the weld root. A hybrid laser-arc welding or a gas metal arc welding (GMAW) was used to fill the groove as the second pass. Nitrogen was introduced to stabilize the keyhole and mitigate the porosity. Preheating was used to decrease the cooling rate and mitigate the cracking during laser-based welding of 17-4 PH martensitic SS plates.

  7. Mechanical properties of Cu sbnd Cr sbnd Zr alloy and SS316 joints fabricated by friction welding method

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Kunihiko; Kawamura, Hiroshi

    1996-10-01

    Copper alloys with high-strength and high-conductivity are being considered for several magnetic fusion energy applications such as the first wall in high power-density devices, resistive magnetic coils, and high-heat flux components. For example, the stainless steel is a structural material while Cu-alloy acts as a heat sink material for the surface heat flux in the first wall. Therefore, development of reliable joints between Cu-alloys and stainless steel (SS316) is required. In the present work, joining tests on Cu—1%Cr—1%Zr/SS316 by friction welding were performed, and optimum fabricating conditions of the Cu-alloy/SS316 joint were determined. Additionally, the characteristics of tensile strength, hardness, metallographical observation and SEM/EPMA analyses on Cu—1%Cr—1%Zr/SS316 fabricated by friction welding were evaluated.

  8. Pursuing low joint resistivity in Cu-stabilized REBa2Cu3O δ coated conductor tapes by the ultrasonic weld-solder hybrid method

    NASA Astrophysics Data System (ADS)

    Shin, Hyung-Seop; Kim, Jong-min; Dedicatoria, Marlon J.

    2016-01-01

    Development of a coated conductor tape joint with good quality and low joint resistivity, R sj, in terms of transport and mechanical properties, was attempted by direct bonding at the interface of the Cu-Cu stabilizers in overlapped GdBCO CC tapes. In this study, we attempted to achieve a low R sj by introducing hybrid joining, soldering and ultrasonic welding (UW), and its mechanism was analyzed theoretically. Coated conductor tapes were experimentally joined using various methods of soldering, UW, and combinations of the two. As a result, a much lower R sj of about 57 nΩ · cm2 was obtained for RCE-DR-processed GdBCO CC tape joints using the hybrid joining method. The mechanical properties of the jointed CC tapes were also evaluated at room temperature and 77 K under self-field. Load-displacement curves of joined CC tapes followed the curve of the single CC tape. Critical current and joint resistance, R j, of hybrid-joined CC tape were retained after double bending at room temperature up to 20 mm bending diameter.

  9. Enhancing the Lifetime of Welded Joints Using the Protective Coating and Causes the Formation of Defects in Them*

    NASA Astrophysics Data System (ADS)

    Bezborodov, V. P.; Saraev, Yu N.

    2016-08-01

    The paper shows the efficacy of eutectic Nickel coatings for protecting welded joints of steels against corrosion. It increases with increasing content of the eutectic and chemical compounds at the grain boundaries γ-solid solution based on Nickel. Refinement of the structure of the coatings and reduce their heterogeneity allows to increase the protective properties and durability of welded joints against corrosion. It is established that the probability of formation of cracks in the coatings increases with their thickness, intensity of heating and cooling after reflow, and also with increasing content of the eutectic and chemical compounds at the grain boundaries γ-solid solution based on Nickel. Shown to prevent the formation of cracks in the coatings when they are melt you can use optimal modes of heating and cooling of the composition. Modification of the structure of the coatings by grinding them and reducing heterogeneity allows to improve the resistance to crack formation and protective properties of welded joints against corrosion.

  10. Effect of Post-Weld Heat Treatment on Microstructure and Mechanical Properties of X52 Linepipe HFIW Joints

    NASA Astrophysics Data System (ADS)

    Kavousi Sisi, A.; Mirsalehi, S. E.

    2015-04-01

    In the present paper, influences of normalization heat treatment on microstructural and mechanical properties of high-frequency induction welded (HFIW) joints of X52 steel have been investigated. HFIW joints were post-weld heat treated at different times and temperatures. The microstructure and mechanical properties of the heat treated joints were then comprehensively investigated. Based on the results, a proper normalization of the primary fine grain steel caused the grain size to increase; but because of converting brittle microstructure into ductile microstructure, it caused the toughness to increase also. In addition, the ductility of the joints was enhanced. Nevertheless, tensile strength, yield strength, and hardness were reduced. The results showed that 950 °C was the optimum normalization temperature from the standpoint of fracture toughness for the X52 steel joints. At 1050 °C, the carbides and/or nitrides in the steel dissolved, and excessive grain growth occurred. Hence, the maximum allowable temperature for normalization was found to be 1000 °C.

  11. Effect of Intermetallic Compound Phases on the Mechanical Properties of the Dissimilar Al/Cu Friction Stir Welded Joints

    NASA Astrophysics Data System (ADS)

    Khodir, S. A.; Ahmed, M. M. Z.; Ahmed, Essam; Mohamed, Shaymaa M. R.; Abdel-Aleem, H.

    2016-09-01

    Types and distribution of intermetallic compound phases and their effects on the mechanical properties of dissimilar Al/Cu friction stir welded joints were investigated. Three different rotation speeds of 1000, 1200 and 1400 rpm were used with two welding speeds of 20 and 50 mm/min. The results show that the microstructures inside the stir zone were greatly affected by the rotation speed. Complex layered structures that containing intermetallic compound phases such as CuAl2, Al4Cu9 were formed in the stir zone. Their amount found to be increased with increasing rotation speed. However, the increasing of the rotation speed slightly lowered the hardness of the stir zone. Many sharp hardness peaks in the stir zones were found as a result of the intermetallic compounds formed, and the highest peaks of 420 Hv were observed at a rotation speed of 1400 rpm. The joints ultimate tensile strength reached a maximum value of 105 MPa at the rotation speed of 1200 rpm and travel speed of 20 mm/min with the joint efficiency ranged between 88 and 96% of the aluminum base metal. At the travel speed of 50 mm/min, the maximum value of the ultimate tensile strength was 96 MPa at rotation speed of 1400 rpm with the joint efficiency ranged between 79 and 90%. The fracture surfaces of tensile test specimens showed no evidence for the effect of the brittle intermetallic compounds in the stir zones on the tensile strength of the joints.

  12. On the Use of Infrared Thermography for Analysis of Fatigue Damage in Ti6Al4V-Welded Joints

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Gao, Xiao-Long; Zhang, Lin-Jie; Zhang, Jian-Xun

    2014-08-01

    The present work is aimed at comparatively studying fatigue damage evolution of a pulsed Nd:YAG laser beam-welded (LBW) joint and the base metal (BM) of Ti6Al4V alloy subjected to cyclic loading. To reveal crack nucleation and propagation during the fatigue process, in situ fatigue was generated using infrared measurement methods. The results indicate that the rate of damage accumulated in the LBW joint was higher than in the BM specimens during a fatigue test, which decreased the fatigue life of the LBW joint. This observation is attributable to the LBW joint fusion zone microstructure, which has a higher void nucleation and growth rate compared with the BM microstructure.

  13. Deconvoluting the Friction Stir Weld Process for Optimizing Welds

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Nunes, Arthur C.

    2008-01-01

    In the friction stir welding process, the rotating surfaces of the pin and shoulder contact the weld metal and force a rotational flow within the weld metal. Heat, generated by the metal deformation as well as frictional slippage with the contact surface, softens the metal and makes it easier to deform. As in any thermo-mechanical processing of metal, the flow conditions are critical to the quality of the weld. For example, extrusion of metal from under the shoulder of an excessively hot weld may relax local pressure and result in wormhole defects. The trace of the weld joint in the wake of the weld may vary geometrically depending upon the flow streamlines around the tool with some geometry more vulnerable to loss of strength from joint contamination than others. The material flow path around the tool cannot be seen in real time during the weld. By using analytical "tools" based upon the principles of mathematics and physics, a weld model can be created to compute features that can be observed. By comparing the computed observations with actual data, the weld model can be validated or adjusted to get better agreement. Inputs to the model to predict weld structures and properties include: hot working properties ofthe metal, pin tool geometry, travel rate, rotation and plunge force. Since metals record their prior hot working history, the hot working conditions imparted during FSW can be quantified by interpreting the final microstructure. Variations in texture and grain size result from variations in the strain accommodated at a given strain rate and temperature. Microstructural data from a variety of FSWs has been correlated with prior marker studies to contribute to our understanding of the FSW process. Once this stage is reached, the weld modeling process can save significant development costs by reducing costly trial-and-error approaches to obtaining quality welds.

  14. Optimization of Laser Keyhole Welding Strategies of Dissimilar Metals by FEM Simulation

    NASA Astrophysics Data System (ADS)

    Garcia Navas, Virginia; Leunda, Josu; Lambarri, Jon; Sanz, Carmen

    2015-07-01

    Laser keyhole welding of dissimilar metals has been simulated to study the effect of welding strategies (laser beam displacements and tilts) and combination of metals to be welded on final quality of the joints. Molten pool geometry and welding penetration have been studied but special attention has been paid to final joint material properties, such as microstructure/phases and hardness, and especially to the residual stress state because it greatly conditions the service life of laser-welded components. For a fixed strategy (laser beam perpendicular to the joint) austenitic to carbon steel laser welding leads to residual stresses at the joint area very similar to those obtained in austenitic to martensitic steel welding, but welding of steel to Inconel 718 results in steeper residual stress gradients and higher area at the joint with detrimental tensile stresses. Therefore, when the difference in thermo-mechanical properties of the metals to be welded is higher, the stress state generated is more detrimental for the service life of the component, and consequently more relevant is the optimization of welding strategy. In laser keyhole welding of austenitic to martensitic stainless steel and austenitic to carbon steel, the optimum welding strategy is displacing the laser beam 1 mm toward the austenitic steel. In the case of austenitic steel to Inconel welding, the optimum welding strategy consists in setting the heat source tilted 45 deg and moved 2 mm toward the austenitic steel.

  15. Combination of laser keyhole and conduction welding: Dissimilar laser welding of niobium and Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Torkamany, M. J.; Malek Ghaini, F.; Poursalehi, R.; Kaplan, A. F. H.

    2016-04-01

    Pulsed Nd:YAG laser welding of pure niobium plate to titanium alloy Ti-6Al-4V sheet in butt joint is studied regarding the laser/metal interaction modes. To obtain the optimized process parameters in dissimilar welding of Ti-6Al-4V/Nb, the melting ratio of laser beam energy for each weld counterpart is evaluated experimentally. Different laser welding modes of keyhole and conduction are predicted regarding the absorbed energy from the similar laser pulses on each weld counterpart. Laser keyhole and conduction welding were observed simultaneously through direct visualization of laser interaction with dissimilar metals using High Speed Imaging (HSI) system.

  16. Microstructure Changes and Phase Growth Occurring at the Interface of the Al/Ti Explosively Welded and Annealed Joints

    NASA Astrophysics Data System (ADS)

    Fronczek, D. M.; Chulist, R.; Litynska-Dobrzynska, L.; Szulc, Z.; Zieba, P.; Wojewoda-Budka, J.

    2016-08-01

    The manuscript presents a close examination of the titanium and aluminum platters manufactured by explosive welding method. In particular, the microstructure changes of the Al/Ti wavy shape interface after annealing at 773 and 903 K were studied. Three stable TiAl3, TiAl, and Ti3Al and a metastable TiAl2 intermetallic phases have been formed in the state directly after explosive welding. The orientation map and TEM images obtained after explosive welding process showed very fine grains of aluminum mixed with intermetallics in the interface region between the peninsulas or islands. After annealing for 100 h the TiAl3 continuous layer was obtained; however, the layer achieved at 903 K was much wider than that obtained at 773 K. An examination of the growth kinetics at 903 K revealed that incubation time was less than 5 min. After this period, the growth was solely governed by chemical reaction.

  17. Microstructural characterization and hardness properties of electric resistance welding titanium joints for dental applications.

    PubMed

    Ceschini, Lorella; Boromei, Iuri; Morri, Alessandro; Nardi, Diego; Sighinolfi, Gianluca; Degidi, Marco

    2015-06-01

    The electric resistance welding procedure is used to join a titanium bar with specific implant abutments in order to produce a framework directly in the oral cavity of the patient. This investigation studied the effects of the welding process on microstructure and hardness properties of commercially pure (CP2 and CP4) Ti components. Different welding powers and cooling procedures were applied to bars and abutments, normally used to produce the framework, in order to simulate the clinical intraoral welding procedure. The analyses highlighted that the joining process did not induce appreciable changes in the geometry of the abutments. However, because of unavoidable microstructural modifications in the welded zones, the hardness decreased to values lower than those of the unwelded CP2 and CP4 Ti grades, irrespective of the welding environments and parameters. PMID:26045042

  18. Microstructural characterization and hardness properties of electric resistance welding titanium joints for dental applications.

    PubMed

    Ceschini, Lorella; Boromei, Iuri; Morri, Alessandro; Nardi, Diego; Sighinolfi, Gianluca; Degidi, Marco

    2015-06-01

    The electric resistance welding procedure is used to join a titanium bar with specific implant abutments in order to produce a framework directly in the oral cavity of the patient. This investigation studied the effects of the welding process on microstructure and hardness properties of commercially pure (CP2 and CP4) Ti components. Different welding powers and cooling procedures were applied to bars and abutments, normally used to produce the framework, in order to simulate the clinical intraoral welding procedure. The analyses highlighted that the joining process did not induce appreciable changes in the geometry of the abutments. However, because of unavoidable microstructural modifications in the welded zones, the hardness decreased to values lower than those of the unwelded CP2 and CP4 Ti grades, irrespective of the welding environments and parameters.

  19. Influence of Zn Interlayer on Interfacial Microstructure and Mechanical Properties of TIG Lap-Welded Mg/Al Joints

    NASA Astrophysics Data System (ADS)

    Gao, Qiong; Wang, Kehong

    2016-03-01

    This study explored 6061 Al alloy and AZ31B Mg alloy joined by TIG lap welding with Zn foils of varying thicknesses, with the additional Zn element being imported into the fusion zone to alloy the weld seam. The microstructures and chemical composition in the fusion zone near the Mg substrate were examined by SEM and EDS, and tensile shear strength tests were conducted to investigate the mechanical properties of the Al/Mg joints, as well as the fracture surfaces, and phase compositions. The results revealed that the introduction of an appropriate amount of Zn transition layer improves the microstructure of Mg/Al joints and effectively reduces the formation of Mg-Al intermetallic compounds (IMCs). The most common IMCs in the fusion zone near the Mg substrate were Mg-Zn and Mg-Al-Zn IMCs. The type and distribution of IMCs generated in the weld zone differed according to Zn additions; Zn interlayer thickness of 0.4 mm improved the sample's mechanical properties considerably compared to thicknesses of less than 0.4 mm; however, any further increase in Zn interlayer thickness of above 0.4 mm caused mechanical properties to deteriorate.

  20. A Nondestructive Evaluation Method: Measuring the Fixed Strength of Spot-Welded Joint Points by Surface Electrical Resistivity.

    PubMed

    Shimamoto, Akira; Yamashita, Keitaro; Inoue, Hirofumi; Yang, Sung-Mo; Iwata, Masahiro; Ike, Natsuko

    2013-04-01

    Destructive tests are generally applied to evaluate the fixed strength of spot-welding nuggets of zinc-plated steel (which is a widely used primary structural material for automobiles). These destructive tests, however, are expensive and time-consuming. This paper proposes a nondestructive method for evaluating the fixed strength of the welded joints using surface electrical resistance. A direct current nugget-tester and probes have been developed by the authors for this purpose. The proposed nondestructive method uses the relative decrease in surface electrical resistance, α. The proposed method also considers the effect of the corona bond. The nugget diameter is estimated by two factors: R Quota, which is calculated from variation of resistance, and a constant that represents the area of the corona bond. Since the maximum tensile strength is correlated with the nugget diameter, it can be inferred from the estimated nugget diameter. When appropriate measuring conditions for the surface electrical resistance are chosen, the proposed method can effectively evaluate the fixed strength of the spot-welded joints even if the steel sheet is zinc-plated.

  1. Influence of Accelerated Cooling Condition on Welding Thermal Cycle, Residual Stress, and Deformation in SM490A Steel ESW Joint

    NASA Astrophysics Data System (ADS)

    Deng, Dean; Sun, Jiamin; Dai, Deping; Jiang, Xiaohua

    2015-09-01

    Electro-slag welding (ESW) has been widely used to join the box column because of high productivity. The heat input of ESW is far larger than those of other fusion welding processes, so ESW usually results in a long holding time over certain elevated temperature (∆ t H time), a long cooling time from 800 to 500 °C (∆ t 8/5 time), and a wide heat-affected zone (HAZ). It can be foreseen that the mechanical properties especially fracture toughness of the fusion zone and HAZ will be inferior to those of base metal. As a fundamental research, a computational approach based on MSC.Marc code was developed to simulate the thermo-mechanical behaviors in a typical SM490A steel ESW joint under different cooling conditions. Meanwhile, the thermal cycles computed by numerical model were compared with the experimental measurements. Moreover, the influence of accelerated cooling methods on welding residual stress and deformation was examined numerically. Simulation results show that accelerated cooling methods not only can largely shorten ∆ t H time as well as ∆ t 8/5 time and reduce the size of HAZ, but also can affect the residual stress distribution and deformation. It is believed that the accelerated cooling methods proposed by this study potentially improve the mechanical properties of ESW joint.

  2. Characterization of Mg/Al butt joints welded by gas tungsten arc filling with Zn–29.5Al–0.5Ti filler metal

    SciTech Connect

    Liu, Fei; Wang, Hongyang; Liu, Liming

    2014-04-01

    The multivariate alloying design of a welding joint is used in the Mg to Al welding process. A Zn–29.5Al–0.5Ti alloy is added as filler metal in gas tungsten arc welding of Mg and Al alloy joint based on the analysis of Al and Mg alloy characteristics. The tensile strength, microstructure, and phase constitution of the weld seam are analyzed. The formation of brittle and hard Mg–Al intermetallic compounds is avoided because of the effects of Zn, Al, and Ti. The average tensile strength of the joint is 148 MPa. Al{sub 3}Ti is first precipitated and functions as the nucleus of heterogeneous nucleation during solidification. Moreover, the precipitated Al–MgZn{sub 2} hypoeutectic phase exhibited a feather-like structure, which enhances the property of the Mg–Al dissimilar joint. - Highlights: • Mg alloy AZ31B and Al alloy 6061 are butt welded by fusion welding. • The effect of Ti in filler metal is investigated. • The formation of Mg–Al intermetallic compounds is avoided.

  3. Fatigue Damage Evaluation of Friction Stir Spot Welded Cross-Tension Joints Under Repeated Two-Step Force Amplitudes

    NASA Astrophysics Data System (ADS)

    Joy-A-Ka, Sutep; Ogawa, Yuki; Akebono, Hiroyuki; Kato, Masahiko; Sugeta, Atsushi; Sun, Yufeng; Fujii, Hidetoshi

    2015-06-01

    This paper investigates an approach to evaluate the fatigue damage of FSSW cross-tension specimens under two-step force amplitude conditions. In fatigue tests with repeated two-step force amplitude, the fatigue limit of the welded joint disappeared. However, the fatigue damage evaluation using the modified Miner's rule erred too much on the side of safety, as the modified Miner's rule tends to overestimate the damage by applied forces below the fatigue limit. Thus, it was determined that, within the testing conditions used in this study, the fatigue damage evaluation using Haibach's method yielded an accurate evaluation. In the case where significant plastic deformation caused by the applied force occurred near the welded zone, the cumulative fatigue damage value based on Miner's rule was often larger than unity. Therefore, it is important to consider a cumulative damage estimation that takes into account the effect of pre-strain from the high force amplitude.

  4. Mechanical Characteristics of 9% Ni Steel Welded Joint for Lng Storage Tank at Cryogenic

    NASA Astrophysics Data System (ADS)

    Yoon, Yong-Keun; Kim, Jae-Hoon; Shim, Kyu-Taek; Kim, Young-Kyun

    To confirm the safety performance of LNG storage tank, the change in fatigue crack growth rate and fracture toughness within X-grooved weld heat-affected zone (HAZ) of newly developed 9% Ni steel, which was SMAW welded, was investigated. These materials were produced by QT (quenching, tempering) heat treatment. The weld metal specimens were prepared by taking the same weld procedure applied in actual inner shell of LNG storage tank. All tests were performed in the temperature ranging from R.T. and -162°C. The fatigue crack growth behavior was carried out using CT specimen. Investigation has been carried out to study the influence of temperature and weld effect on fatigue crack growth behavior. Also, Fracture surfaces after tests were observe by scanning electron microscope (SEM).

  5. Weld penetration and defect control. Final report

    SciTech Connect

    Chin, B.A.

    1992-05-15

    Highly engineered designs increasingly require the use of improved materials and sophisticated manufacturing techniques. To obtain optimal performance from these engineered products, improved weld properties and joint reliability are a necessarily. This requirement for improved weld performance and reliability has led to the development of high-performance welding systems in which pre-programmed parameters are specified before any welding takes place. These automated systems however lack the ability to compensate for perturbations which arise during the welding process. Hence the need for systems which monitor and control the in-process status of the welding process. This report discusses work carried out on weld penetration indicators and the feasibility of using these indicators for on-line penetration control.

  6. Weld-brazing - a new joining process. [combination resistance spot welding and brazing of titanium alloys

    NASA Technical Reports Server (NTRS)

    Bales, T. T.; Royster, D. M.; Arnold, W. E., Jr.

    1972-01-01

    A joining process designated weld brazing which combines resistance spot welding and brazing has been developed. Resistance spot welding is used to position and align the parts as well as to establish a suitable faying surface gap for brazing. Fabrication is then completed by capillary flow of the braze alloy into the joint. The process has been used successfully to fabricate Ti-6Al-4V titanium alloy joints using 3003 aluminum braze alloy. Test results obtained on single overlap and hat-stiffened structural specimens show that weld brazed joints are superior in tensile shear, stress rupture, fatigue, and buckling than joint fabricated by spotwelding or brazing. Another attractive feature of the process is that the brazed joints is hermetically sealed by the braze material.

  7. Determination of the uncertainty of microhardness in the evaluation of hardfacing obtained by welding

    NASA Astrophysics Data System (ADS)

    Cruz-Crespo, A.; Leal, J. E. S.; Piratelli-Filho, A.; Mendez, T. O.; Arencibia, R. V.

    2015-10-01

    The present work evaluates the microhardness measurement uncertainty using a Vickers indenter in the characterization of hard deposits, obtained with experimental electrode for hardfacing of cutting knives in sugar mills. The following stages were proposed: i) obtainment of the deposit with experimental electrode, ii) obtainment of the samples, iii) chemical characterization, iv) metallographic analysis, v) microhardness measurement and vi) uncertainty measurement assessment. It was observed that the obtained deposit presents chrome carbides and eutectic matrix composed of austenite and carbides. The expanded uncertainty associated to the microhardness measurement is highly influenced by the low repeatability of the obtained microhardness values.

  8. Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel

    NASA Astrophysics Data System (ADS)

    Vasantharaja, P.; Vasudevan, M.

    2012-02-01

    Low Activation Ferritic-Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.

  9. Imaging The Leading Edge Of A Weld

    NASA Technical Reports Server (NTRS)

    Mcgee, William F.; Rybicki, Daniel J.

    1994-01-01

    Proposed optical system integrated into plasma arc welding torch provides image of leading edge of weld pool and welding-arc-initiation point. Welding torch aligned better with joint. System includes coherent bundle of optical fibers and transparent cup.

  10. Influence of Joint Configuration on the Strength of Laser Welded Presshardened Steel

    NASA Astrophysics Data System (ADS)

    Kügler, H.; Mittelstädt, C.; Vollertsen, F.

    Presshardened steel is used in nowadays automotive production. Due to its high strength, sheet thicknesses can be reduced which results in decreasing weight of car body components. However, because of microstructure softening and coating agglomerations in the seam, welding is still a challenge. In this paper laser beam welding of 22MnB5 with varying energy input per irradiated area is presented. It is found that increasing energy input per seam length reduces tensile strength. Using a small spot size of 200 μm, tensile strength of 1434 N/mm2 can be reached in bead on plate welds. In lap welds tensile strength is limited because of coating particles agglomerating at the melt pool border line. However, the resulting strength is higher when using several small weld seams than using one seam with the same total seam width. With three weld seams, each 0.5mm in width, tensile strength of 911N/mm2 is reached in lap welding.

  11. Effect of Interfacial Microstructure Evolution on Mechanical Properties and Fracture Behavior of Friction Stir-Welded Al-Cu Joints

    NASA Astrophysics Data System (ADS)

    Xue, P.; Xiao, B. L.; Ma, Z. Y.

    2015-07-01

    The interfacial microstructure evolution of Al-Cu joints during friction stir welding and post-welding annealing and its influence on the tensile strength and the fracture behavior were investigated in detail. An obvious interface including three sub-layers of α-Al, Al2Cu, and Al4Cu9 intermetallic compound (IMC) layers is generated in the as-FSW joint. With the development of annealing process, the α-Al layer disappeared and a new IMC layer of AlCu formed between initial two IMC layers of Al2Cu and Al4Cu9. The growth rate of IMC layers was diffusion controlled before the formation of Kirkendall voids, with activation energy of 117 kJ/mol. When the total thickness of IMC layers was less than the critical value of 2.5 μm, the FSW joints fractured at the heat-affected zone of Al side with a high ultimate tensile strength (UTS) of ~100 MPa. When the thickness of IMC layers exceeded 2.5 μm, the joints fractured at the interface. For relatively thin IMC layer, the joints exhibited a slightly decreased UTS of ~90 MPa and an inter-granular fracture mode with crack propagating mainly between the Al2Cu and AlCu IMC layers. However, when the IMC layer was very thick, crack propagated in the whole IMC layers and the fracture exhibited trans-granular mode with a greatly decreased UTS of 50-60 MPa.

  12. Heat treatment of welded joints of steel 0.3С-1Cr-1Si produced by high-power fiber lasers

    NASA Astrophysics Data System (ADS)

    Kuryntsev, S. V.; Gilmutdinov, A. Kh.

