Sample records for wellbore flow analysis

  1. River Induced Wellbore Flow Dynamics in Long-Screen Wells and their Impact on Aqueous Sampling Results

    NASA Astrophysics Data System (ADS)

    Vermeul, V.; McKinley, J. P.; Newcomer, D.; Fritz, B. G.; Mackley, R.; Zachara, J. M.

    2010-12-01

    Previously published field investigations and modeling studies have demonstrated the potential for sample bias associated with vertical wellbore flow in conventional monitoring wells constructed with long-screened intervals. In this study, simultaneous measurement of 1) wellbore flow using an electromagnetic borehole flowmeter (EBF), 2) depth discrete hydraulic head, and 3) aqueous uranium concentrations were used to quantify wellbore flow and assess the associated impacts on measured aqueous concentrations. Monitoring results demonstrate the utility of continuous (i.e., hourly measurements for ~ one month) ambient wellbore flow monitoring and show that relatively large wellbore flows (up to 4 LPM) can be induced by aquifer hydrodynamics associated with a fluctuating river boundary located approximately 250 m from the test well. The observed vertical wellbore flows were strongly correlated with fluctuations in river stage, alternating between upward and downward flow throughout the monitoring period in response to changes in river stage. Continuous monitoring of ambient wellbore flows using an EBF system allowed these effects to be evaluated in concert with continuously monitored river stage elevations (hourly) and aqueous uranium concentrations (daily) in a long-screen well and an adjacent multi-level well cluster. This study demonstrates that when contaminant concentrations within the aquifer vary significantly over the depth interval interrogated, river-induced vertical wellbore flow can result in variations in measured concentration that nearly encompass the full range of variation in aquifer contaminant concentration with depth. In addition, observed variability in aqueous concentrations measured during active tracer transport experiments provided additional evidence of wellbore flow impacts and showed that the magnitude and direction of wellbore flow varied spatially across the wellfield. An approach to mitigate these effects based on increasing hydraulic resistance within the wellbore was evaluated. This research is part of the ERSP Hanford IFRC at Pacific Northwest National Laboratory.

  2. Aspects of wellbore heat transfer during two-phase flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, A.R.; Kabir, C.S.

    1994-08-01

    Wellbore fluid temperature is governed by the rate of heat loss from the wellbore to the surrounding formation, which in turn is a function of depth and production/injection time. The authors present an approach to estimate wellbore fluid temperature during steady-state two-phase flow. The method incorporates a new solution of the thermal diffusivity equation and the effect of both conductive and convective heat transport for the wellbore/formation system. For the multiphase flow in the wellbore, the Hasan-Kabir model has been adapted, although other mechanistic models may be used. A field example is used to illustrate the fluid temperature calculation proceduremore » and shows the importance of accounting for convection in the tubing/casing annulus. A sensitivity study shows that significant differences exist between the predicted wellhead temperature and the formation surface temperature and that the fluid temperature gradient is nonlinear. This study further shows that increased free gas lowers the wellhead temperature as a result of the Joule-Thompson effect. In such cases, the expression for fluid temperature developed earlier for single-phase flow should not be applied when multiphase flow is encountered. An appropriate expression is presented in this work for wellbores producing multiphase fluids.« less

  3. Determination of gas & liquid two-phase flow regime transitions in wellbore annulus by virtual mass force coefficient when gas cut

    NASA Astrophysics Data System (ADS)

    Qu, Junbo; Yan, Tie; Sun, Xiaofeng; Chen, Ye; Pan, Yi

    2017-10-01

    With the development of drilling technology to deeper stratum, overflowing especially gas cut occurs frequently, and then flow regime in wellbore annulus is from the original drilling fluid single-phase flow into gas & liquid two-phase flow. By using averaged two-fluid model equations and the basic principle of fluid mechanics to establish the continuity equations and momentum conservation equations of gas phase & liquid phase respectively. Relationship between pressure and density of gas & liquid was introduced to obtain hyperbolic equation, and get the expression of the dimensionless eigenvalue of the equation by using the characteristic line method, and analyze wellbore flow regime to get the critical gas content under different virtual mass force coefficients. Results show that the range of equation eigenvalues is getting smaller and smaller with the increase of gas content. When gas content reaches the critical point, the dimensionless eigenvalue of equation has no real solution, and the wellbore flow regime changed from bubble flow to bomb flow. When virtual mass force coefficients are 0.50, 0.60, 0.70 and 0.80 respectively, the critical gas contents are 0.32, 0.34, 0.37 and 0.39 respectively. The higher the coefficient of virtual mass force, the higher gas content in wellbore corresponding to the critical point of transition flow regime, which is in good agreement with previous experimental results. Therefore, it is possible to determine whether there is a real solution of the dimensionless eigenvalue of equation by virtual mass force coefficient and wellbore gas content, from which we can obtain the critical condition of wellbore flow regime transformation. It can provide theoretical support for the accurate judgment of the annular flow regime.

  4. River-induced flow dynamics in long-screen wells and impact on aqueous samples.

    PubMed

    Vermeul, Vince R; McKinley, James P; Newcomer, Darrell R; Mackley, Robert D; Zachara, J M

    2011-01-01

    Previously published field investigations and modeling studies have demonstrated the potential for sample bias associated with vertical wellbore flow in conventional monitoring wells constructed with long-screened intervals. This article builds on the existing body of literature by (1) demonstrating the utility of continuous (i.e., hourly measurements for ∼1 month) ambient wellbore flow monitoring and (2) presenting results from a field experiment where relatively large wellbore flows (up to 4 L/min) were induced by aquifer hydrodynamics associated with a fluctuating river boundary located approximately 250 m from the test well. The observed vertical wellbore flows were strongly correlated with fluctuations in river stage, alternating between upward and downward flow throughout the monitoring period in response to changes in river stage. Continuous monitoring of ambient wellbore flows using an electromagnetic borehole flowmeter allowed these effects to be evaluated in concert with continuously monitored river-stage elevations (hourly) and aqueous uranium concentrations (daily) in a long-screen well and an adjacent multilevel well cluster. This study demonstrates that when contaminant concentrations within the aquifer vary significantly over the depth interval interrogated, river-induced vertical wellbore flow can result in variations in measured concentration that nearly encompass the full range of variation in aquifer contaminant concentration with depth. Copyright © 2010 Battelle Memorial Institute. Journal compilation © 2010 National Ground Water Association.

  5. The effect of intra-wellbore head losses in a vertical well

    NASA Astrophysics Data System (ADS)

    Wang, Quanrong; Zhan, Hongbin

    2017-05-01

    Flow to a partially penetrating vertical well is made more complex by intra-wellbore losses. These are caused not only by the frictional effect, but also by the kinematic effect, which consists of the accelerational and fluid inflow effects inside a wellbore. Existing models of flow to a partially penetrating vertical well assume either a uniform-flux boundary condition (UFBC) or a uniform-head boundary condition (UHBC) for treating the flow into the wellbore. Neither approach considers intra-wellbore losses. In this study a new general solution, named the mixed-type boundary condition (MTBC) solution, is introduced to include intra-wellbore losses. It is developed from the existing solutions using a hybrid analytical-numerical method. The MTBC solution is capable of modeling various types of aquifer tests (constant-head tests, constant-rate tests, and slug tests) for partially or fully penetrating vertical wells in confined aquifers. Results show that intra-wellbore losses (both frictional and kinematic) can be significant in the early pumping stage. At later pumping times the UHBC solution is adequate because the difference between the MTBC and UHBC solutions becomes negligible.

  6. The influence of wellbore inflow on electromagnetic borehole flowmeter measurements.

    PubMed

    Clemo, Tom; Barrash, Warren; Reboulet, Edward C; Johnson, Timothy C; Leven, Carsten

    2009-01-01

    This paper describes a combined field, laboratory, and numerical study of electromagnetic borehole flowmeter measurements acquired without the use of a packer or skirt to block bypass flow around the flowmeter. The most significant finding is that inflow through the wellbore screen changes the ratio of flow through the flowmeter to wellbore flow. Experiments reveal up to a factor of two differences in this ratio for conditions with and without inflow through the wellbore screen. Standard practice is to assume the ratio is constant. A numerical model has been developed to simulate the effect of inflow on the flowmeter. The model is formulated using momentum conservation within the borehole and around the flowmeter. The model is embedded in the MODFLOW-2000 ground water flow code.

  7. The influence of wellbore inflow on electromagnetic borehole flowmeter measurements

    USGS Publications Warehouse

    Clemo, T.; Barrash, W.; Reboulet, E.C.; Johnson, T.C.; Leven, C.

    2009-01-01

    This paper describes a combined field, laboratory, and numerical study of electromagnetic borehole flowmeter measurements acquired without the use of a packer or skirt to block bypass flow around the flowmeter. The most significant finding is that inflow through the wellbore screen changes the ratio of flow through the flowmeter to wellbore flow. Experiments reveal up to a factor of two differences in this ratio for conditions with and without inflow through the wellbore screen. Standard practice is to assume the ratio is constant. A numerical model has been developed to simulate the effect of inflow on the flowmeter. The model is formulated using momentum conservation within the borehole and around the flowmeter. The model is embedded in the MODFLOW-2000 ground water flow code. ?? 2009 National Ground Water Association.

  8. Results of well-bore flow logging for six water-production wells completed in the Santa Fe Group aquifer system, Albuquerque, New Mexico, 1996-98

    USGS Publications Warehouse

    Thorn, Conde R.

    2000-01-01

    Over the last several years, an improved conceptual understanding of the aquifer system in the Albuquerque area, New Mexico, has lead to better knowledge about the location and extent of the aquifer system. This information will aid with the refinement of ground-water simulation and with the location of sites for future water-production wells. With an impeller-type flowmeter, well-bore flow was logged under pumping conditions along the screened interval of the well bore in six City of Albuquerque water-production wells: the Ponderosa 3, Love 6, Volcano Cliffs 1, Gonzales 2, Zamora 2, and Gonzales 3 wells. From each of these six wells, a well-bore flow log was collected that represents the cumulative upward well-bore flow. Evaluation of the well-bore flow log for each well allowed delineation of the more productive zones supplying water to the well along the logged interval. Yields from the more productive zones in the six wells ranged from about 70 to 880 gallons per minute. The lithology of these zones is predominantly gravel and sand with varying amounts of sandy clay.

  9. The Development of a Gas–Liquid Two-Phase Flow Sensor Applicable to CBM Wellbore Annulus

    PubMed Central

    Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming

    2016-01-01

    The measurement of wellbore annulus gas–liquid two-phase flow in CBM (coalbed methane) wells is of great significance for reasonably developing gas drainage and extraction processes, estimating CBM output, judging the operating conditions of CBM wells and analyzing stratum conditions. Hence, a specially designed sensor is urgently needed for real-time measurement of gas–liquid two-phase flow in CBM wellbore annulus. Existing flow sensors fail to meet the requirements of the operating conditions of CBM wellbore annulus due to such factors as an inapplicable measurement principle, larger size, poor sealability, high installation accuracy, and higher requirements for fluid media. Therefore, based on the principle of a target flowmeter, this paper designs a new two-phase flow sensor that can identify and automatically calibrate different flow patterns of two-phase flows. Upon the successful development of the new flow sensor, lab and field tests were carried out, and the results show that the newly designed sensor, with a measurement accuracy of ±2.5%, can adapt to the operating conditions of CBM wells and is reliable for long-term work. PMID:27869708

  10. The Development of a Gas-Liquid Two-Phase Flow Sensor Applicable to CBM Wellbore Annulus.

    PubMed

    Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming

    2016-11-18

    The measurement of wellbore annulus gas-liquid two-phase flow in CBM (coalbed methane) wells is of great significance for reasonably developing gas drainage and extraction processes, estimating CBM output, judging the operating conditions of CBM wells and analyzing stratum conditions. Hence, a specially designed sensor is urgently needed for real-time measurement of gas-liquid two-phase flow in CBM wellbore annulus. Existing flow sensors fail to meet the requirements of the operating conditions of CBM wellbore annulus due to such factors as an inapplicable measurement principle, larger size, poor sealability, high installation accuracy, and higher requirements for fluid media. Therefore, based on the principle of a target flowmeter, this paper designs a new two-phase flow sensor that can identify and automatically calibrate different flow patterns of two-phase flows. Upon the successful development of the new flow sensor, lab and field tests were carried out, and the results show that the newly designed sensor, with a measurement accuracy of ±2.5%, can adapt to the operating conditions of CBM wells and is reliable for long-term work.

  11. Optimization of Operation Parameters for Helical Flow Cleanout with Supercritical CO2 in Horizontal Wells Using Back-Propagation Artificial Neural Network.

    PubMed

    Song, Xianzhi; Peng, Chi; Li, Gensheng; He, Zhenguo; Wang, Haizhu

    2016-01-01

    Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2) as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN) was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in horizontal wells.

  12. Optimization of Operation Parameters for Helical Flow Cleanout with Supercritical CO2 in Horizontal Wells Using Back-Propagation Artificial Neural Network

    PubMed Central

    Song, Xianzhi; Peng, Chi; Li, Gensheng

    2016-01-01

    Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2) as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN) was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in horizontal wells. PMID:27249026

  13. Steady Fluid Flow to a Radial System of Horizontal Wells

    NASA Astrophysics Data System (ADS)

    Morozov, P. E.

    2018-03-01

    A semi-analyticalmethod for determining the productivity of a radial system of horizontal wells in an anisotropic reservoir is proposed. Calculation results for the productivity and distribution of fluid flow along the length of the wellbores of the radial system of horizontal wells using the proposed method are compared with the data of experimental studies based on electrolytic simulation and engineering formulas. The effects of the number of wellbores, their location in the reservoir, and the hydraulic pressure loss on the distribution of the fluid flow along the length of horizontal wellbores are investigated.

  14. Method of well testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ringgenberg, P.D.; Burris, W.J.

    1988-06-28

    A method is described of flow testing a formation in a wellbore, comprising: providing a testing string including at least one annulus pressure responsive tool bore closure valve; providing a packer and setting the packer in the wellbore to seal thereacross; running the testing string into the wellbore with the tool bore closure valve in an open position; stinging into the set packer with the bottom of the testing string; increasing pressure a first time in the wellbore annulus around the testing string and above the set packer without cycling the tool bore closure valve; reducing pressure in the wellboremore » annulus; closing the tool bore closure valve responsive to the pressure reduction; increasing pressure a second time in the wellbore annulus; reopening the tool bore closure valve responsive to the second increase; and flowing fluids from the formation through the reopened tool bore closure valve.« less

  15. Mechanical Expansion of Steel Tubing as a Solution to Leaky Wellbores

    PubMed Central

    Radonjic, Mileva; Kupresan, Darko

    2014-01-01

    Wellbore cement, a procedural component of wellbore completion operations, primarily provides zonal isolation and mechanical support of the metal pipe (casing), and protects metal components from corrosive fluids. These are essential for uncompromised wellbore integrity. Cements can undergo multiple forms of failure, such as debonding at the cement/rock and cement/metal interfaces, fracturing, and defects within the cement matrix. Failures and defects within the cement will ultimately lead to fluid migration, resulting in inter-zonal fluid migration and premature well abandonment. Currently, there are over 1.8 million operating wells worldwide and over one third of these wells have leak related problems defined as Sustained Casing Pressure (SCP)1. The focus of this research was to develop an experimental setup at bench-scale to explore the effect of mechanical manipulation of wellbore casing-cement composite samples as a potential technology for the remediation of gas leaks. The experimental methodology utilized in this study enabled formation of an impermeable seal at the pipe/cement interface in a simulated wellbore system. Successful nitrogen gas flow-through measurements demonstrated that an existing microannulus was sealed at laboratory experimental conditions and fluid flow prevented by mechanical manipulation of the metal/cement composite sample. Furthermore, this methodology can be applied not only for the remediation of leaky wellbores, but also in plugging and abandonment procedures as well as wellbore completions technology, and potentially preventing negative impacts of wellbores on subsurface and surface environments. PMID:25490436

  16. Mechanical expansion of steel tubing as a solution to leaky wellbores.

    PubMed

    Radonjic, Mileva; Kupresan, Darko

    2014-11-20

    Wellbore cement, a procedural component of wellbore completion operations, primarily provides zonal isolation and mechanical support of the metal pipe (casing), and protects metal components from corrosive fluids. These are essential for uncompromised wellbore integrity. Cements can undergo multiple forms of failure, such as debonding at the cement/rock and cement/metal interfaces, fracturing, and defects within the cement matrix. Failures and defects within the cement will ultimately lead to fluid migration, resulting in inter-zonal fluid migration and premature well abandonment. Currently, there are over 1.8 million operating wells worldwide and over one third of these wells have leak related problems defined as Sustained Casing Pressure (SCP). The focus of this research was to develop an experimental setup at bench-scale to explore the effect of mechanical manipulation of wellbore casing-cement composite samples as a potential technology for the remediation of gas leaks. The experimental methodology utilized in this study enabled formation of an impermeable seal at the pipe/cement interface in a simulated wellbore system. Successful nitrogen gas flow-through measurements demonstrated that an existing microannulus was sealed at laboratory experimental conditions and fluid flow prevented by mechanical manipulation of the metal/cement composite sample. Furthermore, this methodology can be applied not only for the remediation of leaky wellbores, but also in plugging and abandonment procedures as well as wellbore completions technology, and potentially preventing negative impacts of wellbores on subsurface and surface environments.

  17. AnalyzeHOLE - An Integrated Wellbore Flow Analysis Tool

    USGS Publications Warehouse

    Halford, Keith

    2009-01-01

    Conventional interpretation of flow logs assumes that hydraulic conductivity is directly proportional to flow change with depth. However, well construction can significantly alter the expected relation between changes in fluid velocity and hydraulic conductivity. Strong hydraulic conductivity contrasts between lithologic intervals can be masked in continuously screened wells. Alternating intervals of screen and blank casing also can greatly complicate the relation between flow and hydraulic properties. More permeable units are not necessarily associated with rapid fluid-velocity increases. Thin, highly permeable units can be misinterpreted as thick and less permeable intervals or not identified at all. These conditions compromise standard flow-log interpretation because vertical flow fields are induced near the wellbore. AnalyzeHOLE, an integrated wellbore analysis tool for simulating flow and transport in wells and aquifer systems, provides a better alternative for simulating and evaluating complex well-aquifer system interaction. A pumping well and adjacent aquifer system are simulated with an axisymmetric, radial geometry in a two-dimensional MODFLOW model. Hydraulic conductivities are distributed by depth and estimated with PEST by minimizing squared differences between simulated and measured flows and drawdowns. Hydraulic conductivity can vary within a lithology but variance is limited with regularization. Transmissivity of the simulated system also can be constrained to estimates from single-well, pumping tests. Water-quality changes in the pumping well are simulated with simple mixing models between zones of differing water quality. These zones are differentiated by backtracking thousands of particles from the well screens with MODPATH. An Excel spreadsheet is used to interface the various components of AnalyzeHOLE by (1) creating model input files, (2) executing MODFLOW, MODPATH, PEST, and supporting FORTRAN routines, and (3) importing and graphically displaying pertinent results.

  18. Heating production fluids in a wellbore

    DOEpatents

    Orrego, Yamila; Jankowski, Todd A.

    2016-07-12

    A method for heating a production fluid in a wellbore. The method can include heating, using a packer fluid, a working fluid flowing through a first medium disposed in a first section of the wellbore, where the first medium transfers heat from the packer fluid to the working fluid. The method can also include circulating the working fluid into a second section of the wellbore through a second medium, where the second medium transfers heat from the working fluid to the production fluid. The method can further include returning the working fluid to the first section of the wellbore through the first medium.

  19. Acoustic well cleaner

    DOEpatents

    Maki, Jr., Voldi E.; Sharma, Mukul M.

    1997-01-21

    A method and apparatus are disclosed for cleaning the wellbore and the near wellbore region. A sonde is provided which is adapted to be lowered into a borehole and which includes a plurality of acoustic transducers arranged around the sonde. Electrical power provided by a cable is converted to acoustic energy. The high intensity acoustic energy directed to the borehole wall and into the near wellbore region, redissolves or resuspends the material which is reducing the permeability of the formation and/or restricting flow in the wellbore.

  20. Methods for forming wellbores in heated formations

    DOEpatents

    Guimerans, Rosalvina Ramona; Mansure, Arthur James

    2012-09-25

    A method for forming a wellbore in a heated formation includes flowing liquid cooling fluid to a bottom hole assembly in a wellbore in a heated formation. At least a portion of the liquid cooling fluid is vaporized at or near a region to be cooled. Vaporizing the liquid cooling fluid absorbs heat from the region to be cooled.

  1. Application of Cement Science to Improved Wellbore Infrastructures Mileva Radonjic and Darko Kupresan Craft & Hawkins Department of Petroleum Engineering, Louisiana State University, USA Corresponding author: mileva@lsu.edu Key words: micro-annular gas flow, nano-properties of wellbore cements, micro-porosity

    NASA Astrophysics Data System (ADS)

    Radonjic, M.

    2015-12-01

    Recent focus on carbon emission from cement industry inspired researchers to improve CSH properties by reducing Ca/Si ratio at the nanoscale, and lower porosity (permeability) of hydrated cement at micro scale. If implemented in wellbore cement technology, both of these efforts could provide advanced properties for wellbore infrastructure. These advancements would further reduce the issue of leaky wellbores in fluid injections, hydraulic fracturing and subsurface storage for existing operating wells. Numerous inadequately abandoned wells, however, pose more complex engineering problems, primarily due to the difficulty in locating fluid flow pathways along the wellbore structure. In order to appreciate the difficulty of this problem, we need to remind ourselves that: a typical 30,000-ft. wellbore with an average production casing of 8 inches in diameter can be presented in scale by a 6-m long human hair of 150 μm these structures are placed in the subsurface, often not just vertical in geometry but deviated close to 90° tangent where monitoring and remediation becomes demanding and if we consider that wellbore cement is not continuously placed along the wellbore and it is approximately 1/10 of a wellbore diameter, we can see that the properties of these materials demand application of nano-science and a different scale phenomena than perhaps previously acknowledged. The key concept behind Ca/Si reduction associated with improved mechanical properties is traditionally achieved chemically, by addition of supplemental cementitious materials. In our study we have tried to evaluate CSH alterations due to mechanically induced phase transformation. The data suggest that confined compression-extrusion of hydrated wellbore cement and the consequent propagation of pore water can change cement composition by dissolving and removing Ca, therefore reducing Ca/Si of cement phases. The advantage of this approach is that the process is less impacted by pressure/temperature oscillations found in subsurface conditions. In addition, we have proved experimentally, that even cement samples stored in corrosive environment for two years can successfully be treated and healed by confined compression of tubular expansion for purpose of microannular gas flow remediation.

  2. U.S. Geological Survey Combined Well-Bore Flow and Depth-Dependent Water Sampler

    USGS Publications Warehouse

    Izbicki, John A.; Christensen, Allen H.; Hanson, Randall T.; Martin, Peter; Crawford, Steven M.; Smith, Gregory A.

    1999-01-01

    The U.S. Geological Survey has developed a combined well-bore flow and depth-dependent sample collection tool. It is suitable for use in existing production wells having limited access and clearances as small as 1 inch. The combination of well-bore flow and depth-dependent water-quality data is especially effective in assessing changes in aquifer properties and water quality with depth. These are direct measures of changes in well yield and ground-water quality with depth under actual operating conditions. Combinations of other geophysical tools capable of making these measurements, such as vertical-axis current meters used with wire-line samplers, are commercially available but these tools are large and can not easily enter existing production wells.

  3. Investigation of wellbore microannulus permeability under stress via experimental wellbore mock-up and finite element modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, Steven P.; Sobolik, Steve R.; Matteo, Edward N.

    This research aims to describe the microannulus region of the cement sheath-steel casing interface in terms of its compressibility and permeability. Here, a wellbore system mock-up was used for lab-scale testing, and was subjected to confining and casing pressures in a pressure vessel while measuring gas flow along the specimen’s axis. The flow was interpreted as the hydraulic aperture of the microannuli. Numerical joint models were used to calculate stress and displacement conditions of the microannulus region, where the mechanical stiffness and hydraulic aperture were altered in response to the imposed stress state and displacement across the joint interface.

  4. Investigation of wellbore microannulus permeability under stress via experimental wellbore mock-up and finite element modeling

    DOE PAGES

    Gomez, Steven P.; Sobolik, Steve R.; Matteo, Edward N.; ...

    2016-11-16

    This research aims to describe the microannulus region of the cement sheath-steel casing interface in terms of its compressibility and permeability. Here, a wellbore system mock-up was used for lab-scale testing, and was subjected to confining and casing pressures in a pressure vessel while measuring gas flow along the specimen’s axis. The flow was interpreted as the hydraulic aperture of the microannuli. Numerical joint models were used to calculate stress and displacement conditions of the microannulus region, where the mechanical stiffness and hydraulic aperture were altered in response to the imposed stress state and displacement across the joint interface.

  5. Downhole measurements and fluid chemistry of a castle rock steam well, the Geysers, Lake County, California

    USGS Publications Warehouse

    Truesdell, A.H.; Nathenson, M.; Frye, G.A.

    1981-01-01

    Wellbore and reservoir processes in a steam well in the Castle Rock field of The Geysers have been studied by means of down-hole pressure and temperature measurements and analyses of ejected water and steam produced under bleed and full flow. Down-hole measurements show that below a vapor zone there is liquid water in the well in pressure equilibrium with reservoir steam at a depth of 2290 m. The progressive decreases, from 1973 to 1977, of pressure and temperature in the vapor zone indicate that wellbore heat loss is high enough to condense a large fraction of the steam inflow. The chemical composition of water ejected from the well is consistent with an origin from wellbore condensation of steam. Calculations using the differences in gas and isotopic compositions between bleed and full-flow steam show that about half of the full-flow steam originated as liquid water in the reservoir and that about 30% of the steam entering the well under bleed was condensed in the wellbore and drained downward. Heat loss calculations are also consistent with this amount of condensation. ?? 1981.

  6. Wellbore Seal Repair Using Nanocomposite Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stormont, John

    2016-08-31

    Nanocomposite wellbore repair materials have been developed, tested, and modeled through an integrated program of laboratory testing and numerical modeling. Numerous polymer-cement nanocomposites were synthesized as candidate wellbore repair materials using various combinations of base polymers and nanoparticles. Based on tests of bond strength to steel and cement, ductility, stability, flowability, and penetrability in opening of 50 microns and less, we identified Novolac epoxy reinforced with multi-walled carbon nanotubes and/or alumina nanoparticles to be a superior wellbore seal material compared to conventional microfine cements. A system was developed for testing damaged and repaired wellbore specimens comprised of a cement sheathmore » cast on a steel casing. The system allows independent application of confining pressures and casing pressures while gas flow is measured through the specimens along the wellbore axis. Repair with the nanocomposite epoxy base material was successful in dramatically reducing the flow through flaws of various sizes and types, and restoring the specimen comparable to an intact condition. In contrast, repair of damaged specimens with microfine cement was less effective, and the repair degraded with application of stress. Post-test observations confirm the complete penetration and sealing of flaws using the nanocomposite epoxy base material. A number of modeling efforts have supported the material development and testing efforts. We have modeled the steel-repair material interface behavior in detail during slant shear tests, which we used to characterize bond strength of candidate repair materials. A numerical model of the laboratory testing of damaged wellbore specimens was developed. This investigation found that microannulus permeability can satisfactorily be described by a joint model. Finally, a wellbore model has been developed that can be used to evaluate the response of the wellbore system (casing, cement, and microannulus), including the use of either cement or a nanocomposite in the microannulus to represent a repaired system. This wellbore model was successfully coupled with a field-scale model of CO 2 injection, to enable predictions of stress and strains in the wellbore subjected to subsurface changes (i.e. domal uplift) associated with fluid injection.« less

  7. Analytical Solution for Flow to a Partially Penetrating Well with Storage in a Confined Aquifer

    NASA Astrophysics Data System (ADS)

    Vesselinov, V. V.; Mishra, P. K.; Neuman, S. P.

    2009-12-01

    Analytical solutions for radial flow toward a pumping well are commonly applied to analyze pumping tests conducted in confined aquifers. However, the existing analytical solutions are not capable to simultaneously take into account aquifer anisotropy, partial penetration, and wellbore storage capacity of pumping well. Ignoring these effects may have important impact on the estimated aquifer properties. We present a new analytical solution for three-dimensional, axially symmetric flow to a pumping well in confined aquifer that accouts for aquifer anisotropy, partial penetration and wellbore storage capacity of pumping well. Our analytical reduces to that of Papadopulos et.al. [1967] when the pumping well is fully penetrating, Hantush [1964] when the pumping well has no wellbore storage, and Theis [1935] when both conditions are fulfilled. The solution is evaluated through numerical inversion of its Laplace transform. We use our new solution to analyze data from synthetic and real pumping tests.

  8. Numerical studies of CO2 and brine leakage into a shallow aquifer through an open wellbore

    NASA Astrophysics Data System (ADS)

    Wang, Jingrui; Hu, Litang; Pan, Lehua; Zhang, Keni

    2018-03-01

    Industrial-scale geological storage of CO2 in saline aquifers may cause CO2 and brine leakage from abandoned wells into shallow fresh aquifers. This leakage problem involves the flow dynamics in both the wellbore and the storage reservoir. T2Well/ECO2N, a coupled wellbore-reservoir flow simulator, was used to analyze CO2 and brine leakage under different conditions with a hypothetical simulation model in water-CO2-brine systems. Parametric studies on CO2 and brine leakage, including the salinity, excess pore pressure (EPP) and initially dissolved CO2 mass fraction, are conducted to understand the mechanism of CO2 migration. The results show that brine leakage rates increase proportionally with EPP and inversely with the salinity when EPP varies from 0.5 to 1.5 MPa; however, there is no CO2 leakage into the shallow freshwater aquifer if EPP is less than 0.5 MPa. The dissolved CO2 mass fraction shows an important influence on the CO2 plume, as part of the dissolved CO2 becomes a free phase. Scenario simulation shows that the gas lifting effect will significantly increase the brine leakage rate into the shallow freshwater aquifer under the scenario of 3.89% dissolved CO2 mass fraction. The equivalent porous media (EPM) approach used to model the wellbore flow has been evaluated and results show that the EPM approach could either under- or over-estimate brine leakage rates under most scenarios. The discrepancies become more significant if a free CO2 phase evolves. Therefore, a model that can correctly describe the complex flow dynamics in the wellbore is necessary for investigating the leakage problems.

  9. Proppant backflow: Mechanical and flow considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLennan, John; Walton, Ian; Moore, Joseph

    2015-09-01

    One of the concerns of using proppant in geothermal wells, and particularly in enhanced geothermal systems, is proppant flowback. Particulate proppant maintain post-closure conductivity in hydraulically opened fractures. If that proppant is displaced from the near-wellbore region, either due to overflushing during stimulation or flowback to the wellbore at any time, the reduced fracture width chokes the injection or production. Two intermediate-scale laboratory analogs of a propped hydraulic fracture were prepared, and fluid was flowed through a normally stressed, propped fracture into a central wellbore. The tests were conducted in a polyaxial load frame. Acoustic/microseismic activity was measured during themore » injection programs. In one scenario—radial flow through a transverse fracture to a wellbore—the results suggest the creation of flow channels and nominally intact propped zones around the channels, maintaining fracture aperture. In the other—linear flow through a longitudinal fracture into a wellbore—there was substantially more proppant removal. The measurements have shown a greater tendency for proppant flowback in a linear flow situation (proppant movement is kinematically more restricted for radial convergent flow). The pressure gradients causing flow are exceedingly small and restraining flowback will be difficult. Convergent flow relationships could be an issue for injector wells, which will experience fluid flowback during hard shutdowns.« less

  10. A mechanistic model of heat transfer for gas-liquid flow in vertical wellbore annuli.

    PubMed

    Yin, Bang-Tang; Li, Xiang-Fang; Liu, Gang

    2018-01-01

    The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.

  11. Gas and Oil Flow through Wellbore Flaws

    NASA Astrophysics Data System (ADS)

    Hatambeigi, M.; Anwar, I.; Reda Taha, M.; Bettin, G.; Chojnicki, K. N.; Stormont, J.

    2017-12-01

    We have measured gas and oil flow through laboratory samples that represent two important potential flow paths in wellbores associated with the Strategic Petroleum Reserve (SPR): cement-steel interfaces (microannuli) and cement fractures. Cement fractures were created by tensile splitting of cement cores. Samples to represent microannuli were created by placing thin steel sheets within split cement cores so flow is channeled along the cement-steel interface. The test sequence included alternating gas and oil flow measurements. The test fluids were nitrogen and silicone oil with properties similar to a typical crude oil stored in the SPR. After correcting for non-linear (inertial) flow when necessary, flows were interpreted as effective permeability and hydraulic aperture using the cubic law. For both samples with cement fractures and those with cement-steel interfaces, initial gas and oil permeabilities were comparable. Once saturated with oil, a displacement pressure had to be overcome to establish gas flow through a sample, and the subsequent gas permeability were reduced by more than 50% compared to its initial value. Keywords: wellbore integrity, leakage, fracture, microannulus, SPR. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of NTESS/Honeywell, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2017-8168 A

  12. An analytical model for flow induced by a constant-head pumping in a leaky unconfined aquifer system with considering unsaturated flow

    NASA Astrophysics Data System (ADS)

    Lin, Ye-Chen; Li, Ming-Hsu; Yeh, Hund-Der

    2017-09-01

    A new mathematical model is developed to describe the flow in response to a constant-head pumping (or constant-head test, CHT) in a leaky unconfined aquifer system of infinite lateral extent with considering unsaturated flow. The model consists of an unsaturated zone on the top, an unconfined aquifer in the middle, and a second aquifer (aquitard) at the bottom. The unsaturated flow is described by Richard's equation, and the flows in unconfined aquifer and second layer are governed by the groundwater flow equation. The well partially penetrates the unconfined aquifer with a constant head in the well due to CHT. The governing equations of the model are linearized by the perturbation method and Gardner's exponential model is adopted to describe the soil retention curves. The solution of the model for drawdown distribution is obtained by applying the methods of Laplace transform and Weber transform. Then the solution for the wellbore flowrate is derived from the drawdown solution with Darcy's law. The issue of the equivalence of normalized drawdown predicted by the present solution for constant-head pumping and Tartakovsky and Neuman's (2007) solution for constant-rate pumping is discussed. On the basis of the wellbore flowrate solution, the results of the sensitivity analysis indicate that the wellbore flowrate is very sensitive to the changes in the radial hydraulic conductivity and the thickness of the saturated zone. Moreover, the results predicted from the present wellbore flowrate solution indicate that this new solution can reduce to Chang's et al. (2010a) solution for homogenous aquifers when the dimensionless unsaturated exponent approaches 100. The unsaturated zone can be considered as infinite extent in the vertical direction if the thickness ratio of the unsaturated zone to the unconfined aquifer is equal to or greater than one. As for the leakage effect, it can be ignored when the vertical hydraulic conductivity ratio (i.e., the vertical hydraulic conductivity of the lower layer over that of the unconfined aquifer) is smaller than 0.1. The present solution is compared with the numerical solution from FEMWATER for validation and the results indicate good match between these two solutions. Finally, the present solution is applied to a set of field drawdown data obtained from a CHT for the estimation of hydrogeologic parameters.

  13. Integrity of Pre-existing Wellbores in Geological Sequestration of CO 2 – Assessment Using a Coupled Geomechanics-fluid Flow Model

    DOE PAGES

    Kelkar, Sharad; Carey, J. William; Dempsey, David; ...

    2014-12-31

    Assessment of potential CO 2 and brine leakage from wellbores is central to any consideration of the viability of geological CO 2 sequestration. Depleted oil and gas reservoirs are some of the potential candidates for consideration as sequestration sites. The sequestration sites are expected to cover laterally extensive areas to be of practical interest. Hence there is a high likelihood that such sites will contain many pre-existing abandoned wells. Most existing work on wellbore integrity has focused on field and laboratory studies of chemical reactivity. Very little work has been done on the impacts of mechanical stresses on wellbore performance.more » This study focuses on the potential enhancement of fluid flow pathways in the near-wellbore environment due to modifications in the geomechanical stress field resulting from the CO 2 injection operations. The majority of the operational scenarios for CO 2 sequestration lead to significant rise in the formation pore pressure. This is expected to lead to an expansion of the reservoir rock and build-up of shear stresses near wellbores where the existence of cement and casing are expected to constrain the expansion. If the stress buildup is large enough, this can lead to failure with attendant permeability enhancement that can potentially provide leakage pathways to shallower aquifers and the surface. In this study, we use a numerical model to simulate key features of a wellbore (casing, annulus and cement) embedded in a system that includes the upper aquifer, caprock, and storage aquifer. We present the sensitivity of damage initiation and propagation to various operational and formation parameters. We consider Mohr-Coulomb shear-failure models; tensile failure is also likely to occur but will require higher stress changes and will be preceded by shear failure. The modeling is performed using the numerical simulator FEHM developed at LANL that models coupled THM processes during multi-phase fluid flow and deformation in fractured porous media. FEHM has been developed extensively under projects on conventional/unconventional energy extraction (geothermal, oil, and gas), radionuclide and contaminant transport, watershed management, and CO 2 sequestration.« less

  14. Geophysical-log and hydraulic-test analyses of groundwater-production wells at the Hannahville Indian Community, Menominee County, Michigan

    USGS Publications Warehouse

    Bayless, E. Randall; Anderson, J. Alton; Lampe, David C.; Williams, John H.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the Hannahville Indian Community, evaluated the geohydrology of the bedrock formations and hydraulic properties of groundwater-production wells at the Hannahville Indian Community in Menominee County, Michigan. Geophysical logs were collected from five wells at two sites during September 2012. The logs were analyzed to characterize the lithostratigraphy, bedding and fractures, and hydraulic properties of the geologic formations and aquifers beneath the Hannahville Indian Community. The geophysical logs collected included natural gamma radiation, electromagnetic conductivity, wellbore image, caliper, ambient and stressed flowmeter, fluid resistivity, temperature, and wellbore deviation. The geophysical logs were analyzed with results from short-term hydraulic tests to estimate the transmissivity and water-level altitudes of flow zones penetrated by the wells. The geophysical log analysis indicated the wells penetrated four distinct lithostratigraphic units—shale and carbonate rock, upper carbonate rock, carbonate rock and glauconitic sandstone, and lower carbonate rock. Most of the fractures penetrated by the wellbores appeared to be related bedding partings. The lower carbonate rock unit contained solution features. Analysis of the geophysical logs and hydraulic tests indicated that each of the five wells penetrated from one to four flow zones. The Casino 5 well penetrated a flow zone that was associated with solution features and had an estimated total transmissivity of 4,280 feet squared per day (ft2/d), the highest estimate for all the wells. The Casino 3 well penetrated four flow zones and had an estimated total transmissivity of 3,570 ft2/d. The flow zones penetrated in the lower carbonate rock unit by the Casino 3 and 5 wells were hydraulically connected. The Golf Shack well penetrated two flow zones and had an estimated total transmissivity of 40 ft2/d, the lowest estimate for all the wells. The Community 1 and Community 2 wells penetrated three and four flow zones, respectively, and had estimated total transmissivity values of 185 and 280 ft2/d, respectively.

  15. Combined use of flowmeter and time-drawdown data to estimate hydraulic conductivities in layered aquifer systems

    USGS Publications Warehouse

    Hanson, R.T.; Nishikawa, T.

    1996-01-01

    The vertical distribution of hydraulic conductivity in layered aquifer systems commonly is needed for model simulations of ground-water flow and transport. In previous studies, time-drawdown data or flowmeter data were used individually, but not in combination, to estimate hydraulic conductivity. In this study, flowmeter data and time-drawdown data collected from a long-screened production well and nearby monitoring wells are combined to estimate the vertical distribution of hydraulic conductivity in a complex multilayer coastal aquifer system. Flowmeter measurements recorded as a function of depth delineate nonuniform inflow to the wellbore, and this information is used to better discretize the vertical distribution of hydraulic conductivity using analytical and numerical methods. The time-drawdown data complement the flowmeter data by giving insight into the hydraulic response of aquitards when flow rates within the wellbore are below the detection limit of the flowmeter. The combination of these field data allows for the testing of alternative conceptual models of radial flow to the wellbore.

  16. Proceedings of the wellbore sampling workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traeger, R.K.; Harding, B.W.

    Representatives from academia, industry and research laboratories participated in an intensive two-day review to identify major technological limitations in obtaining solid and fluid samples from wellbores. Top priorities identified for further development include: coring of hard and unconsolidated materials; flow through fluid samplers with borehole measurements T, P and pH; and nonintrusive interrogation of pressure cores.

  17. Fully coupled simulation of multiple hydraulic fractures to propagate simultaneously from a perforated horizontal wellbore

    NASA Astrophysics Data System (ADS)

    Zeng, Qinglei; Liu, Zhanli; Wang, Tao; Gao, Yue; Zhuang, Zhuo

    2018-02-01

    In hydraulic fracturing process in shale rock, multiple fractures perpendicular to a horizontal wellbore are usually driven to propagate simultaneously by the pumping operation. In this paper, a numerical method is developed for the propagation of multiple hydraulic fractures (HFs) by fully coupling the deformation and fracturing of solid formation, fluid flow in fractures, fluid partitioning through a horizontal wellbore and perforation entry loss effect. The extended finite element method (XFEM) is adopted to model arbitrary growth of the fractures. Newton's iteration is proposed to solve these fully coupled nonlinear equations, which is more efficient comparing to the widely adopted fixed-point iteration in the literatures and avoids the need to impose fluid pressure boundary condition when solving flow equations. A secant iterative method based on the stress intensity factor (SIF) is proposed to capture different propagation velocities of multiple fractures. The numerical results are compared with theoretical solutions in literatures to verify the accuracy of the method. The simultaneous propagation of multiple HFs is simulated by the newly proposed algorithm. The coupled influences of propagation regime, stress interaction, wellbore pressure loss and perforation entry loss on simultaneous propagation of multiple HFs are investigated.

  18. Groundwater-Quality Impacts from Natural-Gas Wellbore Leakage: Numerical Sensitivity Analysis of Hydrogeologic, Geostatistical, and Source-Term Parameterization at Varying Depths

    NASA Astrophysics Data System (ADS)

    Rice, A. K.; McCray, J. E.; Singha, K.

    2016-12-01

    The development of directional drilling and stimulation of reservoirs by hydraulic fracturing has transformed the energy landscape in the U.S. by making recovery of hydrocarbons from shale formations not only possible but economically viable. Activities associated with hydraulic fracturing present a set of water-quality challenges, including the potential for impaired groundwater quality. In this project, we use a three-dimensional, multiphase, multicomponent numerical model to investigate hydrogeologic conditions that could lead to groundwater contamination from natural gas wellbore leakage. This work explores the fate of methane that enters a well annulus, possibly from an intermediate formation or from the production zone via a flawed cement seal, and leaves the annulus at one of two depths: at the elevation of groundwater or below a freshwater aquifer. The latter leakage scenario is largely ignored in the current scientific literature, where focus has been on leakage directly into freshwater aquifers, despite modern regulations requiring steel casings and cement sheaths at these depths. We perform a three-stage sensitivity analysis, examining (1) hydrogeologic parameters of media surrounding a methane leakage source zone, (2) geostatistical variations in intrinsic permeability, and (3) methane source zone pressurization. Results indicate that in all cases methane reaches groundwater within the first year of leakage. To our knowledge, this is the first study to consider natural gas wellbore leakage in the context of multiphase flow through heterogeneous permeable media; advantages of multiphase modeling include more realistic analysis of methane vapor-phase relative permeability as compared to single-phase models. These results can be used to inform assessment of aquifer vulnerability to hydrocarbon wellbore leakage at varying depths.

  19. Wellbore stability analysis and its application in the Fergana basin, central Asia

    NASA Astrophysics Data System (ADS)

    Chuanliang, Yan; Jingen, Deng; Baohua, Yu; Hailong, Liu; Fucheng, Deng; Zijian, Chen; Lianbo, Hu; Haiyan, Zhu; Qin, Han

    2014-02-01

    Wellbore instability is one of the major problems hampering the drilling speed in the Fergana basin. Comprehensive analysis of the geological and engineering data in this area indicates that the Fergana basin is characterized by high in situ stress and plenty of natural fractures, especially in the formations which are rich in bedding structure and have several high-pressure systems. Complex accidents such as wellbore collapse, sticking, well kick and lost circulation happen frequently. Tests and theoretical analysis reveals that the wellbore instability in the Fergana basin was influenced by multiple interactive mechanisms dominated by the instability of the bedding shale. Selecting a proper drilling fluid density and improving the sealing characteristic of the applied drilling fluid is the key to preventing wellbore instability in the Fergana basin. The mechanical mechanism of wellbore instability in the Fergana basin was analysed and a method to determine the proper drilling fluid density was proposed. The research results were successfully used to guide the drilling work of the Jida-4 well; compared with the Jida-3 well, the drilling cycle of the Jida-4 well was reduced by 32%.

  20. Evolution of Cement-Casing Interface in Wellbore Microannuli under Stress

    NASA Astrophysics Data System (ADS)

    Matteo, E. N.; Gomez, S. P.; Sobolik, S. R.; Taha, M. R.; Stormont, J.

    2017-12-01

    Laboratory tests measured the compressibility and flow characteristics of wellbore microannuli. Specimens, consisting of a cement sheath cast on a steel casing with microannuli, were subjected to confining pressures and casing pressures in a pressure vessel that allows simultaneous measurement of gas flow along the axis of the specimen. The flow was interpreted as the hydraulic aperture of the microannuli. We found the hydraulic aperture decreases as confining stress is increased. The larger the initial hydraulic aperture, the more it decreases as confining stress increases. The changes in measured hydraulic aperture correspond to changes of many orders of magnitude in permeability of the wellbore system, suggesting that microannulus response to stress changes may have a significant impact on estimates of wellbore leakage. A finite element model of a wellbore system was developed that included elements representing the microannulus that incorporated the hyperbolic joint model. The thickness of the microannulus elements is equivalent to the hydraulic aperture. The calculated normal stress across the microannulus used in the numerical implementation was found to be similar to the applied confining pressure in the laboratory tests. The microannulus elements were found to reasonably reproduce laboratory behavior during loading from confining pressure increases. The calculated microannulus response to internal casing pressure changes was less stiff than measured, which may be due to hardening of the microannulus during testing. In particular, the microannulus model could be used to estimate CO2 leakage as a function of formation stress changes and/or displacements, or loading from casing expansion or contraction during wellbore operations. Recommendations for future work include an application of the joint model with a thermally active large-scale reservoir coupled with pore pressure caused by dynamic CO2 injection and subsequent microannulus region affects. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. SAND2017-8090 A.

  1. Evidence of Rapid Localized Groundwater Transport in Volcanic Tuffs Beneath Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Freifeld, B.; Walker, J.; Doughty, C.; Kryder, L.; Gilmore, K.; Finsterle, S.; Sampson, J.

    2006-12-01

    At Yucca Mountain, Nevada, the proposed location for a national high-level nuclear waste repository radionuclides, if released from breached waste storage canisters, could make their way down through the unsaturated zone (where the repository would be located) into the underlying groundwater and eventually back to the biosphere (i.e., where they could adversely affect human health). The compliance boundary, 18 km south of the proposed repository, is defined as the location where a human being using groundwater would be maximally exposed to radionuclides outside of an exclusion zone set around the repository. It is thus important to predict how these radionuclides would be transported by the groundwater flow, and to predict both the concentration of and the rate at which any leaked radionuclides would arrive at the compliance boundary. We recently conducted a study of groundwater flux in the saturated zone through the Crater Flat Group, in a wellbore 15 km south of the proposed repository. The Crater Flat Group, a sequence of ash-flow tuff formations, is laterally extensive beneath the footprint of the proposed repository. Because of its intense fracturing and high permeabilities, the Bullfrog tuff is the primary unit within the Crater Flat Group through which radionuclides would be transported, as indicated by groundwater models. In a new wellbore, NC-EWDP- 24PB, we conducted flowing electrical conductivity logging (FEC), an open-wellbore logging technique, to identify flowing fractures prior to wellbore completion. While the FEC logs have identified transmissive zones, quantitative interpretation of the FEC results was difficult because differences in hydraulic heads in different flowing intervals created significant intraborehole fluid flow. The well was subsequently backfilled and completed with a distributed thermal perturbation sensor (DTPS), which introduces a thermal pulse to the wellbore and uses the thermal transient to estimate groundwater flux. Corroborating FEC observations, the DTPS has identified two flowing intervals within the Bullfrog tuff that are each approximately 20 m thick and exhibit an average specific discharge of 50 m/yr. Assuming a fracture porosity of 1%, groundwater velocities are estimated to be on the order of 5 to 10 km/yr. While these results are for one borehole, heterogeneity in the flow system may play a significant role in determining regional groundwater flow. Additional data, including geochemical and isotopic, will be needed to provide a more complete picture of the origin of the groundwater in these fast flow paths, and aid in the determination of the lateral extent of the identified flowing intervals. This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and Nye County Cooperative Agreement CA DE-FC28-02RW12163.

  2. Controlled Source Electromagnetic Monitoring of Hydraulic Fracturing: Wellbore and Fluid Effects

    NASA Astrophysics Data System (ADS)

    Couchman, M. J.; Everett, M. E.

    2017-12-01

    As unconventional resources become increasingly important, we must tackle the issue of real-time monitoring of the efficiency of unconventional hydrocarbon extraction. Controlled Source Electromagnetics (CSEM) have been used primarily as a marine-based technique to monitor conventional oil bearing reservoirs with a strong resurgence the new millennium. Many of these studies revolving around detecting a thin resistive layer such as a reservoir at 1m - 3km depth. In these cases, the presence of the resistive layer is characterized by a jump in electric field amplitude recorded at the boundary between the layer and the host sediments. The lessons learned from these studies can be applied to terrestrial unconventional settings with appropriate modifications. The work shown here is a means develop methods which enable more reliable terrestrial CSEM monitoring of the flow of injected fluids associated with hydraulic fracturing of unconventional reservoirs and to detect subsurface fluids based on their CSEM signature and in turn, to infer the subsurface flow of electrically conductive injected fluids. The predictive model validated for various 1-D marine, and terrestrial cases focus on the mapping of fluid flow in from a horizontal wellbore in a uniform halfspace using an in-line Horizontal Electric Dipole (HED) with electric field amplitude recorded by an array of electric field sensors. The effect of the of the vertical and horizontal wellbores are documented taking into account the conductivity, size, and thickness of each wellbore. The fracturing fluids flow and conductivity are also taken into account throughout various stages of the fracturing process. In each case, the sensitivity at a location of the surface in-line electric field to a given resistive or conductive layer, due to a source is calculated.

  3. Chemical Effect on Wellbore Instability of Nahr Umr Shale

    PubMed Central

    Nie, Zhen

    2013-01-01

    Wellbore instability is one of the major problems that hamper the drilling speed in Halfaya Oilfield. Comprehensive analysis of geological and engineering data indicates that Halfaya Oilfield features fractured shale in the Nahr Umr Formation. Complex accidents such as wellbore collapse and sticking emerged frequently in this formation. Tests and theoretical analysis revealed that wellbore instability in the Halfaya Oilfield was influenced by chemical effect of fractured shale and the formation water with high ionic concentration. The influence of three types of drilling fluids on the rock mechanical properties of Nahr Umr Shale is tested, and time-dependent collapse pressure is calculated. Finally, we put forward engineering countermeasures for safety drilling in Halfaya Oilfield and point out that increasing the ionic concentration and improving the sealing capacity of the drilling fluid are the way to keep the wellbore stable. PMID:24282391

  4. Chemical effect on wellbore instability of Nahr Umr Shale.

    PubMed

    Yu, Baohua; Yan, Chuanliang; Nie, Zhen

    2013-01-01

    Wellbore instability is one of the major problems that hamper the drilling speed in Halfaya Oilfield. Comprehensive analysis of geological and engineering data indicates that Halfaya Oilfield features fractured shale in the Nahr Umr Formation. Complex accidents such as wellbore collapse and sticking emerged frequently in this formation. Tests and theoretical analysis revealed that wellbore instability in the Halfaya Oilfield was influenced by chemical effect of fractured shale and the formation water with high ionic concentration. The influence of three types of drilling fluids on the rock mechanical properties of Nahr Umr Shale is tested, and time-dependent collapse pressure is calculated. Finally, we put forward engineering countermeasures for safety drilling in Halfaya Oilfield and point out that increasing the ionic concentration and improving the sealing capacity of the drilling fluid are the way to keep the wellbore stable.

  5. Field, laboratory, and modeling investigation of the skin effect at wells with slotted casing, Boise Hydrogeophysical Research Site

    NASA Astrophysics Data System (ADS)

    Barrash, Warren; Clemo, Tom; Fox, Jessica J.; Johnson, Timothy C.

    2006-07-01

    Understanding and quantification of wellbore skin improves our ability to accurately measure or estimate hydrologic parameters with tests at wells such as pumping tests, flowmeter tests, and slug tests. This paper presents observations and results from a series of field, laboratory, and modeling tests which, together, explain the source of wellbore skin at wells at a research wellfield and which support estimation of skin thickness ( ds) and skin hydraulic conductivity ( Ks). Positive wellbore skin effects were recognized at wells in the shallow, unconfined, coarse-grained fluvial aquifer at the Boise Hydrogeophysical Research Site (BHRS). Well development efforts at the BHRS removed residual drilling fines but only marginally reduced the skin effect. Likely causes for the remaining wellbore skin effect were examined; partial clogging of screen slots with sand is consistent with field observations and can account for the magnitude of wellbore skin effect observed. We then use the WTAQ code ( Barlow and Moench, 1999) with a redefinition of the term for delayed observation well response to include skin effects at observation wells (in addition to pumping wells) in order to analyze aquifer tests at the BHRS for average Ks values at individual wells. Systematic differences in Ks values are recognized in results at pumping ( Ks_Q) and observation ( Ks_obs) wells: larger values are seen at observation wells (average Ks_obs=0.0023 cm/s) than pumping wells. Two possible causes are recognized for the occurrence of higher Ks values at observation wells than pumping wells: (1) flow diversion between aquifer layers on approach to a pumping well with positive skin; and (2) larger portion of flow passing through lower-K zones in the heterogeneous aquifer near the pumping well than the observation wells due to strongly radially convergent flow near the pumping well. For the well-aquifer system at the BHRS, modeling analyses of drawdown vs time at observation wells provide better Ks estimates than those from pumping wells.

  6. Relative permeability of fractured wellbore cement: an experimental investigation using electrical resistivity monitoring for moisture content

    NASA Astrophysics Data System (ADS)

    Um, W.; Rod, K. A.; Strickland, C. E.

    2016-12-01

    Permeability is a critical parameter needed to understand flow in subsurface environments; it is particularly important in deep subsurface reservoirs where multiphase fluid flow is common, such as carbon sequestration and geothermal reservoirs. Cement is used in the annulus of wellbores due to its low permeable properties to seal aquifers, reducing leaks to adjacent strata. Extreme subsurface environments of CO2 storage and geothermal production conditions will eventually reduce the cement integrity, propagating fracture networks and increasing the permeability for air and/or water. To date, there have been no reproducible experimental investigations of relative permeability in fractured wellbore cement published. To address this gap, we conducted a series of experiments using fractured Portland cement monoliths with increasing fracture networks. The monolith cylinder sides were jacketed with heavy-duty moisture-seal heat-shrink tubing, then fractured using shear force applied via a hydraulic press. Fractures were generated with different severity for each of three monoliths. Stainless steel endcaps were fixed to the monoliths using the same shrink-wrapped jacket. Fracture characteristics were determined using X-ray microtomography and image analysis. Flow controllers were used to control flow of water and air to supply continuous water or water plus air, both of which were delivered through the influent end cap. Effluent air flow was monitored using a flow meter, and water flow was measured gravimetrically. To monitor the effective saturation of the fractures, a RCON2 concrete bulk electrical resistivity test device was attached across both endcaps and a 0.1M NaNO3 brine was used as the transport fluid to improve resistivity measurements. Water content correlated to resistivity measurements with a r2 > 0.96. Data from the experiments was evaluated using two relative permeability models, the Corey-curve, often used for modeling relative permeability in porous media, and the X-curve, commonly used to depict the relative permeability of fractures. Relative permeability measurements from the cores containing a higher degree of fracturing showed a better fit to X-curve, while data from the minimally fractured cores were better described by fitting to the Corey-curve.

  7. Transient well flow in layered aquifer systems: the uniform well-face drawdown solution

    NASA Astrophysics Data System (ADS)

    Hemker, C. J.

    1999-11-01

    Previously a hybrid analytical-numerical solution for the general problem of computing transient well flow in vertically heterogeneous aquifers was proposed by the author. The radial component of flow was treated analytically, while the finite-difference technique was used for the vertical flow component only. In the present work the hybrid solution has been modified by replacing the previously assumed uniform well-face gradient (UWG) boundary condition in such a way that the drawdown remains uniform along the well screen. The resulting uniform well-face drawdown (UWD) solution also includes the effects of a finite diameter well, wellbore storage and a thin skin, while partial penetration and vertical heterogeneity are accommodated by the one-dimensional discretization. Solutions are proposed for well flow caused by constant, variable and slug discharges. The model was verified by comparing wellbore drawdowns and well-face flux distributions with published numerical solutions. Differences between UWG and UWD well flow will occur in all situations with vertical flow components near the well, which is demonstrated by considering: (1) partially penetrating wells in confined aquifers, (2) fully penetrating wells in unconfined aquifers with delayed response and (3) layered aquifers and leaky multiaquifer systems. The presented solution can be a powerful tool for solving many well-hydraulic problems, including well tests, flowmeter tests, slug tests and pumping tests. A computer program for the analysis of pumping tests, based on the hybrid analytical-numerical technique and UWG or UWD conditions, is available from the author.

  8. Dual permeability flow behavior for modeling horizontal well production in fractured-vuggy carbonate reservoirs

    NASA Astrophysics Data System (ADS)

    Guo, Jian-Chun; Nie, Ren-Shi; Jia, Yong-Lu

    2012-09-01

    SummaryFractured-vuggy carbonate reservoirs are composed of by matrix, fracture, and vug systems. This paper is the first investigation into the dual permeability flow issue for horizontal well production in a fractured-vuggy carbonate reservoir. Considering dispersed vugs in carbonate reservoirs and treating media directly connected with horizontal wellbore as the matrix and fracture systems, a test analysis model of a horizontal well was created, and triple porosity and dual permeability flow behavior were modeled. Standard log-log type curves were drawn up by numerical simulation and flow behavior characteristics were thoroughly analyzed. Numerical simulations showed that type curves are dominated by external boundary conditions as well as the permeability ratio of the fracture system to the sum of fracture and matrix systems. The parameter κ is only relevant to the dual permeability model, and if κ is one, then the dual permeability model is equivalent to the single permeability model. There are seven main flow regimes with constant rate of horizontal well production and five flow regimes with constant wellbore pressure of horizontal well production; different flow regimes have different flow behavior characteristics. Early radial flow and linear flow regimes are typical characteristics of horizontal well production; duration of early radial flow regime is usually short because formation thickness is generally less than 100 m. Derivative curves are W-shaped, which is a reflection of inter-porosity flows between matrix, fracture, and vug systems. A distorted W-shape, which could be produced in certain situations, such as one involving an erroneously low time of inter-porosity flows, would handicap the recognition of a linear flow regime. A real case application was successfully implemented, and some useful reservoir parameters (e.g., permeability and inter-porosity flow factor) were obtained from well testing interpretation.

  9. Brine flow up a borehole caused by pressure perturbation from CO2 storage: Static and dynamic evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkholzer, J.T.; Nicot, J.-P.; Oldenburg, C.M.

    Industrial-scale storage of CO{sub 2} in saline sedimentary basins will cause zones of elevated pressure, larger than the CO{sub 2} plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards along these conduits and mix with groundwater resources. This paper discusses the potential for such brine leakage to occur in temperature- and salinity-stratified systems. Using static mass-balance calculations as well as dynamic well flow simulations, we evaluate the minimum reservoir pressure that would generate continuous migration of brine up a leaking wellbore into a freshwater aquifer. Since themore » brine invading the well is denser than the initial fluid in the wellbore, continuous flow only occurs if the pressure perturbation in the reservoir is large enough to overcome the increased fluid column weight after full invasion of brine into the well. If the threshold pressure is exceeded, brine flow rates are dependent on various hydraulic (and other) properties, in particular the effective permeability of the wellbore and the magnitude of pressure increase. If brine flow occurs outside of the well casing, e.g., in a permeable fracture zone between the well cement and the formation, the fluid/solute transfer between the migrating fluid and the surrounding rock units can strongly retard brine flow. At the same time, the threshold pressure for continuous flow to occur decreases compared to a case with no fluid/solute transfer.« less

  10. Microbial enhancement of non-Darcy flow: Theoretical consideration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Jianxin; Schneider, D.R.

    1995-12-31

    In the near well-bore region and perforations, petroleum fluids usually flow at high velocities and may exhibit non-Darcy-flow behavior. Microorganisms can increase permeability and porosity by removing paraffin or asphaltene accumulations. They can also reduce interfacial tension by producing biosurfactants. These changes can significantly affect non-Darcy flow behavior. Theoretical analysis shows that microbial activities can enhance production by decreasing the turbulence pressure drop and in some cases increasing the drag force exerted to the oil phase. This implies that the effects of microbial activities on non-Darcy flow are important and should be considered in the evaluation of microbial well stimulationmore » and enhanced oil recovery.« less

  11. Bias in ground-water data caused by well-bore flow in long-screen wells

    USGS Publications Warehouse

    Church, P.E.; Granato, G.E.

    1996-01-01

    The results of a field experiment comparing water-quality constituents, specific conductance, geophysical measurements, and well-bore hydraulics in two long-screen wells and adjacent vertical clusters of short-screen wells show bias in ground-water data caused by well-bore flow in long-screen wells. The well screen acts as a conduit for vertical flow because it connects zones of different head and transmissivity, even in a relatively homogeneous, unconfined, sand and gravel aquifer where such zones are almost indistinguishable. Flow in the well bore redistributes water and solutes in the aquifer adjacent to the well, increasing the risk of bias in water-quality samples, failure of plume detection, and cross-contamination of the aquifer. At one site, downward flow from a contaminated zone redistributes solutes over the entire length of the long-screen well. At another site, upward flow from an uncontaminated zone masks the presence of road salt plume. Borehole induction logs, conducted in a fully penetrating short-screen well, can provide a profile of solutes in the aquifer that is not attainable in long-screen wells. In this study, the induction-log profiles show close correlation with data from analyses of water-quality samples from the short-screen wells; however, both of these data sets differ markedly from the biased water-quality samples from the long-screen wells. Therefore, use of induction logs in fully cased wells for plume detection and accurate placement of short-screen wells is a viable alternative to use of long screen wells for water-quality sampling.

  12. Effect of fluid penetration on tensile failure during fracturing of an open-hole wellbore

    NASA Astrophysics Data System (ADS)

    Zeng, Fanhui; Cheng, Xiaozhao; Guo, Jianchun; Chen, Zhangxin; Tao, Liang; Liu, Xiaohua; Jiang, Qifeng; Xiang, Jianhua

    2018-06-01

    It is widely accepted that a fracture can be induced at a wellbore surface when the fluid pressure overcomes the rock tensile strength. However, few models of this phenomenon account for the fluid penetration effect. A rock is a typical permeable, porous medium, and the transmission of pressure from a wellbore to the surrounding rock temporally and spatially perturbs the effective stresses. In addition, these induced stresses influence the fracture initiation pressure. To gain a better understanding of the penetration effect on the initiation pressure of a permeable formation, a comprehensive formula is presented to study the effects of the in situ stresses, rock mechanical properties, injection rate, rock permeability, fluid viscosity, fluid compressibility and wellbore size on the magnitude of the initiation pressure during fracturing of an open-hole wellbore. In this context, the penetration effect is treated as a consequence of the interaction among these parameters by using Darcy’s law of radial flow. A fully coupled analytical procedure is developed to show how the fracturing fluid infiltrates the rock around the wellbore and considerably reduces the magnitude of the initiation pressure. Moreover, the calculation results are validated by hydraulic fracturing experiments in hydrostone. An exhaustive sensitivity study is performed, indicating that the local fluid pressure induced from a seepage effect strongly influences the fracture evolution. For permeable reservoirs, a low injection rate and a low viscosity of the injected fluid have a significant impact on the fracture initiation pressure. In this case, the Hubbert and Haimson equations to predict the fracture initiation pressure are not valid. The open-hole fracture initiation pressure increases with the fracturing fluid viscosity and fluid compressibility, while it decreases as the rock permeability, injection rate and wellbore size increase.

  13. Geochemical and Geomechanical Effects on Wellbore Cement Fractures

    DOE PAGES

    Um, Wooyong; Jung, Hun Bok; Kabilan, Senthil; ...

    2014-12-31

    Experimental studies were conducted using batch reactors, X-ray microtomograpy (XMT), and computational fluid dynamics (CFD) simulation to determine changes in cement fracture surfaces, fluid flow pathways, and permeability with geochemical and geomechanical processes. Composite Portland cement-basalt caprock core with artificial fractures was prepared and reacted with CO2-saturated groundwater at 50°C and 10 MPa for 3 to 3.5 months under static conditions to understand the geochemical and geomechanical effects on the integrity of wellbores containing defects. Cement-basalt interface samples were subjected to mechanical stress at 2.7 MPa before the CO2 reaction. XMT provided three-dimensional (3-D) visualization of the opening and interconnectionmore » of cement fractures due to mechanical stress. After the CO2 reaction, XMT images revealed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along fractures located at the cement-basalt interface. The permeability calculated based on CFD simulation was in agreement with the experimentally measured permeability. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2-saturated groundwater under static conditions, whereas fractures along the cement-caprock interface are still likely to remain vulnerable to the leakage of CO2. CFD simulation for the flow of different fluids (CO2-saturated brine and supercritical CO2) using a pressure difference of 20 kPa and 200 kPa along ~2 cm-long cement fractures showed that a pressure gradient increase resulted in an increase of CO2 fluids flux by a factor of only ~3-9 because the friction of CO2 fluids on cement fracture surfaces increased with higher flow rate as well. At the same pressure gradient, the simulated flow rate was higher for supercritical CO2 than CO2-saturated brine by a factor of only ~2-3, because the viscosity of supercritical CO2 is much lower than that of CO2-saturated brine. The study suggests that in deep geological reservoirs the geochemical and geomechanical processes have coupled effects on the wellbore cement fracture evolution and fluid flow along the fracture surfaces.« less

  14. Reactive transport of CO2-rich fluids in simulated wellbore interfaces: Experiments and models exploring behaviour on length scales of 1 to 6 m

    NASA Astrophysics Data System (ADS)

    Wolterbeek, T. K. T.; Raoof, A.; Peach, C. J.; Spiers, C. J.

    2016-12-01

    Defects present at casing-cement interfaces in wellbores constitute potential pathways for CO2 to migrate from geological storage systems. It is essential to understand how the transport properties of such pathways evolve when penetrated by CO2-rich fluids. While numerous studies have explored this problem at the decimetre length-scale, the 1-10-100 m scales relevant for real wellbores have received little attention. The present work addresses the effects of long-range reactive transport on a length scale of 1-6 m. This is done by means of a combined experimental and modelling study. The experimental work consisted of flow-through tests, performed on cement-filled steel tubes, 1-6 m in length, containing artificially debonded cement-interfaces. Four tests were performed, at 60-80 °C, imposing flow-through of CO2-rich fluid at mean pressures of 10-15 MPa, controlling the pressure difference at 0.12-4.8 MPa, while measuring flow-rate. In the modelling work, we developed a numerical model to explore reactive transport in CO2-exposed defects on a similar length scale. The formulation adopted incorporates fluid flow, advective and diffusive solute transport, and CO2-cement chemical reactions. Our results show that long-range reactive transport strongly affects the permeability evolution of CO2-exposed defects. In the experiments, sample permeability decreased by 2-4 orders, which microstructural observations revealed was associated with downstream precipitation of carbonates, possibly aided by migration of fines. The model simulations show precipitation in initially open defects produces a sharp decrease in flow rate, causing a transition from advection to diffusion-dominated reactive transport. While the modelling results broadly reproduce the experimental observations, it is further demonstrated that non-uniformity in initial defect aperture has a profound impact on self-sealing behaviour and system permeability evolution on the metre scale. The implication is that future reactive transport models and wellbore scale analyses must include defects with variable aperture in order to obtain reliable upscaling relations.

  15. Analysis of Geothermal Reservoir and Well Operational Conditions using Monthly Production Reports from Nevada and California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckers, Koenraad J; Young, Katherine R; Johnston, Henry

    When conducting techno-economic analysis of geothermal systems, assumptions are typically necessary for reservoir and wellbore parameters such as producer/injector well ratio, production temperature drawdown, and production/injection temperature, pressure and flow rate. To decrease uncertainty of several of these parameters, we analyzed field data reported by operators in monthly production reports. This paper presents results of a statistical analysis conducted on monthly production reports at 19 power plants in California and Nevada covering 196 production wells and 175 injection wells. The average production temperature was 304 degrees F (151 degrees C) for binary plants and 310 degrees F (154 degrees C)more » for flash plants. The average injection temperature was 169 degrees F (76 degrees C) for binary plants and 173 degrees F (78 degrees C) for flash plants. The average production temperature drawdown was 0.5% per year for binary plants and 0.8% per year for flash plants. The average production well flow rate was 112 L/s for binary plant wells and 62 L/s for flash plant wells. For all 19 plants combined, the median injectivity index value was 3.8 L/s/bar, and the average producer/injector well ratio was 1.6. As an additional example of analysis using data from monthly production reports, a coupled reservoir-wellbore model was developed to derive productivity curves at various pump horsepower settings. The workflow and model were applied to two example production wells.« less

  16. Ranging methods for developing wellbores in subsurface formations

    DOEpatents

    MacDonald, Duncan [Houston, TX

    2011-09-06

    A method for forming two or more wellbores in a subsurface formation includes forming a first wellbore in the formation. A second wellbore is directionally drilled in a selected relationship relative to the first wellbore. At least one magnetic field is provided in the second wellbore using one or more magnets in the second wellbore located on a drilling string used to drill the second wellbore. At least one magnetic field is sensed in the first wellbore using at least two sensors in the first wellbore as the magnetic field passes by the at least two sensors while the second wellbore is being drilled. A position of the second wellbore is continuously assessed relative to the first wellbore using the sensed magnetic field. The direction of drilling of the second wellbore is adjusted so that the second wellbore remains in the selected relationship relative to the first wellbore.

  17. Quantifying drag on wellbore casings in moving salt sheets

    NASA Astrophysics Data System (ADS)

    Weijermars, R.; Jackson, M. P. A.; Dooley, T. P.

    2014-08-01

    Frontier hydrocarbon development projects in the deepwater slopes of the Gulf of Mexico Basin, Santos Basin and Lower Congo Basin all require wells to cross ductile layers of autochthonous or allochthonous salt moving at peak rates of 100 mm yr-1. The Couette-Poiseuille number is introduced here to help pinpoint the depth of shear stress reversal in such salt layers. For any well-planned through salt, the probable range of creep forces of moving salt needs to be taken into account when designing safety margins and load-factor tolerance of the well casing. Drag forces increase with wellbore diameter, but more significantly with effective viscosity and speed of the creeping salt layer. The potential drag forces on cased wellbores in moving salt sheets are estimated analytically using a range of salt viscosities (1015-1019 Pa s) and creep rates (0-10 mm yr-1). Drag on perfectly rigid casing of infinite strength may reach up to 13 Giga Newton per meter wellbore length in salt having a viscosity of 1019 Pa s. Well designers may delay stress accumulations due to salt drag when flexible casing accommodates some of the early displacement and strain. However, all creeping salt could displace, fracture and disconnect well casing, eventually. The shear strength of typical heavy duty well casing (about 1000 MPa) can be reached due to drag by moving salt. Internal flow of salt will then fracture the casing near salt entry and exit points, but the structural damage is likely to remain unnoticed early in the well-life when the horizontal shift of the wellbore is still negligibly small (at less than 1 cm yr-1). Disruption of casing and production flow lines within the anticipated service lifetime of a well remains a significant risk factor within distinct zones of low-viscosity salt which may reach ultrafast creep rates of 100 mm yr-1.

  18. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic Conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    USGS Publications Warehouse

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-01-01

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative to volcanic-rock units is exemplified by the large difference in their estimated maximum hydraulic conductivity; 4,000 and 400 feet per day, respectively. Simulated minimum estimates of hydraulic conductivity are inexact and represent the lower detection limit of the method. Minimum thicknesses of lithologic intervals also were defined for comparing AnalyzeHOLE results to hydraulic properties in regional ground-water flow models.

  19. Radial flow to a partially penetrating well with storage in an anisotropic confined aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, Phoolendra Kumar; Vesselinov, Velimir V.; Neuman, Shlomo P.

    2012-07-01

    SummaryDrawdowns generated by extracting water from large diameter (e.g. water supply) well are affected by wellbore storage. We present an analytical solution in Laplace transformed space for drawdown in a uniform anisotropic aquifer caused by withdrawing water at a constant rate from partially penetrating well with storage. The solution is back transformed into the time domain numerically. When the pumping well is fully penetrating our solution reduces to that of Papadopulos and Cooper (1967); Hantush (1964) when the pumping well has no wellbore storage; Theis (1935) when both conditions are fulfilled and Yang (2006) when the pumping well is partially penetrating, has finite radius but lacks storage. Newly developed solution is then used to explore graphically the effects of partial penetration, wellbore storage and anisotropy on time evolutions of drawdown in the pumping well and in observation wells. We concluded after validating the developed analytical solution using synthetic pumping test.

  20. An Assessment of Research Gaps Related to Deep Water Wellbore Integrity

    NASA Astrophysics Data System (ADS)

    Tkach, M. K.; Radonjic, M.; Kutchko, B. G.

    2017-12-01

    In order for a deep-water wellbore to uphold its integrity under high pressure - high temperature conditions, the wellbore must possess complete zonal isolation while surrounded in an extreme environment. Highly variable temperature and pressure ranges, shallow flow zones, as well as potentially corrosive fluids and gasses all present unique challenges to the job of the cement which maintains that zonal isolation. As such, alternative options to mainstream choices often present themselves as attractive avenues of discovery. As it is of utmost importance to maintain structural integrity under HPHT conditions, cement slurries are pumped downhole to provide zonal isolation and structural support to offshore wells. The wellbore system potentially faces a variety of temperature and pressure fluctuations from the immediate onset. These fluctuations may affect the hydration properties of the cement. It is also important to consider the chemical interactions that the cement may have at the rock-cement interface where potential degradation or annulus gaps may occur further risking a decrease in zonal isolation. This presentation intends to review some of the important issues regarding zonal isolation in HPHT conditions and to highlight critical knowledge gaps in order to generate important research questions.

  1. Development and applications of ruggedized VIS/NIR spectrometer system for oilfield wellbores

    NASA Astrophysics Data System (ADS)

    Fujisawa, Go; Yamate, Tsutomu

    2013-12-01

    The development and applications of a ruggedized visible to near-infrared (VIS/NIR) spectrometer system capable of measuring fluid spectra in oilfield wellbores are presented. Real-time assessment of formation fluid properties penetrated by an oilfield wellbore is critically important for oilfield operating companies to make informed decisions to optimize the development plan of the well and hydrocarbon reservoir. A ruggedized VIS/NIR spectrometer was designed and built to measure and analyze hydrocarbon spectra reliably under the harsh conditions of the oilfield wellbore environment, including temperature up to 175 °C, pressure up to 170 MPa, and severe mechanical shocks and vibrations. The accuracy of hydrocarbon group composition analysis was compared well with gas chromatography results in the laboratory.

  2. Geomechanical analysis to predict the oil leak at the wellbores in Big Hill Strategic Petroleum Reserve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Byoung Yoon

    2014-02-01

    Oil leaks were found in wellbores of Caverns 105 and 109 at the Big Hill Strategic Petroleum Reserve site. According to the field observations, two instances of casing damage occurred at the depth of the interbed between the caprock bottom and salt top. A three dimensional finite element model, which contains wellbore element blocks and allows each cavern to be configured individually, is constructed to investigate the wellbore damage mechanism. The model also contains element blocks to represent interface between each lithology and a shear zone to examine the interbed behavior in a realistic manner. The causes of the damagedmore » casing segments are a result of vertical and horizontal movements of the interbed between the caprock and salt dome. The salt top subsides because the volume of caverns below the salt top decrease with time due to salt creep closure, while the caprock subsides at a slower rate because the caprock is thick and stiffer. This discrepancy yields a deformation of the well. The deformed wellbore may fail at some time. An oil leak occurs when the wellbore fails. A possible oil leak date of each well is determined using the equivalent plastic strain failure criterion. A well grading system for a remediation plan is developed based on the predicted leak dates of each wellbore.« less

  3. 30 CFR 250.292 - What must the DWOP contain?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... description and schematic of the typical wellbore, casing, and completion; (b) Structural design, fabrication... systems that constitute all or part of a single project development covered by the DWOP; (j) Flow...

  4. Incorporating reaction-rate dependence in reaction-front models of wellbore-cement/carbonated-brine systems

    DOE PAGES

    Iyer, Jaisree; Walsh, Stuart D. C.; Hao, Yue; ...

    2017-03-08

    Contact between wellbore cement and carbonated brine produces reaction zones that alter the cement's chemical composition and its mechanical properties. The reaction zones have profound implications on the ability of wellbore cement to serve as a seal to prevent the flow of carbonated brine. Under certain circumstances, the reactions may cause resealing of leakage pathways within the cement or at cement-interfaces; either due to fracture closure in response to mechanical weakening or due to the precipitation of calcium carbonate within the fracture. In prior work, we showed how mechanical sealing can be simulated using a diffusion-controlled reaction-front model that linksmore » the growth of the cement reaction zones to the mechanical response of the fracture. Here, we describe how such models may be extended to account for the effects of the calcite reaction-rate. We discuss how the relative rates of reaction and diffusion within the cement affect the precipitation of calcium carbonate within narrow leakage pathways, and how such behavior relates to the formation of characteristic reaction modes in the direction of flow. In addition, we compare the relative impact of precipitation and mechanical deformation on fracture sealing for a range of flow conditions and fracture apertures. Here, we conclude by considering how the prior leaching of calcium from cement may influence the sealing behavior of fractures, and the implication of prior leaching on the ability of laboratory tests to predict long-term sealing.« less

  5. Incorporating reaction-rate dependence in reaction-front models of wellbore-cement/carbonated-brine systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Jaisree; Walsh, Stuart D. C.; Hao, Yue

    Contact between wellbore cement and carbonated brine produces reaction zones that alter the cement's chemical composition and its mechanical properties. The reaction zones have profound implications on the ability of wellbore cement to serve as a seal to prevent the flow of carbonated brine. Under certain circumstances, the reactions may cause resealing of leakage pathways within the cement or at cement-interfaces; either due to fracture closure in response to mechanical weakening or due to the precipitation of calcium carbonate within the fracture. In prior work, we showed how mechanical sealing can be simulated using a diffusion-controlled reaction-front model that linksmore » the growth of the cement reaction zones to the mechanical response of the fracture. Here, we describe how such models may be extended to account for the effects of the calcite reaction-rate. We discuss how the relative rates of reaction and diffusion within the cement affect the precipitation of calcium carbonate within narrow leakage pathways, and how such behavior relates to the formation of characteristic reaction modes in the direction of flow. In addition, we compare the relative impact of precipitation and mechanical deformation on fracture sealing for a range of flow conditions and fracture apertures. Here, we conclude by considering how the prior leaching of calcium from cement may influence the sealing behavior of fractures, and the implication of prior leaching on the ability of laboratory tests to predict long-term sealing.« less

  6. Flow testing of the Newberry 2 research drillhole, Newberry volcano, Oregon

    USGS Publications Warehouse

    Ingebritsen, S.E.; Carothers, W.W.; Mariner, R.H.; Gudmundsson, J.S.; Sammel, E.A.

    1986-01-01

    A 20 hour flow test of the Newberry 2 research drillhole at Newberry Volcano produced about 33,000 kilograms of fluid. The flow rate declined from about 0.8 kilograms per sec to less than 0.3 kilograms per sec during the course of the test. The mass ratio of liquid water to vapor was about 3:2 at the separator and stayed fairly constant throughout the test. The vapor phase was about half steam and half CO2 by weight. The average enthalpy of the steam/water mixture at the separator was about 1 ,200 kilojoules per kilogram. Because of the low flow rate and the large temperature gradient into the surrounding rocks, heat loss from the wellbore was high; a simple conductive model gives overall losses of about 1,200 kilojoules per kilogram of H2O produced. The actual heat loss may have been even higher due to convective effects, and it is likely that the fluid entering the bottom of the wellbore was largely or entirely steam and CO2. (Author 's abstract)

  7. The Process of Hydraulic Fracturing

    EPA Pesticide Factsheets

    Hydraulic fracturing, know as fracking or hydrofracking, produces fractures in a rock formation by pumping fluids (water, proppant, and chemical additives) at high pressure down a wellbore. These fractures stimulate the flow of natural gas or oil.

  8. Numerical schemes for anomalous diffusion of single-phase fluids in porous media

    NASA Astrophysics Data System (ADS)

    Awotunde, Abeeb A.; Ghanam, Ryad A.; Al-Homidan, Suliman S.; Tatar, Nasser-eddine

    2016-10-01

    Simulation of fluid flow in porous media is an indispensable part of oil and gas reservoir management. Accurate prediction of reservoir performance and profitability of investment rely on our ability to model the flow behavior of reservoir fluids. Over the years, numerical reservoir simulation models have been based mainly on solutions to the normal diffusion of fluids in the porous reservoir. Recently, however, it has been documented that fluid flow in porous media does not always follow strictly the normal diffusion process. Small deviations from normal diffusion, called anomalous diffusion, have been reported in some experimental studies. Such deviations can be caused by different factors such as the viscous state of the fluid, the fractal nature of the porous media and the pressure pulse in the system. In this work, we present explicit and implicit numerical solutions to the anomalous diffusion of single-phase fluids in heterogeneous reservoirs. An analytical solution is used to validate the numerical solution to the simple homogeneous case. The conventional wellbore flow model is modified to account for anomalous behavior. Example applications are used to show the behavior of wellbore and wellblock pressures during the single-phase anomalous flow of fluids in the reservoirs considered.

  9. Sample environment for in situ synchrotron XRD measurements for CO2 interaction with subsurface materials

    NASA Astrophysics Data System (ADS)

    Elbakhshwan, M.; Gill, S.; Weidner, R.; Ecker, L.

    2017-12-01

    Sequestration of CO2 in geological formations requires a deep understanding of its interaction with the cement-casing components in the depleted oil and gas wells. Portland cement is used to seal the wellbores; however it tends to interact with the CO2. Therefore it is critical to investigate the wellbore integrity over long term exposure to CO2. Studies showed that, CO2 leakage is due to the flow through the casing-cement microannulus, cement-cement fractures, or the cement-caprock interface. The objective of this work is to gain a better understanding of the dissolution process of the cement-casing in the CO2 flow channels alongside with the carbonation reactions at the interfaces using XRF, XANES and X-ray tomography techniques. In this study, a synthetic wellbore system, consisting of cement with an embedded rectangular length of steel casing that had grooves to accommodate fluid flow, was used to investigate the casing-cement microannulus through core-flood experiments. The objective of this work is to gain a better understanding of the dissolution process of the cement-casing in the CO2 flow channels alongside with the carbonation reactions at the interfaces using a sample environment designed and built for in situ X-ray diffraction in the National Synchrotron Light Source II (NSLS II). The formation of carbonate phases at cement -fluid and cement-steel/fluid interfaces will be monitored in real time. Samples may be exposed to super critical CO2 at pressures above 1100 psi and temperatures around 50°C. The reaction cell is built from hastealloy to provide corrosion resistance, while the experimental temperature and pressure are controlled with thermocouples and pressure vessel.