    2015-11-01

    The effect of heat treatment on the welded joints of steel grade 0.3С-1Cr-1Si produced by 30 kW power fiber lasers was investigated in the paper. The speed of the welding process was 20 mm/s. Heat treatment was carried out on two levels, quenching with subsequent middle tempering and high tempering. The samples were examined before and after heat treatment, macro- and microstructure were studied using SEM, UTS, three points bent test, microhardness. The effect of heat treatment was significant: it allowed reduction of the weld hardness of considerably and enhancement of its ductility.

  13. Effects of CaF2 Coating on the Microstructures and Mechanical Properties of Tungsten Inert Gas Welded AZ31 Magnesium Alloy Joints

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Wang, Linzhi; Peng, Dong; Wang, Dan

    2012-11-01

    The effects of CaF2 coating on the macromorphologies of the welded seams were studied by morphological analysis. Microstructures and mechanical properties of butt joints welded with different amounts of CaF2 coatings were investigated using optical microscopy and tensile tests. The welding defects formed in the welded seams and the fracture surfaces were analyzed by scanning electron microscopy. An increase in the amount of CaF2 coating deteriorated the appearances of the welded seams but it improved the weld penetration depth and the depth/width ( D/ W) ratio of the tungsten inert gas (TIG) welded joints. The α-Mg grains and Mg17(Al,Zn)12 intermetallic compound (IMC) were coarser in the case of a higher amount of CaF2 coating. The increase in the amount of CaF2 coating reduced the porosities and total length of solidification cracks in the fusion zone (FZ). The ultimate tensile strength (UTS) value and elongation increased at first and then decreased sharply.

  14. Microstructural Properties and Four-Point Bend Fatigue Behavior of Ti-6.5Al-2Zr-1Mo-1V Welded Joints by Electron Beam Welding

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Zhai, T.; Zhang, Yuanbin

    2016-06-01

    With the help of a four-point-bend of fatigue rig, high-cycle fatigue tests were carried out on an Ti-6.5Al-2Zr-1Mo-1V titanium alloy at room temperature, 20 Hz and R = 0.1 in ambient air. The test results indicated that the fatigue strength of base metal, 888 MPa, is about 120% of yield strength. The fatigue strength of joints is 814 MPa. It is about 110% of yield strength of base metal. When the loading stress is higher, the fatigue failure region is located in middle weld zone of weld face, which the cracks are propagated along coarse β phase's grain boundary. When the loading stress is lower, the fatigue failure region is located between the incomplete recrystallization zone and base metal. The crack nucleation resistance gradually increases from the WN to HAZ with the variable of loading stress and β phase (little α' phases)→ α + β phase→ α phase.

  15. Evaluation of the Effect of Dynamic Sodium on the Low Cycle Fatigue Properties of 316L(N) Stainless Steel Base and Weld Joints

    NASA Astrophysics Data System (ADS)

    Ganesan, V.; Kannan, R.; Mariappan, K.; Sukumaran, G.; Sandhya, R.; Rao, K. Bhanu Sankara

    2012-06-01

    Low cycle fatigue (LCF) tests on 316L(N) austenitic stainless steel base and weld joints were at 823 K and 873 K at a constant strain rate of 3 × 10 -3 s -1 with strain ranges varying from {±}0.4% to {±}1.0% in a servo-hydraulic fatigue test system under flowing sodium environment. The cyclic stress response exhibited a similar trend as that in air comprising of an initial rapid hardening, followed by a slight softening stage before saturation. The fatigue lives are significantly improved in sodium environment when compared to identical testing conditions in air environment. The lack of oxidation in sodium environment is attributed to the delayed crack initiation, reduced crack propagation rate and consequent increase in fatigue life. Comparison of the data evaluated in sodium with RCC-MR design code, derived on the basis of data obtained from air shows that the design based on air tests is conservative.

  16. Effects of porosity on weld-joint tensile strength of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Lovoy, C. V.

    1974-01-01

    Tensile properties in defect-free weldments of aluminum alloys 2014-T6 and 2219-T87 (sheet and plate) are shown to be related to the level or concentration of induced simulated porosity. The scatter diagram shows that the ultimate tensile strength of the weldments displays the most pronounced linear relationship with the level of porosity. The relationships between yield strength or elongation and porosity are either trivial or inconsequential in the lower and intermediate levels of porosity content. In highly concentrated levels of porosity, both yield strength and elongation values decrease markedly. Correlation coefficients were obtained by simple straight line regression analysis between the variables of ultimate tensile strength and pore level. The coefficients were greater, indicating a better correlation, using a pore area accumulation concept or pore volume accumulation than the accumulation of the pore diameters. These relationships provide a useful tool for assessing the existing aerospace radiographic acceptance standards with respect to permissible porosity. In addition, these relationships, in combination with known design load requirements, will serve as an engineering guideline in determining when a weld repair is necessary based on accumulative pore level as detected by radiographic techniques.

  17. Characterization of microstructure, chemical composition, corrosion resistance and toughness of a multipass weld joint of superduplex stainless steel UNS S32750

    SciTech Connect

    Tavares, S.S.M.

    2007-07-15

    The superduplex stainless steels have an austeno-ferritic microstructure with an average fraction of each phase of approximately 50%. This duplex microstructure improves simultaneously the mechanical properties and corrosion resistance. Welding of these steels is often a critical operation. In this paper we focus on characterization and analysis of a multipass weld joint of UNS S32750 steel prepared using welding conditions equal to industrial standards. The toughness and corrosion resistance properties of the base metal, root pass welded with gas tungsten arc welding, as well as the filler passes, welded with shielded metal arc welding, were evaluated. The microstructure and chemical composition of the selected areas were also determined and correlated to the corrosion and mechanical properties. The root pass was welded with low nickel filler metal and, as a consequence, presented low austenite content and significant precipitation. This precipitation is reflected in the corrosion and mechanical properties. The filler passes presented an adequate ferrite:austenite proportion but, due to their high oxygen content, the toughness was lower than that of the root pass. Corrosion properties were evaluated by cyclic polarization tests in 3.5% NaCl and H{sub 2}SO{sub 4} media.

  18. A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel Part II : Proposal of a method to use shell element model

    NASA Astrophysics Data System (ADS)

    Kim, Jae Woong; Jang, Beom Seon; Kang, Sung Wook

    2014-06-01

    I-core sandwich panel that has been used more widely is assembled using high power CO-laser welding. Kim et al. (2013) proposed a circular cone type heat source model for the T-joint laser welding between face plate and core. It can cover the negative defocus which is commonly adopted in T-joint laser welding to provide deeper penetration. In part I, a volumetric heat source model is proposed and it is verified thorough a comparison of melting zone on the cross section with experiment results. The proposed model can be used for heat transfer analysis and thermal elasto-plastic analysis to predict welding deformation that occurs during laser welding. In terms of computational time, since the thermal elasto-plastic analysis using 3D solid elements is quite time consuming, shell element model with multi-layers have been employed instead. However, the conventional layered approach is not appropriate for the application of heat load at T-Joint. This paper, Part II, suggests a new method to arrange different number of layers for face plate and core in order to impose heat load only to the face plate.

  19. Experimental study of cyclic creep and high-cycle fatigue of welded joints of St3 steel by the DIC technique

    SciTech Connect

    Kibitkin, Vladimir V. Solodushkin, Andrey I. Pleshanov, Vasily S.

    2015-10-27

    In the paper the mechanisms of plastic deformation and fracture of welded joints of steel St3 were investigated at high-cycle fatigue and cyclic creep by the digital image correlation (DIC) technique. The evolution of strain rate is studied for the following regions: base metal, HAZ, and fusion zone. This strain rate evolution can be considered as a mechanical response of material. Three stages of deformation evolution are shown: deformation hardening (I), fatigue crack initiation (II), and the last stage is related to main crack (III). Two criteria are offered to evaluate the current mechanical state of welded joints.

  20. Weld joint concepts for on-orbit repair of Space Station Freedom fluid system tube assemblies

    NASA Astrophysics Data System (ADS)

    Jolly, Steven D.

    1993-11-01

    Because Space Station Freedom (SSF) is an independent satellite, not depending upon another spacecraft for power, attitude control, or thermal regulation, it has a variety of tubular, fluid-carrying assemblies on-board. The systems of interest in this analysis provide breathing air (oxygen and nitrogen), a working fluid (two-phase anhydrous ammonia) for thermal control, and a monopropellant (hydrazine) for station reboost. The tube assemblies run both internally and externally with respect to the habitats. They are found in up to 50 ft. continuous lengths constructed of mostly AISI 316L stainless steel tubing, but also including some Inconel 625 nickel-iron and Monel 400 nickel-copper alloy tubing. The outer diameters (OD) of the tubes range from 0.25-1.25 inches, and the wall thickness between 0.028-.095 inches. The system operational pressures range from 377 psi (for the thermal control system) to 3400 psi (for the high pressure oxygen and nitrogen supply lines in the ECLSS). SSF is designed for a fifteen to thirty year mission. It is likely that the tubular assemblies (TA's) will sustain damage or fail during this lifetime such that they require repair or replacement. The nature of the damage will be combinations of punctures, chips, scratches, and creases and may be cosmetic or actually leaking. The causes of these hypothetical problems are postulated to be: (1) faulty or fatigued fluid joints--both QD's and butt-welds; (2) micro-meteoroid impacts; (3) collison with another man-made object; and (4) over-pressure strain or burst (system origin). While the current NASA baseline may be to temporarily patch the lines by clamping metal c-sections over the defect, and then perform high pressure injection of a sealing compound, it is clear that permanent repair of the line(s) is necessary. This permanent repair could be to replace the entire TA in the segment, or perhaps the segment itself, both alternatives being extremely expensive and risky. The former would likely

  1. Weld joint concepts for on-orbit repair of Space Station Freedom fluid system tube assemblies

    NASA Technical Reports Server (NTRS)

    Jolly, Steven D.

    1993-01-01

    Because Space Station Freedom (SSF) is an independent satellite, not depending upon another spacecraft for power, attitude control, or thermal regulation, it has a variety of tubular, fluid-carrying assemblies on-board. The systems of interest in this analysis provide breathing air (oxygen and nitrogen), a working fluid (two-phase anhydrous ammonia) for thermal control, and a monopropellant (hydrazine) for station reboost. The tube assemblies run both internally and externally with respect to the habitats. They are found in up to 50 ft. continuous lengths constructed of mostly AISI 316L stainless steel tubing, but also including some Inconel 625 nickel-iron and Monel 400 nickel-copper alloy tubing. The outer diameters (OD) of the tubes range from 0.25-1.25 inches, and the wall thickness between 0.028-.095 inches. The system operational pressures range from 377 psi (for the thermal control system) to 3400 psi (for the high pressure oxygen and nitrogen supply lines in the ECLSS). SSF is designed for a fifteen to thirty year mission. It is likely that the tubular assemblies (TA's) will sustain damage or fail during this lifetime such that they require repair or replacement. The nature of the damage will be combinations of punctures, chips, scratches, and creases and may be cosmetic or actually leaking. The causes of these hypothetical problems are postulated to be: (1) faulty or fatigued fluid joints--both QD's and butt-welds; (2) micro-meteoroid impacts; (3) collison with another man-made object; and (4) over-pressure strain or burst (system origin). While the current NASA baseline may be to temporarily patch the lines by clamping metal c-sections over the defect, and then perform high pressure injection of a sealing compound, it is clear that permanent repair of the line(s) is necessary. This permanent repair could be to replace the entire TA in the segment, or perhaps the segment itself, both alternatives being extremely expensive and risky. The former would likely

  2. A Comparative Analysis of the Impact of Tool Design to Fatigue Behavior of Single-Sided and Double-Sided Welded Butt Joints of EN AW 6082-T6 Alloy

    NASA Astrophysics Data System (ADS)

    Krasnowski, K.; Dymek, S.

    2013-12-01

    In this paper, the results of fatigue behavior on friction stir welded joints of aluminum alloy EN AW 6082-T6 are reported. In particular, the study presents the influence of the geometry of a welding tool on fatigue strengths and tensile strengths. The test joints were prepared as single side welded and double side welded by FSW. The welding was performed at various linear welding speeds (224, 560, and 900 mm/min) and one rotational speed of 710 rev./min using three different tool shapes. The results of macro examination and tensile test led to the selection of a single set of tool movement parameters at which the test joints for fatigue test were made. Samples were tested in two states of surface condition, i.e., "as-welded" and with mechanically removed marks left by rotating and moving tool during FSW process. Studies have shown that fatigue behavior of FSW joints depends on the tool shape used in the welding process as well as the surface condition of welded joints and manner of joint production.

  3. Welding of Mo-Based Alloy Using Electron Beam and Laser-GTAW Hybrid Welding Techniques

    NASA Astrophysics Data System (ADS)

    Chatterjee, Anjan; Kumar, Santosh; Tewari, Raghvendra; Dey, Gautam Kumar

    2016-03-01

    In the current study, welding of TZM (molybdenum-based alloy) plates in square-butt configuration was carried out using electron beam and laser-GTAW hybrid power sources. Microstructures of weld joint containing three zones—parent metal, heat-affected zone, and fusion zone—were clearly identified when examined through optical and scanning electron microscopy. The weld joints were found to be sound with very wide fusion and heat-affected zones. The microstructure of the fusion zone was coarse-grained. as-solidified microstructure, while the microstructure of heat-affected zone was the recrystallized microstructure with reduction in grain size as distance from the fusion line increased. Microhardness profile using Vickers hardness tester was obtained across the weld region, and the tensile properties of the weld joints were evaluated by performing room temperature tensile test and fracture was examined using scanning electron microscope. Joint coefficient of the weld joints were ~40 to 45 pct of that of the parent metals with nonmeasurable tensile ductility with predominantly transgranular mode of fracture indicating weakness along the grain boundary. Detailed orientation imaging and transmission electron microscopy were carried out to understand the most dominating factor in introducing weld joint brittleness.

  4. Underwater plasma-MIG arc welding: Shielding technique and pressure reduction by a centrifugal pump

    SciTech Connect

    Creutz, M.; Mewes, D.; Bartzsch, J.; Draugelates, U.

    1995-12-31

    In comparison to hyperbaric underwater welding in diving chambers, wet welding techniques promise higher flexibility and lower costs. One technique for creating a local dry and pressure reduced welding zone is the use of a centrifugal pump. Results of experimental investigations in combination with a plasma-MIG arc welding system are presented in this paper. Special importance is attached to the local pressure reduction in view of the fact that low pressure, i.e. a high pressure difference between surrounding water and dry welding area, is a good condition for welding but is difficult to be obtained with other shielding systems than pressure chambers. Plasma-MIG welding has been done under water with a good result on the weld quality. Values of the hardness of the joint and the appearance of the weld structure are nearly comparable to atmospheric welds.

  5. Weldability aspects in the design and fabrication of aluminium structures subjected to fatigue loads. Part 2: Weldability of aluminium alloys using advanced MIG and TIG techniques. Effect of the weld bead geometrical factors on the fatigue behavior of the welded joint

    NASA Astrophysics Data System (ADS)

    Nevasmaa, Pekka; Peltonen, Jorma; Kuitunen, Risto; Rahka, Klaus

    1993-05-01

    The project explored experimentally the weldability of high-strength aluminum alloys and suitable welding techniques. Part 2 of the report will examine welding procedures suitable for high-strength 5xxx (AlMg) and 6xxx (AlSiMg) series aluminum alloys using advanced MIG and TIG techniques and evaluate the weldability of these alloys, as well as the importance of the shape of the weld bead for fatigue strength of the welded joint.

  6. Impact of mechanical heterogeneity on joint density in a welded ignimbrite

    NASA Astrophysics Data System (ADS)

    Soden, A. M.; Lunn, R. J.; Shipton, Z. K.

    2016-08-01

    Joints are conduits for groundwater, hydrocarbons and hydrothermal fluids. Robust fluid flow models rely on accurate characterisation of joint networks, in particular joint density. It is generally assumed that the predominant factor controlling joint density in layered stratigraphy is the thickness of the mechanical layer where the joints occur. Mechanical heterogeneity within the layer is considered a lesser influence on joint formation. We analysed the frequency and distribution of joints within a single 12-m thick ignimbrite layer to identify the controls on joint geometry and distribution. The observed joint distribution is not related to the thickness of the ignimbrite layer. Rather, joint initiation, propagation and termination are controlled by the shape, spatial distribution and mechanical properties of fiamme, which are present within the ignimbrite. The observations and analysis presented here demonstrate that models of joint distribution, particularly in thicker layers, that do not fully account for mechanical heterogeneity are likely to underestimate joint density, the spatial variability of joint distribution and the complex joint geometries that result. Consequently, we recommend that characterisation of a layer's compositional and material properties improves predictions of subsurface joint density in rock layers that are mechanically heterogeneous.

  7. Sensor fusion using neural network in the robotic welding

    SciTech Connect

    Ohshima, Kenji; Yabe, Masaaki; Akita, Kazuya; Kugai, Katsuya; Yamane, Satoshi; Kubota, Takefumi

    1995-12-31

    It is important to realize intelligent welding robots to obtain a good quality of the welding results. For this purpose, it is required to detect the torch height, the torch attitude, the deviation from the center of the gap. In order to simultaneously detect those, the authors propose the sensor fusion by using the neural network, i.e., the information concerning the welding torch is detected by using both the welding current and the welding voltage. First, the authors deal with the welding phenomena as the melting phenomena in the electrode wire of the MIG welding and the CO{sub 2} short circuiting welding. Next, the training data of the neutral networks are made from the numerical simulations. The neuro arc sensor is trained so as to get the desired performance of the sensor. By using it, the seam tracking is carried out in the T-joint.

  8. Radiographic detection of defects in friction stir welding on aluminum alloy AMg5M

    SciTech Connect

    Tarasov, Sergei Yu. Kolubaev, Evgeny A.; Rubtsov, Valery E.

    2014-11-14

    In order to reveal weld defects specific to friction stir welding we undertook radiographic inspection of AMg5M aluminum alloy welded joints. Weld defects in the form of voids have been revealed in the weld obtained under the non-optimal rotation and feed rate. Both shape and size of these defects have been confirmed by examining metallographically successive sections prepared in the weld plane as well as in the plane transversal to the tool feed direction. Linear defects have been also found in the sections that are not seen in the radiographic images. Both the preferable localization and origination of the defects have been analyzed.

  9. Intelligent Modeling Combining Adaptive Neuro Fuzzy Inference System and Genetic Algorithm for Optimizing Welding Process Parameters

    NASA Astrophysics Data System (ADS)

    Gowtham, K. N.; Vasudevan, M.; Maduraimuthu, V.; Jayakumar, T.

    2011-04-01

    Modified 9Cr-1Mo ferritic steel is used as a structural material for steam generator components of power plants. Generally, tungsten inert gas (TIG) welding is preferred for welding of these steels in which the depth of penetration achievable during autogenous welding is limited. Therefore, activated flux TIG (A-TIG) welding, a novel welding technique, has been developed in-house to increase the depth of penetration. In modified 9Cr-1Mo steel joints produced by the A-TIG welding process, weld bead width, depth of penetration, and heat-affected zone (HAZ) width play an important role in determining the mechanical properties as well as the performance of the weld joints during service. To obtain the desired weld bead geometry and HAZ width, it becomes important to set the welding process parameters. In this work, adaptative neuro fuzzy inference system is used to develop independent models correlating the welding process parameters like current, voltage, and torch speed with weld bead shape parameters like depth of penetration, bead width, and HAZ width. Then a genetic algorithm is employed to determine the optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width.

  10. Dual wire welding torch and method

    SciTech Connect

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  11. Infrared Thermography For Welding

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Lucky, Brian D.; Spiegel, Lyle B.; Hudyma, Russell M.

    1992-01-01

    Infrared imaging and image-data-processing system shows temperatures of joint during welding and provides data from which rates of heating and cooling determined. Information used to control welding parameters to ensure reliable joints, in materials which microstructures and associated metallurgical and mechanical properties depend strongly on rates of heating and cooling. Applicable to variety of processes, including tungsten/inert-gas welding; plasma, laser, and resistance welding; cutting; and brazing.

  12. Improving fatigue performance of rail thermite welds

    NASA Astrophysics Data System (ADS)

    Jezzini-Aouad, M.; Flahaut, P.; Hariri, S.; Winiar, L.

    2010-06-01

    Rail transport development offers economic and ecological interests. Nevertheless, it requires heavy investments in rolling material and infrastructure. To be competitive, this transportation means must rely on safe and reliable infrastructure, which requires optimization of all implemented techniques and structure. Rail thermite (or aluminothermic) welding is widely used within the railway industry for in-track welding during re-rail and defect replacement. The process provides numerous advantages against other welding technology commonly used. Obviously, future demands on train traffic are heavier axle loads, higher train speeds and increased traffic density. Thus, a new enhanced weld should be developed to prevent accidents due to fracture of welds and to lower maintenance costs. In order to improve such assembly process, a detailed metallurgical study coupled to a thermomechanical modelling of the phenomena involved in the thermite welding process is carried out. Obtained data enables us to develop a new improved thermite weld (type A). This joint is made by modifying the routinely specified procedure (type B) used in a railway rail by a standard gap alumino-thermic weld. Joints of type A and B are tested and compared. Based on experimental temperature measurements, a finite element analysis is used to calculate the thermal residual stresses induced. In the vicinity of the weld, the residual stress patterns depend on the thermal conditions during welding as it also shown by litterature [1, 2]. In parallel, X-Ray diffraction has been used to map the residual stress field that is generated in welded rail of types A and B. Their effect on fatigue crack growth in rail welds is studied. An experimental study based on fatigue tests of rails welded by conventional and improved processes adjudicates on the new advances and results will be shown.

  13. Evolution of Microstructure and Stress Corrosion Cracking Behavior of AA2219 Plate to Ring Weld Joints in 3.5 Wt Pct NaCl Solution

    NASA Astrophysics Data System (ADS)

    Venugopal, A.; Narayanan, P. Ramesh; Sharma, S. C.

    2016-04-01

    AA2219 aluminum alloy plate (T87) and ring (T851) were joined by tungsten inert gas (TIG) welding using multi-pass welding. The mechanical properties and stress corrosion cracking (SCC) resistance of the above base metals (BMs) in different directions (L, LT, and ST) were examined. Similarly, the weld metal joined by plate to plate and plate to ring (PR) joints was evaluated. The results revealed that the mechanical properties of the ring were comparatively lower than the plate. This was found to be due to the extremely coarse grain size of the ring along with severe Cu-rich segregation along the grain boundaries when compared to the plate material. The SCC resistance of the base and weldments were found to be good and not susceptible to SCC. This was shown to be due to high values of SCC index (>0.9) and the typical ductile cracking morphology of the BM and the weld joints after SCC test in the environment (3.5 wt pct NaCl) when compared to test performed in the control environment (air). However, the corrosion resistance of the weld interface between the FZ and ring was inferior to the FZ-plate interface.

  14. Process modeling and parameter optimization using radial basis function neural network and genetic algorithm for laser welding of dissimilar materials

    NASA Astrophysics Data System (ADS)

    Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Yue, Chen

    2015-11-01

    The welded joints of dissimilar materials have been widely used in automotive, ship and space industries. The joint quality is often evaluated by weld seam geometry, microstructures and mechanical properties. To obtain the desired weld seam geometry and improve the quality of welded joints, this paper proposes a process modeling and parameter optimization method to obtain the weld seam with minimum width and desired depth of penetration for laser butt welding of dissimilar materials. During the process, Taguchi experiments are conducted on the laser welding of the low carbon steel (Q235) and stainless steel (SUS301L-HT). The experimental results are used to develop the radial basis function neural network model, and the process parameters are optimized by genetic algorithm. The proposed method is validated by a confirmation experiment. Simultaneously, the microstructures and mechanical properties of the weld seam generated from optimal process parameters are further studied by optical microscopy and tensile strength test. Compared with the unoptimized weld seam, the welding defects are eliminated in the optimized weld seam and the mechanical properties are improved. The results show that the proposed method is effective and reliable for improving the quality of welded joints in practical production.

  15. Quantitative ultrasonic testing of acoustically anisotropic materials with verification on austenitic and dissimilar weld joints

    NASA Astrophysics Data System (ADS)

    Boller, C.; Pudovikov, S.; Bulavinov, A.

    2012-05-01

    Austenitic stainless steel materials are widely used in a variety of industry sectors. In particular, the material is qualified to meet the design criteria of high quality in safety related applications. For example, the primary loop of the most of the nuclear power plants in the world, due to high durability and corrosion resistance, is made of this material. Certain operating conditions may cause a range of changes in the integrity of the component, and therefore require nondestructive testing at reasonable intervals. These in-service inspections are often performed using ultrasonic techniques, in particular when cracking is of specific concern. However, the coarse, dendritic grain structure of the weld material, formed during the welding process, is extreme and unpredictably anisotropic. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of ultrasonic Phased Array techniques becomes desirable. The "Sampling Phased Array" technique, invented and developed by Fraunhofer IZFP, allows the acquisition of time signals (A-scans) for each individual transducer element of the array along with fast image reconstruction techniques based on synthetic focusing algorithms. The reconstruction considers the sound propagation from each image pixel to the individual sensor element. For anisotropic media, where the sound beam is deflected and the sound path is not known a-priori, a novel phase adjustment technique called "Reverse Phase Matching" is implemented. By taking into account the anisotropy and inhomogeneity of the weld structure, a ray tracing algorithm for modeling the acoustic wave propagation and calculating the sound propagation time is applied. This technique can be utilized for 2D and 3D real time image reconstruction. The

  16. Effect of Welding Parameters on the Microstructure and Strength of Friction Stir Weld Joints in Twin Roll Cast EN AW Al-Mn1Cu Plates

    NASA Astrophysics Data System (ADS)

    Birol, Yucel; Kasman, Sefika

    2013-10-01

    Twin roll cast EN AW Al-Mn1Cu plates were butt welded with the friction stir welding process which employed a non-consumable tool, tilted by 1.5° and 3° with respect to the plate normal, rotated in a clockwise direction at 400 and 800 rpm, while traversing at a fixed rate of 80 mm/min along the weld line. Microstructural observations and microhardness tests were performed on sections perpendicular to the tool traverse direction. Tensile tests were carried out at room temperature on samples cut perpendicular to the weld line. The ultimate tensile strength of the welded EN AW Al-Mn1Cu plates improved with increasing tool rotation speed and decreasing tool tilt angle. This marked improvement in ultimate tensile strength is attributed to the increase in the heat input owing to an increased frictional heat generation. There appears to be a perfect correlation between the ultimate tensile strength and the size of the weld zone. The fracture surfaces of the base plate and the welded plates are distinctly different. The former is dominated by dimples typical of ductile fractures. A vast majority of the intermetallic particles inside the weld zones are too small to generate dimples during a tensile test. The fracture surface of the welded plates is thus characterized by occasional dimples that are elongated in the same direction suggesting a tensile tearing mechanism.

  17. The variable polarity plasma arc welding process: Characteristics and performance

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Zhu, G. J.

    1991-01-01

    Significant advantages of the Variable Polarity Plasma Arc (VPPA) Welding Process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. The power distribution was analyzed for an argon plasma gas flow constituting the fluid in the VPPA Welding Process. The major heat loss at the torch nozzle is convective heat transfer; in the space between the outlet of the nozzle and the workpiece; radiative heat transfer; and in the keyhole in the workpiece, convective heat transfer. The power absorbed at the workpiece produces the molten puddle that solidifies into the weld bead. Crown and root widths, and crown and root heights of the weld bead are predicted. The basis is provided for an algorithm for automatic control of VPPA welding machine parameters to obtain desired weld bead dimensions.

  18. Microstructure Improvement in Weld Metal under the Ultrasonic Application

    SciTech Connect

    Cui, Yan; Xu, Cailu; Han, Qingyou

    2007-01-01

    When considering the operational performance of weldments in the engineering projects, the most important issues to be considered are weld metal mechanical properties, integrity of the welded joint, and weldability 1 . These issues are closely related to the microstructure of the weld metal. A significant amount of research has been carried out to alter the process variables and to use external devices to obtain microstructure control of the weldments. It has been reported that grain refined microstructure not only reduces cracking behavior of alloys including solidification cracking, cold cracking and reheat cracking, 2 - 5 but also improves the mechanical properties of the weld metal, such as toughness, ductility, strength, and fatigue life. 6, 7 Weld pool stirring, 8 arc oscillation, 9, 10 arc pulsation, 11 , and magnetic arc oscillator 12, 13 have been applied to fusion welding to refine the microstructures. This article describes initial experimental results on the use of power ultrasonic vibration to refine the microstructure of weld metals.

  19. Friction Stir Spot Welding of DP780 Carbon Steel

    SciTech Connect

    Santella, M. L.; Hovanski, Yuri; Frederick, Alan; Grant, Glenn J.; Dahl, Michael E.

    2009-09-15

    Friction stir spot welds were made in uncoated and galvannneled DP780 sheets using polycrystalline boron nitride stir tools. The tools were plunged at either a single continuous rate or in two segments consisting of a relatively high rate followed by a slower rate of shorter depth. Welding times ranged from 1-10 s. Increasing tool rotation speed from 800 to 1600 rpm increased strength values. The 2-segment welding procedures also produced higher strength joints. Average lap-shear strengths exceeding 10.3 kN were consistently obtained in 4 s on both the uncoated and the galvannealed DP780. The likelihood of diffusion and mechanical interlocking contributing to bond formation was supported by metallographic examinations. A cost analysis based on spot welding in automobile assembly showed that for friction stir spot welding to be economically competitive with resistance spot welding the cost of stir tools must approach that of resistance spot welding electrode tips.

  20. New method of determination of spot welding-adhesive joint fatigue life using full field strain evolution

    NASA Astrophysics Data System (ADS)

    Sadowski, T.; Kneć, M.

    2016-04-01

    Fatigue tests were conducted since more than two hundred years ago. Despite this long period, as fatigue phenomena are very complex, assessment of fatigue response of standard materials or composites still requires a long time. Quite precise way to estimate fatigue parameters is to test at least 30 standardized specimens for the analysed material and further statistical post processing is required. In case of structural elements analysis like hybrid joints (Figure 1), the situation is much more complex as more factors influence the fatigue load capacity due to much more complicated structure of the joint in comparison to standard materials specimen, i.e. occurrence of: welded hot spots or rivets, adhesive layers, local notches creating the stress concentrations, etc. In order to shorten testing time some rapid methods are known: Locati's method [1] - step by step load increments up to failure, Prot's method [2] - constant increase of the load amplitude up to failure; Lehr's method [2] - seeking for the point during regular fatigue loading when an increase of temperature or strains become non-linear. The present article proposes new method of the fatigue response assessment - combination of the Locati's and Lehr's method.

  1. Automated Variable-Polarity Plasma-Arc Welding

    NASA Technical Reports Server (NTRS)

    Numes, A. C., Jr.; Bayless, E. O., Jr.; Jones, S. C., III; Munafo, P.; Munafo, A.; Biddle, A.; Wilson, W.

    1984-01-01

    Variable-polarity plasma-arc methods produces better welds at lower cost than gas-shielded tungsten-arc welding in assemblies. Weld porosity very low and costs of joint preparation, depeaking, inspection, and weld repair minimized.

  2. Double-Sided Single-Pass Submerged Arc Welding for 2205 Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Luo, Jian; Yuan, Yi; Wang, Xiaoming; Yao, Zongxiang

    2013-09-01

    The duplex stainless steel (DSS), which combines the characteristics of ferritic steel and austenitic steel, is used widely. The submerged arc welding (SAW) method is usually applied to join thick plates of DSS. However, an effective welding procedure is needed in order to obtain ideal DSS welds with an appropriate proportion of ferrite (δ) and austenite (γ) in the weld zone, particularly in the melted zone and heat-affected zone. This study evaluated the effectiveness of a high efficiency double-sided single-pass (DSSP) SAW joining method for thick DSS plates. The effectiveness of the converse welding procedure, characterizations of weld zone, and mechanical properties of welded joint are analyzed. The results show an increasing appearance and continuous distribution feature of the σ phase in the fusion zone of the leading welded seam. The converse welding procedure promotes the σ phase to precipitate in the fusion zone of leading welded side. The microhardness appears to significantly increase in the center of leading welded side. Ductile fracture mode is observed in the weld zone. A mixture fracture feature appears with a shear lip and tears in the fusion zone near the fusion line. The ductility, plasticity, and microhardness of the joints have a significant relationship with σ phase and heat treatment effect influenced by the converse welding step. An available heat input controlling technology of the DSSP formation method is discussed for SAW of thick DSS plates.

  3. Automatic Guidance System for Welding Torches

    NASA Technical Reports Server (NTRS)

    Smith, H.; Wall, W.; Burns, M. R., Jr.

    1984-01-01

    Digital system automatically guides welding torch to produce squarebutt, V-groove and lap-joint weldments within tracking accuracy of +0.2 millimeter. Television camera observes and traverses weld joint, carrying welding torch behind. Image of joint digitized, and resulting data used to derive control signals that enable torch to track joint.

  4. Mechanical properties and microstructure of F-82H welded joints using CO{sub 2} laser beam

    SciTech Connect

    Yamanouchi, N.; Shiba, K.

    1996-10-01

    The laser welding of F-82H was successfully conducted. The heat affected zone of the welding, was about 21 mm width. It was quite adequate to make small specimens, such as SS-3 type sheet tensile specimen.

  5. Torch kit for welding in difficult areas

    NASA Technical Reports Server (NTRS)

    Stein, J. A.

    1971-01-01

    Miniature tungsten inert gas welding torch, used with variously formed interchangeable soft copper tubing extensions, provides inexpensive, accurate welding capability for inaccessible joints. Kit effectively welds stainless steel tubing 0.089 cm thick. Other applications are cited.

  6. The Mechanical Behavior of Friction-Stir Spot Welded Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Güler, Hande

    2014-09-01

    Aluminum and alloys are widely used in the automotive industry due to the light weight, good formability, and malleability. Spot welding is the most commonly used joining method of these materials, but the high current requirements and the inconsistent quality of the final welds make this process unsuitable. An alternative welding technique, the friction-stir spot welding process, can also be successfully used in joining of aluminum and alloys. In this study, 1-mm-thick AA5754 Al-alloy plates in the H-111 temper conditions were joined by friction-stir spot welding using two different weld parameters such as tool rotational speed and dwell time. Mechanical properties of the joints were obtained with extensive hardness measurements and tensile shear tests. The effect of these parameters on the failure modes of welded joints was also determined.

  7. The Mechanical Behavior of Friction-Stir Spot Welded Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Güler, Hande

    2014-10-01

    Aluminum and alloys are widely used in the automotive industry due to the light weight, good formability, and malleability. Spot welding is the most commonly used joining method of these materials, but the high current requirements and the inconsistent quality of the final welds make this process unsuitable. An alternative welding technique, the friction-stir spot welding process, can also be successfully used in joining of aluminum and alloys. In this study, 1-mm-thick AA5754 Al-alloy plates in the H-111 temper conditions were joined by friction-stir spot welding using two different weld parameters such as tool rotational speed and dwell time. Mechanical properties of the joints were obtained with extensive hardness measurements and tensile shear tests. The effect of these parameters on the failure modes of welded joints was also determined.

  8. Summary of Results of Tests Made by Aluminum Research Laboratories of Spot-welded Joints and Structural Elements

    NASA Technical Reports Server (NTRS)

    HARTMANN E C; Stickley, G W

    1942-01-01

    Available information concerning spot welding as a means of joining aluminum-alloy parts has been summarized and comparisons have been made of the relative merits of spot-welded and riveted aluminum-alloy structural elements. The results indicated that spot welding was as satisfactory as riveting insofar as resistance to static loads is concerned. Spot welds showed slightly lower resistance to impact loads but definitely lower resistance to repeated loads than rivets.

  9. Characterization of the tensile properties of friction stir welded aluminum alloy joints based on axial force, traverse speed, and rotational speed

    NASA Astrophysics Data System (ADS)

    Panda, Biranchi; Garg, A.; Jian, Zhang; Heidarzadeh, Akbar; Gao, Liang

    2016-09-01

    Friction stir welding (FSW) process has gained attention in recent years because of its advantages over the conventional fusion welding process. These advantages include the absence of heat formation in the affected zone and the absence of large distortion, porosity, oxidation, and cracking. Experimental investigations are necessary to understand the physical behavior that causes the high tensile strength of welded joints of different metals and alloys. Existing literature indicates that tensile properties exhibit strong dependence on the rotational speed, traverse speed, and axial force of the tool that was used. Therefore, this study introduces the experimental procedure for measuring tensile properties, namely, ultimate tensile strength (UTS) and tensile elongation of the welded AA 7020 Al alloy. Experimental findings suggest that a welded part with high UTS can be achieved at a lower heat input compared with the high heat input condition. A numerical approach based on genetic programming is employed to produce the functional relationships between tensile properties and the three inputs (rotational speed, traverse speed, and axial force) of the FSW process. The formulated models were validated based on the experimental data, using the statistical metrics. The effect of the three inputs on the tensile properties was investigated using 2D and 3D analyses. A high UTS was achieved, including a rotational speed of 1050 r/min and traverse speed of 95 mm/min. The results also indicate that 8 kN axial force should be set prior to the FSW process.

  10. Extended electrode technique. [gas metal arc welding of metal plates

    NASA Technical Reports Server (NTRS)

    Schaper, V. D.; Pollack, A.

    1972-01-01

    The extended electrode technique is a unique welding process which utilizes manual gas-metal-arc (GMAW) semi-automatic equipment and close, square butt joints to effectively produce a weld. The technique takes advantage of the resistance heating of the electode extension to effect the root pass. Weldments as large as 72-X30-X2-inch have been fabricated with this technique under normal shipyard welding conditions. Mechanical properties and explosion bulge tests indicate that satisfactory results are obtained with this process. Potential savings of approximately 50 percent can be achieved in flat welding and repair of heavy structural steel members.

  11. Adaptive welding of fillet welds using a fast seam-tracking sensor in combination with a standard industrial robot

    NASA Astrophysics Data System (ADS)

    Pischetsrieder, Alexandra

    1996-08-01

    In laser welding, problems often arise from the accuracy required by the laser process, particularly where joints have narrow tolerance limits, e.g. with a fillet weld at an overlap joint. In a number of applications seam-tracking sensors can improve this situation. They are able to detect and follow the joint geometry autonomously. In addition to the tolerances, a varying gap between the parts to weld can cause welding flaws. To solve the problems caused by the height of the gap a functionality for adaptive welding can be integrated into the tracking sensor, rendering possible a determined influence on process parameters. Functional dependencies between the height of the gap and the welding parameters are presented in this paper. To further enhance the accuracy of path tracking the dynamic behavior of the system is investigated. With the integration of these dependencies into the tracking sensor, an algorithm for adaptive welding has been obtained, which takes another step towards the raise of profitability of laser installations by a simplified weld seam preparation and an enhanced stability of the welding process.

  12. Improving Processes of Mechanized Pulsed Arc Welding of Low-Frequency Range Variation of Mode Parameters

    NASA Astrophysics Data System (ADS)

    Saraev, Yu N.; Solodskiy, S. A.; Ulyanova, O. V.

    2016-04-01

    A new technology of low-frequency modulation of the arc current in MAG and MIG welding is presented. The technology provides control of thermal and crystallization processes, stabilizes the time of formation and crystallization of the weld pool. Conducting theoretical studies allowed formulating the basic criteria for obtaining strong permanent joints for high-duty structures, providing conditions for more equilibrium structure of the deposited metal and the smaller width of the HAZ. The stabilization of time of the formation and crystallization of the weld pool improves the formation of the weld and increases productivity in welding thin sheet metal.

  13. Assessment of the influence of surface finishing and weld joints on the corrosion/oxidation behaviour of stainless steels in lead bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Martín-Muñoz, F. J.; Soler-Crespo, L.; Gómez-Briceño, D.

    2011-09-01

    The objective of this paper is to gain some insight into the influence of the surface finishing in the oxidation/corrosion behaviour of 316L and T91 steels in lead bismuth eutectic (LBE). Specimens of both materials with different surface states were prepared (as-received, grinded, grinded and polished, and electrolitically polished) and oxidation tests were carried out at 775 and 825 K from 100 to 2000 h for two different oxygen concentrations and for H 2/H 2O molar ratios of 3 and 0.03. The general conclusion for these tests is that the effect of surface finishing on the corrosion/protection processes is not significant under the tested conditions. In addition the behaviour of weld joints, T91-T91 Tungsten Inert Gas (TIG) and T91-316L have been also studied under similar conditions. The conclusions are that, whereas T91-T91 welded joint shows the same corrosion properties as the parent materials for the conditions tested, AISI 316L-T91 welded joint, present an important dissolution over seam area that it associated to the electrode 309S used for the fabrication process.

  14. Influence of Microstructure of Friction Stir Welded Joints on Growth and Properties of Microarc Oxidation Coatings on AZ31B Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Chen, Tingfang; Li, Yongliang; Xue, Wenbin; Yang, Chaolin; Qu, Yao; Hua, Ming

    2015-03-01

    Ceramic coatings on friction stir welded (FSW) joints of AZ31B magnesium alloy were fabricated by microarc oxidation (MAO) method in silicate electrolyte. Microstructure, phase constituents, microhardness and electrochemical corrosion behaviors of bare and coated magnesium alloys at different zones of FSW joints for different oxidation time were investigated. The influence of microstructure at different zones on the growth of MAO coatings was analyzed. The results show that the MAO coatings on FSW joints are uniform, and they have almost the same morphology, phase constituents, hardness and corrosion resistance at base metal, stir zone and heat-affected zone. The properties of MAO coatings are independent on the microstructures of AZ31B alloy. In addition, the microstructures of magnesium alloy near the coating/alloy interface at different zones of FSW joint was not changed by microarc discharge process.

  15. Prediction of the Grain-Microstructure Evolution Within a Friction Stir Welding (FSW) Joint via the Use of the Monte Carlo Simulation Method

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Avuthu, V.; Galgalikar, R.; Zhang, Z.

    2015-09-01

    A thermo-mechanical finite element analysis of the friction stir welding (FSW) process is carried out and the evolution of the material state (e.g., temperature, the extent of plastic deformation, etc.) monitored. Subsequently, the finite-element results are used as input to a Monte-Carlo simulation algorithm in order to predict the evolution of the grain microstructure within different weld zones, during the FSW process and the subsequent cooling of the material within the weld to room temperature. To help delineate different weld zones, (a) temperature and deformation fields during the welding process, and during the subsequent cooling, are monitored; and (b) competition between the grain growth (driven by the reduction in the total grain-boundary surface area) and dynamic-recrystallization grain refinement (driven by the replacement of highly deformed material with an effectively "dislocation-free" material) is simulated. The results obtained clearly revealed that different weld zones form as a result of different outcomes of the competition between the grain growth and grain refinement processes.

  16. Effect of long-term aging on microstructure and local behavior in the heat-affected zone of a Ni–Cr–Mo–V steel welded joint

    SciTech Connect

    Zhu, Ming-Liang Wang, De-Qiang; Xuan, Fu-Zhen

    2014-01-15

    Evolution of microstructure, micro-hardness and micro-tensile strength behavior was investigated in the heat-affected zone of a Ni–Cr–Mo–V steel welded joint after the artificial aging at 350 °C for 3000 h. After detailed characterization of microstructures in optical microscopy, scanning electron microscopy and transmission electron microscopy, it is revealed that the change of martensite–bainite constituent promotes more homogeneous microstructure distribution. The aging treatment facilitates redistribution of carbon and chromium elements along the welded joint, and the micro-hardness is increased slightly through the welds due to enrichment of carbon. The types of precipitates in the weldment mainly include M{sub 3}C, MC, M{sub 2}C and M{sub 23}C{sub 6}. The carbides in base metal, weld metal and coarse-grained heat-affected zone are prone to change from ellipsoidal to platelet form whereas more uniform spherical carbides are observed in the fine-grained zone. Precipitation and coarsening of M{sub 23}C{sub 6} near the fusion line, and formation of MC and M{sub 2}C, are responsible for the tensile strength decrease and its smooth distribution in the aged heat-affected zone. This implies that the thermal aging can relieve strength mismatch in the weldments. - Highlights: • Microstructure homogeneity improved in HAZ after long-term aging. • Tensile strength decreased in HAZ due to precipitation and coarsening of M{sub 23}C{sub 6}. • Strength mismatch in NiCrMoV steel welds was relieved after aging at 350 °C × 3000 h.

  17. Residual stress measurements of tension leg platform tendon welds

    SciTech Connect

    Kim, D.S.; Smith, J.D.

    1994-12-31

    Results of fatigue test of prototype welded tendons showed that fatigue life was greatly reduced for the weld repaired joint. Since tensile residual stresses near the fusion boundary were suspected to cause the fatigue life reduction, these residual stresses were measured. Residual stresses of girth welded tendon pipes for a tension leg platform (TLP) were obtained for various fabrication conditions. The stresses were measured experimentally using the blind hole drilling (BHD) technique, X-ray diffraction (XRD) technique and Barkhausen Noise (BHN) method. The results of these measurements illustrate the reliability of each measurement technique. Effects of joint configuration, weld repair, weld cap grinding, and pre-fatigue test on residual stresses were discussed.

  18. Advance in friction welding and ultrasonic welding of ceramics to metals

    SciTech Connect

    Greitmann, M.J.; Weib, R.

    1997-11-01

    The authors have joined four different ceramic materials (MgO-PSZ, Al{sub 2}O{sub 3}, SiC and Si{sub 3}N{sub 4} cylinders 10 mm in diameter and 50 mm in length) to the aluminum alloy Al-Si1MgMn by friction welding. Process parameters such as friction speed, axial force, burn-off and torque have been recorded continuously. For some specimens the authors recorded the temperature at the interface using thermocouples. The joints obtained were tested in tension. Fracture occurred either in the ceramic or at the interface. Heat conduction calculations to estimate the temperature distribution during welding have been conducted by the Finite Element Method (FEM), using experimental data for input. Afterwards, residual stresses introduced through thermal expansion mismatch and stresses introduced through a tensile test have been determined by FEM. Applying multiaxial Weibull statistics to the ceramic specimen, tensile strength for different geometries of the joint and different material combinations was estimated. Ultrasonic welded joints of MgO-PSZ and Steel X 4 CrNi 18-10 according to DIN EN (comparable to the US-steel AISI No. 304) could be realized using aluminum interlayers. In addition to a conventional ultrasonic welding equipment for metal welding a new molecular coldwelding technique (ultrasonic torsional welding system) was tested. In comparison to friction welding the ultrasonic welding technique results in limited deformation of the ceramic-metal joint parts and in a decreased welding time. Nevertheless a special solution must be found to the problem of tool wear and the vibration conditions.

  19. Optimal welding of beta titanium orthodontic wires.

    PubMed

    Nelson, K R; Burstone, C J; Goldberg, A J

    1987-09-01

    Today the orthodontist is confronted by an array of new orthodontic wire materials that, when applied to appliance design, can vastly increase the flexibility and versatility of therapy. Welded joints, especially for the newer titanium alloy wires, provide a means to extend the useful applications of these materials. The purpose of this study was to determine the optimum settings for electrical resistance welding of various configurations of titanium-molybdenum (TMA) wires. Specimens were of a t-joint configuration and were mechanically tested in torsion to simulate the failure mode most often observed in clinical practice. Variables included wire size, wire orientation, and welding voltage. Results indicated that excellent welds can be obtained with very little loss of strength and ductility in the area of the weld joint. Torsional loads at failure were at least 90% of the unwelded base material. Although a wide range of voltage settings resulted in high-strength welds, typically a narrow range of voltages yielded optimal ductility.

  20. Study of issues in difficult-to-weld thick materials by hybrid laser arc welding

    NASA Astrophysics Data System (ADS)

    Mazar Atabaki, Mehdi

    There is a high interest for the high strength-to-weight ratio with good ductility for the welds of advanced alloys. The concern about the welding of thick materials (Advanced high strength steels (AHSS) and 5xxx and 6xxx series of aluminum alloys) has stimulated the development of manufacturing processes to overcome the associated issues. The need to weld the dissimilar materials (AHSS and aluminum alloys) is also required for some specific applications in different industries. Hence, the requirement in the development of a state-of-the-art welding procedure can be helpful to fulfill the constraints. Among the welding methods hybrid laser/arc welding (HLAW) has shown to be an effective method to join thick and difficult-to-weld materials. This process benefits from both advantages of the gas metal arc welding (GMAW) and laser welding processes. The interaction of the arc and laser can help to have enough penetration of weld in thick plates. However, as the welding of dissimilar aluminum alloys and steels is very difficult because of the formation of brittle intermetallics the present work proposed a procedure to effectively join the alloys. The reports showed that the explosively welded aluminum alloys to steels have the highest toughness, and that could be used as an "insert" (TRICLAD) for welding the thick plates of AHSS to aluminum alloys. Therefore, the HLAW of the TRICLAD-Flange side (Aluminum alloy (AA 5456)) to the Web side (Aluminum alloys (AA 6061 and AA 5456)) and the TRICLAD-Flange side (ASTM A516) to the Web side (AHSS) was studied in the present work. However, there are many issues related to HLAW of the dissimilar steels as well as dissimilar aluminum alloys that have to be resolved in order to obtain sound welds. To address the challenges, the most recent welding methods for joining aluminum alloys to steels were studied and the microstructural development, mechanical properties, and on-line monitoring of the welding processes were discussed as well

  1. Study on laser welding of stainless steel/copper dissimilar materials

    NASA Astrophysics Data System (ADS)

    Besnea, D.; Dontu, O.; Avram, M.; Spânu, A.; Rizescu, C.; Pascu, T.

    2016-08-01

    In this paper stainless steel/copper laser welding was investigated by controlling the processing parameters like welding speed and laser power. Welding the dissimilar materials of stainless steel and copper presents a series of problems. Differences in the physical properties of the two metals, including the melting point, thermal conductivity and thermal dilatation are the main reasons for obtaining an inappropriate laser welding bead. Particularly, the laser welding process of copper is complex because of the very high reflectivity of cooper and in almost situations it requires a specific surface pre-treatment. The main objective of the study conducted in this work was to laser weld a structure used in pressure measuring and control equipments. In order to satisfy the conditions imposed by the sensor manufacturer, the difficulty of obtaining flawless joints was represented by the very small dimensions of the parts to be welded especially of the elastic spiral thickness made of steel.

  2. Multi-response optimization of CO 2 laser-welding process of austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Benyounis, K. Y.; Olabi, A. G.; Hashmi, M. S. J.

    2008-02-01

    Recently, laser welding of austenitic stainless steel has received great attention in industry. This is due to its widespread application in petroleum refinement stations, power plants, the pharmaceutical industry and also in households. Therefore, mechanical properties should be controlled to obtain good welded joints. The welding process should be optimized by the proper mathematical models. In this research, the tensile strength and impact strength along with the joint-operating cost of laser-welded butt joints made of AISI304 was investigated. Design-expert software was used to establish the design matrix and to analyze the experimental data. The relationships between the laser-welding parameters (laser power, welding speed and focal point position) and the three responses (tensile strength, impact strength and joint-operating cost) were established. Also, the optimization capabilities in design-expert software were used to optimize the welding process. The developed mathematical models were tested for adequacy using analysis of variance and other adequacy measures. In this investigation, the optimal welding conditions were identified in order to increase the productivity and minimize the total operating cost. Overlay graphs were plotted by superimposing the contours for the various response surfaces. The process parameters effect was determined and the optimal welding combinations were tabulated.

  3. Weld bonding of titanium with polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Sheppard, C. H.; Orell, M. K.

    1975-01-01

    A conductive adhesive primer and a capillary flow adhesive were developed for weld bonding titanium alloy joints. Both formulations contained ingredients considered to be non-carcinogenic. Lap-shear joint test specimens and stringer-stiffened panels were weld bonded using a capillary flow process to apply the adhesive. Static property information was generated for weld bonded joints over the temperature range of 219K (-65 F) to 561K (550 F). The capillary flow process was demonstrated to produce weld bonded joints of equal strength to the weld through weld bonding process developed previously.

  4. Model of Layered Weld Formation Under Narrow Gap Pulse Welding

    NASA Astrophysics Data System (ADS)

    Krampit, A. G.