  10. Micro Mechanics and Microstructures of Major Subsurface Hydraulic Barriers: Shale Caprock vs Wellbore Cement

    NASA Astrophysics Data System (ADS)

    Radonjic, M.; Du, H.

    2015-12-01

    Shale caprocks and wellbore cements are two of the most common subsurface impermeable barriers in the oil and gas industry. More than 60% of effective seals for geologic hydrocarbon bearing formations as natural hydraulic barriers constitute of shale rocks. Wellbore cements provide zonal isolation as an engineered hydraulic barrier to ensure controlled fluid flow from the reservoir to the production facilities. Shale caprocks were deposited and formed by squeezing excess formation water and mineralogical transformations at different temperatures and pressures. In a similar process, wellbore cements are subjected to compression during expandable tubular operations, which lead to a rapid pore water propagation and secondary mineral precipitation within the cement. The focus of this research was to investigate the effect of wellbore cement compression on its microstructure and mechanical properties, as well as a preliminary comparison of shale caprocks and hydrated cement. The purpose of comparative evaluation of engineered vs natural hydraulic barrier materials is to further improve wellbore cement durability when in contact with geofluids. The micro-indentation was utilized to evaluate the change in cement mechanical properties caused by compression. Indentation experiments showed an overall increase in hardness and Young's modulus of compressed cement. Furthermore, SEM imaging and Electron Probe Microanalysis showed mineralogical alterations and decrease in porosity. These can be correlated with the cement rehydration caused by microstructure changes as a result of compression. The mechanical properties were also quantitatively compared to shale caprock samples in order to investigate the similarities of hydraulic barrier features that could help to improve the subsurface application of cement in zonal isolation. The comparison results showed that the poro-mechanical characteristics of wellbore cement appear to be improved when inherent pore sizes are shifted to predominantly nano-scale range as characteristic of pore-size distribution typical for shale rocks. The effect of compression on cement appears to petrophysically alter cement towards the properties of shale caprocks, although the process is achieved much faster than in the case of shale diagenesis over geological times.

  11. Application of ALD Images and Caliper Data for the breakout analysis from the wells which were drilled in the Caspian Sea of the Azerbaijan Republic

    NASA Astrophysics Data System (ADS)

    Amirov, Elnur

    2016-04-01

    Wellbore instability while drilling, trip in or trip out can be cause of nonproductive time (NPT). Mainly this is the drilling surprises often encountered while drilling, trip in or trip out which were not predicted in advance, monitored, interpreted or recognized properly, which can give rise to wellbore instability problems. These surprises include also formation tops, overpressure zones occurring at different depths than predicted and the presence of unexpected faults or other fractured/fissile/compartmentalization zones. In general while drilling the wells, downhole PWD data cannot be very useful for understanding wellbore stability. Much of what we can use is indirect measurements such as torque and drag observations, rpm, vibrations, cavings, annular pressure measurements and etc. In order to understand what is going on in the subsurface and therefore mitigate the wellbore instability problems, we need more information from LWD (logging while drilling) tools. In order to monitor and get direct observations of the state of the borehole we need to determine where, how and in which direction the wellbore is failing and enlargement is taking place. LWD calipers and wellbore Azimuthal Lithodensity Images can provide such information for breakout analysis while drilling, trip in and trip out activity. The modes of wellbore instability can be generated in different ways and through different mechanisms. Therefore these zones of breakout can be potentially identified by the ALD imaging and LWD caliper tools. Instability can be governed by a combination of factors such as: the strength of the rock, the subsurface stress field, maximum and minimum horizontal stresses, pre-existing planes of weakness, the angle of the wellbore which intersects with these planes of weakness and chemical reaction of the rock (minerals) with the drilling fluid. Compressional failure (breakout) of an isotropic rock can occur when the compressive stresses around the borehole exceed the compressive strength of the rock. This can create the enlargement of the borehole with two failure zones opposite to each other with circumference at 180 degrees (for instance top side vs bottom side of the borehole or right side vs left side of the borehole). The image tracks for Rhob (density), Pe (photoelectric absorption) and Caliper can show the data such as edges of the track from the top, right, bottom and left sides of the hole (the center of the track is the bottom side of the borehole). Generally the color gradation (different spectrums) can be used in order to show the orientation change in the measurement around the wellbore. The azimuthal density, Pe, and Caliper data can be pointed and visualized as a log curves which can represent the average of all available data (an average of the top, right, bottom and left sides (or quadrants) or as 8 (RT) or 16 (RM) individual bins and as an ALD Image log. In addition, the Caliper data can give us information about the diameter and geometry of the borehole while drilling, trip in and trip out activities (for more detailed breakout analysis and interpretations). This paper (abstract) will present the results of a breakout analysis conducted from the wells which were drilled in the Caspian Sea of the Azerbaijan Republic in order to evaluate the available ALD images, caliper information and eventually incorporation of all available data into the wellbore stability monitoring service (breakout analysis).

  12. Porosity and Permeability Evolution in Cemented Rock Cores under Reactive Flowing Conditions: Comparative Analysis between Limestone and Sandstone Host Rocks

    NASA Astrophysics Data System (ADS)

    Cao, P.; Karpyn, Z.; Li, L.

    2013-12-01

    CO2-brine has the potential to alter wellbore cement in depleted oil and gas reservoirs under geological CO2 sequestration conditions. A better understanding of CO2-brine-cement-rock interaction is needed to evaluate the seal integrity of candidate sequestration formation in the long run. This work investigates possible alteration of wellbore cement when bonded by different host formation rock upon exposure to CO2-saturated brine. Composite cement-sandstone and cement-limestone core samples were created to perform reactive coreflood experiments. After an eight-day dynamic flow-through period, both cores had a similar extent of porosity increase, while the cement-limestone core experienced a ten-fold higher increase in permeability. With the aid of X-ray Micro-CT imaging and Scanning Electron Microscopy, it is observed that cement underwent greater degradation at the cement-sandstone interface. Degradation of cement-limestone core mainly took place on the host rock matrix. Worm holes were developed and a solution channel was formed in the limestone, creating a dominant flow path that altered both flow and reaction behavior. Limestone buffered the injected acidic brine preventing further deterioration of cement near the core outlet. Changes in fluid chemistry of limestone and sandstone coreflood effluents are compared. Results from this work are aimed at assisting the development and validation of robust reactive transport models through direct measurement of cemented rock core porosity and permeability evolution as well as the effluent aqueous chemistry change. This will subsequently improve predictive capabilities of reactive transport models associated with CO2 sequestration in geologic environments. Permeability Evolution of Cement-Rock Core Sample during Dynamic Flow of CO2-Brine

  13. Reduced-Order Model for Leakage Through an Open Wellbore from the Reservoir due to Carbon Dioxide Injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Lehua; Oldenburg, Curtis M.

    Potential CO 2 leakage through existing open wellbores is one of the most significant hazards that need to be addressed in geologic carbon sequestration (GCS) projects. In the framework of the National Risk Assessment Partnership (NRAP) which requires fast computations for uncertainty analysis, rigorous simulation of the coupled wellbore-reservoir system is not practical. We have developed a 7,200-point look-up table reduced-order model (ROM) for estimating the potential leakage rate up open wellbores in response to CO 2 injection nearby. The ROM is based on coupled simulations using T2Well/ECO2H which was run repeatedly for representative conditions relevant to NRAP to createmore » a look-up table response-surface ROM. The ROM applies to a wellbore that fully penetrates a 20-m thick reservoir that is used for CO 2 storage. The radially symmetric reservoir is assumed to have initially uniform pressure, temperature, gas saturation, and brine salinity, and it is assumed these conditions are held constant at the far-field boundary (100 m away from the wellbore). In such a system, the leakage can quickly reach quasi-steady state. The ROM table can be used to estimate both the free-phase CO 2 and brine leakage rates through an open well as a function of wellbore and reservoir conditions. Results show that injection-induced pressure and reservoir gas saturation play important roles in controlling leakage. Caution must be used in the application of this ROM because well leakage is formally transient and the ROM lookup table was populated using quasi-steady simulation output after 1000 time steps which may correspond to different physical times for the various parameter combinations of the coupled wellbore-reservoir system.« less

  14. Fully coupled two-phase flow and poromechanics modeling of coalbed methane recovery: Impact of geomechanics on production rate

    DOE PAGES

    Ma, Tianran; Rutqvist, Jonny; Oldenburg, Curtis M.; ...

    2017-06-03

    This study presents the development and application of a fully coupled two-phase (methane and water) flow, transport, and poromechanics num erical model for the analysis of geomechanical impacts on coalbed methane (CBM) production. The model considers changes in two-phase fluid flow properties, i.e., coal porosity, permeability, water retention, and relative permeability curves through changes in cleat fractures induced by effective stress variations and desorption-induced shrinkage. The coupled simulator is first verified for poromechanics coupling, and simulation parameters of a CBM reservoir model are calibrated by history matching against one year of CBM production field data from Shanxi Province, China. Then,more » the verified simulator and the calibrated CBM reservoir model are used for predicting the impact of geomechanics on the production rate for twenty years of continuous CBM production. The simulation results show that desorption-induced shrinkage is the dominant process in increasing permeability in the near wellbore region. Away from the wellbore, desorption-induced shrinkage is weaker, and permeability is reduced by pressure depletion and increased effective stress. A sensitivity analysis shows that for coal with a higher sorption strain, a larger initial Young's modulus and a smaller Poisson's ratio promote the enhancement of permeability as well as an increased production rate. Moreover, the conceptual model of the cleat system, whether dominated by vertical cleats with permeability correlated to horizontal stress or with permeability correlated to mean stress, can have a significant impact on the predicted production rate. Overall, the study clearly demonstrates and confirms the critical importance of considering geomechanics for an accurate prediction of CBM production.« less

  15. Analysis of Slug Test Response in a Fracture of a Large Dipping Angle

    NASA Astrophysics Data System (ADS)

    Chen, C.

    2013-12-01

    A number of cross-borehole slug tests were conducted in a Cenozoic folded sandstone formation, where a fracture has a dipping angle as large as 47°. As all the slug test models available in literature assume the formation to be horizontal, a slug test model taking into account the dipping angle effect is developed herein. Due to the presence of the dipping angle, there is a uniform regional groundwater flow, and the flow field generated by the test is not raidally symmetrical with respect to the test well. When the fracture hydraulic conductivity is relatively low, a larger dipping angle causes larger wellbore flow rates, leading to a faster recovery of the non-oscillatory test response. When the fracture hydraulic conductivity is relatively high, a larger dipping angle causes smaller wellbore heads, resulting in an increase of amplitude of the oscillatory test response; yet little influence on the frequency of oscillation. In general, neglecting the dipping angle may lead to an overestimate of hydraulic conductivity and an underestimate of the storage coefficient. The dipping angle effect is more pronounced for a larger storage coefficient, being less sensitive to transmissivity. An empirical relationship is developed for the minimum dipping angle, smaller than which the dipping angle effect can be safely neglected, as a function of the dimensionless storage coefficient. This empirical relationship helps evaluate whether or not the dipping angle needs to be considered in data analysis. The slug test data in the fracture of a 47°dipping angle is analyzed using the current model, and it is found that neglecting the dip angle can result in a 30% overestimate of transmissivity and a 61% underestimate of the storage coefficient.

  16. Fully coupled two-phase flow and poromechanics modeling of coalbed methane recovery: Impact of geomechanics on production rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Tianran; Rutqvist, Jonny; Oldenburg, Curtis M.

    This study presents the development and application of a fully coupled two-phase (methane and water) flow, transport, and poromechanics num erical model for the analysis of geomechanical impacts on coalbed methane (CBM) production. The model considers changes in two-phase fluid flow properties, i.e., coal porosity, permeability, water retention, and relative permeability curves through changes in cleat fractures induced by effective stress variations and desorption-induced shrinkage. The coupled simulator is first verified for poromechanics coupling, and simulation parameters of a CBM reservoir model are calibrated by history matching against one year of CBM production field data from Shanxi Province, China. Then,more » the verified simulator and the calibrated CBM reservoir model are used for predicting the impact of geomechanics on the production rate for twenty years of continuous CBM production. The simulation results show that desorption-induced shrinkage is the dominant process in increasing permeability in the near wellbore region. Away from the wellbore, desorption-induced shrinkage is weaker, and permeability is reduced by pressure depletion and increased effective stress. A sensitivity analysis shows that for coal with a higher sorption strain, a larger initial Young's modulus and a smaller Poisson's ratio promote the enhancement of permeability as well as an increased production rate. Moreover, the conceptual model of the cleat system, whether dominated by vertical cleats with permeability correlated to horizontal stress or with permeability correlated to mean stress, can have a significant impact on the predicted production rate. Overall, the study clearly demonstrates and confirms the critical importance of considering geomechanics for an accurate prediction of CBM production.« less

  17. Bias in groundwater samples caused by wellbore flow

    USGS Publications Warehouse

    Reilly, Thomas E.; Franke, O. Lehn; Bennett, Gordon D.

    1989-01-01

    Proper design of physical installations and sampling procedures for groundwater monitoring networks is critical for the detection and analysis of possible contaminants. Monitoring networks associated with known contaminant sources sometimes include an array of monitoring wells with long well screens. The purpose of this paper is: (a) to report the results of a numerical experiment indicating that significant borehole flow can occur within long well screens installed in homogeneous aquifers with very small head differences in the aquifer (less than 0.01 feet between the top and bottom of the screen); (b) to demonstrate that contaminant monitoring wells with long screens may completely fail to fulfill their purpose in many groundwater environments.

  18. In-situ Mechanical Manipulation of Wellbore Cements as a Solution to Leaky Wells

    NASA Astrophysics Data System (ADS)

    Kupresan, D.; Radonjic, M.; Heathman, J.

    2013-12-01

    Wellbore cement provides casing support, zonal isolation, and casing protection from corrosive fluids, which are essential for wellbore integrity. Cements can undergo one or more forms of failure such as debonding at cement/formation and cement/casing interface, fracturing and defects within cement matrix. Failures and defects within cement will ultimately lead to fluids migration, resulting in inter-zonal fluid migration and premature well abandonment. There are over 27,000 abandoned oil and gas wells only in The Gulf of Mexico (some of them dating from the late 1940s) with no gas leakage monitoring. Cement degradation linked with carbon sequestration can potentially lead to contamination of fresh water aquifers with CO2. Gas leaks can particularly be observed in deviated wells used for hydraulic fracking (60% leakage rate as they age) as high pressure fracturing increases the potential for migration pathways. Experimental method utilized in this study enables formation of impermeable seals at interfaces present in a wellbore by mechanically manipulating wellbore cement. Preliminary measurements obtained in bench scale experiments demonstrate that an impermeable cement/formation and cement/casing interface can be obtained. In post-modified cement, nitrogen gas flow-through experiments showed complete zonal isolation and no permeability in samples with pre-engineered microannulus. Material characterization experiments of modified cement revealed altered microstructural properties of cement as well as changes in mineralogical composition. Calcium-silicate-hydrate (CSH), the dominant mineral in hydrated cement which provides low permeability of cement, was modified as a result of cement pore water displacement, resulting in more dense structures. Calcium hydroxide (CH), which is associated with low resistance of cement to acidic fluids and therefore detrimental in most wellbore cements, was almost completely displaced and/or integrated in CSH as a result of mechanical manipulation (shear stress). The main advantage of this methodology is that mechanical manipulation of cement can induce healing of existing fractures, channels and microannulus seal in a wellbore without introducing new materials (e.g. cement squeeze jobs). Furthermore, this methodology is less sensitive to the influence of downhole conditions such as pressure, temperature and formation fluids, since it uses cement pore water as a medium to alter cement sheath. Based on lab experiments observation, it is possible to perceive that once tested at the industrial scale and if successful, the implementation of this method in the field can potentially mitigate leaky wells in CO2 sequestration projects, wellbores completed for hydraulic-fracturing and other conventional oil and gas producing wells. Key words: Wellbore cement integrity; Leaky wells; Cement microstructures; Casing expansion effect on cement mineralogy alterations.

  19. Applications for fiber optic sensing in the upstream oil and gas industry

    NASA Astrophysics Data System (ADS)

    Baldwin, Chris S.

    2015-05-01

    Fiber optic sensing has been used in an increasing number of applications in the upstream oil and gas industry over the past 20 years. In some cases, fiber optic sensing is providing measurements where traditional measurement technologies could not. This paper will provide a general overview of these applications and describe how the use of fiber optic sensing is enabling these applications. Technologies such as Bragg gratings, distributed temperature and acoustic sensing, interferometric sensing, and Brillouin scattering will be discussed. Applications for optic sensing include a range of possibilities from a single pressure measurement point in the wellbore to multizone pressure and flow monitoring. Some applications make use of fully distributed measurements including thermal profiling of the well. Outside of the wellbore, fiber optic sensors are used in applications for flowline and pipeline monitoring and for riser integrity monitoring. Applications to be described in this paper include in-flow profiling, well integrity, production monitoring, and steam chamber growth. These applications will cover well types such as injectors, producers, hydraulic fracturing, and thermal recovery. Many of these applications use the measurements provided by fiber optic sensing to improve enhanced oil recovery operations. The growing use of fiber optic sensors is providing improved measurement capabilities leading to the generation of actionable data for enhanced production optimization. This not only increases the recovered amount of production fluids but can also enhance wellbore integrity and safety.

  20. Offshore wellbore stability analysis based on fully coupled poro-thermo-elastic theory

    NASA Astrophysics Data System (ADS)

    Cao, Wenke; Deng, Jingen; Yu, Baohua; Liu, Wei; Tan, Qiang

    2017-03-01

    Drilling-induced tensile fractures are usually caused when the weight of mud is too high, and the effective tangential stress becomes tensile. It is thus hard to explain why tensile fractures are distributed along the lower part of a hole in an offshore exploration well when the mud weight is low. According to analysis, the reason could be the thermal effect, which cannot be ignored because of the drilling fluid and the cooling action of sea water during circulation. A heat transfer model is set up to obtain the temperature distribution of the wellbore and its formation by the finite difference method. Then, fully coupled poro-thermo-elastic theory is used to study the pore pressure and effective stress around the wellbore. By comparing it with both poroelastic and elastic models, it is indicated that the poroelastic effect is dominant at the beginning of circulation and inhibits tensile fractures from forming; then, the thermal effect becomes more important and decreases the effective tangential stress with the passing of time, so the drilling fluid and the cooling effect of sea water can cause tensile fractures to happen. Meanwhile, tensile fractures are shallow and not likely to lead to mud leakage with lower mud weight, which agrees with the actual drilling process. On the other hand, the fluid cooling effect could increase the strength of the rock and reduce the likelihood of shear failure, which would be beneficial for wellbore stability. So, the thermal effect cannot be neglected in offshore wellbore stability analysis, and mud weight and borehole exposure time should be controlled in the case of mud loss.

  1. Methane Leakage From Hydrocarbon Wellbores into Overlying Groundwater: Numerical Investigation of the Multiphase Flow Processes Governing Migration

    NASA Astrophysics Data System (ADS)

    Rice, Amy K.; McCray, John E.; Singha, Kamini

    2018-04-01

    Methane leakage due to compromised hydrocarbon well integrity can lead to impaired groundwater quality. Here we use a three-dimensional, multiphase (vapor and aqueous), multicomponent (methane, water, salt), numerical model (TOUGH2 EOS7C) to investigate hydrogeological conditions that could result in groundwater contamination from natural gas wellbore leakage that migrates upward toward a freshwater aquifer. The conceptual model used for the simulations assumes methane leakage at 20-30 m below groundwater. We perform 180 simulations for a sensitivity analysis, examining (1) multiphase flow parameters related to storage, capillarity, and relative permeability, including porosity (ϕ), initial fluid-phase saturation (SL), and van Genuchten n and α, (2) geostatistical variations in intrinsic permeability (ki), and (3) methane source-zone pressure. Simulated mean ki values are 10-18 and 10-13 m2 with variances of 1 and 5 m4. Simulated source-zone pressures range from just over ambient hydrostatic pressure at the depth of leakage (100 kPa) to the maximum pressure that steel casings are commonly rated to withstand (20,340 kPa). ki, initial SL, ϕ, and van Genuchten's n and α were the most important parameters in determining the volume of methane reaching groundwater during a given time period. Multiphase parameterization of formations underlying freshwater aquifers and overlying hydrocarbon production zones is fundamental to assessing aquifer vulnerability to methane leakage.

  2. Numerical analysis of wellbore instability in gas hydrate formation during deep-water drilling

    NASA Astrophysics Data System (ADS)

    Zhang, Huaiwen; Cheng, Yuanfang; Li, Qingchao; Yan, Chuanliang; Han, Xiuting

    2018-02-01

    Gas hydrate formation may be encountered during deep-water drilling because of the large amount and wide distribution of gas hydrates under the shallow seabed of the South China Sea. Hydrates are extremely sensitive to temperature and pressure changes, and drilling through gas hydrate formation may cause dissociation of hydrates, accompanied by changes in wellbore temperatures, pore pressures, and stress states, thereby leading to wellbore plastic yield and wellbore instability. Considering the coupling effect of seepage of drilling fluid into gas hydrate formation, heat conduction between drilling fluid and formation, hydrate dissociation, and transformation of the formation framework, this study established a multi-field coupling mathematical model of the wellbore in the hydrate formation. Furthermore, the influences of drilling fluid temperatures, densities, and soaking time on the instability of hydrate formation were calculated and analyzed. Results show that the greater the temperature difference between the drilling fluid and hydrate formation is, the faster the hydrate dissociates, the wider the plastic dissociation range is, and the greater the failure width becomes. When the temperature difference is greater than 7°C, the maximum rate of plastic deformation around the wellbore is more than 10%, which is along the direction of the minimum horizontal in-situ stress and associated with instability and damage on the surrounding rock. The hydrate dissociation is insensitive to the variation of drilling fluid density, thereby implying that the change of the density of drilling fluids has a minimal effect on the hydrate dissociation. Drilling fluids that are absorbed into the hydrate formation result in fast dissociation at the initial stage. As time elapses, the hydrate dissociation slows down, but the risk of wellbore instability is aggravated due to the prolonged submersion in drilling fluids. For the sake of the stability of the wellbore in deep-water drilling through hydrate formation, the drilling fluid with low temperatures should be given priority. The drilling process should be kept under balanced pressures, and the drilling time should be shortened.

  3. An assessment of the mechanical stability of wells offshore Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowrey, J.P.; Ottesen, S.

    In 1991 lost time due to stuck pipe related drilling problems accounted for approximately 18% of total drilling time in Mobil Producing Nigeria Ultd.`s (MPN) offshore operations. The primary cause of stuck pipe was identified as mechanical wellbore instability. This paper presents an assessment of the mechanical stability of MPN`s wells offshore Nigeria. The objectives of the study were to: (1) determine the magnitude of the in-situ principal stresses and material properties of the troublesome Intra-Biafra and Qua Iboe shale sequences; (2) quantify the drilling fluid densities required to drill mechanically stable wells through these formations; (3) review and recommendmore » well planning and operational parameters which aid in minimizing wellbore stability-related drilling problems. The well-bore stability assessment was carried out with the aid of a 3-dimensional wellbore stability model using field derived data from the study area to corroborate the results. The collection and analysis of drilling data (borehole geometry and density logs, pore pressure, leak-off tests, local geology and other relevant well records) to determine the magnitude of the in-situ principal stresses, together with compressive strength tests on formation cores are discussed. Minimum safe drilling fluid densities to promote wellbore stability as a function of well geometry and depth are presented for the most troublesome shales drilled in the study area. Implementation of the results reduced wellbore stability related problems and associated trouble time to less than 5% in 1992.« less

  4. Development of a Standalone Thermal Wellbore Simulator

    NASA Astrophysics Data System (ADS)

    Xiong, Wanqiang

    With continuous developments of various different sophisticated wells in the petroleum industry, wellbore modeling and simulation have increasingly received more attention. Especially in unconventional oil and gas recovery processes, there is a growing demand for more accurate wellbore modeling. Despite notable advancements made in wellbore modeling, none of the existing wellbore simulators has been as successful as reservoir simulators such as Eclipse and CMG's and further research works on handling issues such as accurate heat loss modeling and multi-tubing wellbore modeling are really necessary. A series of mathematical equations including main governing equations, auxiliary equations, PVT equations, thermodynamic equations, drift-flux model equations, and wellbore heat loss calculation equations are collected and screened from publications. Based on these modeling equations, workflows for wellbore simulation and software development are proposed. Research works are conducted in key steps for developing a wellbore simulator: discretization, a grid system, a solution method, a linear equation solver, and computer language. A standalone thermal wellbore simulator is developed by using standard C++ language. This wellbore simulator can simulate single-phase injection and production, two-phase steam injection and two-phase oil and water production. By implementing a multi-part scheme which divides a wellbore with sophisticated configuration into several relative simple simulation running units, this simulator can handle different complex wellbores: wellbore with multistage casings, horizontal wells, multilateral wells and double tubing. In pursuance of improved accuracy of heat loss calculations to surrounding formations, a semi-numerical method is proposed and a series of FLUENT simulations have been conducted in this study. This semi-numerical method involves extending the 2D formation heat transfer simulation to include a casing wall and cement and adopting new correlations regressed by this study. Meanwhile, a correlation for handling heat transfer in double-tubing annulus is regressed. This work initiates the research on heat transfer in a double-tubing wellbore system. A series of validation and test works are performed in hot water injection, steam injection, real filed data, a horizontal well, a double-tubing well and comparison with the Ramey method. The program in this study also performs well in matching with real measured field data, simulation in horizontal wells and double-tubing wells.

  5. Impact of Casing Expansion on the Mechanical and Petro-Physical Properties of Wellbore Cements

    NASA Astrophysics Data System (ADS)

    Oyibo, A. E.

    2014-12-01

    The main objective of this research is to investigate the applicability of expandable casing technology as a remediation technique for leaky wells resulting in gas migration problems. Micro annulus is usually created at the cement-formation/cement-casing interface or within the cement matrix either due to poor primary cementing or as a result of activities such as temperature and pressure variation or fracturing operations. Recent reports on gas migration in hydraulically fractured wellbores, has raised concerns on the contamination of fresh water aquifers resulting from fluid migration though this flow path. A unique bench-scale physical model which utilizes expandable tubulars in the remediation of micro annular gas flow has been used to simulate expansion of a previously-cemented casing under field-like conditions. Three different designs of cement slurry: regular 16.4 lb. /gal, 16.4 lb. /gal base slurry foamed to 13 lb. /gal and 16.4 lb. /gal cement slurry with 10% salt concentration. Gas flow path (microannulus) was artificially created at the pipe-cement interface by rotating the inner pipe in a pipe inside pipe assembly with cement in the annulus within the first few hours of hydration to create debonding at the cement-casing interface. Nitrogen gas flow-through experiments were performed before and after the expansion to confirm the sealing of the microannulus. The results obtained confirmed the effectiveness of this technique in the complete closure of gas leakage path, providing seal-tight cement-formation interface free of microannulus. The manipulation of the cement sheath during the casing expansion resulted in improved porosity, permeability and the strength of the cement sheath. SEM micrographs revealed decrease in pore size and fracturing of unhydrated cement grains within the cement matrix. This technology has great potential to become one of the leading cement remediation techniques for leaks behind the casing if implemented. Keywords: Wellbore Integrity, Casing Expansion, Well Gas Leaks, CSH, Pore Collapse, Cement Pore Water.

  6. Assessment of two-phase flow on the chemical alteration and sealing of leakage pathways in cemented wellbores

    DOE PAGES

    Iyer, Jaisree; Walsh, Stuart D. C.; Hao, Yue; ...

    2018-01-08

    Wellbore leakage tops the list of perceived risks to the long-term geologic storage of CO 2, because wells provide a direct path between the CO 2 storage reservoir and the atmosphere. In this paper, we have coupled a two-phase flow model with our original framework that combined models for reactive transport of carbonated brine, geochemistry of reacting cement, and geomechanics to predict the permeability evolution of cement fractures. Additionally, this makes the framework suitable for field conditions in geological storage sites, permitting simulation of contact between cement and mixtures of brine and supercritical CO 2. Due to lack of conclusivemore » experimental data, we tried both linear and Corey relative permeability models to simulate flow of the two phases in cement fractures. The model also includes two options to account for the inconsistent experimental observations regarding cement reactivity with two-phase CO 2-brine mixtures. One option assumes that the reactive surface area is independent of the brine saturation and the second option assumes that the reactive surface area is proportional to the brine saturation. We have applied the model to predict the extent of cement alteration, the conditions under which fractures seal, the time it takes to seal a fracture, and the leakage rates of CO 2 and brine when damage zones in the wellbore are exposed to two-phase CO 2-brine mixtures. Initial brine residence time and the initial fracture aperture are critical parameters that affect the fracture sealing behavior. We also evaluated the importance of the model assumptions regarding relative permeability and cement reactivity. These results illustrate the need to understand how mixtures of carbon dioxide and brine flow through fractures and react with cement to make reasonable predictions regarding well integrity. For example, a reduction in the cement reactivity with two-phase CO 2-brine mixture can not only significantly increase the sealing time for fractures but may also prevent fracture sealing.« less

  7. Assessment of two-phase flow on the chemical alteration and sealing of leakage pathways in cemented wellbores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Jaisree; Walsh, Stuart D. C.; Hao, Yue

    Wellbore leakage tops the list of perceived risks to the long-term geologic storage of CO 2, because wells provide a direct path between the CO 2 storage reservoir and the atmosphere. In this paper, we have coupled a two-phase flow model with our original framework that combined models for reactive transport of carbonated brine, geochemistry of reacting cement, and geomechanics to predict the permeability evolution of cement fractures. Additionally, this makes the framework suitable for field conditions in geological storage sites, permitting simulation of contact between cement and mixtures of brine and supercritical CO 2. Due to lack of conclusivemore » experimental data, we tried both linear and Corey relative permeability models to simulate flow of the two phases in cement fractures. The model also includes two options to account for the inconsistent experimental observations regarding cement reactivity with two-phase CO 2-brine mixtures. One option assumes that the reactive surface area is independent of the brine saturation and the second option assumes that the reactive surface area is proportional to the brine saturation. We have applied the model to predict the extent of cement alteration, the conditions under which fractures seal, the time it takes to seal a fracture, and the leakage rates of CO 2 and brine when damage zones in the wellbore are exposed to two-phase CO 2-brine mixtures. Initial brine residence time and the initial fracture aperture are critical parameters that affect the fracture sealing behavior. We also evaluated the importance of the model assumptions regarding relative permeability and cement reactivity. These results illustrate the need to understand how mixtures of carbon dioxide and brine flow through fractures and react with cement to make reasonable predictions regarding well integrity. For example, a reduction in the cement reactivity with two-phase CO 2-brine mixture can not only significantly increase the sealing time for fractures but may also prevent fracture sealing.« less

  8. "Tepid" Geysers above salt caverns

    NASA Astrophysics Data System (ADS)

    Bérest, Pierre; Brouard, Benoît; Zakharov, Vassily

    2018-06-01

    The formation of a brine geyser erupting from the wellhead of a large underground salt cavern is described. In most cases, the brine outflow from an opened cavern is slow; it results from the cavern creep closure and the thermal expansion of the cavern brine. These two processes are smooth; however, the brine outflow often is bumpy, as it is modulated by atmospheric pressure variations that generate an elastic increase (or decrease) of both cavern and brine volumes. In addition, when the flow is fast enough, the brine thermodynamic behavior in the wellbore is adiabatic. The cold brine expelled from the cavern wellhead is substituted with warm brine entering the borehole bottom, resulting in a lighter brine column. The brine outflow increases. In some cases, the flow becomes so fast that inertia terms must be taken into account. A geyser forms, coming to an end when the pressure in the cavern has dropped sufficiently. A better picture is obtained when head losses are considered. A closed-form solution can be reached. This proves that two cases must be distinguished, depending on whether the cold brine initially contained in the wellbore is expelled fully or not. It can also be shown that geyser formation is a rare event, as it requires both that the wellbore be narrow and that the cavern be very compressible. This study stemmed from an actual example in which a geyser was observed. However, scarce information is available, making any definite interpretation difficult. xml:lang="fr"

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinegar, Harold J.; Carter, Ernest E.; Son, Jaime Santos

    Methods for forming a barrier around at least a portion of a treatment area in a subsurface formation are described herein. A material including wax may be introduced into one or more wellbores. The material introduced into two or more wells may mix in the formation and congeal to form a barrier to fluid flow.

  10. Weatherford Inclined Wellbore Construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulte, R.

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed construction of an inclined wellbore with seven (7) inch, twenty-three (23) pound casing at a total depth of 1296 feet. The inclined wellbore is near vertical to 180 feet with a build angle of approximately 4.5 degrees per hundred feet thereafter. The inclined wellbore was utilized for further proprietary testing after construction and validation. The wellbore is available to other companies requiring a cased hole environment with known deviation out to fifty degrees (50) from vertical. The wellbore may also be used by RMOTC for further deepening into the fracturedmore » shales of the Steele and Niobrara formation.« less

  11. Cementing a wellbore using cementing material encapsulated in a shell

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Spadaccini, Christopher M.; Cowan, Kenneth Michael

    2016-08-16

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  12. The Development and Test of a Sensor for Measurement of the Working Level of Gas-Liquid Two-Phase Flow in a Coalbed Methane Wellbore Annulus.

    PubMed

    Wu, Chuan; Ding, Huafeng; Han, Lei

    2018-02-14

    Coalbed methane (CBM) is one kind of clean-burning gas and has been valued as a new form of energy that will be used widely in the near future. When producing CBM, the working level within a CBM wellbore annulus needs to be monitored to dynamically adjust the gas drainage and extraction processes. However, the existing method of measuring the working level does not meet the needs of accurate adjustment, so we designed a new sensor for this purpose. The principle of our sensor is a liquid pressure formula, i.e., the sensor monitors the two-phase flow patterns and obtains the mean density of the two-phase flow according to the pattern recognition result in the first step, and then combines the pressure data of the working level to calculate the working level using the liquid pressure formula. The sensor was tested in both the lab and on site, and the tests showed that the sensor's error was ±8% and that the sensor could function well in practical conditions and remain stable in the long term.

  13. The Development and Test of a Sensor for Measurement of the Working Level of Gas–Liquid Two-Phase Flow in a Coalbed Methane Wellbore Annulus

    PubMed Central

    Wu, Chuan; Ding, Huafeng; Han, Lei

    2018-01-01

    Coalbed methane (CBM) is one kind of clean-burning gas and has been valued as a new form of energy that will be used widely in the near future. When producing CBM, the working level within a CBM wellbore annulus needs to be monitored to dynamically adjust the gas drainage and extraction processes. However, the existing method of measuring the working level does not meet the needs of accurate adjustment, so we designed a new sensor for this purpose. The principle of our sensor is a liquid pressure formula, i.e., the sensor monitors the two-phase flow patterns and obtains the mean density of the two-phase flow according to the pattern recognition result in the first step, and then combines the pressure data of the working level to calculate the working level using the liquid pressure formula. The sensor was tested in both the lab and on site, and the tests showed that the sensor’s error was ±8% and that the sensor could function well in practical conditions and remain stable in the long term. PMID:29443871

  14. Transient well flow in vertically heterogeneous aquifers

    NASA Astrophysics Data System (ADS)

    Hemker, C. J.

    1999-11-01

    A solution for the general problem of computing well flow in vertically heterogeneous aquifers is found by an integration of both analytical and numerical techniques. The radial component of flow is treated analytically; the drawdown is a continuous function of the distance to the well. The finite-difference technique is used for the vertical flow component only. The aquifer is discretized in the vertical dimension and the heterogeneous aquifer is considered to be a layered (stratified) formation with a finite number of homogeneous sublayers, where each sublayer may have different properties. The transient part of the differential equation is solved with Stehfest's algorithm, a numerical inversion technique of the Laplace transform. The well is of constant discharge and penetrates one or more of the sublayers. The effect of wellbore storage on early drawdown data is taken into account. In this way drawdowns are found for a finite number of sublayers as a continuous function of radial distance to the well and of time since the pumping started. The model is verified by comparing results with published analytical and numerical solutions for well flow in homogeneous and heterogeneous, confined and unconfined aquifers. Instantaneous and delayed drainage of water from above the water table are considered, combined with the effects of partially penetrating and finite-diameter wells. The model is applied to demonstrate that the transient effects of wellbore storage in unconfined aquifers are less pronounced than previous numerical experiments suggest. Other applications of the presented solution technique are given for partially penetrating wells in heterogeneous formations, including a demonstration of the effect of decreasing specific storage values with depth in an otherwise homogeneous aquifer. The presented solution can be a powerful tool for the analysis of drawdown from pumping tests, because hydraulic properties of layered heterogeneous aquifer systems with partially penetrating wells may be estimated without the need to construct transient numerical models. A computer program based on the hybrid analytical-numerical technique is available from the author.

  15. The Effect of Loading Rate on Hydraulic Fracturing in Synthetic Granite - a Discrete Element Study

    NASA Astrophysics Data System (ADS)

    Tomac, I.; Gutierrez, M.

    2015-12-01

    Hydraulic fracture initiation and propagation from a borehole in hard synthetic rock is modeled using the two dimensional Discrete Element Method (DEM). DEM uses previously established procedure for modeling the strength and deformation parameters of quasi-brittle rocks with the Bonded Particle Model (Itasca, 2004). A series of simulations of laboratory tests on granite in DEM serve as a reference for synthetic rock behavior. Fracturing is enabled by breaking parallel bonds between DEM particles as a result of the local stress state. Subsequent bond breakage induces fracture propagation during a time-stepping procedure. Hydraulic fracturing occurs when pressurized fluid induces hoop stresses around the wellbore which cause rock fracturing and serves for geo-reservoir permeability enhancement in oil, gas and geothermal industries. In DEM, a network of fluid pipes and reservoirs is used for mathematical calculation of fluid flow through narrow channels between DEM particles, where the hydro-mechanical coupling is fully enabled. The fluid flow calculation is superimposed with DEM stress-strain calculation at each time step. As a result, the fluid pressures during borehole pressurization in hydraulic fracturing, as well as, during the fracture propagation from the borehole, can be simulated. The objective of this study is to investigate numerically a hypothesis that fluid pressurization rate, or the fluid flow rate, influences upon character, shape and velocity of fracture propagation in rock. The second objective is to better understand and define constraints which are important for successful fracture propagation in quasi-brittle rock from the perspective of flow rate, fluid density, viscosity and compressibility relative to the rock physical properties. Results from this study indicate that not only too high fluid flow rates cause fracture arrest and multiple fracture branching from the borehole, but also that the relative compressibility of fracturing fluid and rock plays a significant role in fracture propagation velocity. Fluid viscosity effects are similar to the loading rate effects, because in both cases the rapid buildup of the pressure in the wellbore in absence of the inflow of the fluid into initiated fracture causes induction of multiple simultaneous fracture branches at the wellbore wall.

  16. Self-healing polymer cement composites for geothermal wellbore applications

    NASA Astrophysics Data System (ADS)

    Rod, K. A.; Fernandez, C.; Childers, I.; Koech, P.; Um, W.; Roosendaal, T.; Nguyen, M.; Huerta, N. J.; Chun, J.; Glezakou, V. A.

    2017-12-01

    Cement is vital for controlling leaks from wellbores employed in oil, gas, and geothermal operations by sealing the annulus between the wellbore casing and geologic formation. Wellbore cement failure due to physical and chemical stresses is common and can result in significant environmental consequences and ultimately significant financial costs due to remediation efforts. To date numerous alternative cement blends have been proposed for the oil and gas industry. Most of these possess poor mechanical properties, or are not designed to work in high temperature environments. This research investigates novel polymer-cement composites which could function at most geothermal temperatures. Thermal stability and mechanical strength of the polymer is attributed to the formation of a number of chemical interactions between the polymer and cement matrix including covalent bonds, hydrogen bonding, and van der Waals interactions. It has been demonstrated that the bonding between cement and casing is more predictable when polymer is added to cement and can even improve healing of adhesion break when subjected to stresses such as thermal shock. Fractures have also been healed, effectively reducing permeability with fractures up to 0.3-0.5mm apertures, which is two orders of magnitude larger than typical wellbore fractures. Additionally, tomography analysis was used to determine internal structure of the cement polymer composite and imaging reveals that polymers fill fractures in the cement and between the cement and casing. By plugging fractures that occur in wellbore cement, reducing permeability of fractures, both environmental safety and economics of subsurface operations will be improved for geothermal energy and oil and gas production.

  17. Cementing a wellbore using cementing material encapsulated in a shell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in themore » space between the wellbore and the pipe.« less

  18. Regional-scale advective, diffusive, and eruptive dynamics of CO2 and brine leakage through faults and wellbores

    NASA Astrophysics Data System (ADS)

    Jung, Na-Hyun; Han, Weon Shik; Han, Kyungdoe; Park, Eungyu

    2015-05-01

    Regional-scale advective, diffusive, and eruptive transport dynamics of CO2 and brine within a natural analogue in the northern Paradox Basin, Utah, were explored by integrating numerical simulations with soil CO2 flux measurements. Deeply sourced CO2 migrates through steeply dipping fault zones to the shallow aquifers predominantly as an aqueous phase. Dense CO2-rich brine mixes with regional groundwater, enhancing CO2 dissolution. Linear stability analysis reveals that CO2 could be dissolved completely within only 500 years. Assigning lower permeability to the fault zones induces fault-parallel movement, feeds up-gradient aquifers with more CO2, and impedes down-gradient fluid flow, developing anticlinal CO2 traps at shallow depths (<300 m). The regional fault permeability that best reproduces field spatial CO2 flux variation is estimated 1 × 10-17 ≤ kh < 1 × 10-16 m2 and 5 × 10-16 ≤ kv < 1 × 10-15 m2. The anticlinal trap serves as an essential fluid source for eruption at Crystal Geyser. Geyser-like discharge sensitively responds to varying well permeability, radius, and CO2 recharge rate. The cyclic behavior of wellbore CO2 leakage decreases with time.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, R.D.

    This report discusses the progress achieved during the first year of a two year project entitled ''Well Test Performance and Analysis of Gas Wells Completed in Non-Continuous Lenticular Formations.'' The development of a general three dimensional dry gas reservoir simulator for non-continuous lenticular formations is presented. The simulator was used to perform well performance studies of real and hypothetical low permeability, lenticular, gas bearing formations indigeneous to the Rocky Mountain province of the United States. In addition a mathematical model is presented for simulating transient multiphase flow in a wellbore with phase re-distributions. Finally, an experimental research plan is outlinedmore » for measuring the non-Darcy flow coefficient in porous media and artifically fractured porous media. Conclusion are drawn and recommendations made concerning the continued pursuit of these research endeavors. 28 refs., 16 figs.« less

  20. Accounting for Aquifer Heterogeneity in Analysis of the Skin Effect

    NASA Astrophysics Data System (ADS)

    Barrash, W.; Clemo, T.; Fox, J. J.; Johnson, T. C.

    2005-12-01

    Because results of hydraulic tests in boreholes can be influenced by wellbore skin, understanding and quantification of wellbore skin improves our ability to estimate hydraulic conductivity (K) with such tests. We have investigated positive skin at 10-cm ID PVC wells with slotted casing that were emplaced in a 15-m thick coarse fluvial aquifer at the Boise Hydrogeophysical Research Site (BHRS), and we have concluded that the skin effect derives from sand grains partially clogging the slotted casing. We use the WTAQ code (Moench, 1997; Barlow and Moench, 1999) with a redefinition of the term for delayed observation well response to include skin effects at observation wells (in addition to pumping wells) in order to analyze aquifer tests for average skin conductivity (Ks) values at individual wells at the BHRS. Systematic differences in Ks values are recognized in results at pumping (Ks Q) and observation (Ks obs) wells: larger values are seen at observation wells (average Ks obs = 0.0023 cm/s) than pumping wells. Two possible causes are recognized for the occurrence of higher Ks values at observation wells than pumping wells: (1) flow diversion between aquifer layers on approach to a pumping well with a positive skin; and (2) larger portion of flow passing through lower-K zones in the heterogeneous aquifer near the pumping well than the observation wells due to strongly radially convergent flow near the pumping well. Because of the increased drawdown at a pumping well compared with an observation well due to heterogeneity in the aquifer, observation wells provide better Ks estimates than those from pumping wells for the well-aquifer system at the BHRS.

  1. Hydrated Ordinary Portland Cement as a Carbonic Cement: The Mechanisms, Dynamics, and Implications of Self-Sealing and CO 2 Resistance in Wellbore Cements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guthrie, George Drake Jr.; Pawar, Rajesh J.; Carey, James William

    2017-07-28

    This report analyzes the dynamics and mechanisms of the interactions of carbonated brine with hydrated Portland cement. The analysis is based on a recent set of comprehensive reactive-transport simulations, and it relies heavily on the synthesis of the body of work on wellbore integrity that we have conducted for the Carbon Storage Program over the past decade.

  2. Effect of wellbore storage and finite thickness skin on flow to a partially penetrating well in a phreatic aquifer

    NASA Astrophysics Data System (ADS)

    Pasandi, M.; Samani, N.; Barry, D. A.

    2008-02-01

    An analytical model is presented for the analysis of constant flux tests conducted in a phreatic aquifer having a partially penetrating well with a finite thickness skin. The solution is derived in the Laplace transform domain for the drawdown in the pumping well, skin and formation regions. The time-domain solution in terms of the aquifer drawdown is then obtained from the numerical inversion of the Laplace transform and presented as dimensionless drawdown-time curves. The derived solution is used to investigate the effects of the hydraulic conductivity contrast between the skin and formation, in addition to wellbore storage, skin thickness, delayed yield, partial penetration and distance to the observation well. The results of the developed solution were compared with those from an existing solution for the case of an infinitesimally thin skin. The latter solution can never approximate that for the developed finite skin. Dimensionless drawdown-time curves were compared with the other published results for a confined aquifer. Positive skin effects are reflected in the early time and disappear in the intermediate and late time aquifer responses. But in the case of negative skin this is reversed and the negative skin also tends to disguise the wellbore storage effect. A thick negative skin lowers the overall drawdown in the aquifer and leads to more persistent delayed drainage. Partial penetration increases the drawdown in the case of a positive skin; however its effect is masked by the negative skin. The influence of a negative skin is pronounced over a broad range of radial distances. At distant observation points the influence of a positive skin is too small to be reflected in early and intermediate time pumping test data and consequently the type curve takes its asymptotic form.

  3. Monetizing Leakage Risk of Geologic CO2 Storage using Wellbore Permeability Frequency Distributions

    NASA Astrophysics Data System (ADS)

    Bielicki, Jeffrey; Fitts, Jeffrey; Peters, Catherine; Wilson, Elizabeth

    2013-04-01

    Carbon dioxide (CO2) may be captured from large point sources (e.g., coal-fired power plants, oil refineries, cement manufacturers) and injected into deep sedimentary basins for storage, or sequestration, from the atmosphere. This technology—CO2 Capture and Storage (CCS)—may be a significant component of the portfolio of technologies deployed to mitigate climate change. But injected CO2, or the brine it displaces, may leak from the storage reservoir through a variety of natural and manmade pathways, including existing wells and wellbores. Such leakage will incur costs to a variety of stakeholders, which may affect the desirability of potential CO2 injection locations as well as the feasibility of the CCS approach writ large. Consequently, analyzing and monetizing leakage risk is necessary to develop CCS as a viable technological option to mitigate climate change. Risk is the product of the probability of an outcome and the impact of that outcome. Assessment of leakage risk from geologic CO2 storage reservoirs requires an analysis of the probabilities and magnitudes of leakage, identification of the outcomes that may result from leakage, and an assessment of the expected economic costs of those outcomes. One critical uncertainty regarding the rate and magnitude of leakage is determined by the leakiness of the well leakage pathway. This leakiness is characterized by a leakage permeability for the pathway, and recent work has sought to determine frequency distributions for the leakage permeabilities of wells and wellbores. We conduct a probabilistic analysis of leakage and monetized leakage risk for CO2 injection locations in the Michigan Sedimentary Basin (USA) using empirically derived frequency distributions for wellbore leakage permeabilities. To conduct this probabilistic risk analysis, we apply the RISCS (Risk Interference of Subsurface CO2 Storage) model (Bielicki et al, 2013a, 2012b) to injection into the Mt. Simon Sandstone. RISCS monetizes leakage risk by combining 3D geospatial data with fluid-flow simulations from the ELSA (Estimating Leakage Semi-Analytically) model (e.g., Celia and Nordbotten, 2006) and the Leakage Impact Valuation (LIV) method (Pollak et al, 2013; Bielicki et al, 2013). We extend RISCS to iterate ELSA semi-analytic modeling simulations by drawing values from the frequency distribution of leakage permeabilities. The iterations assign these values to existing wells in the basin, and the probabilistic risk analysis thus incorporates the uncertainty of the extent of leakage. We show that monetized leakage risk can vary significantly over tens of kilometers, and we identify "hot spots" favorable to CO2 injection based on the monetized leakage risk for each potential location in the basin.

  4. Experimental and Computational Studies of Coupled Geomechanical and Hydrologic Processes in Wellbore Systems (Invited)

    NASA Astrophysics Data System (ADS)

    Carey, J. W.; Mori, H.; Porter, M. L.; Lewis, K. C.; Kelkar, S.

    2013-12-01

    Potential leakage from wells is an important issue in the protection of groundwater resources, CO2 sequestration, and hydraulic fracturing. The first defense in all of these applications is a properly constructed well with adequate Portland cement that effectively isolates the subsurface. The chief threat for such wells is mechanical disruption of the cement, cement/steel, or cement/caprock interfaces. This can occur through wellbore operations that pressurize/depressurize the steel tubing or create temperature transients (e.g., injection, production, hydraulic fracturing, and mechanical testing) as well as reservoir-scale stresses (e.g., filling or depletion of the reservoir) and tectonic stresses (e.g., the mobility of salt). However, there is relatively limited information available on the hydrologic consequences of such processes. Toward this end, we discuss recent experiments and computational models of coupled geomechanical and hydrologic processes in wellbore systems. Triaxial coreflood experiments with tomography were conducted on synthetic wellbore systems including cement-steel, rock-cement and rock-cement-steel composites. The aim of the experiments was to induce stresses through application of axial loads in order to create defects within the cement or at the cement/steel or cement/rock interface. High injection fluid pressures (supercritical CO2 × brine) were applied to the base of the initially impermeable composites. Mechanical failure resulted in creation of permeability, which was measured as a function of time (allowing for the possibility of Portland cement to deform and modify permeability). In addition, fracture patterns were characterized using x-ray tomography. We used the computer code FEHM to study coupled hydrologic and mechanical processes in the near-wellbore environment. The wellbore model was developed as a wedge within a radially symmetric 3D volume. The grid elements consist of the steel casing, the casing-cement interface, the cement, the cement-rock interface, caprock, and reservoir rock. We used a model that is 1 m in radius, and extends 5 m along the wellbore. The model consisted of a lower storage aquifer, a caprock and an upper aquifer that received leaking fluids. We coupled flow and geomechanics using a shear-failure model that represents shear-induced damage and is similar to a Mohr-Coulomb slip mechanism. In this model, damage occurs for any excess shear stress with permeability enhancement a function of stress with a maximum magnitude set by the user. Stresses were induced by application of an elevated constant pressure within the injection reservoir representing a far-field injection process. The initial permeability of the cement was 1 mD and stress-enhanced permeability was limited to an increase by a factor of 10-100. The simulations show that shear-failure modes lead to enhanced permeability of the wellbore system. Continuing work will examine sensitivity of the results to mechanical properties and initial permeability distributions, the impact of relative permeability models, and the development of permeability-stress models including an aperture-opening tensile-failure model.

  5. Hydraulic fracturing system and method

    DOEpatents

    Ciezobka, Jordan; Salehi, Iraj

    2017-02-28

    A hydraulic fracturing system and method for enhancing effective permeability of earth formations to increase hydrocarbon production, enhance operation efficiency by reducing fluid entry friction due to tortuosity and perforation, and to open perforations that are either unopened or not effective using traditional techniques, by varying a pump rate and/or a flow rate to a wellbore.

  6. Hydraulic fracturing system and method

    DOEpatents

    Ciezobka, Jordan; Maity, Debotyam

    2018-01-30

    A hydraulic fracturing system and method for enhancing effective permeability of earth formations to increase hydrocarbon production, enhance operation efficiency by reducing fluid entry friction due to tortuosity and perforation, and to open perforations that are either unopened or not effective using traditional techniques, by varying a pump rate and/or a flow rate to a wellbore.

  7. Hydraulic fracturing system and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciezobka, Jordan; Maity, Debotyam

    A hydraulic fracturing system and method for enhancing effective permeability of earth formations to increase hydrocarbon production, enhance operation efficiency by reducing fluid entry friction due to tortuosity and perforation, and to open perforations that are either unopened or not effective using traditional techniques, by varying a pump rate and/or a flow rate to a wellbore.

  8. Development of an Ultrasonic Phased Array System for Wellbore Integrity Evaluation and Near-Wellbore Fracture Network Mapping of Injection and Production Wells in Geothermal Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almansouri, Hani; Foster, Benjamin; Kisner, Roger A

    2016-01-01

    This paper documents our progress developing an ultrasound phased array system in combination with a model-based iterative reconstruction (MBIR) algorithm to inspect the health of and characterize the composition of the near-wellbore region for geothermal reservoirs. The main goal for this system is to provide a near-wellbore in-situ characterization capability that will significantly improve wellbore integrity evaluation and near well-bore fracture network mapping. A more detailed image of the fracture network near the wellbore in particular will enable the selection of optimal locations for stimulation along the wellbore, provide critical data that can be used to improve stimulation design, andmore » provide a means for measuring evolution of the fracture network to support long term management of reservoir operations. Development of such a measurement capability supports current hydrothermal operations as well as the successful demonstration of Engineered Geothermal Systems (EGS). The paper will include the design of the phased array system, the performance specifications, and characterization methodology. In addition, we will describe the MBIR forward model derived for the phased array system and the propagation of compressional waves through a pseudo-homogenous medium.« less

  9. “Can LUSI be stopped? - A case study and lessons learned from the relief wells”

    NASA Astrophysics Data System (ADS)

    Sutrisna, E.

    2009-12-01

    Since May 2006, in East Java, Indonesia, the LUSI mud volcano has been erupting huge volumes of mixture of predominately mud and water, with little sign of slowing down. It has disrupted social and economic life in this highly populated region. Most geologists believe LUSI is a naturally-occurring mud volcano (MV), like other MV in the Java island of particular interest are the MV along the Watukosek fault, such as, Kalang Anyar, Pulungan, Gunung Anyar, and Socah MV. All of these MV lie in the vicinity of the SSW/NNE trending Watukosek fault that passes through LUSI. The Porong collapse structure is an ancient MV closest to LUSI approx. 7 km away, which on seismic sections demonstrate its complex multi-branching plumbing system. Assuming that the mudflow passed through the wellbore due to an underground blowout, relief wells (RW) were planned to kill the mudflow and carried out in 3 stages, these were: 1. Re-entering the original Banjarpanji-1 (BJP-1) well to obtain accurate survey data so the relief wells could be steered into intersect this original well. 2. Drilling a monitoring well (M-1) to ascertain whether the soil had sufficient strength to support relief wells. 3. Drilling RW-1 and RW-2. Both RW-1 and RW-2 suffered of surface and subsurface problems never achieved their objectives and had to be aborted. Numbers of good lessons were learned from the relief well initiative, such as: 1. No gas or liquid flowed from the wellhead area when it was excavated one month after the eruption started. The wellhead remained intact and totally dead suggesting that the mud flowed to surface through a fault zone or a fracture network instead of up the wellbore. 2. The ‘fish’ in BJP-1 wellbore was found at its original location and not eroded away. This suggests that the mud flow did not pass through the wellbore. 3. The Temperature log showed lower temp. than surface mud temp. The Sonan log response was quiet. These results suggest that there was no near casing mudflow. 4. Dynamic subsurface conditions of the area with shear movement at a depth of 1,100 ft to 1,500 ft. 5. The RW-1 experienced alternate loss and kicks at a depth of around 3,200 ft. as it entered the unstable fault zone and fracture network which likely served as the mud flow conduit. Drilling in the zone of instability around the mudflow conduit cannot be avoided and is full of hazards. 6. The area suffers a dynamic geological condition. The subsidence rate at the rig site of more than 100 cm in a month. The subsidence also had a lateral component. 7. LUSI has multiple mudflow conduits as reflected in the more than 100 gas bubbles currently occurring within a radius of 1.5 km. Although the relief wells did not achieve their intended purpose to stop the mudflow, they allowed the collection of valuable data, all of which suggests that the mudflow did not originate from the BJP-1 wellbore as originally assumed. The use of relief wells to kill the mudflow is a futile attempt since in such complex plumbing system. New conduits or the two dormant mudflow centers along the fault line that appeared at the beginning of LUSI may reactivate if the currently active conduit is blocked. In conclusion, LUSI appears to be another naturally occurring MV that is impossible to kill using relief wells.

  10. A comprehensive mechanistic model for upward two-phase flow in wellbores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sylvester, N.D.; Sarica, C.; Shoham, O.

    1994-05-01

    A comprehensive model is formulated to predict the flow behavior for upward two-phase flow. This model is composed of a model for flow-pattern prediction and a set of independent mechanistic models for predicting such flow characteristics as holdup and pressure drop in bubble, slug, and annular flow. The comprehensive model is evaluated by using a well data bank made up of 1,712 well cases covering a wide variety of field data. Model performance is also compared with six commonly used empirical correlations and the Hasan-Kabir mechanistic model. Overall model performance is in good agreement with the data. In comparison withmore » other methods, the comprehensive model performed the best.« less

  11. Polymer nanocomposites for sealing microannulus cracks in wellbores cement-steel interface

    NASA Astrophysics Data System (ADS)

    Genedy, M.; Fernandez, S. G.; Stormont, J.; Matteo, E. N.; Dewers, T. A.; Reda Taha, M.

    2017-12-01

    Seal integrity of production and storage wellbores has become a critical challenge with the increasing oil and gas leakage incidents. The general consensus is that one of the potential leakage pathways is micro-annuli at the cement-steel interface. In this paper, we examine the efficiency of proposed polymer nanocomposite to seal microannulus cracks at the cement-steel interface. The repair material efficiency is defined as the ability of the repair material to reduce or eliminate the gas permeability of the cement-steel interface. The flow rate of an inert gas (Nitrogen) at the cement-steel interface was investigated for three cases: 1) repaired test samples with traditional repair material (microfine cement), 2) polymer nanocomposites, and 3) unrepaired test samples. Flow rates were measured and compared for all three cases. The experimental results show up to 99.5% seal efficiency achieved by using polymer nanocomposites compared to 20% efficiency achieved in the case of microfine cement. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. SAND2017-8094 A.

  12. Aquifer susceptibility to perchlorate contamination in a highly urbanized environment

    USGS Publications Warehouse

    Woolfenden, Linda R.; Trefly, Michael G.

    2007-01-01

    Perchlorate contamination from anthropogenic sources has been released into the Rialto-Colton, California, USA, groundwater flow system since the 1940s during its production, distribution, storage, and use. Preliminary analysis of lithological, geophysical, and water-chemistry data provided new understanding of the pathways of perchlorate migration that aid in assessing the susceptibility of drinking-water supplies to contamination within the Rialto-Colton basin. Vertical migration of perchlorate into the main water-producing aquifers is restricted by an areally extensive old soil surface; however, perchlorate data indicate contamination below this soil surface. Possible pathways for the downward migration of the contaminated water include wellbore flow and discontinuities in the old soil surface. Horizontal migration of perchlorate is influenced by lithology and faults within the basin. The basin fill is a heterogeneous mixture of boulders, gravel, sand, silt, and clay, and internal faults may restrict perchlorate migration in some areas.

  13. 1r2dinv: A finite-difference model for inverse analysis of two dimensional linear or radial groundwater flow

    USGS Publications Warehouse

    Bohling, Geoffrey C.; Butler, J.J.

    2001-01-01

    We have developed a program for inverse analysis of two-dimensional linear or radial groundwater flow problems. The program, 1r2dinv, uses standard finite difference techniques to solve the groundwater flow equation for a horizontal or vertical plane with heterogeneous properties. In radial mode, the program simulates flow to a well in a vertical plane, transforming the radial flow equation into an equivalent problem in Cartesian coordinates. The physical parameters in the model are horizontal or x-direction hydraulic conductivity, anisotropy ratio (vertical to horizontal conductivity in a vertical model, y-direction to x-direction in a horizontal model), and specific storage. The program allows the user to specify arbitrary and independent zonations of these three parameters and also to specify which zonal parameter values are known and which are unknown. The Levenberg-Marquardt algorithm is used to estimate parameters from observed head values. Particularly powerful features of the program are the ability to perform simultaneous analysis of heads from different tests and the inclusion of the wellbore in the radial mode. These capabilities allow the program to be used for analysis of suites of well tests, such as multilevel slug tests or pumping tests in a tomographic format. The combination of information from tests stressing different vertical levels in an aquifer provides the means for accurately estimating vertical variations in conductivity, a factor profoundly influencing contaminant transport in the subsurface. ?? 2001 Elsevier Science Ltd. All rights reserved.

  14. Polymer-Cement Composites with Self-Healing Ability for Geothermal and Fossil Energy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childers, M. Ian; Nguyen, Manh-Thuong; Rod, Kenton A.

    Sealing of wellbores in geothermal and tight oil/gas reservoirs by filling the annulus with cement is a well-established practice. Failure of the cement as a result of physical and/or chemical stress is a common problem with serious environmental and financial consequences. Numerous alternative cement blends have been proposed for the oil and gas industry. Most of these possess poor mechanical properties, or are not designed to work in high temperature environments. This work reports on a novel polymer-cement composite with remarkable self-healing ability that maintains the required properties of typical wellbore cements and may be stable at most geothermal temperatures.more » We combine for the first time experimental analysis of physical and chemical properties with density functional theory simulations to evaluate cement performance. The thermal stability and mechanical strength are attributed to the formation of a number of chemical interactions between the polymer and cement matrix including covalent bonds, hydrogen bonding, and van der Waals interactions. Self-healing was demonstrated by sealing fractures with 0.3–0.5 mm apertures, 2 orders of magnitude larger than typical wellbore fractures. This polymer-cement composite represents a major advance in wellbore cementing that could improve the environmental safety and economics of enhanced geothermal energy and tight oil/gas production.« less

  15. A new polymer nanocomposite repair material for restoring wellbore seal integrity

    DOE PAGES

    Genedy, Moneeb; Kandil, Usama F.; Matteo, Edward N.; ...

    2017-03-01

    Seal integrity of functional oil wells and abandoned wellbores used for CO 2 subsequent storage has become of significant interest with the oil and gas leaks worldwide. This is attributed to the fact that wellbores intersecting geographical formations contain potential leakage pathways. One of the critical leakage pathways is the cement-shale interface. In this study, we examine the efficiency of a new polymer nanocomposite repair material that can be injected for sealing micro annulus in wellbores. The bond strength and microstructure of the interface of Type G oil well cement (reference), microfine cement, Novolac epoxy incorporating Neat, 0.25%, 0.5%, andmore » 1.0% Aluminum Nanoparticles (ANPs) with shale is investigated. Interfacial bond strength testing shows that injected microfine cement repair has considerably low bond strength, while ANPs-epoxy nanocomposites have a bond strength that is an order of magnitude higher than cement. Microscopic investigations of the interface show that micro annulus interfacial cracks with widths up to 40 μm were observed at the cement-shale interface while these cracks were absent at the cement-epoxy-shale interface. Finally, Fourier Transform Infrared and Dynamic mechanical analysis measurements showed that ANPs improve interfacial bond by limiting epoxy crosslinking, and therefore allowing epoxy to form robust bonds with cement and shale.« less

  16. Situ treatment of contaminated groundwater

    DOEpatents

    McNab, Jr., Walt W.; Ruiz, Roberto; Pico, Tristan M.

    2001-01-01

    A system for treating dissolved halogenated organic compounds in groundwater that relies upon electrolytically-generated hydrogen to chemically reduce the halogenated compounds in the presence of a suitable catalyst. A direct current is placed across at least a pair, or an array, of electrodes which are housed within groundwater wells so that hydrogen is generated at the cathode and oxygen at the anode. A pump is located within the well housing in which the cathode(s) is(are) located and draws in groundwater where it is hydrogenated via electrolysis, passes through a well-bore treatment unit, and then transported to the anode well(s) for reinjection into the ground. The well-bore treatment involves a permeable cylinder located in the well bore and containing a packed bed of catalyst material that facilitates the reductive dehalogenation of the halogenated organic compounds by hydrogen into environmentally benign species such as ethane and methane. Also, electro-osmatic transport of contaminants toward the cathode also contributes to contaminant mass removal. The only above ground equipment required are the transfer pipes and a direct circuit power supply for the electrodes. The electrode wells in an array may be used in pairs or one anode well may be used with a plurality of cathode wells. The DC current flow between electrode wells may be periodically reversed which controls the formation of mineral deposits in the alkaline cathode well-bore water, as well as to help rejuvenate the catalysis.

  17. Drilling subsurface wellbores with cutting structures

    DOEpatents

    Mansure, Arthur James; Guimerans, Rosalvina Ramona

    2010-11-30

    A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

  18. Well cementing in permafrost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, W.N.

    1979-12-04

    A process for cementing a string of pipe in the permafrost region of a borehole of a well wherein aqueous drilling fluid actually used in drilling the wellbore in the permafrost region of a wellbore is employed. The drilling fluid contains or is adjusted to contain from about 2 to about 16 volume percent solids. Mixing with the drilling fluid (1) an additive selected from the group consisting of lignosulfonate, lignite, tannin, and mixtures thereof, (2) sufficient base to raise the pH of the drilling fluid into the range of from about 9 to about 12, and (3) cementitious materialmore » which will harden in from about 30 to about 40 hours at 40/sup 0/F. The resulting mixture is pumped into the permafrost region of a wellbore to be cemented and allowed to harden in the wellbore. There is also provided a process for treating an aqueous drilling fluid after it has been used in drilling the wellbore in permafrost, and a cementitious composition fro cementing in a permafrost region of a wellbore.« less

  19. Well cementing in permafrost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, W.N.

    1980-01-01

    A process for cementing a string of pipe in the permafrost region of a borehole of a well wherein aqueous drilling fluid actually used in drilling the wellbore in the permafrost region of a wellbore is employed. The drilling fluid contains or is adjusted to contain from about 2 to about 16 volume percent solids. Mixing with the drilling fluid (1) an additive selected from the group consisting of ligno-sulfonate, lignite, tannin, and mixtures thereof, (2) sufficient base to raise the pH of the drilling fluid into the range of from about 9 to about 12, and (3) cementitious materialmore » which will harden in from about 30 to about 40 hours at 40/sup 0/F. The resulting mixture is pumped into the permafrost region of a wellbore to be cemented and allowed to harden in the wellbore. There is also provided a process for treating an aqueous drilling fluid after it has been used in drilling the wellbore in permafrost, and a cementitious composition for cementing in a permafrost region of a wellbore.« less

  20. System for fracturing an underground geologic formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mace, Jonathan L.; Tappan, Bryce C.; Seitz, Gerald J.

    2017-03-14

    An explosive system for fracturing an underground geologic formation adjacent to a wellbore can comprise a plurality of explosive units comprising an explosive material contained within the casing, and detonation control modules electrically coupled to the plurality of explosive units and configured to cause a power pulse to be transmitted to at least one detonator of at least one of the plurality of explosive units for detonation of the explosive material. The explosive units are configured to be positioned within a wellbore in spaced apart positions relative to one another along a string with the detonation control modules positioned adjacentmore » to the plurality of explosive units in the wellbore, such that the axial positions of the explosive units relative to the wellbore are at least partially based on geologic properties of the geologic formation adjacent the wellbore.« less

  1. Sensitivity Studies on Productivity Performance from 3D Heterogeneous Reservoir Model Based on the L-Pad Gas Hydrate Accumulation in Prudhoe Bay Unit, North Slope Alaska

    NASA Astrophysics Data System (ADS)

    Myshakin, E. M.; Ajayi, T.; Seol, Y.; Boswell, R.

    2016-12-01

    Three-dimensional reservoir model of the "L-Pad" hydrate deposit located in the Prudhoe Bay region of the Alaska's North Slope was created including four stratigraphic units; silty shale overburden, hydrate-bearing D sand, inter-reservoir silty shale, hydrate-bearing C sand, and silty shale underburden. The model incorporates the actual geological settings, accounts for the presence of faults, reservoir dip, the hydrate-water contact in the C sand. Geostatistical porosity distributions in D and C sands conditioned to log data from 78 wells drilled in the vicinity of the Prudhoe Bay "L-pad" were developed providing vertical and lateral 3D heterogeneity in porosity and porosity-dependent hydrate saturation and intrinsic permeability. Gas production potential was estimated using a conventional vertical wellbore completion and a deviated toe-down wellbore perforated through both sand units to induce hydrate depressurization at a constant bottom-hole pressure. The results have shown the greater performance of the deviated well design over the vertical one. The scenarios involving simultaneous and sequential hydrate dissociation in sand units were explored and the effect of the underlying aquifer in the C sand was estimated. Sensitivity analysis has demonstrated that hydraulic communication with over- and underlying shale units affects production in the beginning of depressurization due to competitive water influx into producing mobile flow and could suppress efficient hydrate decomposition resulting in production lag. Another important factor greatly influencing the productivity performance is the effective permeability of hydrate-bearing sediment controlled by the relative permeability function. The results call for the necessity of thorough fundamental studies to understand multi-phase flow in hydrate-bearing sediments with different hydrate precipitation habits.

  2. Geomechanical Simulation to Predict the Oil Leak at the Wellbores in Big Hill Strategic Petroleum Reserve.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Byoung; Herrick, Courtney G.

    2015-02-01

    Oil leaks were found in wellbores of Caverns 105 and 109 at the Big Hill Strategic Petroleum Reserve site. According to the field observations, two instances of casing damage occurred at the depth of the interbed between the caprock bottom and salt top. A three dimensional finite element model, which contains wellbore element blocks and allows each cavern to be configured individually, is constructed to investigate the wellbore damage mechanism. The model also contains element blocks to represent interface between each lithology and a shear zone to examine the interbed behavior in a realistic manner. The causes of the damagedmore » casing segments are a result of vertical and horizontal movements of the interbed between the caprock and salt dome. The salt top subsides because the volume of caverns below the salt top decrease with time due to salt creep closure, while the caprock subsides at a slower rate because the caprock is thick and stiffer. This discrepancy produces a deformation of the well. The deformed wellbore may fail at some time. An oil leak occurs when the wellbore fails. A possible oil leak date of each well is determined using an equivalent plastic strain failure criterion. A well grading system for a remediation plan is developed based on the predicted leak dates of each wellbore.« less

  3. Conduit Stability and Collapse in Explosive Volcanic Eruptions: Coupling Conduit Flow and Failure Models

    NASA Astrophysics Data System (ADS)

    Mullet, B.; Segall, P.

    2017-12-01

    Explosive volcanic eruptions can exhibit abrupt changes in physical behavior. In the most extreme cases, high rates of mass discharge are interspaced by dramatic drops in activity and periods of quiescence. Simple models predict exponential decay in magma chamber pressure, leading to a gradual tapering of eruptive flux. Abrupt changes in eruptive flux therefore indicate that relief of chamber pressure cannot be the only control of the evolution of such eruptions. We present a simplified physics-based model of conduit flow during an explosive volcanic eruption that attempts to predict stress-induced conduit collapse linked to co-eruptive pressure loss. The model couples a simple two phase (gas-melt) 1-D conduit solution of the continuity and momentum equations with a Mohr-Coulomb failure condition for the conduit wall rock. First order models of volatile exsolution (i.e. phase mass transfer) and fragmentation are incorporated. The interphase interaction force changes dramatically between flow regimes, so smoothing of this force is critical for realistic results. Reductions in the interphase force lead to significant relative phase velocities, highlighting the deficiency of homogenous flow models. Lateral gas loss through conduit walls is incorporated using a membrane-diffusion model with depth dependent wall rock permeability. Rapid eruptive flux results in a decrease of chamber and conduit pressure, which leads to a critical deviatoric stress condition at the conduit wall. Analogous stress distributions have been analyzed for wellbores, where much work has been directed at determining conditions that lead to wellbore failure using Mohr-Coulomb failure theory. We extend this framework to cylindrical volcanic conduits, where large deviatoric stresses can develop co-eruptively leading to multiple distinct failure regimes depending on principal stress orientations. These failure regimes are categorized and possible implications for conduit flow are discussed, including cessation of eruption.

  4. Petrophysical evaluation of subterranean formations

    DOEpatents

    Klein, James D; Schoderbek, David A; Mailloux, Jason M

    2013-05-28

    Methods and systems are provided for evaluating petrophysical properties of subterranean formations and comprehensively evaluating hydrate presence through a combination of computer-implemented log modeling and analysis. Certain embodiments include the steps of running a number of logging tools in a wellbore to obtain a variety of wellbore data and logs, and evaluating and modeling the log data to ascertain various petrophysical properties. Examples of suitable logging techniques that may be used in combination with the present invention include, but are not limited to, sonic logs, electrical resistivity logs, gamma ray logs, neutron porosity logs, density logs, NRM logs, or any combination or subset thereof.

  5. Analysis of Wellbore Skin Samples-Typology, Composition, and Hydraulic Properties.

    PubMed

    Houben, Georg J; Halisch, Matthias; Kaufhold, Stephan; Weidner, Christoph; Sander, Jürgen; Reich, Morris

    2016-09-01

    The presence of a wellbore skin layer, formed during the drilling process, is a major impediment for the energy-efficient use of water wells. Many models exist that predict its potential impacts on well hydraulics, but so far its relevant hydraulic parameters were only estimates or, at best, model results. Here, we present data on the typology, thickness, composition, and hydraulic properties obtained from the sampling of excavated dewatering wells in lignite surface mines and from inclined core drilling into the annulus of an abandoned water well. Despite the limited number of samples, several types of skin were identified. Both surface cake filtration and particle straining in the aquifer occur. The presence of microcracks may be a determining feature for the hydraulic conductivity of skin layers. In the case of the well-developed water supply well, no skin layer was detected. The observed types and properties of wellbore skin samples can be used to test the many mathematical skin models. © 2016, National Ground Water Association.

  6. Investigation of Possible Wellbore Cement Failures During Hydraulic Fracturing Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jihoon; Moridis, George

    2014-11-01

    We model and assess the possibility of shear failure, using the Mohr-Coulomb model ? along the vertical well by employing a rigorous coupled flow-geomechanic analysis. To this end, we vary the values of cohesion between the well casing and the surrounding cement to representing different quality levels of the cementing operation (low cohesion corresponds to low-quality cement and/or incomplete cementing). The simulation results show that there is very little fracturing when the cement is of high quality.. Conversely, incomplete cementing and/or weak cement can causes significant shear failure and the evolution of long fractures/cracks along the vertical well. Specifically, lowmore » cohesion between the well and cemented areas can cause significant shear failure along the well, but the same cohesion as the cemented zone does not cause shear failure. When the hydraulic fracturing pressure is high, low cohesion of the cement can causes fast propagation of shear failure and of the resulting fracture/crack, but a high-quality cement with no weak zones exhibits limited shear failure that is concentrated near the bottom of the vertical part of the well. Thus, high-quality cement and complete cementing along the vertical well appears to be the strongest protection against shear failure of the wellbore cement and, consequently, against contamination hazards to drinking water aquifers during hydraulic fracturing operations.« less

  7. Chemical Tool Peer Review Summary.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cashion, Avery Ted; Cieslewski, Grzegorz

    Chemical tracers are commonly used to characterize fracture networks and to determine the connectivity between the injection and production wells. Currently, most tracer experiments involve injecting the tracer at the injection well, manually collecting liquid samples at the wellhead of the production well, and sending the samples off for laboratory analysis. While this method provides accurate tracer concentration data, it does not provide information regarding the location of the fractures conducting the tracer between wellbores. The goal of this project is to develop chemical sensors and design a prototype tool to help understand the fracture properties of a geothermal reservoirmore » by monitoring tracer concentrations along the depth of the well. The sensors will be able to detect certain species of the ionic tracers (mainly iodide) and pH in-situ during the tracer experiment. The proposed high-temperature (HT) tool will house the chemical sensors as well as a standard logging sensor package of pressure, temperature, and flow sensors in order to provide additional information on the state of the geothermal reservoir. The sensors and the tool will be able to survive extended deployments at temperatures up to 225 °C and high pressures to provide real-time temporal and spatial feedback of tracer concentration. Data collected from this tool will allow for the real-time identification of the fractures conducting chemical tracers between wellbores along with the pH of the reservoir fluid at various depths.« less

  8. A Lagging Model for Describing Drawdown Induced by a Constant-Rate Pumping in a Leaky Confined Aquifer

    NASA Astrophysics Data System (ADS)

    Lin, Ye-Chen; Yeh, Hund-Der

    2017-10-01

    This study proposes a generalized Darcy's law with considering phase lags in both the water flux and drawdown gradient to develop a lagging flow model for describing drawdown induced by constant-rate pumping (CRP) in a leaky confined aquifer. The present model has a mathematical formulation similar to the dual-porosity model. The Laplace-domain solution of the model with the effect of wellbore storage is derived by the Laplace transform method. The time-domain solution for the case of neglecting the wellbore storage and well radius is developed by the use of Laplace transform and Weber transform. The results of sensitivity analysis based on the solution indicate that the drawdown is very sensitive to the change in each of the transmissivity and storativity. Also, a study for the lagging effect on the drawdown indicates that its influence is significant associated with the lag times. The present solution is also employed to analyze a data set taken from a CRP test conducted in a fractured aquifer in South Dakota, USA. The results show the prediction of this new solution with considering the phase lags has very good fit to the field data, especially at early pumping time. In addition, the phase lags seem to have a scale effect as indicated in the results. In other words, the lagging behavior is positively correlated with the observed distance in the Madison aquifer.

  9. Wellbore pressure transducer

    DOEpatents

    Shuck, Lowell Z.

    1979-01-01

    Subterranean earth formations containing energy values are subjected to hydraulic fracturing procedures to enhance the recovery of the energy values. These fractures are induced in the earth formation by pumping liquid into the wellbore penetrating the earth formation until the pressure of the liquid is sufficient to fracture the earth formation adjacent to the wellbore. The present invention is directed to a transducer which is positionable within the wellbore to generate a signal indicative of the fracture initiation useful for providing a timing signal to equipment for seismic mapping of the fracture as it occurs and for providing a measurement of the pressure at which the fracture is initiated.

  10. 1986 Petroleum Software Directory. [800 mini, micro and mainframe computer software packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-01-01

    Pennwell's 1986 Petroleum Software Directory is a complete listing of software created specifically for the petroleum industry. Details are provided on over 800 mini, micro and mainframe computer software packages from more than 250 different companies. An accountant can locate programs to automate bookkeeping functions in large oil and gas production firms. A pipeline engineer will find programs designed to calculate line flow and wellbore pressure drop.

  11. Groundwater data for selected wells within the Eastern San Joaquin Groundwater Subbasin, California, 2003-8

    USGS Publications Warehouse

    Clark, Dennis A.; Izbicki, John A.; Metzger, Loren F.; Everett, Rhett; Smith, Gregory A.; O'Leary, David R.; Teague, Nicholas F.; Burgess, Matthew K.

    2012-01-01

    Data were collected by the U.S. Geological Survey from 2003 through 2008 in the Eastern San Joaquin Groundwater Subbasin, 80 miles east of San Francisco, California, as part of a study of the increasing chloride concentrations in groundwater processes. Data collected include geologic, geophysical, chemical, and hydrologic data collected during and after the installation of five multiple-well monitoring sites, from three existing multiple-well sites, and from 79 selected public-supply, irrigation, and domestic wells. Each multiple-well monitoring site installed as part of this study contained three to five 2-inch diameter polyvinyl chloride (PVC)-cased wells ranging in depth from 68 to 880 feet below land surface. Continuous water-level data were collected from the 19 wells installed at these 5 sites and from 10 existing monitoring wells at 3 additional multiple-well sites in the study area. Thirty-one electromagnetic logs were collected seasonally from the deepest PVC-cased monitoring well at seven multiple-well sites. About 200 water samples were collected from 79 wells in the study area. Coupled well-bore flow data and depth-dependent water-quality data were collected from 12 production wells under pumped conditions, and well-bore flow data were collected from 10 additional wells under unpumped conditions.

  12. Intra-Wellbore Head Losses in a Horizontal Well with both Kinematic and Frictional Effects in an Anisotropic Confined Aquifer between Two Streams

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Zhan, H.

    2017-12-01

    Horizontal drilling becomes an appealing technology for water exploration or aquifer remediation in recent decades, due to the decreasing operational cost and many technical advantages over the vertical wells. However, many previous studies on the flow into horizontal wells were based on the uniform flux boundary condition (UFBC) for treating horizontal wells, which could not reflect the physical processes of flow inside the well accurately. In this study, we investigated transient flow into a horizontal well in an anisotropic confined aquifer between two streams for three types of boundary conditions of treating the horizontal well, including UFBC, uniform head boundary condition (UHBC), and mixed-type boundary condition (MTBC). The MTBC model considered both kinematic and frictional effects inside the horizontal well, in which the kinematic effect referred to the accelerational and fluid inflow effects. The new solution of UFBC was derived by superimposing the point sink/source solutions along the axis of the horizontal well with a uniform strength. The solutions of UHBC and MTBC were obtained by a hybrid analytical-numerical method, and an iterative method was proposed to determine the minimum well segment number required to yield sufficiently accurate answer. The results showed that the differences among the UFBC, UHBC, MTBCFriction and MTBC solutions were obvious, in which MTBCFriction represented the solutions considering the frictional effect but ignoring the kinematic effect. The MTBCFriction and MTBC solutions were sensitive to the flow rate, and the difference of these two solutions increases with the flow rate, suggesting that the kinematic effect could not be ignored for studying flow to a horizontal well, especially when the flow rate is great. The well specific inflow (WSI) (which is the inflow per unit screen length at a specified location of the horizontal well) increased with the distance along the wellbore for the MTBC model at early stage, while the minimum WSI moved to the well center with time going, following a cubic polynomial function.

  13. Cooperative well report: Maxus exploration Company Carl Ellis E-3 well, Ochiltree County, Texas. Topical report, January 1992-March 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holditch, S.A.; Whitehead, W.S.; Davidson, B.M.