    2016-04-01

    The model parameters of narrow gap pulse welding can be divided into input, internal and output ones. The breadth of gap, that is, clearance breadth between upright edges is one of key parameters securing high quality of a weld joint. The paper presents theoretical outcomes for the model of layered weld formation under narrow gap pulse welding. Based on these studies is developed model of processes, which occur in the weld pool under pulse grove welding. It comprises the scheme of liquid metal motion in the weld pool, scheme of fusion with the side edge and in the bottom part, and the scheme of welding current impulse effect on the structure of a weld joint.

  5. Method for welding beryllium

    DOEpatents

    Dixon, Raymond D.; Smith, Frank M.; O'Leary, Richard F.

    1997-01-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon.

  6. Comparative and Joint Analysis of Two Metagenomic Datasets from a Biogas Fermenter Obtained by 454-Pyrosequencing

    PubMed Central

    Jaenicke, Sebastian; Ander, Christina; Bekel, Thomas; Bisdorf, Regina; Dröge, Marcus; Gartemann, Karl-Heinz; Jünemann, Sebastian; Kaiser, Olaf; Krause, Lutz; Tille, Felix; Zakrzewski, Martha; Pühler, Alfred

    2011-01-01

    Biogas production from renewable resources is attracting increased attention as an alternative energy source due to the limited availability of traditional fossil fuels. Many countries are promoting the use of alternative energy sources for sustainable energy production. In this study, a metagenome from a production-scale biogas fermenter was analysed employing Roche's GS FLX Titanium technology and compared to a previous dataset obtained from the same community DNA sample that was sequenced on the GS FLX platform. Taxonomic profiling based on 16S rRNA-specific sequences and an Environmental Gene Tag (EGT) analysis employing CARMA demonstrated that both approaches benefit from the longer read lengths obtained on the Titanium platform. Results confirmed Clostridia as the most prevalent taxonomic class, whereas species of the order Methanomicrobiales are dominant among methanogenic Archaea. However, the analyses also identified additional taxa that were missed by the previous study, including members of the genera Streptococcus, Acetivibrio, Garciella, Tissierella, and Gelria, which might also play a role in the fermentation process leading to the formation of methane. Taking advantage of the CARMA feature to correlate taxonomic information of sequences with their assigned functions, it appeared that Firmicutes, followed by Bacteroidetes and Proteobacteria, dominate within the functional context of polysaccharide degradation whereas Methanomicrobiales represent the most abundant taxonomic group responsible for methane production. Clostridia is the most important class involved in the reductive CoA pathway (Wood-Ljungdahl pathway) that is characteristic for acetogenesis. Based on binning of 16S rRNA-specific sequences allocated to the dominant genus Methanoculleus, it could be shown that this genus is represented by several different species. Phylogenetic analysis of these sequences placed them in close proximity to the hydrogenotrophic methanogen Methanoculleus

  7. Microstructural characterization of weld joints of 9Cr reduced activation ferritic martensitic steel fabricated by different joining methods

    SciTech Connect

    Thomas Paul, V.; Saroja, S.; Albert, S.K.; Jayakumar, T.; Rajendra Kumar, E.

    2014-10-15

    This paper presents a detailed electron microscopy study on the microstructure of various regions of weldment fabricated by three welding methods namely tungsten inert gas welding, electron beam welding and laser beam welding in an indigenously developed 9Cr reduced activation ferritic/martensitic steel. Electron back scatter diffraction studies showed a random micro-texture in all the three welds. Microstructural changes during thermal exposures were studied and corroborated with hardness and optimized conditions for the post weld heat treatment have been identified for this steel. Hollomon–Jaffe parameter has been used to estimate the extent of tempering. The activation energy for the tempering process has been evaluated and found to be corresponding to interstitial diffusion of carbon in ferrite matrix. The type and microchemistry of secondary phases in different regions of the weldment have been identified by analytical transmission electron microscopy. - Highlights: • Comparison of microstructural parameters in TIG, electron beam and laser welds of RAFM steel • EBSD studies to illustrate the absence of preferred orientation and identification of prior austenite grain size using phase identification map • Optimization of PWHT conditions for indigenous RAFM steel • Study of kinetics of tempering and estimation of apparent activation energy of the process.

  8. The effect of welding parameters on surface quality of AA6351 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Yacob, S.; MAli, M. A.; Ahsan, Q.; Ariffin, N.; Ali, R.; Arshad, A.; Wahab, M. I. A.; Ismail, S. A.; Roji, NS M.; Din, W. B. W.; Zakaria, M. H.; Abdullah, A.; Yusof, M. I.; Kamarulzaman, K. Z.; Mahyuddin, A.; Hamzah, M. N.; Roslan, R.

    2015-12-01

    In the present work, the effects of gas metal arc welding-cold metal transfer (GMAW-CMT) parameters on surface roughness are experimentally assessed. The purpose of this study is to develop a better understanding of the effects of welding speed, material thickness and contact tip to work distance on the surface roughness. Experiments are conducted using single pass gas metal arc welding-cold metal transfer (GMAW-CMT) welding technique to join the material. The material used in this experiment was AA6351 aluminum alloy with the thickness of 5mm and 6mm. A Mahr Marsuft XR 20 machine was used to measure the average roughness (Ra) of AA6351 joints. The main and interaction effect analysis was carried out to identify process parameters that affect the surface roughness. The results show that all the input process parameters affect the surface roughness of AA6351 joints. Additionally, the average roughness (Ra) results also show a decreasing trend with increased of welding speed. It is proven that gas metal arc welding-cold metal transfer (GMAW-CMT)welding process has been successful in term of providing weld joint of good surface quality for AA6351 based on the low value surface roughness condition obtained in this setup. The outcome of this experimental shall be valuable for future fabrication process in order to obtained high good quality weld.

  9. The use of exploratory experimental designs combined with thermal numerical modelling to obtain a predictive tool for hybrid laser/MIG welding and coating processes

    NASA Astrophysics Data System (ADS)

    Bidi, Lyes; Mattei, Simone; Cicala, Eugen; Andrzejewski, Henri; Le Masson, Philippe; Schroeder, Jeanne

    2011-04-01

    While hybrid laser welding and coating processes involve a large number of physical phenomena, it is currently impossible to predict, for a given set of influencing factors, the shape of the molten zone and the history of temperature fields inside the parts. This remains true for complex processes, such as the hybrid laser/MIG welding process, which consists in combining a laser beam with a MIG torch. The gains obtained result essentially from the synergy of the associated processes: the stability of the process, the quality of the seam realized, and the productivity are increased. This article shows how, by means of a reduced number of experiments (8), it is possible to predict the shape of the molten zone and the temperature field inside parts, for a given window of influencing factors. This method consists in combining the method of exploratory experimental designs with a numerical modelling of the thermal phenomena that occurs during the process, by using the 'heat equivalent source" approach [1-4]. Two validations of this method have been carried out: the first for a set of parameters inside the experimental design, and the other for a set of parameters that lies outside the experimental design, but inside the domain investigated.

  10. Prediction of Weld Penetration in FCAW of HSLA steel using Artificial Neural Networks

    SciTech Connect

    Asl, Y. Dadgar; Mostafa, N. B.; Panahizadeh, V. R.; Seyedkashi, S. M. H.

    2011-01-17

    Flux-cored arc welding (FCAW) is a semiautomatic or automatic arc welding process that requires a continuously-fed consumable tubular electrode containing a flux. The main FCAW process parameters affecting the depth of penetration are welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed. Shallow depth of penetration may contribute to failure of a welded structure since penetration determines the stress-carrying capacity of a welded joint. To avoid such occurrences; the welding process parameters influencing the weld penetration must be properly selected to obtain an acceptable weld penetration and hence a high quality joint. Artificial neural networks (ANN), also called neural networks (NN), are computational models used to express complex non-linear relationships between input and output data. In this paper, artificial neural network (ANN) method is used to predict the effects of welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed on weld penetration depth in gas shielded FCAW of a grade of high strength low alloy steel. 32 experimental runs were carried out using the bead-on-plate welding technique. Weld penetrations were measured and on the basis of these 32 sets of experimental data, a feed-forward back-propagation neural network was created. 28 sets of the experiments were used as the training data and the remaining 4 sets were used for the testing phase of the network. The ANN has one hidden layer with eight neurons and is trained after 840 iterations. The comparison between the experimental results and ANN results showed that the trained network could predict the effects of the FCAW process parameters on weld penetration adequately.

  11. Microstructure characteristics and mechanical properties of laser-TIG hybrid welded dissimilar joints of Ti-22Al-27Nb and TA15

    NASA Astrophysics Data System (ADS)

    Zhang, Kezhao; Lei, Zhenglong; Chen, Yanbin; Liu, Ming; Liu, Yang

    2015-10-01

    Laser-TIG-hybrid-welding (TIG - tungsten inert gas) process was successfully applied to investigate the microstructure and tensile properties of Ti-22Al-27Nb/TA15 dissimilar joints. The HAZ of the arc zone in Ti-22Al-27Nb was characterized by three different regions: single B2, B2+α2 and B2+α2+O, while the single B2 phase region was absent in the HAZ of the laser zone. As for the HAZ in TA15 alloy, the microstructure mainly contained acicular α‧ martensites near the fusion line and partially remained the lamellar structure near the base metal. The fusion zone consisted of B2 phase due to the relatively high content of β phase stabilizing elements and fast cooling rate during the welding process. The tensile strength of the welds was higher than that of TA15 alloy because of the fully B2 microstructure in the fusion zone, and the fracture preferentially occurred on the base metal of TA15 alloy during the tensile tests at room temperature and 650 °C.

  12. Fatigue Performance of Advanced High-Strength Steels (AHSS) GMAW Joints

    SciTech Connect

    Feng, Zhili; Sang, Yan; Jiang, Cindy; Chiang, Dr. John; Kuo, Dr. Min

    2009-01-01

    The fatigue performance of gas metal arc welding (GMAW) joints of advanced high strength steels (AHSS) are compared and analyzed. The steel studied included a number of different grades of AHSS and baseline mild steels: DP600, DP780, DP980, M130, M220, solution annealed boron steel, fully hardened boron steels, HSLA690 and DR210 (a mild steel). Fatigue testing was conducted under a number of nominal stress ranges to obtain the S/N curves of the weld joints. A two-phase analytical model is developed to predict the fatigue performance of AHSS welds. It was found that there are appreciable differences in the fatigue S/N curves among different AHSS joints made using the same welding practices, suggesting that the local microstructure in the weld toe and root region plays non-negligible role in the fatigue performance of AHSS welds. Changes in weld parameters can influence the joint characteristics which in turn influence fatigue life of the weld joints, particularly of those of higher strength AHSS. The analytical model is capable of reasonably predicting the fatigue performance of welds made with various steel grades in this study.

  13. Improved welding of Rene-41

    NASA Technical Reports Server (NTRS)

    Nunez, S.

    1970-01-01

    Gas-tungsten arc welding with a filler of Rene-41 produces strong welded joints. When Rene-41 is used, resistance to strain-age cracking is greatly increased by post-weld solution annealing in an inert atmosphere. Mechanical properties of Rene-41 and Hastelloy-W are compared.

  14. Optimization of laser butt welding parameters with multiple performance characteristics

    NASA Astrophysics Data System (ADS)

    Sathiya, P.; Abdul Jaleel, M. Y.; Katherasan, D.; Shanmugarajan, B.

    2011-04-01

    This paper presents a study carried out on 3.5 kW cooled slab laser welding of 904 L super austenitic stainless steel. The joints have butts welded with different shielding gases, namely argon, helium and nitrogen, at a constant flow rate. Super austenitic stainless steel (SASS) normally contains high amount of Mo, Cr, Ni, N and Mn. The mechanical properties are controlled to obtain good welded joints. The quality of the joint is evaluated by studying the features of weld bead geometry, such as bead width (BW) and depth of penetration (DOP). In this paper, the tensile strength and bead profiles (BW and DOP) of laser welded butt joints made of AISI 904 L SASS are investigated. The Taguchi approach is used as a statistical design of experiment (DOE) technique for optimizing the selected welding parameters. Grey relational analysis and the desirability approach are applied to optimize the input parameters by considering multiple output variables simultaneously. Confirmation experiments have also been conducted for both of the analyses to validate the optimized parameters.

  15. Microstructural characterization of an SA508–309L/308L–316L domestic dissimilar metal welded safe-end joint

    SciTech Connect

    Ming, Hongliang; Zhang, Zhiming; Wang, Jianqiu Han, En-Hou; Ke, Wei

    2014-11-15

    The microstructure of an SA508–309L/308L–316L domestic dissimilar metal welded safe-end joint was characterized in this work by optical microscopy, scanning electron microscopy (with electron back scattering diffraction) and micro-hardness testing. Epitaxial growth and competitive growth are evident in the 308L–316L fusion boundary regions. A martensite layer, carbon-depleted zones, and type-II and type-I boundaries are found in the SA508–309L fusion boundary regions, while only martensite and austenite mixed zones are observed in the SA508–308L fusion boundary regions. The microstructure near the fusion boundary and the microstructure transition in the SA508 heat affected zone are quite complex. Both for SA508–309L/308L and 308L–316L, the highest residual strain is located on the outside of the weldment. The residual strain and the grain boundary character distribution change with increasing distance from the fusion boundary in the heat affected zone of 316L. Micro-hardness measurements also reveal non-uniform mechanical properties across the weldment. - Highlights: • The microstructure of SA508 HAZ, especially near the FB, is very complex. • The outside of the dissimilar metal welded joint has the highest residual. • The micro-hardness distributions along the DMWJ are non-uniform.

  16. Electric arc welding gun

    DOEpatents

    Luttrell, Edward; Turner, Paul W.

    1978-01-01

    This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

  17. Mechanical Properties, Corrosion Behavior, and Microstructures of a MIG-Welded 7020 Al Alloy

    NASA Astrophysics Data System (ADS)

    Peng, Xiaoyan; Cao, Xiaowu; Xu, Guofu; Deng, Ying; Tang, Lei; Yin, Zhimin

    2016-03-01

    7020 aluminum alloy plates were welded by metal inert gas welding method, with the ER5183 welding wire containing Zr and ER5356 welding wire without Zr, respectively. The mechanical properties, corrosion behavior, and microstructures of these two welded joints were investigated. The tensile strength and ductilities of the joints are inferior to those of base alloy, and the lowest hardness is obtained in the welded zone, while the heat-affected zones are more sensitive to corrosion than the base metal and welded zones. The base metal shows a deformed subgrains microstructure, and the heat-affected zones still remain in elongated shape, where the soften zones form as a result of η' (MgZn2) coarsening. Two welded zones are mainly characterized by as-cast structure; however, grains are refined and a zone of equiaxed grains forms along the bonding boundary due to the Zr addition into ER5183 Al alloy. Accordingly, the mechanical properties and corrosion resistance in this zone of the joint with ER5183 exhibit better than those of the joint with ER5356.

  18. Welding blades to rotors

    NASA Technical Reports Server (NTRS)

    Hoklo, K. H.; Moore, T. J. (Inventor)

    1973-01-01

    A process is described to form T-joints between dissimilar thickness parts by magnetic force upset welding. This type of resistance welding is used to join compressor and turbine parts which thereby reduces the weight and cost of jet engines.

  19. Gas Shielding Technology for Welding and Brazing

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur J.; Gradl, Paul R.

    2012-01-01

    Welding is a common method that allows two metallic materials to be joined together with high structural integrity. When joints need to be leak-tight, light-weight, or free of contaminant-trapping seams or surface asperities, welding tends to be specified. There are many welding techniques, each with its own advantages and disadvantages. Some of these techniques include Forge Welding, Gas Tungsten Arc Welding, Friction Stir Welding, and Laser Beam Welding to name a few. Whichever technique is used, the objective is a structural joint that meets the requirements of a particular component or assembly. A key practice in producing quality welds is the use of shielding gas. This article discusses various weld techniques, quality of the welds, and importance of shielding gas in each of those techniques. Metallic bonds, or joints, are produced when metals are put into intimate contact. In the solid-state "blacksmith welding" process, now called Forge Welding (FOW), the site to be joined is pounded into intimate contact. The surfaces to be joined usually need to be heated to make it easier to deform the metal. The surfaces are sprinkled with a flux to melt surface oxides and given a concave shape so that surface contamination can be squeezed out of the joint as the surfaces are pounded together; otherwise the surface contamination would be trapped in the joint and would weaken the weld. In solid-state welding processes surface oxides or other contamination are typically squeezed out of the joint in "flash."

  20. Clamp and Gas Nozzle for TIG Welding

    NASA Technical Reports Server (NTRS)

    Gue, G. B.; Goller, H. L.

    1982-01-01

    Tool that combines clamp with gas nozzle is aid to tungsten/inert-gas (TIG) welding in hard-to-reach spots. Tool holds work to be welded while directing a stream of argon gas at weld joint, providing an oxygen-free environment for tungsten-arc welding.

  1. Friction Stir Welding of Steel: Heat Input, Microstructure, and Mechanical Property Co-relation

    NASA Astrophysics Data System (ADS)

    Husain, Md. M.; Sarkar, R.; Pal, T. K.; Prabhu, N.; Ghosh, M.

    2015-09-01

    Friction stir welding was performed to join carbon steel plates at tool rotational rate of 800-1400 rpm. Microstructure and microhardness of welded specimens were evaluated across weld centerline. Torque base index, peak temperature, cooling rate, strain, strain rate, volumetric material flow rate, and width of extruded zone at weld nugget were calculated. Peak temperature at weld nugget was ~1300-1360 K. At this temperature, ferrite transformed to austenite during welding. Austenite was decomposed in to ferrite and bainite at cooling rate of ~4-7.5 K/s. The presence of bainite was endorsed by increment in microhardness with respect to base material. Ferrite grain size at weld nugget was finer in comparison to as-received alloy. With the increment in tool rotational rate strain, strain rate, total heat input, and peak temperature at weld nugget were increased. High temperature at weld nugget promoted increment in ferrite grain size and reduction in area fraction of bainite. Heat-affected zone also experienced phase transformation and exhibited enhancement in ferrite grain size in comparison to base alloy at all welding parameters with marginal drop in microhardness. Maximum joint strength was obtained at the tool rotational rate of 1000 rpm. Increment in tool rational rate reduced the joint efficiency owing to increment in ferrite grain size and reduction in pearlite area fraction at heat-affected zone.

  2. Optimization of laser welding of DP/TRIP steel sheets using statistical approach

    NASA Astrophysics Data System (ADS)

    Reisgen, U.; Schleser, M.; Mokrov, O.; Ahmed, E.

    2012-02-01

    Generally, the quality of a weld joint is directly influenced by the welding input parameter settings. Selection of proper process parameters is important to obtain the desired weld bead profile and quality. In this research work, numerical and graphical optimization techniques of the CO 2 laser beam welding of dual phase (DP600)/transformation induced plasticity (TRIP700) steel sheets were carried out using response surface methodology (RSM) based on Box-Behnken design. The procedure was established to improve the weld quality, increase the productivity and minimize the total operation cost by considering the welding parameters range of laser power (2-2.2 kW), welding speed (40-50 mm/s) and focus position (-1 to 0 mm). It was found that, RSM can be considered as a powerful tool in experimental welding optimization, even when the experimenter does not have a model for the process. Strong, efficient and low cost weld joints could be achieved using the optimum welding conditions.

  3. Development of an intelligent system for cooling rate and fill control in GMAW. [Gas Metal Arc Welding (GMAW)

    SciTech Connect

    Einerson, C.J.; Smartt, H.B.; Johnson, J.A.; Taylor, P.L. ); Moore, K.L. )

    1992-01-01

    A control strategy for gas metal arc welding (GMAW) is developed in which the welding system detects certain existing conditions and adjusts the process in accordance to pre-specified rules. This strategy is used to control the reinforcement and weld bead centerline cooling rate during welding. Relationships between heat and mass transfer rates to the base metal and the required electrode speed and welding speed for specific open circuit voltages are taught to a artificial neural network. Control rules are programmed into a fuzzy logic system. TRADITOINAL CONTROL OF THE GMAW PROCESS is based on the use of explicit welding procedures detailing allowable parameter ranges on a pass by pass basis for a given weld. The present work is an exploration of a completely different approach to welding control. In this work the objectives are to produce welds having desired weld bead reinforcements while maintaining the weld bead centerline cooling rate at preselected values. The need for this specific control is related to fabrication requirements for specific types of pressure vessels. The control strategy involves measuring weld joint transverse cross-sectional area ahead of the welding torch and the weld bead centerline cooling rate behind the weld pool, both by means of video (2), calculating the required process parameters necessary to obtain the needed heat and mass transfer rates (in appropriate dimensions) by means of an artificial neural network, and controlling the heat transfer rate by means of a fuzzy logic controller (3). The result is a welding machine that senses the welding conditions and responds to those conditions on the basis of logical rules, as opposed to producing a weld based on a specific procedure.

  4. Development of a New Joint Geometry for FSW

    NASA Astrophysics Data System (ADS)

    Penalva, M. L.; Otaegi, A.; Pujana, J.; Rivero, A.

    2009-11-01

    Friction Stir Welding (FSW) is an emerging solid state joining technology that allows welding most aluminum alloys that otherwise are difficult to weld by using conventional fusion based technologies. The technology is of particular interest for transport applications, since welded structures are considered to offer cost and weight savings. From a point of view of the joint geometries, FSW is mature for simple configurations. Most work to date has concentrated on butt welds and, only to a certain degree, on overlap configurations. Different designs such as T-sections, corner welds, box sections… are then principally restricted to the use of butt weld configurations. However, it is necessary for FSW to be able to be applied to new geometries in order to spread its use to a wider range of applications. Present work explores the feasibility of producing corner fillet geometries using FSW. Although such a kind of geometry has traditionally been considered unfeasible for the process, it seems to have the greatest potential to be used for T-joint configurations, a recurrent design pattern in transport applications. In order to study the feasibility of the proposed new joint geometry, a specific tool has been developed and a set of welds has been produced with it. Microstructure of the produced welds has been analyzed. According to the obtained results, the proposed joint geometry seems to be feasible. Main problem pending to solve is how to avoid the formation of a tunnel defect in the weld centre line due to a suck effect of the tool on the stirred material. Further improvements are proposed to produce welds with acceptable quality.

  5. Corrosion behavior of the friction-stir-welded joints of 2A14-T6 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Qin, Hai-long; Zhang, Hua; Sun, Da-tong; Zhuang, Qian-yu

    2015-06-01

    The corrosion behavior of friction-stir-welded 2A14-T6 aluminum alloy was investigated by immersion testing in immersion exfoliation corrosion (EXCO) solution. Electrochemical measurements (open circuit potential, potentiodynamic polarization curves, and electrochemical impedance spectroscopy), scanning electron microscopy, and energy dispersive spectroscopy were employed for analyzing the corrosion mechanism. The results show that, compared to the base material, the corrosion resistance of the friction-stir welds is greatly improved, and the weld nugget has the highest corrosion resistance. The pitting susceptibility originates from the edge of Al-Cu-Fe-Mn-Si phase particles as the cathode compared to the matrix due to their high self-corrosion potential. No corrosion activity is observed around the θ phase (Al2Cu) after 2 h of immersion in EXCO solution.

  6. Fast, Nonspattering Inert-Gas Welding

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.

    1991-01-01

    Proposed welding technique combines best features of metal (other than tungsten)/inert-gas welding, plasma arc welding, and tungsten/inert-gas welding. Advantages include: wire fed to weld joint preheated, therefore fed at high speed without spattering; high-frequency energy does not have to be supplied to workpiece to initiate welding; size of arc gap not critical, power-supply control circuit adjusts voltage across gap to compensate for changes; only low gas-flow rate needed; welding electrode replaced easily as prefabricated assembly; external wire-feeding manipulator not needed; and welding process relatively forgiving of operator error.

  7. Ultrasonic Additive Manufacturing: Weld Optimization for Aluminum 6061, Development of Scarf Joints for Aluminum Sheet Metal, and Joining of High Strength Metals

    NASA Astrophysics Data System (ADS)

    Wolcott, Paul J.

    Ultrasonic additive manufacturing (UAM) is a low temperature, solid-state manufacturing process that enables the creation of layered, solid metal structures with designed anisotropies and embedded materials. As a low temperature process, UAM enables the creation of active composites containing smart materials, components with embedded sensors, thermal management devices, and many others. The focus of this work is on the improvement and characterization of UAM aluminum structures, advancing the capabilities of ultrasonic joining into sheet geometries, and examination of dissimilar material joints using the technology. Optimized process parameters for Al 6061 were identified via a design of experiments study indicating a weld amplitude of 32.8 synum and a weld speed of 200 in/min as optimal. Weld force and temperature were not significant within the levels studied. A methodology of creating large scale builds is proposed, including a prescribed random stacking sequence and overlap of 0.0035 in. (0.0889 mm) for foils to minimize voids and maximize mechanical strength. Utilization of heat treatments is shown to significantly increase mechanical properties of UAM builds, within 90% of bulk material. The applied loads during the UAM process were investigated to determine the stress fields and plastic deformation induced during the process. Modeling of the contact mechanics via Hertzian contact equations shows that significant stress is applied via sonotrode contact in the process. Contact modeling using finite element analysis (FEA), including plasticity, indicates that 5000 N normal loads result in plastic deformation in bulk aluminum foil, while at 3000 N no plastic deformation occurs. FEA studies on the applied loads during the process, specifically a 3000 N normal force and 2000 N shear force, show that high stresses and plastic deformation occur at the edges of a welded foil, and base of the UAM build. Microstructural investigations of heat treated foils confirms

  8. Differences in skeletal components of temporomandibular joint of an early medieval and contemporary Croatian population obtained by different methods.

    PubMed

    Kranjcic, Josip; Slaus, Mario; Persic, Sanja; Vodanovic, Marin; Vojvodic, Denis

    2016-01-01

    The temporomandibular joint (TMJ) is one of the most complex joints in the human body. The anatomical configuration of the TMJ allows for a large range of mandibular movements as well as transmission of masticatory forces and loads to the skull base. The measurements of the TMJ's anatomical structures and their interpretations contribute to the understanding of how pathological changes, tooth loss, and the type of diet (changing throughout human history) can affect biomechanical conditions of the masticatory system and the TMJ. The human TMJ and its constituent parts are still the subject of extensive investigation and comparisons of measurement methods are being made in order to determine the most precise and suitable measurement methods. The aim of this study has been to examine the morphology of skeletal components of TMJ of an early medieval population (EMP) in Croatia and to compare measured values with TMJ values of the contemporary Croatian population (CP) using various methods of measurement. The study was performed on 30 EMP specimens - human dry skulls, aged from 18 to 55 years, and 30 CP human dry skulls, aged from 18 to 65 years. Only fully preserved specimens (in measured areas) were included. The articular eminence (AE) inclination was measured in relation to the Frankfurt horizontal using two methods. Also, the AE height (glenoid fossa depth) and the length of the curved line - highest to the lowest point of the AE were measured. Measurements were performed on lateral skull photographs, panoramic radiographs and lateral cephalograms using VistaMetrix software on skull images. The results were statistically analyzed using SPSS statistical software. No statistically significant differences were obtained for AE parameters between the EMP and CP populations independent of age and gender. However, statistically significant (p<0.05) differences were revealed when comparing results of three different measuring methods. It could not be determined which of

  9. Study of Gasdynamic Effect Upon the Weld Geometry When Concumable Electrode Welding

    NASA Astrophysics Data System (ADS)

    Chinakhov, D. A.; Grigorieva, E. G.; Mayorova, E. I.

    2016-04-01

    The paper considers the ways of weld geometry controlling when consumable electrode welding under single-jet and double-jet gas shielding. The authors provide comparative results of experimental studies on the effects of shielding gas supply upon the weld geometry in weld joints produced from construction carbon steel 45. It has been established that gas-dynamic effect of the shielding gas has a significant impact upon shaping and weld geometry when consumable electrode welding under double-jet gas shielding.

  10. Improvement of Weld Characteristics by Laser-Arc Double-Sided Welding Compared to Single Arc Welding

    NASA Astrophysics Data System (ADS)

    Lei, Zhenglong; Zhang, Kezhao; Hu, Xue; Yang, Yuhe; Chen, Yanbin; Wu, Yichao

    2015-11-01

    The single arc welding and laser-arc double-sided welding (LADSW) processes are investigated by virtue of test welds. The impacts of the laser beam during the LADSW process on the weld characteristics are studied from weld geometry, crystal morphology, and the mechanical properties of the joints. Compared with the single arc welding, the LADSW process improves the energy density and reduces the range of arc action, which together leads to a doubling of weld penetration depth. When penetrated by the laser beam, the liquid metal of the arc welding pool experiences severe fluctuations, leading to a finer grain size in the range of 17-26 μm in the LADSW weld, a reduction of nearly 63% compared to the grains in the single arc weld. The tensile strength and elongation-to-failure of the LADSW weld were increased by nearly 10 and 100% over the single arc welding, respectively.

  11. New explosive seam welding concepts

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1973-01-01

    Recently developed techniques provide totally-confined linear explosive seam welding and produce scarf joint with linear explosive seam welding. Linear ribbon explosives are utilized in making narrow, continuous, airtight joints in variety of aluminum alloys, titanium, copper, brass, and stainless steel.

  12. Modeling of plasma and thermo-fluid transport in hybrid welding

    NASA Astrophysics Data System (ADS)

    Ribic, Brandon D.

    Hybrid welding combines a laser beam and electrical arc in order to join metals within a single pass at welding speeds on the order of 1 m min -1. Neither autonomous laser nor arc welding can achieve the weld geometry obtained from hybrid welding for the same process parameters. Depending upon the process parameters, hybrid weld depth and width can each be on the order of 5 mm. The ability to produce a wide weld bead increases gap tolerance for square joints which can reduce machining costs and joint fitting difficulty. The weld geometry and fast welding speed of hybrid welding make it a good choice for application in ship, pipeline, and aerospace welding. Heat transfer and fluid flow influence weld metal mixing, cooling rates, and weld bead geometry. Cooling rate affects weld microstructure and subsequent weld mechanical properties. Fluid flow and heat transfer in the liquid weld pool are affected by laser and arc energy absorption. The laser and arc generate plasmas which can influence arc and laser energy absorption. Metal vapors introduced from the keyhole, a vapor filled cavity formed near the laser focal point, influence arc plasma light emission and energy absorption. However, hybrid welding plasma properties near the opening of the keyhole are not known nor is the influence of arc power and heat source separation understood. A sound understanding of these processes is important to consistently achieving sound weldments. By varying process parameters during welding, it is possible to better understand their influence on temperature profiles, weld metal mixing, cooling rates, and plasma properties. The current literature has shown that important process parameters for hybrid welding include: arc power, laser power, and heat source separation distance. However, their influence on weld temperatures, fluid flow, cooling rates, and plasma properties are not well understood. Modeling has shown to be a successful means of better understanding the influence of

  13. Analysis and Characterization of the Role of Ni Interlayer in the Friction Welding of Titanium and 304 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Muralimohan, C. H.; Ashfaq, M.; Ashiri, Rouholah; Muthupandi, V.; Sivaprasad, K.

    2016-01-01

    Joining of commercially pure Ti to 304 stainless steel by fusion welding processes possesses problems due to the formation of brittle intermetallic compounds in the weld metal, which degrade the mechanical properties of the joints. Solid-state welding processes are contemplated to overcome these problems. However, intermetallic compounds are likely to form even in Ti-SS joints produced with solid-state welding processes such as friction welding process. Therefore, interlayers are employed to prevent the direct contact between two base metals and thereby mainly to suppress the formation of brittle Ti-Fe intermetallic compounds. In the present study, friction-welded joints between commercially pure titanium and 304 stainless steel were obtained using a thin nickel interlayer. Then, the joints were characterized by optical microscopy, scanning electron microscopy, energy dispersive spectrometry, and X-ray diffractometry. The mechanical properties of the joints were evaluated by microhardness survey and tensile tests. Although the results showed that the tensile strength of the joints is even lower than titanium base metal, it is higher than that of the joints which were produced without nickel interlayer. The highest hardness value was observed at the interface between titanium and nickel interlayers indicating the formation of Ni-Ti intermetallic compounds. Formation these compounds was validated by XRD patterns. Moreover, in tensile tests, fracture of the joints occurred along this interface which is related to its brittle nature.

  14. Internal Filler-Wire Feed For Arc Welding

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.; Dyer, Gerald E.

    1990-01-01

    Tungsten electrode for gas/tungsten arc welding contains lengthwise channel for feeding filler wire to weld joint. Channel makes it unnecessary to feed wire through guides outside electrode, conserving valuable space near weld and protects wire from deformation by contact with other parts in vicinity of weld. Helpful in robotic or automatic welding.

  15. General Mechanical Repair. Welding. Volume 2. Teacher's Guide.

    ERIC Educational Resources Information Center

    East Texas State Univ., Commerce. Occupational Curriculum Lab.

    Five units on welding are presented in this teacher's guide. The units are the following: introduction to oxyacetylene welding, oxyacetylene welding positions and applications, use of the cutting torch, introduction to shielded metal arc welding, and welding joints and positions. Each instructional unit generally contains eight components:…

  16. Study of the structure and properties of laser-welded joints of the Al-Mg-Li alloy

    NASA Astrophysics Data System (ADS)

    Pugacheva, N. B.; Antenorova, N. P.; Senaeva, E. I.

    2015-12-01

    The macro- and microstructures, the distribution of chemical elements and of the values of the microhardness over the width of the zones of remelting and heat-affected zone have been studied after the laser welding of sheets of an Al-Mg-Li alloy. It has been shown that the material of the zone of remelting (1.2 mm thick) represents in itself finely dispersed misoriented dendrites, in the primary branches of which particles of the strengthening δ' phase (Al3Li) with dimensions of no more than 10 nm and in the interdendrite spaces, dispersed particles of the S phase (Al2MgLi and FeAl2) have been revealed. The hardness of the material of the zone of remelting was 108-123 HV 0.05; the hardness of the basic alloy, 150-162 HV 0.05. In the heat-affected zones of thickness 2 mm, the primary recrystallization occurred only in a narrow zone directly at the boundary with the weld. The strength of the welded junction was 470-490 MPa, which corresponds to the regulated degree of strength of the aluminum alloys of this class. The relative elongation of the material of the weld proved to be considerably less than that in the alloy matrix because of the microporosity of the weld material. It is shown that the convective stirring of the melt in the welding pool upon the laser welding made it possible to avoid the appearance of macroscopic defects, but on the microlevel there are observed micropores in the form of spheres with dimensions of 5-50 μm. The solidification of the alloy occurred in such a way that the dendrites had time to grow around the gas bubbles prior to their collapse, forming a sufficiently strong carcass. Inside the dendritic carcass, there have been revealed coarse inclusions (to 200 μm) that consist of oxides (Al2O3, Fe2O3, MgO, SiO2, CaO), of an iron-based alloy, and of the host aluminum alloy.

  17. Re-weldability of neutron-irradiated stainless steels studied by multi-pass TIG welding

    NASA Astrophysics Data System (ADS)

    Nakata, K.; Oishi, M.; Koshiishi, M.; Hashimoto, T.; Anzai, H.; Saito, Y.; Kono, W.

    2002-12-01

    Weldability of neutron-irradiated stainless steel (SS) has been studied by multi-pass bead-on-plate and build-up tungsten inert gas (TIG) welding, simulating the repair-welding of reactor components. Specimens were submerged arc welding (SAW) joint of Type 304 SS containing 0.5 appm helium (1.8 appm in the SAW weld metal). Sound welding could be obtained by one- to three-pass welding on the plates at weld heat inputs less than 1 MJ/m in the irradiated 304 SS base metal. In the case of the build-up welding of a groove, no visible defects appeared in the specimen at a heat input as low as 0.4 MJ/m. However, build-up welding at a high heat input of 1 MJ/m was prone to weld cracking, owing to the formation of helium bubbles on grain boundaries of the base metal or dendrite boundaries of pre-existing SAW weld metal, in the area within 0.6 mm from the fusion line.

  18. Welding of 316L Austenitic Stainless Steel with Activated Tungsten Inert Gas Process

    NASA Astrophysics Data System (ADS)

    Ahmadi, E.; Ebrahimi, A. R.

    2015-02-01

    The use of activating flux in TIG welding process is one of the most notable techniques which are developed recently. This technique, known as A-TIG welding, increases the penetration depth and improves the productivity of the TIG welding. In the present study, four oxide fluxes (SiO2, TiO2, Cr2O3, and CaO) were used to investigate the effect of activating flux on the depth/width ratio and mechanical property of 316L austenitic stainless steel. The effect of coating density of activating flux on the weld pool shape and oxygen content in the weld after the welding process was studied systematically. Experimental results indicated that the maximum depth/width ratio of stainless steel activated TIG weld was obtained when the coating density was 2.6, 1.3, 2, and 7.8 mg/cm2 for SiO2, TiO2, Cr2O3, and CaO, respectively. The certain range of oxygen content dissolved in the weld, led to a significant increase in the penetration capability of TIG welds. TIG welding with active fluxes can increase the delta-ferrite content and improves the mechanical strength of the welded joint.

  19. Recovery of Mechanical Properties of a 6061-T6 Aluminum Weld by Heat Treatment After Welding

    NASA Astrophysics Data System (ADS)

    Pérez, Javier Serrano; Ambriz, Ricardo Rafael; López, Francisco Fernando Curiel; Vigueras, David Jaramillo

    2016-07-01

    The dilution effects in welds of a 6061-T6 (Al-Si-Mg) alloy obtained by the modified indirect electric arc (MIEA), using an ER4043 filler metal (Al-Si), and postweld heat treatment (PWHT) were analyzed. The soft zone (55 to 70 HV0.1) formed by the microstructural transformation in the heat-affected zone (HAZ) was eliminated. The hardness measurements were presented on a traditional microhardness profile and mapping representation. A hardening effect of the fusion zone was observed; the hardness values were above 120 HV0.1 and tended to be uniform. This behavior could be attributed to the chemical composition of the filler metal, the Mg migration from the base to the weld metal, and the reversible process of the PWHT, which promotes precipitation hardening. Improvement for yield (260 MPa) and tensile strength (310 MPa) of the MIEA joints was observed; these values were similar to those obtained for the base metal. However, the presence of porosity in the fusion zone limits the ductility of the joints (4.3 pct). Even though the yield and tensile strengths of the base metal and welded joints were similar, the stress concentration due to porosity in the weld metal generated data dispersion in fatigue life. As a consequence, the high-cycle fatigue life decreases with respect to the base metal. In contrast, when the crack propagates under elastic conditions, the crack-tip singularity is affected by the porosity in the weld metal (stress liberator). This aspect, in conjunction with the hardening effect in joints subjected to PWHT, improves the fatigue crack growth rate when compared to the as-welded condition.

  20. Apparatus for welding blades to rotors

    NASA Technical Reports Server (NTRS)

    Holko, K. H.; Moore, T. J. (Inventor)

    1973-01-01

    Using magnetic force upset welding to form T-joints between dissimilar thickness parts. This type of resistance welding is used to join compressor and turbine parts thereby reducing the weight and cost of a jet engine.

  1. Predictive permeability model of faults in crystalline rocks; verification by joint hydraulic factor (JH) obtained from water pressure tests

    NASA Astrophysics Data System (ADS)

    Barani, Hamidreza Rostami; Lashkaripour, Gholamreza; Ghafoori, Mohammad

    2014-08-01

    In the present study, a new model is proposed to predict the permeability per fracture in the fault zones by a new parameter named joint hydraulic factor (JH). JH is obtained from Water Pressure Test (WPT) and modified by the degree of fracturing. The results of JH correspond with quantitative fault zone descriptions, qualitative fracture, and fault rock properties. In this respect, a case study was done based on the data collected from Seyahoo dam site located in the east of Iran to provide the permeability prediction model of fault zone structures. Datasets including scan-lines, drill cores, and water pressure tests in the terrain of Andesite and Basalt rocks were used to analyse the variability of in-site relative permeability of a range from fault zones to host rocks. The rock mass joint permeability quality, therefore, is defined by the JH. JH data analysis showed that the background sub-zone had commonly <3 Lu (less of 5 ×10-5 m 3/s) per fracture, whereas the fault core had permeability characteristics nearly as low as the outer damage zone, represented by 8 Lu (1.3 ×10-4 m 3/s) per fracture, with occasional peaks towards 12 Lu (2 ×10-4 m 3/s) per fracture. The maximum JH value belongs to the inner damage zone, marginal to the fault core, with 14-22 Lu (2.3 ×10-4-3.6 ×10-4 m 3/s) per fracture, locally exceeding 25 Lu (4.1 ×10-4 m 3/s) per fracture. This gives a proportional relationship for JH approximately 1:4:2 between the fault core, inner damage zone, and outer damage zone of extensional fault zones in crystalline rocks. The results of the verification exercise revealed that the new approach would be efficient and that the JH parameter is a reliable scale for the fracture permeability change. It can be concluded that using short duration hydraulic tests (WPTs) and fracture frequency (FF) to calculate the JH parameter provides a possibility to describe a complex situation and compare, discuss, and weigh the hydraulic quality to make predictions as to

  2. INERT GAS SHIELD FOR WELDING

    DOEpatents

    Jones, S.O.; Daly, F.V.

    1958-10-14

    S>An inert gas shield is presented for arc-welding materials such as zirconium that tend to oxidize rapidly in air. The device comprises a rectangular metal box into which the welding electrode is introduced through a rubber diaphragm to provide flexibility. The front of the box is provided with a wlndow having a small hole through which flller metal is introduced. The box is supplied with an inert gas to exclude the atmosphere, and with cooling water to promote the solidification of the weld while in tbe inert atmosphere. A separate water-cooled copper backing bar is provided underneath the joint to be welded to contain the melt-through at the root of the joint, shielding the root of the joint with its own supply of inert gas and cooling the deposited weld metal. This device facilitates the welding of large workpieces of zirconium frequently encountered in reactor construction.

  3. SNL/SRNL Joint Project on degradation of mechanical properties in structural metals and welds for GTS reservoirs.

    SciTech Connect

    Ronevich, Joseph Allen; Balch, Dorian K.; San Marchi, Christopher W.; West, Scott; Morgan, Mike

    2015-12-01

    This project was intended to enable SNL-CA to produce appropriate specimens of relevant stainless steels for testing and perform baseline testing of weld heat-affected zone and weld fusion zone. One of the key deliverables in this project was to establish a procedure for fracture testing stainless steel weld fusion zone and heat affected zones that were pre-charged with hydrogen. Following the establishment of the procedure, a round robin was planned between SNL-CA and SRNL to ensure testing consistency between laboratories. SNL-CA and SRNL would then develop a comprehensive test plan, which would include tritium exposures of several years at SRNL on samples delivered by SNL-CA. Testing would follow the procedures developed at SNL-CA. SRNL will also purchase tritium charging vessels to perform the tritium exposures. Although comprehensive understanding of isotope-induced fracture in GTS reservoir materials is a several year effort, the FY15 work would enabled us to jump-start the tests and initiate long-term tritium exposures to aid comprehensive future investigations. Development of a procedure and laboratory testing consistency between SNL-CA and SNRL ensures reliability in results as future evaluations are performed on aluminum alloys and potentially additively-manufactured components.

  4. Inter-pass Thermal-vibration Stress Relief on Multi-pass Welded Joints of DH 36 Steel

    NASA Astrophysics Data System (ADS)

    Li, Shu-Qi; Fang, Hong-Yuan; Liu, Xue-Song; Wang, Ping; Ma, Ran; Cui, Wei

    2016-05-01

    Improving the efficiency and applicability of vibration stress relief (VSR) method is a hot topic today. In this study, the waste heat in the multi-pass welding procedure was used to enhance VSR. A novel stress relief method, i.e. inter-pass thermal-vibration stress relief (ITVSR), was proposed. The effects of ITVSR were compared to that of regular VSR and vibration welding (V-Welding). The results indicate that ITVSR is highly effective in decreasing the residual stress in the plates, which is very important for components to be used in offshore engineering. Further, the directional effectiveness of the three methods was revealed. The longitudinal stress in the plates was decreased while the transverse stress was increased, by all the three methods. The mechanism of this phenomenon was discussed. Comparing to the other two methods, ITVSR was more effective in relieving longitudinal stress, and raised transverse stress at a minimum amplitude. Thus, we propose a new technical route to improve the efficiency and applicability of VSR.

  5. Numerical simulation of MIG type arc welding induced residual stresses and distortions in thin sheets of S235 steel

    NASA Astrophysics Data System (ADS)

    Sakri, A.; Guidara, M.; Elhalouani, F.

    2010-11-01

    This paper investigates distortions and residual stresses which are induced in butt joint of thin plates using Metal Inert Gas welding. In fact, a distribution of heat flux is implemented in finite element simulation of the welding process. Thermo-elastic-plastic finite element methods are applied to modelling the thermal and mechanical behaviour of the welded plate during the welding process. Prediction of temperature variations and heat affected zone as well as longitudinal and transverse shrinkage, angular distortion, and residual stress are obtained. Comparisons are made between numerical and experimental results on out-of-plane displacements of steel assembly.

  6. WELDING PROCESS

    DOEpatents

    Zambrow, J.; Hausner, H.

    1957-09-24

    A method of joining metal parts for the preparation of relatively long, thin fuel element cores of uranium or alloys thereof for nuclear reactors is described. The process includes the steps of cleaning the surfaces to be jointed, placing the sunfaces together, and providing between and in contact with them, a layer of a compound in finely divided form that is decomposable to metal by heat. The fuel element members are then heated at the contact zone and maintained under pressure during the heating to decompose the compound to metal and sinter the members and reduced metal together producing a weld. The preferred class of decomposable compounds are the metal hydrides such as uranium hydride, which release hydrogen thus providing a reducing atmosphere in the vicinity of the welding operation.

  7. Laser beam welding of any metal.

    SciTech Connect

    Leong, K. H.

    1998-10-01

    The effect of a metal's thermophysical properties on its weldability are examined. The thermal conductivity, melting point, absorptivity and thermal diffusivity of the metal and the laser beam focused diameter and welding speed influence the minimum beam irradiance required for melting and welding. Beam diameter, surface tension and viscosity of the molten metal affect weld pool stability and weld quality. Lower surface tension and viscosity increases weld pool instability. With larger beam diameters causing wider welds, dropout also increases. Effects of focused beam diameter and joint fitup on weldability are also examined. Small beam diameters are sensitive to beam coupling problems in relation to fitup precision in addition to beam alignment to the seam. Welding parameters for mitigating weld pool instability and increasing weld quality are derived from the above considerations. Guidelines are presented for the tailoring of welding parameters to achieve good welds. Weldability problems can also be anticipated from the properties of a metal.

  8. Joint Variability of Airborne Passive Microwave and Ground-based Radar Observations Obtained in the TRMM Kwajalein Experiment

    NASA Astrophysics Data System (ADS)

    Yuter, S. E.; Kingsmill, D. E.

    2007-12-01

    The Tropical Rainfall Measuring Mission (TRMM) Kwajalein Experiment (KWAJEX) held July-September 1999 in the west Pacific was designed to obtain an empirical physical characterization of precipitating convective clouds over the tropical ocean. The majority of the precipitation was from mixed-phase clouds. Coordinated data sets were obtained from aircraft and ground-based sensors including passive microwave measurements by the Advanced Microwave Precipitation Radiometer (AMPR) instrument on the NASA DC-8 aircraft and S-band volumetric radar data by the KPOL radar. The AMPR and KPOL data sets were processed to yield a set of 25,049 matching observations at ~ 2 km x 2 km horizontal spatial resolution and within 6 min. The TRMM satellite Microwave Imager (TMI) has a similar set of channels to AMPR but coarser spatial resolution (19 GHz: 35 km, 85 GHz: 7.7 km). During KWAJEX, the 0 deg C level height was nearly constant at ~ 4800 m. Hence, two potential sources of uncertainty in relating passive microwave brightness temperatures (Tbs) to surface precipitation, inhomogeneous beam filling and variations in depth of the rain layer are much smaller sources of error in the KWAJEX data set than for TMI. TRMM was originally designed to yield monthly rainfall estimates over 5 deg x 5 deg grid boxes. The use of these data to yield instantaneous rainrate products at smaller spatial scales is more sensitive to the detailed characteristics of the joint distributions of passive microwave Tbs versus rain rate. KWAJEX data sets reveal poor correlations, very wide scatter, and weak modes in these distributions. The spread of emission Tb values for a given rain-layer reflectivity (e.g., 75 K at 30 dBZ for 19 GHz) is similar or larger within convective compared to stratiform precipitation regions. This result implies that the enhancement in emission Tbs associated with partially melted ice particles can occur whether the particles are concentrated within a thin layer in stratiform

  9. Better welds for launch vehicles

    NASA Technical Reports Server (NTRS)

    Schwinghamer, Robert J.

    1987-01-01

    The use and benefits of automated variable polarity plasma arc (VPPA) welding of Al joints are described. The entire welding system, including welding head manipulator, weld-wire feed, torch, and power supply are computer controlled. The importance of proper torch dynamics and the control of argon gas flow through the plasma orifice are discussed. The use of arc-voltage control, the improvements in system monitoring, and the reduction or elimination of electromagnetic interferences are examined. VPPA welding is applicable to joining Space Shuttle components, and an example of its use on an External Tank of the Shuttle is presented.

  10. Bond Strength of Gold Alloys Laser Welded to Cobalt-Chromium Alloy

    PubMed Central

    Watanabe, Ikuya; Wallace, Cameron

    2008-01-01

    The objective of this study was to investigate the joint properties between cast gold alloys and Co-Cr alloy laser-welded by Nd:YAG laser. Cast plates were fabricated from three types of gold alloys (Type IV, Type II and low-gold) and a Co-Cr alloy. Each gold alloy was laser-welded to Co-Cr using a dental laser-welding machine. Homogeneously-welded and non-welded control specimens were also prepared. Tensile testing was conducted and data were statistically analyzed using ANOVA. The homogeneously-welded groups showed inferior fracture load compared to corresponding control groups, except for Co-Cr. In the specimens welded heterogeneously to Co-Cr, Type IV was the greatest, followed by low-gold and Type II. There was no statistical difference (P<0.05) in fracture load between Type II control and that welded to Co-Cr. Higher elongations were obtained for Type II in all conditions, whereas the lowest elongation occurred for low-gold welded to Co-Cr. This study indicated that, of the three gold alloys tested, the Type IV gold alloy was the most suitable alloy for laser-welding to Co-Cr. PMID:19088892

  11. Impact welding: a superior method of producing joints with high thermal conductivity between metals at very low temperatures

    NASA Astrophysics Data System (ADS)

    Willekers, R. W.; Bosch, W. A.; Mathu, F.; Meijer, H. C.; Postma, H.

    1989-09-01

    To improve the connection between copper and aluminium for use in a superconducting heat switch, three layer Cu-Al-Cu sandwiches have been produced by impact welding. An upper limit of the low-temperature specific thermal Cu-Al contact resistance of 1.3 × 10 -4T K m 2W -1 was found. This is less than half of the lowest specific thermal press contact resistance between two gold plated copper strips, of which electrical resistances at 4.2 K were measured under various surface and clamping conditions. Clamping of clean, smooth surfaces with brass bolts gave almost as good results as soldering with indium.

  12. CHARACTERIZATION OF DEFECTS IN ALLOY 152, 52 AND 52M WELDS

    SciTech Connect

    Bruemmer, Stephen M.; Toloczko, Mychailo B.; Olszta, Matthew J.; Seffens, Rob J.; Efsing, Pal G.