    Maxus Exploration drilled the Carl Ellis E-3 well in the Ellis Ranch Field, Ochiltree County, Texas in December 1991. The GRI cooperative research program on this well included coring, logging, stress testing, pre-fracture well testing, a mini-frac, post-fracture production data analysis, a fracture treatment, and a post-fracture well test. The well was completed in the Cleveland formation at 6,929-7,008 feet. After a ballout treatment, the well flowed 32 Mscf/day. Results of the pre-fracture pressure buildup test indicate a permeability-thickness product of 1.45 md-ft, a skin factor of -0.05, and a reservoir pressure of 1900 psi. The well was fracture treatedmore » with 70,000 gallons of a 40 lb/1000 gallon linear gel and 185,000 pounds of 20/40 sand. The initial post-fracture flow rate was approximately 500 Mscf/day. Post-fracture analysis with TRIFRAC indicated that the propped fracture height at the wellbore was 330 feet and the propped fracture length was 93 feet.« less

  14. Hydraulic fracturing fluid migration in the subsurface: A review and expanded modeling results

    NASA Astrophysics Data System (ADS)

    Birdsell, Daniel T.; Rajaram, Harihar; Dempsey, David; Viswanathan, Hari S.

    2015-09-01

    Understanding the transport of hydraulic fracturing (HF) fluid that is injected into the deep subsurface for shale gas extraction is important to ensure that shallow drinking water aquifers are not contaminated. Topographically driven flow, overpressured shale reservoirs, permeable pathways such as faults or leaky wellbores, the increased formation pressure due to HF fluid injection, and the density contrast of the HF fluid to the surrounding brine can encourage upward HF fluid migration. In contrast, the very low shale permeability and capillary imbibition of water into partially saturated shale may sequester much of the HF fluid, and well production will remove HF fluid from the subsurface. We review the literature on important aspects of HF fluid migration. Single-phase flow and transport simulations are performed to quantify how much HF fluid is removed via the wellbore with flowback and produced water, how much reaches overlying aquifers, and how much is permanently sequestered by capillary imbibition, which is treated as a sink term based on a semianalytical, one-dimensional solution for two-phase flow. These simulations include all of the important aspects of HF fluid migration identified in the literature review and are performed in five stages to faithfully represent the typical operation of a hydraulically fractured well. No fracturing fluid reaches the aquifer without a permeable pathway. In the presence of a permeable pathway, 10 times more fracturing fluid reaches the aquifer if well production and capillary imbibition are not included in the model.

  15. Flow of viscoplastic suspensions in a hydraulic fracture: implications to overflush

    NASA Astrophysics Data System (ADS)

    Boronin, S. A.; Osiptsov, A. A.; Desroches, J.

    2017-10-01

    The study is devoted to modeling of multiphase flows of immiscible viscoplastic fluids in a hydraulic fracture. In the framework of the lubrication approximation, three-dimensional Navier-Stokes equations are reduced to hyperbolic transport equations for the fluid tracers and a quasi-linear elliptic equation in terms of the fluid pressure. The governing equations are solved numerically using the finite-difference approach. A parametric study of the displacement of Bingham fluids in a Hele-Shaw cell is carried out. It is found that fingers developed through the pillar of a yield-stress suspension trigger the development of unyielded zones. An increase in the Bingham number leads to an increase in the so-called finger shielding effect, which manifests itself via an increase in the overall finger penetration zone and a decrease in the total number of fingers. The effect of flow parameters on the displacement of hydraulic fracturing proppant-laden suspension by a clean fluid in the vicinity of the perforation zone is carried out. This particular case is considered in application to overflush at the end of a stimulation treatment, when a small portion of a thin clean fluid is injected to wash out the particles from the wellbore into the fracture. It is found that an increase in the yield stress and the viscosity contrast between the fracturing and the overflush fluids typically reduces the area of the cavity thus mitigating the risk of loosing the conductive path between the wellbore and the fracture after the fracture closure.

  16. Advances in borehole geophysics for hydrology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, P.H.

    1982-01-01

    Borehole geophysical methods provide vital subsurface information on rock properties, fluid movement, and the condition of engineered borehole structures. Within the first category, salient advances include the continuing improvement of the borehole televiewer, refinement of the electrical conductivity dipmeter for fracture characterization, and the development of a gigahertz-frequency electromagnetic propagation tool for water saturation measurements. The exploration of the rock mass between boreholes remains a challenging problem with high potential; promising methods are now incorporating high-density spatial sampling and sophisticated data processing. Flow-rate measurement methods appear adequate for all but low-flow situations. At low rates the tagging method seems themore » most attractive. The current exploitation of neutron-activation techniques for tagging means that the wellbore fluid itself is tagged, thereby eliminating the mixing of an alien fluid into the wellbore. Another method uses the acoustic noise generated by flow through constrictions and in and behind casing to detect and locate flaws in the production system. With the advent of field-recorded digital data, the interpretation of logs from sedimentary sequences is now reaching a sophisticated level with the aid of computer processing and the application of statistical methods. Lagging behind are interpretive schemes for the low-porosity, fracture-controlled igneous and metamorphic rocks encountered in the geothermal reservoirs and in potential waste-storage sites. Progress is being made on the general problem of fracture detection by use of electrical and acoustical techniques, but the reliable definition of permeability continues to be an elusive goal.« less

  17. Experimental study of potential wellbore cement carbonation by various phases of carbon dioxide during geologic carbon sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Hun Bok; Um, Wooyong

    2013-08-16

    Hydrated Portland cement was reacted with carbon dioxide (CO2) in supercritical, gaseous, and aqueous phases to understand the potential cement alteration processes along the length of a wellbore, extending from deep CO2 storage reservoir to the shallow subsurface during geologic carbon sequestration. The 3-D X-ray microtomography (XMT) images displayed that the cement alteration was significantly more extensive by CO2-saturated synthetic groundwater than dry or wet supercritical CO2 at high P (10 MPa)-T (50°C) conditions. Scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) analysis also exhibited a systematic Ca depletion and C enrichment in cement matrix exposed to CO2-saturated groundwater. Integratedmore » XMT, XRD, and SEM-EDS analyses identified the formation of extensive carbonated zone filled with CaCO3(s), as well as the porous degradation front and the outermost silica-rich zone in cement after exposure to CO2-saturated groundwater. The cement alteration by CO2-saturated groundwater for 2-8 months overall decreased the porosity from 31% to 22% and the permeability by an order of magnitude. Cement alteration by dry or wet supercritical CO2 was slow and minor compared to CO2-saturated groundwater. A thin single carbonation zone was formed in cement after exposure to wet supercritical CO2 for 8 months or dry supercritical CO2 for 15 months. Extensive calcite coating was formed on the outside surface of a cement sample after exposure to wet gaseous CO2 for 1-3 months. The chemical-physical characterization of hydrated Portland cement after exposure to various phases of carbon dioxide indicates that the extent of cement carbonation can be significantly heterogeneous depending on CO2 phase present in the wellbore environment. Both experimental and geochemical modeling results suggest that wellbore cement exposure to supercritical, gaseous, and aqueous phases of CO2 during geologic carbon sequestration is unlikely to damage the wellbore integrity because cement alteration by all phases of CO2 is dominated by carbonation reaction. This is consistent with previous field studies of wellbore cement with extensive carbonation after exposure to CO2 for 3 decades. However, XMT imaging indicates that preferential cement alteration by supercritical CO2 or CO2-saturated groundwater can occur along the cement-steel or cement-rock interfaces. This highlights the importance of further investigation of cement degradation along the interfaces of wellbore materials to ensure permanent geologic carbon storage.« less

  18. Relaxation limit of a compressible gas-liquid model with well-reservoir interaction

    NASA Astrophysics Data System (ADS)

    Solem, Susanne; Evje, Steinar

    2017-02-01

    This paper deals with the relaxation limit of a two-phase compressible gas-liquid model which contains a pressure-dependent well-reservoir interaction term of the form q (P_r - P) where q>0 is the rate of the pressure-dependent influx/efflux of gas, P is the (unknown) wellbore pressure, and P_r is the (known) surrounding reservoir pressure. The model can be used to study gas-kick flow scenarios relevant for various wellbore operations. One extreme case is when the wellbore pressure P is largely dictated by the surrounding reservoir pressure P_r. Formally, this model is obtained by deriving the limiting system as the relaxation parameter q in the full model tends to infinity. The main purpose of this work is to understand to what extent this case can be represented by a well-defined mathematical model for a fixed global time T>0. Well-posedness of the full model has been obtained in Evje (SIAM J Math Anal 45(2):518-546, 2013). However, as the estimates for the full model are dependent on the relaxation parameter q, new estimates must be obtained for the equilibrium model to ensure existence of solutions. By means of appropriate a priori assumptions and some restrictions on the model parameters, necessary estimates (low order and higher order) are obtained. These estimates that depend on the global time T together with smallness assumptions on the initial data are then used to obtain existence of solutions in suitable Sobolev spaces.

  19. Non-ferromagnetic overburden casing

    DOEpatents

    Vinegar, Harold J.; Harris, Christopher Kelvin; Mason, Stanley Leroy

    2010-09-14

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one system for electrically insulating an overburden portion of a heater wellbore is described. The system may include a heater wellbore located in a subsurface formation and an electrically insulating casing located in the overburden portion of the heater wellbore. The casing may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the casing.

  20. A 3-D wellbore simulator (WELLTHER-SIM) to determine the thermal diffusivity of rock-formations

    NASA Astrophysics Data System (ADS)

    Wong-Loya, J. A.; Santoyo, E.; Andaverde, J.

    2017-06-01

    Acquiring thermophysical properties of rock-formations in geothermal systems is an essential task required for the well drilling and completion. Wellbore thermal simulators require such properties for predicting the thermal behavior of a wellbore and the formation under drilling and shut-in conditions. The estimation of static formation temperatures also needs the use of these properties for the wellbore and formation materials (drilling fluids and pipes, cements, casings, and rocks). A numerical simulator (WELLTHER-SIM) has been developed for modeling the drilling fluid circulation and shut-in processes of geothermal wellbores, and for the in-situ determination of thermal diffusivities of rocks. Bottomhole temperatures logged under shut-in conditions (BHTm), and thermophysical and transport properties of drilling fluids were used as main input data. To model the thermal disturbance and recovery processes in the wellbore and rock-formation, initial drilling fluid and static formation temperatures were used as initial and boundary conditions. WELLTHER-SIM uses these temperatures together with an initial thermal diffusivity for the rock-formation to solve the governing equations of the heat transfer model. WELLTHER-SIM was programmed using the finite volume technique to solve the heat conduction equations under 3-D and transient conditions. Thermal diffusivities of rock-formations were inversely computed by using an iterative and efficient numerical simulation, where simulated thermal recovery data sets (BHTs) were statistically compared with those temperature measurements (BHTm) logged in some geothermal wellbores. The simulator was validated using a well-documented case reported in the literature, where the thermophysical properties of the rock-formation are known with accuracy. The new numerical simulator has been successfully applied to two wellbores drilled in geothermal fields of Japan and Mexico. Details of the physical conceptual model, the numerical algorithm, and the validation and application results are outlined in this work.

  1. Measuring Flow Rate in Crystalline Bedrock Wells Using the Dissolved Oxygen Alteration Method.

    PubMed

    Vitale, Sarah A; Robbins, Gary A

    2017-07-01

    Determination of vertical flow rates in a fractured bedrock well can aid in planning and implementing hydraulic tests, water quality sampling, and improving interpretations of water quality data. Although flowmeters are highly accurate in flow rate measurement, the high cost and logistics may be limiting. In this study the dissolved oxygen alteration method (DOAM) is expanded upon as a low-cost alternative to determine vertical flow rates in crystalline bedrock wells. The method entails altering the dissolved oxygen content in the wellbore through bubbler aeration, and monitoring the vertical advective movement of the dissolved oxygen over time. Measurements were taken for upward and downward flows, and under ambient and pumping conditions. Vertical flow rates from 0.06 to 2.30 Lpm were measured. To validate the method, flow rates determined with the DOAM were compared to pump discharge rates and found to be in agreement within 2.5%. © 2017, National Ground Water Association.

  2. Apparatus for installing condition-sensing means in subterranean earth formations

    DOEpatents

    Shuck, Lowell Z.

    1981-01-01

    The present invention is directed to an apparatus for installing strain gages or other sensors-transducers in wellbores penetrating subterranean earth formations. The subject apparatus comprises an assembly which is lowered into the wellbore, secured in place, and then actuated to sequentially clean the wellbore or casing surface at a selected location with suitable solvents, etchants and neutralizers, grind the surface to a relatively smooth finish, apply an adhesive to the surface, and attach the strain gages or the like to the adhesive-bearing surface. After installing the condition-sensing gages to the casing or earth formation the assembly is withdrawn from the wellbore leaving the sensing gages securely attached to the casing or the subterranean earth formation.

  3. WTAQ - A computer program for aquifer-test analysis of confined and unconfined aquifers

    USGS Publications Warehouse

    Barlow, P.M.; Moench, A.F.

    2004-01-01

    Computer program WTAQ was developed to implement a Laplace-transform analytical solution for axial-symmetric flow to a partially penetrating, finite-diameter well in a homogeneous and anisotropic unconfined (water-table) aquifer. The solution accounts for wellbore storage and skin effects at the pumped well, delayed response at an observation well, and delayed or instantaneous drainage from the unsaturated zone. For the particular case of zero drainage from the unsaturated zone, the solution simplifies to that of axial-symmetric flow in a confined aquifer. WTAQ calculates theoretical time-drawdown curves for the pumped well and observation wells and piezometers. The theoretical curves are used with measured time-drawdown data to estimate hydraulic parameters of confined or unconfined aquifers by graphical type-curve methods or by automatic parameter-estimation methods. Parameters that can be estimated are horizontal and vertical hydraulic conductivity, specific storage, and specific yield. A sample application illustrates use of WTAQ for estimating hydraulic parameters of a hypothetical, unconfined aquifer by type-curve methods. Copyright ASCE 2004.

  4. BORE II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bore II, co-developed by Berkeley Lab researchers Frank Hale, Chin-Fu Tsang, and Christine Doughty, provides vital information for solving water quality and supply problems and for improving remediation of contaminated sites. Termed "hydrophysical logging," this technology is based on the concept of measuring repeated depth profiles of fluid electric conductivity in a borehole that is pumping. As fluid enters the wellbore, its distinct electric conductivity causes peaks in the conductivity log that grow and migrate upward with time. Analysis of the evolution of the peaks enables characterization of groundwater flow distribution more quickly, more cost effectively, and with higher resolutionmore » than ever before. Combining the unique interpretation software Bore II with advanced downhole instrumentation (the hydrophysical logging tool), the method quantifies inflow and outflow locations, their associated flow rates, and the basic water quality parameters of the associated formation waters (e.g., pH, oxidation-reduction potential, temperature). In addition, when applied in conjunction with downhole fluid sampling, Bore II makes possible a complete assessment of contaminant concentration within groundwater.« less

  5. Polymer-cement interactions towards improved wellbore cement fracture sealants

    NASA Astrophysics Data System (ADS)

    Beckingham, B. S.; Iloejesi, C.; Minkler, M. J.; Schindler, A. K.; Beckingham, L. E.

    2017-12-01

    Carbon capture, utilization, and storage (CCUS) in deep geologic formations is a promising means of reducing point source emissions of CO2. In these systems, CO2 is captured at the source and then injected to be utilized (eg. in enhanced oil recovery or as a working fluid in enhanced geothermal energy plants) or stored in geologic formations such as depleted oil and gas reservoirs or saline aquifers. While CCUS in subsurface systems could aid in reducing atmospheric CO2 emissions, the potential for CO2 leakage from these systems to overlying formations remains a major limitation and poses a significant risk to the security of injected CO2. Thus, improved materials for both initial wellbore isolation and repairing leakage pathways that develop over time are sought. One approach for the repair of cement fractures in wellbore (and other) systems is the injection of polymer materials into the fracture with a subsequent environmentally dependent (temperature, pressure, pH, etc.) densification or solidification. Here, we aim to investigate novel polymer materials for use to repair leaking wellbores in the context of CCUS. We synthesize and fully characterize a series of novel polymer materials and utilize a suite of analysis techniques to examine polymer-cement interactions at a range of conditions (namely temperature, pressure and pH). Initial findings will be leveraged to design novel polymer materials for further evaluation in polymer-cement composite cores, cement fracture healing, and the aging behavior of healed cements.

  6. Integrated acoustic phase separator and multiphase fluid composition monitoring apparatus and method

    DOEpatents

    Sinha, Dipen N.

    2016-01-12

    An apparatus and method for down hole gas separation from the multiphase fluid flowing in a wellbore or a pipe, for determining the quantities of the individual components of the liquid and the flow rate of the liquid, and for remixing the component parts of the fluid after which the gas volume may be measured, without affecting the flow stream, are described. Acoustic radiation force is employed to separate gas from the liquid, thereby permitting measurements to be separately made for these two components; the liquid (oil/water) composition is determined from ultrasonic resonances; and the gas volume is determined from capacitance measurements. Since the fluid flows around and through the component parts of the apparatus, there is little pressure difference, and no protection is required from high pressure differentials.

  7. Integrated acoustic phase separator and multiphase fluid composition monitoring apparatus and method

    DOEpatents

    Sinha, Dipen N

    2014-02-04

    An apparatus and method for down hole gas separation from the multiphase fluid flowing in a wellbore or a pipe, for determining the quantities of the individual components of the liquid and the flow rate of the liquid, and for remixing the component parts of the fluid after which the gas volume may be measured, without affecting the flow stream, are described. Acoustic radiation force is employed to separate gas from the liquid, thereby permitting measurements to be separately made for these two components; the liquid (oil/water) composition is determined from ultrasonic resonances; and the gas volume is determined from capacitance measurements. Since the fluid flows around and through the component parts of the apparatus, there is little pressure difference, and no protection is required from high pressure differentials.

  8. Geomechanical Modeling of CO2 Injection Site to Predict Wellbore Stresses and Strains for the Design of Wellbore Seal Repair Materials

    NASA Astrophysics Data System (ADS)

    Sobolik, S. R.; Gomez, S. P.; Matteo, E. N.; Stormont, J.

    2014-12-01

    This paper will present the results of large-scale three-dimensional calculations simulating the hydrological-mechanical behavior of a CO2injection reservoir and the resulting effects on wellbore casings and sealant repair materials. A critical aspect of designing effective wellbore seal repair materials is predicting thermo-mechanical perturbations in local stress that can compromise seal integrity. The DOE-NETL project "Wellbore Seal Repair Using Nanocomposite Materials," is interested in the stress-strain history of abandoned wells, as well as changes in local pressure, stress, and temperature conditions that accompany carbon dioxide injection or brine extraction. Two distinct computational models comprise the current modeling effort. The first is a field scale model that uses the stratigraphy, material properties, and injection history from a pilot CO2injection operation in Cranfield, MS to develop a stress-strain history for wellbore locations from 100 to 400 meters from an injection well. The results from the field scale model are used as input to a more detailed model of a wellbore casing. The 3D wellbore model examines the impacts of various loading scenarios on a casing structure. This model has been developed in conjunction with bench-top experiments of an integrated seal system in an idealized scaled wellbore mock-up being used to test candidate seal repair materials. The results from these models will be used to estimate the necessary mechanical properties needed for a successful repair material. This material is based upon work supported by the US Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant Number DE-FE0009562. This project is managed and administered by the Storage Division of the NETL and funded by DOE/NETL and cost-sharing partners. This work was funded in part by the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award DE-SC-0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Geomechanical Modeling of CO2 Injection Site to Predict Wellbore Stresses and Strains for the Design of Wellbore Seal Repair Materials

    NASA Astrophysics Data System (ADS)

    Sobolik, S. R.; Matteo, E. N.; Dewers, T. A.; Newell, P.; Gomez, S. P.; Stormont, J.

    2014-12-01

    This paper will present the results of large-scale three-dimensional calculations simulating the hydrological-mechanical behavior of a CO2 injection reservoir and the resulting effects on wellbore casings and sealant repair materials. A critical aspect of designing effective wellbore seal repair materials is predicting thermo-mechanical perturbations in local stress that can compromise seal integrity. The DOE-NETL project "Wellbore Seal Repair Using Nanocomposite Materials," is interested in the stress-strain history of abandoned wells, as well as changes in local pressure, stress, and temperature conditions that accompany carbon dioxide injection or brine extraction. Two distinct computational models comprise the current modeling effort. The first is a field scale model that uses the stratigraphy, material properties, and injection history from a pilot CO2 injection operation in Cranfield, MS to develop a stress-strain history for wellbore locations from 100 to 400 meters from an injection well. The results from the field scale model are used as input to a more detailed model of a wellbore casing. The 3D wellbore model examines the impacts of various loading scenarios on a casing structure. This model has been developed in conjunction with bench-top experiments of an integrated seal system in an idealized scaled wellbore mock-up being used to test candidate seal repair materials. The results from these models will be used to estimate the necessary mechanical properties needed for a successful repair material. This material is based upon work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant Number DE-FE0009562. This project is managed and administered by the University of New Mexico and funded by DOE/NETL and cost-sharing partners. This work was funded in part by the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award DE-SC-0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. Geomechanical Modeling of CO2 Injection Site to Predict Wellbore Stresses and Strains for the Design of Wellbore Seal Repair Materials

    NASA Astrophysics Data System (ADS)

    Sobolik, S. R.; Gomez, S. P.; Matteo, E. N.; Stormont, J.

    2015-12-01

    This paper will present the results of large-scale three-dimensional calculations simulating the hydrological-mechanical behavior of a CO2injection reservoir and the resulting effects on wellbore casings and sealant repair materials. A critical aspect of designing effective wellbore seal repair materials is predicting thermo-mechanical perturbations in local stress that can compromise seal integrity. The DOE-NETL project "Wellbore Seal Repair Using Nanocomposite Materials," is interested in the stress-strain history of abandoned wells, as well as changes in local pressure, stress, and temperature conditions that accompany carbon dioxide injection or brine extraction. Two distinct computational models comprise the current modeling effort. The first is a field scale model that uses the stratigraphy, material properties, and injection history from a pilot CO2injection operation in Cranfield, MS to develop a stress-strain history for wellbore locations from 100 to 400 meters from an injection well. The results from the field scale model are used as input to a more detailed model of a wellbore casing. The 3D wellbore model examines the impacts of various loading scenarios on a casing structure. This model has been developed in conjunction with bench-top experiments of an integrated seal system in an idealized scaled wellbore mock-up being used to test candidate seal repair materials. The results from these models will be used to estimate the necessary mechanical properties needed for a successful repair material. This material is based upon work supported by the US Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant Number DE-FE0009562. This project is managed and administered by the Storage Division of the NETL and funded by DOE/NETL and cost-sharing partners. This work was funded in part by the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award DE-SC-0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Method for selectively orienting induced fractures in subterranean earth formations

    DOEpatents

    Shuck, Lowell Z.

    1977-02-01

    The orientation of hydraulically-induced fractures in relatively deep subterranean earth formations is normally confined to vertical projections along a plane parallel to the maximum naturally occurring (tectonic) compressive stress field. It was found that this plane of maximum compressive stress may be negated and, in effect, re-oriented in a plane projecting generally orthogonal to the original tectonic stress plane by injecting liquid at a sufficiently high pressure into a wellbore fracture oriented in a plane parallel to the plane of tectonic stress for the purpose of stressing the surrounding earth formation in a plane generally orthogonal to the plane of tectonic stress. With the plane of maximum compressive stress re-oriented due to the presence of the induced compressive stress, liquid under pressure is injected into a second wellbore disposed within the zone influenced by the induced compressive stress but at a location in the earth formation laterally spaced from the fracture in the first wellbore for effecting a fracture in the second wellbore along a plane generally orthogonal to the fracture in the first wellbore.

  12. Abandoning wells working group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The primary objective of this working group is to identify major technical, regulatory, and environmental issues that are relevant to the abandonment of offshore wellbores. Once the issues have been identified, the working group also has the objective of making recommendations or providing potential solutions for consideration. Areas for process improvement will be identified and {open_quotes}best practices{close_quotes} will be discussed and compared to {open_quotes}minimum standards.{close_quotes} The working group will primarily focus on wellbore abandonment in the Gulf of Mexico. However, workshop participants are encouraged to discuss international issues which may be relevant to wellbore abandonment practices in the Gulf ofmore » Mexico. The Abandoning Wells Group has identified several major areas for discussion that have concerns related to both operators and service companies performing wellbore abandonments in the Gulf of Mexico. The following broad topics were selected for the agenda: (1) MMS minimum requirements and state regulations. (2) Co-existence of best practices, new technology, and P & A economics. (3) Liability and environmental issues relating to wellbore abandonment.« less

  13. A Semi-Analytical Method for Rapid Estimation of Near-Well Saturation, Temperature, Pressure and Stress in Non-Isothermal CO2 Injection

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Ennis-King, J.; Paterson, L.

    2015-12-01

    Reservoir cooling near the wellbore is expected when fluids are injected into a reservoir or aquifer in CO2 storage, enhanced oil or gas recovery, enhanced geothermal systems, and water injection for disposal. Ignoring thermal effects near the well can lead to under-prediction of changes in reservoir pressure and stress due to competition between increased pressure and contraction of the rock in the cooled near-well region. In this work a previously developed semi-analytical model for immiscible, nonisothermal fluid injection is generalised to include partitioning of components between two phases. Advection-dominated radial flow is assumed so that the coupled two-phase flow and thermal conservation laws can be solved analytically. The temperature and saturation profiles are used to find the increase in reservoir pressure, tangential, and radial stress near the wellbore in a semi-analytical, forward-coupled model. Saturation, temperature, pressure, and stress profiles are found for parameters representative of several CO2 storage demonstration projects around the world. General results on maximum injection rates vs depth for common reservoir parameters are also presented. Prior to drilling an injection well there is often little information about the properties that will determine the injection rate that can be achieved without exceeding fracture pressure, yet injection rate and pressure are key parameters in well design and placement decisions. Analytical solutions to simplified models such as these can quickly provide order of magnitude estimates for flow and stress near the well based on a range of likely parameters.

  14. Theme 3: Mechanical Integrity - Pre & Post Well Integrity Methods for Hydraulically Fractured/Stimulated Wells

    EPA Pesticide Factsheets

    This presentation looks into wellbore design and monitoring techniques that are critical in assuring that wellbore integrity is maintained in conjunction with hydraulic fracturing/stimulation completion practices.

  15. Evaluation of well-purging effects on water-quality results for samples collected from the eastern Snake River Plain aquifer underlying the Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Knobel, LeRoy L.

    2006-01-01

    This report presents qualitative and quantitative comparisons of water-quality data from the Idaho National Laboratory, Idaho, to determine if the change from purging three wellbore volumes to one wellbore volume has a discernible effect on the comparability of the data. Historical water-quality data for 30 wells were visually compared to water-quality data collected after purging only 1 wellbore volume from the same wells. Of the 322 qualitatively examined constituent plots, 97.5 percent met 1 or more of the criteria established for determining data comparability. A simple statistical equation to determine if water-quality data collected from 28 wells at the INL with long purge times (after pumping 1 and 3 wellbore volumes of water) were statistically the same at the 95-percent confidence level indicated that 97.9 percent of 379 constituent pairs were equivalent. Comparability of water-quality data determined from both the qualitative (97.5 percent comparable) and quantitative (97.9 percent comparable) evaluations after purging 1 and 3 wellbore volumes of water indicates that the change from purging 3 to 1 wellbore volumes had no discernible effect on comparability of water-quality data at the INL. However, the qualitative evaluation was limited because only October-November 2003 data were available for comparison to historical data. This report was prepared by the U.S. Geological Survey in cooperation with the U.S. Department of Energy.

  16. WTAQ: A Computer Program for Calculating Drawdowns and Estimating Hydraulic Properties for Confined and Water-Table Aquifers

    USGS Publications Warehouse

    Barlow, Paul M.; Moench, Allen F.

    1999-01-01

    The computer program WTAQ calculates hydraulic-head drawdowns in a confined or water-table aquifer that result from pumping at a well of finite or infinitesimal diameter. The program is based on an analytical model of axial-symmetric ground-water flow in a homogeneous and anisotropic aquifer. The program allows for well-bore storage and well-bore skin at the pumped well and for delayed drawdown response at an observation well; by including these factors, it is possible to accurately evaluate the specific storage of a water-table aquifer from early-time drawdown data in observation wells and piezometers. For water-table aquifers, the program allows for either delayed or instantaneous drainage from the unsaturated zone. WTAQ calculates dimensionless or dimensional theoretical drawdowns that can be used with measured drawdowns at observation points to estimate the hydraulic properties of confined and water-table aquifers. Three sample problems illustrate use of WTAQ for estimating horizontal and vertical hydraulic conductivity, specific storage, and specific yield of a water-table aquifer by type-curve methods and by an automatic parameter-estimation method.

  17. Three-phase heaters with common overburden sections for heating subsurface formations

    DOEpatents

    Vinegar, Harold J [Bellaire, TX

    2012-02-14

    A heating system for a subsurface formation is described. The heating system includes three substantially u-shaped heaters with first end portions of the heaters being electrically coupled to a single, three-phase wye transformer and second end portions of the heaters being electrically coupled to each other and/or to ground. The three heaters may enter the formation through a first common wellbore and exit the formation through a second common wellbore so that the magnetic fields of the three heaters at least partially cancel out in the common wellbores.

  18. Explaining Spatial Variability in Wellbore Impairment Risk for Pennsylvania Oil and Gas Wells, 2000-2014

    NASA Astrophysics Data System (ADS)

    Santoro, R.; Ingraffea, A. R.

    2015-12-01

    Previous modeling (ingraffea et al. PNAS, 2014) indicated roughly two-times higher cumulative risk for wellbore impairment in unconventional wells, relative to conventional wells, and large spatial variation in risk for oil and gas wells drilled in the state of Pennsylvania. Impairment risk for wells in the northeast portion of the state were found to be 8.5-times greater than that of wells drilled in the rest of the state. Here, we set out to explain this apparent regional variability through Boosted Regression Tree (BRT) analysis of geographic, developmental, and general well attributes. We find that regional variability is largely driven by the nature of the development, i.e. whether conventional or unconventional development is dominant. Oil and natural gas market prices and total well depths present as major influences in wellbore impairment, with moderate influences from well densities and geologic factors. The figure depicts influence paths for predictors of impairments for the state (top left), SW region (top right), unconventional/NE region (bottom left) and conventional/NW region (bottom right) models. Influences are scaled to reflect percent contributions in explaining variability in the model.

  19. 24th International Symposium on Ballistics

    DTIC Science & Technology

    2008-09-26

    production Samples dimensions were 0.3x0.05 m. Test set up Gas gun 5.5 mm diameter steel spheres and sabot Velocity measuring  systems High speed rate...Oilwell perforators – small caliber shaped charges – create the pathway for oil or gas to flow from the reservoir rock into the wellbore  Deep, clean ...overburden, tectonic) – Pore fluid pressure – Pore fluid type ( liquid vs. gas ) Background  Geomechanics considerations: – In-situ stresses (“total

  20. Modeling the Buildup of Annular Pressure in Cased and Uncased Annuli of Faulty Wellbores

    NASA Astrophysics Data System (ADS)

    Lackey, G.; Rajaram, H.

    2017-12-01

    Structurally sound wellbores are essential to oil and gas production, natural gas storage, and carbon dioxide sequestration operations. Wellbore integrity is easily assessed at the wellhead by the presence of pressure or gas flow in the outer annuli of a well, as it indicates the uncontrolled vertical migration of fluids outside the production casing. This phenomenon is typically referred to as sustained casing pressure (SCP), sustained annular pressure, or surface casing vent flow. Of particular concern is the buildup of pressure in the surface casing annulus. If the surface casing is sealed at the wellhead and cement is not brought into the bottom of the casing, annular pressure that builds induces gas migration when the fluid and entry pressure of the formation at the bottom of the surface casing is exceeded. Multiple incidents of stray gas migration from oil and gas operations have contaminated water wells in Colorado, Pennsylvania, and Ohio through this mechanism. Natural gas escaping the #25 Standard Senson well at the Aliso Gas storage facility in California, the largest accidental release of greenhouse gases in US history, also followed this pathway. Previous studies have modeled the buildup of SCP in faulty wells with fully-cased annuli that are isolated from the surrounding formation. However, the majority of onshore oil and gas wells in the US are constructed with uncased outermost annuli that are hydraulically connected to the surrounding subsurface. In this study, we adapt current approaches of modeling SCP to include the regulation of annular liquid level by formation fluid pressure, dissolution of gas into the annular liquids, the transport of aqueous gas by crossflow into deep formations, and gas migration away from the well, when the entry pressure of the formations or fractures along the uncased annulus is exceeded, to compare the buildup behavior of SCP in both uncased and fully-cased annuli. We consider well construction and subsurface geology representative of the Wattenberg Field in Colorado and interpret observations of sustained casing pressure collected by the Colorado Oil and Gas Conservation Commission. We demonstrate that the potential negative consequences of integrity loss are much greater for an uncased well than for fully-cased well.

  1. Improved analysis of transient temperature data from permanent down-hole gauges (PDGs)

    NASA Astrophysics Data System (ADS)

    Zhang, Yiqun; Zheng, Shiyi; Wang, Qi

    2017-08-01

    With the installation of permanent down-hole gauges (PDGs) during oil field development, large volumes of high resolution and continuous down-hole information are obtainable. The interpretation of these real-time temperature and pressure data can optimize well performance, provide information about the reservoir and continuously calibrate the reservoir model. Although the dynamic temperature data have been interpreted in practice to predict flow profiling and provide characteristic information of the reservoir, almost all of the approaches rely on established non-isothermal models which depend on thermodynamic parameters. Another problem comes from the temperature transient analysis (TTA), which is underutilized compared with pressure transient analysis (PTA). In this study, several model-independent methods of TTA were performed. The entire set of PDG data consists of many flow events. By utilizing the wavelet transform, the exact points of flow-rate changes can be located. The flow regime changes, for example, from early time linear flow to later time pseudo-radial flow, among every transient period with constant flow-rate. For the early time region (ETR) that is caused by flow-rate change operations, the TTA, along with the PTA can greatly reduce the uncertainties in flow regime diagnosis. Then, the temperature variations during ETR were examined to infer the true reservoir temperature history, and the relationships between the wavelet detailed coefficients and the flow-rate changes were analysed. For the scenarios with constant reservoir-well parameters, the detailed flow-rate history can be generated by calculating the coefficient of relationship in advance. For later times, the flow regime changes to pseudo-radial flow. An analytical solution was introduced to describe the sand-face temperature. The formation parameters, such as permeability and skin factor, were estimated with the previously calculated flow-rate. It is necessary to analyse temperature variation to overcome data limitation problems when information from other down-hole tools (e.g. expensive but unstable flow meters) is insufficient. This study shows the success in wellbore storage regime diagnosis, flow-rate history reconstruction, and formation parameters estimation using transient temperature data.

  2. Final Research Performance Progress Report: Geothermal Resource Development with Zero Mass Withdrawal, Engineered Convection, and Wellbore Energy Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Richard; Tyagi, Mayank; Radonjic, Mileva

    This project is intended to demonstrate the technical and economic feasibility, and environmental and social attractiveness of a novel method of heat extraction from geothermal reservoirs. The emphasis is on assessing the potential for a heat extraction method that couples forced and free convection to maximize extraction efficiency. The heat extraction concept is enhanced by considering wellbore energy conversion, which may include only a boiler for a working fluid, or perhaps a complete boiler, turbine, and condenser cycle within the wellbore. The feasibility of this system depends on maintaining mechanical and hydraulic integrity of the wellbore, so the material propertiesmore » of the casing-cement system are examined both experimentally and with well design calculations. The attractiveness depends on mitigation of seismic and subsidence risks, economic performance, environmental impact, and social impact – all of which are assessed as components of this study.« less

  3. Experimental Investigations into CO2 Interactions with Injection Well Infrastructure for CO2 Storage

    NASA Astrophysics Data System (ADS)

    Syed, Amer; Shi, Ji-Quan; Durucan, Sevket; Nash, Graham; Korre, Anna

    2013-04-01

    Wellbore integrity is an essential requirement to ensure the success of a CO2 Storage project as leakage of CO2 from the injection or any other abandoned well in the storage complex, could not only severely impede the efficiency of CO2 injection and storage but also may result in potential adverse impact on the surrounding environment. Early research has revealed that in case of improper well completions and/or significant changes in operating bottomhole pressure and temperature could lead to the creation of microannulus at cement-casing interface which may constitute a preferential pathway for potential CO2 leakage during and post injection period. As a part of a European Commission funded CO2CARE project, the current research investigates the sealing behaviour of such microannulus at the cement-casing interface under simulated subsurface reservoir pressure and temperature conditions and uses the findings to develop a methodology to assess the overall integrity of CO2 storage. A full scale wellbore experimental test set up was constructed for use under elevated pressure and temperature conditions as encountered in typical CO2 storage sites. The wellbore cell consists of an assembly of concentric elements of full scale casing (Diameter= 0.1524m), cement sheath and an outer casing. The stainless steel outer ring is intended to simulate the stiffness offered by the reservoir rock to the displacement applied at the wellbore. The Central Loading Mechanism (CLM) consists of four case hardened shoes that can impart radial load onto the well casing. The radial movement of the shoes is powered through the synchronised movement of four precision jacks controlled hydraulically which could impart radial pressures up to 15 MPa. The cell body is a gas tight enclosure that houses the wellbore and the central loading mechanism. The setup is enclosed in a laboratory oven which acts both as temperature and safety enclosure. Prior to a test, cement mix is set between the casing and outer steel ring. A radial pressure is maintained on the wellbore casing during cement setting, i.e., the casing is in a state of tension, so that a microannulus can be created by subsequent contraction of CLM when the radial pressure is relieved. The aperture (permeability) of the microannulus can be controlled by varying the CLM pressure on the casing, which is maintained throughout a flow test. During a test, pure CO2/brine saturated CO2 is flown through the microannulus over a period of time to study its permeability behaviour under simulated downhole conditions. Evolution in permeability is monitored and the effluent is collected and analysed regularly. These experimental results will be used as an input to implement a time-dependent microannulus permeability in the numerical model to assess the impact of such behaviour on the storage performance of a CO2 storage reservoir. The results of the first set of experiments, where the permeability behaviour of pure CO2 was monitored over a 3 months period, are presented and discussed in this paper.

  4. Risks to Drinking Water from Oil and Gas Wellbore Construction and Integrity: Case Studies and Lessons Learned

    EPA Pesticide Factsheets

    This presentation examines various published reports from two drinking water contamination cases, and discuss the potential roles of wellbore construction and integrity and hydraulic fracturing in the resultant drinking water contamination.

  5. Aquifer test interpretation using derivative analysis and diagnostic plots

    NASA Astrophysics Data System (ADS)

    Hernández-Espriú, Antonio; Real-Rangel, Roberto; Cortés-Salazar, Iván; Castro-Herrera, Israel; Luna-Izazaga, Gabriela; Sánchez-León, Emilio

    2017-04-01

    Pumping tests remain a method of choice to deduce fundamental aquifer properties and to assess well condition. In the oil and gas (O&G) industry, well testing has been the core technique in examining reservoir behavior over the last 50 years. The pressure derivative by Bourdet, it is perhaps, the most significant single development in the history of well test analysis. Recently, the so-called diagnostics plots (e.g. drawdown and drawdown derivative in a log-log plot) have been successfully tested in aquifers. However, this procedure is still underutilized by groundwater professionals. This research illustrates the applicability range, advantages and drawbacks (e.g. smoothing procedures) of diagnostic plots using field examples from a wide spectrum of tests (short/long tests, constant/variable flow rates, drawdown/buildup stages, pumping well/observation well) in dissimilar geological conditions. We analyze new and pre-existent aquifer tests in Mexico, USA, Canada, Germany, France and Saudi Arabia. In constant flow rate tests, our results show that derivative analysis is an easy, robust and powerful tool to assess near-borehole damage effects, formation heterogeneity, boundaries, flow regimes, infinite-acting radial stages, i.e., valid Theisian framework, and fracture-driven flow. In step tests, the effectiveness relies on high-frequency drawdown measurements. Moreover, we adapt O&G analytical solutions to cater for the conditions in groundwater systems. In this context, further parameters can be computed analytically from the plots, such as skin factor, head losses, wellbore storage, distance to the boundary, channel-aquifer and/or fracture zone width, among others. Therefore, diagnostic plots should be considered a mandatory tool for pumping tests analysis among hydrogeologists. This project has been supported by DGAPA (UNAM) under the research project PAPIIT IN-112815.

  6. Saturated-unsaturated flow in a compressible leaky-unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, Phoolendra K.; Vesselinov, Velimir V.; Kuhlman, Kristopher L.

    2012-06-01

    An analytical solution is developed for three-dimensional flow towards a partially penetrating large-diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that aquitard leakage leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects.

  7. Radial flow towards well in leaky unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, P. K.; Kuhlman, K. L.

    2012-12-01

    An analytical solution is developed for three-dimensional flow towards a partially penetrating large- diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that aquitard leakage leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects.

  8. Visualizing Oil Process Dynamics in Porous Media with Micromodels

    NASA Astrophysics Data System (ADS)

    Biswal, S. L.

    2016-12-01

    The use of foam in enhanced oil recovery (EOR) applications is being considered for gas mobility control to ensure pore-trapped oil can be effectively displaced. In fractured reservoirs, gas tends to channel only through the highly permeability regions, bypassing the less permeable porous matrix, where most of the residual oil remains. Because of the unique transport problems presented by the large permeability contrast between fractures and adjacent porous media, we aim to understand the mechanism by which foam transitions from the fracture to the matrix and how initially trapped oil can be displaced and ultimately recovered. My lab has generated micromodels, which are combined with high-speed imaging to visualize foam transport in models with permeability contrasts, fractures, and multiple phases. The wettability of these surfaces can be altered to mimic the heterogeneous wettability found in reservoir systems. We have shown how foam quality can be modulated by adjusting the ratio of gas flow ratio to aqueous flow rate in a flow focusing system and this foam quality influences sweep efficiency in heterogeneous porous media systems. I will discuss how this understanding has allowed us to design better foam EOR processes. I will also highlight our recent efforts in ashaltene deposition. Asphaltene deposition is a common cause of significant flow assurance problems in wellbores and production equipment as well as near-wellbore regions in oil reservoirs. I will present our results for visualizing real time asphaltene deposition from model and crude oils using microfluidic devices. In particular, we consider porous-media micromodel designs to represent various flow conditions typical of that found in oil flow processes. Also, four stages of deposition have been found and investigated in the pore scale and with qualitatively macroscopic total collector efficiency as well as Hamaker expressions for interacting asphaltenes with surfaces. By understanding the nature and the mechanisms of asphaltene deposits, we increase our ability to design cost effective mitigation strategies that includes the development of a new generation of asphaltene deposition inhibitors and improved methods for prevention and treatment of this problem.

  9. The Tiwi geothermal reservoir: Geology, geochemistry, and response to production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoagland, J.R.; Bodell, J.M.

    1990-06-01

    The Tiwi geothermal field is located on the Bicol Peninsula of Southern Luzon in the Philippines. The field is associated with the extinct Quaternary stratovolcano Mt. Malinao, one of a chain of volcanos formed as a result of crustal subduction along the Philippine Trench to the east. The geothermal reservoir is contained within a sequence of interlayered andesite flows and pyroclastic deposits that unconformably overlie a basement complex of marine sediments, metamorphic, and intrusive rocks. In its initial state, the Tiwi reservoir was an overpressured liquid-filled system containing near-neutral sodium chloride water at temperatures exceeding 260{degree}C. The reservoir is partiallymore » sealed at its top and sides by hydrothermal argillic alteration products and calcite deposition. Isolated portions of the reservoir contain a corrosive acid chloride-sulfate water associated with a distinctive advanced argillic mineral assemblage. Withdrawal of fluid for electricity generation has caused widespread boiling in the reservoir and the formation of steam zones. The resultant solids deposition in wellbores and near-wellbore formation has been mitigated by a combination of mechanical and chemical well stimulation. Mass withdrawal from the reservoir has also caused invasion of cold groundwater into the reservoir through former fluid outflow channels. During 1983-1987, several wells were flooded with cold water and ceased flowing. In response, PGI moved development drilling west to largely unaffected areas and undertook recompletion and stimulation programs. These programs effectively halted the decline in generation by 1988.« less

  10. Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas

    PubMed Central

    Oldenburg, Curtis M.; Freifeld, Barry M.; Pruess, Karsten; Pan, Lehua; Finsterle, Stefan; Moridis, George J.

    2012-01-01

    In response to the urgent need for estimates of the oil and gas flow rate from the Macondo well MC252-1 blowout, we assembled a small team and carried out oil and gas flow simulations using the TOUGH2 codes over two weeks in mid-2010. The conceptual model included the oil reservoir and the well with a top boundary condition located at the bottom of the blowout preventer. We developed a fluid properties module (Eoil) applicable to a simple two-phase and two-component oil-gas system. The flow of oil and gas was simulated using T2Well, a coupled reservoir-wellbore flow model, along with iTOUGH2 for sensitivity analysis and uncertainty quantification. The most likely oil flow rate estimated from simulations based on the data available in early June 2010 was about 100,000 bbl/d (barrels per day) with a corresponding gas flow rate of 300 MMscf/d (million standard cubic feet per day) assuming the well was open to the reservoir over 30 m of thickness. A Monte Carlo analysis of reservoir and fluid properties provided an uncertainty distribution with a long tail extending down to 60,000 bbl/d of oil (170 MMscf/d of gas). The flow rate was most strongly sensitive to reservoir permeability. Conceptual model uncertainty was also significant, particularly with regard to the length of the well that was open to the reservoir. For fluid-entry interval length of 1.5 m, the oil flow rate was about 56,000 bbl/d. Sensitivity analyses showed that flow rate was not very sensitive to pressure-drop across the blowout preventer due to the interplay between gas exsolution and oil flow rate. PMID:21730177

  11. Earth Tide Analysis Specifics in Case of Unstable Aquifer Regime

    NASA Astrophysics Data System (ADS)

    Vinogradov, Evgeny; Gorbunova, Ella; Besedina, Alina; Kabychenko, Nikolay

    2017-06-01

    We consider the main factors that affect underground water flow including aquifer supply, collector state, and distant earthquakes seismic waves' passage. In geodynamically stable conditions underground inflow change can significantly distort hydrogeological response to Earth tides, which leads to the incorrect estimation of phase shift between tidal harmonics of ground displacement and water level variations in a wellbore. Besides an original approach to phase shift estimation that allows us to get one value per day for the semidiurnal M2 wave, we offer the empirical method of excluding periods of time that are strongly affected by high inflow. In spite of rather strong ground motion during earthquake waves' passage, we did not observe corresponding phase shift change against the background on significant recurrent variations due to fluctuating inflow influence. Though inflow variations do not look like the only important parameter that must be taken into consideration while performing phase shift analysis, permeability estimation is not adequate without correction based on background alternations of aquifer parameters due to natural and anthropogenic reasons.

  12. Earth Tide Analysis Specifics in Case of Unstable Aquifer Regime

    NASA Astrophysics Data System (ADS)

    Vinogradov, Evgeny; Gorbunova, Ella; Besedina, Alina; Kabychenko, Nikolay

    2018-05-01

    We consider the main factors that affect underground water flow including aquifer supply, collector state, and distant earthquakes seismic waves' passage. In geodynamically stable conditions underground inflow change can significantly distort hydrogeological response to Earth tides, which leads to the incorrect estimation of phase shift between tidal harmonics of ground displacement and water level variations in a wellbore. Besides an original approach to phase shift estimation that allows us to get one value per day for the semidiurnal M2 wave, we offer the empirical method of excluding periods of time that are strongly affected by high inflow. In spite of rather strong ground motion during earthquake waves' passage, we did not observe corresponding phase shift change against the background on significant recurrent variations due to fluctuating inflow influence. Though inflow variations do not look like the only important parameter that must be taken into consideration while performing phase shift analysis, permeability estimation is not adequate without correction based on background alternations of aquifer parameters due to natural and anthropogenic reasons.

  13. Wellbore stability in oil and gas drilling with chemical-mechanical coupling.

    PubMed

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua

    2013-01-01

    Wellbore instability in oil and gas drilling is resulted from both mechanical and chemical factors. Hydration is produced in shale formation owing to the influence of the chemical property of drilling fluid. A new experimental method to measure diffusion coefficient of shale hydration is given, and the calculation method of experimental results is introduced. The diffusion coefficient of shale hydration is measured with the downhole temperature and pressure condition, then the penetration migrate law of drilling fluid filtrate around the wellbore is calculated. Furthermore, the changing rules of shale mechanical properties affected by hydration and water absorption are studied through experiments. The relationships between shale mechanical parameters and the water content are established. The wellbore stability model chemical-mechanical coupling is obtained based on the experimental results. Under the action of drilling fluid, hydration makes the shale formation softened and produced the swelling strain after drilling. This will lead to the collapse pressure increases after drilling. The study results provide a reference for studying hydration collapse period of shale.

  14. Wellbore Stability in Oil and Gas Drilling with Chemical-Mechanical Coupling

    PubMed Central

    Deng, Jingen

    2013-01-01

    Wellbore instability in oil and gas drilling is resulted from both mechanical and chemical factors. Hydration is produced in shale formation owing to the influence of the chemical property of drilling fluid. A new experimental method to measure diffusion coefficient of shale hydration is given, and the calculation method of experimental results is introduced. The diffusion coefficient of shale hydration is measured with the downhole temperature and pressure condition, then the penetration migrate law of drilling fluid filtrate around the wellbore is calculated. Furthermore, the changing rules of shale mechanical properties affected by hydration and water absorption are studied through experiments. The relationships between shale mechanical parameters and the water content are established. The wellbore stability model chemical-mechanical coupling is obtained based on the experimental results. Under the action of drilling fluid, hydration makes the shale formation softened and produced the swelling strain after drilling. This will lead to the collapse pressure increases after drilling. The study results provide a reference for studying hydration collapse period of shale. PMID:23935430

  15. Imaging Wellbore Cement Degradation by Carbon Dioxide under Geologic Sequestration Conditions Using X-ray Computed Microtomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Hun Bok; Jansik, Danielle; Um, Wooyong

    2013-01-02

    ABSTRACT: X-ray microtomography (XMT), a nondestructive three-dimensional imaging technique, was applied to demonstrate its capability to visualize the mineralogical alteration and microstructure changes in hydrated Portland cement exposed to carbon dioxide under geologic sequestration conditions. Steel coupons and basalt fragments were added to the cement paste in order to simulate cement-steel and cement-rock interfaces. XMT image analysis showed the changes of material density and porosity in the degradation front (density: 1.98 g/cm3, porosity: 40%) and the carbonated zone (density: 2.27 g/cm3, porosity: 23%) after reaction with CO2- saturated water for 5 months compared to unaltered cement (density: 2.15 g/cm3, porosity:more » 30%). Three-dimensional XMT imaging was capable of displaying spatially heterogeneous alteration in cement pores, calcium carbonate precipitation in cement cracks, and preferential cement alteration along the cement-steel and cement-rock interfaces. This result also indicates that the interface between cement and host rock or steel casing is likely more vulnerable to a CO2 attack than the cement matrix in a wellbore environment. It is shown here that XMT imaging can potentially provide a new insight into the physical and chemical degradation of wellbore cement by CO2 leakage.« less

  16. Grouped exposed metal heaters

    DOEpatents

    Vinegar, Harold J.; Coit, William George; Griffin, Peter Terry; Hamilton, Paul Taylor; Hsu, Chia-Fu; Mason, Stanley Leroy; Samuel, Allan James; Watkins, Ronnie Wade

    2010-11-09

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  17. Grouped exposed metal heaters

    DOEpatents

    Vinegar, Harold J [Bellaire, TX; Coit, William George [Bellaire, TX; Griffin, Peter Terry [Brixham, GB; Hamilton, Paul Taylor [Houston, TX; Hsu, Chia-Fu [Granada Hills, CA; Mason, Stanley Leroy [Allen, TX; Samuel, Allan James [Kular Lumpar, ML; Watkins, Ronnie Wade [Cypress, TX

    2012-07-31

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  18. Let's Go Off the Grid: Subsurface Flow Modeling With Analytic Elements

    NASA Astrophysics Data System (ADS)

    Bakker, M.

    2017-12-01

    Subsurface flow modeling with analytic elements has the major advantage that no grid or time stepping are needed. Analytic element formulations exist for steady state and transient flow in layered aquifers and unsaturated flow in the vadose zone. Analytic element models are vector-based and consist of points, lines and curves that represent specific features in the subsurface. Recent advances allow for the simulation of partially penetrating wells and multi-aquifer wells, including skin effect and wellbore storage, horizontal wells of poly-line shape including skin effect, sharp changes in subsurface properties, and surface water features with leaky beds. Input files for analytic element models are simple, short and readable, and can easily be generated from, for example, GIS databases. Future plans include the incorporation of analytic element in parts of grid-based models where additional detail is needed. This presentation will give an overview of advanced flow features that can be modeled, many of which are implemented in free and open-source software.

  19. Elastic-Brittle-Plastic Behaviour of Shale Reservoirs and Its Implications on Fracture Permeability Variation: An Analytical Approach

    NASA Astrophysics Data System (ADS)

    Masoudian, Mohsen S.; Hashemi, Mir Amid; Tasalloti, Ali; Marshall, Alec M.

    2018-05-01

    Shale gas has recently gained significant attention as one of the most important unconventional gas resources. Shales are fine-grained rocks formed from the compaction of silt- and clay-sized particles and are characterised by their fissured texture and very low permeability. Gas exists in an adsorbed state on the surface of the organic content of the rock and is freely available within the primary and secondary porosity. Geomechanical studies have indicated that, depending on the clay content of the rock, shales can exhibit a brittle failure mechanism. Brittle failure leads to the reduced strength of the plastic zone around a wellbore, which can potentially result in wellbore instability problems. Desorption of gas during production can cause shrinkage of the organic content of the rock. This becomes more important when considering the use of shales for CO2 sequestration purposes, where CO2 adsorption-induced swelling can play an important role. These phenomena lead to changes in the stress state within the rock mass, which then influence the permeability of the reservoir. Thus, rigorous simulation of material failure within coupled hydro-mechanical analyses is needed to achieve a more systematic and accurate representation of the wellbore. Despite numerous modelling efforts related to permeability, an adequate representation of the geomechanical behaviour of shale and its impact on permeability and gas production has not been achieved. In order to achieve this aim, novel coupled poro-elastoplastic analytical solutions are developed in this paper which take into account the sorption-induced swelling and the brittle failure mechanism. These models employ linear elasticity and a Mohr-Coulomb failure criterion in a plane-strain condition with boundary conditions corresponding to both open-hole and cased-hole completions. The post-failure brittle behaviour of the rock is defined using residual strength parameters and a non-associated flow rule. Swelling and shrinkage are considered to be elastic and are defined using a Langmuir-like curve, which is directly related to the reservoir pressure. The models are used to evaluate the stress distribution and the induced change in permeability within a reservoir. Results show that development of a plastic zone near the wellbore can significantly impact fracture permeability and gas production. The capabilities and limitations of the models are discussed and potential future developments related to modelling of permeability in brittle shales under elastoplastic deformations are identified.

  20. The evaluation of maximum horizontal in-situ stress using the wellbore imagers data

    NASA Astrophysics Data System (ADS)

    Dubinya, N. V.; Ezhov, K. A.

    2016-12-01

    Well drilling provides a number of possibilities to improve the knowledge of stress state of the upper layers of the Earth crust. The data obtained from drilling, well logging, core experiments and special tests is used to evaluate the principal stresses' directions and magnitudes. Although the values of vertical stress and minimum horizontal stress may be decently estimated, the maximum horizontal stress remains a major problem. In this study a new method to estimate this value is proposed. The suggested approach is based on the concept of hydraulically conductive and non-conductive fractures near a wellbore (Barton, Zoback and Moos, 1995). It was stated that all the fractures which properties may be acquired from well logging data can be divided into two groups regarding hydraulic conductivity. The fracture properties and the in-situ stress state are put in relationship via the Mohr diagram. This approach was later used by Ito and Zoback (2000) to estimate the magnitude of the maximum horizontal stress from the temperature profiles. In the current study ultrasonic and resistivity borehole imaging are used to estimate the magnitude of maximum horizontal stress in rather precise way. After proper interpretation one is able to obtain orientation and hydraulic conductivity for each fracture appeared at the images. If the proper profiles of vertical and minimum horizontal stresses are known all the fractures may be analyzed at the Mohr diagram. Alteration of maximum horizontal stress profile grants an opportunity to adjust it so the conductive fractures at the Mohr diagram fit the data from imagers' interpretation. The precision of the suggested approach was evaluated for several oil production wells in Siberia with decent wellbore stability models. It appeared that the difference between maximum horizontal stress estimated in a suggested approach and the values obtained from drilling reports did not exceed 0.5 MPa. Thus the proposed approach may be used to evaluate the values of maximum horizontal stress using the wellbore imagers' data. References Barton, C.A., Zoback, M.D., Moos, D. Fluid flow along potentially active faults in crystalline rock - Geology, 1995. T. Ito, M. Zoback, Fracture permeability and in situ stress to 7 km depth in the KTB Scientific Drillhole, Geophysical Research Letters, 2000.

  1. Parallel approach to identifying the well-test interpretation model using a neurocomputer

    NASA Astrophysics Data System (ADS)

    May, Edward A., Jr.; Dagli, Cihan H.

    1996-03-01

    The well test is one of the primary diagnostic and predictive tools used in the analysis of oil and gas wells. In these tests, a pressure recording device is placed in the well and the pressure response is recorded over time under controlled flow conditions. The interpreted results are indicators of the well's ability to flow and the damage done to the formation surrounding the wellbore during drilling and completion. The results are used for many purposes, including reservoir modeling (simulation) and economic forecasting. The first step in the analysis is the identification of the Well-Test Interpretation (WTI) model, which determines the appropriate solution method. Mis-identification of the WTI model occurs due to noise and non-ideal reservoir conditions. Previous studies have shown that a feed-forward neural network using the backpropagation algorithm can be used to identify the WTI model. One of the drawbacks to this approach is, however, training time, which can run into days of CPU time on personal computers. In this paper a similar neural network is applied using both a personal computer and a neurocomputer. Input data processing, network design, and performance are discussed and compared. The results show that the neurocomputer greatly eases the burden of training and allows the network to outperform a similar network running on a personal computer.

  2. Well blowout rates in California Oil and Gas District 4--Update and Trends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Preston D.; Benson, Sally M.

    2009-10-01

    Well blowouts are one type of event in hydrocarbon exploration and production that generates health, safety, environmental and financial risk. Well blowouts are variously defined as 'uncontrolled flow of well fluids and/or formation fluids from the wellbore' or 'uncontrolled flow of reservoir fluids into the wellbore'. Theoretically this is irrespective of flux rate and so would include low fluxes, often termed 'leakage'. In practice, such low-flux events are not considered well blowouts. Rather, the term well blowout applies to higher fluxes that rise to attention more acutely, typically in the order of seconds to days after the event commences. Itmore » is not unusual for insurance claims for well blowouts to exceed US$10 million. This does not imply that all blowouts are this costly, as it is likely claims are filed only for the most catastrophic events. Still, insuring against the risk of loss of well control is the costliest in the industry. The risk of well blowouts was recently quantified from an assembled database of 102 events occurring in California Oil and Gas District 4 during the period 1991 to 2005, inclusive. This article reviews those findings, updates them to a certain extent and compares them with other well blowout risk study results. It also provides an improved perspective on some of the findings. In short, this update finds that blowout rates have remained constant from 2005 to 2008 within the limits of resolution and that the decline in blowout rates from 1991 to 2005 was likely due to improved industry practice.« less

  3. Relationships among in-situ stress, fractures and faults, and fluid flow: Monterey formation, Santa Maria Basin, California

    USGS Publications Warehouse

    Finkbeiner, T.; Barton, C.A.; Zoback, M.D.

    1997-01-01

    We used borehole televiewer (BHTV) data from four wells within the onshore and offshore Santa Maria basin, California, to investigate the relationships among fracture distribution, orientation, and variation with depth and in-situ stress. Our analysis of stress-induced well-bore breakouts shows a uniform northeast maximum horizontal stress (SH max) orientation in each well. This direction is consistent with the SH max direction determined from well-bore breakouts in other wells in this region, the northwest trend of active fold axes, and kinematic inversion of nearby earthquake focal plane mechanisms. In contrast to the uniformity of the stress field, fracture orientation, dip, and frequency vary considerably from well to well and within each well. With depth, fractures can be divided into distinct subsets on the basis of fracture frequency and orientation, which correlate with changes of lithology and physical properties. Although factors such as tectonic history, diagenesis, and structural variations obviously have influenced fracture distribution, integration of the in-situ stress and fracture data sets indicates that many of the fractures, faults, and bedding planes are active, small-scale strike-slip and reverse faults in the current northeast-trending transpressive stress field. In fact, we observed local breakout rotations in the wells, providing kinematic evidence for recent shear motion along fracture and bedding-parallel planes. Only in the onshore well do steeply dipping fractures strike parallel to SHmax. Drill-stem tests from two of the offshore wells indicate that formation permeability is greatly enhanced in sections of the wells where fractures are favorably oriented for shear failure in the modern stress field. Thus, relatively small-scale active faults provide important conduits along which fluids migrate.

  4. Geophysical, stratigraphic, and flow-zone logs of selected test, monitor, and water-supply wells in Cayuga County, New York

    USGS Publications Warehouse

    Anderson, J. Alton; Williams, John H.; Eckhardt, David A.V.; Miller, Todd S.

    2003-01-01

    Volatile-organic compounds have been detected in water sampled from more than 50 supply wells between the City of Auburn and Village of Union Springs in Cayuga County, New York, and the area was declared a Superfund site in 2002. In 2001-04, geophysical logs were collected from 37 test, monitor, and water-supply wells as a preliminary part of the investigation of volatile-organic compound contamination in the carbonate-bedrock aquifer system. The geophysical logs included gamma, induction, caliper, wellbore image, deviation, fluid resistivity and temperature, and flowmeter. The geophysical logs were analyzed along with core samples and outcrops of the bedrock to define the stratigraphic units and flow zones penetrated by the wells. This report describes the logging methods used in the study and presents the geophysical, stratigraphic, and flow-zone logs.

  5. Multiphase flow models for hydraulic fracturing technology

    NASA Astrophysics Data System (ADS)

    Osiptsov, Andrei A.

    2017-10-01

    The technology of hydraulic fracturing of a hydrocarbon-bearing formation is based on pumping a fluid with particles into a well to create fractures in porous medium. After the end of pumping, the fractures filled with closely packed proppant particles create highly conductive channels for hydrocarbon flow from far-field reservoir to the well to surface. The design of the hydraulic fracturing treatment is carried out with a simulator. Those simulators are based on mathematical models, which need to be accurate and close to physical reality. The entire process of fracture placement and flowback/cleanup can be conventionally split into the following four stages: (i) quasi-steady state effectively single-phase suspension flow down the wellbore, (ii) particle transport in an open vertical fracture, (iii) displacement of fracturing fluid by hydrocarbons from the closed fracture filled with a random close pack of proppant particles, and, finally, (iv) highly transient gas-liquid flow in a well during cleanup. The stage (i) is relatively well described by the existing hydralics models, while the models for the other three stages of the process need revisiting and considerable improvement, which was the focus of the author’s research presented in this review paper. For stage (ii), we consider the derivation of a multi-fluid model for suspension flow in a narrow vertical hydraulic fracture at moderate Re on the scale of fracture height and length and also the migration of particles across the flow on the scale of fracture width. At the stage of fracture cleanaup (iii), a novel multi-continua model for suspension filtration is developed. To provide closure relationships for permeability of proppant packings to be used in this model, a 3D direct numerical simulation of single phase flow is carried out using the lattice-Boltzmann method. For wellbore cleanup (iv), we present a combined 1D model for highly-transient gas-liquid flow based on the combination of multi-fluid and drift-flux approaches. The derivation of the drift-flux model from conservation olaws is criticall revisited in order to define the list of underlying assumptions and to mark the applicability margins of the model. All these fundamental problems share the same technological application (hydraulic fracturing) and the same method of research, namely, the multi-fluid approach to multiphase flow modeling and the consistent use of asymptotic methods. Multi-fluid models are then discussed in comparison with semi-empirical (often postulated) models widely used in the industry.

  6. Gas Migration Project: Risk Assessment Tool and Computational Analyses to Investigate Wellbore/Mine Interactions, Secretary's Potash Area, Southeastern New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolik, Steven R.; Hadgu, Teklu; Rechard, Robert P.

    The Bureau of Land Management (BLM), US Department of the Interior has asked Sandia National Laboratories (SNL) to perform scientific studies relevant to technical issues that arise in the development of co-located resources of potash and petroleum in southeastern New Mexico in the Secretary’s Potash Area. The BLM manages resource development, issues permits and interacts with the State of New Mexico in the process of developing regulations, in an environment where many issues are disputed by industry stakeholders. The present report is a deliverable of the study of the potential for gas migration from a wellbore to a mine openingmore » in the event of wellbore leakage, a risk scenario about which there is disagreement among stakeholders and little previous site specific analysis. One goal of this study was to develop a framework that required collaboratively developed inputs and analytical approaches in order to encourage stakeholder participation and to employ ranges of data values and scenarios. SNL presents here a description of a basic risk assessment (RA) framework that will fulfill the initial steps of meeting that goal. SNL used the gas migration problem to set up example conceptual models, parameter sets and computer models and as a foundation for future development of RA to support BLM resource development.« less

  7. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.

    2008-10-28

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  8. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E [Los Alamos, NM; Gonzalez, Manuel E [Kingwood, TX; Llewellyn, Brian C [Kingwood, TX; Bloys, James B [Katy, TX; Coates, Don M [Santa Fe, NM

    2011-05-31

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  9. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E [Los Alamos, NM; Gonzalez, Manuel E [Kingwood, TX; Llewellyn, Brian C [Kingwood, TX; Bloys, James B [Katy, TX

    2011-01-18

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  10. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.

    2010-06-29

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  11. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E [Los Alamos, NM; Gonzalez, Manuel E [Kingwood, NM; Llewellyn, Brian C [Kingwood, TX; Bloys, James B [Katy, TX; Coates, Don M [Santa Fe, NM

    2011-06-21

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  12. Groundwater monitoring of hydraulic fracturing in California: Recommendations for permit-required monitoring

    NASA Astrophysics Data System (ADS)

    Esser, B. K.; Beller, H. R.; Carroll, S.; Cherry, J. A.; Jackson, R. B.; Jordan, P. D.; Madrid, V.; Morris, J.; Parker, B. L.; Stringfellow, W. T.; Varadharajan, C.; Vengosh, A.

    2015-12-01

    California recently passed legislation mandating dedicated groundwater quality monitoring for new well stimulation operations. The authors provided the State with expert advice on the design of such monitoring networks. Factors that must be considered in designing a new and unique groundwater monitoring program include: Program design: The design of a monitoring program is contingent on its purpose, which can range from detection of individual well leakage to demonstration of regional impact. The regulatory goals for permit-required monitoring conducted by operators on a well-by-well basis will differ from the scientific goals of a regional monitoring program conducted by the State. Vulnerability assessment: Identifying factors that increase the probability of transport of fluids from the hydrocarbon target zone to a protected groundwater zone enables the intensity of permit-required monitoring to be tiered by risk and also enables prioritization of regional monitoring of groundwater basins based on vulnerability. Risk factors include well integrity; proximity to existing wellbores and geologic features; wastewater disposal; vertical separation between the hydrocarbon and groundwater zones; and site-specific hydrogeology. Analyte choice: The choice of chemical analytes in a regulatory monitoring program is guided by the goals of detecting impact, assuring public safety, preventing resource degradation, and minimizing cost. Balancing these goals may be best served by tiered approach in which targeted analysis of specific chemical additives is triggered by significant changes in relevant but more easily analyzed constituents. Such an approach requires characterization of baseline conditions, especially in areas with long histories of oil and gas development. Monitoring technology: Monitoring a deep subsurface process or a long wellbore is more challenging than monitoring a surface industrial source. The requirement for monitoring multiple groundwater aquifers across a range of depths and of monitoring at deeper depths than is typical for regulatory monitoring programs requires consideration of monitoring technology, which can range from clusters of wells to multiple wells in a single wellbore to multi-level systems in a single cased wellbore.

  13. Purely numerical approach for analyzing flow to a well intercepting a vertical fracture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narasimhan, T.N.; Palen, W.A.

    1979-03-01

    A numerical method, based on an Integral Finite Difference approach, is presented to investigate wells intercepting fractures in general and vertical fractures in particular. Such features as finite conductivity, wellbore storage, damage, and fracture deformability and its influence as permeability are easily handled. The advantage of the numerical approach is that it is based on fewer assumptions than analytic solutions and hence has greater generality. Illustrative examples are given to validate the method against known solutions. New results are presenteed to demonstrate the applicability of the method to problems not apparently considered in the literature so far.

  14. Method for rigless zone abandonment using internally catalyzed resin system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, R.C.

    1980-02-19

    A zone of a subterranean formation penetrated by a well bore is permanently plugged by injecting a liquid resin system containing at least one thermosetting resin and at least one curing agent or catalyst therefor into the formation and injecting into the wellbore following the resin system, a second liquid containing at least one chain stopping compound to react with one component in the resin system to prevent any of the resin system remaining in the well bore from crosslinking to a sufficient crosslink density to form a solid in the wellbore. Preferably, the second liquid also contains a fluidmore » loss additive to minimize loss of the second liquid from the wellbore to the formation. The method permits a zone to be plugged off and abandoned without the need to erect a drilling rig to drill out excess plugging material remaining in the wellbore. In a preferred embodiment, the resin system comprises the diglycidyl ether of bisphenol a and polymethylene phenylamine in ethylene glycol ethyl ether, and the preferred second liquid is monoethanolamine in ethylene glycol ethyl ether as a solvent with ethylcellulose and silic flour to control fluid loss.« less

  15. Composition for preventing a resin system from setting up in a well bore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, R. C.

    1981-06-09

    A zone of a subterranean formation penetrated by a well bore is permanently plugged by injecting a liquid resin system containing at least one thermosetting resin and at least one curing agent or catalyst therefor into the formation and injecting into the wellbore following the resin system, a second liquid containing at least one chain stopping compound to react with one component in the resin system to prevent any of the resin system remaining in the well bore from crosslinking to a sufficient crosslink density to form a solid in the wellbore. Preferably, the second liquid also contains a fluidmore » loss additive to minimize loss of the second liquid from the wellbore to the formation. The method permits a zone to be plugged off and abandoned without the need to erect a drilling rig to drill out excess plugging material remaining in the wellbore. In a preferred embodiment, the resin system comprises the diglycidyl ether of bisphenol a and polymethylene phenylamine in ethylene glycol ethyl ether, and the preferred second liquid is monoethanolamine in ethylene glycol ethyl ether as a solvent with ethylcellulose and silica flour to control fluid loss.« less

  16. Numerical modeling of injection, stress and permeability enhancement during shear stimulation at the Desert Peak Enhanced Geothermal System

    USGS Publications Warehouse

    Dempsey, David; Kelkar, Sharad; Davatzes, Nick; Hickman, Stephen H.; Moos, Daniel

    2015-01-01

    Creation of an Enhanced Geothermal System relies on stimulation of fracture permeability through self-propping shear failure that creates a complex fracture network with high surface area for efficient heat transfer. In 2010, shear stimulation was carried out in well 27-15 at Desert Peak geothermal field, Nevada, by injecting cold water at pressure less than the minimum principal stress. An order-of-magnitude improvement in well injectivity was recorded. Here, we describe a numerical model that accounts for injection-induced stress changes and permeability enhancement during this stimulation. In a two-part study, we use the coupled thermo-hydrological-mechanical simulator FEHM to: (i) construct a wellbore model for non-steady bottom-hole temperature and pressure conditions during the injection, and (ii) apply these pressures and temperatures as a source term in a numerical model of the stimulation. In this model, a Mohr-Coulomb failure criterion and empirical fracture permeability is developed to describe permeability evolution of the fractured rock. The numerical model is calibrated using laboratory measurements of material properties on representative core samples and wellhead records of injection pressure and mass flow during the shear stimulation. The model captures both the absence of stimulation at low wellhead pressure (WHP ≤1.7 and ≤2.4 MPa) as well as the timing and magnitude of injectivity rise at medium WHP (3.1 MPa). Results indicate that thermoelastic effects near the wellbore and the associated non-local stresses further from the well combine to propagate a failure front away from the injection well. Elevated WHP promotes failure, increases the injection rate, and cools the wellbore; however, as the overpressure drops off with distance, thermal and non-local stresses play an ongoing role in promoting shear failure at increasing distance from the well.

  17. In-situ remediation system for volatile organic compounds with deep recharge mechanism

    DOEpatents

    Jackson, Jr., Dennis G.; Looney, Brian B.; Nichols, Ralph L.; Phifer, Mark A.

    2001-01-01

    A method and apparatus for the treatment and remediation of a contaminated aquifer in the presence of an uncontaminated aquifer at a different hydraulic potential. The apparatus consists of a wellbore inserted through a first aquifer and into a second aquifer, an inner cylinder within the wellbore is supported and sealed to the wellbore to prevent communication between the two aquifers. Air injection is used to sparge the liquid having the higher static water level and, to airlift it to a height whereby it spills into the inner cylinder. The second treatment area provides treatment in the form of aeration or treatment with a material. Vapor stripped in sparging is vented to the atmosphere. Treated water is returned to the aquifer having the lower hydraulic potential.

  18. Transient pressure analysis of a volume fracturing well in fractured tight oil reservoirs

    NASA Astrophysics Data System (ADS)

    Lu, Cheng; Wang, Jiahang; Zhang, Cong; Cheng, Minhua; Wang, Xiaodong; Dong, Wenxiu; Zhou, Yingfang

    2017-12-01

    This paper presents a semi-analytical model to simulate transient pressure curves for a vertical well with a reconstructed fracture network in fractured tight oil reservoirs. In the proposed model, the reservoir is a composite system and contains two regions. The inner region is described as a formation with a finite conductivity hydraulic fracture network and the flow in the fracture is assumed to be linear, while the outer region is modeled using the classical Warren-Root model where radial flow is applied. The transient pressure curves of a vertical well in the proposed reservoir model are calculated semi-analytically using the Laplace transform and Stehfest numerical inversion. As shown in the type curves, the flow is divided into several regimes: (a) linear flow in artificial main fractures; (b) coupled boundary flow; (c) early linear flow in a fractured formation; (d) mid radial flow in the semi-fractures of the formation; (e) mid radial flow or pseudo steady flow; (f) mid cross-flow; (g) closed boundary flow. Based on our newly proposed model, the effects of some sensitive parameters, such as elastic storativity ratio, cross-flow coefficient, fracture conductivity and skin factor, on the type curves were also analyzed extensively. The simulated type curves show that for a vertical fractured well in a tight reservoir, the elastic storativity ratios and crossflow coefficients affect the time and the degree of crossflow respectively. The pressure loss increases with an increase in the fracture conductivity. To a certain extent, the effect of the fracture conductivity is more obvious than that of the half length of the fracture on improving the production effect. With an increase in the wellbore storage coefficient, the fluid compressibility is so large that it might cover the early stage fracturing characteristics. Linear or bilinear flow may not be recognized, and the pressure and pressure derivative gradually shift to the right. With an increase in the skin effect, the pressure loss increases gradually.

  19. Study on Initiation Mechanisms of Hydraulic Fracture Guided by Vertical Multi-radial Boreholes

    NASA Astrophysics Data System (ADS)

    Guo, Tiankui; Liu, Binyan; Qu, Zhanqing; Gong, Diguang; Xin, Lei

    2017-07-01

    The conventional hydraulic fracturing fails in the target oil development zone (remaining oil or gas, closed reservoir, etc.) which is not located in the azimuth of maximum horizontal in situ stress of available wellbores. The technology of directional propagation of hydraulic fracture guided by vertical multi-radial boreholes is innovatively developed. The effects of in situ stress, wellbore internal pressure and fracturing fluid percolation effect on geostress field distribution are taken into account, a mechanical model of two radial boreholes (basic research unit) is established, and the distribution and change rule of the maximum principal stress on the various parameters have been studied. The results show that as the radial borehole azimuth increases, the preferential rock tensile fracturing in the axial plane of radial boreholes becomes increasingly difficult. When the radial borehole azimuth increases to a certain extent, the maximum principal stress no longer appears in the azimuth of the radial boreholes, but will go to other orientations outside the axial plane of radial boreholes and the maximum horizontal stress orientation. Therefore, by reducing the ratio between the distance of the radial boreholes and increasing the diameter of the radial boreholes can enhance the guiding strength. In the axial plane of the radical boreholes, particularly in the radial hole wall, position closer to the radial boreholes is more prone to rock tensile destruction. Even in the case of large radial borehole azimuth, rock still preferentially ruptures in this position. The more the position is perpendicularly far from the axis of the wellbore, the lesser it will be affected by wellbore, and the lesser the tensile stress of each point. Meanwhile, at a certain depth, due to the decrease in the impact of the wellbore and the impact of the two radial boreholes increases accordingly, at the further position from the wellbore axis, the tensile fracture is the most prone to occur and it will be closer to the axial plane of the two radial boreholes. The study provides theoretical support for the technology of directional propagation of hydraulic fracture promoted by radial borehole, which is helpful for planning well-completion parameters in technology of hydraulic fracturing promoted by radial borehole.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, Mark; Sminchak, J.R.

    Under this three year project, the condition of legacy oil and gas wells in the Midwest United States was evaluated through analysis of well records, well plugging information, CBL evaluation, sustained casing pressure (SCP) field testing, and analysis of hypothetical CO 2 test areas to provide a realistic description of wellbore integrity factors. The research included a state-wide review of oil and gas well records for Ohio and Michigan, along with more detailed testing of wells in Ohio. Results concluded that oil and gas wells are clustered along fields in areas. Well records vary in quality, and there may bemore » wells that have not been identified in records, but there are options for surveying unknown wells. Many of the deep saline formations being considered for CO 2 storage have few wells that penetrate the storage zone or confining layers. Research suggests that a variety of well construction and plugging approaches have been used over time in the region. The project concluded that wellbore integrity is an important issue for CO 2 storage applications in the Midwest United States. Realistic CO 2 storage projects may cover an area in the subsurface with several hundred legacy oil and gas wells. However, closer inspection may often establish that most of the wells do not penetrate the confining layers or storage zone. Therefore, addressing well integrity may be manageable. Field monitoring of SCP also indicated that tested wells provided zonal isolation of the reservoirs they were designed to isolate. Most of these wells appeared to exhibit gas pressure originating from intermediate zones. Based on these results, more flexibility in terms of cementing wells to surface, allowing well testing, and monitoring wells may aid operators in completing CO 2 storage project. Several useful products were developed under this project for examining wellbore integrity for CO 2 storage applications including, a database of over 4 million items on well integrity parameters in the study areas, a systematic CBL evaluation tool for rating cement in boreholes, SCP field testing procedures and analysis methodology, a process for summarizing well integrity at CO 2 storage fields, a statistical analysis of well integrity indicators, and an assessment of practical methods and costs necessary to repair/remediate typical wells in the region based on assessment of six test study areas. Project results may benefit both CO 2 storage and improved oil recovery applications. This study of wellbore integrity is a useful precursor to support development of geologic storage in the Midwest United States because it sheds more light on the actual well conditions (rather than the perceived condition) of historic oil and gas wells in the region.« less

  1. Dynamic Evolution of Cement Composition and Transport Properties under Conditions Relevant to Geological Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunet, Jean-Patrick Leopold; Li, Li; Karpyn, Zuleima T

    2013-08-01

    Assessing the possibility of CO{sub 2} leakage is one of the major challenges for geological carbon sequestration. Injected CO{sub 2} can react with wellbore cement, which can potentially change cement composition and transport properties. In this work, we develop a reactive transport model based on experimental observations to understand and predict the property evolution of cement in direct contact with CO{sub 2}-saturated brine under diffusion-controlled conditions. The model reproduced the observed zones of portlandite depletion and calcite formation. Cement alteration is initially fast and slows down at later times. This work also quantified the role of initial cement properties, inmore » particular the ratio of the initial portlandite content to porosity (defined here as φ), in determining the evolution of cement properties. Portlandite-rich cement with large φ values results in a localized “sharp” reactive diffusive front characterized by calcite precipitation, leading to significant porosity reduction, which eventually clogs the pore space and prevents further acid penetration. Severe degradation occurs at the cement–brine interface with large φ values. This alteration increases effective permeability by orders of magnitude for fluids that preferentially flow through the degraded zone. The significant porosity decrease in the calcite zone also leads to orders of magnitude decrease in effective permeability, where fluids flow through the low-permeability calcite zone. The developed reactive transport model provides a valuable tool to link cement–CO{sub 2} reactions with the evolution of porosity and permeability. It can be used to quantify and predict long-term wellbore cement behavior and can facilitate the risk assessment associated with geological CO{sub 2} sequestration.« less

  2. Documentation of spreadsheets for the analysis of aquifer-test and slug-test data

    USGS Publications Warehouse

    Halford, Keith J.; Kuniansky, Eve L.

    2002-01-01

    Several spreadsheets have been developed for the analysis of aquifer-test and slug-test data. Each spreadsheet incorporates analytical solution(s) of the partial differential equation for ground-water flow to a well for a specific type of condition or aquifer. The derivations of the analytical solutions were previously published. Thus, this report abbreviates the theoretical discussion, but includes practical information about each method and the important assumptions for the applications of each method. These spreadsheets were written in Microsoft Excel 9.0 (use of trade names does not constitute endorsement by the USGS). Storage properties should not be estimated with many of the spreadsheets because most are for analyzing single-well tests. Estimation of storage properties from single-well tests is generally discouraged because single-well tests are affected by wellbore storage and by well construction. These non-ideal effects frequently cause estimates of storage to be erroneous by orders of magnitude. Additionally, single-well tests are not sensitive to aquifer-storage properties. Single-well tests include all slug tests (Bouwer and Rice Method, Cooper, Bredehoeft, Papadopulos Method, and van der Kamp Method), the Cooper-Jacob straight-line Method, Theis recovery-data analysis, Jacob-Lohman method for flowing wells in a confined aquifer, and the step-drawdown test. Multi-well test spreadsheets included in this report are; Hantush-Jacob Leaky Aquifer Method and Distance-Drawdown Methods. The distance-drawdown method is an equilibrium or steady-state method, thus storage cannot be estimated.

  3. Hot Dry Rock Geothermal Energy Development Program: Annual report, fiscal year 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D.W.; Franke, P.R.; Smith, M.C.

    1987-01-01

    The primary objective for the Hot Dry Rock Program at the Los Alamos National Laboratory during fiscal year 1985 was to complete the Phase 2 reservoir connection and to begin flow testing the resulting reservoir. The connection was achieved through redrilling one well and additional fracturing operations, and progress was made toward developing a detailed understanding of the fractured region through a variety of reservoir interrogation methods. Other accomplishments during the fiscal year included improvement of the high-temperature, inflatable, open-hole packer used to isolate sections of the uncased wellbore in collaboration with the Baker Corporation and the design and fabricationmore » of a high-temperature borehole acoustic televiewer in a cooperative program with a research institute in West Germany. Progress was also made in techniques for the collection and analysis of microseismic data. Reservoir-engineering activities and geochemical studies, as well as the more routine support activities, continued in FY85. 18 refs., 15 figs.« less

  4. Theoretical Evaluation of Foam Proppant Carriers

    NASA Astrophysics Data System (ADS)

    von Holt, H.; Kam, S.; Williams, W. C.