    2009-08-27

    , defect characteristics and weld residual strains were examined by optical metallography, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Industry-supplied mock-up welds were characterized including alloy 52 and 152 weldments, alloy 52M overlay and inlay welds, and an alloy 52 overlay. II. WELDMENTS II.A. Alloy 52 and 152 Weld Mockups The alloy 52 and 152 weld mockups were fabricated by MHI for the Kewaunee reactor and were obtained from the EPRI NDE Center. The mockups were U-groove welds joining two plates of 304SS as shown in Figure 1. Alloy 152 butter (heat 307380) was placed on the U-groove surface for both mockups by shielded metal arc welding (SMAW). For the alloy 152 weld mockup, the alloy 152 fill (heat 307380) was also applied using SMAW while for the alloy 52 weld mockup, the alloy 52 fill (heat NX2686JK) was applied using gas tungsten arc welding (GTAW). Welding parameters for the fill materials were substantially different with the alloy 152 SMAW having a deposition speed of 4-25 cm/min with a current of 95-145 A and the alloy 52 GTAW having a deposition speed of 4-10 cm/min with a current of 150-300 A. One prominent feature in these mockup welds is the presence of a crack starting at the 304SS butt joint at the bottom of the U-groove and extending up into the weld. It appears that the 304SS plate on either side of the butt joint acted as an anchor for the weld resulting in a stress rise across the slit that drove crack formation and extension up into the fill weld. As will be shown in the next section, the extent of the cracking around this stress riser was much greater in the MHI 52 weld mockup.

  13. Optimization of Gas Metal Arc Welding Process Parameters

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Khurana, M. K.; Yadav, Pradeep K.

    2016-09-01

    This study presents the application of Taguchi method combined with grey relational analysis to optimize the process parameters of gas metal arc welding (GMAW) of AISI 1020 carbon steels for multiple quality characteristics (bead width, bead height, weld penetration and heat affected zone). An orthogonal array of L9 has been implemented to fabrication of joints. The experiments have been conducted according to the combination of voltage (V), current (A) and welding speed (Ws). The results revealed that the welding speed is most significant process parameter. By analyzing the grey relational grades, optimal parameters are obtained and significant factors are known using ANOVA analysis. The welding parameters such as speed, welding current and voltage have been optimized for material AISI 1020 using GMAW process. To fortify the robustness of experimental design, a confirmation test was performed at selected optimal process parameter setting. Observations from this method may be useful for automotive sub-assemblies, shipbuilding and vessel fabricators and operators to obtain optimal welding conditions.

  14. A New Perspective on Fatigue Performance of Advanced High- Strength Steels (AHSS) GMAW Joints

    SciTech Connect

    Feng, Zhili; Chiang, Dr. John; Kuo, Dr. Min; Jiang, Cindy; Sang, Yan

    2008-01-01

    Weld fatigue performance is a critical aspect for application of advanced high-strength steels (AHSS) in automotive body structures. A comparative study has been conducted to evaluate the fatigue life of AHSS welds. The material studied included seven AHSS of various strength levels - DP 600, DP 780, DP 980, M130, M220, solution annealed boron and fully hardened boron steels. Two conventional steels, HSLA 590 and DR 210, were also included for baseline comparison. Lap fillet welds were made on 2-mm nominal thick sheets by the gas metal arc welding process (GMAW). Fatigue test was conducted under a number of stress levels to obtain the S/N curves of the weld joints. It was found that, unlike in the static and impact loading conditions, the fatigue performance of AHSS is not influenced by the HAZ softening in AHSS. There are appreciable differences in the fatigue lives among different AHSS. Changes in weld parameters can influence the fatigue life of the weld joints, particularly of these of higher strength AHSS. A model is developed to predict the fatigue performance of AHSS welds. The validity of the model is benchmarked with the experimental results. This model is capable to capture the effects of weld geometry and weld microstructure and strength on the fatigue performance experimentally observed. The theoretical basis and application of the newly developed fatigue modeling methodology will be discussed.

  15. Creep rupture strength of activated-TIG welded 316L(N) stainless steel

    NASA Astrophysics Data System (ADS)

    Sakthivel, T.; Vasudevan, M.; Laha, K.; Parameswaran, P.; Chandravathi, K. S.; Mathew, M. D.; Bhaduri, A. K.

    2011-06-01

    316L(N) stainless steel plates were joined using activated-tungsten inert gas (A-TIG) welding and conventional TIG welding process. Creep rupture behavior of 316L(N) base metal, and weld joints made by A-TIG and conventional TIG welding process were investigated at 923 K over a stress range of 160-280 MPa. Creep test results showed that the enhancement in creep rupture strength of weld joint fabricated by A-TIG welding process over conventional TIG welding process. Both the weld joints fractured in the weld metal. Microstructural observation showed lower δ-ferrite content, alignment of columnar grain with δ-ferrite along applied stress direction and less strength disparity between columnar and equiaxed grains of weld metal in A-TIG joint than in MP-TIG joint. These had been attributed to initiate less creep cavitation in weld metal of A-TIG joint leading to improvement in creep rupture strength.

  16. Method for welding beryllium

    DOEpatents

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1997-04-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs.

  17. Method for welding beryllium

    SciTech Connect

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1995-12-31

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. Beryllium parts made using this method can be used as structural components in aircraft, satellites and space applications.

  18. Shimmed electron beam welding process

    DOEpatents

    Feng, Ganjiang; Nowak, Daniel Anthony; Murphy, John Thomas

    2002-01-01

    A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

  19. Sensitivity of the stability of a waste emplacement drift to variation in assumed rock joint parameters in welded tuff

    SciTech Connect

    Christianson, M.

    1989-04-01

    This report presents the results of a numerical analysis to determine the effects of variation of rock joint parameters on stability of waste disposal rooms for vertical emplacement. Conditions and parameters used were taken from the Nevada Nuclear Waste Storage Investigation (NNWSI) Project Site Characterization Plan Conceptual Design report (MacDougall et al., 1987). Mechanical results are presented which illustrate the predicted distribution of stress, joint slip, and room deformations for times of initial excavation and after 50 years heating. 82 refs., 93 figs.

  20. Thermal stir welding apparatus

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2011-01-01

    A welding method and apparatus are provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  1. Thermal stir welding process

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2012-01-01

    A welding method is provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  2. Effect of tool pin features on process response variables during friction stir welding of dissimilar aluminum alloys

    SciTech Connect

    Rabby, Reza; Tang, Wei; Reynolds, A. P.

    2015-05-13

    In this article, the effect of pin features and orientation/placement of the materials on advancing side were investigated for friction stir welding (FSW) of dissimilar aluminum alloys AA2050 and AA6061. Pins for FSW were produced with a 2.12 mm pitch thread having three flats/flutes. Three sets of rotational speed/welding speed were used to perform a series of welds in a butt joint arrangement. The results show that, joint quality, process response variables and welding temperature are highly affected by pin features and material orientation in FSW. Defect free joints with effective material transportation in the weld nugget zone were obtained when welding was performed with AA2050 on the advancing side. The tool also encounters less in-plane reaction force for welding with 2050 on the advancing side. Pin with thread+3 flats produces quality welds at low rotational and travel speed regardless of the location of alloys on advancing or retreating side.

  3. Control of back weld pool shape in MIG welding by using switch back method

    SciTech Connect

    Jin, B.; Kaneko, Yasuyoshi; Soeda, Masahiro; Ohshima, Kenji

    1995-12-31

    This paper deals with the problem concerning the sensing and controlling of weld pool shape in MIG welding of plate. In the robotic one side MIG welding process without backing plate, for obtaining the good quality of the weld, it is important to control the weld pool shape so as to prevent the melting metal from burning through. The method of controlling the weld pool shape is discussed. The moving torch is repeat switch change, which is named switch back method. The primary welding experimental results have proved that the switch back method is effective and satisfactory for controlling the back weld pool shape in one side MIG welding process without backing plate.

  4. 49 CFR 179.400-11 - Welding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.400-11 Section 179.400-11...-11 Welding. (a) Except for closure of openings and a maximum of two circumferential closing joints in... subchapter). (d) Each welding procedure, welder, and fabricator must be approved....

  5. 49 CFR 179.220-10 - Welding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.220-10 Section 179.220-10... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-10 Welding. (a) All joints... of this subchapter). Welding procedures, welders, and fabricators shall be approved. (b)...

  6. 49 CFR 179.300-9 - Welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding. 179.300-9 Section 179.300-9...-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-9 Welding. (a) Longitudinal joints must be... class DOT-110A tanks. Welding procedures, welders and fabricators must be approved in accordance...

  7. 49 CFR 179.200-10 - Welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding. 179.200-10 Section 179.200-10...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-10 Welding. (a) All joints shall be fusion... § 171.7 of this subchapter). Welding procedures, welders and fabricators shall be approved. (b)...

  8. 49 CFR 179.100-9 - Welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding. 179.100-9 Section 179.100-9... Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-9 Welding. (a) All joints shall be..., see § 171.7 of this subchapter). Welding procedures, welders and fabricators shall be approved. (b)...

  9. 49 CFR 179.100-9 - Welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding. 179.100-9 Section 179.100-9... Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-9 Welding. (a) All joints shall be..., see § 171.7 of this subchapter). Welding procedures, welders and fabricators shall be approved. (b)...

  10. 49 CFR 179.200-10 - Welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding. 179.200-10 Section 179.200-10...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-10 Welding. (a) All joints shall be fusion... § 171.7 of this subchapter). Welding procedures, welders and fabricators shall be approved. (b)...

  11. 49 CFR 179.300-9 - Welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding. 179.300-9 Section 179.300-9...-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-9 Welding. (a) Longitudinal joints must be... class DOT-110A tanks. Welding procedures, welders and fabricators must be approved in accordance...

  12. 49 CFR 179.220-10 - Welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding. 179.220-10 Section 179.220-10...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-10 Welding. (a) All joints must be fusion... subchapter). Welding procedures, welders, and fabricators shall be approved. (b) Radioscopy of the...

  13. 49 CFR 179.200-10 - Welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding. 179.200-10 Section 179.200-10...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-10 Welding. (a) All joints shall be fusion... § 171.7 of this subchapter). Welding procedures, welders and fabricators shall be approved. (b)...

  14. 49 CFR 179.100-9 - Welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding. 179.100-9 Section 179.100-9... Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-9 Welding. (a) All joints shall be..., see § 171.7 of this subchapter). Welding procedures, welders and fabricators shall be approved. (b)...

  15. 49 CFR 179.220-10 - Welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding. 179.220-10 Section 179.220-10...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-10 Welding. (a) All joints must be fusion... subchapter). Welding procedures, welders, and fabricators shall be approved. (b) Radioscopy of the...

  16. 49 CFR 179.200-10 - Welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding. 179.200-10 Section 179.200-10...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-10 Welding. (a) All joints shall be fusion... § 171.7 of this subchapter). Welding procedures, welders and fabricators shall be approved. (b)...

  17. 49 CFR 179.220-10 - Welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding. 179.220-10 Section 179.220-10...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-10 Welding. (a) All joints must be fusion... subchapter). Welding procedures, welders, and fabricators shall be approved. (b) Radioscopy of the...

  18. 49 CFR 179.300-9 - Welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding. 179.300-9 Section 179.300-9...-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-9 Welding. (a) Longitudinal joints must be... class DOT-110A tanks. Welding procedures, welders and fabricators must be approved in accordance...

  19. 49 CFR 179.300-9 - Welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding. 179.300-9 Section 179.300-9...-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-9 Welding. (a) Longitudinal joints must be... class DOT-110A tanks. Welding procedures, welders and fabricators must be approved in accordance...

  20. 49 CFR 179.220-10 - Welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding. 179.220-10 Section 179.220-10...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-10 Welding. (a) All joints must be fusion... subchapter). Welding procedures, welders, and fabricators shall be approved. (b) Radioscopy of the...

  1. 49 CFR 179.200-10 - Welding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.200-10 Section 179.200-10... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-10 Welding. (a) All joints... W (IBR, see § 171.7 of this subchapter). Welding procedures, welders and fabricators shall...

  2. 49 CFR 179.100-9 - Welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding. 179.100-9 Section 179.100-9... Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-9 Welding. (a) All joints shall be..., see § 171.7 of this subchapter). Welding procedures, welders and fabricators shall be approved. (b)...

  3. Numerical Simulation on Joining of Ceramics with Metal by Friction Welding Technique

    NASA Astrophysics Data System (ADS)

    Jesudoss Hynes, N. Rajesh; Nagaraj, P.; Basil, S. Joshua

    The joining of ceramic and metals can be done by different techniques such as ultrasonic joining, brazing, transient liquid phase diffusion bonding, and friction welding. Friction Welding is a solid state joining process that generates heat through mechanical friction between a moving workpiece and a stationary component. In this article, numerical simulation on thermal analysis of friction welded ceramic/metal joint has been carried out by using Finite Element Analysis (FEA) software. The finite element analysis helps in better understanding of the friction welding process of joining ceramics with metals and it is important to calculate temperature and stress fields during the welding process. Based on the obtained temperature distribution the graphs were plotted between the lengths of the joint corresponding to the temperatures. To increase the wettability, aluminium sheet was used as an interlayer. Hence, numerical simulation of friction welding process is done by varying the interlayer sheet thickness. Transient thermal analysis had been carried out for each cases and temperature distribution was studied. From the simulation studies, it is found that the increase in interlayer thickness reduces the heat affected zone and eventually improves the joint efficiency of alumina/aluminum alloy joints.

  4. Friction Stir Spot Welding of DP780 Carbon Steel

    SciTech Connect

    Santella, Michael L; Hovanski, Yuri; Frederick, David Alan; Grant, Glenn J; Dahl, Michael E

    2010-01-01

    Friction stir spot welds were made in uncoated and galvannealed DP780 sheets using polycrystalline boron nitride stir tools. The tools were plunged at either a single continuous rate or in two segments consisting of a relatively high rate followed by a slower rate of shorter depth. Welding times ranged from 1 to 10 s. Increasing tool rotation speed from 800 to 1600 rev min{sup -1} increased strength values. The 2-segment welding procedures also produced higher strength joints. Average lap shear strengths exceeding 10 {center_dot} 3 kN were consistently obtained in 4 s on both the uncoated and the galvannealed DP780. The likelihood of diffusion and mechanical interlocking contributing to bond formation was supported by metallographic examinations. A cost analysis based on spot welding in automobile assembly showed that for friction stir spot welding to be economically competitive with resistance spot welding the cost of stir tools must approach that of resistance spot welding electrode tips.

  5. Improved microstructure and mechanical properties in gas tungsten arc welded aluminum joints by using graphene nanosheets/aluminum composite filler wires.

    PubMed

    Fattahi, M; Gholami, A R; Eynalvandpour, A; Ahmadi, E; Fattahi, Y; Akhavan, S

    2014-09-01

    In the present study, different amounts of graphene nanosheets (GNSs) were added to the 4043 aluminum alloy powders by using the mechanical alloying method to produce the composite filler wires. With each of the produced composite filler wires, one all-weld metal coupon was welded using the gas tungsten arc (GTA) welding process. The microstructure, mechanical properties and fracture surface morphology of the weld metals have been evaluated and the results are compared. As the amount of GNSs in the composition of filler wire is increased, the microstructure of weld metal was changed from the dendritic structure to fine equiaxed grains. Furthermore, the tensile strength and microhardness of weld metal was improved, and is attributed to the augmented nucleation and retarded growth. From the results, it was seen that the GNSs/Al composite filler wire can be used to improve the microstructure and mechanical properties of GTA weld metals of aluminum and its alloys. PMID:24981209

  6. Weld defect formation in FSWed coppers

    NASA Astrophysics Data System (ADS)

    Gheisari, Yousof; Pashazadeh, Hamed; Teimournezhad, Jamal; Masoumi, Abolfazl

    2014-06-01

    This work was undertaken to explore the formation of weld defects in FSWed copper metals via both numerical and experimental approaches. The 4 mm-thick copper sheets were friction stir welded at a tool rotational speed of 710 rpm and tool translational speed of 40 mm/min. Microstructural evaluations were performed on the welded specimens. Also a 3D arbitrary Lagrangian Eulerian numerical model was developed to obtain temperature and material velocity profiles. To this aim, DEFORM-3D was implemented for developing the numerical simulation. Numerical results for temperature values showed good agreement with the recorded experimental data. They also suggest that on the advancing side (AS) of the trailing side, the pin velocity has the minimum amount (zero), and this is the main reason for the formation of tunneling cavity. Experimental results show that a force is created between the reminder of material at the joint and the rim of AS. This force causes a prong of surface material from the AS rim to penetrate into lower parts of weld. It seems that the inadequate pressure (low values of the plunge depth), inadequate surface materials, and the trapped air are the main causes for the formation of the weld defects.

  7. Research on key influence factors of laser overlap welding of automobile body galvanized steel

    NASA Astrophysics Data System (ADS)

    Chen, Genyu; Mei, Lifang; Zhang, Mingjun; Zhang, Yi; Wang, Zujian

    2013-02-01

    In views of structure characteristics of the auto-body parts, the influences of the beam incident angle and joint gap on the performance of laser overlap welded joints were investigated. The experimental results indicate that there were the critical values of beam incident angle and joint gap during laser overlap welding of galvanized steel. The thickness of sheet and the width of joint had a certain influence on the critical beam incident angle and the limit joint gap. With regard to thicker sheet, the limit joint gap can increase appropriately, but the critical beam incident angle should not be too big. With narrow weld width, the laser beam incident angle can increase appropriately, but the joint gap should not be bigger. Additionally, the critical beam incident angle and the limit joint gap were varied with the thickness of the upper sheet. The tensile-shear tests show that the maximum tensile-shear strength of the joint can be obtained with an optimized beam incident angle and joint gap.

  8. Welding arc plasma physics

    NASA Technical Reports Server (NTRS)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  9. Laser welding of bone: Successful in vitro experiments

    SciTech Connect

    Mourant, J.R.; Anderson, G.D.; Bigio, I.J.; Johnson, T.M.

    1994-02-01

    A method for ``welding`` bones is being developed. Tensile joint strengths of chicken bones welded in vitro have exceeded one kilogram. Welding was performed with either a Nd:YAG (1064 nm) or a diode laser (820 nm). Light was delivered with an optical fiber held a few millimeters from the bone surface. A solder was developed to assist in the welding process.

  10. Real-time sensing and monitoring in robotic gas metal arc welding

    NASA Astrophysics Data System (ADS)

    Wu, C. S.; Gao, J. Q.; Hu, J. K.

    2007-01-01

    A real-time monitoring system is developed for detecting abnormal conditions in robotic gas metal arc welding. The butt-joint test pieces with simulated large gaps are used to intentionally introduce step disturbance of welding conditions. During the welding process, the welding voltage and current signals are sampled and processed on-line to extract the characteristic information reflecting the process quality. After the first statistical processing, it is found that seven statistical parameters (the mean, standard deviation, coefficient of variance and kurtosis of welding voltage; the mean, coefficient of variance and kurtosis of welding current) show variations during the step disturbance. Through the second statistical processing of the means of the welding voltage for subgroups of continuous measurement, the statistical control chart is obtained, and an SPC (statistical process control)-based on-line identifying method is developed. Ten robotic welding experiments are conducted to verify the real-time monitoring system. It is found that the correct identification rates for normal and abnormal welding conditions are 100% and 95%, respectively.

  11. Oil-Ash Corrosion Resistance of Dissimilar T22/T91 Welded Joint of Super Heater Tubes

    NASA Astrophysics Data System (ADS)

    Mittal, Rutash; Sidhu, Buta Singh

    2015-02-01

    The studies on the high temperature corrosion of the dissimilar metal weldment are necessary for longer service of the weldments in corrosive medium. This paper reports the performance of microstructurally different regions, namely heat-affected zone (HAZ), weld metal (WM), and base metal (BM) of dissimilar metal weldment of T22/T91 in the molten salt (Na2SO4-60%V2O5) environment under cyclic studies. The T22 HAZ, WM, and T91 HAZ were observed to oxidize at higher rates and develop more scale thickness than other regions in the weldment. Microstructures and elemental analysis indicate lesser availability of Cr in T22 HAZ and T91 HAZ due to formation of Cr-rich phases, which ultimately causes the difference in oxidation behavior of different regions. The presence of chromium carbides and intermetallics in un-oxidized T22 HAZ region and martensitic structure with the presence of delta ferrites in un-oxidized T91 HAZ region was observed to be the major cause behind the weak corrosion resistance of the respective HAZs. The higher oxidation rate of T22 HAZ may be attributed to the absence of protective scale of Cr2O3 and presence of Fe3O4 phases. Similarly higher oxidation rate of T91 HAZ region can be attributed to lesser availability of Cr due to the propensity of development of delta ferrite in martensitic structure.

  12. Welding in Space Workshop

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1990-01-01

    The potential was discussed for welding in space, its advantages and disadvantages, and what type of programs can benefit from the capability. Review of the various presentations and comments made in the course of the workshop suggests several routes to obtaining a better understanding of how welding processes can be used in NASA's initiatives in space. They are as follows: (1) development of a document identifying well processes and equipment requirements applicable to space and lunar environments; (2) more demonstrations of welding particular hardware which are to be used in the above environments, especially for space repair operations; (3) increased awareness among contractors responsible for building space equipment as to the potential for welding operations in space and on other planetary bodies; and (4) continuation of space welding research projects is important to maintain awareness within NASA that welding in space is viable and beneficial.

  13. Weld peaking on heavy aluminum structures

    NASA Technical Reports Server (NTRS)

    Bayless, E.; Poorman, R.; Sexton, J.

    1978-01-01

    Weld peaking is usually undesirable in any welded structure. In heavy structures, the forces involved in the welding process become very large and difficult to handle. With the shuttle's solid rocket booster, the weld peaking resulted in two major problems: (1) reduced mechanical properties across the weld joint, and (2) fit-up difficulties in subsequent assembly operation. Peaking from the weld shrinkage forces can be fairly well predicted in simple structures; however, in welding complicated assemblies, the amount of peaking is unpredictable because of unknown stresses from machining and forming, stresses induced by the fixturing, and stresses from welds in other parts of the assembly. When excessive peaking is encountered, it can be corrected using the shrinkage forces resulting from the welding process. Application of these forces is discussed in this report.

  14. FRICTION-STIR-LAP-WELDS OF AA6111 ALUMINUM ALLOY

    SciTech Connect

    Yadava, Manasij; Mishra, Rajiv S.; Chen, Y. L.; Gayden, X.; Grant, Glenn J.

    2007-01-09

    Lap joints of 1 mm thick AA6111 aluminum sheets were made by friction stir welding, using robotic and conventional machines. Welds were made for advancing as well as retreating side loading. Thinning in welds was quantified. Lap shear test of welds was conducted in as-welded and paint-baked conditions. Conventional machine welds showed less thinning and better strength than robotic machine welds. Process forces in conventional machine welding were higher. Paint bake treatment improved the weld strength; but the improvement varied with process parameters. Advancing side loaded welds achieved higher strength than the retreating side loaded welds. Fracture location was found to occur on the loaded side of the weld and along the thinning defect.

  15. Mössbauer characterization of joints of steel pieces in transient liquid phase bonding experiences

    NASA Astrophysics Data System (ADS)

    di Luozzo, N.; Martínez Stenger, P. F.; Canal, J. P.; Fontana, M. R.; Arcondo, B.

    2011-11-01

    Joining of seamless, low carbon, steel tubes were performed by means of Transient Liquid Phase Bonding process employing a foil of Fe-Si-B metallic glass as filler material. The influence of the main parameters of the process was evaluated: temperature, holding time, pressure and post weld heat treatment. Powder samples were obtained from the joint of tubes and characterized employing Mössbauer Spectroscopy in transmission geometry. The sampling was performed both in tubes successfully welded and in those which show joint defects. The results obtained are correlated with the obtained microstructure and the diffusion of Si and B during the process.

  16. Fatique Resistant, Energy Efficient Welding Program, Final Technical Report

    SciTech Connect

    Egland, Keith; Ludewig, Howard

    2006-05-25

    The program scope was to affect the heat input and the resultant weld bead geometry by synchronizing robotic weave cycles with desired pulsed waveform shapes to develop process parameters relationships and optimized pulsed gas metal arc welding processes for welding fatique-critical structures of steel, high strength steel, and aluminum. Quality would be addressed by developing intelligent methods of weld measurement that accurately predict weld bead geometry from process information. This program was severely underfunded, and eventually terminated. The scope was redirected to investigate tandem narrow groove welding of steel butt joints during the one year of partial funding. A torch was designed and configured to perform a design of experiments of steel butt weld joints that validated the feasability of the process. An initial cost model estimated a 60% cost savings over conventional groove welding by eliminating the joint preparation and reducing the weld volume needed.

  17. Displaced electrode process for welding

    DOEpatents

    Heichel, L.J.

    1975-08-26

    A method is described for the butt-welding of a relatively heavy mass to a relatively small mass such as a thin-wall tube. In butt-welding heat is normally applied at the joint between the two pieces which are butt-welded together. The application of heat at the joint results in overheating the tube which causes thinning of the tube walls and porosity in the tube material. This is eliminated by displacing the welding electrode away from the seam toward the heavier mass so that heat is applied to the heavy mass and not at the butt seam. Examples of the parameters used in welding fuel rods are given. The cladding and end plugs were made of Zircalloy. The electrode used was of 2 percent thoriated tungsten. (auth)

  18. Spot-Welding Gun With Adjustable Pneumatic Spring

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.

    1990-01-01

    Proposed spot-welding gun equipped with pneumatic spring, which could be bellows or piston and cylinder, exerts force independent of position along stroke. Applies accurate controlled force to joint welded, without precise positioning at critical position within stroke.

  19. [Standardizing a protocol of magnetic resonance imaging of temporomandibular joints. Part 2. Unification of analysis of obtained data].

    PubMed

    Bulanova, T V

    2004-01-01

    The paper presents a unified protocol for analyzing the data obtained by magnetic resonance tomography, which has been used to examine 350 patients. It characterizes the MR semiotics of different pathological conditions of articular structures, which are illustrated by MR images. An optimal terminology is proposed for the evaluation of bone and soft tissue changes.

  20. Parametric optimisation and microstructural analysis on high power Yb-fibre laser welding of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Ahn, J.; Chen, L.; Davies, C. M.; Dear, J. P.

    2016-11-01

    In this work thin sheets of Ti-6Al-4V were full penetration welded using a 5 kW fibre laser in order to evaluate the effectiveness of high power fibre laser as a welding processing tool for welding Ti-6Al-4V with the requirements of the aircraft industry and to determine the effect of welding parameters including laser power, welding speed and beam focal position on the weld microstructure, bead profile and weld quality. It involved establishing an understanding of the influence of welding parameters on microstructural change, welding defects, and the characteristics of heat affected zone (HAZ) and weld metal (WM) of fibre laser welded joints. The optimum range of welding parameters which produced welds without cracking and porosity were identified. The influence of the welding parameters on the weld joint heterogeneity was characterised by conducting detailed microstructural analysis.

  1. Verifying root fusion in electron-beam welds

    NASA Technical Reports Server (NTRS)

    Becker, F. L.; Doctor, S.; Kleint, R. E.

    1980-01-01

    Ultrasonic equipment and x-y recorder indicate where back side of joint is properly welded. Wire waveguide placed in groove at root of joint to be welded is fused when joint is adequately penetrated. Ultransonic signal moving down waveguide is reflected where guide is melted. Change in reflected-signal arrival time with change in weld-head position is nearly constant unless joint is incompletely penetrated. Method permits determination of penetration depth in preweld samples without opening vacuum chamber and sectioning weld. Technique is particularly valuable when back side of joint is inaccessible.

  2. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

  3. Residual Stresses and Tensile Properties of Friction Stir Welded AZ31B-H24 Magnesium Alloy in Lap Configuration

    NASA Astrophysics Data System (ADS)

    Naik, Bhukya Srinivasa; Cao, Xinjin; Wanjara, Priti; Friedman, Jacob; Chen, Daolun

    2015-08-01

    AZ31B-H24 Mg alloy sheets with a thickness of 2 mm were friction stir welded in lap configuration using two tool rotational rates of 1000 and 1500 rpm and two welding speeds of 10 and 20 mm/s. The residual stresses in the longitudinal and transverse directions of the weldments were determined using X-ray diffraction. The shear tensile behavior of the lap joints was evaluated at low [233 K (-40 °C)], room [298 K (25 °C)], and elevated [453 K (180 °C)] temperatures. The failure load was highest for the lower heat input condition that was obtained at a tool rotational rate of 1000 rpm and a welding speed of 20 mm/s for all the test temperatures, due to the smaller hooking height, larger effective sheet thickness, and lower tensile residual stresses, as compared to the other two welding conditions that were conducted at a higher tool rotational rate or lower welding speed. The lap joints usually fractured on the advancing side of the top sheet near the interface between the thermo-mechanically affected zone and the stir zone. Elevated temperature testing of the weld assembled at a tool rotational rate of 1000 rpm and a welding speed of 20 mm/s led to the failure along the sheet interface in shear fracture mode due to the high integrity of the joint that exhibited large plastic deformation and higher total energy absorption.

  4. Role of the micro/macro structure of welds in crack nucleation and propagation in aerospace aluminum-lithium alloy

    NASA Technical Reports Server (NTRS)

    Talia, George E.

    1996-01-01

    Al-Li alloys offer the benefits of increased strength, elastic modulus and lower densities as compared to conventional aluminum alloys. Martin Marietta Laboratories has developed an Al-Li alloy designated 2195 which is designated for use in the cryogenic tanks of the space shuttle. The Variable Polarity Plasma Arc (VPPA) welding process is currently being used to produce these welds [1]. VPPA welding utilizes high temperature ionized gas (plasma) to transfer heat to the workpiece. An inert gas, such as Helium, is used to shield the active welding zone to prevent contamination of the molten base metal with surrounding reactive atmospheric gases. [1] In the Space Shuttle application, two passes of the arc are used to complete a butt-type weld. The pressure of the plasma stream is increased during the first pass to force the arc entirely through the material, a practice commonly referred to as keyholing. Molten metal forms on either side of the arc and surface tension draws this liquid together as the arc passes. 2319 Al alloy filler material may also be fed into the weld zone during this pass. During the second pass, the plasma stream pressure is reduced such that only partial penetration of the base material is obtained. Al 2319 filler material is added during this pass to yield a uniform, fully filled welded joint. This additional pass also acts to alter the grain structure of the weld zone to yield a higher strength joint.

  5. Role of the micro/macro structure of welds in crack nucleation and propagation in aerospace aluminum-lithium alloy

    SciTech Connect

    Talia, G.E.

    1996-02-01

    Al-Li alloys offer the benefits of increased strength, elastic modulus and lower densities as compared to conventional aluminum alloys. Martin Marietta Laboratories has developed an Al-Li alloy designated 2195 which is designated for use in the cryogenic tanks of the space shuttle. The Variable Polarity Plasma Arc (VPPA) welding process is currently being used to produce these welds. VPPA welding utilizes high temperature ionized gas (plasma) to transfer heat to the workpiece. An inert gas, such as Helium, is used to shield the active welding zone to prevent contamination of the molten base metal with surrounding reactive atmospheric gases. (1) In the Space Shuttle application, two passes of the arc are used to complete a butt-type weld. The pressure of the plasma stream is increased during the first pass to force the arc entirely through the material, a practice commonly referred to as keyholing. Molten metal forms on either side of the arc and surface tension draws this liquid together as the arc passes. 2319 Al alloy filler material may also be fed into the weld zone during this pass. During the second pass, the plasma stream pressure is reduced such that only partial penetration of the base material is obtained. Al 2319 filler material is added during this pass to yield a uniform, fully filled welded joint. This additional pass also acts to alter the grain structure of the weld zone to yield a higher strength joint.

  6. Welding IV.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding IV, a competency-based course in advanced arc welding offered at the Community College of Allegheny County to provide students with proficiency in: (1) single vee groove welding using code specifications established by the American Welding Society…

  7. Welding Curriculum.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  8. Inert-Gas Diffuser For Plasma Or Arc Welding

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Spencer, Carl N.; Hosking, Timothy J.

    1994-01-01

    Inert-gas diffuser provides protective gas cover for weld bead as it cools. Follows welding torch, maintaining continuous flow of argon over newly formed joint and prevents it from oxidizing. Helps to ensure welds of consistently high quality. Devised for plasma arc keyhole welding of plates of 0.25-in. or greater thickness, also used in tungsten/inert-gas and other plasma or arc welding processes.

  9. Welding, Bonding and Fastening, 1984

    NASA Technical Reports Server (NTRS)

    Buckley, J. D. (Editor); Stein, B. A. (Editor)

    1985-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Soceity, and Society of Manufacturing Engineers conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  10. Investigation into Microstructures of Maraging Steel 250 Weldments and Effect of Post-Weld Heat Treatments

    NASA Astrophysics Data System (ADS)

    Tariq, Fawad; Baloch, Rasheed Ahmed; Ahmed, Bilal; Naz, Nausheen

    2010-03-01

    This study was undertaken to gain a better understanding of microstructures obtained by multipass gas tungsten arc welding in maraging steel grade 250. Metallography and microhardness measurements were carried out on sheet and welded joints in as-welded and post-weld aged conditions. It was found that there was a significant amount of reverted austenite formed on cell boundaries of weld metal after aging at 758-823 K for 3-5 h, and was stable at room temperature. Aging at higher temperatures led to an increase in the continuous network of patchy austenite along the cell boundaries. The reason for the above, in our opinion, is the concentrational heterogeneity which characterizes the microstructure of maraging steel welds. No reverted austenite was observed in as-welded specimens. Solution annealing at 1093 K for 1 h did not completely eliminate the chemical heterogeneity associated with weld structures. However, homogenizing at 1373 K produced homogenous structure that on subsequent aging produces austenite-free lath martensitic structure.

  11. Laser welding and syncristallization techniques comparison: in vitro study.

    PubMed

    Fornaini, C; Merigo, E; Vescovi, P; Meleti, M; Nammour, S

    2012-01-01

    Background. Laser welding was first reported in 1967 and for many years it has been used in dental laboratories with several advantages versus the conventional technique. Authors described, in previous works, the possibility of using also chair-side Nd : YAG laser device (Fotona Fidelis III, λ = 1064 nm) for welding metallic parts of prosthetic appliances directly in the dental office, extra- and also intra-orally. Syncristallisation is a soldering technique based on the creation of an electric arc between two electrodes and used to connect implants to bars intra-orally. Aim. The aim of this study was to compare two different laser welding devices with a soldering machine, all of these used in prosthetic dentistry. Material and Methods. In-lab Nd : YAG laser welding (group A = 12 samples), chair-side Nd : YAG laser welding (group B = 12 samples), and electrowelder (group C = 12 samples) were used. The tests were performed on 36 CrCoMo plates and the analysis consisted in evaluation, by microscopic observation, of the number of fissures in welded areas of groups A and B and in measurement of the welding strength in all the groups. The results were statistically analysed by means of one-way ANOVA and Tukey-Kramer multiple comparison tests. Results. The means and standard deviations for the number of fissures in welded areas were 8.12 ± 2.59 for group A and 5.20 ± 1.38 for group B. The difference was statistical significant (P = 0.0023 at the level 95%). On the other hand, the means and standard deviations for the traction tests were 1185.50 ± 288.56 N for group A, 896.41 ± 120.84 N for group B, and 283.58 ± 84.98 N for group C. The difference was statistical significant (P = 0.01 at the level 95%). Conclusion. The joint obtained by welding devices had a significant higher strength compared with that obtained by the electrowelder, and the comparison between the two laser devices used demonstrated that the chair-side Nd : YAG, even giving

  12. Laser Welding and Syncristallization Techniques Comparison: In Vitro Study

    PubMed Central

    Fornaini, C.; Merigo, E.; Vescovi, P.; Meleti, M.; Nammour, S.

    2012-01-01

    Background. Laser welding was first reported in 1967 and for many years it has been used in dental laboratories with several advantages versus the conventional technique. Authors described, in previous works, the possibility of using also chair-side Nd : YAG laser device (Fotona Fidelis III, λ = 1064 nm) for welding metallic parts of prosthetic appliances directly in the dental office, extra- and also intra-orally. Syncristallisation is a soldering technique based on the creation of an electric arc between two electrodes and used to connect implants to bars intra-orally. Aim. The aim of this study was to compare two different laser welding devices with a soldering machine, all of these used in prosthetic dentistry. Material and Methods. In-lab Nd : YAG laser welding (group A = 12 samples), chair-side Nd : YAG laser welding (group B = 12 samples), and electrowelder (group C = 12 samples) were used. The tests were performed on 36 CrCoMo plates and the analysis consisted in evaluation, by microscopic observation, of the number of fissures in welded areas of groups A and B and in measurement of the welding strength in all the groups. The results were statistically analysed by means of one-way ANOVA and Tukey-Kramer multiple comparison tests. Results. The means and standard deviations for the number of fissures in welded areas were 8.12 ± 2.59 for group A and 5.20 ± 1.38 for group B. The difference was statistical significant (P = 0.0023 at the level 95%). On the other hand, the means and standard deviations for the traction tests were 1185.50 ± 288.56 N for group A, 896.41 ± 120.84 N for group B, and 283.58 ± 84.98 N for group C. The difference was statistical significant (P = 0.01 at the level 95%). Conclusion. The joint obtained by welding devices had a significant higher strength compared with that obtained by the electrowelder, and the comparison between the two laser devices used demonstrated that the chair-side Nd : YAG, even giving

  13. Weldability aspects in the design and fabrication of aluminium structures subjected to fatigue loads. Part 1: Effect of welding on the structural integrity of joint types designed for repairing aluminium ship sections

    NASA Astrophysics Data System (ADS)

    Nevasmaa, P.; Peltonen, J.; Kuitunen, R.; Rahka, K.

    1993-05-01

    The Laboratory of Production Engineering and the Metals Laboratory of the Technical Research Center of Finland (VTT) have participated in a Nordic research project entitled 'New methods for joining of aluminium'. The results from Finnish work of the project will be presented in a report to be published in two parts. Part 1 of the report will evaluate the effects of welding on the structural integrity of some joint types primarily designed for repairing ship sections and sea crafts made from 6xxx (AlSiMg) series alloys.

  14. Diode laser welding of aluminum to steel

    SciTech Connect

    Santo, Loredana; Quadrini, Fabrizio; Trovalusci, Federica

    2011-05-04

    Laser welding of dissimilar materials was carried out by using a high power diode laser to join aluminum to steel in a butt-joint configuration. During testing, the laser scan rate was changed as well as the laser power: at low values of fluence (i.e. the ratio between laser power and scan rate), poor joining was observed; instead at high values of fluence, an excess in the material melting affected the joint integrity. Between these limiting values, a good aesthetics was obtained; further investigations were carried out by means of tensile tests and SEM analyses. Unfortunately, a brittle behavior was observed for all the joints and a maximum rupture stress about 40 MPa was measured. Apart from the formation of intermeltallic phases, poor mechanical performances also depended on the chosen joining configuration, particularly because of the thickness reduction of the seam in comparison with the base material.

  15. Optimization of weld bead geometry in laser welding with filler wire process using Taguchi’s approach

    NASA Astrophysics Data System (ADS)

    dongxia, Yang; xiaoyan, Li; dingyong, He; zuoren, Nie; hui, Huang

    2012-10-01

    In the present work, laser welding with filler wire was successfully applied to joining a new-type Al-Mg alloy. Welding parameters of laser power, welding speed and wire feed rate were carefully selected with the objective of producing a weld joint with the minimum weld bead width and the fusion zone area. Taguchi approach was used as a statistical design of experimental technique for optimizing the selected welding parameters. From the experimental results, it is found that the effect of welding parameters on the welding quality decreased in the order of welding speed, wire feed rate, and laser power. The optimal combination of welding parameters is the laser power of 2.4 kW, welding speed of 3 m/min and the wire feed rate of 2 m/min. Verification experiments have also been conducted to validate the optimized parameters.

  16. Laser Welding in Space

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kaukler, William F.

    1989-01-01

    Solidification type welding process experiments in conditions of microgravity were performed. The role of convection in such phenomena was examined and convective effects in the small volumes obtained in the laser weld zone were observed. Heat transfer within the weld was affected by acceleration level as indicated by the resulting microstructure changes in low gravity. All experiments were performed such that both high and low gravity welds occurred along the same weld beam, allowing the effects of gravity alone to be examined. Results indicate that laser welding in a space environment is feasible and can be safely performed IVA or EVA. Development of the hardware to perform the experiment in a Hitchhiker-g platform is recomended as the next step. This experiment provides NASA with a capable technology for welding needs in space. The resources required to perform this experiment aboard a Shuttle Hitchhiker-pallet are assessed. Over the four year period 1991 to 1994, it is recommended that the task will require 13.6 manyears and $914,900. In addition to demonstrating the technology and ferreting out the problems encountered, it is suggested that NASA will also have a useful laser materials processing facility for working with both the scientific and the engineering aspects of materials processing in space. Several concepts are also included for long-term optimization of available solar power through solar pumping solid state lasers directly for welding power.

  17. Advanced Welding Concepts

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  18. Damage Tolerance Assessment of Friction Pull Plug Welds

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process developed and patented by The Welding Institute in Cambridge, England. Friction stir welding has been implemented in the aerospace industry in the fabrication of longitudinal welds in pressurized cryogenic propellant tanks. As the industry looks to implement friction stir welding in circumferential welds in pressurized cryogenic propellant tanks, techniques to close out the termination hole associated with retracting the pin tool are being evaluated. Friction pull plug welding is under development as a one means of closing out the termination hole. A friction pull plug weld placed in a friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite, plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size in the test or service environments. Test data relating residual strength capability to flaw size in two aluminum alloy friction plug weld configurations is presented.

  19. Advances in welding science - a perspective

    SciTech Connect

    David, S.A.; Vitek, J.M.; Babu, S.S.; DebRoy, T.

    1995-02-01

    The ultimate goal of welding technology is to improve the joint integrity and increase productivity. Over the years, welding has been more of an art than a science, but in the last few decades major advances have taken place in welding science and technology. With the development of new methodologies at the crossroads of basic and applied sciences, enormous opportunities and potential exist to develop a science-based tailoring of composition, structure, and properties of welds with intelligent control and automation of the welding processes.

  20. Specific welds for test blanket modules

    NASA Astrophysics Data System (ADS)

    Rieth, Michael; Rey, Jörg

    2009-04-01

    Fabrication and assembling test blanket modules needs a variety of different welding techniques. Therefore, an evaluation of plate joining for breeder units by tungsten-inert-gas, laser, and electron beam welding was performed by qualification of relevant mechanical properties like hardness, charpy, and creep strength. The focus was laid on the study of post-weld heat treatments at lowest possible temperatures and for maximum recovery of the joints. The most important result is that thin EUROFER plates may be welded by EB or laser techniques without the necessity of post-welding heat treatments that include an austenitization step.

  1. Effect of welding parameters on high-power diode laser welding on thin sheet

    NASA Astrophysics Data System (ADS)

    Salminen, Antti; Jansson, Anssi; Kujanpaa, Veli

    2003-06-01

    High power diode laser (HPDL) is the newest laser tool for industrial manufacturing. The most promising areas of application of HPDL are thin sheet welding and hardening. The HPDL has several advantages and disadvantages compared to lasers CO2 and Nd:YAG lasers currently used for welding. There is quite a few industrial applications in which diode laser is the most suitable laser. A typical industrial installation consists of a HPDL, an industrial robot, work piece manipulation and safety enclosures. The HPDL welding process is at this moment conduction limited and has therefore different parameters than the keyhole welding. In this study the basic HPDL welding parameters and the effect of the parameters on the welding process, weld quality and efficiency are examined. Joint types tested are butt joint and fillet lap joint. The parameters tested are beam intensity, welding speed, spot size, beam impingement angle. The materials tested are common carbon steel and stainless steel. By the experiments carried out it can be seen that all of these parameters have an effect on the weld quality and the absorption of the laser power during welding. The higher the beam intensity is the shorter also the throughput time is. However, in case of fillet joint the maximum welding speed and best visual out look are achieved with totally different set of parameters. Based on these experiments it can, however, be seen that reliable welding parameters can be established for the welding of various industrial products. The beam quality of the diode laser is not optimum for high speed keyhole welding but it is a flexible tool to be used for different joint types.

  2. Laser based spot weld characterization

    NASA Astrophysics Data System (ADS)

    Jonietz, Florian; Myrach, Philipp; Rethmeier, Michael; Suwala, Hubert; Ziegler, Mathias

    2016-02-01

    Spot welding is one of the most important joining technologies, especially in the automotive industry. Hitherto, the quality of spot welded joints is tested mainly by random destructive tests. A nondestructive testing technique offers the benefit of cost reduction of the testing procedure and optimization of the fabrication process, because every joint could be examined. This would lead to a reduced number of spot welded joints, as redundancies could be avoided. In the procedure described here, the spot welded joint between two zinc-coated steel sheets (HX340LAD+Z100MB or HC340LA+ZE 50/50) is heated optically on one side. Laser radiation and flash light are used as heat sources. The melted zone, the so called "weld nugget" provides the mechanical stability of the connection, but also constitutes a thermal bridge between the sheets. Due to the better thermal contact, the spot welded joint reveals a thermal behavior different from the surrounding material, where the heat transfer between the two sheets is much lower. The difference in the transient thermal behavior is measured with time resolved thermography. Hence, the size of the thermal contact between the two sheets is determined, which is directly correlated to the size of the weld nugget, indicating the quality of the spot weld. The method performs well in transmission with laser radiation and flash light. With laser radiation, it works even in reflection geometry, thus offering the possibility of testing with just one-sided accessibility. By using heating with collimated laser radiation, not only contact-free, but also remote testing is feasible. A further convenience compared to similar thermographic approaches is the applicability on bare steel sheets without any optical coating for emissivity correction. For this purpose, a proper way of emissivity correction was established.

  3. Residual Stress Measurement and Calibration for A7N01 Aluminum Alloy Welded Joints by Using Longitudinal Critically Refracted (LCR) Wave Transmission Method

    NASA Astrophysics Data System (ADS)

    Zhu, Qimeng; Chen, Jia; Gou, Guoqing; Chen, Hui; Li, Peng; Gao, W.

    2016-08-01

    Residual stress measurement and control are highly important for the safety of structures of high-speed trains, which is critical for the structure design. The longitudinal critically refracted wave technology is the most widely used method in measuring residual stress with ultrasonic method, but its accuracy is strongly related to the test parameters, namely the flight time at the free-stress condition (t 0), stress coefficient (K), and initial stress (σ0) of the measured materials. The difference of microstructure in the weld zone, heat affected zone, and base metal (BM) results in the divergence of experimental parameters. However, the majority of researchers use the BM parameters to determine the residual stress in other zones and ignore the initial stress (σ0) in calibration samples. Therefore, the measured residual stress in different zones is often high in errors and may result in the miscalculation of the safe design of important structures. A serious problem in the ultrasonic estimation of residual stresses requires separation between the microstructure and the acoustoelastic effects. In this paper, the effects of initial stress and microstructure on stress coefficient K and flight time t 0 at free-stress conditions have been studied. The residual stress with or without different corrections was investigated. The results indicated that the residual stresses obtained with correction are more accurate for structure design.

  4. Residual Stress Measurement and Calibration for A7N01 Aluminum Alloy Welded Joints by Using Longitudinal Critically Refracted ( LCR) Wave Transmission Method

    NASA Astrophysics Data System (ADS)

    Zhu, Qimeng; Chen, Jia; Gou, Guoqing; Chen, Hui; Li, Peng; Gao, W.

    2016-10-01

    Residual stress measurement and control are highly important for the safety of structures of high-speed trains, which is critical for the structure design. The longitudinal critically refracted wave technology is the most widely used method in measuring residual stress with ultrasonic method, but its accuracy is strongly related to the test parameters, namely the flight time at the free-stress condition ( t 0), stress coefficient ( K), and initial stress (σ0) of the measured materials. The difference of microstructure in the weld zone, heat affected zone, and base metal (BM) results in the divergence of experimental parameters. However, the majority of researchers use the BM parameters to determine the residual stress in other zones and ignore the initial stress (σ0) in calibration samples. Therefore, the measured residual stress in different zones is often high in errors and may result in the miscalculation of the safe design of important structures. A serious problem in the ultrasonic estimation of residual stresses requires separation between the microstructure and the acoustoelastic effects. In this paper, the effects of initial stress and microstructure on stress coefficient K and flight time t 0 at free-stress conditions have been studied. The residual stress with or without different corrections was investigated. The results indicated that the residual stresses obtained with correction are more accurate for structure design.

  5. Differences between Laser and Arc Welding of HSS Steels

    NASA Astrophysics Data System (ADS)

    Němeček, Stanislav; Mužík, Tomáš; Míšek, Michal

    Conventional welding processes often fail to provide adequate joints in high strength steels with multiphase microstructures. One of the promising techniques is laser beam welding: working without filler metal and with sufficient capacity for automotive and transportation industry (where the amount of AHSS steels increases each year, as well as the length of laser welds). The paper compares microstructures and properties of HSS (high strength steel) joints made by MAG (Metal Active Gas) and laser welding. The effects of main welding parameters (heat input, welding speed and others) are studied on multiphase TRIP 900 steel tubes and martensitic sheets DOCOL 1200, advanced materials for seat frames and other automotive components. Whereas the strength of conventional welds is significantly impaired, laser welding leaves strength of the base material nearly unaffected. As the nature of fracture changes during loading and depending on the welding method, failure mechanisms upon cross tension tests have been studied as well.

  6. Microstructure analysis in friction welding of copper and aluminum

    NASA Astrophysics Data System (ADS)

    Wibowo, A. G. Wahyu; Ismail, Rifky; Jamari, J.

    2016-04-01

    The Friction welding is a welding method with utilizing heat generated due to friction. Surfaces of two materials to be joined, one rotates the other being idle, is contacted by a pressure force. Friction on the second contact surface is done continuously so that the heat generated by the continuous friction will continue to rise. With the heat and the pressure force on the second surface to the second meeting of the material reaches its melting temperature then there is the process of welding. This paper examines the influence of the pressure force, rotational speed and contact time on friction welding of Aluminum (Al) and Copper (Cu) to the quality of welded joints. Friction welding process is performed on a friction welding machine that is equipped with the loading mechanism. The parameters used are the pressure force, rotational speed and friction time. Determination of the quality of welding is done by testing the tensile strength, hardness, and micro structure on the weld joint areas. The results showed that the friction welding quality is very good, this is evidenced by the results of a tensile strength test where the fault occurs outside the weld joint and increased violence in the weld joint. On the results visually cuts the welding area did not reveal any porosity so that it can be concluded that each metal contacts have melted perfectly and produce a connection with good quality.

  7. The effect of axial force and contact angle on the welded area of plastic tube welded by ultrasonic welding

    NASA Astrophysics Data System (ADS)

    Thinvongpituk, C.; Bootwong, A.; Watanabe, Y.

    2010-03-01

    This study was aimed to apply the use of ultrasonic welding to weld round plastic tubes. The ultrasonic welding machine was designed to be able to work with a normal ultrasonic welding transducer by rotating the tube while it is being welded. The specimens used in this study were round plastic tubes (PMMA) with diameter of 35 mm and 2 mm thickness. End of each tube was machined to have angle of 2.8, 3.8 and 5.7 degree in order to create contact angle at the interface. The specimens were welded with frequency of 28 kHz and tube rotational speeds of 25 rpm, 45 rpm and 100 rpm. The axial force was applied to the tube in order to enhance the quality of joint. The experimental result revealed that the modified ultrasonic welding machine can generate the welded area around the circumference of tube. It was found that the axial force and contact angle have some effect to the quality of joint. The contact angle of 2.8/2.8 provided highest welded area compared to 3.8/3.8 and 5.7/5.7 degree of contact angle. In addition, the axial force between 80 N - 120 N provided high value of welded area. The pattern of welded area is also presented and discussed in the paper.

  8. The effect of axial force and contact angle on the welded area of plastic tube welded by ultrasonic welding

    NASA Astrophysics Data System (ADS)

    Thinvongpituk, C.; Bootwong, A.; Watanabe, Y.