    2017-12-01

    Hydraulic fracturing in oil wells results in a large amount of produced water which must be properly disposed of and is currently a key environmental issue preventing further development in US domestic oil and gas production. The primary function of this liquid is to carry particulates, a.k.a. Proppant, into the stress fractures in order to hold open a pathway in which petroleum can flow into the wellbore. A potential superior technique is to use foam instead of liquid; liquids rely on turbulence to suspend proppant while foams carry particulates on the surfaces. Therefore, foams can carry more proppant deeper into the fractures while typically using 50%-90% less liquid, depending on foam quality. This comparative analysis uses the vorticity equation for a liquid to approximate the base case of particle suspension. This is then compared to a multitude of foam transport models in order to demonstrate the efficacy of foams when used in hydraulic fracturing. This work serves as the basis for future laboratory and hopefully field scale studies of foam proppant carriers.

  5. Multi-step heater deployment in a subsurface formation

    DOEpatents

    Mason, Stanley Leroy [Allen, TX

    2012-04-03

    A method for installing a horizontal or inclined subsurface heater includes placing a heating section of a heater in a horizontal or inclined section of a wellbore with an installation tool. The tool is uncoupled from the heating section. A lead in section is mechanically and electrically coupled to the heating section of the heater. The lead-in section is located in an angled or vertical section of the wellbore.

  6. Comparison of velocity-log data collected using impeller and electromagnetic flowmeters

    USGS Publications Warehouse

    Newhouse, M.W.; Izbicki, J.A.; Smith, G.A.

    2005-01-01

    Previous studies have used flowmeters in environments that are within the expectations of their published ranges. Electromagnetic flowmeters have a published range from 0.1 to 79.0 m/min, and impeller flowmeters have a published range from 1.2 to 61.0 m/min. Velocity-log data collected in five long-screened production wells in the Pleasant Valley area of southern California showed that (1) electromagnetic flowmeter results were comparable within ??2% to results obtained using an impeller flowmeter for comparable depths; (2) the measured velocities from the electromagnetic flowmeter were up to 36% greater than the published maximum range; and (3) both data sets, collected without the use of centralizers or flow diverters, produced comparable and interpretable results. Although either method is acceptable for measuring wellbore velocities and the distribution of flow, the electromagnetic flowmeter enables collection of data over a now greater range of flows. In addition, changes in fluid temperature and fluid resistivity, collected as part of the electromagnetic flowmeter log, are useful in the identification of flow and hydrogeologic interpretation.

  7. Comparison of velocity-log data collected using impeller and electromagnetic flowmeters.

    PubMed

    Newhouse, M W; Izbicki, J A; Smith, G A

    2005-01-01

    Previous studies have used flowmeters in environments that are within the expectations of their published ranges. Electromagnetic flowmeters have a published range from 0.1 to 79.0 m/min, and impeller flowmeters have a published range from 1.2 to 61.0 m/min. Velocity-log data collected in five long-screened production wells in the Pleasant Valley area of southern California showed that (1) electromagnetic flowmeter results were comparable within +/-2% to results obtained using an impeller flowmeter for comparable depths; (2) the measured velocities from the electromagnetic flowmeter were up to 36% greater than the published maximum range; and (3) both data sets, collected without the use of centralizers or flow diverters, produced comparable and interpretable results. Although either method is acceptable for measuring wellbore velocities and the distribution of flow, the electromagnetic flowmeter enables collection of data over a now greater range of flows. In addition, changes in fluid temperature and fluid resistivity, collected as part of the electromagnetic flowmeter log, are useful in the identification of flow and hydrogeologic interpretation.

  8. Determination of Diffusion Profiles in Altered Wellbore Cement Using X-ray Computed Tomography Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, Harris E.; Walsh, Stuart D. C.; DuFrane, Wyatt L.

    2014-06-17

    The development of accurate, predictive models for use in determining wellbore integrity requires detailed information about the chemical and mechanical changes occurring in hardened Portland cements. X-ray computed tomography (XRCT) provides a method that can nondestructively probe these changes in three dimensions. Here, we describe a method for extracting subvoxel mineralogical and chemical information from synchrotron XRCT images by combining advanced image segmentation with geochemical models of cement alteration. The method relies on determining “effective linear activity coefficients” (ELAC) for the white light source to generate calibration curves that relate the image grayscales to material composition. The resulting data setmore » supports the modeling of cement alteration by CO 2-rich brine with discrete increases in calcium concentration at reaction boundaries. The results of these XRCT analyses can be used to further improve coupled geochemical and mechanical models of cement alteration in the wellbore environment.« less

  9. MODOPTIM: A general optimization program for ground-water flow model calibration and ground-water management with MODFLOW

    USGS Publications Warehouse

    Halford, Keith J.

    2006-01-01

    MODOPTIM is a non-linear ground-water model calibration and management tool that simulates flow with MODFLOW-96 as a subroutine. A weighted sum-of-squares objective function defines optimal solutions for calibration and management problems. Water levels, discharges, water quality, subsidence, and pumping-lift costs are the five direct observation types that can be compared in MODOPTIM. Differences between direct observations of the same type can be compared to fit temporal changes and spatial gradients. Water levels in pumping wells, wellbore storage in the observation wells, and rotational translation of observation wells also can be compared. Negative and positive residuals can be weighted unequally so inequality constraints such as maximum chloride concentrations or minimum water levels can be incorporated in the objective function. Optimization parameters are defined with zones and parameter-weight matrices. Parameter change is estimated iteratively with a quasi-Newton algorithm and is constrained to a user-defined maximum parameter change per iteration. Parameters that are less sensitive than a user-defined threshold are not estimated. MODOPTIM facilitates testing more conceptual models by expediting calibration of each conceptual model. Examples of applying MODOPTIM to aquifer-test analysis, ground-water management, and parameter estimation problems are presented.

  10. Optimizing drilling performance using a selected drilling fluid

    DOEpatents

    Judzis, Arnis [Salt Lake City, UT; Black, Alan D [Coral Springs, FL; Green, Sidney J [Salt Lake City, UT; Robertson, Homer A [West Jordan, UT; Bland, Ronald G [Houston, TX; Curry, David Alexander [The Woodlands, TX; Ledgerwood, III, Leroy W.

    2011-04-19

    To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

  11. Elucidating hydraulic fracturing impacts on groundwater quality using a regional geospatial statistical modeling approach.

    PubMed

    Burton, Taylour G; Rifai, Hanadi S; Hildenbrand, Zacariah L; Carlton, Doug D; Fontenot, Brian E; Schug, Kevin A

    2016-03-01

    Hydraulic fracturing operations have been viewed as the cause of certain environmental issues including groundwater contamination. The potential for hydraulic fracturing to induce contaminant pathways in groundwater is not well understood since gas wells are completed while isolating the water table and the gas-bearing reservoirs lay thousands of feet below the water table. Recent studies have attributed ground water contamination to poor well construction and leaks in the wellbore annulus due to ruptured wellbore casings. In this paper, a geospatial model of the Barnett Shale region was created using ArcGIS. The model was used for spatial analysis of groundwater quality data in order to determine if regional variations in groundwater quality, as indicated by various groundwater constituent concentrations, may be associated with the presence of hydraulically fractured gas wells in the region. The Barnett Shale reservoir pressure, completions data, and fracture treatment data were evaluated as predictors of groundwater quality change. Results indicated that elevated concentrations of certain groundwater constituents are likely related to natural gas production in the study area and that beryllium, in this formation, could be used as an indicator variable for evaluating fracturing impacts on regional groundwater quality. Results also indicated that gas well density and formation pressures correlate to change in regional water quality whereas proximity to gas wells, by itself, does not. The results also provided indirect evidence supporting the possibility that micro annular fissures serve as a pathway transporting fluids and chemicals from the fractured wellbore to the overlying groundwater aquifers. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Intensive exploitation of a karst aquifer leads to Cryptosporidium water supply contamination.

    PubMed

    Khaldi, S; Ratajczak, M; Gargala, G; Fournier, M; Berthe, T; Favennec, L; Dupont, J P

    2011-04-01

    Groundwater from karst aquifers is an important source of drinking water worldwide. Outbreaks of cryptosporidiosis linked to surface water and treated public water are regularly reported. Cryptosporidium oocysts are resistant to conventional drinking water disinfectants and are a major concern for the water industry. Here, we examined conditions associated with oocyst transport along a karstic hydrosystem, and the impact of intensive exploitation on Cryptosporidium oocyst contamination of the water supply. We studied a well-characterized karstic hydrosystem composed of a sinkhole, a spring and a wellbore. Thirty-six surface water and groundwater samples were analyzed for suspended particulate matter, turbidity, electrical conductivity, and Cryptosporidium and Giardia (oo)cyst concentrations. (Oo)cysts were identified and counted by means of solid-phase cytometry (ChemScan RDI(®)), a highly sensitive method. Cryptosporidium oocysts were detected in 78% of both surface water and groundwater samples, while Giardia cysts were found in respectively 22% and 8% of surface water and groundwater samples. Mean Cryptosporidium oocyst concentrations were 29, 13 and 4/100 L at the sinkhole, spring and wellbore, respectively. Cryptosporidium oocysts were transported from the sinkhole to the spring and the wellbore, with respective release rates of 45% and 14%, suggesting that oocysts are subject to storage and remobilization in karst conduits. Principal components analysis showed that Cryptosporidium oocyst concentrations depended on variations in hydrological forcing factors. All water samples collected during intensive exploitation contained oocysts. Control of Cryptosporidium oocyst contamination during intensive exploitation is therefore necessary to ensure drinking water quality. Copyright © 2011. Published by Elsevier Ltd.

  13. Tracer Methods for Characterizing Fracture Creation in Engineered Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Peter; Harris, Joel

    2014-05-08

    The aim of this proposal is to develop, through novel high-temperature-tracing approaches, three technologies for characterizing fracture creation within Engineered Geothermal Systems (EGS). The objective of a first task is to identify, develop and demonstrate adsorbing tracers for characterizing interwell reservoir-rock surface areas and fracture spacing. The objective of a second task is to develop and demonstrate a methodology for measuring fracture surface areas adjacent to single wells. The objective of a third task is to design, fabricate and test an instrument that makes use of tracers for measuring fluid flow between newly created fractures and wellbores. In one methodmore » of deployment, it will be used to identify qualitatively which fractures were activated during a hydraulic stimulation experiment. In a second method of deployment, it will serve to measure quantitatively the rate of fluid flowing from one or more activated fracture during a production test following a hydraulic stimulation.« less

  14. Apparatus and method for noninvasive particle detection using doppler spectroscopy

    DOEpatents

    Sinha, Dipen N.

    2016-05-31

    An apparatus and method for noninvasively detecting the presence of solid particulate matter suspended in a fluid flowing through a pipe or an oil and gas wellbore are described. Fluid flowing through a conduit containing the particulate solids is exposed to a fixed frequency (>1 MHz) of ultrasonic vibrations from a transducer attached to the outside of the pipe. The returning Doppler frequency shifted signal derived from the scattering of sound from the moving solid particles is detected by an adjacent transducer. The transmitted signal and the Doppler signal are combined to provide sensitive particulate detection. The magnitude of the signal and the Doppler frequency shift are used to determine the particle size distribution and the velocity of the particles. Measurement of the phase shift between the applied frequency and the detected Doppler shifted may be used to determine the direction of motion of the particles.

  15. Information content of slug tests for estimating hydraulic properties in realistic, high-conductivity aquifer scenarios

    NASA Astrophysics Data System (ADS)

    Cardiff, Michael; Barrash, Warren; Thoma, Michael; Malama, Bwalya

    2011-06-01

    SummaryA recently developed unified model for partially-penetrating slug tests in unconfined aquifers ( Malama et al., in press) provides a semi-analytical solution for aquifer response at the wellbore in the presence of inertial effects and wellbore skin, and is able to model the full range of responses from overdamped/monotonic to underdamped/oscillatory. While the model provides a unifying framework for realistically analyzing slug tests in aquifers (with the ultimate goal of determining aquifer properties such as hydraulic conductivity K and specific storage Ss), it is currently unclear whether parameters of this model can be well-identified without significant prior information and, thus, what degree of information content can be expected from such slug tests. In this paper, we examine the information content of slug tests in realistic field scenarios with respect to estimating aquifer properties, through analysis of both numerical experiments and field datasets. First, through numerical experiments using Markov Chain Monte Carlo methods for gauging parameter uncertainty and identifiability, we find that: (1) as noted by previous researchers, estimation of aquifer storage parameters using slug test data is highly unreliable and subject to significant uncertainty; (2) joint estimation of aquifer and skin parameters contributes to significant uncertainty in both unless prior knowledge is available; and (3) similarly, without prior information joint estimation of both aquifer radial and vertical conductivity may be unreliable. These results have significant implications for the types of information that must be collected prior to slug test analysis in order to obtain reliable aquifer parameter estimates. For example, plausible estimates of aquifer anisotropy ratios and bounds on wellbore skin K should be obtained, if possible, a priori. Secondly, through analysis of field data - consisting of over 2500 records from partially-penetrating slug tests in a heterogeneous, highly conductive aquifer, we present some general findings that have applicability to slug testing. In particular, we find that aquifer hydraulic conductivity estimates obtained from larger slug heights tend to be lower on average (presumably due to non-linear wellbore losses) and tend to be less variable (presumably due to averaging over larger support volumes), supporting the notion that using the smallest slug heights possible to produce measurable water level changes is an important strategy when mapping aquifer heterogeneity. Finally, we present results specific to characterization of the aquifer at the Boise Hydrogeophysical Research Site. Specifically, we note that (1) K estimates obtained using a range of different slug heights give similar results, generally within ±20%; (2) correlations between estimated K profiles with depth at closely-spaced wells suggest that K values obtained from slug tests are representative of actual aquifer heterogeneity and not overly affected by near-well media disturbance (i.e., "skin"); (3) geostatistical analysis of K values obtained indicates reasonable correlation lengths for sediments of this type; and (4) overall, K values obtained do not appear to correlate well with porosity data from previous studies.

  16. Thermal effects on geologic carbon storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilarrasa, Victor; Rutqvist, Jonny

    One of the most promising ways to significantly reduce greenhouse gases emissions, while carbon-free energy sources are developed, is Carbon Capture and Storage (CCS). Non-isothermal effects play a major role in all stages of CCS. In this paper, we review the literature on thermal effects related to CCS, which is receiving an increasing interest as a result of the awareness that the comprehension of non-isothermal processes is crucial for a successful deployment of CCS projects. We start by reviewing CO 2 transport, which connects the regions where CO 2 is captured with suitable geostorage sites. The optimal conditions for COmore » 2 transport, both onshore (through pipelines) and offshore (through pipelines or ships), are such that CO 2 stays in liquid state. To minimize costs, CO 2 should ideally be injected at the wellhead in similar pressure and temperature conditions as it is delivered by transport. To optimize the injection conditions, coupled wellbore and reservoir simulators that solve the strongly non-linear problem of CO 2 pressure, temperature and density within the wellbore and non-isothermal two-phase flow within the storage formation have been developed. CO 2 in its way down the injection well heats up due to compression and friction at a lower rate than the geothermal gradient, and thus, reaches the storage formation at a lower temperature than that of the rock. Inside the storage formation, CO 2 injection induces temperature changes due to the advection of the cool injected CO 2, the Joule-Thomson cooling effect, endothermic water vaporization and exothermic CO 2 dissolution. These thermal effects lead to thermo-hydro-mechanical-chemical coupled processes with non-trivial interpretations. These coupled processes also play a relevant role in “Utilization” options that may provide an added value to the injected CO 2 , such as Enhanced Oil Recovery (EOR), Enhanced Coal Bed Methane (ECBM) and geothermal energy extraction combined with CO 2 storage. If the injected CO 2 leaks through faults, the caprock or wellbores, strong cooling will occur due to the expansion of CO 2 as pressure decreases with depth. Finally, we conclude by identifying research gaps and challenges of thermal effects related to CCS.« less

  17. Thermal effects on geologic carbon storage

    DOE PAGES

    Vilarrasa, Victor; Rutqvist, Jonny

    2016-12-27

    One of the most promising ways to significantly reduce greenhouse gases emissions, while carbon-free energy sources are developed, is Carbon Capture and Storage (CCS). Non-isothermal effects play a major role in all stages of CCS. In this paper, we review the literature on thermal effects related to CCS, which is receiving an increasing interest as a result of the awareness that the comprehension of non-isothermal processes is crucial for a successful deployment of CCS projects. We start by reviewing CO 2 transport, which connects the regions where CO 2 is captured with suitable geostorage sites. The optimal conditions for COmore » 2 transport, both onshore (through pipelines) and offshore (through pipelines or ships), are such that CO 2 stays in liquid state. To minimize costs, CO 2 should ideally be injected at the wellhead in similar pressure and temperature conditions as it is delivered by transport. To optimize the injection conditions, coupled wellbore and reservoir simulators that solve the strongly non-linear problem of CO 2 pressure, temperature and density within the wellbore and non-isothermal two-phase flow within the storage formation have been developed. CO 2 in its way down the injection well heats up due to compression and friction at a lower rate than the geothermal gradient, and thus, reaches the storage formation at a lower temperature than that of the rock. Inside the storage formation, CO 2 injection induces temperature changes due to the advection of the cool injected CO 2, the Joule-Thomson cooling effect, endothermic water vaporization and exothermic CO 2 dissolution. These thermal effects lead to thermo-hydro-mechanical-chemical coupled processes with non-trivial interpretations. These coupled processes also play a relevant role in “Utilization” options that may provide an added value to the injected CO 2 , such as Enhanced Oil Recovery (EOR), Enhanced Coal Bed Methane (ECBM) and geothermal energy extraction combined with CO 2 storage. If the injected CO 2 leaks through faults, the caprock or wellbores, strong cooling will occur due to the expansion of CO 2 as pressure decreases with depth. Finally, we conclude by identifying research gaps and challenges of thermal effects related to CCS.« less

  18. Final report for DOE Grant No. DE-SC0006609 - Persistence of Microbially Facilitated Calcite Precipitation as an in situ Treatment for Strontium-90

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Robert W.; Fujita, Yoshiko; Hubbard, Susan S.

    2013-11-15

    Subsurface radionuclide and metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of DOE's greatest challenges for long-term stewardship. One promising stabilization mechanism for divalent ions, such as the short-lived radionuclide 90Sr, is co-precipitation in calcite. We have previously found that nutrient addition can stimulate microbial ureolytic activity, that this activity accelerates calcite precipitation and co-precipitation of Sr, and that higher calcite precipitation rates can result in increased Sr partitioning. We have conducted integrated field, laboratory, and computational research to evaluate the relationships between ureolysis and calcite precipitation rates and trace metal partitioning under environmentally relevant conditions,more » and investigated the coupling between flow/flux manipulations and precipitate distribution. A field experimental campaign conducted at the Integrated Field Research Challenge (IFRC) site located at Rifle, CO was based on a continuous recirculation design; water extracted from a down-gradient well was amended with urea and molasses (a carbon and electron donor) and re-injected into an up-gradient well. The goal of the recirculation design and simultaneous injection of urea and molasses was to uniformly accelerate the hydrolysis of urea and calcite precipitation over the entire inter-wellbore zone. The urea-molasses recirculation phase lasted, with brief interruptions for geophysical surveys, for 12 days and was followed by long-term monitoring which continued for 13 months. A post experiment core located within the inter-wellbore zone was collected on day 321 and characterized with respect to cation exchange capacity, mineral carbonate content, urease activity, ureC gene abundance, extractable ammonium (a urea hydrolysis product) content, and the 13C isotopic composition of solid carbonates. It was also subjected to selective extractions for strontium and uranium. Result of the core characterization suggest that urea hydrolysis occurred primarily within the upper portion of the inter-wellbore zone and that strontium was mobilized from cation exchange sites and subsequently co-precipitated with new calcium carbonate.« less

  19. Time-lapse 3-D electrical resistance tomography inversion for crosswell monitoring of dissolved and supercritical CO 2 flow at two field sites: Escatawpa and Cranfield, Mississippi, USA

    DOE PAGES

    Commer, Michael; Doetsch, Joseph; Dafflon, Baptiste; ...

    2016-06-01

    In this study, we advance the understanding of three-dimensional (3-D) electrical resistivity tomography (ERT) for monitoring long-term CO 2 storage by analyzing two previously published field time-lapse data sets. We address two important aspects of ERT inversion-the issue of resolution decay, a general impediment to the ERT method, and the issue of potentially misleading imaging artifacts due to 2-D model assumptions. The first study analyzes data from a shallow dissolved-CO 2 injection experiment near Escatawpa (Mississippi), where ERT data were collected in a 3-D crosswell configuration. Here, we apply a focusing approach designed for crosswell configurations to counteract resolution lossmore » in the inter-wellbore area, with synthetic studies demonstrating its effectiveness. The 3-D field data analysis reveals an initially southwards-trending flow path development and a dispersing plume development in the downgradient inter-well region. The second data set was collected during a deep (over 3 km) injection of supercritical CO 2 near Cranfield (Mississippi). Comparative 2-D and 3-D inversions reveal the projection of off-planar anomalies onto the cross-section, a typical artifact introduced by 2-D model assumptions. Conforming 3-D images from two different algorithms support earlier hydrological investigations, indicating a conduit system where flow velocity variations lead to a circumvention of a close observation well and an onset of increased CO 2 saturation downgradient from this well. We relate lateral permeability variations indicated by an independently obtained hydrological analysis to this consistently observed pattern in the CO 2 spatial plume evolution.« less

  20. In situ stress and fracture permeability along the Stillwater fault zone, Dixie Valley Nevada

    USGS Publications Warehouse

    Hickman, S.H.; Barton, C.A.; Zoback, M.D.; Morin, R.; Sass, J.; Benoit, R.

    1997-01-01

    Borehole televiewer and hydrologic logging and hydraulic fracturing stress measurements were carried out in a 2.7-km-deep geothermal production well (73B-7) drilled into the Stillwater fault zone. Precision temperature and spinner flowmeter logs were also acquired in well 73B-7, with and without simultaneously injecting water into the well. Localized perturbations to well-bore temperature and flow were used to identify hydraulically conductive fractures. Comparison of these data with fracture orientations from the televiewer log indicates that permeable fractures within and adjacent to the Stillwater fault zone are critically stressed, potentially active shear planes in the current west-northwest extensional stress regime at Dixie Valley.

  1. Pulling tool for use with reeled tubing and method for operating tools from wellbores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pleasants, C.W.

    1991-08-20

    This patent describes a tool for latching to and/or pulling a well operating tool having a fishing neck from a downhole location in pipe in a well bore. It comprises an elongated tubular housing assembly defining a longitudinal bore; means connecting the housing assembly to an end of a string of reeled tubing for passing the housing assembly through the wellbore and into contact with the fishing neck and for introducing fluid into the longitudinal bore; means disposed on the housing assembly for automatically latching to the fishing neck upon the housing assembly engaging the fishing neck; means responsive tomore » a predetermined fluid condition in the bore for releasing the latching means from the fishing neck to permit the tool to be removed from the wellbore; and means responsive to a predetermined mechanical force exerted, via the reeled tubing, on the housing assembly and on the fishing neck for releasing the latching means from the fishing neck.« less

  2. Hydrogeology and water quality of the Dublin and Midville aquifer systems at Waynesboro, Burke County, Georgia, 2011

    USGS Publications Warehouse

    Gonthier, Gerard

    2013-01-01

    The hydrogeology and water quality of the Dublin and Midville aquifer systems were characterized in the City of Waynesboro area in Burke County, Georgia, based on geophysical and drillers’ logs, flowmeter surveys, a 24-houraquifer test, and the collection and chemical analysis of water samples in a newly constructed well. At the test site, the Dublin aquifer system consists of interlayered sands and clays between depths of 396 and 691 feet, and the Midville aquifer system consists of a sandy clay layer overlying a sand and gravel layer between depths of 728 and 936 feet. The new well was constructed with three screened intervals in the Dublin aquifer system and four screened intervals in the Midville aquifer system. Wellbore-flowmeter testing at a pumping rate of 1,000 gallons per minute indicated that 52.2 percent of the total flow was from the shallower Dublin aquifer system with the remaining 47.8 percent from the deeper Midville aquifer system. The lower part of the lower Midville aquifer (900 to 930 feet deep), contributed only 0.1 percent of the total flow. Hydraulic properties of the two aquifer systems were estimated using data from two wellbore-flowmeter surveys and a 24-hour aquifer test. Estimated values of transmissivity for the Dublin and Midville aquifer systems were 2,000 and 1,000 feet squared per day, respectively. The upper and lower Dublin aquifers have a combined thickness of about 150 feet and the horizontal hydraulic conductivity of the Dublin aquifer system averages 10 feet per day. The upper Midville aquifer, lower Midville confining unit, and lower Midville aquifer have a combined thickness of about 210 feet, and the horizontal hydraulic conductivity of the Midville aquifer system averages 6 feet per day. Storage coefficient of the Dublin aquifer system, computed using the Theis method on water-level data from one observation well, was estimated to be 0.0003. With a thickness of about 150 feet, the specific storage of the Dublin aquifer system averages about 2×10-6 per foot. Water quality of the Dublin and Midville aquifer systems was characterized during the aquifer test on the basis of water samples collected from composite well flow originating from five depths in the completed production well during the aquifer test. Samples were analyzed for total dissolved solids, specific conductance, pH, alkalinity, and major ions. Water-quality results from composite samples, known flow contribution from individual screens, and a mixing equation were used to calculate water-quality values for sample intervals between sample depths or below the bottom sample depth. With the exception of iron and manganese, constituent concentrations of water from each of the sampled intervals and total flow from the well were within U.S. Environmental Protection Agency primary and secondary drinking-water standards. Water from the bottommost sample interval in the lower part of the lower Midville aquifer (900 to 930 feet) contained manganese and iron concentrations of 59.1 and 1,160 micrograms per liter, respectively, which exceeded secondary drinking-water standards. Because this interval contributed only 0.1 percent of the total flow to the well, water quality of this interval had little effect on the composite well water quality. Two other sample intervals from the Midville aquifer system and the total flow from both aquifer systems contained iron concentrations that slightly exceeded the secondary drinking-water standard of 300 micrograms per liter.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wainwright, Haruko M.; Flores Orozco, Adrian; Bucker, Matthias

    In floodplain environments, a naturally reduced zone (NRZ) is considered to be a common biogeochemical hot spot, having distinct microbial and geochemical characteristics. Although important for understanding their role in mediating floodplain biogeochemical processes, mapping the subsurface distribution of NRZs over the dimensions of a floodplain is challenging, as conventional wellbore data are typically spatially limited and the distribution of NRZs is heterogeneous. In this work, we present an innovative methodology for the probabilistic mapping of NRZs within a three-dimensional (3-D) subsurface domain using induced polarization imaging, which is a noninvasive geophysical technique. Measurements consist of surface geophysical surveys andmore » drilling-recovered sediments at the U.S. Department of Energy field site near Rifle, CO (USA). Inversion of surface time domain-induced polarization (TDIP) data yielded 3-D images of the complex electrical resistivity, in terms of magnitude and phase, which are associated with mineral precipitation and other lithological properties. By extracting the TDIP data values colocated with wellbore lithological logs, we found that the NRZs have a different distribution of resistivity and polarization from the other aquifer sediments. To estimate the spatial distribution of NRZs, we developed a Bayesian hierarchical model to integrate the geophysical and wellbore data. In addition, the resistivity images were used to estimate hydrostratigraphic interfaces under the floodplain. Validation results showed that the integration of electrical imaging and wellbore data using a Bayesian hierarchical model was capable of mapping spatially heterogeneous interfaces and NRZ distributions thereby providing a minimally invasive means to parameterize a hydrobiogeochemical model of the floodplain.« less

  4. Modeling of Propagation of Interacting Cracks Under Hydraulic Pressure Gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hai; Mattson, Earl Douglas; Podgorney, Robert Karl

    A robust and reliable numerical model for fracture initiation and propagation, which includes the interactions among propagating fractures and the coupling between deformation, fracturing and fluid flow in fracture apertures and in the permeable rock matrix, would be an important tool for developing a better understanding of fracturing behaviors of crystalline brittle rocks driven by thermal and (or) hydraulic pressure gradients. In this paper, we present a physics-based hydraulic fracturing simulator based on coupling a quasi-static discrete element model (DEM) for deformation and fracturing with conjugate lattice network flow model for fluid flow in both fractures and porous matrix. Fracturingmore » is represented explicitly by removing broken bonds from the network to represent microcracks. Initiation of new microfractures and growth and coalescence of the microcracks leads to the formation of macroscopic fractures when external and/or internal loads are applied. The coupled DEM-network flow model reproduces realistic growth pattern of hydraulic fractures. In particular, simulation results of perforated horizontal wellbore clearly demonstrate that elastic interactions among multiple propagating fractures, fluid viscosity, strong coupling between fluid pressure fluctuations within fractures and fracturing, and lower length scale heterogeneities, collectively lead to complicated fracturing patterns.« less

  5. Incorporating the Impacts of Small Scale Rock Heterogeneity into Models of Flow and Trapping in Target UK CO2 Storage Systems

    NASA Astrophysics Data System (ADS)

    Jackson, S. J.; Reynolds, C.; Krevor, S. C.

    2017-12-01

    Predictions of the flow behaviour and storage capacity of CO2 in subsurface reservoirs are dependent on accurate modelling of multiphase flow and trapping. A number of studies have shown that small scale rock heterogeneities have a significant impact on CO2flow propagating to larger scales. The need to simulate flow in heterogeneous reservoir systems has led to the development of numerical upscaling techniques which are widely used in industry. Less well understood, however, is the best approach for incorporating laboratory characterisations of small scale heterogeneities into models. At small scales, heterogeneity in the capillary pressure characteristic function becomes significant. We present a digital rock workflow that combines core flood experiments with numerical simulations to characterise sub-core scale capillary pressure heterogeneities within rock cores from several target UK storage reservoirs - the Bunter, Captain and Ormskirk sandstone formations. Measured intrinsic properties (permeability, capillary pressure, relative permeability) and 3D saturations maps from steady-state core flood experiments were the primary inputs to construct a 3D digital rock model in CMG IMEX. We used vertical end-point scaling to iteratively update the voxel by voxel capillary pressure curves from the average MICP curve; with each iteration more closely predicting the experimental saturations and pressure drops. Once characterised, the digital rock cores were used to predict equivalent flow functions, such as relative permeability and residual trapping, across the range of flow conditions estimated to prevail in the CO2 storage reservoirs. In the case of the Captain sandstone, rock cores were characterised across an entire 100m vertical transect of the reservoir. This allowed analysis of the upscaled impact of small scale heterogeneity on flow and trapping. Figure 1 shows the varying degree to which heterogeneity impacted flow depending on the capillary number in the Captain sandstone. At low capillary numbers, typical of regions where flow is dominated by buoyancy, fluid flow is impeded and trapping enhanced. At high capillary numbers, typical of the near wellbore environment, the fluid distributed homogeneously and the equivalent relative permeability was higher leading to improved injectivity.

  6. Economic Implementation and Optimization of Secondary Oil Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary D. Brock

    The St Mary West Barker Sand Unit (SMWBSU or Unit) located in Lafayette County, Arkansas was unitized for secondary recovery operations in 2002 followed by installation of a pilot injection system in the fall of 2003. A second downdip water injection well was added to the pilot project in 2005 and 450,000 barrels of saltwater has been injected into the reservoir sand to date. Daily injection rates have been improved over initial volumes by hydraulic fracture stimulation of the reservoir sand in the injection wells. Modifications to the injection facilities are currently being designed to increase water injection rates formore » the pilot flood. A fracture treatment on one of the production wells resulted in a seven-fold increase of oil production. Recent water production and increased oil production in a producer closest to the pilot project indicates possible response to the water injection. The reservoir and wellbore injection performance data obtained during the pilot project will be important to the secondary recovery optimization study for which the DOE grant was awarded. The reservoir characterization portion of the modeling and simulation study is in progress by Strand Energy project staff under the guidance of University of Houston Department of Geosciences professor Dr. Janok Bhattacharya and University of Texas at Austin Department of Petroleum and Geosystems Engineering professor Dr. Larry W. Lake. A geologic and petrophysical model of the reservoir is being constructed from geophysical data acquired from core, well log and production performance histories. Possible use of an outcrop analog to aid in three dimensional, geostatistical distribution of the flow unit model developed from the wellbore data will be investigated. The reservoir model will be used for full-field history matching and subsequent fluid flow simulation based on various injection schemes including patterned water flooding, addition of alkaline surfactant-polymer (ASP) to the injected water, and high pressure air injection (HPAI) for in-situ low temperature oxidization (LTO) will be studied for optimization of the secondary recovery process.« less

  7. Wellhead with non-ferromagnetic materials

    DOEpatents

    Hinson, Richard A [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2009-05-19

    Wellheads for coupling to a heater located in a wellbore in a subsurface formation are described herein. At least one wellhead may include a heater located in a wellbore in a subsurface formation; and a wellhead coupled to the heater. The wellhead may be configured to electrically couple the heater to one or more surface electrical components. The wellhead may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the wellhead. Systems and methods for using such wellheads for treating a subsurface formation are described herein.

  8. Comprehensive database of wellbore temperatures and drilling mud weight pressures by depth for Judge Digby field, Louisiana

    USGS Publications Warehouse

    Burke, Lauri

    2010-01-01

    This document serves as the repository for the unprocessed data used in the investigation of temperature and overpressure relations within the deep Tuscaloosa Formation in Judge Digby field. It is a compilation of all the publicly accessible wellbore temperature and pressure data for Judge Digby field, a prolific natural gas field producing from the Upper Cretaceous lower part of the Tuscaloosa Formation in the Gulf Coast region. This natural gas field is in Pointe Coupee Parish in the southern part of onshore Louisiana.

  9. Integration of fracturing dynamics and pressure transient analysis for hydraulic fracture evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arihara, N.; Abbaszadeh, M.; Wright, C.A.

    This paper presents pre- and post-fracture pressure transient analysis, combined with net fracture pressure interpretation, for a well in a naturally fractured geothermal reservoir. Integrated analysis was performed to achieve a consistent interpretation of the created fracture geometry, propagation, conductivity, shrinkage, reservoir flow behavior, and formation permeability characteristics. The interpreted data includes two-rate pre-frac injection tests, step-rate injection tests, a series of pressure falloff tests, and the net fracturing pressure from a massive fracture treatment. Pressure transient analyses were performed utilizing advanced well test interpretation techniques and a thermal reservoir simulator with fracture propagation option. Hydraulic fracture propagation analysis wasmore » also performed Milt a generalized 3-D dynamic fracture growth model simulator. Three major conclusions resulted from the combined analysis: (1) that an increasing number of hydraulic fractures were being simultaneously propagated during the fracture treatment. (2) that the reservoir behaved as a composite reservoir Keith the outer region permeability being greater than the permeability of the region immediately surrounding the wellbore, and (3) that the created fractures extended into the outer region during the fracture treatment but retreated to the inner region several days after stimulation had ceased. These conclusions were apparent from independent pressure transient analysis and from independent hydraulic fracture propagation analysis. Integrated interpretation, however, increased the confidence in these conclusions and greatly aided the quantification of the created hydraulic fracture geometry and characterization of the reservoir permeability.« less

  10. Numerical Simulation of Permeability Change in Wellbore Cement Fractures after Geomechanical Stress and Geochemical Reactions Using X-ray Computed Tomography Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabilan, Senthil; Jung, Hun Bok; Kuprat, Andrew P.

    X-ray microtomography (XMT) imaging combined with a three-dimensional (3D) computational fluid dynamics (CFD) modeling technique was used to study the effect of geochemical and geomechanical processes on fracture properties in composite Portland cement–basalt caprock core samples. The effect of fluid properties and flow conditions on fracture permeability was numerically studied by using fluids with varying physical properties and simulating different pressure conditions. CFD revealed that the application of geomechanical stress led to increased fluid flow, which resulted in increased fracture permeability. After CO2-reaction, XMT images displayed preferential precipitation of calcium carbonate within the fractures in the cement matrix and lessmore » precipitation in fractures located at the cement–basalt interface. CFD predicted changes in flow characteristics and differences in absolute values of flow properties due to different pressure gradients. CFD was able to highlight the profound effect of fluid properties on flow characteristics and hydraulic properties of fractures. This study demonstrates the applicability of XMT imaging and CFD as powerful tools for characterizing the hydraulic properties of fractures in a number of applications like geologic carbon sequestration and storage, hydraulic fracturing for shale gas production, and enhanced geothermal systems.« less

  11. Wellbore heat flow from the Toa Baja scientific drillhole, Puerto Rico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R.N.; Larue, D.K.

    1991-03-01

    Heat flow values, determined from temperature logs and estimates of thermal conductivity from geophysical logs range from 23 to 37 mW/m{sup 2} from 800 to 2,500 m depth in the Toa Baja scientific drillhole on the north, central coast of Puerto Rico. Near the target seismic reflector at the base of the well, an active hydrothermal system was encountered in which heat flow of up to 90 mW/m{sup 2} was found in a mineralized zone beneath a volcanic sill or flow. The heat flow then dropped to 50 mW/m{sub 2} beneath this subhorizontal flow zone. The mining of heat frommore » downdip is proposed to account for this thermal anomaly, as well as the scatter in the heat flow determined from the few other wells drilled into Puerto Rico. The time-temperature history of the well indicates that Eocene volcaniclastics of the lower 2 km were deposited into a geothermal gradient of 60C/km north of an active arc (heat flow estimated to have been 120-180 mW/m{sup 2}). Uplift, erosion and cooling occurred between 40 and 30 Ma. Reburial and deposition of Oligocene-Miocene Limestones produced the present-day geothermal gradient of 15C/km (heat flow of 30-50 mW/m{sup 2}). Based upon comparisons with slab cooling models, the crustal thickness beneath Puerto Rico is estimated to be closer to continental then oceanic.« less

  12. Lithology-dependent In Situ Stress in Heterogeneous Carbonate Reservoirs

    NASA Astrophysics Data System (ADS)

    Pham, C. N.; Chang, C.

    2017-12-01

    Characterization of in situ stress state for various geomechanical aspects in petroleum development may be particularly difficult in carbonate reservoirs in which rock properties are generally heterogeneous. We demonstrate that the variation of in situ stress in highly heterogeneous carbonate reservoirs is closely related to the heterogeneity in rock mechanical property. The carbonate reservoir studied consists of numerous sequential layers gently folded, exhibiting wide ranges of porosity (0.01 - 0.29) and Young's modulus (25 - 85 GPa) depending on lithology. Wellbore breakouts and drilling-induced tensile fractures (DITFs) observed in the image logs obtained from several wells indicate that the in situ state of stress orientation changes dramatically with depth and location. Even in a wellbore, the azimuth of the maximum horizontal stress changes by as much as 60° within a depth interval of 500 m. This dramatic change in stress orientation is inferred to be due to the contrast in elastic properties between different rock layers which are bent by folding in the reservoir. The horizontal principal stress magnitudes are constrained by back-calculating stress conditions necessary to induce the observed wellbore failures using breakout width and the presence of DITFs. The horizontal stresses vary widely, which cannot be represented by a constant stress gradient with depth. The horizontal principal stress gradient increases with Young's modulus of layer monotonically, indicating that a stiffer layer conveys a higher horizontal stress. This phenomenon can be simulated using a numerical modelling, in which the horizontal stress magnitudes depend on stiffness of individual layers although the applied far-field stress conditions are constant. The numerical results also suggest that the stress concentration at the wellbore wall is essentially higher in a stiffer layer, promoting the possibility of wellbore breakout formation. These results are in agreement with our observation that breakouts are predominantly developed in the relatively stiff rocks, which corroborates the lithology-dependent in situ stress. Our study suggests that in situ stress may be estimated from rock mechanical properties if a unique relation can be found between stress and lithology.

  13. Hierarchical Bayesian method for mapping biogeochemical hot spots using induced polarization imaging

    DOE PAGES

    Wainwright, Haruko M.; Flores Orozco, Adrian; Bucker, Matthias; ...

    2016-01-29

    In floodplain environments, a naturally reduced zone (NRZ) is considered to be a common biogeochemical hot spot, having distinct microbial and geochemical characteristics. Although important for understanding their role in mediating floodplain biogeochemical processes, mapping the subsurface distribution of NRZs over the dimensions of a floodplain is challenging, as conventional wellbore data are typically spatially limited and the distribution of NRZs is heterogeneous. In this work, we present an innovative methodology for the probabilistic mapping of NRZs within a three-dimensional (3-D) subsurface domain using induced polarization imaging, which is a noninvasive geophysical technique. Measurements consist of surface geophysical surveys andmore » drilling-recovered sediments at the U.S. Department of Energy field site near Rifle, CO (USA). Inversion of surface time domain-induced polarization (TDIP) data yielded 3-D images of the complex electrical resistivity, in terms of magnitude and phase, which are associated with mineral precipitation and other lithological properties. By extracting the TDIP data values colocated with wellbore lithological logs, we found that the NRZs have a different distribution of resistivity and polarization from the other aquifer sediments. To estimate the spatial distribution of NRZs, we developed a Bayesian hierarchical model to integrate the geophysical and wellbore data. In addition, the resistivity images were used to estimate hydrostratigraphic interfaces under the floodplain. Validation results showed that the integration of electrical imaging and wellbore data using a Bayesian hierarchical model was capable of mapping spatially heterogeneous interfaces and NRZ distributions thereby providing a minimally invasive means to parameterize a hydrobiogeochemical model of the floodplain.« less

  14. Mineral changes in cement-sandstone matrices induced by biocementation

    DOE PAGES

    Verba, C.; Thurber, A. R.; Alleau, Y.; ...

    2016-04-01

    Prevention of wellbore CO 2 leakage is a critical component of any successful carbon capture, utilization, and storage program. Sporosarcina pasteurii is a bacterium that has demonstrated the potential ability to seal a compromised wellbore through the enzymatic precipitation of CaCO 3. In this paper, we investigate the growth of S. pasteurii in a synthetic brine that mimics the Illinois Basin and on Mt. Simon sandstone encased in Class H Portland cement under high pressure and supercritical CO 2 (P CO2) conditions. The bacterium grew optimum at 30 °C compared to 40 °C under ambient and high pressure (10 MPa)more » conditions; and growth was comparable in experiments at high P CO2. Sporosarcina pasteurii actively induced the biomineralization of CaCO 3 polymorphs and MgCa(CO 3) 2 in both ambient and high pressure conditions as observed in electron microscopy. In contrast, abiotic (non-biological) samples exposed to CO 2 resulted in the formation of surficial vaterite and calcite. Finally, the ability of S. pasteurii to grow under subsurface conditions may be a promising mechanism to enhance wellbore integrity.« less

  15. Logging while fishing: An alternate method to cut and thread fishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tollefsen, E.; Crary, S.; Flores, B.

    1996-12-31

    New technology has been introduced to allow completion of the wireline logging program after the tool string has become lodged in the wellbore. Charges associated with extracting a stuck tool are substantial. These charges result from the nonproductive time during the fishing trip, an associated wiper trip, and re-logging the well. The ability to continue the logging program while retrieving the logging string from the wellbore is needed. Logging While Fishing (LWF) is a hybrid of existing technologies combined with a new sub capable of severing a cable remotely. This new method is comprised of cut and thread fishing, drillpipemore » conveyed logging, and bridled tool techniques. Utilizing these techniques it is possible to complete wireline logging operations while removing a stuck tool from the wellbore. Completing logging operations using this hybrid method will save operating companies time and money. Other benefits, depending on the situation, include reduced fishing time and an increased level of safety. This application has been demonstrated on jobs in the Gulf of Mexico, North Sea, Venezuela, and Southeast Asia.« less

  16. Simulation of Hydraulic and Natural Fracture Interaction Using a Coupled DFN-DEM Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, J.; Huang, H.; Deo, M.

    2016-03-01

    The presence of natural fractures will usually result in a complex fracture network due to the interactions between hydraulic and natural fracture. The reactivation of natural fractures can generally provide additional flow paths from formation to wellbore which play a crucial role in improving the hydrocarbon recovery in these ultra-low permeability reservoir. Thus, accurate description of the geometry of discrete fractures and bedding is highly desired for accurate flow and production predictions. Compared to conventional continuum models that implicitly represent the discrete feature, Discrete Fracture Network (DFN) models could realistically model the connectivity of discontinuities at both reservoir scale andmore » well scale. In this work, a new hybrid numerical model that couples Discrete Fracture Network (DFN) and Dual-Lattice Discrete Element Method (DL-DEM) is proposed to investigate the interaction between hydraulic fracture and natural fractures. Based on the proposed model, the effects of natural fracture orientation, density and injection properties on hydraulic-natural fractures interaction are investigated.« less

  17. Simulation of Hydraulic and Natural Fracture Interaction Using a Coupled DFN-DEM Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Zhou; H. Huang; M. Deo

    The presence of natural fractures will usually result in a complex fracture network due to the interactions between hydraulic and natural fracture. The reactivation of natural fractures can generally provide additional flow paths from formation to wellbore which play a crucial role in improving the hydrocarbon recovery in these ultra-low permeability reservoir. Thus, accurate description of the geometry of discrete fractures and bedding is highly desired for accurate flow and production predictions. Compared to conventional continuum models that implicitly represent the discrete feature, Discrete Fracture Network (DFN) models could realistically model the connectivity of discontinuities at both reservoir scale andmore » well scale. In this work, a new hybrid numerical model that couples Discrete Fracture Network (DFN) and Dual-Lattice Discrete Element Method (DL-DEM) is proposed to investigate the interaction between hydraulic fracture and natural fractures. Based on the proposed model, the effects of natural fracture orientation, density and injection properties on hydraulic-natural fractures interaction are investigated.« less

  18. Bayou Choctaw Well Integrity Grading Component Based on Geomechanical Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Byoung

    2016-09-08

    This letter report provides a Bayou Choctaw (BC) Strategic Petroleum Reserve (SPR) well grading system based on the geomechanical simulation. The analyses described in this letter were used to evaluate the caverns’ geomechanical effect on wellbore integrity, which is an important component in the well integrity grading system recently developed by Roberts et al. [2015]. Using these analyses, the wellbores for caverns BC-17 and 20 are expected to be significantly impacted by cavern geomechanics, BC-18 and 19 are expected to be medium impacted; and the other caverns are expected to be less impacted.

  19. Quantifying Risks and Uncertainties Associated with Induced Seismicity due to CO2 Injection into Geologic Formations with Faults

    NASA Astrophysics Data System (ADS)

    Hou, Z.; Nguyen, B. N.; Bacon, D. H.; White, M. D.; Murray, C. J.

    2016-12-01

    A multiphase flow and reactive transport simulator named STOMP-CO2-R has been developed and coupled to the ABAQUS® finite element package for geomechanical analysis enabling comprehensive thermo-hydro-geochemical-mechanical (THMC) analyses. The coupled THMC simulator has been applied to analyze faulted CO2 reservoir responses (e.g., stress and strain distributions, pressure buildup, slip tendency factor, pressure margin to fracture) with various complexities in fault and reservoir structures and mineralogy. Depending on the geological and reaction network settings, long-term injection of CO2 can have a significant effect on the elastic stiffness and permeability of formation rocks. In parallel, an uncertainty quantification framework (UQ-CO2), which consists of entropy-based prior uncertainty representation, efficient sampling, geostatistical reservoir modeling, and effective response surface analysis, has been developed for quantifying risks and uncertainties associated with CO2 sequestration. It has been demonstrated for evaluating risks in CO2 leakage through natural pathways and wellbores, and for developing predictive reduced order models. Recently, a parallel STOMP-CO2-R has been developed and the updated STOMP/ABAQUS model has been proven to have a great scalability, which makes it possible to integrate the model with the UQ framework to effectively and efficiently explore multidimensional parameter space (e.g., permeability, elastic modulus, crack orientation, fault friction coefficient) for a more systematic analysis of induced seismicity risks.

  20. Numerical Model of Hydraulic Fracturing Fluid Transport in the Subsurface with Pressure Transient, Density Effects, and Imbibition

    NASA Astrophysics Data System (ADS)

    Birdsell, D.; Rajaram, H.; Dempsey, D.; Viswanathan, H.

    2014-12-01

    Understanding the transport of hydraulic fracturing (HF) fluid that is injected into the deep subsurface for shale gas extraction is important to ensure that shallow drinking water aquifers are not contaminated from an environmental and public health perspective and to understand formation damage from an oil and gas production perspective. Upward pressure gradients, permeable pathways such as faults or improperly abandoned wellbores, and the density contrast of the HF fluid to the surrounding brine encourages upward HF fluid migration. In contrast, the very low shale permeability and the imbibition of water into partially-saturated shale may sequester much of the HF fluid. Using the Finite Element Heat and Mass Transfer Code (FEHM), single-phase flow and transport simulations are performed to quantify how much HF fluid is removed via the wellbore as flowback and produced water and how much reaches overlying aquifers; imbibition is calculated with a semi-analytical one-dimensional solution and treated as a sink term. The travel time for HF fluid to reach the shallow aquifers is highly dependent on the amount of water imbibed and the suction applied to the well. If imbibition rates and suction are small, the pressure transient due to injection and the density contrast allows rapid upward plume migration at early times. The density contrast diminishes considerably within tens to hundreds of years as mixing occurs. We present estimates of HF fluid migration to shallow aquifers during the first 1,000 years after hydraulic fracturing begins for ranges of subsurface properties.

  1. Volume requirements for aerated mud drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, B.; Rajtar, J.M.

    1995-09-01

    Aerated mud drilling has been recognized as having many advantages over conventional mud drilling, such ass higher penetration rate, less formation damage, minimized lost circulation, and lower drilling cost. In some areas, the use of aerated mud as a circulating medium for drilling oil and gas wells is becoming an attractive practice. Maintaining an optimum combination of liquid and air flow rates is important in aerated drilling operations. However, most drilling operators are unclear on what constitutes the ``optimum combination of the liquid and air flow rates.`` Guo et al. presented a mathematical approach to determining the flowing bottomhole pressuremore » (BHP) for aerated mud drilling. This paper addresses the use of Guo et al.`s mathematical model to determine liquid and air volume requirements considering wellbore stability, pipe sticking, and formation damage as well as the cuttings-carry capacity of the aerated mud. For a formation-damage-prevention point of view, the liquid fraction in the fluid stream should e as low as possible. However, a sufficient mud flow rate is always required to make the hole stable and to maintain the cuttings-carrying capacity of the aerated mud without injecting much air volume. This paper provides a simple approach to determining the liquid and air volume requirements for aerated mud drilling.« less

  2. Defining the Brittle Failure Envelopes of Individual Reaction Zones Observed in CO2-Exposed Wellbore Cement.

    PubMed

    Hangx, Suzanne J T; van der Linden, Arjan; Marcelis, Fons; Liteanu, Emilia

    2016-01-19

    To predict the behavior of the cement sheath after CO2 injection and the potential for leakage pathways, it is key to understand how the mechanical properties of the cement evolves with CO2 exposure time. We performed scratch-hardness tests on hardened samples of class G cement before and after CO2 exposure. The cement was exposed to CO2-rich fluid for one to six months at 65 °C and 8 MPa Ptotal. Detailed SEM-EDX analyses showed reaction zones similar to those previously reported in the literature: (1) an outer-reacted, porous silica-rich zone; (2) a dense, carbonated zone; and (3) a more porous, Ca-depleted inner zone. The quantitative mechanical data (brittle compressive strength and friction coefficient) obtained for each of the zones suggest that the heterogeneity of reacted cement leads to a wide range of brittle strength values in any of the reaction zones, with only a rough dependence on exposure time. However, the data can be used to guide numerical modeling efforts needed to assess the impact of reaction-induced mechanical failure of wellbore cement by coupling sensitivity analysis and mechanical predictions.

  3. Deep Bore Storage of Nuclear Waste Using MMW (Millimeter Wave) Technology. Full Project Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oglesby, Kenneth D.; Woskov, Paul; Einstein, Herbert

    This DOE Nuclear STTR project DE-SC001238 investigated the use of MMW directed energy to form rock melt and steel plugs in deep wellbores to further isolate highly radioactive nuclear waste in ultra-deep basement rocks for long term storage. This current project builds upon a prior DOE project, DE-EE0005504, which developed the basic low power, low 28 GHz frequency waveguide setup, process and instruments. This research adds to our understanding of using MMW power to melt and vaporize rocks and steel/ metals and laid plans for future higher power field prototype testing. This technology also has potential for deep well drillingmore » for nuclear storage, geothermal and oil and gas industries. It also has the potential for simultaneously sealing and securing the wellbore with a thick rock melt liner as the wellbore is drilled, called 'mono-bore drilling'. This allows for higher levels of safety and protection of the environment during deep drilling operations while providing vast cost savings. The larger purpose of this project was to find answers to key questions in developing MMW technology for its many subsurface applications.« less

  4. Motorized wellbore fishing tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, L.E.; Schasteen, T.

    1989-08-15

    This patent describes a fishing tool for retrieving an article located in a wellbore, wherein the fishing tool may be lowered into the wellbore by means connected to one end of the fishing tool. The fishing tool comprising: an elongated tubular body; an inner sleeve member secured to the body and extending axially within the body; a ball key disposed within each of the openings and movable at least partially into the bore in locking registration with a fishing head connected to the article; an outer sleeve member disposed in sleeved relationship around the inner sleeve member and movable axiallymore » between first and second positions with respect to the inner sleeve member. The outer sleeve member being operable to prevent, in the first position, radial outward movement of the ball keys out of the bore. The outer sleeve member including recess means formed thereon such that in the second position of the outer sleeve member the recess means is adjacent to the circumferentially spaced openings to allow limited radial outward movement of the ball keys; and means for axially moving the outer sleeve member between the first and second positions for engaging and releasing the fishing head with respect to the tool.« less

  5. Field-scale and wellbore modeling of compaction-induced casing failures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilbert, L.B. Jr.; Gwinn, R.L.; Moroney, T.A.

    1999-06-01

    Presented in this paper are the results and verification of field- and wellbore-scale large deformation, elasto-plastic, geomechanical finite element models of reservoir compaction and associated casing damage. The models were developed as part of a multidisciplinary team project to reduce the number of costly well failures in the diatomite reservoir of the South Belridge Field near Bakersfield, California. Reservoir compaction of high porosity diatomite rock induces localized shearing deformations on horizontal weak-rock layers and geologic unconformities. The localized shearing deformations result in casing damage or failure. Two-dimensional, field-scale finite element models were used to develop relationships between field operations, surfacemore » subsidence, and shear-induced casing damage. Pore pressures were computed for eighteen years of simulated production and water injection, using a three-dimensional reservoir simulator. The pore pressures were input to the two-dimensional geomechanical field-scale model. Frictional contact surfaces were used to model localized shear deformations. To capture the complex casing-cement-rock interaction that governs casing damage and failure, three-dimensional models of a wellbore were constructed, including a frictional sliding surface to model localized shear deformation. Calculations were compared to field data for verification of the models.« less

  6. Subsurface Formation Evaluation on Mars: Application of Methods from the Oil Patch

    NASA Astrophysics Data System (ADS)

    Passey, Q. R.

    2006-12-01

    The ability to drill 10- to 100-meter deep wellbores on Mars would allow for evaluation of shallow subsurface formations enabling the extension of current interpretations of the geologic history of this planet; moreover, subsurface access is likely to provide direct evidence to determine if water or permafrost is present. Methodologies for evaluating sedimentary rocks using drill holes and in situ sample and data acquisition are well developed here on Earth. Existing well log instruments can measure K, Th, and U from natural spectral gamma-ray emission, compressional and shear acoustic velocities, electrical resistivity and dielectric properties, bulk density (Cs-137 or Co-60 source), photoelectric absorption of gamma-rays (sensitive to the atomic number), hydrogen index from epithermal and thermal neutron scattering and capture, free hydrogen in water molecules from nuclear magnetic resonance, formation capture cross section, temperature, pressure, and elemental abundances (C, O, Si, Ca, H, Cl, Fe, S, and Gd) using 14 MeV pulsed neutron activation more elements possible with supercooled Ge detectors. Additionally, high-resolution wellbore images are possible using a variety of optical, electrical, and acoustic imaging tools. In the oil industry, these downhole measurements are integrated to describe potential hydrocarbon reservoir properties: lithology, mineralogy, porosity, depositional environment, sedimentary and structural dip, sedimentary features, fluid type (oil, gas, or water), and fluid amount (i.e., saturation). In many cases it is possible to determine the organic-carbon content of hydrocarbon source rocks from logs (if the total organic carbon content is 1 wt% or greater), and more accurate instruments likely could be developed. Since Martian boreholes will likely be drilled without using opaque drilling fluids (as generally used in terrestrial drilling), additional instruments can be used such as high resolution direct downhole imaging and other surface contact measurements (such as IR spectroscopy and x-ray fluorescence). However, such wellbores would require modification of some instruments since conventional drilling fluids often provide the coupling of the instrument sensors to the formation (e.g., sonic velocity and galvanic resistivity measurements). The ability to drill wellbores on Mars opens up new opportunities for exploration but also introduces additional technical challenges. Currently it is not known if all existing terrestrial logging instruments can be miniaturized sufficiently for a shallow Mars wellbore, but the existing well logging techniques and instruments provide a solid framework on which to build a Martian subsurface evaluation program.

  7. Remote Sensing of Subsurface Fractures in the Otway Basin, South Australia

    NASA Astrophysics Data System (ADS)

    Bailey, Adam; King, Rosalind; Holford, Simon; Hand, Martin

    2013-04-01

    A detailed understanding of naturally occurring fracture networks within the subsurface is becoming increasingly important to the energy sector, as the focus of exploration has expanded to include unconventional reservoirs such as coal seam gas, shale gas, tight gas, and engineered geothermal systems. Successful production from such reservoirs, where primary porosity and permeability is often negligible, is heavily reliant on structural permeability provided by naturally occurring and induced fracture networks, permeability, which is often not provided for through primary porosity and permeability. In this study the Penola Trough, located within the onshore Otway Basin in South Australia, is presented as a case study for remotely detecting and defining subsurface fracture networks that may contribute to secondary permeability. This area is prospective for shale and tight gas and geothermal energy. The existence and nature of natural fractures is verified through an integrated analysis of geophysical logs (including wellbore image logs) and 3D seismic data. Wellbore image logs from 11 petroleum wells within the Penola Trough were interpreted for both stress indicators and natural fractures. A total of 507 naturally occurring fractures were identified, striking approximately WNE-ESE. Fractures which are aligned in the in-situ stress field are optimally oriented for reactivation, and are hence likely to be open to fluid flow. Fractures are identifiable as being either resistive or conductive sinusoids on the resistivity image logs used in this study. Resistive fractures, of which 239 were identified, are considered to be cemented with electrically resistive cements (such as quartz or calcite) and thus closed to fluid flow. Conductive fractures, of which 268 were identified, are considered to be uncemented and open to fluid flow, and thus important to geothermal exploration. Fracture susceptibility diagrams constructed for the identified fractures illustrate that the conductive fractures are optimally oriented for reactivation in the present-day strike-slip fault regime, and so are likely to be open to fluid flow. To gain an understanding of the broader extent of these natural fractures, it is necessary to analyse more regional 3D seismic data. It is well documented that fault and fracture networks like those generally observed in image logs lie well below seismic amplitude resolution, making them difficult to observe directly on amplitude data. However, seismic attributes can be calculated to provide some information on sub-seismic scale structural and stratigraphic features. Using the merged Balnaves/Haselgrove 3D seismic cube acquired over the Penola Trough, attribute maps of complex multi-trace dip-steered coherency and most positive curvature, among others, were used to document the presence of discontinuities within the seismic data which area likely to represent natural fractures, and to best constrain the likely extent of the fracture network which they form. The resulting fracture network model displays relatively good connectivity surrounding structural features intersecting the studied horizons, although large areas lacking significant discontinuities are observed. These areas make it unlikely that the fracture network contributes to permeability on a basin-wide scale, though observed features are optimally oriented for reactivation under contemporary stress conditions and are thus likely to provide at least local increases in permeability.

  8. The subsurface record for the Anthropocene based on the global analysis of deep wells

    NASA Astrophysics Data System (ADS)

    Rose, K.

    2016-12-01

    While challenges persist in the characterization of Earth's subsurface, over two centuries of exploration resulting in more than six million deep wellbores, offer insights into these systems. Characteristics of the subsurface vary and can be analyzed on a variety of spatial scales using geospatial tools and methods. Characterization and prediction of subsurface properties, such as depth, thickness, porosity, permeability, pressure and temperature, are important for models and interpretations of the subsurface. Subsurface studies contribute to insights and understanding of natural system but also enable predictions and assessments of subsurface resources and support environmental and geohazard assessments. As the geo-data science landscape shifts, becoming more open, there are increasing opportunities to fill knowledge gaps, mine large, interrelated datasets, and develop innovative methods to improve our understanding of the subsurface and the impacts of its exploration. In this study, a global dataset of more than 6,000,000 deep subsurface wells has been assembled using ArcGIS and Access, which reflects to a first order, the cumulative representation of over two centuries of drilling. Wellbore data, in general represent the only portal for direct measurement and characterization of deep subsurface properties. As human engineering of the subsurface evolves from a focus on hydrocarbon resource development to include subsurface waste product disposal (e.g. CO2, industrial waste, etc) and production of other deep subsurface resources, such as heat and water resources, there is the increasing need to improve characterization techniques and understand local and global ramifications of anthropogenic interaction with the subsurface. Data and geospatial analyses are reviewed to constrain the extent to which human interactions, not just with Earth's surface systems, atmospheric and geologic, but subsurface systems will result in an enduring signature of human influences on the planet. Specifically, the extent and enduring signature of subsurface interactions with the planet, utilizing the four-dimensional, spatial and temporal, record for known deep wellbores is utilized.

  9. WTAQ version 2-A computer program for analysis of aquifer tests in confined and water-table aquifers with alternative representations of drainage from the unsaturated zone

    USGS Publications Warehouse

    Barlow, Paul M.; Moench, Allen F.

    2011-01-01

    The computer program WTAQ simulates axial-symmetric flow to a well pumping from a confined or unconfined (water-table) aquifer. WTAQ calculates dimensionless or dimensional drawdowns that can be used with measured drawdown data from aquifer tests to estimate aquifer hydraulic properties. Version 2 of the program, which is described in this report, provides an alternative analytical representation of drainage to water-table aquifers from the unsaturated zone than that which was available in the initial versions of the code. The revised drainage model explicitly accounts for hydraulic characteristics of the unsaturated zone, specifically, the moisture retention and relative hydraulic conductivity of the soil. The revised program also retains the original conceptualizations of drainage from the unsaturated zone that were available with version 1 of the program to provide alternative approaches to simulate the drainage process. Version 2 of the program includes all other simulation capabilities of the first versions, including partial penetration of the pumped well and of observation wells and piezometers, well-bore storage and skin effects at the pumped well, and delayed drawdown response of observation wells and piezometers.

  10. Assessing the vulnerability of public-supply wells to contamination: Rio Grande aquifer system in Albuquerque, New Mexico

    USGS Publications Warehouse

    Jagucki, Martha L.; Bexfield, Laura M.; Heywood, Charles E.; Eberts, Sandra M.

    2012-01-01

    This fact sheet highlights findings from the vulnerability study of a public-supply well in Albuquerque, New Mexico (hereafter referred to as “the study well”). The study well produces about 3,000 gallons of water per minute from the Rio Grande aquifer system. Water samples were collected at the study well, at two other nearby public-supply wells, and at monitoring wells installed in or near the simulated zone of contribution to the study well. Untreated water samples from the study well contained arsenic at concentrations exceeding the Maximum Contaminant Level (MCL) of 10 micrograms per liter (µg/L) established by the U.S. Environmental Protection Agency for drinking water. Volatile organic compounds (VOCs) and nitrate also were detected, although at concentrations at least an order of magnitude less than established drinking-water standards, where such standards exist. Overall, study findings point to four primary influences on the movement and (or) fate of contaminants and the vulnerability of the public-supply well in Albuquerque: (1) groundwater age (how long ago water entered, or recharged, the aquifer), (2) groundwater development (introduction of manmade recharge and discharge sources), (3) natural geochemical conditions of the aquifer, and (4) seasonal pumping stresses. Concentrations of the isotope carbon-14 indicate that groundwater from most sampled wells in the local study area is predominantly water that entered, or recharged, the aquifer more than 6,000 years ago. However, the additional presence of the age tracer tritium in several groundwater samples at concentrations above 0.3 tritium units indicates that young (post-1950) recharge is reaching the aquifer across broad areas beneath Albuquerque. This young recharge is mixing with the thousands-of-years-old water, is migrating to depths as great as 245 feet below the water table, and is traveling to some (but not all) of the public-supply wells sampled. Most groundwater samples containing a fraction of young water also contain manmade VOCs, including chloroform (a byproduct of drinking-water chlorination), which indicates that the source of young recharge is, at least in part, infiltration of chlorinated municipal-supply water from leaking waterlines and sewerlines or from turf watering. Other likely manmade, urban recharge sources are seepage from constructed ponds and unlined portions of a stormwater diversion channel. A regional-scale computer-model simulation of groundwater flow and transport to the public-supply well shows that manmade sources of recharge and discharge that were added after about 1930 have greatly altered directions of groundwater flow near Albuquerque and have caused water levels to decline by as much as 120 feet. Local-scale simulations show that seasonal changes in the pumping schedule of the study well affect the age and quality of water produced by the well. Increased pumping during the summer causes significant volumes of water to flow downward from the shallow to the intermediate zones of the aquifer, causing a higher fraction of young water to be produced by the well in the summer than in the winter months and a corresponding increase in VOC detections in the summer relative to the winter. During the winter when the study-well pump is idle for several hours each day, old, high-arsenic water from the deep zone of the aquifer travels up the wellbore and exits into the intermediate zone of the aquifer. When the pump is activated in the winter (for a relatively short time each day), some of the leaked, high-arsenic water is recaptured by the well. This results in a higher arsenic concentration (commonly more than 12 µg/L) in water produced in the winter than in the summer, and a smaller fraction of young water being produced by the well in the winter than in the summer (6 percent in the winter, compared to 11 percent in the summer). Knowledge of the vertical flow direction (both natural and pumping-enhanced) in the vicinity of a long-screened well, coupled with understanding of variations in contaminant concentrations with depth in the aquifer, can help water managers predict the positive or negative effect that wellbore flow will have on water quality and can lead to development of strategies to mitigate contamination (such as changes in pumping schedules or development of devices to inhibit wellbore flow when the pump is off).

  11. Optimization of groundwater sampling approach under various hydrogeological conditions using a numerical simulation model

    NASA Astrophysics Data System (ADS)

    Qi, Shengqi; Hou, Deyi; Luo, Jian

    2017-09-01

    This study presents a numerical model based on field data to simulate groundwater flow in both the aquifer and the well-bore for the low-flow sampling method and the well-volume sampling method. The numerical model was calibrated to match well with field drawdown, and calculated flow regime in the well was used to predict the variation of dissolved oxygen (DO) concentration during the purging period. The model was then used to analyze sampling representativeness and sampling time. Site characteristics, such as aquifer hydraulic conductivity, and sampling choices, such as purging rate and screen length, were found to be significant determinants of sampling representativeness and required sampling time. Results demonstrated that: (1) DO was the most useful water quality indicator in ensuring groundwater sampling representativeness in comparison with turbidity, pH, specific conductance, oxidation reduction potential (ORP) and temperature; (2) it is not necessary to maintain a drawdown of less than 0.1 m when conducting low flow purging. However, a high purging rate in a low permeability aquifer may result in a dramatic decrease in sampling representativeness after an initial peak; (3) the presence of a short screen length may result in greater drawdown and a longer sampling time for low-flow purging. Overall, the present study suggests that this new numerical model is suitable for describing groundwater flow during the sampling process, and can be used to optimize sampling strategies under various hydrogeological conditions.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, R.D.

    The results of a research effort to develop a multiphase naturally fractured, lenticular reservoir simulator is presented. The simulator possesses the capability of investigating the effects of non-Darcy flow, Klinkenberg effect, and transient multiphase wellbore storage for wells with finite and infinite conductivity fractures. The simulator has been utilized to simulate actual pressure transient data for gas wells associated with the United States Department of Energy, Western Gas Sands Project, MWX Experiments. The results of these simulations are contained in the report as well as simulation results for hypothetical wells which are producing under multiphase flow conditions. In addition tomore » the reservoir simulation development, and theoretical and field case studies the results of an experimental program to investigate multiphase non-Darcy flow coefficients (inertial resistance coefficients or beta factors as they are sometimes called) are also presented. The experimental data was obtained for non-Darcy flow in porous and fractured media. The results clearly indicate the dependence of the non-Darcy flow coefficient upon liquid saturation. Where appropriate comparisons are made against data available in the open literature. In addition, theoretical development of a correlation to predict non-Darcy flow coefficients as a function of effective gas permeability, liquid saturations, and porosity is presentd. The results presented in this report will provide scientists and engineers tools to investigate well performance data and production trends for wells completed in lenticular, naturally fractured formations producing under non-Darcy, multiphase conditions. 65 refs., 57 figs., 15 tabs.« less

  13. A multicomponent tracer field experiment to measure the flow volume, surface area, and rectilinear spacing of fractures away from the wellbore

    NASA Astrophysics Data System (ADS)

    Cathles, L. M.; Sanford, W. E.; Hawkins, A.; Li, Y. V.

    2017-12-01

    The nature of flow in fractured porous media is important to almost all subsurface processes including oil and gas recovery, contaminant transport and remediation, CO2 sequestration, and geothermal heat extraction. One would like to know, under flowing conditions, the flow volume, surface area, effective aperture, and rectilinear spacing of fractures in a representative volume of rock away from the well bore, but no methods currently allow acquisition of this data. It could, however, be collected by deploying inert tracers with a wide range of aqueous diffusion constants (e.g., rapidly diffusing heat to non-diffusing nanoparticle) in the following fashion: The flow volume is defined by the heated volume measured by resistivity surveys. The fracture volume within this flow volume is indicate by the nanoparticle transit time. The average fracture spacing is indicated by the evolving thermal profile in the monitor and the production wells (measured by fiber optic cable), and by the retention of absorbing tracers. The average fracture aperture is determined by permeability measurements and the average fracture separation. We have proposed a field test to redundantly measure these fracture parameters in the fractured Dakota Sandstone where it approaches the surface in Ft Collins, Colorado. Five 30 m deep wells (an injection, production, and 3 monitor wells) cased to 20 m are proposed. The experiments will involve at least 9 different tracers. The planned field test and its potential significance will be described.

  14. Electrically conductive proppant and methods for detecting, locating and characterizing the electrically conductive proppant

    DOEpatents

    Cannan, Chad; Bartel, Lewis; Palisch, Terrence; Aldridge, David

    2015-01-13

    Electrically conductive proppants and methods for detecting, locating, and characterizing same are provided. The electrically conductive proppant can include a substantially uniform coating of an electrically conductive material having a thickness of at least 500 nm. The method can include injecting a hydraulic fluid into a wellbore extending into a subterranean formation at a rate and pressure sufficient to open a fracture therein, injecting into the fracture a fluid containing the electrically conductive proppant, electrically energizing the earth at or near the fracture, and measuring three dimensional (x, y, and z) components of electric and magnetic field responses at a surface of the earth or in an adjacent wellbore.

  15. Improved geomagnetic referencing in the Arctic environment

    USGS Publications Warehouse

    Poedjono, B.; Beck, N.; Buchanan, A. C.; Borri, L.; Maus, S.; Finn, Carol; Worthington, E. William; White, Tim

    2016-01-01

    Geomagnetic referencing uses the Earth’s magnetic field to determine accurate wellbore positioning essential for success in today's complex drilling programs, either as an alternative or a complement to north-seeking gyroscopic referencing. However, fluctuations in the geomagnetic field, especially at high latitudes, make the application of geomagnetic referencing in those areas more challenging. Precise crustal mapping and the monitoring of real-time variations by nearby magnetic observatories is crucial to achieving the required geomagnetic referencing accuracy. The Deadhorse Magnetic Observatory (DED), located at Prudhoe Bay, Alaska, has already played a vital role in the success of several commercial ventures in the area, providing essential, accurate, real-time data to the oilfield drilling industry. Geomagnetic referencing is enhanced with real-time data from DED and other observatories, and has been successfully used for accurate wellbore positioning. The availability of real-time geomagnetic measurements leads to significant cost and time savings in wellbore surveying, improving accuracy and alleviating the need for more expensive surveying techniques. The correct implementation of geomagnetic referencing is particularly critical as we approach the increased activity associated with the upcoming maximum of the 11-year solar cycle. The DED observatory further provides an important service to scientific communities engaged in studies of ionospheric, magnetospheric and space weather phenomena.

  16. A Theoretical Investigation of Radial Lateral Wells with Shockwave Completion in Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Shan, Jia

    As its role in satisfying the energy demand of the U.S. and as a clean fuel has become more significant than ever, the shale gas production in the U.S. has gained increasing momentum over recent years. Thus, effective and environmentally friendly methods to extract shale gas are critical. Hydraulic fracturing has been proven to be efficient in the production of shale gas. However, environmental issues such as underground water contamination and high usage of water make this technology controversial. A potential technology to eliminate the environmental issues concerning water usage and contamination is to use blast fracturing, which uses explosives to create fractures. It can be further aided by HEGF and multi-pulse pressure loading technology, which causes less crushing effect near the wellbore and induces longer fractures. Radial drilling is another relatively new technology that can bypass damage zones due to drilling and create a larger drainage area through drilling horizontal wellbores. Blast fracturing and radial drilling both have the advantage of cost saving. The successful combination of blast fracturing and radial drilling has a great potential for improving U.S. shale gas production. An analytical productivity model was built in this study, considering linear flow from the reservoir rock to the fracture face, to analyze factors affecting shale gas production from radial lateral wells with shockwave completion. Based on the model analyses, the number of fractures per lateral is concluded to be the most effective factor controlling the productivity index of blast-fractured radial lateral wells. This model can be used for feasibility studies of replacing hydraulic fracturing by blast fracturing in shale gas well completions. Prediction of fracture geometry is recommended for future studies.

  17. Wellbore cement fracture evolution at the cement–basalt caprock interface during geologic carbon sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Hun Bok; Kabilan, Senthil; Carson, James P.

    2014-08-07

    Composite Portland cement-basalt caprock cores with fractures, as well as neat Portland cement columns, were prepared to understand the geochemical and geomechanical effects on the integrity of wellbores with defects during geologic carbon sequestration. The samples were reacted with CO2-saturated groundwater at 50 ºC and 10 MPa for 3 months under static conditions, while one cement-basalt core was subjected to mechanical stress at 2.7 MPa before the CO2 reaction. Micro-XRD and SEM-EDS data collected along the cement-basalt interface after 3-month reaction with CO2-saturated groundwater indicate that carbonation of cement matrix was extensive with the precipitation of calcite, aragonite, and vaterite,more » whereas the alteration of basalt caprock was minor. X-ray microtomography (XMT) provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Computational fluid dynamics (CFD) modeling further revealed that this stress led to the increase in fluid flow and hence permeability. After the CO2-reaction, XMT images displayed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along the fracture located at the cement-basalt interface. The 3-D visualization and CFD modeling also showed that the precipitation of calcium carbonate within the cement fractures after the CO2-reaction resulted in the disconnection of cement fractures and permeability decrease. The permeability calculated based on CFD modeling was in agreement with the experimentally determined permeability. This study demonstrates that XMT imaging coupled with CFD modeling represent a powerful tool to visualize and quantify fracture evolution and permeability change in geologic materials and to predict their behavior during geologic carbon sequestration or hydraulic fracturing for shale gas production and enhanced geothermal systems.« less

  18. Microbially Induced Calcite Precipitation (MICP) - A Technology for Managing Flow and Transport in Porous and Fractured Media

    NASA Astrophysics Data System (ADS)

    Phillips, A. J.; Hiebert, R.; Kirksey, J.; Lauchnor, E. G.; Rothman, A.; Spangler, L.; Esposito, R.; Gerlach, R.; Cunningham, A. B.

    2014-12-01

    Certain microorganisms e.g., Sporosarcina pasteurii contribute enzymes that catalyze reactions which in the presence of calcium, can create saturation conditions favorable for calcium carbonate precipitation (microbially-induced calcium carbonate precipitation (MICP)). MICP can be used for a number of engineering applications including securing geologic storage of CO2 or other fluids by sealing fractures, improving wellbore integrity, and stabilizing fractured and unstable porous media. MICP treatment has the advantage of the use of small microorganisms, ~2μm, suggesting applicability to treatment of small aperture fractures not accessible to traditional treatments, for example the use of fine cement. The promotion of MICP in the subsurface is a complex reactive transport problem coupling microbial, abiotic (geochemical), geomechanical and hydrodynamic processes. In the laboratory, MICP has been demonstrated to cement together heavily fractured shale and reduce the permeability of fractures in shale and sandstone cores up to five orders of magnitude under both ambient and subsurface relevant pressure conditions (Figure 1). Most recently, a MICP fracture treatment field study was performed at a well at the Southern Company Gorgas Steam Generation Plant (Alabama) (Figure 1). The Fayetteville Sandstone at approximately 1120' below ground surface was hydraulically fractured prior to MICP treatment. After 4 days of injection of 24 calcium pulses and 6 microbial inoculations, injectivity of brine into the formation was significantly reduced. The experiment also resulted in a reduction in pressure decay which is a measure of improved wellbore integrity. These promising results suggest the potential for MICP treatment to seal fractured pathways at the field scale to improve the long-term security of geologically-stored carbon dioxide or prevent leakage of shale gas or hydraulic fracturing fluids into functional overlying aquifers, reducing environmental impacts.

  19. Groundwater withdrawal in randomly heterogeneous coastal aquifers

    NASA Astrophysics Data System (ADS)

    Siena, Martina; Riva, Monica

    2018-05-01

    We analyze the combined effects of aquifer heterogeneity and pumping operations on seawater intrusion (SWI), a phenomenon which is threatening coastal aquifers worldwide. Our investigation is set within a probabilistic framework and relies on a numerical Monte Carlo approach targeting transient variable-density flow and solute transport in a three-dimensional randomly heterogeneous porous domain. The geological setting is patterned after the Argentona river basin, in the Maresme region of Catalonia (Spain). Our numerical study is concerned with exploring the effects of (a) random heterogeneity of the domain on SWI in combination with (b) a variety of groundwater withdrawal schemes. The latter have been designed by varying the screen location along the vertical direction and the distance of the wellbore from the coastline and from the location of the freshwater-saltwater mixing zone which is in place prior to pumping. For each random realization of the aquifer permeability field and for each pumping scheme, a quantitative depiction of SWI phenomena is inferred from an original set of metrics characterizing (a) the inland penetration of the saltwater wedge and (b) the width of the mixing zone across the whole three-dimensional system. Our results indicate that the stochastic nature of the system heterogeneity significantly affects the statistical description of the main features of the seawater wedge either in the presence or in the absence of pumping, yielding a general reduction of toe penetration and an increase of the width of the mixing zone. Simultaneous extraction of fresh and saltwater from two screens along the same wellbore located, prior to pumping, within the freshwater-saltwater mixing zone is effective in limiting SWI in the context of groundwater resources exploitation.

  20. Evaluating the Influence of Chemical Reactions on Wellbore Cement Integrity and Geochemical Tracer Behavior in Hydraulically-Fractured Shale Formations

    NASA Astrophysics Data System (ADS)

    Verba, C.; Lieuallen, A.; Yang, J.; Torres, M. E.; Hakala, A.

    2014-12-01

    Ensuring wellbore integrity for hydraulically-fractured shale reservoirs is important for maintaining zonal isolation of gases and fluids within the reservoir. Chemical reactions between wellbore cements, the shale formation, formation fluids, and fracturing fluids could affect the ability for cement to form an adequate seal. This study focuses on experimental investigations to evaluate how cement, rock, brines, and fracturing fluids react under conditions similar to the perforated zone associated with the Marcellus shale (Greene County, Pennsylvania). Two pressure/temperature regimes were investigated- moderate (25 MPa, 50oC) and high (27.5 MPa, 90oC). Shale collected from the Lower Marcellus section was encased in Class A cement, cured for 24 hours, and then exposed to simulated conditions in experimental autoclave reactors. The simulated formation fluid was a synthetic brine, modeled after a flowback fluid contained 187,000 mg/l total dissolved solids and had a pH of 7.6. The effect of pH was probed to evaluate the potential for cement reactivity under different pH conditions, and the potential for contaminant or geochemical tracer release from the shale (e.g. arsenic and rare earth elements). In addition to dissolution reactions, sorption and precipitation reactions between solutes and the cement are being evaluated, as the cement could bond with solute-phase species during continued hydration. The cements are expected to show different reactivity under the two temperature conditions because the primary cement hydration product, calcium silicate hydrate (C-S-H) is heavily influenced by temperature. Results from these experimental studies will be used both to inform the potential changes in cement chemistry that may occur along a wellbore in the hydraulically-fractured portion of a reservoir, and the types of geochemical tracers that may be useful in tracking these reactions.

  1. Novel Experimental Techniques to Investigate Wellbore Damage Mechanisms

    NASA Astrophysics Data System (ADS)

    Choens, R. C., II; Ingraham, M. D.; Lee, M.; Dewers, T. A.

    2017-12-01

    A new experimental technique with unique geometry is presented investigating deformation of simulated boreholes using standard axisymmetric triaxial deformation equipment. The Sandia WEllbore SImulation, SWESI, geometry, uses right cylinders of rock 50mm in diameter and 75mm in length. A 11.3mm hole is drilled perpendicular to the axis of the cylinder in the center of the sample to simulate a borehole. The hole is covered with a solid metal cover, and sealed with polyurethane. The metal cover can be machined with a high-pressure port to introduce different fluid chemistries into the borehole at controlled pressures. Samples are deformed in a standard load frame under confinement, allowing for a broad range of possible stresses, load paths, and temperatures. Experiments in this study are loaded to the desired confining pressure, then deformed at a constant axial strain rate or 10-5 sec-1. Two different suites of experiments are conducted in this study on sedimentary and crystalline rock types. The first series of experiments are conducted on Mancos Shale, a finely laminated transversely isotropic rock. Samples are cored at three different orientations to the laminations. A second series of experiments is conducted on Sierra White granite with different fluid chemistries inside the borehole. Numerical modelling and experimental observations including CT-microtomography demonstrate that stresses are concentrated around the simulated wellbore and recreate wellbore deformation mechanisms. Borehole strength and damage development is dependent on anisotropy orientation and fluid chemistry. Observed failure geometries, particularly for Mancos shale, can be highly asymmetric. These results demonstrate uncertainties in in situ stresses measurements using commonly-applied borehole breakout techniques in complicated borehole physico-chemical environments. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2017-8259 A

  2. Predicting long-term performance of engineered geologic carbon dioxide storage systems to inform decisions amidst uncertainty

    NASA Astrophysics Data System (ADS)

    Pawar, R.

    2016-12-01

    Risk assessment and risk management of engineered geologic CO2 storage systems is an area of active investigation. The potential geologic CO2 storage systems currently under consideration are inherently heterogeneous and have limited to no characterization data. Effective risk management decisions to ensure safe, long-term CO2 storage requires assessing and quantifying risks while taking into account the uncertainties in a storage site's characteristics. The key decisions are typically related to definition of area of review, effective monitoring strategy and monitoring duration, potential of leakage and associated impacts, etc. A quantitative methodology for predicting a sequestration site's long-term performance is critical for making key decisions necessary for successful deployment of commercial scale geologic storage projects where projects will require quantitative assessments of potential long-term liabilities. An integrated assessment modeling (IAM) paradigm which treats a geologic CO2 storage site as a system made up of various linked subsystems can be used to predict long-term performance. The subsystems include storage reservoir, seals, potential leakage pathways (such as wellbores, natural fractures/faults) and receptors (such as shallow groundwater aquifers). CO2 movement within each of the subsystems and resulting interactions are captured through reduced order models (ROMs). The ROMs capture the complex physical/chemical interactions resulting due to CO2 movement and interactions but are computationally extremely efficient. The computational efficiency allows for performing Monte Carlo simulations necessary for quantitative probabilistic risk assessment. We have used the IAM to predict long-term performance of geologic CO2 sequestration systems and to answer questions related to probability of leakage of CO2 through wellbores, impact of CO2/brine leakage into shallow aquifer, etc. Answers to such questions are critical in making key risk management decisions. A systematic uncertainty quantification approach can been used to understand how uncertain parameters associated with different subsystems (e.g., reservoir permeability, wellbore cement permeability, wellbore density, etc.) impact the overall site performance predictions.