    2009-12-01

    This study was aimed to apply the use of ultrasonic welding to weld round plastic tubes. The ultrasonic welding machine was designed to be able to work with a normal ultrasonic welding transducer by rotating the tube while it is being welded. The specimens used in this study were round plastic tubes (PMMA) with diameter of 35 mm and 2 mm thickness. End of each tube was machined to have angle of 2.8, 3.8 and 5.7 degree in order to create contact angle at the interface. The specimens were welded with frequency of 28 kHz and tube rotational speeds of 25 rpm, 45 rpm and 100 rpm. The axial force was applied to the tube in order to enhance the quality of joint. The experimental result revealed that the modified ultrasonic welding machine can generate the welded area around the circumference of tube. It was found that the axial force and contact angle have some effect to the quality of joint. The contact angle of 2.8/2.8 provided highest welded area compared to 3.8/3.8 and 5.7/5.7 degree of contact angle. In addition, the axial force between 80 N - 120 N provided high value of welded area. The pattern of welded area is also presented and discussed in the paper.

  9. A Study on the Welding Characteristics of Tailor Welded Blank Metal Sheets Using GTAW and Laser Welding

    NASA Astrophysics Data System (ADS)

    Thasanaraphan, Pornsak

    In this study, a computational and experimental effort was carried out to qualitatively understand the weld pool shape, distortion and residual stress for continuous laser welding and manual pulsed gas metal arc welding. For all the welding simulations given in this dissertation, a welding specific finite element package, SYSWELD, is used. This research focuses on the welding behavior observed in light-weight metal structures known as the tailor-welded blanks, TWBs. They are a combination of two or more metal sheets with different thickness and/or different materials that are welded together in a single plane prior to forming, e.g., stamping. They made from the low carbon steel. As laser welding experiment results show, the weld pool shape at the top and bottom surface, is strongly influenced by surface tension, giving it a characteristic hourglass shape. In order to simulate the hourglass shape, a new volumetric heat source model was developed to predict the transient temperature profile and weld pool shape, including the effect of surface tension. Tailor welded blanks with different thicknesses were examined in the laser welding process. All major physical phenomena such as thermal conduction, heat radiation and convection heat losses are taken into account in the model development as well as temperature-dependant thermal and mechanical material properties. The model is validated for the case of butt joint welding of cold rolled steel sheets. The results of the numerical simulations provide temperature distributions representing the shape of the molten pool, distortion and residual stress with varying laser beam power and welding speed. It is demonstrated that the finite element simulation results are in good agreement with the experiment results. This includes the weld pool shape and sheet metal distortion. While there is no experimental data to compare directly with residual stress results, the distorted shape provides an indirect measure of the welding

  10. Development of automated welding process for field fabrication of thick walled pressure vessels. Fourth quarter, FY 1980

    SciTech Connect

    Not Available

    1980-12-19

    Progress is reported in research on the automated welding of heavy steel plate for the fabrication of pressure vessels. Information is included on: torch and shield adaptation; mechanical control of the welding process; welding parameters; joint design; filler wire optimizaton; nondestructive testing of welds; and weld repair. (LCL)

  11. Evolution of a Laser Hybrid Welding Map

    NASA Astrophysics Data System (ADS)

    Kaplan, Alexander F. H.; Frostevarg, Jan; Ilar, Torbjörn; Bang, Hee-Seon; Bang, Han-Sur

    Laser arc hybrid welding combines the advantages but also the complex physical mechanisms of gas metal arc welding and laser keyhole welding. From manifold mainly experimental but also theoretical research results a map with versatile functions was initiated for the first time. The purpose is to survey the overall context and to facilitate navigation to the various phenomena that are shown through case studies accompanied by theoretical explanations and guidelines for optimization. Though not complete, the map enables systematic and graphical navigation to relevant publications. Based on a fundamental structure of the map, which was decided early, it is inherently extendable in the future by adding existing and new knowledge, also from other research groups, enabling evolution. The fundament of the map structure comprises gouge thickness, joint type and metal grade, in coherence with product and weld designers' starting points. The next hierarchy level of the map offers options in the joint type as well as in hybrid welding techniques. The latter contains techniques like double-sided welding, pulse shaping management of the arc or laser, CMT arcs, tandem arcs, or remelting of undercuts. In addition to laser-arc hybrid welding, other hybrid laser techniques like multilayer hot-wire laser welding of narrow gaps or hybrid laser friction stir welding can be taken into account. At the other end of the hierarchy, the map offers via a database-like archive electronic navigation to research results like weld macrographs, high speed imaging or numerical simulation results of the welding process.

  12. FUSION WELDING METHOD AND APPARATUS

    DOEpatents

    Wyman, W.L.; Steinkamp, W.I.

    1961-01-17

    An apparatus for the fusion welding of metal pieces at a joint is described. The apparatus comprises a highvacuum chamber enclosing the metal pieces and a thermionic filament emitter. Sufficient power is applied to the emitter so that when the electron emission therefrom is focused on the joint it has sufficient energy to melt the metal pieces, ionize the metallic vapor abcve the molten metal, and establish an arc discharge between the joint and the emitter.

  13. Fiber Lasers Application for Welding of Titanium Alloys With 16 mm Thickness

    NASA Astrophysics Data System (ADS)

    Evtihiev, N. N.; Grezev, N. V.; Markushov, Y. V.; Murzakov, M. A.

    2016-09-01

    This article illustrates the use of fiber laser welding of a titanium alloy with 16 mm thickness. The basic advantages of the laser welding process over the traditional methods of arc welding of titanium are demonstrated. Destructive testing of welds was performed to confirm the quality of the welding. The results of the static tensile tests, static bending and toughness at room temperature are presented. All tests confirmed the high quality of the welded joint.

  14. Solid-state and fusion resistance spot welding of TD-NiCr sheet

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1973-01-01

    By using specially processed TD-NiCr sheet in both 0.4-mm (0.015-in.) and 1.6-mm (0.062-in.) thicknesses and carefully selected welding procedures, solid state resistance spot welds were produced which, after postheating at 1200 C, were indistinguishable from the parent material. Stress-rupture shear tests of single-spot lap joints in 0.4-mm (0.015-in.) thick sheet showed that these welds were as strong as the parent material. Similar results were obtained in tensile-shear tests at room temperature and 1100 C and in fatigue tests. Conventional fusion spot welds in commercial sheet were unsatisfactory because of poor stress-rupture shear properties resulting from metallurgical damage to the parent material.

  15. Simplified inelastic analysis procedure to evaluate a butt-welded elbow end

    SciTech Connect

    Dhalla, A.K.

    1981-01-01

    In a thin-walled piping network, the end of an elbow welded to a straignt pipe constitutes one of the highly stressed cross-sections that require structural evaluation. Explicit rules are not provided in the ASME Code for structural evaluation of the elbow ovalization and fabrication effects at the welded end. This paper presents a conservative semi-analytical procedure that can be used with simplified inelastic analysis to evaluate the elbow cross section welded to the straight pipe. The concept of carry-over factors is used to obtain ovalization stresses or strains at the elbow end. The stresses introduced by material and geometric nonuniformities in the fabrication process are then added to the ovalization stresses to complete structural evluation of the girth butt-welded elbow joint.

  16. SmartWeld working session for the GTS4

    SciTech Connect

    Kleban, S.; Hicken, K.; Ng, R.; Fricke, B.

    1997-08-01

    Results from SmartWeld`s first working session involving in-progress designs is presented. The Welding Advisor component of SmartWeld was thoroughly exercised, evaluated all eleven welds of the selected part. The Welding Advisor is an expert system implemented with object-oriented techniques for knowledge representation. With two welding engineers in attendance, the recommendations of the Welding Advisor were thoroughly examined and critiqued for accuracy and for areas of improvement throughout the working session. The Weld Schedule Database component of SmartWeld was also exercised. It is a historical archive of proven, successful weld schedules that can be intelligently searched using the current context of SmartWeld`s problem solving state. On all eleven welds, the experts agreed that Welding Advisor recommended the most risk free options. As a result of the Advisor`s recommendation, six welds agreed completely with the experts, two welds had their joint geometry modified for production, and three welds were not modified but extra care was exercised during welding. 25 figs., 3 tabs.

  17. Application of friction welding in petroleum and chemical engineering

    SciTech Connect

    Dzhabarov, R.D.; Fataliev, N.S.; Tkachev, Yu.A.; Timofeev, V.I.; Abdullaev, V.G.

    1995-05-01

    Welding, as a technological process, is widely practiced in modern engineering. Resistance or arc welding is most common, but these techniques are increasingly giving way to friction welding which has several advantages, namely higher labor productivity and better quality, possibility of joining diverse and poorly weldable metals and alloys, dispensing with high-grade welding materials and highly skilled welders, ecological cleanness of the process, etc. The major criterion of efficient application of friction welding is its use in large-scale manufacture of a specific equipment, whereupon the cost of the machine is recovered in a short period. That is why friction welding with creation and fabrication of specific machines was adopted by the petroleum machinery manufacture (manufacture of geological prospecting and drill pipes, pump rods of the welded design, and gate valves of high-pressure Christmas trees). By applying friction welding for the manufacture of geological prospecting and drill pipes in place of resistance butt welding, accidents during drilling due to failure of the welded joints were prevented totally. Application of friction welding for making pump rods of the welded design (with welded nipples and heads) made it possible to save costly high-strength and corrosion-resistance alloy steel to the extent of 90%. Use of friction welding in the manufacture of high-pressure gate valves with welded flanges simplifies the valve-making technology and improves the reliability of the welded joints, even at temperatures as low as -60{degrees}C. In particular, cast gate valve bodies with friction-welded side flanges were tested before their breakdown. The welded joints of the branch pipes, even though they were sharpened to reduce wall thickness, did not fail, which shows high reliability of the gate valve bodies of the welded design.

  18. Welding Technician

    ERIC Educational Resources Information Center

    Smith, Ken

    2009-01-01

    About 95% of all manufactured goods in this country are welded or joined in some way. These welded products range in nature from bicycle handlebars and skyscrapers to bridges and race cars. The author discusses what students need to know about careers for welding technicians--wages, responsibilities, skills needed, career advancement…

  19. Artificial neural networks application for modeling of friction stir welding effects on mechanical properties of 7075-T6 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Maleki, E.

    2015-12-01

    Friction stir welding (FSW) is a relatively new solid-state joining technique that is widely adopted in manufacturing and industry fields to join different metallic alloys that are hard to weld by conventional fusion welding. Friction stir welding is a very complex process comprising several highly coupled physical phenomena. The complex geometry of some kinds of joints makes it difficult to develop an overall governing equations system for theoretical behavior analyse of the friction stir welded joints. Weld quality is predominantly affected by welding effective parameters, and the experiments are often time consuming and costly. On the other hand, employing artificial intelligence (AI) systems such as artificial neural networks (ANNs) as an efficient approach to solve the science and engineering problems is considerable. In present study modeling of FSW effective parameters by ANNs is investigated. To train the networks, experimental test results on thirty AA-7075-T6 specimens are considered, and the networks are developed based on back propagation (BP) algorithm. ANNs testing are carried out using different experimental data that they are not used during networks training. In this paper, rotational speed of tool, welding speed, axial force, shoulder diameter, pin diameter and tool hardness are regarded as inputs of the ANNs. Yield strength, tensile strength, notch-tensile strength and hardness of welding zone are gathered as outputs of neural networks. According to the obtained results, predicted values for the hardness of welding zone, yield strength, tensile strength and notch-tensile strength have the least mean relative error (MRE), respectively. Comparison of the predicted and the experimental results confirms that the networks are adjusted carefully, and the ANN can be used for modeling of FSW effective parameters.

  20. Truss Slip Joint

    NASA Technical Reports Server (NTRS)

    Thomas, Frank

    1993-01-01

    Truss slip joint has few parts, strong, and assembled and disassembled easily. Designed to carry axial loads as large as 100,000 lb and to accommodate slight initial axial-displacement and angular misalignments. Joint assembled or disassembled by astronaut in space suit or, on Earth, by technician in heavy protective clothing; simple enough to be operable by robot. Modified to accommodate welding.

  1. Effect of Pulse Parameters on Weld Quality in Pulsed Gas Metal Arc Welding: A Review

    NASA Astrophysics Data System (ADS)

    Pal, Kamal; Pal, Surjya K.

    2011-08-01

    The weld quality comprises bead geometry and its microstructure, which influence the mechanical properties of the weld. The coarse-grained weld microstructure, higher heat-affected zone, and lower penetration together with higher reinforcement reduce the weld service life in continuous mode gas metal arc welding (GMAW). Pulsed GMAW (P-GMAW) is an alternative method providing a better way for overcoming these afore mentioned problems. It uses a higher peak current to allow one molten droplet per pulse, and a lower background current to maintain the arc stability. Current pulsing refines the grains in weld fusion zone with increasing depth of penetration due to arc oscillations. Optimum weld joint characteristics can be achieved by controlling the pulse parameters. The process is versatile and easily automated. This brief review illustrates the effect of pulse parameters on weld quality.

  2. 46 CFR 59.10-30 - Seal welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Seal welding. 59.10-30 Section 59.10-30 Shipping COAST... VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-30 Seal welding. Where leaks occur in riveted joints or connections, they shall be carefully investigated...

  3. 46 CFR 59.10-30 - Seal welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Seal welding. 59.10-30 Section 59.10-30 Shipping COAST... VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-30 Seal welding. Where leaks occur in riveted joints or connections, they shall be carefully investigated...

  4. 46 CFR 59.10-30 - Seal welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Seal welding. 59.10-30 Section 59.10-30 Shipping COAST... VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-30 Seal welding. Where leaks occur in riveted joints or connections, they shall be carefully investigated...

  5. 46 CFR 59.10-30 - Seal welding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Seal welding. 59.10-30 Section 59.10-30 Shipping COAST... VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-30 Seal welding. Where leaks occur in riveted joints or connections, they shall be carefully investigated...

  6. 46 CFR 59.10-30 - Seal welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Seal welding. 59.10-30 Section 59.10-30 Shipping COAST... VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-30 Seal welding. Where leaks occur in riveted joints or connections, they shall be carefully investigated...

  7. Integration of NASA-sponsored studies on aluminum welding

    NASA Technical Reports Server (NTRS)

    Masubuchi, K.

    1972-01-01

    The results are presented of numerous studies relating to aluminum alloy welding. The subjects covered include: (1) effects of porosity on weld joint performance, (2) sources of porosity, (3) weld thermal effects, (4) residual stresses and distortion, and (5) manufacturing process system control.

  8. Chrome alloy welding fume study.

    PubMed

    Vorpahl, K W; Jordan, P T; Mathews, E J

    1976-10-01

    Breathing zone samples obtained at a production arc welding operation employing approximately 90 welders demonstrated excessive exposure to chromium from the welding of high chromium alloy steel. Breathing zone samples were collected inside welding helmets. Methods considered for reducing employee exposure included local exhaust ventilation and the use of air-supplied helmets. Air-supplied helmets were chosen as best suited for the production scheme and suitable devices were subsequently developed that reduced breathing zone contaminant levels well below applicable standards.

  9. Identification of Damaged Spot Welds in a Complicated Joined Structure

    NASA Astrophysics Data System (ADS)

    Yunus, M. A.; Rani, M. N. Abdul; Ouyang, H.; Deng, H.; James, S.

    2011-07-01

    In automotive engineering, spot welds on assembled structures such as Body in White (BiW) have a significant effect on the vehicles' dynamic characteristics. Understandably, imperfections in the spot welds will cause variations in the dynamic properties such as natural frequencies and mode shapes of the structure. In this paper, a complicated welded structure which is a simplified Natural Gas Vehicle (NGV) platform is investigated. The structure fabricated from thin metal sheets consists of ten components. They are jointed together by a number of scattered spot welds. NASTRAN Solution 200 based on sensitivity analysis is used to identify the most sensitive parameters to natural frequencies. The numerical model of the undamaged structure is initially updated in order to minimise the discrepancies between the measured and numerical data using NASTRAN optimisation code. The initial updated model serves as a benchmark for the subsequent structural damage identification. The numerical data of the benchmark model is then compared with the measured data obtained from the damaged structure. The same updating procedure is applied to the benchmark model in order to bring the numerical data as close as possible to the measured data of the damaged structure. The disparity in certain parameter values from the parameter values used in the benchmark model shows a fault or damage in the location of a particular joint, depending on the severity of this disparity. The challenge in this work is to localise damaged area and quantify the damage of the complicated structure with multiple spot welds in the presence of uncertainty in the location and material properties of the welds.

  10. Effect of Weld Tool Geometry on Friction Stir Welded AA2219-T87 Properties

    NASA Technical Reports Server (NTRS)

    Querin, Joseph A.; Schneider, Judy A.

    2008-01-01

    In this study, flat panels of AA2219-T87 were friction stir welded (FSWed) using weld tools with tapered pins The three pin geometries of the weld tools included: 0 (straight cylinder), 30 , and 60 angles on the frustum. For each weld tool geometry, the FSW process parameters were optimized to eliminate defects. A constant heat input was maintained while varying the process parameters of spindle rpm and travel speed. This provided a constant heat input for each FSW weld panel while altering the hot working conditions imparted to the workpiece. The resulting mechanical properties were evaluated from tensile test results of the FSW joint.

  11. Parametric Studies Of Weld Quality Of Tungsten Inert Gas Arc Welding Of Stainless Steel

    SciTech Connect

    Kumar Pal, Pradip; Nandi, Goutam; Ghosh, Nabendu

    2011-01-17

    Effect of current and gas flow rate on quality of weld in tungsten inter gas arc welding of austenitic stainless steel has been studied in the present work through experiments and analyses. Butt welded joints have been made by using several levels of current and gas flow rate. The quality of the weld has been evaluated in terms of ultimate and breaking strengths of the welded specimens. The observed data have been interpreted, discussed and analyzed by using Grey--Taguchi methodology. Optimum parametric setting has been predicted and validated as well.

  12. Parametric Studies Of Weld Quality Of Tungsten Inert Gas Arc Welding Of Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kumar Pal, Pradip; Nandi, Goutam; Ghosh, Nabendu

    2011-01-01

    Effect of current and gas flow rate on quality of weld in tungsten inter gas arc welding of austenitic stainless steel has been studied in the present work through experiments and analyses. Butt welded joints have been made by using several levels of current and gas flow rate. The quality of the weld has been evaluated in terms of ultimate and breaking strengths of the welded specimens. The observed data have been interpreted, discussed and analyzed by using Grey—Taguchi methodology. Optimum parametric setting has been predicted and validated as well.

  13. Friction Stir Welding of Tapered Thickness Welds Using an Adjustable Pin Tool

    NASA Technical Reports Server (NTRS)

    Adams, Glynn; Venable, Richard; Lawless, Kirby

    2003-01-01

    Friction stir welding (FSW) can be used for joining weld lands that vary in thickness along the length of the weld. An adjustable pin tool mechanism can be used to accomplish this in a single-pass, full-penetration weld by providing for precise changes in the pin length relative to the shoulder face during the weld process. The difficulty with this approach is in accurately adjusting the pin length to provide a consistent penetration ligament throughout the weld. The weld technique, control system, and instrumentation must account for mechanical and thermal compliances of the tooling system to conduct tapered welds successfully. In this study, a combination of static and in-situ measurements, as well as active control, is used to locate the pin accurately and maintain the desired penetration ligament. Frictional forces at the pin/shoulder interface were a source of error that affected accurate pin position. A traditional FSW pin tool design that requires a lead angle was used to join butt weld configurations that included both constant thickness and tapered sections. The pitch axis of the tooling was fixed throughout the weld; therefore, the effective lead angle in the tapered sections was restricted to within the tolerances allowed by the pin tool design. The sensitivity of the FSW process to factors such as thickness offset, joint gap, centerline offset, and taper transition offset were also studied. The joint gap and the thickness offset demonstrated the most adverse affects on the weld quality. Two separate tooling configurations were used to conduct tapered thickness welds successfully. The weld configurations included sections in which the thickness decreased along the weld, as well as sections in which the thickness increased along the weld. The data presented here include weld metallography, strength data, and process load data.

  14. Feasibility study on welding and cutting methods for thick plate in fusion reactor

    SciTech Connect

    Osaki, T.; Nakayama, Y.; Kobayashi, T.

    1995-12-31

    Application of tungsten-arc inert-gas (TIG) welding with narrow gap has been considered as a hopeful joint method to suppress post welding deformation for thick plates. The authors studied some parameters to predict the post-welding deformation for the narrow gap shape of TIG welding. As for cutting methods, the water jet method was applied for weld joints in this study. Reweld tests by using the TIG welding method were successfully performed under the condition of cutting surface as it was. Results of tensile tests for reweld joints showed no reduction in strength. This reveals a good prospect of providing reweld groove surface without any machining on site.

  15. The Study of Complex (Ti, Zr, Cs) Nanopowder Influencing the Effective Ionization Potential of Arc Discharge When Mma Welding

    NASA Astrophysics Data System (ADS)

    Sapozhkov, S. B.; Burakova, E. M.

    2016-08-01

    Strength is one of the most important characteristics of a weld joint. Mechanical properties of a weld metal can be improved in a variety of ways. One of the possibilities is to add a nanopowder to the weld metal. Authors of the paper suggest changing the production process of MMA welding electrodes via adding nanopowder Ti, Zr, Cs to electrode components through liquid glass. Theoretical research into the nanopowder influence on the effective ionization potential (Ueff) of welding arc discharge is also necessitated. These measures support arcing stability, improve strength of a weld joint, as the consequence, ensure quality enhancing of a weld joint and the structure on the whole.

  16. Optimization of Process Parameters of Hybrid Laser-Arc Welding onto 316L Using Ensemble of Metamodels

    NASA Astrophysics Data System (ADS)

    Zhou, Qi; Jiang, Ping; Shao, Xinyu; Gao, Zhongmei; Cao, Longchao; Yue, Chen; Li, Xiongbin

    2016-08-01

    Hybrid laser-arc welding (LAW) provides an effective way to overcome problems commonly encountered during either laser or arc welding such as brittle phase formation, cracking, and porosity. The process parameters of LAW have significant effects on the bead profile and hence the quality of joint. This paper proposes an optimization methodology by combining non-dominated sorting genetic algorithm (NSGA-II) and ensemble of metamodels (EMs) to address multi-objective process parameter optimization in LAW onto 316L. Firstly, Taguchi experimental design is adopted to generate the experimental samples. Secondly, the relationships between process parameters ( i.e., laser power ( P), welding current ( A), distance between laser and arc ( D), and welding speed ( V)) and the bead geometries are fitted using EMs. The comparative results show that the EMs can take advantage of the prediction ability of each stand-alone metamodel and thus decrease the risk of adopting inappropriate metamodels. Then, the NSGA-II is used to facilitate design space exploration. Besides, the main effects and contribution rates of process parameters on bead profile are analyzed. Eventually, the verification experiments of the obtained optima are carried out and compared with the un-optimized weld seam for bead geometries, weld appearances, and welding defects. Results illustrate that the proposed hybrid approach exhibits great capability of improving welding quality in LAW.

  17. Elements of arc welding

    SciTech Connect

    Not Available

    1993-07-01

    This paper looks at the following arc welding techniques: (1) shielded metal-arc welding; (2) submerged-arc welding; (3) gas metal-arc welding; (4) flux-cored arc welding; (5) electrogas welding; (6) gas tungsten-arc welding; and (7) plasma-arc welding.

  18. Study on visual image information detection of external angle weld based on arc welding robot

    NASA Astrophysics Data System (ADS)

    Liu, Xiaorui; Liu, Nansheng; Sheng, Wei; Hu, Xian; Ai, Xiaopu; Wei, Yiqing

    2009-11-01

    Nowadays, the chief development trend in modern welding technology is welding automation and welding intelligence. External angle weld has a certain proportion in mechanical manufacture industries. In the real-time welding process, due to hot deformation and the fixture of workpieces used frequently, torch will detach welding orbit causes deviation, which will affect welding quality. Therefore, elimination weld deviation is the key to the weld automatic tracking system. In this paper, the authors use the self-developed structured light vision sensor system which has significant advantage compared with arc sensors to capture real-time weld images. In the project of VC++6.0 real-time weld image processing, after binaryzation with threshold value seventy, 3*1 median filter, thinning, obtain weld main stripe. Then, using the extraction algorithm this paper proposed to obtain weld feature points, and compute position of weld. Experiment result verified that the extraction algorithm can locate feature points rapidly and compute the weld deviation accurately.

  19. Microstructure and Residual Stress Distributions Under the Influence of Welding Speed in Friction Stir Welded 2024 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Moghadam, Danial Ghahremani; Farhangdoost, Khalil; Nejad, Reza Masoudi

    2016-06-01

    Friction stir welding was conducted on 8-mm-thick plates made of AA2024-T351 aluminum alloy at tool traverse speeds between 8 and 31.5 mm/minutes and tool rotational speed between 400 and 800 rpm. Metallographic analyses and mechanical tests including hardness, tensile, residual stress, and fracture toughness tests were carried out to evaluate the microstructural and mechanical properties of the joints as a function of the process parameters. The finite element simulation of the FSW process was also performed using a thermal model. The hardness test results show that the increase in rotational speed or decrease in traverse speed of the tool would cause a decrease in weld zone hardness. The best tensile properties are obtained at rotational/traverse speed ratio between 20 and 32. Also, the longitudinal residual stress profiles were evaluated by employing X-ray diffraction method. The numerical and experimental results showed that the increase in a traverse or rotational speed would increase the residual stress of the weld zone. From the fracture toughness results, it was found that the welding process decreases the joints fracture toughness 18 to 49 pct with respect to the base metal.

  20. Effect of Weld Characteristic on Mechanical Strength of Laser-Arc, Hybrid-Welded Al-Mg-Si-Mn Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Gao, Ming; Jiang, Ming; Zeng, Xiaoyan

    2016-08-01

    Laser-arc hybrid welding (LAHW) was employed to improve the tensile properties of the joints of 8-mm-thick Al-Mg-Si-Mn alloy (AA6082) using Al-5Mg filler wire. The weld microstructures were examined by scanning electron microscope, electron backscattered diffraction, and transmission electron microscopy in detail. The LAHW joints with pore-free and high-tensile performances were obtained. The strength enhancement of the fusion zone and heat-affected zone in the LAHW joint was mainly attributed to the grain refinement strengthening and the precipitation strengthening, respectively. The microstructure characteristics were related to the effects of laser-arc interaction on the energy transfer within the molten pool. The arc caused the majority of laser energy to dissipate out of the keyhole, and then it reduced the heat input. The lower heat input refined the grain size, weakened the overaging effect, and thus improved the tensile strength.