  3. Design of Fit-for-Purpose Cement to Restore Cement-Caprock Seal Integrity

    NASA Astrophysics Data System (ADS)

    Provost, R.

    2015-12-01

    This project aims to study critical research needs in the area of rock-cement interfaces, with a special focus on crosscutting applications in the Wellbore Integrity Pillar of the SubTER initiative. This study will focus on design and test fit-for-purpose cement formulations. The goals of this project are as follows: 1) perform preliminary study of dispersing nanomaterial admixtures in Ordinary Portland Cement (OPC) mixes, 2) characterize the cement-rock interface, and 3) identify potential high-performance cement additives that can improve sorption behavior, chemical durability, bond strength, and interfacial fracture toughness, as appropriate to specific subsurface operational needs. The work presented here focuses on a study of cement-shale interfaces to better understand failure mechanisms, with particular attention to measuring bond strength at the cement-shale interface. Both experimental testing and computational modeling were conducted to determine the mechanical behavior at the interface representing the interaction of cement and shale of a typical wellbore environment. Cohesive zone elements are used in the finite element method to computationally simulate the interface of the cement and rock materials with varying properties. Understanding the bond strength and mechanical performance of the cement-formation interface is critical to wellbore applications such as sequestration, oil and gas production and exploration and nuclear waste disposal. Improved shear bond strength is an indication of the capability of the interface to ensure zonal isolation and prevent zonal communication, two crucial goals in preserving wellbore integrity. Understanding shear bond strength development and interface mechanics will provide an idea as to how the cement-formation interface can be altered under environmental changes (temperature, pressure, chemical degradation, etc.) so that the previously described objectives can be achieved. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND #: SAND2015-6523 A

  4. Effective Permeability Change in Wellbore Cement with Carbon Dioxide Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Um, Wooyong; Jung, Hun Bok; Martin, Paul F.

    2011-11-01

    Portland cement, a common sealing material for wellbores for geological carbon sequestration was reacted with CO{sub 2} in supercritical, gaseous, and aqueous phases at various pressure and temperature conditions to simulate cement-CO{sub 2} reaction along the wellbore from carbon injection depth to the near-surface. Hydrated Portland cement columns (14 mm diameter x 90 mm length; water-to-cement ratio = 0.33) including additives such as steel coupons and Wallula basalt fragments were reacted with CO{sub 2} in the wet supercritical (the top half) and dissolved (the bottom half) phases under carbon sequestration condition with high pressure (10 MPa) and temperature (50 C)more » for 5 months, while small-sized hydrated Portland cement columns (7 mm diameter x 20 mm length; water-to-cement ratio = 0.38) were reacted with CO{sub 2} in dissolved phase at high pressure (10 MPa) and temperature (50 C) for 1 month or with wet CO{sub 2} in gaseous phase at low pressure (0.2 MPa) and temperature (20 C) for 3 months. XMT images reveal that the cement reacted with CO{sub 2} saturated groundwater had degradation depth of {approx}1 mm for 1 month and {approx}3.5 mm for 5 month, whereas the degradation was minor with cement exposure to supercritical CO{sub 2}. SEM-EDS analysis showed that the carbonated cement was comprised of three distinct zones; the innermost less degraded zone with Ca atom % > C atom %, the inner degraded zone with Ca atom % {approx} C atom % due to precipitation of calcite, the outer degraded zone with C atom % > Ca atom % due to dissolution of calcite and C-S-H, as well as adsorption of carbon to cement matrix. The outer degraded zone of carbonated cement was porous and fractured because of dissolution-dominated reaction by carbonic acid exposure, which resulted in the increase in BJH pore volume and BET surface area. In contrast, cement-wet CO{sub 2}(g) reaction at low P (0.2 MPa)-T (20 C) conditions for 1 to 3 months was dominated by precipitation of micron-sized calcite on the outside surface of cement, which resulted in the decrease in BJH pore volume and BET surface area. Cement carbonation and pore structure change are significantly dependent on pressure and temperature conditions as well as the phase of CO{sub 2}, which controls the balance between precipitation and dissolution in cement matrix. Geochemical modeling result suggests that ratio of solid (cement)-to-solution (carbonated water) has a significant effect on cement carbonation, thus the cement-CO{sub 2} reaction experiment needs to be conducted under realistic conditions representing the in-situ wellbore environment of carbon sequestration field site. Total porosity and air permeability for a duplicate cement column with water-to-cement ratio of 0.38 measured after oven-drying by Core Laboratories using Boyle's Law technique and steady-state method were 31% and 0.576 mD. A novel method to measure the effective liquid permeability of a cement column using X-ray micro-tomography images after injection of pressurized KI (potassium iodide) is under development by PNNL. Preliminary results indicate the permeability of a cement column with water-to-cement ratio of 0.38 is 4-8 mD. PNNL will apply the method to understand the effective permeability change of Portland cement by CO{sub 2}(g) reaction under a variety of pressure and temperature conditions to develop a more reliable well-bore leakage risk model.« less

  5. Monitoring and/or Detection of Wellbore Leakage In Energy Storage Wells

    NASA Astrophysics Data System (ADS)

    Ratigan, J.

    2017-12-01

    Energy (compressed natural gas, crude oil, NGL, and LPG) storage wells in solution-mined caverns in salt formations are required to be tested for integrity every five years. Rules promulgated for such testing typically assume the cavern interval in the salt formation is inherently impermeable, even though some experience demonstrates that this is not always the case. A protocol for testing the cavern impermeable hypothesis should be developed. The description for the integrity test of the "well" component of the well and cavern storage system was developed more than 30 years ago. However, some of the implicit assumptions inherent to the decades-old well test protocol are no longer applicable to the large diameter, high flow rate wells commonly constructed today. More detailed test protocols are necessary for the more contemporary energy storage wells.

  6. A finite difference model for free surface gravity drainage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couri, F.R.; Ramey, H.J. Jr.

    1993-09-01

    The unconfined gravity flow of liquid with a free surface into a well is a classical well test problem which has not been well understood by either hydrologists or petroleum engineers. Paradigms have led many authors to treat an incompressible flow as compressible flow to justify the delayed yield behavior of a time-drawdown test. A finite-difference model has been developed to simulate the free surface gravity flow of an unconfined single phase, infinitely large reservoir into a well. The model was verified with experimental results in sandbox models in the literature and with classical methods applied to observation wells inmore » the Groundwater literature. The simulator response was also compared with analytical Theis (1935) and Ramey et al. (1989) approaches for wellbore pressure at late producing times. The seepage face in the sandface and the delayed yield behavior were reproduced by the model considering a small liquid compressibility and incompressible porous medium. The potential buildup (recovery) simulated by the model evidenced a different- phenomenon from the drawdown, contrary to statements found in the Groundwater literature. Graphs of buildup potential vs time, buildup seepage face length vs time, and free surface head and sand bottom head radial profiles evidenced that the liquid refills the desaturating cone as a flat moving surface. The late time pseudo radial behavior was only approached after exaggerated long times.« less

  7. Anatomy Of The ‘LuSi’ Mud Eruption, East Java

    NASA Astrophysics Data System (ADS)

    Tingay, M. R.

    2009-12-01

    Early in the morning of the 29th of May 2006, hot mud started erupting from the ground in the densely populated Porong District of Sidoarjo, East Java. With initial flow rates of ~5000 cubic meters per day, the mud quickly inundated neighbouring villages. Over two years later and the ‘Lusi’ eruption has increased in strength, expelling over 90 million cubic meters of mud at an average rate of approximately 100000 cubic meters per day. The mud flow has now covered over 700 hectares of land to depths of over 25 meters, engulfing a dozen villages and displacing approximately 40000 people. In addition to the inundated areas, other areas are also at risk from subsidence and distant eruptions of gas. However, efforts to stem the mud flow or monitor its evolution are hampered by our overall lack of knowledge and consensus on the subsurface anatomy of the Lusi mud volcanic system. In particular, the largest and most significant uncertainties are the source of the erupted water (shales versus deep carbonates), the fluid flow pathways (purely fractures versus mixed fracture and wellbore) and disputes over the subsurface geology (nature of deep carbonates, lithology of rocks between shale and carbonates). This study will present and overview of the anatomy of the Lusi mud volcanic system with particular emphasis on these critical uncertainties and their influence on the likely evolution of disaster.

  8. Water resources of the Batavia Kill basin at Windham, Greene County, New York

    USGS Publications Warehouse

    Heisig, Paul M.

    1999-01-01

    The water resources of a 27.6-square-mile section of the Batavia Kill Basin near the village of Windham, N.Y., which has undergone substantial development, were evaluated. The evaluation entailed (1) estimation of the magnitude and distribution of several hydrologic components, including recharge, (2) measurement of discharge and chemical quality of the Batavia Kill and selected tributaries, (3) analysis of ground-water flow and chemistry, and (4) a conceptualization of the ground-water flow system.The region consists of deeply dissected, relatively flat-lying, clastic sedimentary sequences variably overlain by as much as 120 feet of glacial deposits. The types of bedrock fractures and their distribution in the Batavia Kill valley are consistent with valley stress-relief characteristics. Till predominates in the uplands, and stratified drift typically dominates within the valley of the Batavia Kill and the lower section of its largest tributary valley (Mitchell Hollow).Fractured bedrock is the most commonly used water source within the study area. The areas of highest yielding bedrock generally are with valleys, where the shallow fractures are saturated. Stratified-drift aquifers are also limited to the largest valleys; the greatest saturated thicknesses are in the Batavia Kill valley at Windham. A conceptual model of ground-water flow within the study areas suggests that the zones of most active flow are shallow fractured bedrock in upland areas and the shallow stratified drift in the largest valleys.The hydrogeologic system has been altered by development; major effects include (1) chemical alteration of natural ground-water and surface-water quality by point- and nonpoint-source contaminants, (2) hydraulic interconnection of other-wise isolated bedrock fractures by wellbores, and (3) drawdowns in wells within the Batavia Kill valley by pumping from the bedrock aquifer. Water resource development of the most promising unconsolidated aquifer beneath Windham may be precluded by the potential for contamination by leachate from an abandoned landfill, road-salt stockpiles, and domestic septic systems in the area.

  9. Wellbore and groundwater temperature distribution eastern Snake River Plain, Idaho: Implications for groundwater flow and geothermal potential

    DOE PAGES

    McLing, Travis L.; Smith, Richard P.; Smith, Robert W.; ...

    2016-04-10

    A map of groundwater temperatures from the Eastern Snake River Plain (ESRP) regional aquifer can be used to identify and interpret important features of the aquifer, including aquifer flow direction, aquifer thickness, and potential geothermal anomalies. The ESRP is an area of high heat flow, yet most of this thermal energy fails to reach the surface, due to the heat being swept downgradient by the aquifer to the major spring complexes near Thousand Springs, ID, a distance of 300 km. Nine deep boreholes that fully penetrate the regional aquifer display three common features: (1) high thermal gradients beneath the aquifer,more » corresponding to high conductive heat flow in low-permeability hydrothermally-altered rocks; (2) isothermal temperature profiles within the aquifer, characteristic of an actively flowing groundwater; and (3) moderate thermal gradients in the vadose zone with values that indicate that over half of the geothermal heat flow is removed by advective transport in the regional aquifer system. This study utilized temperature data from 250 ESRP aquifer wells to evaluate regional aquifer flow direction, aquifer thickness, and potential geothermal anomalies. Because the thermal gradients are typically low in the aquifer, any measurement of groundwater temperature is a reasonable estimate of temperature throughout the aquifer thickness, allowing the construction of a regional aquifer temperature map for the ESRP. Mapped temperatures are used to identify cold thermal plumes associated with recharge from tributary valleys and adjacent uplands, and warm zones associated with geothermal input to the aquifer. Warm zones in the aquifer can have various causes, including local circulation of groundwater through the deep conductively dominated region, slow groundwater movement in low-permeability regions, or localized heat flow from deeper thermal features.« less

  10. Multiple fracturing experiments: propellant and borehole considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuderman, J F

    1982-01-01

    The technology for multiple fracturing of a wellbore, using progressively burning propellants, is being developed to enhance natural gas recovery. Multiple fracturing appears especially attractive for stimulating naturally fractured reservoirs such as Devonian shales where it is expected to effectively intersect existing fractures and connect them to a wellbore. Previous experiments and modeling efforts defined pressure risetimes required for multiple fracturing as a function of borehole diameter, but identified only a weak dependence on peak pressure attained. Typically, from four to eight equally spaced major fractures occur as a function of pressure risetime and in situ stress orientation. The presentmore » experiments address propellant and rock response considerations required to achieve the desired pressure risetimes for reliable multiple fracturing.« less

  11. In situ conversion process utilizing a closed loop heating system

    DOEpatents

    Sandberg, Chester Ledlie [Palo Alto, CA; Fowler, Thomas David [Houston, TX; Vinegar, Harold J [Bellaire, TX; Schoeber, Willen Jan Antoon Henri

    2009-08-18

    An in situ conversion system for producing hydrocarbons from a subsurface formation is described. The system includes a plurality of u-shaped wellbores in the formation. Piping is positioned in at least two of the u-shaped wellbores. A fluid circulation system is coupled to the piping. The fluid circulation system is configured to circulate hot heat transfer fluid through at least a portion of the piping to form at least one heated portion of the formation. An electrical power supply is configured to provide electrical current to at least a portion of the piping located below an overburden in the formation to resistively heat at least a portion of the piping. Heat transfers from the piping to the formation.

  12. Dissolved CO2 Increases Breakthrough Porosity in Natural Porous Materials.

    PubMed

    Yang, Y; Bruns, S; Stipp, S L S; Sørensen, H O

    2017-07-18

    When reactive fluids flow through a dissolving porous medium, conductive channels form, leading to fluid breakthrough. This phenomenon is caused by the reactive infiltration instability and is important in geologic carbon storage where the dissolution of CO 2 in flowing water increases fluid acidity. Using numerical simulations with high resolution digital models of North Sea chalk, we show that the breakthrough porosity is an important indicator of dissolution pattern. Dissolution patterns reflect the balance between the demand and supply of cumulative surface. The demand is determined by the reactive fluid composition while the supply relies on the flow field and the rock's microstructure. We tested three model scenarios and found that aqueous CO 2 dissolves porous media homogeneously, leading to large breakthrough porosity. In contrast, solutions without CO 2 develop elongated convective channels known as wormholes, with low breakthrough porosity. These different patterns are explained by the different apparent solubility of calcite in free drift systems. Our results indicate that CO 2 increases the reactive subvolume of porous media and reduces the amount of solid residual before reactive fluid can be fully channelized. Consequently, dissolved CO 2 may enhance contaminant mobilization near injection wellbores, undermine the mechanical sustainability of formation rocks and increase the likelihood of buoyance driven leakage through carbonate rich caprocks.

  13. Numerical Simulation of Permeability Change in Wellbore Cement Fractures after Geomechanical Stress and Geochemical Reactions Using X-ray Computed Tomography Imaging.

    PubMed

    Kabilan, Senthil; Jung, Hun Bok; Kuprat, Andrew P; Beck, Anthon N; Varga, Tamas; Fernandez, Carlos A; Um, Wooyong

    2016-06-21

    X-ray microtomography (XMT) imaging combined with three-dimensional (3D) computational fluid dynamics (CFD) modeling technique was used to study the effect of geochemical and geomechanical processes on fracture permeability in composite Portland cement-basalt caprock core samples. The effect of fluid density and viscosity and two different pressure gradient conditions on fracture permeability was numerically studied by using fluids with varying density and viscosity and simulating two different pressure gradient conditions. After the application of geomechanical stress but before CO2-reaction, CFD revealed fluid flow increase, which resulted in increased fracture permeability. After CO2-reaction, XMT images displayed preferential precipitation of calcium carbonate within the fractures in the cement matrix and less precipitation in fractures located at the cement-basalt interface. CFD estimated changes in flow profile and differences in absolute values of flow velocity due to different pressure gradients. CFD was able to highlight the profound effect of fluid viscosity on velocity profile and fracture permeability. This study demonstrates the applicability of XMT imaging and CFD as powerful tools for characterizing the hydraulic properties of fractures in a number of applications like geologic carbon sequestration and storage, hydraulic fracturing for shale gas production, and enhanced geothermal systems.

  14. Hydrogeologic framework of the Santa Clara Valley, California

    USGS Publications Warehouse

    Hanson, Randall T.

    2015-01-01

    The hydrologic framework of the Santa Clara Valley in northern California was redefined on the basis of new data and a new hydrologic model. The regional groundwater flow systems can be subdivided into upper-aquifer and lower-aquifer systems that form a convergent flow system within a basin bounded by mountains and hills on three sides and discharge to pumping wells and the southern San Francisco Bay. Faults also control the flow of groundwater within the Santa Clara Valley and subdivide the aquifer system into three subregions.After decades of development and groundwater depletion that resulted in substantial land subsidence, Santa Clara Valley Water District (SCVWD) and the local water purveyors have refilled the basin through conservation and importation of water for direct use and artificial recharge. The natural flow system has been altered by extensive development with flow paths toward major well fields. Climate has not only affected the cycles of sedimentation during the glacial periods over the past million years, but interannual to interdecadal climate cycles also have affected the supply and demand components of the natural and anthropogenic inflows and outflows of water in the valley. Streamflow has been affected by development of the aquifer system and regulated flow from reservoirs, as well as conjunctive use of groundwater and surface water. Interaquifer flow through water-supply wells screened across multiple aquifers is an important component to the flow of groundwater and recapture of artificial recharge in the Santa Clara Valley. Wellbore flow and depth-dependent chemical and isotopic data indicate that flow into wells from multiple aquifers, as well as capture of artificial recharge by pumping of water-supply wells, predominantly is occurring in the upper 500 ft (152 m) of the aquifer system. Artificial recharge represents about one-half of the inflow of water into the valley for the period 1970–1999. Most subsidence is occurring below 250 ft (76 m), and most pumpage occurs within the upper-aquifer system between 300 and 650 ft (between 91 and 198 m) below land surface.Overall, the natural quality of most groundwater in the Santa Clara Valley is good. Isotopic data indicate that artificial recharge is occurring throughout the shallower parts of the upper-aquifer system and that recent recharge (less than 50 yr old) occurs throughout most of the basin in the upper-aquifer system, but many of the wells in the center of the basin with deeper well screens do not contain tritium and recent recharge. Age dates indicate that the groundwater in the upper-aquifer system generally is less than 2000 yr old, and groundwater in the lower-aquifer system generally ranges from 16,700 to 39,900 yr old. Depth-dependent sampling indicates that wellbores are the main path for vertical flow between aquifer layers. Isotopic data indicate as much as 60% of water pumped from production wells originated as artificial recharge. Shallow aquifers not only contain more recent recharge but may be more susceptible to anthropogenic and natural contamination, as evidenced by trace occurrences of iron, nitrate, and volatile organic compounds (VOCs) in selected water-supply wells.Water-resource management issues are centered on sustaining a reliable and good-quality source of water to the residents and industries of the valley. While the basin has been refilled, increased demand owing to growth and droughts could result in renewed storage depletion and the related potential adverse effects of land subsidence and seawater intrusion. The new hydrologic model demonstrates the importance of the aquifer layering, faults, and stream channels in relation to groundwater flow and infiltration of recharge. This model provides a means to analyze water resource issues because it separates the supply and demand components of the inflows and outflows.

  15. Overview of CO2 Leakage Problems and Sealants for CO2 Leakage Remediation

    NASA Astrophysics Data System (ADS)

    Peng, Shudai

    Excessive Carbon Dioxide (CO2) emission has become a serious issue and caused lots of environmental problems. Carbon Capture and Storage (CCS) program has been developed to reduce the CO2 content in the atmosphere. CO2 storage has been targeted mainly on depleted oil or gas reservoirs and deep saline aquifers. However, leakage could occur through wellbores, cap rocks, formation faults, and fractures during and after CO2 injection. To minimize the risk, different types of sealants have been investigated to prevent CO2 leaks. The aim of this thesis is to provide a comprehensive review of the materials which could be used as CO2 sealants. Based on the difference of materials components, this research has classified the sealants into seven types, including cements, geopolymers, foams, gel systems, resin systems, biofilm barriers, and nanoparticles. For each type of sealants, its chemical components, physical properties, stabilities, impact factors, applied environments, advantages and limitations were summarized. The most commonly used sealant for CO2 leakage control from wellbore is still cement, and the aluminate-calcium based cement has the best properties. It is very challenging to seal the fractures and faults, far from wellbore due to the difficulty to deliver plugging materials into the in-depth of a reservoir. The thermo-stability is also a great challenge for most materials and should be evaluated under supercritical CO2 condition.

  16. Heterogeneity, pore pressure, and injectate chemistry: Control measures for geologic carbon storage

    DOE PAGES

    Dewers, Thomas; Eichhubl, Peter; Ganis, Ben; ...

    2017-11-28

    Desirable outcomes for geologic carbon storage include maximizing storage efficiency, preserving injectivity, and avoiding unwanted consequences such as caprock or wellbore leakage or induced seismicity during and post injection. Here, to achieve these outcomes, three control measures are evident including pore pressure, injectate chemistry, and knowledge and prudent use of geologic heterogeneity. Field, experimental, and modeling examples are presented that demonstrate controllable GCS via these three measures. Observed changes in reservoir response accompanying CO 2 injection at the Cranfield (Mississippi, USA) site, along with lab testing, show potential for use of injectate chemistry as a means to alter fracture permeabilitymore » (with concomitant improvements for sweep and storage efficiency). Further control of reservoir sweep attends brine extraction from reservoirs, with benefit for pressure control, mitigation of reservoir and wellbore damage, and water use. State-of-the-art validated models predict the extent of damage and deformation associated with pore pressure hazards in reservoirs, timing and location of networks of fractures, and development of localized leakage pathways. Experimentally validated geomechanics models show where wellbore failure is likely to occur during injection, and efficiency of repair methods. Use of heterogeneity as a control measure includes where best to inject, and where to avoid attempts at storage. Lastly, an example is use of waste zones or leaky seals to both reduce pore pressure hazards and enhance residual CO 2 trapping.« less

  17. Heterogeneity, pore pressure, and injectate chemistry: Control measures for geologic carbon storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewers, Thomas; Eichhubl, Peter; Ganis, Ben

    Desirable outcomes for geologic carbon storage include maximizing storage efficiency, preserving injectivity, and avoiding unwanted consequences such as caprock or wellbore leakage or induced seismicity during and post injection. Here, to achieve these outcomes, three control measures are evident including pore pressure, injectate chemistry, and knowledge and prudent use of geologic heterogeneity. Field, experimental, and modeling examples are presented that demonstrate controllable GCS via these three measures. Observed changes in reservoir response accompanying CO 2 injection at the Cranfield (Mississippi, USA) site, along with lab testing, show potential for use of injectate chemistry as a means to alter fracture permeabilitymore » (with concomitant improvements for sweep and storage efficiency). Further control of reservoir sweep attends brine extraction from reservoirs, with benefit for pressure control, mitigation of reservoir and wellbore damage, and water use. State-of-the-art validated models predict the extent of damage and deformation associated with pore pressure hazards in reservoirs, timing and location of networks of fractures, and development of localized leakage pathways. Experimentally validated geomechanics models show where wellbore failure is likely to occur during injection, and efficiency of repair methods. Use of heterogeneity as a control measure includes where best to inject, and where to avoid attempts at storage. Lastly, an example is use of waste zones or leaky seals to both reduce pore pressure hazards and enhance residual CO 2 trapping.« less

  18. Experimental Study of Cement - Sandstone/Shale - Brine - CO2 Interactions

    PubMed Central

    2011-01-01

    Background Reactive-transport simulation is a tool that is being used to estimate long-term trapping of CO2, and wellbore and cap rock integrity for geologic CO2 storage. We reacted end member components of a heterolithic sandstone and shale unit that forms the upper section of the In Salah Gas Project carbon storage reservoir in Krechba, Algeria with supercritical CO2, brine, and with/without cement at reservoir conditions to develop experimentally constrained geochemical models for use in reactive transport simulations. Results We observe marked changes in solution composition when CO2 reacted with cement, sandstone, and shale components at reservoir conditions. The geochemical model for the reaction of sandstone and shale with CO2 and brine is a simple one in which albite, chlorite, illite and carbonate minerals partially dissolve and boehmite, smectite, and amorphous silica precipitate. The geochemical model for the wellbore environment is also fairly simple, in which alkaline cements and rock react with CO2-rich brines to form an Fe containing calcite, amorphous silica, smectite and boehmite or amorphous Al(OH)3. Conclusions Our research shows that relatively simple geochemical models can describe the dominant reactions that are likely to occur when CO2 is stored in deep saline aquifers sealed with overlying shale cap rocks, as well as the dominant reactions for cement carbonation at the wellbore interface. PMID:22078161

  19. Wellbore Cement Porosity Evolution in Response to Mineral Alteration during CO 2 Flooding

    DOE PAGES

    Cheshire, Michael C.; Stack, Andrew G.; Carey, J. William; ...

    2016-12-13

    Mineral reactions during CO 2 sequestration will change the pore-size distribution and pore surface characteristics, complicating permeability and storage security predictions. In this study, we report a small/wide angle scattering study of wellbore cement that has been exposed to carbon dioxide for three decades. We have constructed detailed contour maps that describe local porosity distributions and the mineralogy of the sample and relate these quantities to the carbon dioxide reaction front on the cement. We find that the initial bimodal distribution of pores in the cement, 1–2 and 10–20 nm, is affected differently during the course of carbonation reactions. Initialmore » dissolution of cement phases occurs in the 10–20 nm pores and leads to the development of new pore spaces that are eventually sealed by CaCO 3 precipitation, leading to a loss of gel and capillary nanopores, smoother pore surfaces, and reduced porosity. This suggests that during extensive carbonation of wellbore cement, the cement becomes less permeable because of carbonate mineral precipitation within the pore space. Additionally, the loss of gel and capillary nanoporosities will reduce the reactivity of cement with CO 2 due to reactive surface area loss. Finally, this work demonstrates the importance of understanding not only changes in total porosity but also how the distribution of porosity evolves with reaction that affects permeability.« less

  20. Method for enhancing low frequency output of impulsive type seismic energy sources and its application to a seismic energy source for use while drilling

    DOEpatents

    Radtke, Robert P; Stokes, Robert H; Glowka, David A

    2014-12-02

    A method for operating an impulsive type seismic energy source in a firing sequence having at least two actuations for each seismic impulse to be generated by the source. The actuations have a time delay between them related to a selected energy frequency peak of the source output. One example of the method is used for generating seismic signals in a wellbore and includes discharging electric current through a spark gap disposed in the wellbore in at least one firing sequence. The sequence includes at least two actuations of the spark gap separated by an amount of time selected to cause acoustic energy resulting from the actuations to have peak amplitude at a selected frequency.

  1. 40 CFR 435.41 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., safety showers, eye-wash stations, hand-wash stations, fish cleaning stations, and galleys located within... formation oil carried out from the wellbore with the drilling fluid. (2) Dry drill cuttings means the...

  2. Investigation of possible wellbore cement failures during hydraulic fracturing operations

    EPA Pesticide Factsheets

    Researchers used the peer-reviewed TOUGH+ geomechanics computational software and simulation system to investigate the possibility of fractures and shear failure along vertical wells during hydraulic fracturing operations.

  3. Numerical investigation of the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir: a case study of the Daming geothermal field in China.

    PubMed

    Guo, Xuyang; Song, Hongqing; Killough, John; Du, Li; Sun, Pengguang

    2018-02-01

    The utilization of geothermal energy is clean and has great potential worldwide, and it is important to utilize geothermal energy in a sustainable manner. Mathematical modeling studies of geothermal reservoirs are important as they evaluate and quantify the complex multi-physical effects in geothermal reservoirs. However, previous modeling efforts lack the study focusing on the emission reduction efficiency and the deformation at geothermal wellbores caused by geothermal water extraction/circulation. Emission efficiency is rather relevant in geothermal projects introduced in areas characterized by elevated air pollution where the utilization of geothermal energy is as an alternative to burning fossil fuels. Deformation at geothermal wellbores is also relevant as significant deformation caused by water extraction can lead to geothermal wellbore instability and can consequently decrease the effectiveness of the heat extraction process in geothermal wells. In this study, the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir in Daming County, China, are numerically investigated based on a coupled multi-physical model. Relationships between the efficiency of emission reduction and heat extraction, deformation at geothermal well locations, and geothermal field parameters including well spacing, heat production rate, re-injection temperature, rock stiffness, and geothermal well placement patterns are analyzed. Results show that, although large heat production rates and low re-injection temperatures can lead to decreased heat production in the last 8 years of heat extraction, they still improve the overall heat production capacity and emission reduction capacity. Also, the emission reduction capacity is positively correlated with the heat production capacity. Deformation at geothermal wellbore locations is alleviated by smaller well spacing, lower heat production rates, and smaller numbers of injectors in the well pattern, and by placing wells at locations with higher rock stiffness. Compared with the reference case with coal burning for heating purposes, the yearly emission reduction capacity can reach 1 × 10 7  kg by switching to the direct utilization of geothermal energy in Daming field.

  4. Research on stress distribution regularity of cement sheaths of radial well based on ABAQUS

    NASA Astrophysics Data System (ADS)

    Shi, Jihui; Cheng, Yuanfang; Li, Xiaolong; Xiao, Wen; Li, Menglai

    2017-12-01

    To ensure desirable outcome of hydraulic fracturing based on ultra-short radius radial systems, it is required to investigate the stress distribution regularity and stability of the cement sheath. On the basis of the theoretical model of the cement sheath stress distribution, a reservoir mechanical model was built using the finite element software, ABAQUS, according to the physical property of a certain oil reservoir of the Shengli oilfield. The stress distribution of the casing-cement-sheath-formation system under the practical condition was simulated, based on which analyses were conducted from multiple points of view. Results show that the stress on the internal interface of the cement sheath exceeds that on the external interface, and fluctuates with higher amplitudes, which means that the internal interface is the most failure-prone. The unevenness of the cement sheath stress distribution grows with the increasing horizontal principal stress ratio, and so does the variation magnitude. This indicates that higher horizontal principal stress ratios are unfavourable for the structural stability of the cement sheath. Both the wellbore quantity of the URRS and the physical property of the material can affect the cement sheath distribution. It is suggested to optimize the quantity of the radial wellbore and use cement with a lower elastic modulus and higher Poisson’s ratio. At last, the impact level of the above factor was analysed, with the help of the grey correlation analysis.

  5. Experimentally determined rock-fluid interactions applicable to a natural hot dry rock geothermal system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles, R.W.; Holley, C.E. Jr.; Tester, J.W.

    1980-02-01

    The Los Alamos Scientific Laboratory is pursuing laboratory and field experiments in the development of the Hot Dry Rock concept of geothermal energy. The field program consists of experiments in a hydraulically fractured region of low permeability in which hot rock is intercepted by two wellbores. These experiments are designed to test reservoir engineering parameters such as: heat extraction rates, water loss rates, flow characteristics including impedance and buoyancy, seismic activity and fluid chemistry. Laboratory experiments have been designed to provide information on the mineral reactivity which may be encountered in the field program. Two experimental circulation systems have beenmore » built to study the rates of dissolution and alteration in dynamic flow. Solubility studies have been done in agitated systems. To date, pure minerals, samples of the granodiorite from the actual reservoir and Tijeras Canyon granite have been reacted with distilled water and various solutions of NaCl, NaOH, and Na/sub 2/CO/sub 3/. The results of these experimental systems are compared to observations made in field experiments done in a hot dry rock reservoir at a depth of approximately 3 km with initial rock temperatures of 150 to 200/sup 0/C.« less

  6. A stable computation of log-derivatives from noisy drawdown data

    NASA Astrophysics Data System (ADS)

    Ramos, Gustavo; Carrera, Jesus; Gómez, Susana; Minutti, Carlos; Camacho, Rodolfo

    2017-09-01

    Pumping tests interpretation is an art that involves dealing with noise coming from multiple sources and conceptual model uncertainty. Interpretation is greatly helped by diagnostic plots, which include drawdown data and their derivative with respect to log-time, called log-derivative. Log-derivatives are especially useful to complement geological understanding in helping to identify the underlying model of fluid flow because they are sensitive to subtle variations in the response to pumping of aquifers and oil reservoirs. The main problem with their use lies in the calculation of the log-derivatives themselves, which may display fluctuations when data are noisy. To overcome this difficulty, we propose a variational regularization approach based on the minimization of a functional consisting of two terms: one ensuring that the computed log-derivatives honor measurements and one that penalizes fluctuations. The minimization leads to a diffusion-like differential equation in the log-derivatives, and boundary conditions that are appropriate for well hydraulics (i.e., radial flow, wellbore storage, fractal behavior, etc.). We have solved this equation by finite differences. We tested the methodology on two synthetic examples showing that a robust solution is obtained. We also report the resulting log-derivative for a real case.

  7. General well function for pumping from a confined, leaky, or unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Perina, Tomas; Lee, Tien-Chang

    2006-02-01

    A general well function for groundwater flow toward an extraction well with non-uniform radial flux along the screen and finite-thickness skin, partially penetrating an unconfined, leaky-boundary flux, or confined aquifer is derived via the Laplace and generalized finite Fourier transforms. The mixed boundary condition at the well face is solved as the discretized Fredholm integral equation. The general well function reduces to a uniform radial flux solution as a special case. In the Laplace domain, the relation between the drawdown in the extraction well and flowrate is linear and the formulations for specified flowrate or specified drawdown pumping are interchangeable. The deviation in drawdown of the uniform from non-uniform radial flux solutions depends on the relative positions of the extraction and observation well screens, aquifer properties, and time of observation. In an unconfined aquifer the maximum deviation occurs during the period of delayed drawdown when the effect of vertical flow is most apparent. The skin and wellbore storage in an observation well are included as model parameters. A separate solution is developed for a fully penetrating well with the radial flux being a continuous function of depth.

  8. Method for determining formation quality factor from well log data and its application to seismic reservoir characterization

    DOEpatents

    Walls, Joel; Taner, M. Turhan; Dvorkin, Jack

    2006-08-08

    A method for seismic characterization of subsurface Earth formations includes determining at least one of compressional velocity and shear velocity, and determining reservoir parameters of subsurface Earth formations, at least including density, from data obtained from a wellbore penetrating the formations. A quality factor for the subsurface formations is calculated from the velocity, the density and the water saturation. A synthetic seismogram is calculated from the calculated quality factor and from the velocity and density. The synthetic seismogram is compared to a seismic survey made in the vicinity of the wellbore. At least one parameter is adjusted. The synthetic seismogram is recalculated using the adjusted parameter, and the adjusting, recalculating and comparing are repeated until a difference between the synthetic seismogram and the seismic survey falls below a selected threshold.

  9. Minimizing damage to a propped fracture by controlled flowback procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, B.M.; Holditch, S.A.; Whitehead, W.S.

    1988-06-01

    Severe fracture-conductivity damage can result from proppant crushing and/or proppant flowback into the wellbore. Such damage is often concentrated near the wellbore and can directly affect postfracture performance. Most of the time severe fracture-conductivity damage can be minimized by choosing the correct type of proppant for a particular well. In many cases, however, this is not enough. To minimize excessive crushing or to prevent proppant flowback, it is also necessary to control carefully the flowback of the well after the treatment. Specific procedures can be followed to minimize severe fracture-conductivity damage. These procedures involve controlling the rates at which loadmore » fluids are recovered and maximizing backpressure against the formation. These procedures require much more time and effort than is normally spent on postfracture cleanup; however, the efforts could result in better performance.« less

  10. Extending Topological Approaches to Microseismic-Derived 3D Fracture Networks

    NASA Astrophysics Data System (ADS)

    Urbancic, T.; Bosman, K.; Baig, A.; Ardakani, E. P.

    2017-12-01

    Fracture topology is important for determining the fluid-flow characteristics of a fracture network. In most unconventional petroleum applications, flow through subsurface fracture networks is the primary source of production, as matrix permeability is often in the nanodarcy range. Typical models of reservoir discrete fracture networks (DFNs) are constructed using fracture orientation and average spacing, without consideration of how the connectivity of the fracture network aids the percolation of hydrocarbons back to the wellbore. Topological approaches to DFN characterization have been developed and extensively used in analysis of outcrop data and aerial photography. Such study of the surface expression of fracture networks is straight-forward, and the physical form of the observed fractures is directly reflected in the parameters used to describe the topology. However, this analysis largely ignores the three-dimensional nature of natural fracture networks, which is difficult to define accurately in geological studies. SMTI analysis of microseismic event distributions can produce DFNs, where each event is represented by a penny-shaped crack with radius and orientation determined from the frequency content of the waveforms and assessment of the slip instability of the potential fracture planes, respectively. Analysis of the geometric relationships between a set of fractures can provide details of intersections between fractures, and thus the topological characteristics of the fracture network. Extension of existing 2D topology approaches to 3D fracture networks is non-trivial. In the 2D case, a fracture intersection is a single point (node), and branches connect adjacent nodes along fractures. For the 3D case, intersection "nodes" become lines, and connecting nodes to find branches becomes more complicated. There are several parameters defined in 2D topology to quantify the connectivity of the fracture network. Equivalent quantities must be defined and calibrated for the 3D case to provide a meaningful measurement of fracture network connectivity. We have developed an approach to analyze the topology of 3D fracture networks derived from microseismic moment tensors. We illustrate the utility of the approach with applications to example datasets from hydraulic fracturing completions.

  11. Cement/caprock fracture healing experiments to assess the integrity of CO2 injection wells

    NASA Astrophysics Data System (ADS)

    Du Frane, W. L.; Mason, H. E.; Walsh, S. D.; Ruddle, D. G.; Carroll, S.

    2012-12-01

    It has been speculated that fractures along wellbore cement/caprock interfaces may provide a path for release of carbon from both long-term sequestration-sites and CO2-based enhanced oil recovery operations. The goal of this study is to evaluate the potential for fracture growth and healing in the wellbore environment, and its impact on wellbore permeability. A series of flow-through experiments was conducted, in which sample cores containing a planar fracture between impermeable caprock (compacted quartz, from 13,927' depth in Kern County) and cement (Portland G cured by ATSM standards) were reacted with brine containing variable amounts of carbonic acid (pCO2 between 0 and 3 MPa). The initial fracture geometry was controlled by grinding the caprock and cement pieces flat, and then bead blasting topography into the cement surfaces. Runs lasted 4-8 days with cores and brine maintained at constant temperature (60 °C). Constant confining pressure (24.8 MPa) was applied to cores, while brine was flowed with constant rates (0.05-0.10 mL/min) and pore pressure (12.4 MPa). Geomechanical and geochemical responses of the fractures were monitored by in situ measurements of differential pressure, and by periodically sampling output brine to analyze compositional changes. In every experiment the total permeability of samples cores decreased substantially. For runs using brine with pCO2 = 3 MPa, sample permeability continually decreased by over a factor of 200. Sample permeability also decreased by a factor of 50 having stabilized after ~3 days in a run using brine without CO2 (pCO2 = 0 MPa). These reductions in permeability appear to be the result of chemically-induced changes to the mechanical properties of the cement surface. Prior to reaction, the cement-caprock samples had high strength and elastic response to changes in stress during loading. After the experiments, the samples were weaker, and showed inelastic response to changes in stress during unloading. All cement surfaces exposed to CO2-rich brine were heavily reacted, as evidenced by coatings of rust-colored amorphous material. X-ray micro-tomography images revealed a series of reaction zones consistent with the results of related experiments by other researchers [e.g. Kutchko et al. 2007]. The mechanical properties of the individual reaction zones were evaluated by nano-indentation. Sampling during runs indicated that brine with pCO2 = 3 MPa became substantially enriched in Ca, Si, and Al, whereas composition of output brine with pCO2 = 0 MPa had little change over the run duration. The enrichment of Al in the brine with pCO2 = 3 MPa indicates that both Al -bearing minerals and amorphous calcium-silicate-hydrate (CSH) dissolved from the cement. Geochemical reaction pathways were further characterized in the reacted zones with the cement by scanning electron microscope, x-ray diffraction, and solid state NMR spectroscopy. These results suggest that the evolution of fractures in our experiments are determined by 3 competing factors: 1) swelling of CSH through hydration from the brine, 2) dissolution of cement into brine containing CO2, and 3) mechanical weakening of cement by chemical reaction with CO2. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48 and Contract DE-AC52-07NA27344.

  12. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir

    NASA Astrophysics Data System (ADS)

    Shams, Bilal; Yao, Jun; Zhang, Kai; Zhang, Lei

    2017-08-01

    Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large amount of condensate in reservoir pores. Trapped condensate often is lost due to condensate accumulation-condensate blockage courtesy of high molecular weight, heavy condensate residue. Recovering lost condensate most economically and optimally has always been a challenging goal. Thus, gas cycling is applied to alleviate such a drastic loss in resources. In gas injection, the flooding pattern, injection timing and injection duration are key parameters to study an efficient EOR scenario in order to recover lost condensate. This work contains sensitivity analysis on different parameters to generate an accurate investigation about the effects on performance of different injection scenarios in homogeneous gas condensate system. In this paper, starting time of gas cycling and injection period are the parameters used to influence condensate recovery of a five-spot well pattern which has an injection pressure constraint of 3000 psi and production wells are constraint at 500 psi min. BHP. Starting injection times of 1 month, 4 months and 9 months after natural depletion areapplied in the first study. The second study is conducted by varying injection duration. Three durations are selected: 100 days, 400 days and 900 days. In miscible gas injection, miscibility and vaporization of condensate by injected gas is more efficient mechanism for condensate recovery. From this study, it is proven that the application of gas cycling on five-spot well pattern greatly enhances condensate recovery preventing financial, economic and resource loss that previously occurred.

  13. Flow tests of the Gladys McCall well. Appendix A, Gladys McCall Site (Cameron Parish, LA): Final report, October 1985--October 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randolph, P.L.; Hayden, C.G.; Rogers, L.A.

    1992-04-01

    This report pulls together the data from all of the geopressured-geothermal field research conducted at the Gladys McCall well. The well produced geopressured brine containing dissolved natural gas from the Lower Miocene sands at a depth of 15,150 to 16,650 feet. More than 25 million barrels of brine and 727 million standard cubic feet of natural gas were produced in a series of flow tests between December 1982 and October 1987 at various brine flow rates up to 28,000 barrels per day. Initial short-term flow tests for the Number 9 Sand found the permeability to be 67 to 85 mdmore » (millidarcies) for a brine volume of 85 to 170 million barrels. Initial short-term flow tests for the Number 8 Sand found a permeability of 113 to 132 md for a reservoir volume of 430 to 550 million barrels of brine. The long-term flow and buildup test of the Number 8 Sand found that the high-permeability reservoir connected to the wellbore (measured by the short-term flow test) was connected to a much larger, low-permeability reservoir. Numerical simulation of the flow and buildup tests required this large connected reservoir to have a volume of about 8 billion barrels (two cubic miles of reservoir rock) with effective permeabilities in the range of 0.2 to 20 md. Calcium carbonate scale formation in the well tubing and separator equipment was a problem. During the first 2 years of production, scale formation was prevented in the surface equipment by injection of an inhibitor upstream of the choke. Starting in 1985, scale formation in the production tubing was successfully prevented by injecting inhibitor ``pills`` directly into the reservoir. Corrosion and/or erosion of surface piping and equipment, as well as disposal well tubing, was also significant.« less

  14. Understanding acoustic physics in oil and gas wellbores with the presence of ubiquitous geometric eccentricity

    NASA Astrophysics Data System (ADS)

    Liu, Yang; D'Angelo, Ralph M.; Choi, Gloria; Zhu, Lingchen; Bose, Sandip; Zeroug, Smaine

    2018-04-01

    Once an oil and gas wellbore has been drilled, steel casings and cement slurry are placed to ensure structural support, protection from fluid invasion, and most importantly to provide zonal isolation. The actual wellbore and string structure is rarely concentric but rather is often an eccentric one, especially in deviated boreholes. The term "eccentricity" is used to describe how off-center a casing string is within another pipe or the open-hole. In a typical double-string configuration, the inner casing is eccentered with respect to the outer string which itself is also eccentered within the cylindrical hole. The annuli may or may not be filled with solid cement, and the cement may have liquid-filled channels or be disbonded over localized azimuthal ranges. The complexity of wave propagation along axial intervals is significant in that multiple modes can be excited and detected with characteristics that are affected by the various parameters, including eccentering, in a non-linear fashion. A successful diagnosis of cement flaws largely relies on a thorough understanding of the complex acoustic modal information. The present study employs both modeling and experiments to fully understand the acoustic wave propagation in the complex, fluid-solid nested, cylindrically layered structures, with geometric eccentricities. The experimental results show excellent agreement with the theoretical predictions from newly developed, borehole acoustic modeling approaches. As such, it provides the basis for better understanding the operative wave physics and providing the means for effective inspection methodologies to assess well integrity and zonal isolation of oil wells.

  15. Emissions of Methane and Other Hydrocarbons Due to Wellbore Leaks

    NASA Astrophysics Data System (ADS)

    Lyman, S. N.; Mansfield, M. L.

    2013-12-01

    The explosive growth of oil and gas production in the United States has focused public and regulatory attention on environmental impacts of hydrocarbon extraction, including air quality and climate impacts. However, EPA and others have acknowledged that current air emissions factors and inventories for many oil and gas-related source categories are inadequate or lacking entirely. One potentially important emissions source is leakage of natural gas from wellbores. This phenomenon has long been recognized to occur, but no attempt has been made to quantify emission rates of gas leaked from wellbores to the atmosphere. Soil gas measurements carried out by USGS over the last several years in Utah's oil and gas fields have shown that, while concentrations of methane in soils near many wells are low, soil gas near some wells can contain more than 10% methane, indicating that underground leakage is occurring. In summer 2013 we carried out a campaign to measure the emission rate of methane and other hydrocarbons from soils near wells in two oil and gas fields in Utah. We measured emissions from several locations on some well pads to determine the change in emission rate with distance from well heads, and we measured at non-well sites in the same fields to determine background emission rates. Methane emission rates at some wells exceeded 3 g m-2 h-1, while emission rates at other wells were similar to background levels, and a correlation was observed between soil gas methane concentrations and methane emission rates from the soil. We used these data to estimate total methane and hydrocarbon emission rates from these two fields.

  16. Summary: High Temperature Downhole Motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raymond, David W.

    2017-10-01

    Directional drilling can be used to enable multi-lateral completions from a single well pad to improve well productivity and decrease environmental impact. Downhole rotation is typically developed with a motor in the Bottom Hole Assembly (BHA) that develops drilling power (speed and torque) necessary to drive rock reduction mechanisms (i.e., the bit) apart from the rotation developed by the surface rig. Historically, wellbore deviation has been introduced by a “bent-sub,” located in the BHA, that introduces a small angular deviation, typically less than 3 degrees, to allow the bit to drill off-axis with orientation of the BHA controlled at themore » surface. The development of a high temperature downhole motor would allow reliable use of bent subs for geothermal directional drilling. Sandia National Laboratories is pursuing the development of a high temperature motor that will operate on either drilling fluid (water-based mud) or compressed air to enable drilling high temperature, high strength, fractured rock. The project consists of designing a power section based upon geothermal drilling requirements; modeling and analysis of potential solutions; and design, development and testing of prototype hardware to validate the concept. Drilling costs contribute substantially to geothermal electricity production costs. The present development will result in more reliable access to deep, hot geothermal resources and allow preferential wellbore trajectories to be achieved. This will enable development of geothermal wells with multi-lateral completions resulting in improved geothermal resource recovery, decreased environmental impact and enhanced well construction economics.« less

  17. Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide, Brine and Trace Metal Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Version 2.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacon, Diana H.

    2013-03-31

    The National Risk Assessment Partnership (NRAP) consists of 5 U.S DOE national laboratories collaborating to develop a framework for predicting the risks associated with carbon sequestration. The approach taken by NRAP is to divide the system into components, including injection target reservoirs, wellbores, natural pathways including faults and fractures, groundwater and the atmosphere. Next, develop a detailed, physics and chemistry-based model of each component. Using the results of the detailed models, develop efficient, simplified models, termed reduced order models (ROM) for each component. Finally, integrate the component ROMs into a system model that calculates risk profiles for the site. Thismore » report details the development of the Groundwater Geochemistry ROM for the Edwards Aquifer at PNNL. The Groundwater Geochemistry ROM for the Edwards Aquifer uses a Wellbore Leakage ROM developed at LANL as input. The detailed model, using the STOMP simulator, covers a 5x8 km area of the Edwards Aquifer near San Antonio, Texas. The model includes heterogeneous hydraulic properties, and equilibrium, kinetic and sorption reactions between groundwater, leaked CO2 gas, brine, and the aquifer carbonate and clay minerals. Latin Hypercube sampling was used to generate 1024 samples of input parameters. For each of these input samples, the STOMP simulator was used to predict the flux of CO2 to the atmosphere, and the volume, length and width of the aquifer where pH was less than the MCL standard, and TDS, arsenic, cadmium and lead exceeded MCL standards. In order to decouple the Wellbore Leakage ROM from the Groundwater Geochemistry ROM, the response surface was transformed to replace Wellbore Leakage ROM input parameters with instantaneous and cumulative CO2 and brine leakage rates. The most sensitive parameters proved to be the CO2 and brine leakage rates from the well, with equilibrium coefficients for calcite and dolomite, as well as the number of illite and kaolinite sorption sites proving to be of secondary importance. The Groundwater Geochemistry ROM was developed using nonlinear regression to fit the response surface with a quadratic polynomial. The goodness of fit was excellent for the CO2 flux to the atmosphere, and very good for predicting the volumes of groundwater exceeding the pH, TDS, As, Cd and Pb threshold values.« less

  18. An iterative ensemble quasi-linear data assimilation approach for integrated reservoir monitoring

    NASA Astrophysics Data System (ADS)

    Li, J. Y.; Kitanidis, P. K.

    2013-12-01

    Reservoir forecasting and management are increasingly relying on an integrated reservoir monitoring approach, which involves data assimilation to calibrate the complex process of multi-phase flow and transport in the porous medium. The numbers of unknowns and measurements arising in such joint inversion problems are usually very large. The ensemble Kalman filter and other ensemble-based techniques are popular because they circumvent the computational barriers of computing Jacobian matrices and covariance matrices explicitly and allow nonlinear error propagation. These algorithms are very useful but their performance is not well understood and it is not clear how many realizations are needed for satisfactory results. In this presentation we introduce an iterative ensemble quasi-linear data assimilation approach for integrated reservoir monitoring. It is intended for problems for which the posterior or conditional probability density function is not too different from a Gaussian, despite nonlinearity in the state transition and observation equations. The algorithm generates realizations that have the potential to adequately represent the conditional probability density function (pdf). Theoretical analysis sheds light on the conditions under which this algorithm should work well and explains why some applications require very few realizations while others require many. This algorithm is compared with the classical ensemble Kalman filter (Evensen, 2003) and with Gu and Oliver's (2007) iterative ensemble Kalman filter on a synthetic problem of monitoring a reservoir using wellbore pressure and flux data.

  19. IMPACT OF PHYSICAL AND CHEMICAL MUD CONTAMINATION ON WELLBORE CEMENT- FORMATION SHEAR BOND STRENGTH Authors: Arome Oyibo1 and Mileva Radonjic1 * 1. Craft and Hawkins Department of Petroleum Engineering, 2131 Patrick F. Taylor Hall, Louisiana State University, Baton Rouge, LA 70803, aoyibo1@tigers.lsu.edu, mileva@lsu.edu

    NASA Astrophysics Data System (ADS)

    Oyibo, A. E.

    2013-12-01

    Wellbore cement has been used to provide well integrity through zonal isolation in oil & gas wells and geothermal wells. Cementing is also used to provide mechanical support for the casing and protect the casing from corrosive fluids. Failure of cement could be caused by several factors ranging from poor cementing, failure to completely displace the drilling fluids to failure on the path of the casing. A failed cement job could result in creation of cracks and micro annulus through which produced fluids could migrate to the surface which could lead to sustained casing pressure, contamination of fresh water aquifer and blow out in some cases. In addition, cement failures could risk the release of chemicals substances from hydraulic fracturing into fresh water aquifer during the injection process. To achieve proper cementing, the drilling fluid should be completely displaced by the cement slurry. However, this is hard to achieve in practice, some mud is usually left on the wellbore which ends up contaminating the cement afterwards. The purpose of this experimental study is to investigate the impact of both physical and chemical mud contaminations on cement-formation bond strength for different types of formations. Physical contamination occurs when drilling fluids (mud) dries on the surface of the formation forming a mud cake. Chemical contamination on the other hand occurs when the drilling fluids which is still in the liquid form interacts chemically with the cement during a cementing job. We investigated the impact of the contamination on the shear bond strength and the changes in the mineralogy of the cement at the cement-formation interface to ascertain the impact of the contamination on the cement-formation bond strength. Berea sandstone and clay rich shale cores were bonded with cement cores with the cement-formation contaminated either physically or chemically. For the physically contaminated composite cores, we have 3 different sample designs: clean/not contaminated, scrapped and washed composite cores. Similarly, for the chemically contaminated samples we had 3 different sample designs: 0%, 5% and 10% mud contaminated composite cores. Shear test were performed on the composite cores to determine the shear bond strength and the results suggested that the detrimental impact of the contamination is higher when the cores are physically contaminated i.e. when we have mud cake present at the surface of the wellbore before a cement job is performed. Also, the results showed that shear bond strength is higher for sandstone formations as compared to shale formations. Material characterization analysis was carried out to determine the micro structural changes at the cement-formation interface. The results obtained from the SEM and micro CT images taken at the bond interface confirmed that chemical contamination caused substantial changes in the spatial distribution of minerals that impacted bond strength. Keywords: Cement-Formation bond strength, mud contamination, shale, sandstone and material characterization *Corresponding author

  20. New solutions to the constant-head test performed at a partially penetrating well

    NASA Astrophysics Data System (ADS)

    Chang, Y. C.; Yeh, H. D.

    2009-05-01

    SummaryThe mathematical model describing the aquifer response to a constant-head test performed at a fully penetrating well can be easily solved by the conventional integral transform technique. In addition, the Dirichlet-type condition should be chosen as the boundary condition along the rim of wellbore for such a test well. However, the boundary condition for a test well with partial penetration must be considered as a mixed-type condition. Generally, the Dirichlet condition is prescribed along the well screen and the Neumann type no-flow condition is specified over the unscreened part of the test well. The model for such a mixed boundary problem in a confined aquifer system of infinite radial extent and finite vertical extent is solved by the dual series equations and perturbation method. This approach provides analytical results for the drawdown in the partially penetrating well and the well discharge along the screen. The semi-analytical solutions are particularly useful for the practical applications from the computational point of view.

  1. Novel fracture technology proves marginal Viking prospect economic, part II: Well clean-up, flowback and testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haidar, S.; Rylance, M.; Tybero, G.

    1996-12-31

    Having completed both fracture treatments as discussed in a companion paper, this paper continues on to describe the post fracture shut-in, clean-up and well testing operations that took place on the Viking Wx exploration well 49/17-12. These operations involved the removal of Resin Coated Proppant (RCP) from the wellbore, via Coiled Tubing (CT), through the use of a specially designed jetting nozzle. The RCP pack stability at a concentration of 3.0 lb/ft{sup 2} (as per planned design) had already been tested in a flowback cell. The use of a Surface Read-Out (SRO) gauge, combined with gas, water and proppant flowmore » rates as well as the viscosity of fracturing fluids returns, enabled real time calculation of the drag forces, on the proppant pack, during clean-up. The flow rate, in the field, was controlled such that the calculated drag forces remained below those observed in the laboratory. Following the clean-up a flow and build-up test was conducted, to evaluate the fracture half length and fracture conductivity, from which a Pseudo-radial skin was calculated. The Non-Darcy effects in the fracture were also evaluated, and finally the short term and long term well deliverabilities were assessed.« less

  2. Groundwater movement, recharge, and perchlorate occurrence in a faulted alluvial aquifer in California (USA)

    USGS Publications Warehouse

    Izbicki, John A.; Teague, Nicholas F.; Hatzinger, Paul B.; Böhlke, John Karl; Sturchio, Neil C.

    2015-01-01

    Perchlorate from military, industrial, and legacy agricultural sources is present within an alluvial aquifer in the Rialto-Colton groundwater subbasin, 80 km east of Los Angeles, California (USA). The area is extensively faulted, with water-level differences exceeding 60 m across parts of the Rialto-Colton Fault separating the Rialto-Colton and Chino groundwater subbasins. Coupled well-bore flow and depth-dependent water-quality data show decreases in well yield and changes in water chemistry and isotopic composition, reflecting changing aquifer properties and groundwater recharge sources with depth. Perchlorate movement through some wells under unpumped conditions from shallower to deeper layers underlying mapped plumes was as high as 13 kg/year. Water-level maps suggest potential groundwater movement across the Rialto-Colton Fault through an overlying perched aquifer. Upward flow through a well in the Chino subbasin near the Rialto-Colton Fault suggests potential groundwater movement across the fault through permeable layers within partly consolidated deposits at depth. Although potentially important locally, movement of groundwater from the Rialto-Colton subbasin has not resulted in widespread occurrence of perchlorate within the Chino subbasin. Nitrate and perchlorate concentrations at the water table, associated with legacy agricultural fertilizer use, may be underestimated by data from long-screened wells that mix water from different depths within the aquifer.

  3. Technical Parameters Modeling of a Gas Probe Foaming Using an Active Experimental Type Research

    NASA Astrophysics Data System (ADS)

    Tîtu, A. M.; Sandu, A. V.; Pop, A. B.; Ceocea, C.; Tîtu, S.

    2018-06-01

    The present paper deals with a current and complex topic, namely - a technical problem solving regarding the modeling and then optimization of some technical parameters related to the natural gas extraction process. The study subject is to optimize the gas probe sputtering using experimental research methods and data processing by regular probe intervention with different sputtering agents. This procedure makes that the hydrostatic pressure to be reduced by the foam formation from the water deposit and the scrubbing agent which can be removed from the surface by the produced gas flow. The probe production data was analyzed and the so-called candidate for the research itself emerged. This is an extremely complex study and it was carried out on the field works, finding that due to the severe gas field depletion the wells flow decreases and the start of their loading with deposit water, was registered. It was required the regular wells foaming, to optimize the daily production flow and the disposal of the wellbore accumulated water. In order to analyze the process of natural gas production, the factorial experiment and other methods were used. The reason of this choice is that the method can offer very good research results with a small number of experimental data. Finally, through this study the extraction process problems were identified by analyzing and optimizing the technical parameters, which led to a quality improvement of the extraction process.

  4. On the aquitard-aquifer interface flow and the drawdown sensitivity with a partially penetrating pumping well in an anisotropic leaky confined aquifer

    NASA Astrophysics Data System (ADS)

    Feng, Qinggao; Zhan, Hongbin

    2015-02-01

    A mathematical model for describing groundwater flow to a partially penetrating pumping well of a finite diameter in an anisotropic leaky confined aquifer is developed. The model accounts for the jointed effects of aquitard storage, aquifer anisotropy, and wellbore storage by treating the aquitard leakage as a boundary condition at the aquitard-aquifer interface rather than a volumetric source/sink term in the governing equation, which has never developed before. A new semi-analytical solution for the model is obtained by the Laplace transform in conjunction with separation of variables. Specific attention was paid on the flow across the aquitard-aquifer interface, which is of concern if aquitard and aquifer have different pore water chemistry. Moreover, Laplace-domain and steady-state solutions are obtained to calculate the rate and volume of (total) leakage through the aquitard-aquifer interface due to pump in a partially penetrating well, which is also useful for engineers to manager water resources. The sensitivity analyses for the drawdown illustrate that the drawdown is most sensitive to the well partial penetration. It is apparently sensitive to the aquifer anisotropic ratio over the entire time of pumping. It is moderately sensitive to the aquitard/aquifer specific storage ratio at the intermediate times only. It is moderately sensitive to the aquitard/aquifer vertical hydraulic conductivity ratio and the aquitard/aquifer thickness ratio with the identical influence at late times.

  5. THE EFFECT OF GAS HYDRATES DISSOCIATION AND DRILLING FLUIDS INVASION UPON BOREHOLE STABILITY IN OCEANIC GAS HYDRATES-BEARING SEDIMENT

    NASA Astrophysics Data System (ADS)

    Ning, F.; Wu, N.; Jiang, G.; Zhang, L.

    2009-12-01

    Under the condition of over-pressure drilling, the solid-phase and liquid-phase in drilling fluids immediately penetrate into the oceanic gas hydrates-bearing sediment, which causes the water content surrounding the borehole to increase largely. At the same time, the hydrates surrounding borehole maybe quickly decompose into water and gas because of the rapid change of temperature and pressure. The drilling practices prove that this two factors may change the rock characteristics of wellbore, such as rock strength, pore pressure, resistivity, etc., and then affect the logging response and evaluation, wellbore stability and well safty. The invasion of filtrate can lower the angle of friction and weaken the cohesion of hydrates-bearing sediment,which is same to the effect of invading into conventional oil and gas formation on borehole mechnical properties. The difference is that temperature isn’t considered in the invasion process of conventional formations while in hydrates-bearing sediments, it is a factor that can not be ignored. Temperature changes can result in hydrates dissociating, which has a great effect on mechanical properties of borehole. With the application of numerical simulation method, we studied the changes of pore pressure and variation of water content in the gas hydrates-bearing sediment caused by drilling fluid invasion under pressure differential and gas hydrate dissociation under temperature differential and analyzed their influence on borehole stability.The result of simulation indicated that the temperature near borehole increased quickly and changed hardly any after 6 min later. About 1m away from the borehole, the temperature of formation wasn’t affected by the temperature change of borehole. At the place near borehole, as gas hydrate dissociated dramatically and drilling fluid invaded quickly, the pore pressure increased promptly. The degree of increase depends on the permeability and speed of temperature rise of formation around bohole. If the formation has a low permeability and is heated quickly, the dissociated gas and water couldn’t flow away in time, which is likely to bring a hazard of excess pore pressure. Especially in the area near the wall of borehole, the increase degree of pore pressure is high than other area because the dissociation of gas hydrates is relatively violent and hydraulic gradient is bigger. We also studied the distribution of water saturation around borehole after 10min, 30min and 60min respectively. It revealed that along with the invasion of drilling fluid and dissociation of gas hydrate, the degree of water saturation increased gradually. The effect of gas hydrate dissociation and drilling fluids invasion on borehole stability is to weaken mechanical properties of wellbore and change the pore pressure, then changes the effective stress of gas hydrates-bearing sediment. So temperature, pressure in the borehole and filter loss of drilling fluids should be controlled strictly to prevent gas hydrates from decomposing largely and in order to keep the borehole stability in the gas hydrates-bearing formations.

  6. USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Witter; Robert Knoll; William Rehm

    2005-02-01

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial projectmore » meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6.-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently investigating the costs and operational viability of re-entering the well and conducting an FMI (fracture detection) log and/or an acid stimulation. No final decision or detailed plans have been made regarding these potential interventions at this time.« less

  7. Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Witter; Robert Knoll; William Rehm

    2005-09-29

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conductedmore » in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6 1/8-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently planning to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Depending on the results of these logs, an acidizing or re-drill program will be planned.« less

  8. 40 CFR 435.11 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... showers, eye-wash stations, hand-wash stations, fish cleaning stations, and galleys located within... formation oil carried out from the wellbore with the drilling fluid. (2) Dry drill cuttings means the... limitations and NSPS means the concentration (milligrams/kilogram dry sediment) of the drilling fluid in...

  9. Stress estimation in reservoirs using an integrated inverse method

    NASA Astrophysics Data System (ADS)

    Mazuyer, Antoine; Cupillard, Paul; Giot, Richard; Conin, Marianne; Leroy, Yves; Thore, Pierre

    2018-05-01

    Estimating the stress in reservoirs and their surroundings prior to the production is a key issue for reservoir management planning. In this study, we propose an integrated inverse method to estimate such initial stress state. The 3D stress state is constructed with the displacement-based finite element method assuming linear isotropic elasticity and small perturbations in the current geometry of the geological structures. The Neumann boundary conditions are defined as piecewise linear functions of depth. The discontinuous functions are determined with the CMA-ES (Covariance Matrix Adaptation Evolution Strategy) optimization algorithm to fit wellbore stress data deduced from leak-off tests and breakouts. The disregard of the geological history and the simplified rheological assumptions mean that only the stress field, statically admissible and matching the wellbore data should be exploited. The spatial domain of validity of this statement is assessed by comparing the stress estimations for a synthetic folded structure of finite amplitude with a history constructed assuming a viscous response.

  10. Armored instrumentation cable for geothermal well logging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, B.R.; Johnson, J.; Todd, B.

    1981-01-01

    Multiconductor armored well-logging cable is used extensively by the oil and natural gas industry to lower various instruments used to measure the geological and geophysical parameters into deep wellbores. Advanced technology in oil-well drilling makes it possible to achieve borehole depths of 9 km (30,000 ft). The higher temperatures in these deeper boreholes demand advancements in the design and manufacturing of wireline cable and in the electrical insulating and armoring materials used as integral components. If geothermal energy is proved an abundant economic resource, drilling temperatures approaching and exceeding 300/sup 0/C will become commonplace. The adaptation of teflons as electricalmore » insulating material permitted use of armored cable in geothermal wellbores where temperatures are slightly in excess of 200/sup 0/C, and where the concentrations of corrosive minerals and gases are high. Teflon materials presently used in wireline cables, however, are not capable of continuous operation at the anticipated higher temperatures.« less

  11. Emerging Technologies for Real-Time Continuous Monitoring of Wellbore Integrity

    NASA Astrophysics Data System (ADS)

    Freifeld, B. M.

    2017-12-01

    Assessment of a well's integrity has traditionally been carried out through periodic wireline logging, often performed only when an operational problem was noted at the surface. There are several emerging technologies that can be installed permanently as part of the well completion and offer the ability to monitor operations while providing continuous indicators to evaluate the structural health of a well. Permanent behind casing instrumentation, such as pressure and temperature gauges can monitor for behind casing leakage. Similarly, fiber-optic distributed temperature and acoustic sensing provide additional information for assessing unwanted movement of fluid, which is indicative of problems either inside or outside of casing. Furthermore, these technologies offer the benefit of providing real-time continuous streams of information that serve as leading-indicators of wellbore problems to allow for early intervention. Additional research is still needed to develop best practices for the installation and operation of these technologies, as they increase cost and add additional risks that must be managed.

  12. Potential of hydraulically induced fractures to communicate with existing wellbores

    NASA Astrophysics Data System (ADS)

    Montague, James A.; Pinder, George F.

    2015-10-01

    The probability that new hydraulically fractured wells drilled within the area of New York underlain by the Marcellus Shale will intersect an existing wellbore is calculated using a statistical model, which incorporates: the depth of a new fracturing well, the vertical growth of induced fractures, and the depths and locations of existing nearby wells. The model first calculates the probability of encountering an existing well in plan view and combines this with the probability of an existing well-being at sufficient depth to intersect the fractured region. Average probability estimates for the entire region of New York underlain by the Marcellus Shale range from 0.00% to 3.45% based upon the input parameters used. The largest contributing parameter on the probability value calculated is the nearby density of wells meaning that due diligence by oil and gas companies during construction in identifying all nearby wells will have the greatest effect in reducing the probability of interwellbore communication.

  13. Subsurface storage of freshwater in South Florida; a digital model analysis of recoverability

    USGS Publications Warehouse

    Merritt, Michael L.

    1985-01-01

    As part of a study of the feasibility of recovering freshwater injected and stored underground in south Florida, a digital solute-transport model was used to investigate the relation of recovery efficiency to the variety of hydrogeologic conditions that could prevail in brackish artesian aquifers and to a variety of management alternatives. The analyses employed a modeling approach in which the control for sensitivity testing was a hypothetical aquifer considered representative of permeable zones in south Florida that might be used for storage of freshwater. Parameter variations in the tests represented possible variations in aquifer conditions in the area. The applicability of the analyses to south Florida limestone aquifers required the assumption that flow nonuniformities in those aquifers are small on the scale of volumes of water likely to be injected, and that their effect could be represented as hydrodynamic dispersion. Generally, it was shown that a loss of recovery efficiency is caused by (1) processes causing mixing of injected freshwater with native saline water (hydrodynamic dispersion), (2) processes causing the more or less irreversible displacement of the injected freshwater with respect to the well (buoyancy stratification, background hydraulic gradients, and interlayer dispersion), or (3) processes causing injection and withdrawal flow patterns to be dissimilar (directionally biased well-bore plugging, and dissimilar injection and withdrawal schedules in multiple-well systems). Other results indicated that recovery efficiency improves considerably with successive cycles, providing that each recovery phase ends when the chloride concentration of withdrawn water exceeds established criteria for potability (usually 250 milligrams per liter), and that freshwater injected into highly permeable or highly saline aquifers (such as the 'boulder zone') would buoy rapidly. Many hydrologic conditions were posed for model analysis. To have obtained comparable results with operational testing would have been more costly by orders of magnitude. The tradeoff is that the validity of results obtained from computer modeling is somewhat less certain. In particular, results must be qualified with observations that (1) the complex set of processes lumped as hydrodynamic dispersion is represented with a somewhat simplified mathematical approximation, and (2) other flow processes in limestone injection zones are as yet incompletely understood. Despite such reservations, the study is considered a practical example of the use of transport models in ground-water investigations.

  14. Integrated aquitard-aquifer flow with a mixed-type well-face boundary and skin effect

    NASA Astrophysics Data System (ADS)

    Feng, Qinggao; Zhan, Hongbin

    2016-03-01

    A general analytical model describing groundwater flow to a partially penetrating well pumped at a constant rate in a leaky confined aquifer is developed. The model incorporates the effects of aquitard storage, aquifer anisotropy, wellbore storage and a finite well skin by treating the aquitard leakage as an aquitard-aquifer interface flow problem, and considers the well-face as a mixed-type or non-uniform flux (NUF) rather than a uniform flux (UF) boundary condition, which is novel. The solution is obtained using the Laplace transform coupled with separation of variables and discretization methods, followed by the numerical inverse Laplace transform. Moreover, the solution unifies some cases for flow to a partially penetrating well in a leaky confined aquifer including Perina and Lee (2006), Feng and Zhan (2015) and Hunt (2005) or confined aquifer including Chiu et al. (2007), Yang et al. (2006) and Hantush (1964). The newly developed NUF solution is compared with the UF solution. The NUF drawdown is larger than the UF drawdown at early time, while the NUF drawdown is smaller than the UF drawdown at intermediate and late times. The non-uniform flux along the well-face has significant impact on drawdown in the skin zone, while the UF solution can completely replace the NUF solution at a radial distance from the pumped well equaling to or greater than the aquifer thickness. The NUF and UF drawdowns for no skin case are remarkably smaller than that for the positive skin case and larger than that for the negative skin case. A thicker well skin results in a smaller drawdown in the skin zone.

  15. 30 CFR 250.292 - What must the DWOP contain?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Information Deepwater Operations Plans (dwop) § 250.292 What must the DWOP contain? You must include the following information in your DWOP: (a) A description and schematic of the typical wellbore, casing, and completion; (b) Structural design, fabrication, and installation information for each surface system...

  16. 30 CFR 250.1619 - Well records.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... years at the lessee's field office nearest the OCS facility or at another location conveniently available to the District Manager. The records shall contain a description of any significant malfunction or... run in the wellbore; and all other information required by the District Manager in the interests of...

  17. 30 CFR 250.1619 - Well records.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... years at the lessee's field office nearest the OCS facility or at another location conveniently available to the District Manager. The records shall contain a description of any significant malfunction or... run in the wellbore; and all other information required by the District Manager in the interests of...

  18. 30 CFR 250.1619 - Well records.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... years at the lessee's field office nearest the OCS facility or at another location conveniently available to the District Manager. The records shall contain a description of any significant malfunction or... run in the wellbore; and all other information required by the District Manager in the interests of...

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doug Blankenship

    Natural fracture data from wells 33-7, 33A-7,52A-7, 52B-7 and 83-11 at West Flank. Fracture orientations were determined from image logs of these wells (see accompanying submissions). Data files contain depth, apparent (in wellbore reference frame) and true (in geographic reference frame) azimuth and dip, respectively.

  20. Nanoscale Chemical Processes Affecting Storage Capacities and Seals during Geologic CO2 Sequestration.

    PubMed

    Jun, Young-Shin; Zhang, Lijie; Min, Yujia; Li, Qingyun

    2017-07-18

    Geologic CO 2 sequestration (GCS) is a promising strategy to mitigate anthropogenic CO 2 emission to the atmosphere. Suitable geologic storage sites should have a porous reservoir rock zone where injected CO 2 can displace brine and be stored in pores, and an impermeable zone on top of reservoir rocks to hinder upward movement of buoyant CO 2 . The injection wells (steel casings encased in concrete) pass through these geologic zones and lead CO 2 to the desired zones. In subsurface environments, CO 2 is reactive as both a supercritical (sc) phase and aqueous (aq) species. Its nanoscale chemical reactions with geomedia and wellbores are closely related to the safety and efficiency of CO 2 storage. For example, the injection pressure is determined by the wettability and permeability of geomedia, which can be sensitive to nanoscale mineral-fluid interactions; the sealing safety of the injection sites is affected by the opening and closing of fractures in caprocks and the alteration of wellbore integrity caused by nanoscale chemical reactions; and the time scale for CO 2 mineralization is also largely dependent on the chemical reactivities of the reservoir rocks. Therefore, nanoscale chemical processes can influence the hydrogeological and mechanical properties of geomedia, such as their wettability, permeability, mechanical strength, and fracturing. This Account reviews our group's work on nanoscale chemical reactions and their qualitative impacts on seal integrity and storage capacity at GCS sites from four points of view. First, studies on dissolution of feldspar, an important reservoir rock constituent, and subsequent secondary mineral precipitation are discussed, focusing on the effects of feldspar crystallography, cations, and sulfate anions. Second, interfacial reactions between caprock and brine are introduced using model clay minerals, with focuses on the effects of water chemistries (salinity and organic ligands) and water content on mineral dissolution and surface morphology changes. Third, the hydrogeological responses (using wettability alteration as an example) of clay minerals to chemical reactions are discussed, which connects the nanoscale findings to the transport and capillary trapping of CO 2 in the reservoirs. Fourth, the interplay between chemical and mechanical alterations of geomedia, using wellbore cement as a model geomedium, is examined, which provides helpful insights into wellbore and caprock integrities and CO 2 mineralization. Combining these four aspects, our group has answered questions related to nanoscale chemical reactions in subsurface GCS sites regarding the types of reactions and the property alterations of reservoirs and caprocks. Ultimately, the findings can shed light on the influences of nanoscale chemical reactions on storage capacities and seals during geologic CO 2 sequestration.

  1. Application of a nonlinear slug test model

    USGS Publications Warehouse

    McElwee, C.D.

    2001-01-01

    Knowledge of the hydraulic conductivity distribution is of utmost importance in understanding the dynamics of an aquifer and in planning the consequences of any action taken upon that aquifer. Slug tests have been used extensively to measure hydraulic conductivity in the last 50 years since Hvorslev's (1951) work. A general nonlinear model based on the Navier-Stokes equation, nonlinear frictional loss, non-Darcian flow, acceleration effects, radius changes in the wellbore, and a Hvorslev model for the aquifer has been implemented in this work. The nonlinear model has three parameters: ??, which is related primarily to radius changes in the water column; A, which is related to the nonlinear head losses; and K, the hydraulic conductivity. An additional parameter has been added representing the initial velocity of the water column at slug initiation and is incorporated into an analytical solution to generate the first time step before a sequential numerical solution generates the remainder of the time solution. Corrections are made to the model output for acceleration before it is compared to the experimental data. Sensitivity analysis and least squares fitting are used to estimate the aquifer parameters and produce some diagnostic results, which indicate the accuracy of the fit. Finally, an example of field data has been presented to illustrate the application of the model to data sets that exhibit nonlinear behavior. Multiple slug tests should be taken at a given location to test for nonlinear effects and to determine repeatability.

  2. Estimating regional-scale permeability-depth relations in a fractured-rock terrain using groundwater-flow model calibration

    NASA Astrophysics Data System (ADS)

    Sanford, Ward E.

    2017-03-01

    The trend of decreasing permeability with depth was estimated in the fractured-rock terrain of the upper Potomac River basin in the eastern USA using model calibration on 200 water-level observations in wells and 12 base-flow observations in subwatersheds. Results indicate that permeability at the 1-10 km scale (for groundwater flowpaths) decreases by several orders of magnitude within the top 100 m of land surface. This depth range represents the transition from the weathered, fractured regolith into unweathered bedrock. This rate of decline is substantially greater than has been observed by previous investigators that have plotted in situ wellbore measurements versus depth. The difference is that regional water levels give information on kilometer-scale connectivity of the regolith and adjacent fracture networks, whereas in situ measurements give information on near-hole fractures and fracture networks. The approach taken was to calibrate model layer-to-layer ratios of hydraulic conductivity (LLKs) for each major rock type. Most rock types gave optimal LLK values of 40-60, where each layer was twice a thick as the one overlying it. Previous estimates of permeability with depth from deeper data showed less of a decline at <300 m than the regional modeling results. There was less certainty in the modeling results deeper than 200 m and for certain rock types where fewer water-level observations were available. The results have implications for improved understanding of watershed-scale groundwater flow and transport, such as for the timing of the migration of pollutants from the water table to streams.

  3. Estimating regional-scale permeability–depth relations in a fractured-rock terrain using groundwater-flow model calibration

    USGS Publications Warehouse

    Sanford, Ward E.

    2017-01-01

    The trend of decreasing permeability with depth was estimated in the fractured-rock terrain of the upper Potomac River basin in the eastern USA using model calibration on 200 water-level observations in wells and 12 base-flow observations in subwatersheds. Results indicate that permeability at the 1–10 km scale (for groundwater flowpaths) decreases by several orders of magnitude within the top 100 m of land surface. This depth range represents the transition from the weathered, fractured regolith into unweathered bedrock. This rate of decline is substantially greater than has been observed by previous investigators that have plotted in situ wellbore measurements versus depth. The difference is that regional water levels give information on kilometer-scale connectivity of the regolith and adjacent fracture networks, whereas in situ measurements give information on near-hole fractures and fracture networks. The approach taken was to calibrate model layer-to-layer ratios of hydraulic conductivity (LLKs) for each major rock type. Most rock types gave optimal LLK values of 40–60, where each layer was twice a thick as the one overlying it. Previous estimates of permeability with depth from deeper data showed less of a decline at <300 m than the regional modeling results. There was less certainty in the modeling results deeper than 200 m and for certain rock types where fewer water-level observations were available. The results have implications for improved understanding of watershed-scale groundwater flow and transport, such as for the timing of the migration of pollutants from the water table to streams.

  4. Simulation of Anisotropic Rock Damage for Geologic Fracturing

    NASA Astrophysics Data System (ADS)

    Busetti, S.; Xu, H.; Arson, C. F.

    2014-12-01

    A continuum damage model for differential stress-induced anisotropic crack formation and stiffness degradation is used to study geologic fracturing in rocks. The finite element-based model solves for deformation in the quasi-linear elastic domain and determines the six component damage tensor at each deformation increment. The model permits an isotropic or anisotropic intact or pre-damaged reference state, and the elasticity tensor evolves depending on the stress path. The damage variable, similar to Oda's fabric tensor, grows when the surface energy dissipated by three-dimensional opened cracks exceeds a threshold defined at the appropriate scale of the representative elementary volume (REV). At the laboratory or wellbore scale (<1m) brittle continuum damage reflects microcracking, grain boundary separation, grain crushing, or fine delamination, such as in shale. At outcrop (1m-100m), seismic (10m-1000m), and tectonic (>1000m) scales the damaged REV reflects early natural fracturing (background or tectonic fracturing) or shear strain localization (fault process zone, fault-tip damage, etc.). The numerical model was recently benchmarked against triaxial stress-strain data from laboratory rock mechanics tests. However, the utility of the model to predict geologic fabric such as natural fracturing in hydrocarbon reservoirs was not fully explored. To test the ability of the model to predict geological fracturing, finite element simulations (Abaqus) of common geologic scenarios with known fracture patterns (borehole pressurization, folding, faulting) are simulated and the modeled damage tensor is compared against physical fracture observations. Simulated damage anisotropy is similar to that derived using fractured rock-mass upscaling techniques for pre-determined fracture patterns. This suggests that if model parameters are constrained with local data (e.g., lab, wellbore, or reservoir domain), forward modeling could be used to predict mechanical fabric at the relevant REV scale. This reference fabric also can be used as the starting material property to pre-condition subsequent deformation or fluid flow. Continuing efforts are to expand the present damage model to couple damage evolution with plasticity and with permeability for more geologically realistic simulation.

  5. Experimental and Numerical Observations of Hydrate Reformation during Depressurization in a Core-Scale Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seol, Yongkoo; Myshakin, Evgeniy

    2011-01-01

    Gas hydrate has been predicted to reform around a wellbore during depressurization-based gas production from gas hydrate-bearing reservoirs. This process has an adverse effect on gas production rates and it requires time and sometimes special measures to resume gas flow to producing wells. Due to lack of applicable field data, laboratory scale experiments remain a valuable source of information to study hydrate reformation. In this work, we report laboratory experiments and complementary numerical simulations executed to investigate the hydrate reformation phenomenon. Gas production from a pressure vessel filled with hydrate-bearing sand was induced by depressurization with and without heat fluxmore » through the boundaries. Hydrate decomposition was monitored with a medical X-ray CT scanner and pressure and temperature measurements. CT images of the hydrate-bearing sample were processed to provide 3-dimensional data of heterogeneous porosity and phase saturations suitable for numerical simulations. In the experiments, gas hydrate reformation was observed only in the case of no-heat supply from surroundings, a finding consistent with numerical simulation. By allowing gas production on either side of the core, numerical simulations showed that initial hydrate distribution patterns affect gas distribution and flow inside the sample. This is a direct consequence of the heterogeneous pore network resulting in varying hydraulic properties of the hydrate-bearing sediment.« less

  6. Analysis of Low-Temperature Utilization of Geothermal Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Brian

    Full realization of the potential of what might be considered “low-grade” geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source we will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects. The objectives of this project were: 1) to perform a techno-economic analysis ofmore » the integration and utilization potential of low-temperature geothermal sources. Innovative uses of low-enthalpy geothermal water were designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. 2) To perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. These processes included electricity generation using biomass and district heating systems. 3) To scale up and generalize the results of three case study locations to develop a regionalized model of the utilization of low-temperature geothermal resources. A national-level, GIS-based, low-temperature geothermal resource supply model was developed and used to develop a series of national supply curves. We performed an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. The final products of this study include 17 publications, an updated version of the cost estimation software GEOPHIRES, and direct-use supply curves for low-temperature utilization of geothermal resources. The supply curves for direct use geothermal include utilization from known hydrothermal, undiscovered hydrothermal, and near-hydrothermal EGS resources and presented these results at the Stanford Geothermal Workshop. We also have incorporated our wellbore model into TOUGH2-EGS and began coding TOUGH2-EGS with the wellbore model into GEOPHIRES as a reservoir thermal drawdown option. Additionally, case studies for the WVU and Cornell campuses were performed to assess the potential for district heating and cooling at these two eastern U.S. sites.« less

  7. Numerical Borehole Breakdown Investigations using XFEM

    NASA Astrophysics Data System (ADS)

    Beckhuis, Sven; Leonhart, Dirk; Meschke, Günther

    2016-04-01

    During pressurization of a wellbore a typical downhole pressure record shows the following regimes: first the applied wellbore pressure balances the reservoir pressure, then after the compressive circumferential hole stresses are overcome, tensile stresses are induced on the inside surface of the hole. When the magnitude of these stresses reach the tensile failure stress of the surrounding rock medium, a fracture is initiated and propagates into the reservoir. [1] In standard theories this pressure, the so called breakdown pressure, is the peak pressure in the down-hole pressure record. However experimental investigations [2] show that the breakdown did not occur even if a fracture was initiated at the borehole wall. Drilling muds had the tendency to seal and stabilize fractures and prevent fracture propagation. Also fracture mechanics analysis of breakdown process in mini-frac or leak off tests [3] show that the breakdown pressure could be either equal or larger than the fracture initiation pressure. In order to gain a deeper understanding of the breakdown process in reservoir rock, numerical investigations using the extended finite element method (XFEM) for hydraulic fracturing of porous materials [4] are discussed. The reservoir rock is assumed to be pre-fractured. During pressurization of the borehole, the injection pressure, the pressure distribution and the position of the highest flux along the fracture for different fracturing fluid viscosities are recorded and the influence of the aforementioned values on the stability of fracture propagation is discussed. [1] YEW, C. H. (1997), "Mechanics of Hydraulic Fracturing", Gulf Publishing Company [2] MORITA, N.; BLACK, A. D.; FUH, G.-F. (1996), "Borehole Breakdown Pressure with Drilling Fluids". International Journal of Rock Mechanics and Mining Sciences 33, pp. 39-51 [3] DETOURNAY, E.; CARBONELL, R. (1996), "Fracture Mechanics Analysis of the Breakdown Process in Minifrac or Leakoff Test", Society of Petroleum Engineers, Inc. [4] MESCHKE, G.; Leonhart, D. (2015), "A generalized finite element method for hydro-mechanically coupled analysis of hydraulic fracturing problems using space-time variant enrichment functions." Computer Methods in Applied Mechanics and Engineering, 290:438 - 465

  8. The ICDP Hotspot Scientific Drilling Program: Overview of geophysical logging and seismic imaging through basaltic and rhyolitic volcanic deposits

    NASA Astrophysics Data System (ADS)

    Schmitt, D. R.; Liberty, L. M.; Kessler, J. A.; Kueck, J.; Kofman, R. S.; Bishop, R. A.; Shervais, J. W.; Evans, J. P.; Champion, D. E.

    2012-12-01

    The recently completed ICDP Hotspot drilling program consisted of drilling of three scientific drill holes each to at least 1800 m depth across the Snake River Plain of Idaho. The three boreholes include i) Kimama: thick sequences of basalt flows with sediment interbeds; ii) Kimberley: near surface basalt flows overlying rhyolite deposits, and iii) Mountain Home: geothermally altered basalts overlain by lacustrine sediments. The program consisted of high resolution 2D surface tied to vertical and walk-a-way borehole seismic profiles and an extensive suite of full waveform sonic, ultrasonic televiewer, electrical resistivity, magnetic susceptibility, and hydrogen index neutron logging. There are a number of highlights out of this work. First, seismic imaging beneath basalt flows is a classic problem in reflection seismology and has long been believed to be due to rapid attenuation of the downgoing seismic pulse. Here, however, we observed strong arrivals at all depths suggesting that seismic energy is penetrating such formations and that issues in imaging may be a result of the heterogeneous nature of the formations. Second, the neutron log responses correlate well with the structure of individual basalt flows. High and low backscattered neutron counts correspond to massive low porosity basalt rock and with the higher porosity and sediment filled flow tops, respectively. Third, the ultrasonic borehole televiewer information is being used to orient the nearly complete sets of core in order to obtain information on the azimuths of natural and drilling induced core fractures. This together with examination of borehole breakouts and drilling induced tensile fractures on the wellbore wall will allow for semi-quantitative stress estimates across the Snake River Plain. Finally, the Mountain Home borehole provides an unique opportunity to study the geothermally altered basalts. There are a number of correlations between, for example, the sonic and electrical logs that must relate to the style of alteration.

  9. Reservoir simulation with MUFITS code: Extension for double porosity reservoirs and flows in horizontal wells

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey

    2017-04-01

    Numerical modelling of multiphase flows in porous medium is necessary in many applications concerning subsurface utilization. An incomplete list of those applications includes oil and gas fields exploration, underground carbon dioxide storage and geothermal energy production. The numerical simulations are conducted using complicated computer programs called reservoir simulators. A robust simulator should include a wide range of modelling options covering various exploration techniques, rock and fluid properties, and geological settings. In this work we present a recent development of new options in MUFITS code [1]. The first option concerns modelling of multiphase flows in double-porosity double-permeability reservoirs. We describe internal representation of reservoir models in MUFITS, which are constructed as a 3D graph of grid blocks, pipe segments, interfaces, etc. In case of double porosity reservoir, two linked nodes of the graph correspond to a grid cell. We simulate the 6th SPE comparative problem [2] and a five-spot geothermal production problem to validate the option. The second option concerns modelling of flows in porous medium coupled with flows in horizontal wells that are represented in the 3D graph as a sequence of pipe segments linked with pipe junctions. The well completions link the pipe segments with reservoir. The hydraulics in the wellbore, i.e. the frictional pressure drop, is calculated in accordance with Haaland's formula. We validate the option against the 7th SPE comparative problem [3]. We acknowledge financial support by the Russian Foundation for Basic Research (project No RFBR-15-31-20585). References [1] Afanasyev, A. MUFITS Reservoir Simulation Software (www.mufits.imec.msu.ru). [2] Firoozabadi A. et al. Sixth SPE Comparative Solution Project: Dual-Porosity Simulators // J. Petrol. Tech. 1990. V.42. N.6. P.710-715. [3] Nghiem L., et al. Seventh SPE Comparative Solution Project: Modelling of Horizontal Wells in Reservoir Simulation // SPE Symp. Res. Sim., 1991. DOI: 10.2118/21221-MS.

  10. TOUGH2 User's Guide Version 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruess, K.; Oldenburg, C.M.; Moridis, G.J.

    1999-11-01

    TOUGH2 is a numerical simulator for nonisothermal flows of multicomponent, multiphase fluids in one, two, and three-dimensional porous and fractured media. The chief applications for which TOUGH2 is designed are in geothermal reservoir engineering, nuclear waste disposal, environmental assessment and remediation, and unsaturated and saturated zone hydrology. TOUGH2 was first released to the public in 1991; the 1991 code was updated in 1994 when a set of preconditioned conjugate gradient solvers was added to allow a more efficient solution of large problems. The current Version 2.0 features several new fluid property modules and offers enhanced process modeling capabilities, such asmore » coupled reservoir-wellbore flow, precipitation and dissolution effects, and multiphase diffusion. Numerous improvements in previously released modules have been made and new user features have been added, such as enhanced linear equation solvers, and writing of graphics files. The T2VOC module for three-phase flows of water, air and a volatile organic chemical (VOC), and the T2DM module for hydrodynamic dispersion in 2-D flow systems have been integrated into the overall structure of the code and are included in the Version 2.0 package. Data inputs are upwardly compatible with the previous version. Coding changes were generally kept to a minimum, and were only made as needed to achieve the additional functionalities desired. TOUGH2 is written in standard FORTRAN77 and can be run on any platform, such as workstations, PCs, Macintosh, mainframe and supercomputers, for which appropriate FORTRAN compilers are available. This report is a self-contained guide to application of TOUGH2 to subsurface flow problems. It gives a technical description of the TOUGH2 code, including a discussion of the physical processes modeled, and the mathematical and numerical methods used. Illustrative sample problems are presented along with detailed instructions for preparing input data.« less

  11. Inorganic plugs removal using ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Khan, Nasir; Pu, Chunsheng; Xu, Li; Lei, Zhang

    2017-03-01

    It is essential to recover the lost productivity caused by formation damage in the proximity of the wellbore during different well operations. In comparison to conventionally used methods, the efficiency, reliability, environment friendly, and simple and convenient technique of ultrasonic waves make it more attractive in petroleum industries. In current study, ultrasonic waves were applied to mitigate the formation damage caused by deposition of calcium carbonate (CaCO3) nearby well bore. Results showed that 100 minutes exposure time could efficiently recover 38.1% of original productivity but further increase in irradiation time (120mins) would decrease the recovery to 37.1%. This aberration can be attributed to the particle-bridge formation formed by larger particles at later stages and tendency of acoustic wave to push back the fluid flow. Moreover, ultrasonic waves transducer#2 (Frequency 20KHz and Power 1000W) could recovery maximum recovery of 36.3%, however, high frequency transducer was not effective in this recovery. This inorganic removal can be attributed to the cavitation and thermal energy produced through three different ways including cavitation, boundary friction and transformation upon hitting the medium.

  12. Properties, flowback, and wellbore displacement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poulson, D.K.

    1981-10-19

    Carbon dioxide was introduced as an additive to acid and fracture jobs in 1962. Since then, its use as a well-servicing medium has grown rapidly. This has been due primarily to its excellent flowback properties, although it also offers other advantages. These advantages are described along with methods for making calculations with CO/sub 2/. 7 refs.

  13. POTENTIAL FOR INVASION OF UNDERGROUND SOURCES OF DRINKING WATER THROUGH MUD-PLUGGED WELLS: AN EXPERIMENTAL APPRAISAL

    EPA Science Inventory

    The main objective of the feasibility study described here was to test the hypothesis that properly plugged wells are effectively sealed by drilling mud. In The process of testing the hypothesis, evidence about dynamics of building mud cake on the wellbore-face was obtained, as ...

  14. 30 CFR 250.1709 - What are my well-control fluid requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... kill-weight fluid from the wellbore and/or riser to an underbalanced state, you must obtain approval... displacing the kill-weight fluid and provide detailed step-by-step written procedures describing how you will... barriers, (c) BOP procedures you will use while displacing kill weight fluids, and (d) Procedures you will...

  15. 30 CFR 250.514 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... displace kill-weight fluid from the wellbore and/or riser to an underbalanced state, you must obtain... displacing the kill-weight fluid and provide detailed step-by-step written procedures describing how you will... barriers, (3) BOP procedures you will use while displacing kill-weight fluids, and (4) Procedures you will...

  16. 30 CFR 250.514 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... displace kill-weight fluid from the wellbore and/or riser to an underbalanced state, you must obtain... displacing the kill-weight fluid and provide detailed step-by-step written procedures describing how you will... barriers, (3) BOP procedures you will use while displacing kill-weight fluids, and (4) Procedures you will...

  17. 30 CFR 250.614 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... device. (d) Before you displace kill-weight fluid from the wellbore and/or riser to an underbalanced... your APM your reasons for displacing the kill-weight fluid and provide detailed step-by-step written... integrity of independent barriers, (3) BOP procedures you will use while displacing kill weight fluids, and...

  18. 30 CFR 250.1709 - What are my well-control fluid requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... kill-weight fluid from the wellbore and/or riser to an underbalanced state, you must obtain approval... displacing the kill-weight fluid and provide detailed step-by-step written procedures describing how you will... barriers, (c) BOP procedures you will use while displacing kill weight fluids, and (d) Procedures you will...

  19. 30 CFR 250.614 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... device. (d) Before you displace kill-weight fluid from the wellbore and/or riser to an underbalanced... your APM your reasons for displacing the kill-weight fluid and provide detailed step-by-step written... integrity of independent barriers, (3) BOP procedures you will use while displacing kill weight fluids, and...

  20. Uncertainty analyses of CO2 plume expansion subsequent to wellbore CO2 leakage into aquifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Zhangshuan; Bacon, Diana H.; Engel, David W.

    2014-08-01

    In this study, we apply an uncertainty quantification (UQ) framework to CO2 sequestration problems. In one scenario, we look at the risk of wellbore leakage of CO2 into a shallow unconfined aquifer in an urban area; in another scenario, we study the effects of reservoir heterogeneity on CO2 migration. We combine various sampling approaches (quasi-Monte Carlo, probabilistic collocation, and adaptive sampling) in order to reduce the number of forward calculations while trying to fully explore the input parameter space and quantify the input uncertainty. The CO2 migration is simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). For computationally demandingmore » simulations with 3D heterogeneity fields, we combined the framework with a scalable version module, eSTOMP, as the forward modeling simulator. We built response curves and response surfaces of model outputs with respect to input parameters, to look at the individual and combined effects, and identify and rank the significance of the input parameters.« less

  1. Detectability of Wellbore CO2 Leakage using the Magnetotelluric Method

    NASA Astrophysics Data System (ADS)

    Yang, X.; Buscheck, T. A.; Mansoor, K.; Carroll, S.

    2016-12-01

    We assessed the effectiveness of the magnetotelluric (MT) method in detecting CO2 and brine leakage through a wellbore, which penetrates a CO2 storage reservoir, into overlying aquifers, 0 to 1720 m in depth, in support of the USDOE National Risk Assessment Partnership (NRAP) monitoring program. Synthetic datasets based on the Kimberlina site in the southern San Joaquin Basin, California were created using CO2 storage reservoir models, wellbore leakage models, and groundwater/geochemical models of the overlying aquifers. The species concentrations simulated with the groundwater/geochemical models were converted into bulk electrical conductivity (EC) distributions as the MT model input. Brine and CO2 leakage into the overlying aquifers increases ion concentrations, and thus results in an EC increase, which may be detected by the MT method. Our objective was to estimate and maximize the probability of leakage detection using the MT method. The MT method is an electromagnetic geophysical technique that images the subsurface EC distribution by measuring natural electric and magnetic fields in the frequency range from 0.01 Hz to 1 kHz with sensors on the ground surface. The ModEM software was used to predict electromagnetic responses from brine and CO2 leakage and to invert synthetic MT data for recovery of subsurface conductivity distribution. We are in the process of building 1000 simulations for ranges of permeability, leakage flux, and hydraulic gradient to study leakage detectability and to develop an optimization method to answer when, where and how an MT monitoring system should be deployed to maximize the probability of leakage detection. This work was sponsored by the USDOE Fossil Energy, National Energy Technology Laboratory, managed by Traci Rodosta and Andrea McNemar. This work was performed under the auspices of the USDOE by LLNL under contract DE-AC52-07NA27344. LLNL IM release number is LLNL-ABS-699276.

  2. Experimental and natural constraints on the generation of calc-alkaline volcanic rocks in the Western Aleutian arc

    NASA Astrophysics Data System (ADS)

    Cottrell, E.; Kelley, K. A.; Grant, E.; Coombs, M. L.; Pistone, M.

    2016-12-01

    A new experimental technique with unique geometry is presented investigating deformation of simulated boreholes using standard axisymmetric triaxial deformation equipment. The Sandia WEllbore SImulation, SWESI, geometry, uses right cylinders of rock 50mm in diameter and 75mm in length. A 11.3mm hole is drilled perpendicular to the axis of the cylinder in the center of the sample to simulate a borehole. The hole is covered with a solid metal cover, and sealed with polyurethane. The metal cover can be machined with a high-pressure port to introduce different fluid chemistries into the borehole at controlled pressures. Samples are deformed in a standard load frame under confinement, allowing for a broad range of possible stresses, load paths, and temperatures. Experiments in this study are loaded to the desired confining pressure, then deformed at a constant axial strain rate or 10-5 sec-1. Two different suites of experiments are conducted in this study on sedimentary and crystalline rock types. The first series of experiments are conducted on Mancos Shale, a finely laminated transversely isotropic rock. Samples are cored at three different orientations to the laminations. A second series of experiments is conducted on Sierra White granite with different fluid chemistries inside the borehole. Numerical modelling and experimental observations including CT-microtomography demonstrate that stresses are concentrated around the simulated wellbore and recreate wellbore deformation mechanisms. Borehole strength and damage development is dependent on anisotropy orientation and fluid chemistry. Observed failure geometries, particularly for Mancos shale, can be highly asymmetric. These results demonstrate uncertainties in in situ stresses measurements using commonly-applied borehole breakout techniques in complicated borehole physico-chemical environments. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2017-8259 A

  3. An application of geostatistics and fractal geometry for reservoir characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aasum, Y.; Kelkar, M.G.; Gupta, S.P.

    1991-03-01

    This paper presents an application of geostatistics and fractal geometry concepts for 2D characterization of rock properties (k and {phi}) in a dolomitic, layered-cake reservoir. The results indicate that lack of closely spaced data yield effectively random distributions of properties. Further, incorporation of geology reduces uncertainties in fractal interpolation of wellbore properties.

  4. 30 CFR 250.1158 - How do I receive approval to downhole commingle hydrocarbons?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production... Supervisor to commingle hydrocarbons produced from multiple reservoirs within a common wellbore. The Regional... listed in the table in § 250.1167, with your request. (b) If one or more of the reservoirs proposed for...

  5. Reduced order models for prediction of groundwater quality impacts from CO₂ and brine leakage

    DOE PAGES

    Zheng, Liange; Carroll, Susan; Bianchi, Marco; ...

    2014-12-31

    A careful assessment of the risk associated with geologic CO₂ storage is critical to the deployment of large-scale storage projects. A potential risk is the deterioration of groundwater quality caused by the leakage of CO₂ and brine leakage from deep subsurface reservoirs. In probabilistic risk assessment studies, numerical modeling is the primary tool employed to assess risk. However, the application of traditional numerical models to fully evaluate the impact of CO₂ leakage on groundwater can be computationally complex, demanding large processing times and resources, and involving large uncertainties. As an alternative, reduced order models (ROMs) can be used as highlymore » efficient surrogates for the complex process-based numerical models. In this study, we represent the complex hydrogeological and geochemical conditions in a heterogeneous aquifer and subsequent risk by developing and using two separate ROMs. The first ROM is derived from a model that accounts for the heterogeneous flow and transport conditions in the presence of complex leakage functions for CO₂ and brine. The second ROM is obtained from models that feature similar, but simplified flow and transport conditions, and allow for a more complex representation of all relevant geochemical reactions. To quantify possible impacts to groundwater aquifers, the basic risk metric is taken as the aquifer volume in which the water quality of the aquifer may be affected by an underlying CO₂ storage project. The integration of the two ROMs provides an estimate of the impacted aquifer volume taking into account uncertainties in flow, transport and chemical conditions. These two ROMs can be linked in a comprehensive system level model for quantitative risk assessment of the deep storage reservoir, wellbore leakage, and shallow aquifer impacts to assess the collective risk of CO₂ storage projects.« less

  6. Analysis of the Thermal and Hydraulic Stimulation Program at Raft River, Idaho

    NASA Astrophysics Data System (ADS)

    Bradford, Jacob; McLennan, John; Moore, Joseph; Podgorney, Robert; Plummer, Mitchell; Nash, Greg

    2017-05-01

    The Raft River geothermal field, located in southern Idaho, roughly 100 miles northwest of Salt Lake City, is the site of a Department of Energy Enhanced Geothermal System project designed to develop new techniques for enhancing the permeability of geothermal wells. RRG-9 ST1, the target stimulation well, was drilled to a measured depth of 5962 ft. and cased to 5551 ft. The open-hole section of the well penetrates Precambrian quartzite and quartz monzonite. The well encountered a temperature of 282 °F at its base. Thermal and hydraulic stimulation was initiated in June 2013. Several injection strategies have been employed. These strategies have included the continuous injection of water at temperatures ranging from 53 to 115 °F at wellhead pressures of approximately 275 psi and three short-term hydraulic stimulations at pressures up to approximately 1150 psi. Flow rates, wellhead and line pressures and fluid temperatures are measured continuously. These data are being utilized to assess the effectiveness of the stimulation program. As of August 2014, nearly 90 million gallons have been injected. A modified Hall plot has been used to characterize the relationships between the bottom-hole flowing pressure and the cumulative injection fluid volume. The data indicate that the skin factor is decreased, and/or the permeability around the wellbore has increased since the stimulation program was initiated. The injectivity index also indicates a positive improvement with values ranging from 0.15 gal/min psi in July 2013 to 1.73 gal/min psi in February 2015. Absolute flow rates have increased from approximately 20 to 475 gpm by February 2 2015. Geologic, downhole temperature and seismic data suggest the injected fluid enters a fracture zone at 5650 ft and then travels upward to a permeable horizon at the contact between the Precambrian rocks and the overlying Tertiary sedimentary and volcanic deposits. The reservoir simulation program FALCON developed at the Idaho National Laboratory is being used to simulate and visualize the effects of the injection. The simulation model uses a discrete fracture network generated for RRG-9 using acoustic borehole imaging and analysis of microseismic activity. By adjusting the permeability of the fractures, a pressure history match for the first part of the stimulation program was obtained. The results of this model indicate that hydraulic fracturing is the dominant mechanism for permeability improvement for this part of the stimulation program.

  7. Petrothermal heat extraction using a single deviated well (Horstberg, revisited)

    NASA Astrophysics Data System (ADS)

    Ghergut, Julia; Behrens, Horst; Vogt, Esther; Bartetzko, Anne; Sauter, Martin

    2013-04-01

    The single-well tracer test conducted (Behrens et al. 2006) in conjunction with waterfrac experiments at Horstberg is re-examined with a view at four basic issues: why single-well? why fracturing? why tracers? does this only work at Horstberg, or can it work almost anywhere else in the Northern-German sedimentary basin? Heat and tracer transport within a composite reservoir (impermeable matrix + waterfrac + permeable layer), as accessed by a single deviated well, turn out to fit into a surprisingly simple description, as the plain (arithmetic) sum of certain petrothermal-type and aquifer-type contributions, whose weighting relative to each other can vary from site to site, depending upon stratigraphy and upon wellbore geometry. At Horstberg, within the particular formations tested ('Volpriehausen', 'Detfurth', 'Solling', comprising mainly claystone and sandstone layers), thermal lifetime results to be petrothermally-dominated, while tracer residence times prove to be 'aquifer'-dominated. Despite this disparity, the reservoir's thermal lifetime can reliably be predicted from tracer test results. What cannot be determined from waterfrac flow-path tracing is the very waterfrac's aperture. Aperture uncertainty, however, does not impede upon thermal lifetime predictability. The results of the semi-analytical approach are confirmed by numerical simulations using a FE model that includes more details of hydrogeological heterogeneity for the Horstberg site. They are complemented by a parameter sensitivity analysis. ACKNOWLEDGEMENT: This study is funded by MWK Niedersachsen (Lower-Saxony's Science and Culture Ministry) and by Baker Hughes (Celle) within task unit G6 of the Collaborative Research Project 'gebo' ('Geothermal Energy and High-Performance Drilling').

  8. Effects of seasonal operation on the quality of water produced by public-supply wells

    USGS Publications Warehouse

    Bexfield, Laura M.; Jurgens, Bryant C.

    2014-01-01

    Seasonal variability in groundwater pumping is common in many places, but resulting effects of seasonal pumping stress on the quality of water produced by public-supply wells are not thoroughly understood. Analysis of historical water-quality samples from public-supply wells completed in deep basin-fill aquifers in Modesto, California (134 wells) and Albuquerque, New Mexico (95 wells) indicates that several wells have seasonal variability in concentrations of contaminants of concern. In Modesto, supply wells are more likely to produce younger groundwater with higher nitrate and uranium concentrations during the summer (high) pumping season than during the winter (low) pumping season. In Albuquerque, supply wells are more likely to produce older groundwater with higher arsenic concentrations during the winter pumping season than during the summer pumping season. Seasonal variability in contaminant concentrations in Modesto is influenced primarily by effects of summer pumping on vertical hydraulic gradients that drive migration of shallow groundwater through the aquifer to supply wells. Variability in Albuquerque is influenced primarily by the period of time that a supply well is idle, allowing its wellbore to act as a conduit for vertical groundwater flow and contaminant migration. However, both processes are observed in each study area. Similar findings would appear to be likely in other alluvial basins with stratified water quality and substantial vertical head gradients. Results suggest that even in aquifers dominated by old groundwater, changes to seasonal pumping patterns and/or to depth of well completion can help reduce vulnerability to selected contaminants of either natural or anthropogenic origin.

  9. Effects of Seasonal Operation on the Quality of Water Produced by Public-Supply Wells

    PubMed Central

    Bexfield, Laura M; Jurgens, Bryant C

    2014-01-01

    Seasonal variability in groundwater pumping is common in many places, but resulting effects of seasonal pumping stress on the quality of water produced by public-supply wells are not thoroughly understood. Analysis of historical water-quality samples from public-supply wells completed in deep basin-fill aquifers in Modesto, California (134 wells) and Albuquerque, New Mexico (95 wells) indicates that several wells have seasonal variability in concentrations of contaminants of concern. In Modesto, supply wells are more likely to produce younger groundwater with higher nitrate and uranium concentrations during the summer (high) pumping season than during the winter (low) pumping season. In Albuquerque, supply wells are more likely to produce older groundwater with higher arsenic concentrations during the winter pumping season than during the summer pumping season. Seasonal variability in contaminant concentrations in Modesto is influenced primarily by effects of summer pumping on vertical hydraulic gradients that drive migration of shallow groundwater through the aquifer to supply wells. Variability in Albuquerque is influenced primarily by the period of time that a supply well is idle, allowing its wellbore to act as a conduit for vertical groundwater flow and contaminant migration. However, both processes are observed in each study area. Similar findings would appear to be likely in other alluvial basins with stratified water quality and substantial vertical head gradients. Results suggest that even in aquifers dominated by old groundwater, changes to seasonal pumping patterns and/or to depth of well completion can help reduce vulnerability to selected contaminants of either natural or anthropogenic origin. PMID:24593780

  10. A geopressured-geothermal, solar conversion system to produce potable water

    NASA Astrophysics Data System (ADS)

    Nitschke, George Samuel

    A design is presented for recovering Geopressured-Geothermal (GPGT) reservoir brines for conversion into solar ponds to renewably power coastal seawater desalination. The hot, gas-cut, high-pressure GPGT brine is flowed through a well-bore to surface systems which concentrate the brine in multi-effect evaporators and recover the gas. The gas and distilled water are used for thermal enhanced oil recovery, and the concentrated brine is used to construct solar ponds. The thermal energy from the solar ponds is used to produce electricity, which is then used to renewably power coastal desalination plants for large-scale potable water production from the sea. The design is proposed for deployment in California and Texas, where the two largest U.S. GPGT basins exist. Projections show that the design fully deployed in California could provide 5 MAF/y (million acre-ft per year) while yielding a 45% Rate of Return (combined oil and water revenues); the California municipal water load is 10 MAF/y. The dissertation contains a feasibility study of the design approach, supported by engineering analyses and simulation models, included in the appendices. A range of systems configurations and GPGT flow conditions are modeled to illustrate how the approach lends itself to modular implementation, i.e., incrementally installing a single system, tens of systems, up to 1000 systems, which corresponds to full deployment in California for the scenario analyzed. The dissertation includes a method for launching and piloting the approach, starting from a single system installation.

  11. Invariantly propagating dissolution fingers in finite-width systems

    NASA Astrophysics Data System (ADS)

    Dutka, Filip; Szymczak, Piotr

    2016-04-01

    Dissolution fingers are formed in porous medium due to positive feedback between transport of reactant and chemical reactions [1-4]. We investigate two-dimensional semi-infinite systems, with constant width W in one direction. In numerical simulations we solve the Darcy flow problem combined with advection-dispersion-reaction equation for the solute transport to track the evolving shapes of the fingers and concentration of reactant in the system. We find the stationary, invariantly propagating finger shapes for different widths of the system, flow and reaction rates. Shape of the reaction front, turns out to be controlled by two dimensionless numbers - the (width-based) Péclet number PeW = vW/Dφ0 and Damköhler number DaW = ksW/v, where k is the reaction rate, s - specific reactive surface area, v - characteristic flow rate, D - diffusion coefficient of the solute, and φ0 - initial porosity of the rock matrix. Depending on PeW and DaW stationary shapes can be divided into seperate classes, e.g. parabolic-like and needle-like structures, which can be inferred from theoretical predictions. In addition we determine velocity of propagating fingers in time and concentration of reagent in the system. Our simulations are compared with natural forms (solution pipes). P. Ortoleva, J. Chadam, E. Merino, and A. Sen, Geochemical self-organization II: the reactive-infiltration instability, Am. J. Sci, 287, 1008-1040 (1987). M. L. Hoefner, and H. S. Fogler. Pore evolution and channel formation during flow and reaction in porous media, AIChE Journal 34, 45-54 (1988). C. E. Cohen, D. Ding, M. Quintard, and B. Bazin, From pore scale to wellbore scale: impact of geometry on wormhole growth in carbonate acidization, Chemical Engineering Science 63, 3088-3099 (2008). P. Szymczak and A. J. C. Ladd, Reactive-infiltration nstabilities in rocks. Part II: Dissolution of a porous matrix, J. Fluid Mech. 738, 591-630 (2014).

  12. Low temperature barrier wellbores formed using water flushing

    DOEpatents

    McKinzie, II; John, Billy [Houston, TX; Keltner, Thomas Joseph [Spring, TX

    2009-03-10

    A method of forming an opening for a low temperature well is described. The method includes drilling an opening in a formation. Water is introduced into the opening to displace drilling fluid or indigenous gas in the formation adjacent to a portion of the opening. Water is produced from the opening. A low temperature fluid is applied to the opening.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, J.M.; Sheppard, M.C.; Houwen, O.H.

    Previous work on shale mechanical properties has focused on the slow deformation rates appropriate to wellbore deformation. Deformation of shale under a drill bit occurs at a very high rate, and the failure properties of the rock under these conditions are crucial in determining bit performance and in extracting lithology and pore-pressure information from drilling parameters. Triaxial tests were performed on two nonswelling shales under a wide range of strain rates and confining and pore pressures. At low strain rates, when fluid is relatively free to move within the shale, shale deformation and failure are governed by effective stress ormore » pressure (i.e., total confining pressure minus pore pressure), as is the case for ordinary rock. If the pore pressure in the shale is high, increasing the strain rate beyond about 0.1%/sec causes large increases in the strength and ductility of the shale. Total pressure begins to influence the strength. At high stain rates, the influence of effective pressure decreases, except when it is very low (i.e., when pore pressure is very high); ductility then rises rapidly. This behavior is opposite that expected in ordinary rocks. This paper briefly discusses the reasons for these phenomena and their impact on wellbore and drilling problems.« less

  14. Nanostructural control of methane release in kerogen and its implications to wellbore production decline

    NASA Astrophysics Data System (ADS)

    Ho, Tuan Anh; Criscenti, Louise J.; Wang, Yifeng

    2016-06-01

    Despite massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix-a limiting step in shale gas extraction. Using molecular simulations, we here show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30-47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3-35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. Our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs. The long-term production decline appears controlled by the second stage of gas release.

  15. Well hydraulics in pumping tests with exponentially decayed rates of abstraction in confined aquifers

    NASA Astrophysics Data System (ADS)

    Wen, Zhang; Zhan, Hongbin; Wang, Quanrong; Liang, Xing; Ma, Teng; Chen, Chen

    2017-05-01

    Actual field pumping tests often involve variable pumping rates which cannot be handled by the classical constant-rate or constant-head test models, and often require a convolution process to interpret the test data. In this study, we proposed a semi-analytical model considering an exponentially decreasing pumping rate started at a certain (higher) rate and eventually stabilized at a certain (lower) rate for cases with or without wellbore storage. A striking new feature of the pumping test with an exponentially decayed rate is that the drawdowns will decrease over a certain period of time during intermediate pumping stage, which has never been seen before in constant-rate or constant-head pumping tests. It was found that the drawdown-time curve associated with an exponentially decayed pumping rate function was bounded by two asymptotic curves of the constant-rate tests with rates equaling to the starting and stabilizing rates, respectively. The wellbore storage must be considered for a pumping test without an observation well (single-well test). Based on such characteristics of the time-drawdown curve, we developed a new method to estimate the aquifer parameters by using the genetic algorithm.

  16. Embodied Energy and GHG Emissions from Material Use in Conventional and Unconventional Oil and Gas Operations.

    PubMed

    Brandt, Adam R

    2015-11-03

    Environmental impacts embodied in oilfield capital equipment have not been thoroughly studied. In this paper, we present the first open-source model which computes the embodied energy and greenhouse gas (GHG) emissions associated with materials consumed in constructing oil and gas wells and associated infrastructure. The model includes well casing, wellbore cement, drilling mud, processing equipment, gas compression, and transport infrastructure. Default case results show that consumption of materials in constructing oilfield equipment consumes ∼0.014 MJ of primary energy per MJ of oil produced, and results in ∼1.3 gCO2-eq GHG emissions per MJ (lower heating value) of crude oil produced, an increase of 15% relative to upstream emissions assessed in earlier OPGEE model versions, and an increase of 1-1.5% of full life cycle emissions. A case study of a hydraulically fractured well in the Bakken formation of North Dakota suggests lower energy intensity (0.011 MJ/MJ) and emissions intensity (1.03 gCO2-eq/MJ) due to the high productivity of hydraulically fractured wells. Results are sensitive to per-well productivity, the complexity of wellbore casing design, and the energy and emissions intensity per kg of material consumed.

  17. Impact of ductility on hydraulic fracturing in shales

    NASA Astrophysics Data System (ADS)

    Auton, Lucy; MacMinn, Chris

    2015-11-01

    Hydraulic fracturing is a method for extracting natural gas and oil from low-permeability rocks such as shale via the injection of fluid at high pressure. This creates fractures in the rock, providing hydraulic access deeper into the reservoir and enabling gas to be collected from a larger region of the rock. Fracture is the tensile failure of a brittle material upon reaching a threshold tensile stress, but some shales have a high clay content and may yield plastically before fracturing. Plastic deformation is the shear failure of a ductile material, during which stress relaxes through irreversible rearrangements of the particles of the material. Here, we investigate the impact of the ductility of shales on hydraulic fracturing. We consider a simple, axisymmetric model for radially outward fluid injection from a wellbore into a ductile porous rock. We solve the model semi-analytically at steady state, and numerically in general. We find that plastic deformation greatly reduces the maximum tensile stress, and that this maximum stress does not always occur at the wellbore. These results imply that hydraulic fracturing may fail in ductile rocks, or that the required injection rate for fracking may be much larger than the rate predicted from purely elastic models.

  18. Investigation of the physico-chemical and mechanical properties of hard brittle shales from the Shahejie Formation in the Nanpu Sag, northern China

    NASA Astrophysics Data System (ADS)

    Xiangjun, Liu; Jian, Xiong; Lixi, Liang; Yi, Ding

    2017-06-01

    With increasing demand for energy and advances in exploration and development technologies, more attention is being devoted to exploration and development of deep oil and gas reservoirs. The Nanpu Sag contains huge reserves in deep oil and gas reservoirs and is a promising area. In this paper, the physico-chemical and mechanical properties of hard brittle shales from the Shahejie Formation in the Nanpu Sag in the Bohai Bay Basin of northern China were investigated using a variety of methods, including x-ray diffraction analysis, cation exchange capacity (CEC) analysis, contact angle measurements, scanning electron microscope observations, immersion experiments, ultrasonic testing and mechanical testing. The effects of the physico-chemical properties of the shales on wellbore instability were observed, and the effects of hydration of the shales on wellbore instability were also examined. The results show that the major mineral constituents of the investigated shales are quartz and clay minerals. The clay mineral contents range from 25.33% to 52.03%, and the quartz contents range from 20.03% to 46.45%. The clay minerals do not include montmorillonite, but large amounts of mixed-layer illite/smectite were observed. The CEC values of the shales range from 90 to 210 mmol kg-1, indicating that the shales are partly hydrated. The wettability of the shales is strongly water-wetted, indicating that water would enter the shales due to the capillary effect. Hydration of hard brittle shales can generate cracks, leading to changes in microstructure and increases in the acoustic value, which could generate damage in the shales and reduce their strength. With increasing hydration time, the shale hydration effect gradually becomes stronger, causing an increase in the range of the acoustic travel time and decreases in the ranges of cohesion and internal friction angles. For the hard brittle shales of the Nanpu Sag, drilling fluid systems should aim to enhance sealing ability, decrease drilling fluid filter loss and increase the amount of clay-hydration inhibitor used.

  19. Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Witter; Robert Knoll; William Rehm

    2006-06-30

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conductedmore » in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6{Delta}-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 and 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor attempted in July, 2006, to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Application of surfactant in the length of the horizontal hole, and acid over the fracture zone at 10,236 was also planned. This attempt was not successful in that the clean out tools became stuck and had to be abandoned.« less

  20. Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyrak-Nolte, Laura J; DePaolo, Donald J.; Pietraß, Tanja

    2015-05-22

    From beneath the surface of the earth, we currently obtain about 80-percent of the energy our nation consumes each year. In the future we have the potential to generate billions of watts of electrical power from clean, green, geothermal energy sources. Our planet’s subsurface can also serve as a reservoir for storing energy produced from intermittent sources such as wind and solar, and it could provide safe, long-term storage of excess carbon dioxide, energy waste products and other hazardous materials. However, it is impossible to underestimate the complexities of the subsurface world. These complexities challenge our ability to acquire themore » scientific knowledge needed for the efficient and safe exploitation of its resources. To more effectively harness subsurface resources while mitigating the impacts of developing and using these resources, the U.S. Department of Energy established SubTER – the Subsurface Technology and Engineering RD&D Crosscut team. This DOE multi-office team engaged scientists and engineers from the national laboratories to assess and make recommendations for improving energy-related subsurface engineering. The SubTER team produced a plan with the overall objective of “adaptive control of subsurface fractures and fluid flow.”This plan revolved around four core technological pillars—Intelligent Wellbore Systems that sustain the integrity of the wellbore environment; Subsurface Stress and Induced Seismicity programs that guide and optimize sustainable energy strategies while reducing the risks associated with subsurface injections; Permeability Manipulation studies that improve methods of enhancing, impeding and eliminating fluid flow; and New Subsurface Signals that transform our ability to see into and characterize subsurface systems. The SubTER team developed an extensive R&D plan for advancing technologies within these four core pillars and also identified several areas where new technologies would require additional basic research. In response, the Office of Science, through its Office of Basic Energy Science (BES), convened a roundtable consisting of 15 national lab, university and industry geoscience experts to brainstorm basic research areas that underpin the SubTER goals but are currently underrepresented in the BES research portfolio. Held in Germantown, Maryland on May 22, 2015, the round-table participants developed a basic research agenda that is detailed in this report. Highlights include the following: -A grand challenge calling for advanced imaging of stress and geological processes to help understand how stresses and chemical substances are distributed in the subsurface—knowledge that is critical to all aspects of subsurface engineering; -A priority research direction aimed at achieving control of fluid flow through fractured media; -A priority research direction aimed at better understanding how mechanical and geochemical perturbations to subsurface rock systems are coupled through fluid and mineral interactions; -A priority research direction aimed at studying the structure, permeability, reactivity and other properties of nanoporous rocks, like shale, which have become critical energy materials and exhibit important hallmarks of mesoscale materials; -A cross-cutting theme that would accelerate development of advanced computational methods to describe heterogeneous time-dependent geologic systems that could, among other potential benefits, provide new and vastly improved models of hydraulic fracturing and its environmental impacts; -A cross-cutting theme that would lead to the creation of “geo-architected materials” with controlled repeatable heterogeneity and structure that can be tested under a variety of thermal, hydraulic, chemical and mechanical conditions relevant to subsurface systems; -A cross-cutting theme calling for new laboratory studies on both natural and geo-architected subsurface materials that deploy advanced high-resolution 3D imaging and chemical analysis methods to determine the ;rates and mechanisms of fluid-rock processes, and to test predictive models of such phenomena. Many of the key energy challenges of the future demand a greater understanding of the subsurface world in all of its complexity. This greater under- standing will improve the ability to control and manipulate the subsurface world in ways that will benefit both the economy and the environment. This report provides specific basic research pathways to address some of the most fundamental issues of energy-related subsurface engineering.« less

  1. Fundamental Study of Disposition and Release of Methane in a Shale Gas Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yifeng; Xiong, Yongliang; Criscenti, Louise J.

    The recent boom in shale gas production through hydrofracturing has reshaped the energy production landscape in the United States. Wellbore production rates vary greatly among the wells within a single field and decline rapidly with time, thus bring up a serious concern with the sustainability of shale gas production. Shale gas production starts with creating a fracture network by injecting a pressurized fluid in a wellbore. The induced fractures are then held open by proppant particles. During production, gas releases from the mudstone matrix, migrates to nearby fractures, and ultimately reaches a production wellbore. Given the relatively high permeability ofmore » the induced fractures, gas release and migration in low-permeability shale matrix is likely to be a limiting step for long-term wellbore production. Therefore, a clear understanding of the underlying mechanisms of methane disposition and release in shale matrix is crucial for the development of new technologies to maximize gas production and recovery. Shale is a natural nanocomposite material with distinct characteristics of nanometer-scale pore sizes, extremely low permeability, high clay contents, significant amounts of organic carbon, and large spatial heterogeneities. Our work has shown that nanopore confinement plays an important role in methane disposition and release in shale matrix. Using molecular simulations, we show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~ 30 - 47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. The long-term production decline appears controlled by the second stage of gas release. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3 - 35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. We have successfully established experimental capabilities for measuring gas sorption and desorption on shale and model materials under a wide range of physical and chemical conditions. Both low and high pressure measurements show significant sorption of CH 4 and CO 2 onto clays, implying that methane adsorbed on clay minerals could contribute a significant portion of gas-in-place in an unconventional reservoir. We have also studied the potential impact of the interaction of shale with hydrofracking fluid on gas sorption. We have found that the CH 4-CO 2 sorption capacity for the reacted sample is systematically lower (by a factor of ~2) than that for the unreacted (raw) sample. This difference in sorption capacity may result from a mineralogical or surface chemistry change of the shale sample induced by fluid-rock interaction. Our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs.« less

  2. Application of Neutron imaging in pore structure of hydrated wellbore cement: comparison of hydration of H20 with D2O based Portland cements

    NASA Astrophysics Data System (ADS)

    Dussenova, D.; Bilheux, H.; Radonjic, M.

    2012-12-01

    Wellbore Cement studies have been ongoing for decades. The studies vary from efforts to reduce permeability and resistance to corrosive environment to issues with gas migration also known as Sustained Casing Pressure (SCP). These practical issues often lead to health and safety problems as well as huge economic loss in oil and gas industry. Several techniques have been employed to reduce the impact of gas leakage. In this study we purely focus on expandable liners, which are introduced as part of oil well reconstruction and work-overs and as well abandonment procedures that help in prevention of SCP. Expandable liner is a tube that after application of a certain tool can increase its diameter. The increase in diameter creates extra force on hydrated cement that results in reducing width of interface fractures and cement-tube de-bonding. Moreover, this also causes cement to change its microstructure and other porous medium properties, primarily hydraulic conductivity. In order to examine changes before and after operations, cement pore structure must be well characterized and correlated to cement slurry design as well as chemical and physical environmental conditions. As modern oil well pipes and tubes contain iron, it is difficult to perform X-ray tomography of a bulk measurement of the cement in its wellbore conditions, which are tube wall-cement-tube wall. Neutron imaging is a complementary technique to x-ray imaging and is well suited for detection of light elements imbedded in metallic containers. Thus, Neutron Imaging (NI) is investigated as a tool for the detection of pore structure of hydrated wellbore cement. Recent measurements were conducted at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) neutron imaging facility. NI is is highly sensitive to light elements such as Hydrogen (H). Oil well cements that have undergone a full hydration contain on average 30%-40% of free water in its pore structure. The unreacted water is the main storage of the hydrogen atom. In such case, neutron tomography does not give information of the pore structure as neutrons will strongly scatter of H and the data have low count and low statistics or low neutron transmission. Hence, as the comparison and the possible tuning technique, neutron tomography measurements are performed on a Deuterium Oxide (D2O) or heavy water samples the same dimensions, cement composition, cement/liquid content and hydration time as the H2O samples. The advantage of using heavy water is that the total neutron cross-section for Deuterium is approximately four times smaller than Hydrogen's and, thus, permits better neutron transmission, i.e. better statistics. D2O does not alter cement properties or its chemical composition; therefore, the samples are almost identical. Comparison of the measurements using water and heavy water samples and the preparation of the measurement cement samples are discussed in this

  3. Time-dependent wellbore breakout growth caused by drilling-induced pore pressure transients: Implications for estimations of far field stress magnitude

    NASA Astrophysics Data System (ADS)

    Olcott, K. A.; Saffer, D. M.; Elsworth, D.

    2013-12-01

    One method used to constrain principal stress orientations and magnitudes in the crust combines estimates of rock strength with observations of wellbore failures, including drilling-induced tensile fractures (DITF) and compressional borehole breakouts (BO). This method has been applied at numerous Integrated Ocean Drilling Program (IODP) boreholes drilled into sediments in a wide range of settings, including the Gulf of Mexico, the N. Japan and Costa Rican subduction margins, and the Nankai Trough Accretionary Prism. At Nankai and N. Japan, BO widths defined by logging-while-drilling (LWD) resistivity images have been used to estimate magnitudes of far-field horizontal tectonic stresses. At several drillsites (C0010, C0002, and C0011), sections of the borehole were relogged with LWD after the hole was left open for times ranging from ~30 min to 3 days; times between acquisition were associated with pipe connections (~30 min), cleaning and circulating the hole (up to ~3 hr), and evacuation of the site for weather (~3 days). Relogged portions exhibit widening of BO, hypothesized to reflect time-dependent re-equilibration of instantaneous changes in pore fluid pressure (Pf) induced by opening the borehole. In this conceptual model, Pf decrease caused by initial excavation of the borehole and resulting changes in the state of stress at the borehole wall lead to an initial strengthening of the sediment. Re-equilibration of Pf results in time-dependent weakening of the sediment and subsequent BO growth. If correct, this hypothesis implies that stress magnitudes estimated by BO widths could be significantly underestimated. We test this idea using a finite-element model in COMSOL multiphysics that couples fluid flow and deformation in a poroelastic medium. We specify far-field horizontal principal stresses (SHmax and Shmin) in the model domain. At the start of simulations/at the time of borehole opening, we impose a decreased stress at the borehole wall. We consider a range of sediment permeability from 10-18 m2 to 10-14 m2. We find Pf initially increases at the borehole wall over a range of azimuths +/-~60° from Shmin, with a maximum increase of 10 MPa (4.4% of the maximum principal stress (σ1) at the borehole wall) and would lead to weakening of the rock. Pf decreases over a range of azimuths +/- ~30° from SHmax, with a maximum decrease of 10 MPa (8.8% of σ1), leading to initial strengthening of the rock. Evolution of Pf depends strongly on sediment permeability: Pf is 90% equilibrated at the borehole wall in ~43 minutes for a permeability of 10-18 m2, whereas for a permeability of 10-14 m2, Pf equilibrates nearly instantaneously. Since BO form parallel to Shmin, BO growth driven by drilling-induced Pf changes require that the initial BO be wider than ~120°, or outside the zone of initially increased Pf. This is not consistent with observations of BO growth, where initial BO are 0-25° and grow up to 125°. In contrast, our results imply that analyses based on BO measured immediately after drilling could overestimate far-field stresses because the BO are formed in sediments weakened by poroelastic pressure changes. Future work will focus on systematic investigation of the role of far field stresses and different sediment rheologies on the distribution of pore pressure change around the wellbore.

  4. Bull heading to kill live gas wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oudeman, P.; Avest, D. ter; Grodal, E.O.

    1994-12-31

    To kill a live closed-in gas well by bull heading down the tubing, the selected pump rate should be high enough to ensure efficient displacement of the gas into the formation (i.e., to avoid the kill fluid bypassing the gas). On the other hand, the pressures that develop during bull heading at high rate must not exceed wellhead pressure rating, tubing or casing burst pressures or the formation breakdown gradient, since this will lead, at best, to a very inefficient kill job. Given these constraints, the optimum kill rate, requited hydraulic horsepower, density and type of kill fluids have tomore » be selected. For this purpose a numerical simulator has been developed, which predicts the sequence of events during bull heading. Pressures and flow rates in the well during the kill job are calculated, taking to account slip between the gas and kill fluid, hydrostatic and friction pressure drop, wellbore gas compression and leak-off to the formation. Comparison with the results of a dedicated field test demonstrates that these parameters can be estimated accurately. Example calculations will be presented to show how the simulator can be used to identify an optimum kill scenario.« less

  5. Well test mathematical model for fractures network in tight oil reservoirs

    NASA Astrophysics Data System (ADS)

    Diwu, Pengxiang; Liu, Tongjing; Jiang, Baoyi; Wang, Rui; Yang, Peidie; Yang, Jiping; Wang, Zhaoming

    2018-02-01

    Well test, especially build-up test, has been applied widely in the development of tight oil reservoirs, since it is the only available low cost way to directly quantify flow ability and formation heterogeneity parameters. However, because of the fractures network near wellbore, generated from artificial fracturing linking up natural factures, traditional infinite and finite conductivity fracture models usually result in significantly deviation in field application. In this work, considering the random distribution of natural fractures, physical model of fractures network is proposed, and it shows a composite model feature in the large scale. Consequently, a nonhomogeneous composite mathematical model is established with threshold pressure gradient. To solve this model semi-analytically, we proposed a solution approach including Laplace transform and virtual argument Bessel function, and this method is verified by comparing with existing analytical solution. The matching data of typical type curves generated from semi-analytical solution indicates that the proposed physical and mathematical model can describe the type curves characteristic in typical tight oil reservoirs, which have up warping in late-term rather than parallel lines with slope 1/2 or 1/4. It means the composite model could be used into pressure interpretation of artificial fracturing wells in tight oil reservoir.

  6. A new analytical solution solved by triple series equations method for constant-head tests in confined aquifers

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Chi; Yeh, Hund-Der

    2010-06-01

    The constant-head pumping tests are usually employed to determine the aquifer parameters and they can be performed in fully or partially penetrating wells. Generally, the Dirichlet condition is prescribed along the well screen and the Neumann type no-flow condition is specified over the unscreened part of the test well. The mathematical model describing the aquifer response to a constant-head test performed in a fully penetrating well can be easily solved by the conventional integral transform technique under the uniform Dirichlet-type condition along the rim of wellbore. However, the boundary condition for a test well with partial penetration should be considered as a mixed-type condition. This mixed boundary value problem in a confined aquifer system of infinite radial extent and finite vertical extent is solved by the Laplace and finite Fourier transforms in conjunction with the triple series equations method. This approach provides analytical results for the drawdown in a partially penetrating well for arbitrary location of the well screen in a finite thickness aquifer. The semi-analytical solutions are particularly useful for the practical applications from the computational point of view.

  7. In situ heat treatment process utilizing a closed loop heating system

    DOEpatents

    Vinegar, Harold J.; Nguyen, Scott Vinh

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  8. Modeling the key factors that could influence the diffusion of CO2 from a wellbore blowout in the Ordos Basin, China.

    PubMed

    Li, Qi; Shi, Hui; Yang, Duoxing; Wei, Xiaochen

    2017-02-01

    Carbon dioxide (CO 2 ) blowout from a wellbore is regarded as a potential environment risk of a CO 2 capture and storage (CCS) project. In this paper, an assumed blowout of a wellbore was examined for China's Shenhua CCS demonstration project. The significant factors that influenced the diffusion of CO 2 were identified by using a response surface method with the Box-Behnken experiment design. The numerical simulations showed that the mass emission rate of CO 2 from the source and the ambient wind speed have significant influence on the area of interest (the area of high CO 2 concentration above 30,000 ppm). There is a strong positive correlation between the mass emission rate and the area of interest, but there is a strong negative correlation between the ambient wind speed and the area of interest. Several other variables have very little influence on the area of interest, e.g., the temperature of CO 2 , ambient temperature, relative humidity, and stability class values. Due to the weather conditions at the Shenhua CCS demonstration site at the time of the modeled CO 2 blowout, the largest diffusion distance of CO 2 in the downwind direction did not exceed 200 m along the centerline. When the ambient wind speed is in the range of 0.1-2.0 m/s and the mass emission rate is in the range of 60-120 kg/s, the range of the diffusion of CO 2 is at the most dangerous level (i.e., almost all Grade Four marks in the risk matrix). Therefore, if the injection of CO 2 takes place in a region that has relatively low perennial wind speed, special attention should be paid to the formulation of pre-planned, emergency measures in case there is a leakage accident. The proposed risk matrix that classifies and grades blowout risks can be used as a reference for the development of appropriate regulations. This work may offer some indicators in developing risk profiles and emergency responses for CO 2 blowouts.

  9. Analysis of pressure buildups taken from fluid level data - Tyler sands, central Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, D.F.

    Pressure buildups taken by fluid level recording prove to be quite usable for formation evaluation in the Tyler sands of central Montana. This method provides low cost information with surprising accuracy. The procedures followed in obtaining the data, and the precautions taken in assuring the validity of the data are discussed. The data proved sufficiently accurate to perform engineering calculations in 2 separate Tyler fields. The calculations aided in determination of reservoir parameters, and in one field provided justification for additional development drilling. In another field, the data substantiated the limited reservoir, and development drilling plans were cancelled. The buildupmore » curves illustrated well-bore damage in some of the wells and subsequent stimulation of 2 wells resulted in sustained 6-fold and 9-fold increases in producing rates of these wells.« less

  10. Ground-water flow and contributing areas to public-supply wells in Kingsford and Iron Mountain, Michigan

    USGS Publications Warehouse

    Luukkonen, Carol L.; Westjohn, David B.

    2000-01-01

    The cities of Kingsford and Iron Mountain are in the southwestern part of Dickinson County in the Upper Peninsula of Michigan. Residents and businesses in these cites rely primarily on ground water from aquifers in glacial deposits. Glacial deposits generally consist of an upper terrace sand-and-gravel unit and a lower outwash sand-and-gravel unit, separated by lacustrine silt and clay and eolian silt layers. These units are not regionally continuous, and are absent in some areas. Glacial deposits overlie Precambrian bedrock units that are generally impermeable. Precambrian bedrock consists of metasedimentary (Michigamme Slate, Vulcan Iron Formation, and Randville Dolomite) and metavolcanic (Badwater Greenstone and Quinnesec Formation) rocks. Where glacial deposits are too thin to compose an aquifer usable for public or residential water supply, Precambrian bedrock is relied upon for water supply. Typically a few hundred feet of bedrock must be open to a wellbore to provide adequate water for domestic users. Ground-water flow in the glacial deposits is primarily toward the Menominee River and follows the direction of the regional topographic slope and the bedrock surface. To protect the quality of ground water, Kingsford and Iron Mountain are developing Wellhead Protection Plans to delineate areas that contribute water to public-supply wells. Because of the complexity of hydrogeology in this area and historical land-use practices, a steady-state ground-water-flow model was prepared to represent the ground-water-flow system and to delineate contributing areas to public-supply wells. Results of steady-state simulations indicate close agreement between simulated and observed water levels and between water flowing into and out of the model area. The 10-year contributing areas for Kingsford's public-supply wells encompass about 0.11 square miles and consist of elongated areas to the east of the well fields. The 10-year contributing areas for Iron Mountain's public-supply wells encompass about 0.09 square miles and consist of elongate areas to the east of the well field.

  11. Factors Affecting Specific-Capacity Tests and their Application--A Study of Six Low-Yielding Wells in Fractured-Bedrock Aquifers in Pennsylvania

    USGS Publications Warehouse

    Risser, Dennis W.

    2010-01-01

    This report by the U.S. Geological Survey, prepared in cooperation with the Pennsylvania Department of Environmental Protection, Bureau of Mining and Reclamation, evaluates factors affecting the application of specific-capacity tests in six low-yielding water wells in areas of coal mining or quarrying in Pennsylvania. Factors such as pumping rate, duration of pumping, aquifer properties, wellbore storage, and turbulent flow were assessed by theoretical analysis and by completing multiple well tests, selected to be representative of low-yielding household-supply wells in areas of active coal mining or quarrying. All six wells were completed in fractured-bedrock aquifers--five in coal-bearing shale, siltstone, sandstone, limestone, and coal of Pennsylvanian and Permian age and one in limestone of Cambrian age. The wells were pumped 24 times during 2007-09 at rates from 0.57 to 14 gallons per minute during tests lasting from 22 to 240 minutes. Geophysical logging and video surveys also were completed to determine the depth, casing length, and location of water-yielding zones in each of the test wells, and seasonal water-level changes were measured during 2007-09 by continuous monitoring at each well. The tests indicated that specific-capacity values were reproducible within about ? 20 percent if the tests were completed at the same pumping rate and duration. A change in pumping duration, pumping rate, or saturated aquifer thickness can have a substantial effect on the comparability of repeated tests. The largest effect was caused by a change in aquifer thickness in well YO 1222 causing specific capacity from repeated tests to vary by a factor of about 50. An increase in the duration of pumping from 60 to 180 minutes caused as much as a 62 percent decrease in specific capacity. The effect of differing pumping rates on specific capacity depends on whether or not the larger rate causes the water level in the well to fall below a major water-yielding zone; when this decline happened at well CA 462, specific capacity was reduced by about 63 percent. Estimates of the maximum yield for low-yielding wells that are computed by multiplying the available drawdown by the specific-capacity value may contain large errors if the wells were pumped at low rates that do not cause much water-level drawdown. The estimates of yield are likely to be too large because the effects of lowering the water level in the well below water-yielding zones have not been incorporated. Better yield estimates can be made by the use of step-drawdown tests or by over-pumping at a rate large enough to dewater most of the wellbore. The maximum well yield, after overpumping, can be estimated from the rate of water-level recovery or by subtracting the incremental rate of change of borehole storage at the end of the test from the pumping rate.

  12. International Energy Agency (IEA) Greenhouse Gas (GHG) Weyburn-Midale CO₂ Monitoring and Storage Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sacuta, Norm; Young, Aleana; Worth, Kyle

    2015-12-22

    The IEAGHG Weyburn-Midale CO₂ Monitoring and Storage Project (WMP) began in 2000 with the first four years of research that confirmed the suitability of the containment complex of the Weyburn oil field in southeastern Saskatchewan as a storage location for CO₂ injected as part of enhanced oil recovery (EOR) operations. The first half of this report covers research conducted from 2010 to 2012, under the funding of the United States Department of Energy (contract DEFE0002697), the Government of Canada, and various other governmental and industry sponsors. The work includes more in-depth analysis of various components of a measurement, monitoring andmore » verification (MMV) program through investigation of data on site characterization and geological integrity, wellbore integrity, storage monitoring (geophysical and geochemical), and performance/risk assessment. These results then led to the development of a Best Practices Manual (BPM) providing oilfield and project operators with guidance on CO₂ storage and CO₂-EOR. In 2013, the USDOE and Government of Saskatchewan exercised an optional phase of the same project to further develop and deploy applied research tools, technologies, and methodologies to the data and research at Weyburn with the aim of assisting regulators and operators in transitioning CO₂-EOR operations into permanent storage. This work, detailed in the second half of this report, involves seven targeted research projects – evaluating the minimum dataset for confirming secure storage; additional overburden monitoring; passive seismic monitoring; history-matched modelling; developing proper wellbore design; casing corrosion evaluation; and assessment of post CO₂-injected core samples. The results from the final and optional phases of the Weyburn-Midale Project confirm the suitability of CO₂-EOR fields for the injection of CO₂, and further, highlight the necessary MMV and follow-up monitoring required for these operations to be considered permanent storage.« less

  13. Simulations of Ground-Water Flow, Transport, Age, and Particle Tracking near York, Nebraska, for a Study of Transport of Anthropogenic and Natural Contaminants (TANC) to Public-Supply Wells

    USGS Publications Warehouse

    Clark, Brian R.; Landon, Matthew K.; Kauffman, Leon J.; Hornberger, George Z.

    2008-01-01

    Contamination of public-supply wells has resulted in public-health threats and negative economic effects for communities that must treat contaminated water or find alternative water supplies. To investigate factors controlling vulnerability of public-supply wells to anthropogenic and natural contaminants using consistent and systematic data collected in a variety of principal aquifer settings in the United States, a study of Transport of Anthropogenic and Natural Contaminants to public-supply wells was begun in 2001 as part of the U.S. Geological Survey National Water-Quality Assessment Program. The area simulated by the ground-water flow model described in this report was selected for a study of processes influencing contaminant distribution and transport along the direction of ground-water flow towards a public-supply well in southeastern York, Nebraska. Ground-water flow is simulated for a 60-year period from September 1, 1944, to August 31, 2004. Steady-state conditions are simulated prior to September 1, 1944, and represent conditions prior to use of ground water for irrigation. Irrigation, municipal, and industrial wells were simulated using the Multi-Node Well package of the modular three-dimensional ground-water flow model code, MODFLOW-2000, which allows simulation of flow and solutes through wells that are simulated in multiple nodes or layers. Ground-water flow, age, and transport of selected tracers were simulated using the Ground-Water Transport process of MODFLOW-2000. Simulated ground-water age was compared to interpreted ground-water age in six monitoring wells in the unconfined aquifer. The tracer chlorofluorocarbon-11 was simulated directly using Ground-Water Transport for comparison with concentrations measured in six monitoring wells and one public supply well screened in the upper confined aquifer. Three alternative model simulations indicate that simulation results are highly sensitive to the distribution of multilayer well bores where leakage can occur and that the calibrated model resulted in smaller differences than the alternative models between simulated and interpreted ages and measured tracer concentrations in most, but not all, wells. Results of the first alternative model indicate that the distribution of young water in the upper confined aquifer is substantially different when well-bore leakage at known abandoned wells and test holes is removed from the model. In the second alternative model, simulated age near the bottom of the unconfined aquifer was younger than interpreted ages and simulated chlorofluorocarbon-11 concentrations in the upper confined aquifer were zero in five out of six wells because the conventional Well Package fails to account for flow between model layers though well bores. The third alternative model produced differences between simulated and interpreted ground-water ages and measured chlorofluorocarbon-11 concentrations that were comparable to the calibrated model. However, simulated hydraulic heads deviated from measured hydraulic heads by a greater amount than for the calibrated model. Even so, because the third alternative model simulates steady-state flow, additional analysis was possible using steady-state particle tracking to assess the contributing recharge area to a public supply well selected for analysis of factors contributing to well vulnerability. Results from particle-tracking software (MODPATH) using the third alternative model indicates that the contributing recharge area of the study public-supply well is a composite of elongated, seemingly isolated areas associated with wells that are screened in multiple aquifers. The simulated age distribution of particles at the study public-supply well indicates that all water younger than 58 years travels through well bores of wells screened in multiple aquifers. The age distribution from the steady-state model using MODPATH estimates the youngest 7 percent of the water to have a flow-weighted mean age

  14. Advanced 3D Geological Modelling Using Multi Geophysical Data in the Yamagawa Geothermal Field, Japan

    NASA Astrophysics Data System (ADS)

    Mochinaga, H.; Aoki, N.; Mouri, T.

    2017-12-01

    We propose a robust workflow of 3D geological modelling based on integrated analysis while honouring seismic, gravity, and wellbore data for exploration and development at flash steam geothermal power plants. We design the workflow using temperature logs at less than 10 well locations for practical use at an early stage of geothermal exploration and development. In the workflow, geostatistical technique, multi-attribute analysis, and artificial neural network are employed for the integration of multi geophysical data. The geological modelling is verified by using a 3D seismic data which was acquired in the Yamagawa Demonstration Area (approximately 36 km2), located at the city of Ibusuki in Kagoshima, Japan in 2015. Temperature-depth profiles are typically characterized by heat transfer of conduction, outflow, and up-flow which have low frequency trends. On the other hand, feed and injection zones with high permeability would cause high frequency perturbation on temperature-depth profiles. Each trend is supposed to be caused by different geological properties and subsurface structures. In this study, we estimate high frequency (> 2 cycles/km) and low frequency (< 1 cycle/km) models separately by means of different types of attribute volumes. These attributes are mathematically generated from P-impedance and density volumes derived from seismic inversion, an ant-tracking seismic volume, and a geostatistical temperature model prior to application of artificial neural network on the geothermal modelling. As a result, the band-limited stepwise approach predicts a more precise geothermal model than that of full-band temperature profiles at a time. Besides, lithofacies interpretation confirms reliability of the predicted geothermal model. The integrated interpretation is significantly consistent with geological reports from previous studies. Isotherm geobodies illustrate specific features of geothermal reservoir and cap rock, shallow aquifer, and its hydrothermal circulation in 3D visualization. The advanced workflow of 3D geological modelling is suitable for optimization of well locations for production and reinjection in geothermal fields.

  15. Chemical Reactions of Portland Cement with Aqueous CO2 and Their Impacts on Cement's Mechanical Properties under Geologic CO2 Sequestration Conditions.

    PubMed

    Li, Qingyun; Lim, Yun Mook; Flores, Katharine M; Kranjc, Kelly; Jun, Young-Shin

    2015-05-19

    To provide information on wellbore cement integrity in the application of geologic CO2 sequestration (GCS), chemical and mechanical alterations were analyzed for cement paste samples reacted for 10 days under GCS conditions. The reactions were at 95 °C and had 100 bar of either N2 (control condition) or CO2 contacting the reaction brine solution with an ionic strength of 0.5 M adjusted by NaCl. Chemical analyses showed that the 3.0 cm × 1.1 cm × 0.3 cm samples were significantly attacked by aqueous CO2 and developed layer structures with a total attacked depth of 1220 μm. Microscale mechanical property analyses showed that the hardness and indentation modulus of the carbonated layer were 2-3 times greater than for the intact cement, but those in the portlandite-dissolved region decreased by ∼50%. The strength and elastic modulus of the bulk cement samples were reduced by 93% and 84%, respectively. The properties of the microscale regions, layer structure, microcracks, and swelling of the outer layers combined to affect the overall mechanical properties. These findings improve understanding of wellbore integrity from both chemical and mechanical viewpoints and can be utilized to improve the safety and efficiency of CO2 storage.

  16. Nanostructural control of methane release in kerogen and its implications to wellbore production decline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Tuan Anh; Criscenti, Louise J.; Wang, Yifeng

    In spite of the massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix–a limiting step in shale gas extraction. Here we show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30–47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases, and we usemore » molecular simulations to demonstrate it. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3–35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. Finally, our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs. The long-term production decline appears controlled by the second stage of gas release.« less

  17. Response of a partially penetrating well in a heterogeneous aquifer: integrated well-face flux vs. uniform well-face flux boundary conditions

    NASA Astrophysics Data System (ADS)

    Ruud, N. C.; Kabala, Z. J.

    1997-07-01

    A two-dimensional integrated well-face flux (IWFF) model is developed for computing the drawdown at the well-face and around a fully or partially penetrating well with wellbore storage, situated in a layered confined aquifer. In this model, we calculate drawdown and well-face flux distributions by numerically solving a two-dimensional diffusion equation in cylindrical coordinates subject to appropriate initial and boundary conditions and to the well-face boundary constraint of an integrated well-face flux rather than the physically inconsistent uniform well-face flux boundary condition (the UWFF model). The differences between the IWFF and UWFF models in a partially penetrating well situated in a homogeneous isotropic aquifer are insignificant for wellbore drawdown (less than 3%) but are pronounced for the well-face flux. In fact, the latter strongly deviates from uniformity as the ratio of the screen length to the aquifer thickness decreases. For partially penetrating wells situated in multilayer aquifers, significant differences between the two models may arise, especially if the screen is not located in the most conductive layer. These differences depend on the hydraulic conductivity contrast of the adjacent layers. Consequently, the uniform well-face flux boundary condition should be used with extreme caution.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheshire, Michael C.; Stack, Andrew G.; Carey, J. William

    Mineral reactions during CO 2 sequestration will change the pore-size distribution and pore surface characteristics, complicating permeability and storage security predictions. In this study, we report a small/wide angle scattering study of wellbore cement that has been exposed to carbon dioxide for three decades. We have constructed detailed contour maps that describe local porosity distributions and the mineralogy of the sample and relate these quantities to the carbon dioxide reaction front on the cement. We find that the initial bimodal distribution of pores in the cement, 1–2 and 10–20 nm, is affected differently during the course of carbonation reactions. Initialmore » dissolution of cement phases occurs in the 10–20 nm pores and leads to the development of new pore spaces that are eventually sealed by CaCO 3 precipitation, leading to a loss of gel and capillary nanopores, smoother pore surfaces, and reduced porosity. This suggests that during extensive carbonation of wellbore cement, the cement becomes less permeable because of carbonate mineral precipitation within the pore space. Additionally, the loss of gel and capillary nanoporosities will reduce the reactivity of cement with CO 2 due to reactive surface area loss. Finally, this work demonstrates the importance of understanding not only changes in total porosity but also how the distribution of porosity evolves with reaction that affects permeability.« less

  19. Enviromental Health Risks on Community in Coastal Area As a Results The Presence of Pb in Sea Water and Drinking Water.

    NASA Astrophysics Data System (ADS)

    Malem Indirawati, Sri; Pandia, Setiaty; Mawengkang, Herman; Hasan, Wirsal

    2018-01-01

    The burden of pollution due to industrial waste, ports, community activities and marine intrusion further exacerbate environmental quality. This pollution causes drinking water sources polluted. This study aims to analyze Pb contamination in marine, and drinking water from wellbores and measure the magnitude of health risks. This is cross sectional study and quantitative research that analyzes Pb concentrations in marine and drinking water. The sample are 250 people who live in coastal area and drink water from wellbores. Water samples were examined in certified laboratories by using Atomic Absorbstion Spectrophotometer method, health risk was analyzed by the environmental health risk (EHRA) method. Pb concentrations average in marine is 52 μgl-1 . Pb concentration from 92 samples of drinking water average is 4.5 μgl-1 and range 5.4 - 26.2 μgl-1. The amount of health risk RQ <1, which means that it has not shown risk yet. Pb exceeded the environmental quality standard in marine, There are 14.7% of people consuming Pb contaminated drinking water. Community complaints found at the study sites were diarrhea 22.8% and dizziness 17.2% and skin disease 17.2%, upper respiratory tract infection, rheumatism and hypertension.

  20. Subsurface temperatures and geothermal gradients on the north slope of Alaska

    USGS Publications Warehouse

    Collett, T.S.; Bird, K.J.; Magoon, L.B.

    1993-01-01

    On the North Slope of Alaska, geothermal gradient data are available from high-resolution, equilibrated well-bore surveys and from estimates based on well-log identification of the base of ice-bearing permafrost. A total of 46 North Slope wells, considered to be in or near thermal equilibrium, have been surveyed with high-resolution temperatures devices and geothermal gradients can be interpreted directly from these recorded temperature profiles. To augment the limited North Slope temperature data base, a new method of evaluating local geothermal gradients has been developed. In this method, a series of well-log picks for the base of the ice-bearing permafrost from 102 wells have been used, along with regional temperature constants derived from the high-resolution stabilized well-bore temperature surveys, to project geothermal gradients. Geothermal gradients calculated from the high-resolution temperature surveys generally agree with those projected from known ice-bearing permafrost depths over most of the North Slope. Values in the ice-bearing permafrost range from ??? 1.5??C 100 m in the Prudhoe Bay area to ??? 4.5??C 100 m in the east-central portion of the National Petroleum Reserve in Alaska. Geothermal gradients below the ice-bearing permafrost sequence range from ??? 1.6??C 100 m to ??? 5.2??C 100 m. ?? 1993.

  1. Hydrocarbons Emissions Due to Wellbore and other Subsurface Leakage in the Uintah Basin, Utah

    NASA Astrophysics Data System (ADS)

    Watkins, C.; Lyman, S. N.

    2015-12-01

    The explosive growth of oil and gas production in the United States has focused public and regulatory attention on environmental impacts of hydrocarbon extraction, including air quality and climate impacts. One potentially important emissions source is subsurface leakage of natural gas. Better understanding of wellbore and other subsurface leaks are important in providing ways to decrease pollution while increasing the efficiency of oil and gas production. Soil gas measurements carried out by USGS over the last several years in Utah's oil and gas fields have shown that, while concentrations of methane in soils near wells are typically low, soil gas near some wells can contain more than 50% methane. In the summers of 2013-2015 we carried out campaigns to measure the emission rate of methane and other hydrocarbons from soils near wells in the Uintah Basin, Utah. We also measured emissions at several locations on individual well pads and determined that concentrations of hydrocarbons tend to decrease with distance from the well head. Soil emissions were also measured at non-well sites in the same area to determine background emission rates. Emissions from exposed coal, oil shale, gilsonite, and fault zone surfaces were also measured. Relationships of emissions with soil gas concentrations, meteorological conditions, and soil properties were also investigated.

  2. Nanostructural control of methane release in kerogen and its implications to wellbore production decline

    PubMed Central

    Ho, Tuan Anh; Criscenti, Louise J.; Wang, Yifeng

    2016-01-01

    Despite massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix–a limiting step in shale gas extraction. Using molecular simulations, we here show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30–47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3–35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. Our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs. The long-term production decline appears controlled by the second stage of gas release. PMID:27306967

  3. Nanostructural control of methane release in kerogen and its implications to wellbore production decline

    DOE PAGES

    Ho, Tuan Anh; Criscenti, Louise J.; Wang, Yifeng

    2016-06-16

    In spite of the massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix–a limiting step in shale gas extraction. Here we show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30–47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases, and we usemore » molecular simulations to demonstrate it. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3–35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. Finally, our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs. The long-term production decline appears controlled by the second stage of gas release.« less

  4. Effects of seasonal operation on the quality of water produced by public-supply wells.

    PubMed

    Bexfield, Laura M; Jurgens, Bryant C

    2014-09-01

    Seasonal variability in groundwater pumping is common in many places, but resulting effects of seasonal pumping stress on the quality of water produced by public-supply wells are not thoroughly understood. Analysis of historical water-quality samples from public-supply wells completed in deep basin-fill aquifers in Modesto, California (134 wells) and Albuquerque, New Mexico (95 wells) indicates that several wells have seasonal variability in concentrations of contaminants of concern. In Modesto, supply wells are more likely to produce younger groundwater with higher nitrate and uranium concentrations during the summer (high) pumping season than during the winter (low) pumping season. In Albuquerque, supply wells are more likely to produce older groundwater with higher arsenic concentrations during the winter pumping season than during the summer pumping season. Seasonal variability in contaminant concentrations in Modesto is influenced primarily by effects of summer pumping on vertical hydraulic gradients that drive migration of shallow groundwater through the aquifer to supply wells. Variability in Albuquerque is influenced primarily by the period of time that a supply well is idle, allowing its wellbore to act as a conduit for vertical groundwater flow and contaminant migration. However, both processes are observed in each study area. Similar findings would appear to be likely in other alluvial basins with stratified water quality and substantial vertical head gradients. Results suggest that even in aquifers dominated by old groundwater, changes to seasonal pumping patterns and/or to depth of well completion can help reduce vulnerability to selected contaminants of either natural or anthropogenic origin. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  5. Monitoring of well integrity by magnetic imaging defectoscopy (MID) at the Ketzin pilot site, Germany

    NASA Astrophysics Data System (ADS)

    Zemke, Kornelia; Liebscher, Axel; Möller, Fabian

    2017-04-01

    One of the key requirements for safe CO2 storage operation is to ensure wellbore integrity. The CO2 triggered acid in-well environment may lead to pitting and/or surface corrosion and eventually to fatigue of well casings and cementation by this giving raise to wellbore leakage. Corrosion effects are conventionally monitored by measurement of inner casing surface, internal diameter and wall thickness. Caliper logging provides inner surface and internal diameter data while ultrasonic tools measure both the internal diameter and casing thickness as well as the bonding between casing and cement. However, both tools can only monitor and characterize the most inner casing and ultrasonic tools in addition can only be applied in fluid filled wells. At the Ketzin CO2 storage test site, Germany, about 67 kt of CO2 were injected between June 2008 and August 2013 and an interdisciplinary monitoring concept was developed with focus on the storage complex, the overburden, the surface and the wellbores. Four deep wells penetrate the reservoir and their integrity has been monitored by a combination of video inspection, pulsed neutron gamma logging PNG and magnetic imaging defectoscopy MID. MID is an advanced logging method for non-destructive testing and has the great advantages that it can be operated in gas filled boreholes and that it provides information also for outer casings. The MID tool generates electromagnetic pulsed transient eddy currents and records the response of the surrounding media. The distribution and strength of the eddy-currents is then converted into averaged, depth-resolved thicknesses of the individual casings. Run in time-lapse mode, MID provides a measure to detect changes in casing thickness and therefore hints to corrosion. At Ketzin, the four deep wells haven been monitored by repeat MID logging on a roughly annual basis in cooperation with VNG Gasspeicher GmbH (VGS) and GAZPROMENERGODIAGNOSTIKA, applying their in-house MID tool. The MID based depth-resolved casing thickness data clearly image the thickness of at least the two innermost casings and the depth positions of the pipe-connectors and of all downhole installations in perfect agreement with depth data from the drilling reports. Also the transition from steel casing to glass fiber reinforced casing in well Ktzi 203 is well resolved. The MID derived casing thicknesses are within the production specifications and also confirm to the API standards. Comparison between the different time-lapse data sets provides no hints to time dependent changes in casing thickness or to any other signs of corrosion. These results agree with the video inspection of the wells and the investigation of in-situ samples of pulled casing material recovered during abandoned of well Ktzi 202. The Ketzin time-lapse MID data set provides unique field experience on applicability of MID monitoring and longevity of wellbore steel casing under real CO2 storage environment. It thereby substantially improves our knowledge on CCS safety assessment due to the key role of well integrity during the entire storage lifecycle.

  6. Investigating electrokinetics application for in-situ inorganic oil field scale control

    NASA Astrophysics Data System (ADS)

    Hashaykeh, Manal A. I. Albadawi

    Oil well scale formation and deposition is an expensive problem and could be a nightmare for any production engineer if the rate of deposition is rapid as in the case of North Sea oil fields. Inorganic scales accumulate in surface and subsurface equipment causing a reduction in oil production and severe damage for production equipment. The major components of most oil field scale deposits are BaSO4, CaSO4 and SrSO4, which are formed due to incompatible mixing of reservoir formation water and sea water flooded in secondary enhanced oil recovery (EOR) processes. This work focuses on BaSO4 scale as it is one of the toughest scale components to be removed either by chemical means or mechanical means. Scale control methods usually involve complicated treatment using chemical dissolution methods as primary attempt and mechanical scrapping or jetting methods in case of failure of the chemical means. In this work, we devised a novel in-situ scale control method benefiting from the application of direct current (DC) which involves some of the electrokinetic (EK) phenomena. The applications of EK has been proved in our laboratories yielding high efficiency in capturing barium and separating it from sulfate before reaching the production well, thus preventing deposition in the production wellbore or wellbore formation. This objective was evaluated in our lab designed EK apparatus in three parts. In part-1, an 18.5 cm unconsolidated sand core was used which produced inconsistent results. This problem was overcome in part-2, where the porous media involved 46 cm consolidated sandcore. This also partly fulfilled the purpose of upscaling. In part-3, the porous media was extended to a 100 cm spatial distance between the injection and production wells. For all the experiments the reservoir models were made of 125 µm uniform sand particles and followed a final consolidation pressure of 30 psi. The EK-reservoir model contains 2 basic junctions; one of them injecting a 500 ppm SO4 2- solution, representing sulfate rich sea water and the other injecting a 500 ppm Ba2+ solution representing divalent cations rich in formation water and an outlet for water production. In part-1, there were 4 locations for the electrodes, while in part-2 and part-3 there were 5 electrode locations distributed along the spatial distance. Salinity of injection and formation water was varied within a range of 0 to 40,000 ppm. The flow rates of injection and formation water were constant throughout each experiment. In part-1 experiments, the flow rate was 1 ml/min, in part-2 this was increased to 2 ml/min, finally in part-3 this was further increased to 4.3 ml/min. 2 V/cm voltage gradient was applied for all of the experiments. On a real time basis the current, pressure, temperature, and pH of production water were all monitored. Finally, solid samples with scale deposits within were collected from different locations of the flow tubes. To be analyzed using an ICP-MS. The results have demonstrated up to 90% scale mitigation by the application of EK. In addition, there was pressure reduction in the flow tube, which could be justified due to chlorine gas generation at the locations sides creating a stimulation effect due to increased acidity. The observations from this study concluded that the application of EK will attribute to the production efficiency due to less scaling and reducing corrosion of surface equipment. This will attempt to demonstrate the world's first promising technique that could be used to replace expensive solutions which require well closure and incur production interruption loss. However, it is recommended that further extensive studies need to be done to confirm the results and finally design a pilot scale project to validate the lab work.

  7. Apparatus for advancing a wellbore using high power laser energy

    DOEpatents

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  8. Source, Distribution, and Management of Arsenic in Water from Wells, Eastern San Joaquin Ground-Water Subbasin, California

    USGS Publications Warehouse

    Izbicki, John A.; Stamos, Christina L.; Metzger, Loren F.; Halford, Keith J.; Kulp, Thomas R.; Bennett, George L.

    2008-01-01

    Between 1974 and 2001 water from as many as one-third of wells in the Eastern San Joaquin Ground Water Subbasin, about 80 miles east of San Francisco, had arsenic concentrations greater than the U.S. Environmental Protection Agency Maximum Contaminant Level (MCL) for arsenic of 10 micrograms per liter (ug/L). Water from some wells had arsenic concentrations greater than 60 ug/L. The sources of arsenic in the study area include (1) weathering of arsenic bearing minerals, (2) desorption of arsenic associated with iron and manganese oxide coatings on the surfaces of mineral grains at pH's greater than 7.6, and (3) release of arsenic through reductive dissolution of iron and manganese oxide coatings in the absence of oxygen. Reductive dissolution is responsible for arsenic concentrations greater than the MCL. The distribution of arsenic varied areally and with depth. Concentrations were lower near ground-water recharge areas along the foothills of the Sierra Nevada; whereas, concentrations were higher in deeper wells at the downgradient end of long flow paths near the margin of the San Joaquin Delta (fig. 1). Management opportunities to control high arsenic concentrations are present because water from the surface discharge of wells is a mixture of water from the different depths penetrated by wells. On the basis of well-bore flow and depth-dependent water-quality data collected as part of this study, the screened interval of a public-supply well having arsenic concentrations that occasionally exceed the MCL was modified to reduce arsenic concentrations in the surface discharge of the well. Arsenic concentrations from the modified well were about 7 ug/L. Simulations of ground-water flow to the well showed that although upward movement of high-arsenic water from depth within the aquifer occurred, arsenic concentrations from the well are expected to remain below the MCL.

  9. A New Physics-Based Modeling of Multiple Non-Planar Hydraulic Fractures Propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jing; Huang, Hai; Deo, Milind

    Because of the low permeability in shale plays, closely spaced hydraulic fractures and multilateral horizontal wells are generally required to improve production. Therefore, understanding the potential fracture interaction and stress evolution is critical in optimizing fracture/well design and completion strategy in multi-stage horizontal wells. In this paper, a novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple non-planar fractures propagation. The numerical model from Discrete Element Method (DEM) is used to simulate the mechanics of fracture propagations and interactions, while a conjugate irregular lattice network is generated to represent fluid flowmore » in both fractures and formation. The fluid flow in the formation is controlled by Darcy’s law, but within fractures it is simulated by using cubic law for laminar flow through parallel plates. Initiation, growth and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. We investigate the fracture propagation path in both homogeneous and heterogeneous reservoirs using the simulator developed. Stress shadow caused by the transverse fracture will change the orientation of principal stress in the fracture neighborhood, which may inhibit or alter the growth direction of nearby fracture clusters. However, the initial in-situ stress anisotropy often helps overcome this phenomenon. Under large in-situ stress anisotropy, the hydraulic fractures are more likely to propagate in a direction that is perpendicular to the minimum horizontal stress. Under small in-situ stress anisotropy, there is a greater chance for fractures from nearby clusters to merge with each other. Then, we examine the differences in fracture geometry caused by fracturing in cemented or uncemented wellbore. Moreover, the impact of intrinsic reservoir heterogeneity caused by the rock fabric and mineralogy on fracture nucleation and propagation paths is examined through a three-layered reservoir. Finally, we apply the method to a realistic heterogeneous dataset.« less

  10. In situ rock strength and far field stress in the Nankai accretionary complex: Integration of downhole data from multiple wells

    NASA Astrophysics Data System (ADS)

    Huffman, K. A.; Saffer, D. M.

    2014-12-01

    Knowing the magnitude of tectonic stress and rock strength at seismically active margins is important towards understanding fault strength and failure mechanics, yet both are difficult to measure in situ. Recent work at subduction margins, including Integrated Ocean Drilling Program (IODP) Nankai Trough Subduction Zone Experiment (NanTroSEIZE) drillsites, uses the width of compressional wellbore breakouts (BO), which depends on far field stress conditions, rock strength, and borehole annular pressure (APRS), to estimate the magnitude of horizontal principal stresses (SHmax and Shmin); estimates are problematic due to uncertainty in rock strength (unconfined compressive strength/UCS- for which direct measurements are scarce) and rheology that govern stress distribution at the wellbore. We conduct a novel case study at IODP Site C0002, where a hole was drilled twice with different boundary conditions, providing an opportunity to define in situ stress and strength from field data. Site C0002 is the main deep riser borehole for NanTroSEIZE, located near the seaward edge of the Kumano Basin above the seismogenic plate boundary, ~30 km from the trench. Several boreholes were drilled at the site. During IODP Expedition 314 in 2007, Hole C0002A was drilled with a suite of logging while drilling (LWD) tools to 1401 mbsf in a riserless mode. Hole C0002F, ~70 m away, was drilled to 862 mbsf in riserless mode during Exp. 326 in 2010 and deepened to 2005 mbsf in a riser mode during Expedition 338 in 2012-2013. Increased APRS achieved by riser drilling stabilizes the borehole and suppresses BO, consistent with resistivity imaging data from Exp. 314 that document well-developed, continuous BO throughout the borehole, and data from Expedition 338 indicating few BO. We use a semi-Newtonian approach to solve for stress and UCS consistent with the observed BO width and measured APRS in the two holes over the interval from 862-2005 mbsf. Effective SHmax ranges from ~10-30 MPa and indicate a strike-slip or thrust regime. Our results indicate UCS is higher than predicted by empirical relations and a small suite of laboratory tests by as much as 20 MPa. This apparent discrepancy may indicate that the failure criterion, or assumed distribution of stresses around the wellbore in analyses of far field stress, may not be appropriate in this setting.

  11. Conceptual framework and trend analysis of water-level responses to hydrologic stresses, Pahute Mesa–Oasis Valley groundwater basin, Nevada, 1966-2016

    USGS Publications Warehouse

    Jackson, Tracie R.; Fenelon, Joseph M.

    2018-05-31

    This report identifies water-level trends in wells and provides a conceptual framework that explains the hydrologic stresses and factors causing the trends in the Pahute Mesa–Oasis Valley (PMOV) groundwater basin, southern Nevada. Water levels in 79 wells were analyzed for trends between 1966 and 2016. The magnitude and duration of water-level responses to hydrologic stresses were analyzed graphically, statistically, and with water-level models.The conceptual framework consists of multiple stress-specific conceptual models to explain water-level responses to the following hydrologic stresses: recharge, evapotranspiration, pumping, nuclear testing, and wellbore equilibration. Dominant hydrologic stresses affecting water-level trends in each well were used to categorize trends as nonstatic, transient, or steady state.The conceptual framework of water-level responses to hydrologic stresses and trend analyses provide a comprehensive understanding of the PMOV basin and vicinity. The trend analysis links water-level fluctuations in wells to hydrologic stresses and potential factors causing the trends. Transient and steady-state trend categorizations can be used to determine the appropriate water-level data for groundwater studies.

  12. Wellbore manufacturing processes for in situ heat treatment processes

    DOEpatents

    Davidson, Ian Alexander; Geddes, Cameron James; Rudolf, Randall Lynn; Selby, Bruce Allen; MacDonald, Duncan Charles

    2012-12-11

    A method includes making coiled tubing at a coiled tubing manufacturing unit coupled to a coiled tubing transportation system. One or more coiled tubing reels are transported from the coiled tubing manufacturing unit to one or more moveable well drilling systems using the coiled tubing transportation system. The coiled tubing transportation system runs from the tubing manufacturing unit to one or more movable well drilling systems, and then back to the coiled tubing manufacturing unit.

  13. Wellbore inertial directional surveying system

    DOEpatents

    Andreas, R.D.; Heck, G.M.; Kohler, S.M.; Watts, A.C.

    1982-09-08

    A wellbore inertial directional surveying system for providing a complete directional survey of an oil or gas well borehole to determine the displacement in all three directions of the borehole path relative to the well head at the surface. The information generated by the present invention is especially useful when numerous wells are drilled to different geographical targets from a single offshore platform. Accurate knowledge of the path of the borehole allows proper well spacing and provides assurance that target formations are reached. The tool is lowered down into a borehole on an electrical cable. A computer positioned on the surface communicates with the tool via the cable. The tool contains a sensor block which is supported on a single gimbal, the rotation axis of which is aligned with the cylinder axis of the tool and, correspondingly, the borehole. The gyroscope measurement of the sensor block rotation is used in a null-seeking servo loop which essentially prevents rotation of the sensor block about the gimbal axis. Angular rates of the sensor block about axes which are perpendicular to te gimbal axis are measured by gyroscopes in a manner similar to a strapped-down arrangement. Three accelerometers provide acceleration information as the tool is lowered within the borehole. The uphole computer derives position information based upon acceleration information and angular rate information. Kalman estimation techniques are used to compensate for system errors. 25 figures.

  14. Wellbore inertial directional surveying system

    DOEpatents

    Andreas, Ronald D.; Heck, G. Michael; Kohler, Stewart M.; Watts, Alfred C.

    1991-01-01

    A wellbore inertial directional surveying system for providing a complete directional survey of an oil or gas well borehole to determine the displacement in all three directions of the borehole path relative to the well head at the surface. The information generated by the present invention is especially useful when numerous wells are drilled to different geographical targets from a single off-shore platform. Accurate knowledge of the path of the borehole allows proper well spacing and provides assurance that target formations are reached. The tool is lowered down into a borehole on the electrical cable. A computer positioned on the surface communicates with the tool via the cable. The tool contains a sensor block which is supported on a single gimbal, the rotation axis of which is aligned with the cylinder axis of the tool and, correspondingly, the borehole. The gyroscope measurement of the sensor block rotation is used in a null-seeking servo loop which essentially prevents rotation of the sensor block aboutthe gimbal axis. Angular rates of the sensor block about axes which are perpendicular to the gimbal axis are measured by gyroscopes in a manner similar to a strapped-down arrangement. Three accelerometers provide acceleration information as the tool is lowered within the borehole. The uphole computer derives position information based upon acceleration information and anular rate information. Kalman estimation techniques are used to compensate for system errors.

  15. Effect of Random Natural Fractures on Hydraulic Fracture Propagation Geometry in Fractured Carbonate Rocks

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyuan; Wang, Shijie; Zhao, Haiyang; Wang, Lei; Li, Wei; Geng, Yudi; Tao, Shan; Zhang, Guangqing; Chen, Mian

    2018-02-01

    Natural fractures have a significant influence on the propagation geometry of hydraulic fractures in fractured reservoirs. True triaxial volumetric fracturing experiments, in which random natural fractures are created by placing cement blocks of different dimensions in a cuboid mold and filling the mold with additional cement to create the final test specimen, were used to study the factors that influence the hydraulic fracture propagation geometry. These factors include the presence of natural fractures around the wellbore, the dimension and volumetric density of random natural fractures and the horizontal differential stress. The results show that volumetric fractures preferentially formed when natural fractures occurred around the wellbore, the natural fractures are medium to long and have a volumetric density of 6-9%, and the stress difference is less than 11 MPa. The volumetric fracture geometries are mainly major multi-branch fractures with fracture networks or major multi-branch fractures (2-4 fractures). The angles between the major fractures and the maximum horizontal in situ stress are 30°-45°, and fracture networks are located at the intersections of major multi-branch fractures. Short natural fractures rarely led to the formation of fracture networks. Thus, the interaction between hydraulic fractures and short natural fractures has little engineering significance. The conclusions are important for field applications and for gaining a deeper understanding of the formation process of volumetric fractures.

  16. Optimizing Drilling Efficiency by PWD (Pressure-While-Drilling) Sensor in wells which were drilled in the Khazar-Caspian Sea of the Azerbaijan Republic

    NASA Astrophysics Data System (ADS)

    Amirov, Elnur

    2017-04-01

    Sperry Drilling Services' PWD sensor improve and support drilling efficiency by providing very important, real-time downhole pressure information that allows to make faster and better drilling decisions. The PWD service, provides accurate annular pressure, internal pressure and temperature measurements using any of well-known telemetry systems: positive mud pulse, negative mud pulse and electromagnetic. Pressure data can be transmitted in real time and recorded in downhole memory. In the pumpsoff mode, the minimum, maximum and average pressures observed during the non-circulating period are transmitted via mud pulse telemetry when circulation recommences. These measurements provide the knowledge to avoid lost circulation and detect flow/kicks before they happen. The PWD sensor also reduces the risk of problems related by unexpected fracture or collapse. Sperry's PWD sensor also helps to avoid lost circulation and flow/kick, which can lead to costly delays in drilling. Annular pressure increases often reflect ineffective cuttings removal and poor hole cleaning, both of which can lead to lost circulation. The PWD sensor detects the increase and drilling fluid parameters and operating procedures can be modified to improve hole-cleaning efficiency. On extended reach wells, real-time information helps to maintain wellbore pressures between safe operating limits and to monitor hole cleaning. The PWD sensor also provides early detection of well flows and kicks. A drop in pressure, can indicate gas, oil and water kicks. Because the sensor is making its measurement downhole, the PWD sensor makes it possible to detect such pressure drops earlier than more traditional surface measurements. The PWD sensor has high-accuracy quartz gauges and is able to record data because of its battery-powered operation. It is also extremely useful in specialized drilling environments, such as high-pressure/high-temperature, extended-reach and deepwater wells. When combined with the rig management system, surface and downhole measurements, can be compared for more accurate and extensive analysis. PWD sensor was utilized with encouraging results in many wells up to 3000-6000m subsurface reservoirs (these wells were drilled in the Khazar-Caspian region of the Azerbaijan Republic) and acquired PWD RT/RM data implemented for best drilling practices in other brand new drilled offset wells in order to help us achieve our mission to drill safe, faster, on target, optimize drilling efficiency, maximize well value and reservoir insight.

  17. OGS#PETSc approach for robust and efficient simulations of strongly coupled hydrothermal processes in EGS reservoirs

    NASA Astrophysics Data System (ADS)

    Watanabe, Norihiro; Blucher, Guido; Cacace, Mauro; Kolditz, Olaf

    2016-04-01

    A robust and computationally efficient solution is important for 3D modelling of EGS reservoirs. This is particularly the case when the reservoir model includes hydraulic conduits such as induced or natural fractures, fault zones, and wellbore open-hole sections. The existence of such hydraulic conduits results in heterogeneous flow fields and in a strengthened coupling between fluid flow and heat transport processes via temperature dependent fluid properties (e.g. density and viscosity). A commonly employed partitioned solution (or operator-splitting solution) may not robustly work for such strongly coupled problems its applicability being limited by small time step sizes (e.g. 5-10 days) whereas the processes have to be simulated for 10-100 years. To overcome this limitation, an alternative approach is desired which can guarantee a robust solution of the coupled problem with minor constraints on time step sizes. In this work, we present a Newton-Raphson based monolithic coupling approach implemented in the OpenGeoSys simulator (OGS) combined with the Portable, Extensible Toolkit for Scientific Computation (PETSc) library. The PETSc library is used for both linear and nonlinear solvers as well as MPI-based parallel computations. The suggested method has been tested by application to the 3D reservoir site of Groß Schönebeck, in northern Germany. Results show that the exact Newton-Raphson approach can also be limited to small time step sizes (e.g. one day) due to slight oscillations in the temperature field. The usage of a line search technique and modification of the Jacobian matrix were necessary to achieve robust convergence of the nonlinear solution. For the studied example, the proposed monolithic approach worked even with a very large time step size of 3.5 years.

  18. Use of NMR logging to obtain estimates of hydraulic conductivity in the High Plains aquifer, Nebraska, USA

    USGS Publications Warehouse

    Dlubac, Katherine; Knight, Rosemary; Song, Yi-Qiao; Bachman, Nate; Grau, Ben; Cannia, Jim; Williams, John

    2013-01-01

    Hydraulic conductivity (K) is one of the most important parameters of interest in groundwater applications because it quantifies the ease with which water can flow through an aquifer material. Hydraulic conductivity is typically measured by conducting aquifer tests or wellbore flow (WBF) logging. Of interest in our research is the use of proton nuclear magnetic resonance (NMR) logging to obtain information about water-filled porosity and pore space geometry, the combination of which can be used to estimate K. In this study, we acquired a suite of advanced geophysical logs, aquifer tests, WBF logs, and sidewall cores at the field site in Lexington, Nebraska, which is underlain by the High Plains aquifer. We first used two empirical equations developed for petroleum applications to predict K from NMR logging data: the Schlumberger Doll Research equation (KSDR) and the Timur-Coates equation (KT-C), with the standard empirical constants determined for consolidated materials. We upscaled our NMR-derived K estimates to the scale of the WBF-logging K(KWBF-logging) estimates for comparison. All the upscaled KT-C estimates were within an order of magnitude of KWBF-logging and all of the upscaled KSDR estimates were within 2 orders of magnitude of KWBF-logging. We optimized the fit between the upscaled NMR-derived K and KWBF-logging estimates to determine a set of site-specific empirical constants for the unconsolidated materials at our field site. We conclude that reliable estimates of K can be obtained from NMR logging data, thus providing an alternate method for obtaining estimates of K at high levels of vertical resolution.

  19. Development of a Through Tubing (Microhole) Artificial Lift System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steve Bodden

    2006-09-30

    The goal of this project was to develop a small diameter pump system capable of being deployed through existing production tubing strings in oil/gas wells. The pump system would then pump water up an inner tubing string (likely coil tubing) and allow gas to flow in the annulus between the coil tubing and production tubing. Accomplishing this would allow wells that are currently loaded up (unable to flow at high enough rates to lift the fluid out of the wellbore) to continue to produce additional gas/oil reserves. The project was unable to complete a working test system due to unforeseen complexities in coupling the system components together in part due to the small diameter. Although several of the individual components were sourced and secured, coupling them together and getting electricity to the motor proved technically more difficult than expected. Thus, the project is no longer active due primarily to the complications realized in coupling the components and the difficulties in getting electricity to the submersible motor in a slimhole system. The other problem in finishing this project was the lack of financial resources. When the grant was first applied for it was expected that it would be awarded in early 2004. Since the grant was not actually awarded until the end of August 2004, GPS had basically run out ofmore » $$ and the principle developer (Steve Bodden) had to find a full time job which began in late July 2004. When the grant was finally awarded in late August, it was still hoped that the project could proceed as a part time development but with less financial exposure to the partners in GPS. This became very problematic as it still had many technical obstacles to overcome to get it to the stage of prototype testing.« less

  20. Sulfur barrier for use with in situ processes for treating formations

    DOEpatents

    Vinegar, Harold J [Bellaire, TX; Christensen, Del Scot [Friendswood, TX

    2009-12-15

    Methods for forming a barrier around at least a portion of a treatment area in a subsurface formation are described herein. Sulfur may be introduced into one or more wellbores located inside a perimeter of a treatment area in the formation having a permeability of at least 0.1 darcy. At least some of the sulfur is allowed to move towards portions of the formation cooler than the melting point of sulfur to solidify the sulfur in the formation to form the barrier.

  1. Rock mechanics issues in completion and stimulation operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    Rock mechanisms parameters such as the in situ stresses, elastic properties, failure characteristics, and poro-elastic response are important to most completion and stimulation operations. Perforating, hydraulic fracturing, wellbore stability, and sand production are examples of technology that are largely controlled by the rock mechanics of the process. While much research has been performed in these areas, there has been insufficient application that research by industry. In addition, there are new research needs that must be addressed for technology advancement.

  2. Microbial Groundwater Sampling Protocol for Fecal-Rich Environments

    PubMed Central

    Harter, Thomas; Watanabe, Naoko; Li, Xunde; Atwill, Edward R; Samuels, William

    2014-01-01

    Inherently, confined animal farming operations (CAFOs) and other intense fecal-rich environments are potential sources of groundwater contamination by enteric pathogens. The ubiquity of microbial matter poses unique technical challenges in addition to economic constraints when sampling wells in such environments. In this paper, we evaluate a groundwater sampling protocol that relies on extended purging with a portable submersible stainless steel pump and Teflon® tubing as an alternative to equipment sterilization. The protocol allows for collecting a large number of samples quickly, relatively inexpensively, and under field conditions with limited access to capacity for sterilizing equipment. The protocol is tested on CAFO monitoring wells and considers three cross-contamination sources: equipment, wellbore, and ambient air. For the assessment, we use Enterococcus, a ubiquitous fecal indicator bacterium (FIB), in laboratory and field tests with spiked and blank samples, and in an extensive, multi-year field sampling campaign on 17 wells within 2 CAFOs. The assessment shows that extended purging can successfully control for equipment cross-contamination, but also controls for significant contamination of the well-head, within the well casing and within the immediate aquifer vicinity of the well-screen. Importantly, our tests further indicate that Enterococcus is frequently entrained in water samples when exposed to ambient air at a CAFO during sample collection. Wellbore and air contamination pose separate challenges in the design of groundwater monitoring strategies on CAFOs that are not addressed by equipment sterilization, but require adequate QA/QC procedures and can be addressed by the proposed sampling strategy. PMID:24903186

  3. Rapid computation of directional wellbore drawdown in a confined aquifer via Poisson resummation

    NASA Astrophysics Data System (ADS)

    Blumenthal, Benjamin J.; Zhan, Hongbin

    2016-08-01

    We have derived a rapidly computed analytical solution for drawdown caused by a partially or fully penetrating directional wellbore (vertical, horizontal, or slant) via Green's function method. The mathematical model assumes an anisotropic, homogeneous, confined, box-shaped aquifer. Any dimension of the box can have one of six possible boundary conditions: 1) both sides no-flux; 2) one side no-flux - one side constant-head; 3) both sides constant-head; 4) one side no-flux; 5) one side constant-head; 6) free boundary conditions. The solution has been optimized for rapid computation via Poisson Resummation, derivation of convergence rates, and numerical optimization of integration techniques. Upon application of the Poisson Resummation method, we were able to derive two sets of solutions with inverse convergence rates, namely an early-time rapidly convergent series (solution-A) and a late-time rapidly convergent series (solution-B). From this work we were able to link Green's function method (solution-B) back to image well theory (solution-A). We then derived an equation defining when the convergence rate between solution-A and solution-B is the same, which we termed the switch time. Utilizing the more rapidly convergent solution at the appropriate time, we obtained rapid convergence at all times. We have also shown that one may simplify each of the three infinite series for the three-dimensional solution to 11 terms and still maintain a maximum relative error of less than 10-14.

  4. Impact of ductility on hydraulic fracturing in shales

    NASA Astrophysics Data System (ADS)

    MacMinn, Chris; Auton, Lucy

    2016-04-01

    Hydraulic fracturing is a method for extracting natural gas and oil from low-permeability rocks such as shale via the high-pressure injection of fluid into the bulk of the rock. The goal is to initiate and propagate fractures that will provide hydraulic access deeper into the reservoir, enabling gas or oil to be collected from a larger region of the rock. Fracture is the tensile failure of a brittle material upon reaching a threshold tensile stress, but some shales have a high clay content and may yield plastically before fracturing. Plastic deformation is the shear failure of a ductile material, during which stress relaxes through irreversible rearrangements of the particles of the material. Here, we investigate the impact of the ductility of shales on hydraulic fracturing. We first consider a simple, axisymmetric model for radially outward fluid injection from a wellbore into a ductile porous rock. We use this model to show that plastic deformation greatly reduces the maximum tensile stress, and that this maximum stress does not always occur at the wellbore. We then complement these results with laboratory experiments in an analogue system, and with numerical simulations based on the discrete element method (DEM), both of which suggest that ductile failure can indeed dramatically change the resulting deformation pattern. These results imply that hydraulic fracturing may fail in ductile rocks, or that the required injection rate for fracking may be much larger than the rate predicted from models that assume purely elastic mechanical behavior.

  5. Assessment of the Available Drawdowns for Oil Storage Caverns at the West Hackberry SPR Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolik, Steven R.

    The Department of Energy, in response to requests from the U.S. Congress, wishes to maintain an up-to-date table documenting the number of available full drawdowns of each of the caverns owned by the Strategic Petroleum Reserve. This information is important for assessing the SPR’s ability to deliver oil to domestic oil companies expeditiously if national or world events dictate a rapid sale and deployment of the oil reserves. What factors go into assessing available drawdowns? The evaluation of drawdown risks require the consideration of several factors regarding cavern and wellbore integrity and stability, including stress states caused by cavern geometrymore » and operations, salt damage caused by dilatant and tensile stresses, the effect on enhanced creep on wellbore integrity, the sympathetic stress effect of operations on neighboring caverns. Based on the work over the past several months, a consensus has been built regarding the assessment of drawdown capabilities and risks for the SPR caverns. This paper draws upon the recently West Hackberry model upgrade and analyses to reevaluate and update the available drawdowns for each of those caverns. Similar papers for the Bryan Mound, Big Hill, and Bayou Choctaw papers will be developed as the upgrades to those analyses are completed. The rationale and documentation of the methodology is described in the remainder of this report, as are the updated estimates of available drawdowns for the West Hackberry caverns.« less

  6. Microseismic monitoring of CO2 injection at the Penn West Enhanced Oil Recovery pilot project, Canada: implications for detection of wellbore leakage.

    PubMed

    Martínez-Garzón, Patricia; Bohnhoff, Marco; Kwiatek, Grzegorz; Zambrano-Narváez, Gonzalo; Chalaturnyk, Rick

    2013-09-02

    A passive seismic monitoring campaign was carried out in the frame of a CO2-Enhanced Oil Recovery (EOR) pilot project in Alberta, Canada. Our analysis focuses on a two-week period during which prominent downhole pressure fluctuations in the reservoir were accompanied by a leakage of CO2 and CH4 along the monitoring well equipped with an array of short-period borehole geophones. We applied state of the art seismological processing schemes to the continuous seismic waveform recordings. During the analyzed time period we did not find evidence of induced micro-seismicity associated with CO2 injection. Instead, we identified signals related to the leakage of CO2 and CH4, in that seven out of the eight geophones show a clearly elevated noise level framing the onset time of leakage along the monitoring well. Our results confirm that micro-seismic monitoring of reservoir treatment can contribute towards improved reservoir monitoring and leakage detection.

  7. Development of a General Form CO 2 and Brine Flux Input Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansoor, K.; Sun, Y.; Carroll, S.

    2014-08-01

    The National Risk Assessment Partnership (NRAP) project is developing a science-based toolset for the quantitative analysis of the potential risks associated with changes in groundwater chemistry from CO 2 injection. In order to address uncertainty probabilistically, NRAP is developing efficient, reduced-order models (ROMs) as part of its approach. These ROMs are built from detailed, physics-based process models to provide confidence in the predictions over a range of conditions. The ROMs are designed to reproduce accurately the predictions from the computationally intensive process models at a fraction of the computational time, thereby allowing the utilization of Monte Carlo methods to probemore » variability in key parameters. This report presents the procedures used to develop a generalized model for CO 2 and brine leakage fluxes based on the output of a numerical wellbore simulation. The resulting generalized parameters and ranges reported here will be used for the development of third-generation groundwater ROMs.« less

  8. Microseismic Monitoring of CO2 Injection at the Penn West Enhanced Oil Recovery Pilot Project, Canada: Implications for Detection of Wellbore Leakage

    PubMed Central

    Martínez-Garzón, Patricia; Bohnhoff, Marco; Kwiatek, Grzegorz; Zambrano-Narváez, Gonzalo; Chalaturnyk, Rick

    2013-01-01

    A passive seismic monitoring campaign was carried out in the frame of a CO2-Enhanced Oil Recovery (EOR) pilot project in Alberta, Canada. Our analysis focuses on a two-week period during which prominent downhole pressure fluctuations in the reservoir were accompanied by a leakage of CO2 and CH4 along the monitoring well equipped with an array of short-period borehole geophones. We applied state of the art seismological processing schemes to the continuous seismic waveform recordings. During the analyzed time period we did not find evidence of induced micro-seismicity associated with CO2 injection. Instead, we identified signals related to the leakage of CO2 and CH4, in that seven out of the eight geophones show a clearly elevated noise level framing the onset time of leakage along the monitoring well. Our results confirm that micro-seismic monitoring of reservoir treatment can contribute towards improved reservoir monitoring and leakage detection. PMID:24002229

  9. Optimizing Monitoring Designs under Alternative Objectives

    DOE PAGES

    Gastelum, Jason A.; USA, Richland Washington; Porter, Ellen A.; ...

    2014-12-31

    This paper describes an approach to identify monitoring designs that optimize detection of CO2 leakage from a carbon capture and sequestration (CCS) reservoir and compares the results generated under two alternative objective functions. The first objective function minimizes the expected time to first detection of CO2 leakage, the second more conservative objective function minimizes the maximum time to leakage detection across the set of realizations. The approach applies a simulated annealing algorithm that searches the solution space by iteratively mutating the incumbent monitoring design. The approach takes into account uncertainty by evaluating the performance of potential monitoring designs across amore » set of simulated leakage realizations. The approach relies on a flexible two-tiered signature to infer that CO2 leakage has occurred. This research is part of the National Risk Assessment Partnership, a U.S. Department of Energy (DOE) project tasked with conducting risk and uncertainty analysis in the areas of reservoir performance, natural leakage pathways, wellbore integrity, groundwater protection, monitoring, and systems level modeling.« less

  10. Characterizing Reactive Flow Paths in Fractured Cement

    NASA Astrophysics Data System (ADS)

    Wenning, Q. C.; Huerta, N. J.; Hesse, M. A.; Bryant, S. L.

    2011-12-01

    Geologic carbon sequestration can be a viable method for reducing anthropogenic CO2 flux into the atmosphere. However, the technology must be economically feasible and pose acceptable risk to stakeholders. One key risk is CO2 leakage out of the storage reservoir. Potential driving forces for leakage are the overpressure due to CO2 injection and the buoyancy of free phase CO2. Potential hazards of leakage are contamination of Underground Sources of Drinking Water or the atmosphere and would be deemed an unacceptable risk. Wells potentially provide a fast path for leakage from the reservoir. While the well's cement casing is reactive with CO2 and CO2-saturated brine, the low cement matrix permeability and slow diffusion rate make it unlikely that CO2 will escape through a properly constructed wellbore. However, highly permeable fractures with micrometer scale apertures can occur in cement casings. Reactions that occur in the flow in these fractures can either be self-limiting or self-enhancing. Therefore, understanding the reactive flow is critical to understanding of leakage evolution through these fractures. The goal of our work is to characterize the modification of the flow paths in the fracture due to reaction with acidic brine. With this aim we have characterized both the initial flow path of un-reactive flow and the final flow path after introduction of low-pH acid along the same fracture. Class H cement cores 3-6 cm in length and 2.5 cm diameter are created and a single natural and unique fracture is produced in each core using the Brazilian method. Our experimental fluid is injected at a constant rate into the cement core housed in a Hassler Cell under confining pressure. A solution of red dye and deionized water is pumped through the fracture to stain the un-reactive flow paths. Deionized water is then pumped through the core to limit diffusion of the dye into non-flowing portions of the fracture. After staining the initial flow path, low pH water due to hydrochloric acid (HCL), is pumped through the core at the same rate as the dye. The low pH water is used as a proxy for acidic CO2-saturated brine. Both staining from the un-reactive dye and acid produce visible permanent color alterations on the cement fracture plane. Results show that nearly the entire fracture width is stained by the red dye, with only a few asperities un-dyed. However the low pH HCl forms restricted reacted channels that are a subset of the area open to un-reactive flow, occupying only 10-50% of the entire fracture width. Low pH HCl is believed to be the driving force for the reaction that causes channeling. As acid flows through the fracture, calcium is stripped from the low pH high velocity flow front and precipitates along of the edges of the channel where pH is higher due to the lower flow velocities outside the channel. It is hypothesized that this mineral precipitation restricts the flow into localized channels within the plane of fractures having apertures of tens of micrometers. Reactions restrict the flow path to a smaller fraction of the surface, which may be an indication of self-limiting behavior.

  11. Reactive Transport Models with Geomechanics to Mitigate Risks of CO2 Utilization and Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deo, Milind; Huang, Hai; Kweon, Hyukmin

    2016-03-28

    Reactivity of carbon dioxide (CO 2), rocks and brine is important in a number of practical situations in carbon dioxide sequestration. Injectivity of CO 2 will be affected by near wellbore dissolution or precipitation. Natural fractures or faults containing specific minerals may reactivate leading to induced seismicity. In this project, we first examined if the reactions between CO 2, brine and rocks affect the nature of the porous medium and properties including petrophysical properties in the timeframe of the injection operations. This was done by carrying out experiments at sequestration conditions (2000 psi for corefloods and 2400 psi for batchmore » experiments, and 600°C) with three different types of rocks – sandstone, limestone and dolomite. Experiments were performed in batch mode and corefloods were conducted over a two-week period. Batch experiments were performed with samples of differing surface area to understand the impact of surface area on overall reaction rates. Toughreact, a reactive transport model was used to interpret and understand the experimental results. The role of iron in dissolution and precipitation reactions was observed to be significant. Iron containing minerals – siderite and ankerite dissolved resulting in changes in porosity and permeability. Corefloods and batch experiments revealed similar patterns. With the right cationic balance, there is a possibility of precipitation of iron bearing carbonates. The results indicate that during injection operations mineralogical changes may lead to injectivity enhancements near the wellbore and petrophysical changes elsewhere in the system. Limestone and dolomite cores showed consistent dissolution at the entrance of the core. The dissolution led to formation of wormholes and interconnected dissolution zones. Results indicate that near wellbore dissolution in these rock-types may lead to rock failure. Micro-CT images of the cores before and after the experiments revealed that an initial high-permeability pathway facilitated the formation of wormholes. The peak cation concentrations and general trends were matched using Toughreact. Batch reactor modeling showed that the geometric factors obtained using powder data that related effective surface area to the BET surface area had to be reduced for fractured samples and cores. This indicates that the available surface area in consolidated samples is lower than that deduced from powder experiments. Field-scale modeling of reactive transport and geomechanics was developed in parallel at Idaho National Laboratory. The model is able to take into account complex chemistry, and consider interactions of natural fractures and faults. Poroelastic geomechanical considerations are also included in the model.« less

  12. Role of Geomechanics in Assessing the Feasibility of CO2 Sequestration in Depleted Hydrocarbon Sandstone Reservoirs

    NASA Astrophysics Data System (ADS)

    Fang, Zhi; Khaksar, Abbas

    2013-05-01

    Carbon dioxide (CO2) sequestration in depleted sandstone hydrocarbon reservoirs could be complicated by a number of geomechanical problems associated with well drilling, completions, and CO2 injection. The initial production of hydrocarbons (gas or oil) and the resulting pressure depletion as well as associated reduction in horizontal stresses (e.g., fracture gradient) narrow the operational drilling mud weight window, which could exacerbate wellbore instabilities while infill drilling. Well completions (casing, liners, etc.) may experience solids flowback to the injector wells when injection is interrupted due to CO2 supply or during required system maintenance. CO2 injection alters the pressure and temperature in the near wellbore region, which could cause fault reactivation or thermal fracturing. In addition, the injection pressure may exceed the maximum sustainable storage pressure, and cause fracturing and fault reactivation within the reservoirs or bounding formations. A systematic approach has been developed for geomechanical assessments for CO2 storage in depleted reservoirs. The approach requires a robust field geomechanical model with its components derived from drilling and production data as well as from wireline logs of historical wells. This approach is described in detail in this paper together with a recent study on a depleted gas field in the North Sea considered for CO2 sequestration. The particular case study shows that there is a limitation on maximum allowable well inclinations, 45° if aligning with the maximum horizontal stress direction and 65° if aligning with the minimum horizontal stress direction, beyond which wellbore failure would become critical while drilling. Evaluation of sanding risks indicates no sand control installations would be needed for injector wells. Fracturing and faulting assessments confirm that the fracturing pressure of caprock is significantly higher than the planned CO2 injection and storage pressures for an ideal case, in which the total field horizontal stresses increase with the reservoir re-pressurization in a manner opposite to their reduction with the reservoir depletion. However, as the most pessimistic case of assuming the total horizontal stresses staying the same over the CO2 injection, faulting could be reactivated on a fault with the least favorable geometry once the reservoir pressure reaches approximately 7.7 MPa. In addition, the initial CO2 injection could lead to a high risk that a fault with a cohesion of less than 5.1 MPa could be activated due to the significant effect of reduced temperature on the field stresses around the injection site.

  13. Using open hole and cased-hole resistivity logs to monitor gas hydrate dissociation during a thermal test in the mallik 5L-38 research well, Mackenzie Delta, Canada

    USGS Publications Warehouse

    Anderson, B.I.; Collett, T.S.; Lewis, R.E.; Dubourg, I.

    2008-01-01

    Gas hydrates, which are naturally occurring ice-like combinations of gas and water, have the potential to provide vast amounts of natural gas from the world's oceans and polar regions. However, producing gas economically from hydrates entails major technical challenges. Proposed recovery methods such as dissociating or melting gas hydrates by heating or depressurization are currently being tested. One such test was conducted in northern Canada by the partners in the Mallik 2002 Gas Hydrate Production Research Well Program. This paper describes how resistivity logs were used to determine the size of the annular region of gas hydrate dissociation that occurred around the wellbore during the thermal test in the Mallik 5L-38 well. An open-hole logging suite, run prior to the thermal test, included array induction, array laterolog, nuclear magnetic resonance and 1.1-GHz electromagnetic propagation logs. The reservoir saturation tool was run both before and after the thermal test to monitor formation changes. A cased-hole formation resistivity log was run after the test.Baseline resistivity values in each formation layer (Rt) were established from the deep laterolog data. The resistivity in the region of gas hydrate dissociation near the wellbore (Rxo) was determined from electromagnetic propagation and reservoir saturation tool measurements. The radius of hydrate dissociation as a function of depth was then determined by means of iterative forward modeling of cased-hole formation resistivity tool response. The solution was obtained by varying the modeled dissociation radius until the modeled log overlaid the field log. Pretest gas hydrate production computer simulations had predicted that dissociation would take place at a uniform radius over the 13-ft test interval. However, the post-test resistivity modeling showed that this was not the case. The resistivity-derived dissociation radius was greatest near the outlet of the pipe that circulated hot water in the wellbore, where the highest temperatures were recorded. The radius was smallest near the center of the test interval, where a conglomerate section with low values of porosity and permeability inhibited dissociation. The free gas volume calculated from the resistivity-derived dissociation radii yielded a value within 20 per cent of surface gauge measurements. These results show that the inversion of resistivity measurements holds promise for use in future gas hydrate monitoring. ?? 2008 Society of Petrophysicists and Well Log Analysts. All rights reserved.

  14. Successful Multi-Leg Completion of KS-13 ML-1 & Increased Power Generation of Puna Geothermal Venture (PGV), Hawai'i

    NASA Astrophysics Data System (ADS)

    Drakos, P. S.; Spielman, P.; Peters, B.

    2017-12-01

    Located in the Puna district on the Big Island in Hawaii, Puna Geothermal Venture (PGV) is the only geothermal power plant in the state. PGV is comprised of two air-cooled power plants with a total generating capacity of 38 MW. Commercial operation commenced in 1993 and the project was acquired by Ormat in June 2004. Over the years, generation has increased by upgrading the plant through resource development and with the addition of a bottoming OEC (Ormat Energy Converter) in 2011. The geothermal reservoir at PGV is hosted within a step-over along the axis of the Kilauea Lower East Rift Zone (LERZ). Subsurface permeability at PGV is controlled by sub-vertical and rift-parallel fractures/faults and dike swarms which are the result of active tectonic dilation across the rift and shallow volcanic activity related to Kilauea. At PGV, the location and attitude of these fractures are well constrained at depth by drilling to be orientated at N63°E and dipping at 5° NW. These fractures are aligned en-echelon and form a major left-step along the rift axis which results in a localized zone of enhanced dilation. In 2016, a program was initiated to increase injection capacity and enthalpy in the PGV wellfield. Existing injection well KS-13 was selected as a candidate for re-drill based on a comprehensive resource model and reservoir modeling predictions. KS-13 ML1 was designed as a multi-leg completion from the existing KS-13 well, whereby the final completion is a forked well composed of the original wellbore and the newly completed second wellbore. The target area for the new multi-leg (ML) were large aperture, steeply dipping fractures associated with the 1955 eruptive fissure. Well KS-13 ML1 was drilled using PGV's Rig and a retrievable whipstock to mill a casing exit window. With the original wellbore temporarily plugged, a multi-rate water loss test was performed and an injectivity of 6 gpm/psi was measured. Following the removal of the whipstock ramp and packer from the original hole a 2nd test was performed on both KS-13+KS-13ML1. An injectivity of 7.2 gpm/psi was measured. KS-13 injection tripled from 600 kph prior to the redrill to 1800 kph afterward, and allowed an injection well that was cooling production to be shut in. This increased production enthalpy from 500 Btu/lbm to 580 Btu/lbm and available plant output increased 41% from 27 to 38 MW.

  15. Borehole instability analysis for IODP Site C0002 of the NanTroSEIZE Project, Nankai Trough subduction zone

    NASA Astrophysics Data System (ADS)

    Wu, H.; Kido, Y. N.; Kinoshita, M.; Saito, S.

    2013-12-01

    Wellbore instability is a major challenge for the engineer evaluating borehole and formation conditions. Instability is especially important to understand in areas with high stress variations, significant structure anisotropy, or pre-existing fracture systems. Borehole (in)stability is influenced by rock strength, structural properties, and near-field principal stresses. During drilling, the borehole conditions also impact borehole integrity. Factors that we can measure in the borehole during with logging while drilling (LWD) to understand these conditions include mud weight, mud loss, ROP (Rate of Penetration), RPM (Rotation Per Minute), WOB (Weight on Bit), and TORQ (Power swivel torque value). We conducted borehole instability analysis for Site C0002 of the Nankai Trough transect based on riser and riserless drilling during IODP Expedition 338. The borehole shape, determined from LWD resistivity images, indicates that most of drilling occurred in stable environments, however, in a few instances the bottom hole assembly became stuck. We used our stress profile model to evaluate the mud weight required to drill a stable borehole for the estimated rock strength and physical properties. Based on our analysis, we interpret that borehole instability during IODP Expedition 338 may have been caused by weak bedding plane and fluid overpressure state. Future work with this model will investigate the roles of these conditions.

  16. The linkage between fluvial meander-belt morphodynamics and the depositional record improves paleoenvironmental interpretations, Western Interior Basin, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Durkin, P.; Hubbard, S. M.

    2016-12-01

    Enhanced stratigraphic interpretations are possible when linkages between morphodynamic processes and the depositional record are resolved. Recent studies of modern and ancient meander-belt deposits have emphasized morphodynamic processes that are commonly understated in the analysis of stratigraphic products, such as intra-point bar erosion and rotation, counter-point-bar (concave bank-bench) development and meander-bend abandonment. On a larger scale, longitudinal changes in meander-belt morphology and processes such as changes in meander-bend migration rate, channel-belt width/depth ratio and sinuosity have been observed as rivers flow through the tidal backwater zone. However, few studies have attempted to recognize the impact of the backwater zone in the stratigraphic record. We consider ancient meander-belt deposits of the Cretaceous McMurray Formation and document linkages between morphodynamic processes and their stratigraphic product to resolve more detailed paleoenvironmental interpretations. The ancient meander belt was characterized by paleochannels that were 600 m wide and up to 50 m deep, resolved in a particularly high quality subsurface dataset consisting of 600 km2 of high-quality 3-D seismic data and over 1000 wellbores. A 3-D geocellular model and reconstructed paleochannel migration patterns reveal the evolutionary history of seventeen individual meander belt elements, including point bars, counter point bars and their associated abandoned channel fills. At the meander-bend scale, intra-point-bar erosion surfaces bound accretion packages characterized by unique accretion directions, internal stratigraphic architecture and lithologic properties. Erosion surfaces and punctuated bar rotation are linked to upstream changes in channel planform geometry (meander cut-offs). We provide evidence for downstream translation and development of counter-point bars that formed in response to valley-edge and intra-meander-belt confinement. At the meander-belt scale, analysis of changes in morphology over time reveal a decrease in channel-belt width/thickness ratio and sinuosity, which we attribute to the landward migration of the paleo-backwater limit due to the oncoming and overlying transgression of the Cretaceous Boreal Sea into the Western Interior Basin.

  17. Controlling Fluid Flow in the Subsurface through Ureolysis-Controlled Mineral Precipitation

    NASA Astrophysics Data System (ADS)

    Gerlach, R.; Phillips, A. J.; Cunningham, A. B.; Spangler, L.

    2016-12-01

    In situ urea hydrolysis has been used by us successfully to manipulate the carbonate alkalinity and control the precipitation of carbonate minerals. Urea hydrolysis can be promoted using microbial cells, enzymes or thermal energy. This technology can be used to mitigate leakage pathways, seal fractures or control fluid transport in the subsurface in hydrocarbon production, enhanced geothermal energy storage, carbon sequestration, nuclear waste disposal, etc. We have completed two field demonstrations of the urea hydrolysis-controlled in situ mineral precipitation technology. The first demonstration showed fracture sealing was possible in a sandstone formation approx. 1120' below ground surface (bgs) and that the fracture had increased resistance to re-fracturing after mineralization treatment. The second field demonstration was performed in a well with an identified channel in the cement near the wellbore at approx. 1020' bgs. The in situ mineralization treatment resulted in reduced pressure decay during shut in periods and reduced injectivity. In addition, a noticeable difference was observed in the solids percentage in the ultrasonic imaging logs before and after biomineralization treatment. The presentation will summarize and put into context the field and our recent laboratory research focusing on permeability manipulation using the in situ ureolysis-driven mineralization technology under ambient and subsurface pressure conditions. We have demonstrated permeability reductions of 3-6 orders of magnitude in 100 µm to 4mm gaps between shale, sandstone and cement/steel interfaces.

  18. Spatio-Temporal Self-Organization in Mudstones (Invited)

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.

    2010-12-01

    Shales and other mudstones are the most abundant rock types in sedimentary basins, yet have received comparatively little attention. Common as hydrocarbon seals, these are increasingly being targeted as unconventional gas reservoirs, caprocks for CO2 sequestration, and storage repositories for waste. The small pore and grain size, large specific surface areas, and clay mineral structures lend themselves to rapid reaction rates, high capillary pressures, and semi-permeable membrane behavior accompanying changes in stress, pressure, temperature and chemical conditions. Under far from equilibrium conditions, mudrocks display a variety of spatio-temporal self-organized phenomena arising from nonlinear thermo-mechano-chemo-hydro coupling. Beginning with a detailed examination of nano-scale pore network structures in mudstones, we discuss the dynamics behind such self-organized phenomena as pressure solitons in unconsolidated muds, chemically-induced flow self focusing and permeability transients, localized compaction, time dependent well-bore failure, and oscillatory osmotic fluxes as they occur in clay-bearing sediments. Examples are draw from experiments, numerical simulation, and the field. These phenomena bear on the ability of these rocks to serve as containment barriers. This work is funded by the US Department of Energy, Office of Basic Energy Sciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000

  19. Long-term fate of hydrate-bearing reservoirs during and after production

    NASA Astrophysics Data System (ADS)

    Reagan, M. T.; Moridis, G. J.; Queiruga, A. F.

    2016-12-01

    Research into the development of feasible production strategies from gas hydrate reservoirs has largely assumed that such reservoirs are bounded by impermeable layers and free of connectivity to faults or fractures. Coupled flow-geomechnical studies have investgated wellbore and overburden stability during production, but have not answered questions about the post-production evolution of such reservoirs. This study investigates, via reservoir simulation, the possibility and potential consequences of uncontrolled gas release during production from hydrates by any of the known dissociation methods (with an emphasis on depressurization). We investigate the possibility of the free gas created by hydrate dissociation escaping along permeable faults, permeable boundaries, or other pathways adjacent to or intercepting the hydrate reservoir. We also investigate the long-term fate and transport of free gas upon the cessation of production operations in both in the presence and absence of permeable features. This work answers questions about the long-term fate of hydrate-bearing sediments, including (a) whether the cessation of production will be followed by considerable hydrate dissociation that lingers for a substantial time, (b) the potential for hydrate reformation after production to be a hazard-mitigating process, (c) the effect of common reservoir parameters and the buoyancy of the released gas on its transport through the subsurface, and (d) the possibility of significant gas emergence at environmentally sensitive locations.

  20. A three-dimensional semianalytical model of hydraulic fracture growth through weak barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luiskutty, C.T.; Tomutes, L.; Palmer, I.D.

    1989-08-01

    The goal of this research was to develop a fracture model for length/height ratio {le}4 that includes 2D flow (and a line source corresponding to the perforated interval) but makes approximations that allow a semianalytical solution, with large computer-time savings over the fully numerical mode. The height, maximum width, and pressure at the wellbore in this semianalytical model are calculated and compared with the results of the fully three-dimensional (3D) model. There is reasonable agreement in all parameters, the maximum discrepancy being 24%. Comparisons of fracture volume and leakoff volume also show reasonable agreement in volume and fluid efficiencies. Themore » values of length/height ratio, in the four cases in which agreement is found, vary from 1.5 to 3.7. The model offers a useful first-order (or screening) calculation of fracture-height growth through weak barriers (e.g., low stress contrasts). When coupled with the model developed for highly elongated fractures of length/height ratio {ge}4, which are also found to be in basic agreement with the fully numerical model, this new model provides the capability for approximating fracture-height growth through barriers for vertical fracture shapes that vary from penny to highly elongated. The computer time required is estimated to be less than the time required for the fully numerical model by a factor of 10 or more.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veedu, Vinod; Hadmack, Michael; Pollock, Jacob

    Nanite™ is a cementitious material that contains a proprietary formulation of functionalized nanomaterial additive to transform conventional cement into a smart material responsive to pressure (or stress), temperature, and any intrinsic changes in composition. This project has identified optimal sensing modalities of smart well cement and demonstrated how real-time sensing of Nanite™ can improve long-term wellbore integrity and zonal isolation in shale gas and applicable oil and gas operations. Oceanit has explored Nanite’s electrical sensing properties in depth and has advanced the technology from laboratory proof-of-concept to sub-scale testing in preparation for field trials.

  2. Acoustic emission characterization of microcracking in laboratory-scale hydraulic fracturing tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampton, Jesse; Gutierrez, Marte; Matzar, Luis

    Understanding microcracking near coalesced fracture generation is critically important for hydrocarbon and geothermal reservoir characterization as well as damage evaluation in civil engineering structures. Dense and sometimes random microcracking near coalesced fracture formation alters the mechanical properties of the nearby virgin material. Individual microcrack characterization is also significant in quantifying the material changes near the fracture faces (i.e. damage). Acoustic emission (AE) monitoring and analysis provide unique information regarding the microcracking process temporally, and information concerning the source characterization of individual microcracks can be extracted. In this context, laboratory hydraulic fracture tests were carried out while monitoring the AEs frommore » several piezoelectric transducers. In-depth post-processing of the AE event data was performed for the purpose of understanding the individual source mechanisms. Several source characterization techniques including moment tensor inversion, event parametric analysis, and volumetric deformation analysis were adopted. Post-test fracture characterization through coring, slicing and micro-computed tomographic imaging was performed to determine the coalesced fracture location and structure. Distinct differences in fracture characteristics were found spatially in relation to the openhole injection interval. Individual microcrack AE analysis showed substantial energy reduction emanating spatially from the injection interval. Lastly, it was quantitatively observed that the recorded AE signals provided sufficient information to generalize the damage radiating spatially away from the injection wellbore.« less

  3. Acoustic emission characterization of microcracking in laboratory-scale hydraulic fracturing tests

    DOE PAGES

    Hampton, Jesse; Gutierrez, Marte; Matzar, Luis; ...

    2018-06-11

    Understanding microcracking near coalesced fracture generation is critically important for hydrocarbon and geothermal reservoir characterization as well as damage evaluation in civil engineering structures. Dense and sometimes random microcracking near coalesced fracture formation alters the mechanical properties of the nearby virgin material. Individual microcrack characterization is also significant in quantifying the material changes near the fracture faces (i.e. damage). Acoustic emission (AE) monitoring and analysis provide unique information regarding the microcracking process temporally, and information concerning the source characterization of individual microcracks can be extracted. In this context, laboratory hydraulic fracture tests were carried out while monitoring the AEs frommore » several piezoelectric transducers. In-depth post-processing of the AE event data was performed for the purpose of understanding the individual source mechanisms. Several source characterization techniques including moment tensor inversion, event parametric analysis, and volumetric deformation analysis were adopted. Post-test fracture characterization through coring, slicing and micro-computed tomographic imaging was performed to determine the coalesced fracture location and structure. Distinct differences in fracture characteristics were found spatially in relation to the openhole injection interval. Individual microcrack AE analysis showed substantial energy reduction emanating spatially from the injection interval. Lastly, it was quantitatively observed that the recorded AE signals provided sufficient information to generalize the damage radiating spatially away from the injection wellbore.« less

  4. Stress heterogeneity above and within a deep geothermal reservoir: From borehole observations to geomechanical modelling

    NASA Astrophysics Data System (ADS)

    Seithel, Robin; Peters, Max; Lesueur, Martin; Kohl, Thomas

    2017-04-01

    Overpressured reservoir conditions, local stress concentrations or a locally rotated stress field can initiate substantial problems during drilling or reservoir exploitation. Increasing geothermal utilization in the Molasse basin area in S-Germany is faced with such problems of deeply seated reservoir sections. In several wells, radial fluid flow systems are interpreted as highly porous layers. However, in nearby wells a combination of linear fluid flow, local stress heterogeneities and structural geology hint to a rather fault dominated reservoir (Seithel et al. 2015). Due to missing knowledge of the stress magnitude, stress orientation and their coupling to reservoir response, we will present a THMC model of critical formations and the geothermal reservoir targeting nearby faults. In an area south of Munich, where several geothermal wells are constructed, such wells are interpreted and integrated into a 30 x 30 km simulated model area. One of the main objectives here is to create a geomechanical reservoir model in a thermo-mechanical manner in order to understand the coupling between reservoir heterogeneities and stress distributions. To this end, stress analyses of wellbore data and laboratory tests will help to calibrate a reliable model. In order to implement the complex geological structure of the studied wedge-shaped foreland basin, an automatic export of lithology, fault and borehole data (e.g. from Petrel) into a FE mesh is used. We will present a reservoir-scale model that considers thermo-mechanic effects and analyze their influence on reservoir deformation, fluid flow and stress concentration. We use the currently developed finite element application REDBACK (https://github.com/pou036/redback), inside the MOOSE framework (Poulet et al. 2016). We show that mechanical heterogeneities nearby fault zones and their orientation within the stress field correlate to fracture pattern, interpreted stress heterogeneities or variegated flow systems within the reservoir. REFERENCES Poulet, T.; Paesold, M.; Veveakis, M. (2016), Multi-Physics Modelling of Fault Mechanics Using REDBACK. A Parallel Open-Source Simulator for Tightly Coupled Problems. Rock Mechanics and Rock Engineering. doi: 10.1007/s00603-016-0927-y. Seithel, R.; Steiner, U.; Müller, B.I.R.; Hecht, Ch.; Kohl, T. (2015), Local stress anomaly in the Bavarian Molasse Basin, Geothermal Energy 3(1), p.77. doi:10.1186/s40517-014-0023-z

  5. Downhole Measurements of Electrokinetic Potential to Monitor Flow in Oilfields

    NASA Astrophysics Data System (ADS)

    Saunders, J.; Jackson, M.; Pain, C.; Addiego-Guevara, E.

    2005-12-01

    Oil companies currently produce an average of three barrels of water for each barrel of oil, which is expensive and environmentally unfriendly: the produced water is contaminated and must be treated and disposed of carefully. Ideally, water production would be prevented or minimised by monitoring its movement within the reservoir and responding appropriately. We suggest that measurements of electrokinetic (or ' streaming') potential during oil production, using permanently installed downhole electrodes, could be used to monitor water encroachment towards a well before water breakthrough occurs. Electrokinetic potentials are generated when fluids flow through rock, and although they are increasingly being used in other areas of earth science to monitor subsurface flows, there has been little investigation of their utility in hydrocarbon reservoirs. We have used a new numerical model to simulate the electrokinetic potential measured at a well during oil production, with reservoir pressure maintained by water injection or aquifer influx. Our results suggest that encroaching water causes changes in the electrokinetic potential at the well which could be resolved above background electrical noise; indeed, water approaching the well could be monitored several 10s to 100s of metres away. Our results differ from those obtained previously, because we include the results of recent laboratory experiments which provide new insight into the nature of the coupling between fluid and electrokinetic potentials as the oil saturation changes. Moreover, we investigate a range of production rates which are more appropriate for modern offshore developments, and simulate the potential measured at electrodes installed at the producing well rather than at a nearby monitoring well or at the surface. Electrodes mounted downhole on insulated casing have been successfully applied in subsurface resistivity surveys during oil production, and similar technology could be used to measure electrokinetic potential. If the producing well is equipped with downhole inflow control valves (so called ' intelligent' well technology), then oil production can be significantly enhanced if encroaching water is detected before it arrives and flow into the wellbore properly controlled. These findings raise the prospect of an oil field in which the wells can monitor the approach of water and respond appropriately. Such wells offer enormous potential economic and environmental benefits, particularly in fields which are difficult to access or dangerous to operate.

  6. Integrating stimulation practices with geo-mechanical properties in liquid-rich plays of Eagle Ford Shale

    NASA Astrophysics Data System (ADS)

    Yusuf, Ahmed

    Many of the techniques for hydraulically fracturing design were attempted in the liquid-rich Eagle Ford developments. This study shows why different results were observed due to the variation of geomechanical stresses of the rock across a play and related reservoir properties. An optimum treatment for a liquids-rich objective is much different than that for a gas shale due primarily to the multiphase flow and higher viscosities encountered. This study presents a new treatment workflow for liquids-rich window of Eagle Ford Shale. Review and integration of data from multiple sets across the play are used as input to a 3D hydraulic fracture simulator to model key fracture parameters which control production enhancement. These results are then used within a production analysis and forecast, well optimization, and economic model to compare treatment designs with the best placement of proppant to deliver both high initial production and long term ultimate recoveries. A key focus for this workflow is to maximize proppant transport to achieve a continuous - optimum conductive - fracture half length. Often, due to the complexity of unconventional deposition, it is difficult to maintain complete connectivity of a proppant pack back to the wellbore. As a result, much of the potential of the fracture network is lost. Understanding the interaction of a hydraulic fracture and the rock fabric helps with designing this behavior to achieve the best results. These results are used to determine optimum well spacing to effectively develop within a selected reservoir acreage. Currently, numerous wells exist with over two years of production history in much of the Eagle Ford shale formation. Results from this study are used to compare values from field production to demonstrate the importance of employing a diligent workflow in integrating reservoir and operational parameters to the fracture design. A proper understanding and application of hydraulic fracturing modeling is achieved using the methodology presented in this study.

  7. Hydro-mechanical coupled simulation of hydraulic fracturing using the eXtended Finite Element Method (XFEM)

    NASA Astrophysics Data System (ADS)

    Youn, Dong Joon

    This thesis presents the development and validation of an advanced hydro-mechanical coupled finite element program analyzing hydraulic fracture propagation within unconventional hydrocarbon formations under various conditions. The realistic modeling of hydraulic fracturing is necessarily required to improve the understanding and efficiency of the stimulation technique. Such modeling remains highly challenging, however, due to factors including the complexity of fracture propagation mechanisms, the coupled behavior of fracture displacement and fluid pressure, the interactions between pre-existing natural and initiated hydraulic fractures and the formation heterogeneity of the target reservoir. In this research, an eXtended Finite Element Method (XFEM) scheme is developed allowing for representation of single or multiple fracture propagations without any need for re-meshing. Also, the coupled flows through the fracture are considered in the program to account for their influence on stresses and deformations along the hydraulic fracture. In this research, a sequential coupling scheme is applied to estimate fracture aperture and fluid pressure with the XFEM. Later, the coupled XFEM program is used to estimate wellbore bottomhole pressure during fracture propagation, and the pressure variations are analyzed to determine the geometry and performance of the hydraulic fracturing as pressure leak-off test. Finally, material heterogeneity is included into the XFEM program to check the effect of random formation property distributions to the hydraulic fracture geometry. Random field theory is used to create the random realization of the material heterogeneity with the consideration of mean, standard deviation, and property correlation length. These analyses lead to probabilistic information on the response of unconventional reservoirs and offer a more scientific approach regarding risk management for the unconventional reservoir stimulation. The new stochastic approach combining XFEM and random field is named as eXtended Random Finite Element Method (XRFEM). All the numerical analysis codes in this thesis are written in Fortran 2003, and these codes are applicable as a series of sub-modules within a suite of finite element codes developed by Smith and Griffiths (2004).

  8. Hydraulic Shearing and Hydraulic Jacking Observed during Hydraulic Stimulations in Fractured Geothermal Reservoir in Pohang, Korea

    NASA Astrophysics Data System (ADS)

    Min, K. B.; Park, S.; Xie, L.; Kim, K. I.; Yoo, H.; Kim, K. Y.; Choi, J.; Yoon, K. S.; Yoon, W. S.; Lee, T. J.; Song, Y.

    2017-12-01

    Enhanced Geothermal System (EGS) relies on sufficient and irreversible enhancement of reservoir permeability through hydraulic stimulation and possibility of such desirable change of permeability is an open question that can undermine the universality of EGS concept. We report results of first hydraulic stimulation campaign conducted in two deep boreholes in fractured granodiorite geothermal reservoir in Pohang, Korea. Borehole PX-1, located at 4.22 km, was subjected to the injection of 3,907 m3 with flow rate of up to 18 kg/s followed by bleeding off of 1,207 m3. The borehole PX-2, located at 4.35 km, was subjected to the injection of 1,970 m3 with flow rate of up to 46 kg/sIn PX-1, a sharp distinct decline of wellhead pressure was observed at around 16 MPa of wellhead pressure which was similar to the predicted injection pressure to induce hydraulic shearing. Injectivity interpretation before and after the hydraulic shearing indicates that permanent increase of permeability was achieved by a factor of a few. In PX-2, however, injectivity was very small and hydraulic shearing was not observed due possibly to the near wellbore damage made by the remedying process of lost circulation such as using lost circulation material during drilling. Flow rate of larger than 40 kg/s was achieved at very high well head pressure of nearly 90 MPa. Hydraulic jacking, that is reversible opening and closure of fracture with change of injection pressure, was clearly observed. Although sharp increase of permeability due to fracture opening was achieved with elevated injection pressure, the increased permeability was reversed with decreased injection pressure.Two contrasting response observed in the same reservoir at two different boreholes which is apart only 600 m apart provide important implication that can be used for the stimulation strategy for EGS.This work was supported by the New and Renewable Energy Technology Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) through a grant funded by the Korean Government's Ministry of Trade, Industry & Energy (No. 20123010110010).

  9. Aperture-Tolerant, Chemical-Based Methods to Reduce Channeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randall S. Seright

    2007-09-30

    This final technical progress report describes work performed from October 1, 2004, through May 16, 2007, for the project, 'Aperture-Tolerant, Chemical-Based Methods to Reduce Channeling'. We explored the potential of pore-filling gels for reducing excess water production from both fractured and unfractured production wells. Several gel formulations were identified that met the requirements--i.e., providing water residual resistance factors greater than 2,000 and ultimate oil residual resistance factors (F{sub rro}) of 2 or less. Significant oil throughput was required to achieve low F{sub rro} values, suggesting that gelant penetration into porous rock must be small (a few feet or less) formore » existing pore-filling gels to provide effective disproportionate permeability reduction. Compared with adsorbed polymers and weak gels, strong pore-filling gels can provide greater reliability and behavior that is insensitive to the initial rock permeability. Guidance is provided on where relative-permeability-modification/disproportionate-permeability-reduction treatments can be successfully applied for use in either oil or gas production wells. When properly designed and executed, these treatments can be successfully applied to a limited range of oilfield excessive-water-production problems. We examined whether gel rheology can explain behavior during extrusion through fractures. The rheology behavior of the gels tested showed a strong parallel to the results obtained from previous gel extrusion experiments. However, for a given aperture (fracture width or plate-plate separation), the pressure gradients measured during the gel extrusion experiments were much higher than anticipated from rheology measurements. Extensive experiments established that wall slip and first normal stress difference were not responsible for the pressure gradient discrepancy. To explain the discrepancy, we noted that the aperture for gel flow (for mobile gel wormholing through concentrated immobile gel within the fracture) was much narrower than the width of the fracture. The potential of various approaches were investigated for improving sweep in parts of the Daqing Oil Field that have been EOR targets. Possibilities included (1) gel treatments that are directed at channeling through fractures, (2) colloidal dispersion gels, (3) reduced polymer degradation, (4) more viscous polymer solutions, and (5) foams and other methods. Fractures were present in a number of Daqing wells (both injectors and producers). Because the fractures were narrow far from the wellbore, severe channeling did not occur. On the contrary, fractures near the wellbore aided reservoir sweep. In the February 2006 issue of the Journal of Petroleum Technology, a 'Distinguished-Author-Series' paper claimed that a process using aqueous colloidal dispersion gels (CDG gels) performed superior to polymer flooding. Unfortunately, this claim is misleading and generally incorrect. Colloidal dispersion gels, in their present state of technological development, should not be advocated as an improvement to, or substitute for, polymer flooding.« less

  10. Quality Characteristics of Ground Water in the Ozark Aquifer of Northwestern Arkansas, Southeastern Kansas, Southwestern Missouri, and Northeastern Oklahoma, 2006-07

    USGS Publications Warehouse

    Pope, L.M.; Mehl, H.E.; Coiner, R.L.

    2009-01-01

    Because of water quantity and quality concerns within the Ozark aquifer, the State of Kansas in 2004 issued a moratorium on most new appropriations from the aquifer until results were made available from a cooperative study between the U.S. Geological Survey and the Kansas Water Office. The purposes of the study were to develop a regional ground-water flow model and a water-quality assessment of the Ozark aquifer in northwestern Arkansas, southeastern Kansas, southwestern Missouri, and northeastern Oklahoma (study area). In 2006 and 2007, water-quality samples were collected from 40 water-supply wells completed in the Ozark aquifer and spatially distributed throughout the study area. Samples were analyzed for physical properties, dissolved solids and major ions, nutrients, trace elements, and selected isotopes. This report presents the results of the water-quality assessment part of the cooperative study. Water-quality characteristics were evaluated relative to U.S. Environmental Protection Agency drinking-water standards. Secondary Drinking-Water Regulations were exceeded for dissolved solids (11 wells), sulfate and chloride (2 wells each), fluoride (3 wells), iron (4 wells), and manganese (2 wells). Maximum Contaminant Levels were exceeded for turbidity (3 wells) and fluoride (1 well). The Maximum Contaminant Level Goal for lead (0 milligrams per liter) was exceeded in water from 12 wells. Analyses of isotopes in water from wells along two 60-mile long ground-water flow paths indicated that water in the Ozark aquifer was at least 60 years old but the upper age limit is uncertain. The source of recharge water for the wells along the flow paths appeared to be of meteoric origin because of isotopic similarity to the established Global Meteoric Water Line and a global precipitation relation. Additionally, analysis of hydrogen-3 (3H) and carbon-14 (14C) indicated that there was possible leakage of younger ground water into the lower part of the Ozark aquifer. This may be caused by cracks or fissures in the confining unit that separates the upper and lower parts of the aquifer, poorly constructed or abandoned wells, or historic mining activities. Analyses of major ions in water from wells along the flow paths indicated a transition from freshwater in the east to saline water in the west. Generally, ground water along flow paths evolved from a calcium magnesium bicarbonate type to a sodium calcium bicarbonate or a sodium calcium chloride bicarbonate type as water moved from recharge areas in Missouri into Kansas. Much of this evolution occurred within the last 20 to 25 miles of the flow paths along a water-quality transition zone near the Kansas-Missouri State line and west. The water quality of the Kansas part of the Ozark aquifer is degraded compared to the Missouri part. Geophysical and well-bore flow information and depth-dependent water-quality samples were collected from a large-capacity (1,900-2,300 gallons per minute) municipal-supply well to evaluate vertical ground-water flow accretion and variability in water-quality characteristics at different levels. Although the 1,050-foot deep supply well had 500 feet of borehole open to the Ozark aquifer, 77 percent of ground-water flow entering the borehole came from two 20-foot thick rock layers above the 1,000-foot level. For the most part, water-quality characteristics changed little from the deepest sample to the well-head sample, and upwelling of saline water from deeper geologic formations below the well was not evident. However, more saline water may be present below the bottom of the well.

  11. Application of borehole geophysics in defining the wellhead protection area for a fractured crystalline bedrock aquifer

    USGS Publications Warehouse

    Vernon, J.H.; Paillet, F.L.; Pedler, W.H.; Griswold, W.J.

    1993-01-01

    Wellbore geophysical techniques were used to characterize fractures and flow in a bedrock aquifer at a site near Blackwater Brook in Dover, New Hampshire. The primary focus ofthis study was the development of a model to assist in evaluating the area surrounding a planned water supply well where contaminants introduced at the land surface might be induced to flow towards a pumping well. Well logs and geophysical surveys used in this study included lithologic logs based on examination of cuttings obtained during drilling; conventional caliper and natural gamma logs; video camera and acoustic televiewer surveys; highresolution vertical flow measurements under ambient conditions and during pumping; and borehole fluid conductivity logs obtained after the borehole fluid was replaced with deionized water. These surveys were used for several applications: 1) to define a conceptual model of aquifer structure to be used in groundwater exploration; 2) to estimate optimum locations for test and observation wells; and 3) to delineate a wellhead protection area (WHPA) for a planned water supply well. Integration of borehole data with surface geophysical and geological mapping data indicated that the study site lies along a northeast-trending intensely fractured contact zone between surface exposures of quartz monzonite and metasedimentary rocks. Four of five bedrock boreholes at the site were estimated to produce more than 150 gallons per minute (gpm) (568 L/min) of water during drilling. Aquifer testing and other investigations indicated that water flowed to the test well along fractures parallel to the northeast-trending contact zone and along other northeast and north-northwest-trending fractures. Statistical plots of fracture strikes showed frequency maxima in the same northeast and north-northwest directions, although additional maxima occurred in other directions. Flowmeter surveys and borehole fluid conductivity logging after fluid replacement were used to identify water-producing zones in the boreholes; fractures associated with inflow into boreholes showed a dominant northeast orientation. Borehole fluid conductivity logging after fluid replacement also gave profiles of such water-quality parameters as fluid electrical conductivity (FEC), pH, temperature, and oxidation-reduction potential, strengthening the interpretation of crossconnection of boreholes by certain fracture zones. The results of this study showed that the application of these borehole geophysical techniques at the Blackwater Brook site led to an improved understanding of such parameters as fracture location, attitude, flow direction and velocity, and water quality; all of which are important in the determination of a WHPA.

  12. Experimental investigation on the effect of ultrasonic waves on reducing asphaltene deposition and improving oil recovery under temperature control.

    PubMed

    Rezaei Dehshibi, Reza; Mohebbi, Ali; Riazi, Masoud; Niakousari, Mehrdad

    2018-07-01

    A well-known complication in the oil reservoir during oil production is asphaltene deposition in and around the production wellbore. Deposition of asphaltene around the production wellbore may cause a significant pressure drop and in turn loss of efficiency in the production process. Various mechanical and chemical methods have been employed in order to reduce asphaltene formation or to eliminate the precipitate. A novel technique which presented a great potential for prevention or elimination of asphaltene is spreading out the high energy ultrasound wave within the oil reservoir. In this study, in a glass micro-model, asphaltene precipitation was first simulated in a transparent porous medium and its removal by application of high energy ultrasound wave was then investigated. To simulate asphaltene precipitation, the micro-model was first saturated with oil and then a normal-pentane was injected. This was followed by flooding the porous media with brine while propagating ultrasound waves (30 kHz and 100 W) to eliminate asphaltene precipitation. The experiment setup was equipped with a temperature controller. The results indicate a significant reduction in asphaltene precipitation in the oil reservoir may be achieved by application of ultrasound energy. Asphaltene particle deposition has been solved reversibly in the oil layer of porous medium and with the oil layering mechanism, the rate of oil production has been increased. In some spots, water/oil emulsion has been formed because of the ultrasonic vibration on the wall. Both the crude and synthetic oils were examined. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Improving the analysis of slug tests

    USGS Publications Warehouse

    McElwee, C.D.

    2002-01-01

    This paper examines several techniques that have the potential to improve the quality of slug test analysis. These techniques are applicable in the range from low hydraulic conductivities with overdamped responses to high hydraulic conductivities with nonlinear oscillatory responses. Four techniques for improving slug test analysis will be discussed: use of an extended capability nonlinear model, sensitivity analysis, correction for acceleration and velocity effects, and use of multiple slug tests. The four-parameter nonlinear slug test model used in this work is shown to allow accurate analysis of slug tests with widely differing character. The parameter ?? represents a correction to the water column length caused primarily by radius variations in the wellbore and is most useful in matching the oscillation frequency and amplitude. The water column velocity at slug initiation (V0) is an additional model parameter, which would ideally be zero but may not be due to the initiation mechanism. The remaining two model parameters are A (parameter for nonlinear effects) and K (hydraulic conductivity). Sensitivity analysis shows that in general ?? and V0 have the lowest sensitivity and K usually has the highest. However, for very high K values the sensitivity to A may surpass the sensitivity to K. Oscillatory slug tests involve higher accelerations and velocities of the water column; thus, the pressure transducer responses are affected by these factors and the model response must be corrected to allow maximum accuracy for the analysis. The performance of multiple slug tests will allow some statistical measure of the experimental accuracy and of the reliability of the resulting aquifer parameters. ?? 2002 Elsevier Science B.V. All rights reserved.

  14. Pressure enhanced penetration with shaped charge perforators

    DOEpatents

    Glenn, Lewis A.

    2001-01-01

    A downhole tool, adapted to retain a shaped charge surrounded by a superatmospherically pressurized light gas, is employed in a method for perforating a casing and penetrating reservoir rock around a wellbore. Penetration of a shaped charge jet can be enhanced by at least 40% by imploding a liner in the high pressure, light gas atmosphere. The gas pressure helps confine the jet on the axis of penetration in the latter stages of formation. The light gas, such as helium or hydrogen, is employed to keep the gas density low enough so as not to inhibit liner collapse.

  15. Numerical study on determining formation porosity using a boron capture gamma ray technique and MCNP.

    PubMed

    Liu, Juntao; Zhang, Feng; Wang, Xinguang; Han, Fei; Yuan, Zhelong

    2014-12-01

    Formation porosity can be determined using the boron capture gamma ray counting ratio with a near to far detector in a pulsed neutron-gamma element logging tool. The thermal neutron distribution, boron capture gamma spectroscopy and porosity response for formations with different water salinity and wellbore diameter characteristics were simulated using the Monte Carlo method. We found that a boron lining improves the signal-to-noise ratio and that the boron capture gamma ray counting ratio has a higher sensitivity for determining porosity than total capture gamma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Production and delivery of a fluid mixture to an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E [Los Alamos, NM; Bland, Ronald Gene [Houston, TX; Foley, Ron Lee [Magnolia, TX; Bloys, James B [Katy, TX; Gonzalez, Manuel E [Kingwood, NM; Daniel, John M [Germantown, TN; Robinson, Ian M [Guisborough, GB; Carpenter, Robert B [Tomball, TX

    2012-01-24

    The methods described herein generally relate to preparing and delivering a fluid mixture to a confined volume, specifically an annular volume located between two concentrically oriented casing strings within a hydrocarbon fluid producing well. The fluid mixtures disclosed herein are useful in controlling pressure in localized volumes. The fluid mixtures comprise at least one polymerizable monomer and at least one inhibitor. The processes and methods disclosed herein allow the fluid mixture to be stored, shipped and/or injected into localized volumes, for example, an annular volume defined by concentric well casing strings.

  17. Time-Lapse Measurement of Wellbore Integrity

    NASA Astrophysics Data System (ADS)

    Duguid, A.

    2017-12-01

    Well integrity is becoming more important as wells are used longer or repurposed. For CO2, shale gas, and other projects it has become apparent that wells represent the most likely unintended migration pathway for fluids out of the reservoir. Comprehensive logging programs have been employed to determine the condition of legacy wells in North America. These studies provide examples of assessment technologies. Logging programs have included pulsed neutron logging, ultrasonic well mapping, and cement bond logging. While these studies provide examples of what can be measured, they have only conducted a single round of logging and cannot show if the well has changed over time. Recent experience with time-lapse logging of three monitoring wells at a US Department of Energy sponsored CO2 project has shown the full value of similar tools. Time-lapse logging has shown that well integrity changes over time can be identified. It has also shown that the inclusion of and location of monitoring technologies in the well and the choice of construction materials must be carefully considered. Two of the wells were approximately eight years old at the time of study; they were constructed with steel and fiberglass casing sections and had lines on the outside of the casing running to the surface. The third well was 68 years old when it was studied and was originally constructed as a production well. Repeat logs were collected six or eight years after initial logging. Time-lapse logging showed the evolution of the wells. The results identified locations where cement degraded over time and locations that showed little change. The ultrasonic well maps show clearly that the lines used to connect the monitoring technology to the surface are visible and have a local effect on cement isolation. Testing and sampling was conducted along with logging. It provided insight into changes identified in the time-lapse log results. Point permeability testing was used to provide an in-situ point estimate of the cement isolating capacity. Cased-hole sidewall cores in the steel and fiberglass casing sections allowed analysis of bulk cement and the cement at the casing- and formation-interface. This presentation will cover how time-lapse logging was conducted, how the results may be applicable to other wells, and how monitoring well design may affect wellbore integrity.

  18. Integration of vertical and in-seam horizontal well production analyses with stochastic geostatistical algorithms to estimate pre-mining methane drainage efficiency from coal seams: Blue Creek seam, Alabama

    PubMed Central

    Karacan, C. Özgen

    2015-01-01

    Coal seam degasification and its efficiency are directly related to the safety of coal mining. Degasification activities in the Black Warrior basin started in the early 1980s by using vertical boreholes. Although the Blue Creek seam, which is part of the Mary Lee coal group, has been the main seam of interest for coal mining, vertical wellbores have also been completed in the Pratt, Mary Lee, and Black Creek coal groups of the Upper Pottsville formation to degasify multiple seams. Currently, the Blue Creek seam is further degasified 2–3 years in advance of mining using in-seam horizontal boreholes to ensure safe mining. The studied location in this work is located between Tuscaloosa and Jefferson counties in Alabama and was degasified using 81 vertical boreholes, some of which are still active. When the current long mine expanded its operation into this area in 2009, horizontal boreholes were also drilled in advance of mining for further degasification of only the Blue Creek seam to ensure a safe and a productive operation. This paper presents an integrated study and a methodology to combine history matching results from vertical boreholes with production modeling of horizontal boreholes using geostatistical simulation to evaluate spatial effectiveness of in-seam boreholes in reducing gas-in-place (GIP). Results in this study showed that in-seam wells' boreholes had an estimated effective drainage area of 2050 acres with cumulative production of 604 MMscf methane during ~2 years of operation. With horizontal borehole production, GIP in the Blue Creek seam decreased from an average of 1.52 MMscf to 1.23 MMscf per acre. It was also shown that effective gas flow capacity, which was independently modeled using vertical borehole data, affected horizontal borehole production. GIP and effective gas flow capacity of coal seam gas were also used to predict remaining gas potential for the Blue Creek seam. PMID:26435557

  19. Integration of vertical and in-seam horizontal well production analyses with stochastic geostatistical algorithms to estimate pre-mining methane drainage efficiency from coal seams: Blue Creek seam, Alabama.

    PubMed

    Karacan, C Özgen

    2013-07-30

    Coal seam degasification and its efficiency are directly related to the safety of coal mining. Degasification activities in the Black Warrior basin started in the early 1980s by using vertical boreholes. Although the Blue Creek seam, which is part of the Mary Lee coal group, has been the main seam of interest for coal mining, vertical wellbores have also been completed in the Pratt, Mary Lee, and Black Creek coal groups of the Upper Pottsville formation to degasify multiple seams. Currently, the Blue Creek seam is further degasified 2-3 years in advance of mining using in-seam horizontal boreholes to ensure safe mining. The studied location in this work is located between Tuscaloosa and Jefferson counties in Alabama and was degasified using 81 vertical boreholes, some of which are still active. When the current long mine expanded its operation into this area in 2009, horizontal boreholes were also drilled in advance of mining for further degasification of only the Blue Creek seam to ensure a safe and a productive operation. This paper presents an integrated study and a methodology to combine history matching results from vertical boreholes with production modeling of horizontal boreholes using geostatistical simulation to evaluate spatial effectiveness of in-seam boreholes in reducing gas-in-place (GIP). Results in this study showed that in-seam wells' boreholes had an estimated effective drainage area of 2050 acres with cumulative production of 604 MMscf methane during ~2 years of operation. With horizontal borehole production, GIP in the Blue Creek seam decreased from an average of 1.52 MMscf to 1.23 MMscf per acre. It was also shown that effective gas flow capacity, which was independently modeled using vertical borehole data, affected horizontal borehole production. GIP and effective gas flow capacity of coal seam gas were also used to predict remaining gas potential for the Blue Creek seam.

  20. Geological factors affecting CO2 plume distribution

    USGS Publications Warehouse

    Frailey, S.M.; Leetaru, H.

    2009-01-01

    Understanding the lateral extent of a CO2 plume has important implications with regards to buying/leasing pore volume rights, defining the area of review for an injection permit, determining the extent of an MMV plan, and managing basin-scale sequestration from multiple injection sites. The vertical and lateral distribution of CO2 has implications with regards to estimating CO2 storage volume at a specific site and the pore pressure below the caprock. Geologic and flow characteristics such as effective permeability and porosity, capillary pressure, lateral and vertical permeability anisotropy, geologic structure, and thickness all influence and affect the plume distribution to varying degrees. Depending on the variations in these parameters one may dominate the shape and size of the plume. Additionally, these parameters do not necessarily act independently. A comparison of viscous and gravity forces will determine the degree of vertical and lateral flow. However, this is dependent on formation thickness. For example in a thick zone with injection near the base, the CO2 moves radially from the well but will slow at greater radii and vertical movement will dominate. Generally the CO2 plume will not appreciably move laterally until the caprock or a relatively low permeability interval is contacted by the CO2. Conversely, in a relatively thin zone with the injection interval over nearly the entire zone, near the wellbore the CO2 will be distributed over the entire vertical component and will move laterally much further with minimal vertical movement. Assuming no geologic structure, injecting into a thin zone or into a thick zone immediately under a caprock will result in a larger plume size. With a geologic structure such as an anticline, CO2 plume size may be restricted and injection immediately below the caprock may have less lateral plume growth because the structure will induce downward vertical movement of the CO2 until the outer edge of the plume reaches a spill point within the structure. ?? 2009 Elsevier Ltd. All rights reserved.

  1. Shale Fracture Analysis using the Combined Finite-Discrete Element Method

    NASA Astrophysics Data System (ADS)

    Carey, J. W.; Lei, Z.; Rougier, E.; Knight, E. E.; Viswanathan, H.

    2014-12-01

    Hydraulic fracturing (hydrofrac) is a successful method used to extract oil and gas from highly carbonate rocks like shale. However, challenges exist for industry experts estimate that for a single $10 million dollar lateral wellbore fracking operation, only 10% of the hydrocarbons contained in the rock are extracted. To better understand how to improve hydrofrac recovery efficiencies and to lower its costs, LANL recently funded the Laboratory Directed Research and Development (LDRD) project: "Discovery Science of Hydraulic Fracturing: Innovative Working Fluids and Their Interactions with Rocks, Fractures, and Hydrocarbons". Under the support of this project, the LDRD modeling team is working with the experimental team to understand fracture initiation and propagation in shale rocks. LANL's hybrid hydro-mechanical (HM) tool, the Hybrid Optimization Software Suite (HOSS), is being used to simulate the complex fracture and fragment processes under a variety of different boundary conditions. HOSS is based on the combined finite-discrete element method (FDEM) and has been proven to be a superior computational tool for multi-fracturing problems. In this work, the comparison of HOSS simulation results to triaxial core flooding experiments will be presented.

  2. Data on cost analysis of drilling mud displacement during drilling operation.

    PubMed

    Okoro, Emeka Emmanuel; Dosunmu, Adewale; Iyuke, Sunny E

    2018-08-01

    The focus of this research was to present a data article for analyzing the cost of displacing a drilling fluid during the drilling operation. The cost of conventional Spud, KCl and Pseudo Oil base (POBM) muds used in drilling oil and gas wells are compared with that of a Reversible Invert Emulsion Mud. The cost analysis is limited to three sections for optimum and effective Comparison. To optimize drilling operations, it is important that we specify the yardstick by which drilling performance is measured. The most relevant yardstick is the cost per foot drilled. The data have shown that the prices for drilling mud systems are a function of the mud system formulation cost for that particular mud weight and maintenance per day. These costs for different mud systems and depend on the base fluid. The Reversible invert emulsion drilling fluid, eliminates the cost acquired in displacing Pseudo Oil Based mud (POBM) from the well, possible formation damage (permeability impairment) resulting from the use of viscous pill in displacing the POBM from the wellbore, and also eliminates the risk of taking a kick during mud change-over. With this reversible mud system, the costs of special fluids that are rarely applied for the well-completion purpose (cleaning of thick mud filter cake) may be reduced to the barest minimum.

  3. Derivation of groundwater threshold values for analysis of impacts predicted at potential carbon sequestration sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Last, G. V.; Murray, C. J.; Bott, Y.

    2016-06-01

    The U.S. Department of Energy’s (DOE’s) National Risk Assessment Partnership (NRAP) Project is developing reduced-order models to evaluate potential impacts to groundwater quality due to carbon dioxide (CO 2) or brine leakage, should it occur from deep CO 2 storage reservoirs. These efforts targeted two classes of aquifer – an unconfined fractured carbonate aquifer based on the Edwards Aquifer in Texas, and a confined alluvium aquifer based on the High Plains Aquifer in Kansas. Hypothetical leakage scenarios focus on wellbores as the most likely conduits from the storage reservoir to an underground source of drinking water (USDW). To facilitate evaluationmore » of potential degradation of the USDWs, threshold values, below which there would be no predicted impacts, were determined for each of these two aquifer systems. These threshold values were calculated using an interwell approach for determining background groundwater concentrations that is an adaptation of methods described in the U.S. Environmental Protection Agency’s Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities. Results demonstrate the importance of establishing baseline groundwater quality conditions that capture the spatial and temporal variability of the USDWs prior to CO 2 injection and storage.« less

  4. Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara Valley, California

    USGS Publications Warehouse

    Hanson, R.T.; Li, Zhen; Faunt, C.C.

    2004-01-01

    The Santa Clara Valley is a long, narrow trough extending about 35 miles southeast from the southern end of San Francisco Bay where the regional alluvial-aquifer system has been a major source of water. Intensive agricultural and urban development throughout the 20th century and related ground-water development resulted in ground-water-level declines of more than 200 feet and land subsidence of as much as 12.7 feet between the early 1900s and the mid-1960s. Since the 1960s, Santa Clara Valley Water District has imported surface water to meet growing demands and reduce dependence on ground-water supplies. This importation of water has resulted in a sustained recovery of the ground-water flow system. To help support effective management of the ground-water resources, a regional ground-water/surface-water flow model was developed. This model simulates the flow of ground water and surface water, changes in ground-water storage, and related effects such as land subsidence. A numerical ground-water/surface-water flow model of the Santa Clara Valley subbasin of the Santa Clara Valley was developed as part of a cooperative investigation with the Santa Clara Valley Water District. The model better defines the geohydrologic framework of the regional flow system and better delineates the supply and demand components that affect the inflows to and outflows from the regional ground-water flow system. Development of the model includes revisions to the previous ground-water flow model that upgraded the temporal and spatial discretization, added source-specific inflows and outflows, simulated additional flow features such as land subsidence and multi-aquifer wellbore flow, and extended the period of simulation through September 1999. The transient-state model was calibrated to historical surface-water and ground-water data for the period 197099 and to historical subsidence for the period 198399. The regional ground-water flow system consists of multiple aquifers that are grouped into upper- and lower-aquifer systems. Ground-water inflow occurs as natural recharge in the form of streamflow infiltration and areal infiltration of precipitation along stream channels, artificial recharge from infiltration of imported water at recharge ponds and along selected stream channels, and leakage along selected transmission pipelines. Ground-water outflow occurs as evapotranspiration, stream base flow, discharge through pumpage from wells, and subsurface flow to the San Francisco Bay. The geohydrologic framework of the regional ground-water flow system was represented as six model layers. The hydraulic properties were redefined on the basis of cell-based lithologic properties that were delineated in terms of aggregate thicknesses of coarse-grained, fine-grained, and mixed textural categories. The regional aquifer systems also are dissected by several laterally extensive faults that may form at least partial barriers to the lateral flow of ground water. The spatial extent of the ground-water flow model was extended and refined to cover the entire Santa Clara Valley, including the Evergreen subregion. The temporal discretization was refined and the period of simulation was extended to 197099. The model was upgraded to MODFLOW-2000 (MF2K) and was calibrated to fit historical ground-water levels, streamflow, and land subsidence for the period 197099. The revised model slightly overestimates measured water levels with an root-mean-square error of -7.34 feet. The streamflow generally shows a good match on gaged creeks and rivers for flows greater than 1.2 cubic feet per second. The revised model also fits the measured deformation at the borehole extensometer site located near San Jose within 16 to 27 percent and the extensometer site near Sunnyvale within 3 percent of the maximum measured seasonal deformation for the deepest extensometers. The total ground-water inflow and outflow of about 225,500 acre-feet per

  5. Mechano-Chemical Interactions at Cement-Geomaterial Interfaces in Repository and Borehole Scenarios

    NASA Astrophysics Data System (ADS)

    Mohagheghi, J. R.; Dewers, T. A.; Matteo, E. N.; Heath, J. E.; Jove Colon, C. F.; Fuller, T.

    2017-12-01

    A number of factors negatively affect wellbore integrity including interactions at boundaries between cement and surrounding geomaterial. These include mechanical and chemical mechanisms that can lead to wellbore failure. To examine these interactions, potential coupling, and pathways to failure, we discuss progress on an experimental and modeling study involving cement-clay and cement-salt interfaces. A sample shotcrete-bentonite interface from the FEBEX heater test at the Grimsel Test Site in Switzerland is examined using multi-beam scanning electron microscopy (mSEM) at 4 nm resolution over an area 10's of square millimeters. We examine changes in alteration as manifested by pore structural changes as a function of distance from the interface. A parallel effort examines time-dependent changes in interface structure in cement cores in a triaxial coreholder. Cores are exposed to conditions of 70oC, 14 MPa pressure, and small differential loads, with degradation being monitored by effluent pH, pulse-echo ultrasonics, and piston displacement (measuring sample shortening). We will measure the mechanical consequences of interface alteration using nano-indentation. Experimental results are being incorporated as a validation effort in a coupled reactive-transport mechanics model linking the Sandia ALBANY finite element code, the KAYENTA elasto-plastic constitutive model, with the reactive transport code PFLOTRAN. Plans call to apply the model to understanding the evolution of the FEBEX sample, as well as a cement-salt sample from the Waste Isolation Pilot Plant in Carlsbad, New Mexico. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND 2017-8277 A

  6. A review of the multiwell experiment in tight gas sandstones of the Mesaverde Group, Piceance Basin, Colorado

    USGS Publications Warehouse

    Nelson, P.H.

    2002-01-01

    The Cretaceous Iles and Williams Fork Formations of the Mesaverde Group contain important reservoir and source rocks for basin-centered gas accumulations in the Piceance Basin of northwestern Colorado. The sandstones in these formations have very low permeability, so low that successful production of gas requires the presence of fractures. To increase gas production, the natural fracture system of these "tight gas sandstones" must be augmented by inducing artificial fractures, while minimizing the amount of formation damage due to introduced fluids. The Multiwell Experiment was undertaken to provide geological characterization, obtain physical property data, and perform stimulation experiments in the Iles and Williams Fork Formations. Three vertical wells and one follow-up slant well were drilled, logged, partially cored, tested for gas production, stimulated in various manners, and tested again. Drawing from published reports and papers, this review paper presents well log, core, and test data from the Multiwell Experiment while emphasizing the geological controls on gas production at the site. Gas production is controlled primarily by a set of regional fractures trending west-northwest. The fractures are vertical, terminating at lithologic boundaries within and at the upper and lower boundaries of sandstone beds. Fractures formed preferentially in sandstones where in situ stress and fracture gradients are lower than in shales and mudstones. The fractures cannot be identified adequately in vertical wellbores; horizontal wells are required. Because present-day maximum horizontal stress is aligned with the regional fractures, artificial fractures induced by pressuring the wellbore form parallel to the regional fractures rather than linking them, with consequent limitations upon enhancement of gas production.

  7. Groundwater methane in relation to oil and gas development and shallow coal seams in the Denver-Julesburg Basin of Colorado

    PubMed Central

    Sherwood, Owen A.; Rogers, Jessica D.; Lackey, Greg; Burke, Troy L.; Osborn, Stephen G.; Ryan, Joseph N.

    2016-01-01

    Unconventional oil and gas development has generated intense public concerns about potential impacts to groundwater quality. Specific pathways of contamination have been identified; however, overall rates of contamination remain ambiguous. We used an archive of geochemical data collected from 1988 to 2014 to determine the sources and occurrence of groundwater methane in the Denver-Julesburg Basin of northeastern Colorado. This 60,000-km2 region has a 60-y-long history of hydraulic fracturing, with horizontal drilling and high-volume hydraulic fracturing beginning in 2010. Of 924 sampled water wells in the basin, dissolved methane was detected in 593 wells at depths of 20–190 m. Based on carbon and hydrogen stable isotopes and gas molecular ratios, most of this methane was microbially generated, likely within shallow coal seams. A total of 42 water wells contained thermogenic stray gas originating from underlying oil and gas producing formations. Inadequate surface casing and leaks in production casing and wellhead seals in older, vertical oil and gas wells were identified as stray gas migration pathways. The rate of oil and gas wellbore failure was estimated as 0.06% of the 54,000 oil and gas wells in the basin (lower estimate) to 0.15% of the 20,700 wells in the area where stray gas contamination occurred (upper estimate) and has remained steady at about two cases per year since 2001. These results show that wellbore barrier failure, not high-volume hydraulic fracturing in horizontal wells, is the main cause of thermogenic stray gas migration in this oil- and gas-producing basin. PMID:27402747

  8. The Effects of Boundary Conditions and Friction on the Helical Buckling of Coiled Tubing in an Inclined Wellbore

    PubMed Central

    Ai, Zhijiu; Sun, Xu; Fu, Biwei

    2016-01-01

    Analytical buckling models are important for down-hole operations to ensure the structural integrity of the drill string. A literature survey shows that most published analytical buckling models do not address the effects of inclination angle, boundary conditions or friction. The objective of this paper is to study the effects of boundary conditions, friction and angular inclination on the helical buckling of coiled tubing in an inclined wellbore. In this paper, a new theoretical model is established to describe the buckling behavior of coiled tubing. The buckling equations are derived by applying the principles of virtual work and minimum potential energy. The proper solution for the post-buckling configuration is determined based on geometric and natural boundary conditions. The effects of angular inclination and boundary conditions on the helical buckling of coiled tubing are considered. Many significant conclusions are obtained from this study. When the dimensionless length of the coiled tubing is greater than 40, the effects of the boundary conditions can be ignored. The critical load required for helical buckling increases as the angle of inclination and the friction coefficient increase. The post-buckling behavior of coiled tubing in different configurations and for different axial loads is determined using the proposed analytical method. Practical examples are provided that illustrate the influence of the angular inclination on the axial force. The rate of change of the axial force decreases with increasing angular inclination. Moreover, the total axial friction also decreases with an increasing inclination angle. These results will help researchers to better understand helical buckling in coiled tubing. Using this knowledge, measures can be taken to prevent buckling in coiled tubing during down-hole operations. PMID:27649535

  9. The Effects of Boundary Conditions and Friction on the Helical Buckling of Coiled Tubing in an Inclined Wellbore.

    PubMed

    Gong, Yinchun; Ai, Zhijiu; Sun, Xu; Fu, Biwei

    2016-01-01

    Analytical buckling models are important for down-hole operations to ensure the structural integrity of the drill string. A literature survey shows that most published analytical buckling models do not address the effects of inclination angle, boundary conditions or friction. The objective of this paper is to study the effects of boundary conditions, friction and angular inclination on the helical buckling of coiled tubing in an inclined wellbore. In this paper, a new theoretical model is established to describe the buckling behavior of coiled tubing. The buckling equations are derived by applying the principles of virtual work and minimum potential energy. The proper solution for the post-buckling configuration is determined based on geometric and natural boundary conditions. The effects of angular inclination and boundary conditions on the helical buckling of coiled tubing are considered. Many significant conclusions are obtained from this study. When the dimensionless length of the coiled tubing is greater than 40, the effects of the boundary conditions can be ignored. The critical load required for helical buckling increases as the angle of inclination and the friction coefficient increase. The post-buckling behavior of coiled tubing in different configurations and for different axial loads is determined using the proposed analytical method. Practical examples are provided that illustrate the influence of the angular inclination on the axial force. The rate of change of the axial force decreases with increasing angular inclination. Moreover, the total axial friction also decreases with an increasing inclination angle. These results will help researchers to better understand helical buckling in coiled tubing. Using this knowledge, measures can be taken to prevent buckling in coiled tubing during down-hole operations.

  10. Finite difference modelling of dipole acoustic logs in a poroelastic formation with anisotropic permeability

    NASA Astrophysics Data System (ADS)

    He, Xiao; Hu, Hengshan; Wang, Xiuming

    2013-01-01

    Sedimentary rocks can exhibit strong permeability anisotropy due to layering, pre-stresses and the presence of aligned microcracks or fractures. In this paper, we develop a modified cylindrical finite-difference algorithm to simulate the borehole acoustic wavefield in a saturated poroelastic medium with transverse isotropy of permeability and tortuosity. A linear interpolation process is proposed to guarantee the leapfrog finite difference scheme for the generalized dynamic equations and Darcy's law for anisotropic porous media. First, the modified algorithm is validated by comparison against the analytical solution when the borehole axis is parallel to the symmetry axis of the formation. The same algorithm is then used to numerically model the dipole acoustic log in a borehole with its axis being arbitrarily deviated from the symmetry axis of transverse isotropy. The simulation results show that the amplitudes of flexural modes vary with the dipole orientation because the permeability tensor of the formation is dependent on the wellbore azimuth. It is revealed that the attenuation of the flexural wave increases approximately linearly with the radial permeability component in the direction of the transmitting dipole. Particularly, when the borehole axis is perpendicular to the symmetry axis of the formation, it is possible to estimate the anisotropy of permeability by evaluating attenuation of the flexural wave using a cross-dipole sonic logging tool according to the results of sensitivity analyses. Finally, the dipole sonic logs in a deviated borehole surrounded by a stratified porous formation are modelled using the proposed finite difference code. Numerical results show that the arrivals and amplitudes of transmitted flexural modes near the layer interface are sensitive to the wellbore inclination.

  11. Analysis of tests of subsurface injection, storage, and recovery of freshwater in the lower Floridan aquifer, Okeechobee County, Florida

    USGS Publications Warehouse

    Quinones-Aponte, Vicente; Kotun, Kevin; Whitley, J.F.

    1996-01-01

    A series of freshwater subsurface injection, storage, and recovery tests were conducted at an injection-well site near Lake Okeechobee in Okeechobee County, Florida, to assess the recoverability of injected canal water from the Lower Floridan aquifer. At the study site, the Lower Floridan aquifer is characterized as having four local, relatively independent, high-permeability flow zones (389 to 398 meters, 419 to 424 meters, 456 to 462 meters, and 472 to 476 meters below sea level). Four subsurface injection, storage, and recovery cycles were performed at the Lake Okeechobee injection-well site in which volumes of water injected ranged from about 387,275 to 1,343,675 cubic meters for all the cycles, and volumes of water recovered ranged from about 106,200 to 484,400 cubic meters for cycles 1, 2, and 3. The recovery efficiency for successive cycles 2 and 3 increased from 22 to 36 percent and is expected to continue increasing with additional cycles. A comparison of chloride concentration breakthrough curves at the deep monitor well (located about 171 meters from the injection well) for cycles 1, 4, and test no. 4 (from a previous study) revealed unexpected finings. One significant result was that the concentration asymptote, expected to be reached at concentration levels equivalent or close to the injected water concentration, was instead reached at higher concentration levels. The injection to recovery rate ratio might affect the chloride concentration breakthrough curve at the deep monitor well, which could explain this unexpected behavior. Because there are four high-permeability zones, if the rate of injection is smaller than the rate of recovery (natural artesian flow), the head differential might not be transmitted through the entire open wellbore, and injected water would probably flow only through the upper high- permeability zones. Therefore, observed chloride concentration values at the deep monitor well would be higher than the concentration of the injected water and would represent a mix of water from the different high-permeability zones. A generalized digital model was constructed to simulate the subsurface injection, storage, and recovery of freshwater in the Lower Floridan aquifer at the Lake Okeechobee injection-well site. The model was constructed using a modified version of the Saturated-Unsaturated TRAnsport code (SUTRA), which simulates variable-density advective-dispersive solute transport and variable-density ground-water flow. Satisfactory comparisons of simulated to observed dimensionless chloride concentrations for the deep monitor well were obtained when using the model during the injection and recovery phases of cycle 1, but not for the injection well during the recovery phase of cycle 1 even after several attempts. This precluded the determination of the recovery efficiency values by using the model. The unsatisfactory comparisons of simulated to observed dimensionless chloride concentrations for the injection well and failure of the model to represent the field data at this well could be due to the characteristics of the Lower Floridan aquifer (at the local scale), which is cavernous or conduit in nature. To test this possibility, Reynolds numbers were estimated at varying distances from the injection well, taking into consideration two aquifer types or conceptual systems, porous media and cavernous. For the porous media conceptual system, the Reynolds numbers were greater than 10 at distances less than 1.42 meters from the injection well. Thus, application of Darcy's law to ground-water flow might not be valid at this distance. However, at the deep monitor well (171 meters from the injection well), the Reynolds number was 0.08 which is indicative of laminar porous media flow. For the cavernous conceptual system, the Reynolds numbers were greater than 2,000 at distances less than 1,000 meters from the well. This number represents the upper limit of laminar flow, which is the fundamental assumption

  12. Methods of performing downhole operations using orbital vibrator energy sources

    DOEpatents

    Cole, Jack H.; Weinberg, David M.; Wilson, Dennis R.

    2004-02-17

    Methods of performing down hole operations in a wellbore. A vibrational source is positioned within a tubular member such that an annulus is formed between the vibrational source and an interior surface of the tubular member. A fluid medium, such as high bulk modulus drilling mud, is disposed within the annulus. The vibrational source forms a fluid coupling with the tubular member through the fluid medium to transfer vibrational energy to the tubular member. The vibrational energy may be used, for example, to free a stuck tubular, consolidate a cement slurry and/or detect voids within a cement slurry prior to the curing thereof.

  13. Sour gas injection for use with in situ heat treatment

    DOEpatents

    Fowler, Thomas David [Houston, TX

    2009-11-03

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing acidic gas to a subsurface formation is described herein. The method may include providing heat from one or more heaters to a portion of a subsurface formation; producing fluids that include one or more acidic gases from the formation using a heat treatment process. At least a portion of one of the acidic gases may be introduced into the formation, or into another formation, through one or more wellbores at a pressure below a lithostatic pressure of the formation in which the acidic gas is introduced.

  14. Dynamic Response in Transient Stress-Field Behavior Induced by Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Jenkins, Andrew

    Hydraulic fracturing is a technique which is used to exploit geologic features and subsurface properties in an effort to increase production in low-permeability formations. The process of hydraulic fracturing provides a greater surface contact area between the producing formation and the wellbore and thus increases the amount of recoverable hydrocarbons from within the reservoir. The use of this stimulation technique has brought on massive applause from the industry due to its widespread success and effectiveness, however the dynamic processes that take part in the development of hydraulic fractures is a relatively new area of research with respect to the massive scale operations that are seen today. The process of hydraulic fracturing relies upon understanding and exploiting the in-situ stress distribution throughout the area of study. These in-situ stress conditions are responsible for directing fracture orientation and propagation paths throughout the period of injection. The relative magnitude of these principle stresses is key in developing a successful stimulation plan. In horizontal well plan development the interpretation of stress within the reservoir is required for determining the azimuth of the horizontal well path. These horizontal laterals are typically oriented in a manner such that the well path lies parallel to the minimum horizontal stress. This allows for vertical fractures to develop transversely to the wellbore, or normal to the least principle stress without the theoretical possibility of fractures overlapping, creating the most efficient use of the fluid energy during injection. The orientation and magnitude of these in-situ stress fields however can be dynamic, controlled by the subsequent fracture propagation and redistribution of the surrounding stresses. That is, that as the fracture propagates throughout the reservoir, the relative stress fields surrounding the fractures may see a shift and deviate from their original direction or magnitude. These types of shifts are of great concern because they can impact subsequent fracture development causing non-uniform fracture propagation and the potential overlapping of fracture paths as they extend from the wellbore at the point of injection. The dynamics of stress variation that occur with respect to hydraulic fracturing is a somewhat new area of study. In order to accomplish the goals of this thesis and continue future research in this area a new transient model has been developed in order to asses these dynamic systems and determine their influence on fracture behavior. This applies the use of a fully coupled finite element method in 2-D using linear elastic fracture mechanics which is then expanded using displacement discontinuity to a cohesive zone model in 3-D. A static boundary element model was also used to determine stress fields surrounding static, predetermined fracture geometries. These models have been verified against analytical solutions for simple cases and are now being applied to more detailed case studies and analysis. These models have been briefly discussed throughout this thesis in order to give insight on their current capabilities and application as well as their future potential within this area of research. The majority of this work introduces transient stress field prediction to cases of single and multiple hydraulic fractures. The static assessment of these stresses is determined for verification of results to those found in publication which leads into these transient stress field variations. A new method has been developed and applied to the stress state prediction for the first time in a transient fracture model which is partly based upon a critical distance theory. These dynamic interactions can provide useful insight to pertinent issues within the petroleum and natural gas industry such as those to hydraulic fracturing fluid loss and induced seismic events, as well as to applications of efficiency and optimization of the stimulation treatment plan.

  15. Relationships between Induced Seismicity and Fluid Injection: Development of Strategies to Manage Injection

    NASA Astrophysics Data System (ADS)

    Eichhubl, Peter; Frohlich, Cliff; Gale, Julia; Olson, Jon; Fan, Zhiqiang; Gono, Valerie

    2014-05-01

    Induced seismicity during or following the subsurface injection of waste fluids such as well stimulation flow back and production fluids has recently received heightened public and industry attention. It is understood that induced seismicity occurs by reactivation of existing faults that are generally present in the injection intervals. We seek to address the question why fluid injection triggers earthquakes in some areas and not in others, with the aim toward improved injection methods that optimize injection volume and cost while avoiding induced seismicity. A GIS database has been built of natural and induced earthquakes in four hydrocarbon-producing basins: the Fort Worth Basin, South Texas, East Texas/Louisiana, and the Williston Basin. These areas are associated with disposal from the Barnett, Eagle Ford, Bakken, and Haynesville Shales respectively. In each region we analyzed data that were been collected using temporary seismographs of the National Science Foundation's USArray Transportable Array. Injection well locations, formations, histories, and volumes are also mapped using public and licensed datasets. Faults are mapped at a range of scales for selected areas that show different levels of seismic activity, and scaling relationships used to extrapolate between the seismic and wellbore scale. Reactivation potential of these faults is assessed using fault occurrence, and in-situ stress conditions, identifying areas of high and low fault reactivation potential. A correlation analysis between fault reactivation potential, induced seismicity, and fluid injection will use spatial statistics to quantify the probability of seismic fault reactivation for a given injection pressure in the studied reservoirs. The limiting conditions inducing fault reactivation will be compared to actual injection parameters (volume, rate, injection duration and frequency) where available. The objective of this project is a statistical reservoir- to basin-scale assessment of fault reactivation and seismicity induced by fluid injection. By assessing the occurrence of earthquakes (M>2) evenly across large geographic regions, this project differs from previous studies of injection-induced seismicity that focused on earthquakes large enough to cause public concern in well-populated areas. The understanding of triggered seismicity gained through this project is expected to allow for improved design strategies for waste fluid injection to industry and public decision makers.

  16. Effects of Hydraulic Frac Fluids on Subsurface Microbial Communities in Gas Shales

    NASA Astrophysics Data System (ADS)

    Jiménez, Núria; Krüger, Martin

    2014-05-01

    Shale gas is being considered as a complementary energy resource to coal or other fossil fuels. The exploitation of unconventional gas reservoirs requires the use of advanced drilling techniques and hydraulic stimulation (fracking). During fracking operations, large amounts of fluids (fresh water, proppants and chemical additives) are injected at high pressures into the formations, to produce fractures and fissures, and thus to release gas from the source rock into the wellbore. The injected fluids partly remain in the formation, while about 20 to 40% of the originally injected fluid flows back to the surface, together with formation waters, sometimes containing dissolved hydrocarbons, high salt concentrations, etc. The overall production operation will likely affect and be affected by subsurface microbial communities associated to the shale formations. On the one hand microbial activity (like growth, biofilm formation) can cause unwanted processes like corrosion, clogging, etc. On the other hand, the introduction of frac fluids could either enhance microbial growth or cause toxicity to the shale-associated microbial communities. To investigate the potential impacts of changing environmental reservoir conditions, like temperature, salinity, oxgen content and pH, as well as the introduction of frac or geogenic chemicals on subsurface microbial communities, laboratory experiments under in situ conditions (i.e. high temperatures and pressures) are being conducted. Enrichment cultures with samples from several subsurface environments (e.g. shale and coal deposits, gas reservoirs, geothermal fluids) have been set up using a variety of carbon sources, including hydrocarbons and typical frac chemicals. Classical microbiological and molecular analysis are used to determine changes in the microbial abundance, community structure and function after the exposure to different single frac chemicals, "artificial" frac fluids or production waters. On the other hand, potential transformation reactions of frac or geogenic chemicals by subsurface microbiota and their lifetime are investigated. In our "fracking simulation" experiments, an increasing number of hydrocarbon-degrading or halophilic microorganisms is to be expected after exposure of subsurface communities to artificial production waters. Whereas the introduction of freshwater and of easily biodegradable substrates might favor the proliferation of fast-growing generalistic heterotrophs in shale-associated communities. Nevertheless toxicity of some of the frac components cannot be excluded.

  17. Advanced stimulation technology deployment program, Chevron USA Production Company, Wolfcamp A2 Sand, Pakenham Field, Val Verde Basin. Topical report, July 1995-March 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, C.A.; Weijers, L.; Minner, W.A.

    1996-07-01

    This report describes the results from Chevron`s Pakenham Field effort at fracture stimulation engineering which incorporated, to the greatest extent possible, the results of actual measured field data. Measurement of the sand-shale closure stress contrast around the Wolfcamp A2 sand and the relatively high net fracturing pressures (compared to the closure stress contrast) that were observed during real-data (net pressure) fracture treatment analysis revealed that fractures obtained in most of the treatments were much shorter and less confined than originally expected: the fracture half-length was about 200 to 300 ft (instead of about 600 ft), which is consistent with estimatesmore » from post-fracture pressure build-up tests. Based on these measurements, Chevron`s fracturing practices in the Pakenham Field could be carefully reviewed to enhance fracture economics. Supported by the real-data fracture treatment analysis, several changes in completion, fracture treatment design and data-collection procedures were made, such as: (1) using cheaper 20/40 Ottawa sand instead of pre-cured 20/40 resin coated sand; (2) reducing the pad fluid size, as fluid leakoff from the fracture into the formation was relatively low; and, (3) utilizing stepdown tests and proppant slugs to minimize near-wellbore screen-out potential (in the Wolfcamp D sand).« less

  18. Microseismic Monitoring Design Optimization Based on Multiple Criteria Decision Analysis

    NASA Astrophysics Data System (ADS)

    Kovaleva, Y.; Tamimi, N.; Ostadhassan, M.

    2017-12-01

    Borehole microseismic monitoring of hydraulic fracture treatments of unconventional reservoirs is a widely used method in the oil and gas industry. Sometimes, the quality of the acquired microseismic data is poor. One of the reasons for poor data quality is poor survey design. We attempt to provide a comprehensive and thorough workflow, using multiple criteria decision analysis (MCDA), to optimize planning micriseismic monitoring. So far, microseismic monitoring has been used extensively as a powerful tool for determining fracture parameters that affect the influx of formation fluids into the wellbore. The factors that affect the quality of microseismic data and their final results include average distance between microseismic events and receivers, complexity of the recorded wavefield, signal-to-noise ratio, data aperture, etc. These criteria often conflict with each other. In a typical microseismic monitoring, those factors should be considered to choose the best monitoring well(s), optimum number of required geophones, and their depth. We use MDCA to address these design challenges and develop a method that offers an optimized design out of all possible combinations to produce the best data acquisition results. We believe that this will be the first research to include the above-mentioned factors in a 3D model. Such a tool would assist companies and practicing engineers in choosing the best design parameters for future microseismic projects.

  19. Results of investigation at the Miravalles geothermal field, Costa Rica. Resultados de las investigaciones en el campo geotermico de Miravalles, Costa Rica; Parte 2, Muestreo de fluidos pozo abajo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigsby, C.O.; Goff, F.; Trujillo, P.E. Jr.

    Samples of the geothermal fluids in the Miravalles, Costa Rica, geothermal system were collected from production wellbores using downhole fluid samplers, from flowing wellheads using miniseparators, and from hot springs that discharge in the area. The reservoir fluid at Miravalles is a neutral-chloride-type water, but fumaroles and acid-sulfate springs are present within the main thermal area, and there are bicarbonate-rich hot springs that are clearly related to the neutral-chloride reservoir fluids. Dissolved gases are primarily a mixture of CO{sub 2} with air, but samples collected in the fumarolic areas also contain H{sub 2}S. Water-stable isotope analyses suggest local meteoric recharge,more » and the reservoir fluid shows oxygen isotopic shifts of about 2.5% due to high-temperature oxygen exchange between water and rock. Chemical geothermometer temperatures are consistent with the measured downhole temperature of 220{degrees} to 255{degrees}C. This pattern of neutral-chloride reservoir fluids with acid-sulfate springs near the source region and bicarbonate-rich chloride hot springs at the periphery of the system suggests a lateral outflow type of hydrothermal system. In addition to the geochemical evidence, temperature profiles from several of the wells show temperature reversals that are characteristic of lateral outflow plumes. We find no evidence for the underlying, higher temperature (300{degrees}C) system, which has been suggested by other investigators. 24 refs., 14 figs., 6 tabs.« less

  20. Semi-analytical model of the axial movements of an oil-well drillstring in vertical wellbores

    NASA Astrophysics Data System (ADS)

    Hovda, Sigve

    2018-03-01

    A lumped element model for the axial movement of an oil-well drillstring is presented. In this paper, the model is restricted to vertical holes, where damping is due to skin friction from time dependent Newtonian annular Couette-Poiseuille flow. The drillstring is constructed of pipes with different diameters and the diameter of the hole varies as a function of depth. Under these assumptions, the axial movement anywhere in the drillstring is basically a convolution between the axial movement on the top and a semi-analytical function that is derived in this paper. Expressions are given for transfer functions for downhole movements and pressures (surge and swab). In a vertical drilling situation, the motion is clearly underdamped, even when the hole is tight. The semi-analytical model illuminates various factors that are shown to be important for describing downhole pressure and motion. In particular the effect of added mass, the steady state viscous forces, the Basset viscous forces and the distribution of pipe sizes in the hole. The latter have non-neglectable impacts on where the resonant frequencies are located, how much they are amplified and what happens to the downhole pressure. Together with statistical power spectra of ocean wave patterns and the response amplitude operators for a floating structure, this model illustrates design concerns related to heave motion and how fast one can run the drillstring into the hole. Moreover, because of the computational simplicity of computing the convolution, the model is well suited for a real-time implementation.

  1. Sources of high-chloride water and managed aquifer recharge in an alluvial aquifer in California, USA

    USGS Publications Warehouse

    O'Leary, David; Izbicki, John A.; Metzger, Loren F.

    2015-01-01

    As a result of pumping in excess of recharge, water levels in alluvial aquifers within the Eastern San Joaquin Groundwater Subbasin, 130 km east of San Francisco (California, USA), declined below sea level in the early 1950s and have remained so to the present. Chloride concentrations in some wells increased during that time and exceeded the US Environmental Protection Agency’s secondary maximum contaminant level of 250 mg/L, resulting in removal of some wells from service. Sources of high-chloride water include irrigation return in 16 % of sampled wells and water from delta sediments and deeper groundwater in 50 % of sampled wells. Chloride concentrations resulting from irrigation return commonly did not exceed 100 mg/L, although nitrate concentrations were as high as 25 mg/L as nitrogen. Chloride concentrations ranged from less than 100–2,050 mg/L in wells affected by water from delta sediments and deeper groundwater. Sequential electromagnetic logs show movement of high-chloride water from delta sediments to pumping wells through permeable interconnected aquifer layers. δD and δ18O data show most groundwater originated as recharge along the front of the Sierra Nevada, but tritium and carbon-14 data suggest recharge rates in this area are low and have decreased over recent geologic time. Managed aquifer recharge at two sites show differences in water-level responses to recharge and in the physical movement of recharged water with depth related to subsurface geology. Well-bore flow logs also show rapid movement of water from recharge sites through permeable interconnected aquifer layers to pumping wells.

  2. Modeling Studies to Constrain Fluid and Gas Migration Associated with Hydraulic Fracturing Operations

    NASA Astrophysics Data System (ADS)

    Rajaram, H.; Birdsell, D.; Lackey, G.; Karra, S.; Viswanathan, H. S.; Dempsey, D.

    2015-12-01

    The dramatic increase in the extraction of unconventional oil and gas resources using horizontal wells and hydraulic fracturing (fracking) technologies has raised concerns about potential environmental impacts. Large volumes of hydraulic fracturing fluids are injected during fracking. Incidents of stray gas occurrence in shallow aquifers overlying shale gas reservoirs have been reported; whether these are in any way related to fracking continues to be debated. Computational models serve as useful tools for evaluating potential environmental impacts. We present modeling studies of hydraulic fracturing fluid and gas migration during the various stages of well operation, production, and subsequent plugging. The fluid migration models account for overpressure in the gas reservoir, density contrast between injected fluids and brine, imbibition into partially saturated shale, and well operations. Our results highlight the importance of representing the different stages of well operation consistently. Most importantly, well suction and imbibition both play a significant role in limiting upward migration of injected fluids, even in the presence of permeable connecting pathways. In an overall assessment, our fluid migration simulations suggest very low risk to groundwater aquifers when the vertical separation from a shale gas reservoir is of the order of 1000' or more. Multi-phase models of gas migration were developed to couple flow and transport in compromised wellbores and subsurface formations. These models are useful for evaluating both short-term and long-term scenarios of stray methane release. We present simulation results to evaluate mechanisms controlling stray gas migration, and explore relationships between bradenhead pressures and the likelihood of methane release and transport.

  3. Determining phase diagrams of gas-liquid systems using a microfluidic PVT.

    PubMed

    Mostowfi, Farshid; Molla, Shahnawaz; Tabeling, Patrick

    2012-11-07

    A novel microfluidic device designed for analyzing phase diagrams of gas-liquid systems (PVT or pressure-volume-temperature measurements) is described. The method mimics the phase transition of a reservoir fluid as it travels through the wellbore from the formation to the surface. The device consists of a long serpentine microchannel etched in a silicon substrate. The local pressure inside the channel is measured using membrane-based optical pressure sensors positioned along the channel. Geometrical restrictions are placed along the microchannel in order to nucleate bubbles when nucleation conditions are met, thus preventing the development of a supersaturation state in the channel. We point out that a local equilibrium state between gas and liquid phases is achieved, which implies that equilibrium properties can be directly measured on the chip. We analyze different mixtures of hydrocarbon systems and, consistently with the preceding analysis, obtain excellent agreement between our technique and conventional measurements. From a practical viewpoint (important for the relevance of the technology), we observe that the measurement time of thermodynamic properties of gas-liquid systems is reduced from hours to minutes with the present device without compromising the measurement accuracy.

  4. Application of the CO2-PENS risk analysis tool to the Rock Springs Uplift, Wyoming

    USGS Publications Warehouse

    Stauffer, P.H.; Pawar, R.J.; Surdam, R.C.; Jiao, Z.; Deng, H.; Lettelier, B.C.; Viswanathan, H.S.; Sanzo, D.L.; Keating, G.N.

    2011-01-01

    We describe preliminary application of the CO2-PENS performance and risk analysis tool to a planned geologic CO2 sequestration demonstration project in the Rock Springs Uplift (RSU), located in south western Wyoming. We use data from the RSU to populate CO2-PENS, an evolving system-level modeling tool developed at Los Alamos National Laboratory. This tool has been designed to generate performance and risk assessment calculations for the geologic sequestration of carbon dioxide. Our approach follows Systems Analysis logic and includes estimates of uncertainty in model parameters and Monte-Carlo simulations that lead to probabilistic results. Probabilistic results provide decision makers with a range in the likelihood of different outcomes. Herein we present results from a newly implemented approach in CO 2-PENS that captures site-specific spatially coherent details such as topography on the reservoir/cap-rock interface, changes in saturation and pressure during injection, and dip on overlying aquifers that may be impacted by leakage upward through wellbores and faults. We present simulations of CO 2 injection under different uncertainty distributions for hypothetical leaking wells and faults. Although results are preliminary and to be used only for demonstration of the approach, future results of the risk analysis will form the basis for a discussion on methods to reduce uncertainty in the risk calculations. Additionally, we present ideas on using the model to help locate monitoring equipment to detect potential leaks. By maintaining site-specific details in the CO2-PENS analysis we provide a tool that allows more logical presentations to stakeholders in the region. ?? 2011 Published by Elsevier Ltd.

  5. Selected data fron continental scientific drilling core holes VC-1 and VC-2a, Valles Caldera, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musgrave, J.A.; Goff, F.; Shevenell, L.

    1989-02-01

    This report presents geochemical and isotopic data on rocks and water and wellbore geophysical data from the Continental Scientific Drilling Program core holes VC-1 and VC-2a, Valles Caldera, New Mexico. These core holes were drilled as a portion of a broader program that seeks to answer fundamental questions about magma, water/rock interactions, ore deposits, and volcanology. The data in this report will assist the interpretation of the hydrothermal system in the Jemez Mountains and will stimulate further research in magmatic processes, hydrothermal alteration, ore deposits, hydrology, structural geology, and hydrothermal solution chemistry. 37 refs., 36 figs., 28 tabs.

  6. Digital archive of drilling mud weight pressures and wellbore temperatures from 49 regional cross sections of 967 well logs in Louisiana and Texas, onshore Gulf of Mexico basin

    USGS Publications Warehouse

    Burke, Lauri A.; Kinney, Scott A.; Kola-Kehinde, Temidayo B.

    2011-01-01

    This document provides the digital archive of in-situ temperature and drilling mud weight pressure data that were compiled from several historical sources. The data coverage includes the states of Texas and Louisiana in the Gulf of Mexico basin. Data are also provided graphically, for both Texas and Louisiana, as plots of temperature as a function of depth and pressure as a function of depth. The minimum, arithmetic average, and maximum values are tabulated for each 1,000-foot depth increment for temperature as well as pressure in the Texas and Louisiana data.

  7. Method for production of hydrocarbons from hydrates

    DOEpatents

    McGuire, Patrick L.

    1984-01-01

    A method of recovering natural gas entrapped in frozen subsurface gas hydrate formations in arctic regions. A hot supersaturated solution of CaCl.sub.2 or CaBr.sub.2, or a mixture thereof, is pumped under pressure down a wellbore and into a subsurface hydrate formation so as to hydrostatically fracture the formation. The CaCl.sub.2 /CaBr.sub.2 solution dissolves the solid hydrates and thereby releases the gas entrapped therein. Additionally, the solution contains a polymeric viscosifier, which operates to maintain in suspension finely divided crystalline CaCl.sub.2 /CaBr.sub.2 that precipitates from the supersaturated solution as it is cooled during injection into the formation.

  8. Enhanced oil recovery utilizing high-angle wells in the Frontier Formation, Badger Basin Field, Park County, Wyoming. Quarterly technical progress report, 1 January 1994--31 March 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortmann, R.G.

    1994-04-22

    Sierra Energy Company, in consultation with Rim Companies, concluded that additional work was required for Subtask 2.1.4 -- Interpret data, of Task 2.1 - Acquire 3-D seismic data. The goal of this subtask was to interpret the 3-D seismic data, using a workstation, in order to locate the surface and subsurface positions for the slant and horizontal wellbores. Although this goal had been reached, more work was needed for plotting maps and seismic sections. Furthermore, it was determined that an additional look at the amplitude distribution in the Frontier sands would greatly benefit the interpretation.

  9. Steam-assisted gravity drainage technology enhancement

    NASA Astrophysics Data System (ADS)

    Durkin, S.; Menshikova, I.

    2018-05-01

    A hydrodynamic model of a region of Yaregskoye heavy oilfield was build. The results of the simulation have shown that injection capacity along the wellbore of a horizontal well is not uniform. It is determined by the geological heterogeneity of the formation. Therefore, there is importance of enhancing SAGD technology for Yaregskoye oilfield. A new technology was created. The efficiency of the technology is proved by numerical modelling. Horizontal injector and two-wellhead production wells penetrate the formation. Horizontal sections of the wells are located one above the other in the payzone. Wells are divided into two sections. Those sections work simultaneously and independently of one another. This technology allows to increase oil recovery of the oilfield.

  10. Numerical simulations of sand production in interbedded hydrate-bearing sediments during depressurization

    USGS Publications Warehouse

    Uchida, Shun; Lin, Jeen-Shang; Myshakin, Evgeniy; Seol, Yongkoo; Collett, Timothy S.; Boswell, Ray

    2017-01-01

    Geomechanical behavior of hydrate-bearing sediments during gas production is complex, involving changes in hydrate-dependent mechanical properties. When interbedded clay layers are present, the complexity is more pronounced because hydrate dissociation tends to occur preferentially in the sediments adjacent to the clay layers due to clay layers acting as a heat source. This would potentially lead to shearing deformation along the sand/clay contacts and may contribute to solid migration, which hindered past field-scale gas production tests. This paper presents a near-wellbore simulation of sand/clay interbedded hydrate-bearing sediments that have been subjected to depressurization and discusses the effect of clay layers on sand production.

  11. Progress in studies on hydrological impacts of degrading permafrost in the Source Area of Yellow River on NE Qinghai-Tibet Plateau, SW China

    NASA Astrophysics Data System (ADS)

    Jin, H.; Ma, Q.; Jin, X.

    2017-12-01

    Permafrost degradation substantially impacts hydrological processes in the Source Area of the Yellow River (SAYR). Deepening active layer has directly led to a reduction of surface runoffs, alters the generation and dynamics of slope runoffs and groundwater, leading to a deepening of groundwater flow paths. At present, however, there is only a limited understanding of the hydrological impact mechanisms of degrading permafrost. On the basis of analyzing and evaluating the current states, changing history and developing trends of climate, permafrost and hydrological processes, this program aims at further and better quantifying the nature of these mechanisms linking the degrading permafrost with changing hydrological processes. The key scientific themes for this research are the characterization of interactions between ground freezing-thawing and hydrogeology in the SAYR. For this study, a coupling is made between geothermal states and the occurrences of taliks in river systems, in order to understand how expanding taliks control groundwater and surface-water interactions and how these interactions might intensify or weaken when the climate warms and dries persistently. Numerical models include freeze-thaw dynamics coupled to groundwater and surface flow processes. For the proper parameterization of these models, field and laboratory studies are conducted with a focus on the SAYR. Geophysical investigations are employed for mapping permafrost distribution in relation to landscape elements. Boreholes and water wells and observation sites for the hydrothermal processes and water tables are used for establishing the current thermal state of frozen ground and talik and monitor their changes over time, and serve to ground-truth surface geophysical observations. Boreholes and wellbores, water wells and active layer sites have provided access to the permafrost and aquifer systems, allowing the dating of ground-water and -ice and soil strata for elucidating the regional hydrogeological system underlying the SAYR, and groundwater recharge mechanisms. The project plans to quantitatively study the impacting mechanisms of degrading frozen ground on changes in hydrological processes and systems in the SAYR.

  12. Aquifer Storage Recovery (ASR) of chlorinated municipal drinking water in a confined aquifer

    USGS Publications Warehouse

    Izbicki, John A.; Petersen, Christen E.; Glotzbach, Kenneth J.; Metzger, Loren F.; Christensen, Allen H.; Smith, Gregory A.; O'Leary, David R.; Fram, Miranda S.; Joseph, Trevor; Shannon, Heather

    2010-01-01

    About 1.02 x 106 m3 of chlorinated municipal drinking water was injected into a confined aquifer, 94-137 m below Roseville, California, between December 2005 and April 2006. The water was stored in the aquifer for 438 days, and 2.64 x 106 m3 of water were extracted between July 2007 and February 2008. On the basis of Cl data, 35% of the injected water was recovered and 65% of the injected water and associated disinfection by-products (DBPs) remained in the aquifer at the end of extraction. About 46.3 kg of total trihalomethanes (TTHM) entered the aquifer with the injected water and 37.6 kg of TTHM were extracted. As much as 44 kg of TTHMs remained in the aquifer at the end of extraction because of incomplete recovery of injected water and formation of THMs within the aquifer by reactions with freechlorine in the injected water. Well-bore velocity log data collected from the Aquifer Storage Recovery (ASR) well show as much as 60% of the injected water entered the aquifer through a 9 m thick, high-permeability layer within the confined aquifer near the top of the screened interval. Model simulations of ground-water flow near the ASR well indicate that (1) aquifer heterogeneity allowed injected water to move rapidly through the aquifer to nearby monitoring wells, (2) aquifer heterogeneity caused injected water to move further than expected assuming uniform aquifer properties, and (3) physical clogging of high-permeability layers is the probable cause for the observed change in the distribution of borehole flow. Aquifer heterogeneity also enhanced mixing of native anoxic ground water with oxic injected water, promoting removal of THMs primarily through sorption. A 3 to 4-fold reduction in TTHM concentrations was observed in the furthest monitoring well 427 m downgradient from the ASR well, and similar magnitude reductions were observed in depth-dependent water samples collected from the upper part of the screened interval in the ASR well near the end of the extraction phase. Haloacetic acids (HAAs) were completely sorbed or degraded within 10 months of injection.

  13. Simulation of geothermal water extraction in heterogeneous reservoirs using dynamic unstructured mesh optimisation

    NASA Astrophysics Data System (ADS)

    Salinas, P.; Pavlidis, D.; Jacquemyn, C.; Lei, Q.; Xie, Z.; Pain, C.; Jackson, M.

    2017-12-01

    It is well known that the pressure gradient into a production well increases with decreasing distance to the well. To properly capture the local pressure drawdown into the well a high grid or mesh resolution is required; moreover, the location of the well must be captured accurately. In conventional simulation models, the user must interact with the model to modify grid resolution around wells of interest, and the well location is approximated on a grid defined early in the modelling process.We report a new approach for improved simulation of near wellbore flow in reservoir scale models through the use of dynamic mesh optimisation and the recently presented double control volume finite element method. Time is discretized using an adaptive, implicit approach. Heterogeneous geologic features are represented as volumes bounded by surfaces. Within these volumes, termed geologic domains, the material properties are constant. Up-, cross- or down-scaling of material properties during dynamic mesh optimization is not required, as the properties are uniform within each geologic domain. A given model typically contains numerous such geologic domains. Wells are implicitly coupled with the domain, and the fluid flows is modelled inside the wells. The method is novel for two reasons. First, a fully unstructured tetrahedral mesh is used to discretize space, and the spatial location of the well is specified via a line vector, ensuring its location even if the mesh is modified during the simulation. The well location is therefore accurately captured, the approach allows complex well trajectories and wells with many laterals to be modelled. Second, computational efficiency is increased by use of dynamic mesh optimization, in which an unstructured mesh adapts in space and time to key solution fields (preserving the geometry of the geologic domains), such as pressure, velocity or temperature, this also increases the quality of the solutions by placing higher resolution where required to reduce an error metric based on the Hessian of the field. This allows the local pressure drawdown to be captured without user¬ driven modification of the mesh. We demonstrate that the method has wide application in reservoir ¬scale models of geothermal fields, and regional models of groundwater resources.

  14. Lightweight Approaches to Natural Gas Hydrate Exploration & Production

    NASA Astrophysics Data System (ADS)

    Max, M. D.; Johnson, A. H.

    2017-12-01

    Lower-cost approaches to drilling and reservoir utilization are made possible by adapting both emerging and new technology to the unique, low risk NGH natural gas resource. We have focused on drilling, wellbore lining technology, and reservoir management with an emphasis on long-term sand control and adaptive mechanical stability during NGH conversion to its constituent gas and water. In addition, we suggest that there are opportunities for management of both the gas and water with respect to maintaining desired thermal conditions. Some of the unique aspects of NGH deposits allow for new, more efficient technology to be applied to development, particularly in drilling. While NGH-bearing sands are in deepwater, they are confined to depths beneath the seafloor of 1.2 kilometers or less. As a result, they will not be significantly above hydrostatic pressure, and temperatures will be less than 30 oC. Drilling will be through semi-consolidated sediment without liquid hydrocarbons. These characteristics mean that high capability drillships are not needed. What is needed is a new perspective about drilling and producing NGH. Drilling from the seafloor will resolve the high-pressure differential between a wellhead on the sea surface in a vessel and reservoir to about the hydrostatic pressure difference between the seafloor and, at most, the base of the GHSZ. Although NGH production will begin using "off-the-shelf" technology, innovation will lead to new technology that will bring down costs and increase efficiency in the same way that led to the shale breakthrough. Commercial success is possible if consideration is given to what is actually needed to produce NGH in a safe and environmentally manner. Max, M.D. 2017. Wellbore Lining for Natural Gas Hydrate. U.S. Patent Application US15644947 Max, M.D. & Johnson, A.H. 2017. E&P Cost Reduction Opportunities for Natural Gas Hydrate. OilPro. . Max, M.D. & Johnson, A.H. 2016. Exploration and Production of Oceanic Natural Gas Hydrate: Critical Factors for Commercialization. Springer International Publishing AG, 405pp.

  15. Mapping Ground Water in Three Dimensions - An Analysis of Airborne Geophysical Surveys of the Upper San Pedro River Basin, Cochise County, Southeastern Arizona

    USGS Publications Warehouse

    Wynn, Jeff

    2006-01-01

    This report summarizes the results of two airborne geophysical surveys conducted in the upper San Pedro Valley of southeastern Arizona in 1997 and 1999. The combined surveys cover about 1,000 square kilometers and extend from the Huachuca Mountains on the west to the Mule Mountains and Tombstone Hills on the east and from north of the Babocomari River to near the Mexican border on the south. The surveys included the acquisition of high-resolution magnetic data, which were used to map depth to the crystalline basement rocks underlying the sediments filling the basin. The magnetic inversion results show a complex basement morphology, with sediment thickness in the center of the valley ranging from ~237 meters beneath the city of Sierra Vista to ~1,500 meters beneath Huachuca City and the Palominas area near the Mexican border. The surveys also included acquisition of 60-channel time-domain electromagnetic (EM) data. Extensive quality analyses of these data, including inversion to conductivity vs. depth (conductivity-depth-transform or CDT) profiles and comparisons with electrical well logs, show that the electrical conductor mapped represents the subsurface water-bearing sediments throughout most of the basin. In a few places (notably the mouth of Huachuca Canyon), the reported water table lies above where the electrical conductor places it. These exceptions appear to be due to a combination of outdated water-table information, significant horizontal displacement between the wells and the CDT profiles, and a subtle calibration issue with the CDT algorithm apparent only in areas of highly resistive (very dry) overburden. These occasional disparities appear in less than 5 percent of the surveyed area. Observations show, however, that wells drilled in the thick unsaturated zone along the Huachuca Mountain front eventually intersect water, at which point the water rapidly rises high into the unsaturated zone within the wellbore. This rising of water in a wellbore implies some sort of confinement below the thick unsaturated zone, a confinement that is not identified in the available literature. Occasional disparities notwithstanding, maps of the electrical conductor derived from the airborne EM system provide a synoptic view of the presence of water underlying the upper San Pedro Valley, including its three-dimensional distribution. The EM data even show faults previously only inferred from geologic mapping. The magnetic and electromagnetic data together appear to show the thickness of the sediments, the water in the saturated sediments down to a maximum of about 400 meters depth, and even places where the main ground-water body is not in direct contact with the San Pedro River. However, the geophysical data cannot reveal anything directly about hydraulic conductivity or ground-water flow. Estimating these characteristics requires new hydraulic modeling based in part on this report. One concern to reviewers of this report is the effect that clays may have on the electrical conductor mapped with the airborne geophysical system. Although the water in the basin is unusually conductive, averaging 338 microsiemens per centimeter, reasoning cited below suggests that the contribution of clays to the overall conductivity would be relatively small. Basic principles of sedimentary geology suggest that silts and clays should dominate the center of the basin, while sands and gravels would tend to dominate the margins. Although clay content may increase the amplitude of the observed electrical conductors somewhat, it will not affect the depths to the conductor derived from depth inversions. Further, fine-grained sediments generally have higher porosity and tend to lie toward a basin center, a fact in general agreement with the observed geophysical data.

  16. A model for calculating effects of liquid waste disposal in deep saline aquifer

    USGS Publications Warehouse

    Intercomp Resource Development and Engineering, Inc.

    1976-01-01

    Injection of liquid industrial wastes into confined underground saline aquifers can offer a good disposal alternative from both environmental and economic considerations. One of the needs in choosing from among several disposal alternatives is a means of evaluating the influence such an injection will have on the aquifer system. This report describes a mathematical model to accomplish this purpose.The objective of the contract was to develop a three-dimensional transient mathematical model which would accurately simulate behavior of waste injection into deep saline aquifers. Fluid properties, density and viscosity are functions of pressure, temperature and composition to provide a comprehensive assessment tool. The model is a finite-difference numerical solution of the partial differential equations describingsingle phase flow in the aquifer,energy transport by convection and conduction, andcompositional changes in the aquifer fluid.The model is not restricted to examining waste disposal operations. It can be used effectively to evaluate fresh water storage in saline aquifers, hot water storage in underground aquifers, salt water intrusion into groundwater flow systems and other similar applications.The primary advantages of the present model can be summarized as:The model is user-oriented for easy application to full-scale evaluation needs.The model is fully three-dimensional and transient.The model is comprehensive accounting for density and viscosity variations in the aquifer due to temperature or compositional changes.The model includes the effects of hydrodynamic dispersion in both the temperature and compositional mixing between resident and injected fluids.The model energy balance includes the effects of pressure. This can be important in deep aquifer systems where the viscous pressure gradient is significant.The model uses second-order correct space and time approximations to the convective terms. This minimizes the numerical dispersion problem.The model is extremely flexible in providing a wide choice of boundary conditions. These include natural flow in the aquifer, aquifer influence functions around the perimeter of the grid in recognition that the gridded region does not have no-flow boundaries, heat losses into the overlying or underlying impermeable strata, and the wellbore heat and pressure drop calculations coupled to the aquifer flow equations.The limitations of the present techniques are:The use of the second-order correct finite-difference approximations introduces block size and time step restrictions. These restrictions, though considerably less stringent than explicit methods cause, depend upon the magnitude of the dispersivity.The comprehensive nature of the model makes the computer time and storage requirements significant.The model, because of its complexity, is not as efficient in reducing down to solve simpler problems as a specially written model would be.Included in the report are detailed descriptions of the approach used in the model, validation tests of the model, and a typical application of the model. A comparison volume documents the input data requirements, program structure, and an example problem for the model. '

  17. Field experiment on CO2 back-production at the Ketzin pilot site

    NASA Astrophysics Data System (ADS)

    Martens, Sonja; Möller, Fabian; Schmidt-Hattenberger, Cornelia; Streibel, Martin; Szizybalski, Alexandra; Liebscher, Axel

    2015-04-01

    The operational phase of the Ketzin pilot site for geological CO2 storage in Germany started in June 2008 and ended in August 2013. Over the period of approximately five years, a total amount of 67 kt of CO2 was successfully injected into a saline aquifer (Upper Triassic sandstone) at a depth of 630 m - 650 m. The CO2 used was mainly of food grade quality. In addition, 1.5 kt of CO2 from the pilot capture facility "Schwarze Pumpe" (lignite power plant CO2) was used in 2011. At the end of the injection period, 32 t N2 and 613 t CO2 were co-injected during a four-week field test in July and August 2013. In October 2014, a field experiment was carried out at Ketzin with the aim to back-produce parts of the injected CO2 during a two-week period. This experiment addressed two main questions: (i) How do reservoir and wellbore behave during back-production of CO2? and (ii) What is the composition of the CO2 and the co-produced formation fluid? The back-production was carried out through the former injection well. It was conducted continuously over the first week and with an alternating regime including production during day-time and shut-ins during night-time in the second week. During the test, a total amount of 240 t of CO2 and 57 m3 of brine were safely back-produced from the reservoir. Production rates up to 3,200 kg/h - which corresponds to the former highest injection rate - could be tested. Vital monitoring parameters included production rates of CO2 and brine, wellhead and bottomhole pressure and temperature at the production and observation wells and distributed temperature sensing (DTS) along the production well. A permanently installed geoelectrical array was used for crosshole electrical resistivity tomography (ERT) monitoring of the reservoir. Formation fluid and gas samples were collected and analysed. The measured compositions allow studying the geochemical interactions between CO2, formation fluid and rocks under in-situ conditions The field experiment indicates that a safe back-production of CO2 is generally feasible and can be performed at both, stable reservoir and wellbore conditions. ERT monitoring shows that the geoelectrical array at the production well was capable of tracking the back-production process, e.g. the back-flow of brine into the parts formerly filled with CO2. Preliminary results also show that the back-produced CO2 at Ketzin has a purity > 97 per cent. Secondary component in the CO2 stream is N2 with < 3 per cent which probably results from former injection operation and field tests. The results will help to verify geochemical laboratory experiments which are typically performed in simplified synthetic systems. The results gained at the Ketzin site refer to the pilot scale. Upscaling of the results to industrial scale is possible but must first be tested and validated at demo projects.

  18. Final report for DOE Grant No. DE-FG02-07ER64404 - Field Investigations of Microbially Facilitated Calcite Precipitation for Immobilization of Strontium-90 and Other Trace Metals in the Subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Robert W; Fujita, Yoshiko; Ginn, Timothy R

    2012-10-12

    Subsurface radionuclide and metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of DOE's greatest challenges for long-term stewardship. One promising stabilization mechanism for divalent ions, such as the short-lived radionuclide 90Sr, is co-precipitation in calcite. We have previously found that that nutrient addition can stimulate microbial ureolytic activity that this activity accelerates calcite precipitation and co-precipitation of Sr, and that higher calcite precipitation rates can result in increased Sr partitioning. We have conducted integrated field, laboratory, and computational research to evaluate the relationships between ureolysis and calcite precipitation rates and trace metal partitioning under environmentally relevantmore » conditions, and investigated the coupling between flow/flux manipulations and precipitate distribution. A field experimental campaign conducted at the Integrated Field Research Challenge (IFRC) site located at Rifle, CO was based on a continuous recirculation design; water extracted from a down-gradient well was amended with urea and molasses (a carbon and electron donor) and re-injected into an up-gradient well. The goal of the recirculation design and simultaneous injection of urea and molasses was to uniformly accelerate the hydrolysis of urea and calcite precipitation over the entire inter-wellbore zone. The urea-molasses recirculation phase lasted, with brief interruptions for geophysical surveys, for 12 days followed by long-term monitoring which continued for 13 months. Following the recirculation phase we found persistent increases in urease activity (as determined from 14C labeled laboratory urea hydrolysis rates) in the upper portion of the inter-wellbore zone. We also observed an initial increase (approximately 2 weeks) in urea concentration associated with injection activities followed by decreasing urea concentration and associated increases in ammonium and dissolved inorganic carbon (DIC) following the termination of injection. Based on the loss of urea and the appearance of ammonium, a first order rate constant for urea hydrolysis of 0.18 day-1 rate with an associate Rf for ammonium of 11 were estimated. This rate constant is approximately 6 times higher than estimated for previous field experiments conducted in eastern Idaho. Additionally, DIC carbon isotope ratios were measured for the groundwater. Injected urea had a ´13C of 40.7±0.4 ° compared to background groundwater DIC of ´13C of -16.0±0.2°. Observed decreases in groundwater DIC ´13C of up to -19.8° followed temporal trends similar to those observed for ammonium and suggest that both the increase in ammonium and the sift in ´13C are the result of urea hydrolysis. Although direct observation of calcite precipitation was not possible because of the high pre-existing calcite content in the site sediments, an observed ´13C decrease for solid carbonates from sediment samples collect following urea injection (compared to pre-injection values) is likely the result of the incorporation of inorganic carbon derived from urea hydrolysis into newly formed solid carbonates.« less

  19. Completion Design Considerations for a Horizontal Enhanced Geothermal System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Jeffrey; Eustes, Alfred; Fleckenstein, William

    2015-09-02

    The petroleum industry has had considerable success in recent decades in developing unconventional shale plays using horizontal drilling and multi-zonal isolation and stimulation techniques to fracture tight formations to enable the commercial production of oil and gas. Similar well completions could be used in Enhanced Geothermal Systems (EGS) to create multiple fractures from horizontal wells. This study assesses whether well completion techniques used in the unconventional shale industry to create multi-stage fractures can be applied to an enhanced geothermal system, with a focus on the completion of the EGS injection well. This study assumes an Enhanced Geothermal System (EGS) consistingmore » of a central horizontal injection well flanked on each side by horizontal production wells, connected to the injection well by multiple fractures. The focus is on the design and completion of the horizontal well. For the purpose of developing design criteria, a reservoir temperature of 200 degrees C (392 degrees F) and an injection well flow rate of 87,000 barrels per day (160 kg/s), corresponding to production well flow rates of 43,500 barrels per day (80 kg/s) is assumed. The analysis found that 9-5/8 inches 53.5 pounds per foot (ppf) P110 casing string with premium connections meets all design criteria for the horizontal section of injection well. A P110 grade is fairly common and is often used in horizontal sections of shale development wells in petroleum operations. Next, several zonal isolation systems commonly used in the shale gas industry were evaluated. Three techniques were evaluated -- a 'plug and perf' design, a 'sand and perf' design, and a 'packer and port' design. A plug and perf system utilizes a cemented casing throughout the length of the injector wellbore. The sand and perf system is identical to the plug and perf system, but replaces packers with sand placed in the casing after stimulation to screen out the stimulated perforated zones and provide zonal isolation. The packer and port completion approach utilizes an open horizontal hole that zonally isolates areas through the use of external packers and a liner. A review of technologies used in these systems was performed to determine if commercially available equipment from the petroleum industry could be used at the temperatures, pressures, and sizes encountered in geothermal settings. The study found no major technical barriers to employing shale gas multi-zonal completion techniques in a horizontal well in a geothermal setting for EGS development. For all techniques considered, temperature limitations of equipment are a concern. Commercially available equipment designed to operate at the high temperatures encountered in geothermal systems are available, but is generally unproven for geothermal applications. Based on the study, further evaluation of adapting oil and gas completion techniques to EGS is warranted.« less

  20. Downhole vacuum cleans up tough fishing, milling jobs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaLande, P.; Flanders, B.

    1996-02-01

    A unique tool developed to effect reverse circulation downhole is being used successfully in problem milling and fishing operations where conventional techniques fail to recover junk in the hole. Jointly developed by several major operators in conjunction with Baker Oil Tools, the patented Reverse Circulating Tool (RCT) acts as a downhole vacuum cleaner, catching and retaining debris circulated from the wellbore while allowing fishing, milling and washover operations to continue uninterrupted. As described in several case histories overviewed, the unique vacuuming action efficiently cleans up junk and debris in even the most difficult fishing and milling applications. Downhole operations proceedmore » normally, but without threat of damage from milled debris. Developers hold both mechanical and method patents on the RCT.« less

  1. Apparatus for providing directional permeability measurements in subterranean earth formations

    DOEpatents

    Shuck, Lowell Z.

    1977-01-01

    Directional permeability measurements are provided in a subterranean earth formation by injecting a high-pressure gas from a wellbore into the earth formation in various azimuthal directions with the direction having the largest pressure drop being indicative of the maximum permeability direction. These measurements are provided by employing an inflatable boot containing a plurality of conduits in registry with a like plurality of apertures penetrating the housing at circumferentially spaced-apart locations. These conduits are, in turn, coupled through a valved manifold to a source of pressurized gas so that the high-pressure gas may be selectively directed through any conduit into the earth formation defining the bore with the resulting difference in the pressure drop through the various conduits providing the permeability measurements.

  2. Alpha-emitting isotopes and chromium in a coastal California aquifer

    USGS Publications Warehouse

    Densmore, Jill N.; Izbicki, John A.; Murtaugh, Joseph M.; Swarzenski, Peter W.; Bullen, Thomas D.

    2014-01-01

    The unadjusted 72-h gross alpha activities in water from two wells completed in marine and alluvial deposits in a coastal southern California aquifer 40 km north of San Diego were 15 and 25 picoCuries per liter (pCi/L). Although activities were below the Maximum Contaminant Level (MCL) of 15 pCi/L, when adjusted for uranium activity; there is concern that new wells in the area may exceed MCLs, or that future regulations may limit water use from the wells. Coupled well-bore flow and depth-dependent water-quality data collected from the wells in 2011 (with analyses for isotopes within the uranium, actinium, and thorium decay-chains) show gross alpha activity in marine deposits is associated with decay of naturally-occurring 238U and its daughter 234U. Radon activities in marine deposits were as high as 2230 pCi/L. In contrast, gross alpha activities in overlying alluvium within the Piedra de Lumbre watershed, eroded from the nearby San Onofre Hills, were associated with decay of 232Th, including its daughter 224Ra. Radon activities in alluvium from Piedra de Lumbre of 450 pCi/L were lower than in marine deposits. Chromium VI concentrations in marine deposits were less than the California MCL of 10 μg/L (effective July 1, 2014) but δ53Cr compositions were near zero and within reported ranges for anthropogenic chromium. Alluvial deposits from the nearby Las Flores watershed, which drains a larger area having diverse geology, has low alpha activities and chromium as a result of geologic and geochemical conditions and may be more promising for future water-supply development.

  3. Water Footprint and Water Consumption for the Main Crops and Biofuels Produced in Brazil

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Tong, C.; Mansoor, K.; Carroll, S.

    2011-12-01

    The risk of CO2 leakage into shallow aquifers through various pathways such as faults and abandoned wells is a concern of CO2 geological sequestration. If a leak is detected in an aquifer system, a contingency plan is required to manage the CO2 storage and to protect the groundwater source. Among many remediation and mitigation strategies, the simplest is to stop CO2 leakage at a wellbore. Therefore, it is necessary to address whether and when the CO2 leaks should be sealed, and how much risk can be mitigated. In the presence of various uncertainties, including geological-structure uncertainty and parametric uncertainty, the risk of CO2 leakage into an aquifer needs to be assessed with probabilistic distributions of uncertain parameters. In this study, we developed an integrated model to simulate multiphase flow of CO2 and brine in a deep storage reservoir, through a leaky well at an uncertain location, and subsequently multicomponent reactive transport in a shallow aquifer. Each sub-model covers its domain-specific physics. Uncertainties of geological structure and parameters are considered together with decision variables (CO2 injection rate and mitigation time) for risk assessment of leakage-impacted aquifer volume. High-resolution and less-expensive reduced-order models (ROMs) of risk profiles are approximated as polynomial functions of decision variables and all uncertain parameters. These reduced-order models are then used in the place of computationally-expensive numerical models for future decision-making on if and when the leaky well is sealed. The tradeoff between CO2 storage capacity in the reservoir and the leakage-induced risk in the aquifer is evaluated. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  4. Integration of seismic-reflection and well data to assess the potential impact of stratigraphic and structural features on sustainable water supply from the Floridan aquifer system, Broward County, Florida

    USGS Publications Warehouse

    Cunningham, Kevin J.

    2014-01-01

    The U.S. Geological Survey and Broward County water managers commenced a 3.5-year cooperative study in July 2012 to refine the geologic and hydrogeologic framework of the Floridan aquifer system (FAS) in Broward County. A lack of advanced stratigraphic knowledge of the physical system and structural geologic anomalies (faults and fractures originating from tectonics and karst-collapse structures) within the FAS pose a risk to the sustainable management of the resource. The principal objective of the study is to better define the regional stratigraphic and structural setting of the FAS in Broward County. The objective will be achieved through the acquisition, processing, and interpretation of new seismic-reflection data along several canals in Broward County. The interpretation includes integration of the new seismic-reflection data with existing seismic-reflection profiles along Hillsboro Canal in Broward County and within northeast Miami-Dade County, as well as with data from nearby FAS wellbores. The scope of the study includes mapping the geologic, hydrogeologic, and seismic-reflection framework of the FAS, and identifying stratigraphic and structural characteristics that could either facilitate or preclude the sustainable use of the FAS as an alternate water supply or a treated effluent repository. In addition, the investigation offers an opportunity to: (1) improve existing groundwater flow models, (2) enhance the understanding of the sensitivity of the groundwater system to well-field development and upconing of saline fluids, and (3) support site selection for future FAS projects, such as Class I wells that would inject treated effluent into the deep Boulder Zone.

  5. Uncertainty Quantification and Risk Mitigation of CO2 Leakage in Groundwater Aquifers

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Tong, C.; Mansoor, K.; Carroll, S.

    2013-12-01

    The risk of CO2 leakage into shallow aquifers through various pathways such as faults and abandoned wells is a concern of CO2 geological sequestration. If a leak is detected in an aquifer system, a contingency plan is required to manage the CO2 storage and to protect the groundwater source. Among many remediation and mitigation strategies, the simplest is to stop CO2 leakage at a wellbore. Therefore, it is necessary to address whether and when the CO2 leaks should be sealed, and how much risk can be mitigated. In the presence of various uncertainties, including geological-structure uncertainty and parametric uncertainty, the risk of CO2 leakage into an aquifer needs to be assessed with probabilistic distributions of uncertain parameters. In this study, we developed an integrated model to simulate multiphase flow of CO2 and brine in a deep storage reservoir, through a leaky well at an uncertain location, and subsequently multicomponent reactive transport in a shallow aquifer. Each sub-model covers its domain-specific physics. Uncertainties of geological structure and parameters are considered together with decision variables (CO2 injection rate and mitigation time) for risk assessment of leakage-impacted aquifer volume. High-resolution and less-expensive reduced-order models (ROMs) of risk profiles are approximated as polynomial functions of decision variables and all uncertain parameters. These reduced-order models are then used in the place of computationally-expensive numerical models for future decision-making on if and when the leaky well is sealed. The tradeoff between CO2 storage capacity in the reservoir and the leakage-induced risk in the aquifer is evaluated. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  6. Final Report to DOE EERE – Geothermal Technologies Program Project Title: Monitoring and modeling of fluid flow in a developing enhanced geothermal system (EGS) reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fehler, Michael

    The primary objective of this project was to improve our ability to predict performance of an Enhanced Geothermal System (EGS) reservoir over time by relating, in a quantitative manner, microseismic imaging with fluid and temperature changes within the reservoir. Historically, microseismic data have been used qualitatively to place bounds on the growth of EGS reservoirs created by large hydraulic fracturing experiments. Previous investigators used an experimentally based fracture opening relationship (fracture aperture as a function of pressure), the spatial extent of microseismic events, and some assumptions about fracture frequency to determine the size of an EGS reservoir created during largemore » pumping tests. We addressed a number of issues (1) locating microearthquakes that occur during hydraulic fracturing, (2) obtaining more information about a reservoir than the microearthquake locations from the microearthquake data, for example, information about the seismic velocity structure of the reservoir or the scattering of seismic waves within the reservoir, (3) developing an improved methodology for estimating properties of fractures that intersect wellbores in a reservoir, and (4) developing a conceptual model for explaining the downward growth of observed seismicity that accompanies some hydraulic injections into geothermal reservoirs. We used two primary microseismic datasets for our work. The work was motivated by a dataset from the Salak Geothermal Field in Indonesia where seismicity accompanying a hydraulic injection was observed to migrate downward. We also used data from the Soultz EGS site in France. We also used Vertical Seismic Profiling data from a well in the United States. The work conducted is of benefit for characterizing reservoirs that are created by hydraulic fracturing for both EGS and for petroleum recovery.« less

  7. Wellbore Completion Systems Containment Breach Solution Experiments at a Large Scale Underground Research Laboratory : Sealant placement & scale-up from Lab to Field

    NASA Astrophysics Data System (ADS)

    Goodman, H.

    2017-12-01

    This investigation seeks to develop sealant technology that can restore containment to completed wells that suffer CO2 gas leakages currently untreatable using conventional technologies. Experimentation is performed at the Mont Terri Underground Research Laboratory (MT-URL) located in NW Switzerland. The laboratory affords investigators an intermediate-scale test site that bridges the gap between the laboratory bench and full field-scale conditions. Project focus is the development of CO2 leakage remediation capability using sealant technology. The experimental concept includes design and installation of a field scale completion package designed to mimic well systems heating-cooling conditions that may result in the development of micro-annuli detachments between the casing-cement-formation boundaries (Figure 1). Of particular interest is to test novel sealants that can be injected in to relatively narrow micro-annuli flow-paths of less than 120 microns aperture. Per a special report on CO2 storage submitted to the IPCC[1], active injection wells, along with inactive wells that have been abandoned, are identified as one of the most probable sources of leakage pathways for CO2 escape to the surface. Origins of pressure leakage common to injection well and completions architecture often occur due to tensile cracking from temperature cycles, micro-annulus by casing contraction (differential casing to cement sheath movement) and cement sheath channel development. This discussion summarizes the experiment capability and sealant testing results. The experiment concludes with overcoring of the entire mock-completion test site to assess sealant performance in 2018. [1] IPCC Special Report on Carbon Dioxide Capture and Storage (September 2005), section 5.7.2 Processes and pathways for release of CO2 from geological storage sites, page 244

  8. Recent Earthquakes Mark the Onset of Induced Seismicity in Northeastern Pennsylvania

    NASA Astrophysics Data System (ADS)

    Martone, P.; Nikulin, A.; Pietras, J.

    2017-12-01

    The link between induced seismicity and injection of hydraulic fracturing wastewater has largely been accepted and corroborated through case studies in Colorado, Arkansas, Texas, and Oklahoma. To date, induced seismicity has largely impacted hydrocarbon-producing regions in the Central United States, while the seismic response in Eastern states, like Pennsylvania, has been relatively muted. In recent years, Pennsylvania exponentially increased hydrocarbon production from the Marcellus and Utica Shales and our results indicate that this activity has triggered an onset of induced seismicity in areas of the state where no previous seismic activity was reported. Three recent earthquakes in Northeastern Pennsylvania directly correlate to hydraulic fracturing activity, though USGS NEIC earthquake catalog locations have vertical errors up to 31km. We present signal analysis results of recorded waveforms of the three identified events and results of a high-precision relocation effort and improvements to the regional velocity model aimed at constraining the horizontal and vertical error in hypocenter position. We show that at least one event is positioned directly along the wellbore track of an active well and correlate its timing to the hydraulic fracturing schedule. Results show that in the absence of wastewater disposal in this area, it is possible to confidently make the connection between the hydraulic fracturing process and induced seismicity.

  9. Significant structural reinterpretation of the giant October Field, Gulf of Suez, Egypt using SCAT, isogon based sections and 3D seismic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sercombe, W.J.; Smith, G.W.; Morse, J.D.

    1996-01-01

    The October field, a sub-salt giant in the extensional Gulf of Suez (Egypt) has been structurally reinterpreted for new reserve opportunities. Quantitative SCAT analyses of the wellbore dip data have been integrated with 3D seismic by using dip isogons to construct local structural sections. SCAT dip analysis was critical to the reinterpretation because SCAT revealed important structural information that previously was unresolvable using conventional tadpole plots. In gross aspect, the October Field is a homocline that trends NW-SE, dips to the NE, and is closed on the SW (updip) by the major Clysmic Normal Fault. SCAT accurately calculated the overallmore » trend of the field, but also identified important structural anomalies near the Clysmic fault and in the northwest and southeast plunge ends. In the northwest plunge end, SCAT has identified new, south dipping blocks that are transitional to the structurally-higher North October field. The southeast plunge end has been reinterpreted with correct azimuthal trends and new fault-block prospects. These new SCAT results have successfully improved the 3D seismic interpretation by providing a foundation of accurate in-situ structural control in an area of poor-to-fair seismic quality below the Miocene salt package.« less

  10. Significant structural reinterpretation of the giant October Field, Gulf of Suez, Egypt using SCAT, isogon based sections and 3D seismic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sercombe, W.J.; Smith, G.W.; Morse, J.D.

    1996-12-31

    The October field, a sub-salt giant in the extensional Gulf of Suez (Egypt) has been structurally reinterpreted for new reserve opportunities. Quantitative SCAT analyses of the wellbore dip data have been integrated with 3D seismic by using dip isogons to construct local structural sections. SCAT dip analysis was critical to the reinterpretation because SCAT revealed important structural information that previously was unresolvable using conventional tadpole plots. In gross aspect, the October Field is a homocline that trends NW-SE, dips to the NE, and is closed on the SW (updip) by the major Clysmic Normal Fault. SCAT accurately calculated the overallmore » trend of the field, but also identified important structural anomalies near the Clysmic fault and in the northwest and southeast plunge ends. In the northwest plunge end, SCAT has identified new, south dipping blocks that are transitional to the structurally-higher North October field. The southeast plunge end has been reinterpreted with correct azimuthal trends and new fault-block prospects. These new SCAT results have successfully improved the 3D seismic interpretation by providing a foundation of accurate in-situ structural control in an area of poor-to-fair seismic quality below the Miocene salt package.« less

  11. In situ stress magnitude and rock strength in the Nankai accretionary complex: a novel approach using paired constraints from downhole data in two wells

    NASA Astrophysics Data System (ADS)

    Huffman, K. A.; Saffer, D. M.; Dugan, B.

    2016-07-01

    We present a method to simultaneously constrain both far-field horizontal stress magnitudes ( S hmin and S Hmax) and in situ rock unconfined compressive strength (UCS), using geophysical logging data from two boreholes located 70 m apart that access the uppermost accretionary prism of the Nankai subduction zone . The boreholes sample the same sediments and are affected by the same tectonic stress field, but were drilled with different annular pressures, thus providing a unique opportunity to refine estimates of both in situ stress magnitudes and rock strength. We develop a forward model to predict the angular width of compressional wellbore failures (borehole breakouts), and identify combinations of S Hmax and UCS that best match breakout widths observed in resistivity images from the two boreholes. The method requires knowledge of S hmin, which is defined by leak-off tests conducted during drilling. Our results define a normal to strike-slip stress regime from 900 to 1386 m below seafloor, consistent with observations from seismic and core data. Our analysis also suggests that in situ values of UCS are generally slightly lower that commonly assumed on the basis of published empirical relations between UCS and P-wave velocity.

  12. Analysis of borehole televiewer measurements in the Vorotilov drillhole, Russia - First results

    USGS Publications Warehouse

    Huber, K.; Fuchs, K.; Palmer, J.; Roth, F.; Khakhaev, B.N.; Van-Kin, L. E.; Pevzner, L.A.; Hickman, S.; Moos, D.; Zoback, M.D.; Schmitt, D.

    1997-01-01

    In the Eurasian part of the World Stress Map almost the whole region east of the Tornquist-Teisseyre line is terra incognita. The closure of this information gap is of fundamental importance to the understanding of the geodynamics of the Eurasian continent. A detailed analysis of stress-induced wellbore breakouts has been performed over a 4.1-km-long depth interval in the Vorotilov drillhole (VGS). The borehole is located in the central part of the Russian platform, right in the center of the Vorotilov meteorite impact crater 60 km to the NNE of the city of Nizni Novgorod. An ultrasonic borehole televiewer (BHTV) was used to obtain high-resolution acoustical images from the borehole wall. With an interactive system for analyzing BHTV data the azimuth and shape of borehole breakouts occurring in the depth range of 1.3-4.8 km were analyzed. A statistical analysis of the resulting orientation profile of the breakout azimuths yields an overall direction of the maximum horizontal principal stress SH of N 137??E ?? 15??. Variations of breakout orientation with depth ranging from a few degrees up to more than 90?? are seen on various depth scales. The observed stress direction of N 137??E agrees very well with the average SH orientation of N 145??E in Central Europe. If this measurement is taken as representative for the Russian platform, the stress field in Russia is only slightly rotated in comparison to Central Europe. This can possibly be interpreted as indicative for the stress field to be governed by broad scale tectonic forces, such as a strong contribution from the forces exerted by the collision zone in the Alpine-Himalayan belt and by the Mid-Atlantic ridge.

  13. Hydrogeologic conditions and saline-water intrusion, Cape Coral, Florida, 1978-81

    USGS Publications Warehouse

    Fitzpatrick, D.J.

    1986-01-01

    The upper limestone unit of the intermediate aquifer system, locally called the upper Hawthorn aquifer, is the principal source of freshwater for Cape Coral, Florida. The aquifer has been contaminated with saline water by downward intrusion from the surficial aquifer system and by upward intrusion from the Floridan aquifer system. Much of the intrusion has occurred through open wellbores where steel casings are short or where casings have collapsed because of corrosion. Saline-water contamination of the upper limestone unit due to downward intrusion from the surficial aquifer is most severe in the southern and eastern parts of Cape Coral; contamination due to upward intrusion has occurred in many areas throughout Cape Coral. Intrusion is amplified in areas of heavy water withdrawals and large water-level declines. (USGS)

  14. Static and Dynamic Anisotropic Muduli of a Shale Sample from Southern Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Melendez Martinez, J.; Schmitt, D. R.; Kofman, R. S.

    2012-12-01

    Recent interest in unconventional reservoirs broadly motivates our work in laboratory measurements of seismic anisotropy. Seismic anisotropy is the variation in speed of a wave as a function of its direction of propagation and particle polarization. When assuming an isotropic model of Earth during conventional seismic processing in areas with evidence of anisotropy a poor resolution images or erroneous localization of geological structures with strong dipping is produced. Ignoring anisotropy in unconventional reservoirs leads, for example, leads to erroneous estimation of horizontal stresses, wellbore stress as well as wellbore stability during hydraulic fracturing In this sense, laboratory measurements are an important tool to study seismic anisotropy since they provide information on the anisotropy intrinsic to the rock material itself. This is important to know as this contributes to the observed seismic anisotropy that is influenced by stress states and fractures. In this work, assuming a transversally isotropic medium (VTI), elastic anisotropic moduli of a dry shale from Southern Alberta are estimated as a function of confining pressure. Estimation of elastic constants and dynamic bulk moduli in a VTI medium involves recording P and S travel times by using pulse transmission method in a minimum of three different directions. These are often taken for the sake of convenience to be perpendicular (P0o and S0o), parallel (P90o and SH90o), and oblique (P45o and SH45o) to the layering of the material with the assumption that the perpendicular and parallel directions align with the principal anisotropic axes. The pulse transmission method involves generating and recording P and S ultrasonic waves traveling through a sample. Static Bulk moduli is estimated by measuring the volumetric deformation (strain) for a given confining pressure (stress) by using strain gauges directly bonded on the sample in two different directions: perpendicular to bedding and parallel to bedding. Strain Gauges consist in an electrical resistance which measures the deformation of the sample by measuring changes in resistivity as a function of confining pressure.

  15. Production Characteristics of Oceanic Natural Gas Hydrate Reservoirs

    NASA Astrophysics Data System (ADS)

    Max, M. D.; Johnson, A. H.

    2014-12-01

    Oceanic natural gas hydrate (NGH) accumulations form when natural gas is trapped thermodynamically within the gas hydrate stability zone (GHSZ), which extends downward from the seafloor in open ocean depths greater than about 500 metres. As water depths increase, the thickness of the GHSZ thickens, but economic NGH deposits probably occur no deeper than 1 km below the seafloor. Natural gas (mostly methane) appears to emanate mostly from deeper sources and migrates into the GHSZ. The natural gas crystallizes as NGH when the pressure - temperature conditions within the GHSZ are reached and when the chemical condition of dissolved gas concentration in pore water is high enough to favor crystallization. Although NGH can form in both primary and secondary porosity, the principal economic target appears to be turbidite sands on deep continental margins. Because these are very similar to the hosts of more deeply buried conventional gas and oil deposits, industry knows how to explore for them. Recent improvements in a seismic geotechnical approach to NGH identification and valuation have been confirmed by drilling in the northern Gulf of Mexico and allow for widespread exploration for NGH deposits to begin. NGH concentrations occur in the same semi-consolidated sediments in GHSZs worldwide. This provides for a narrow exploration window with low acoustic attenuation. These sediments present the same range of relatively easy drilling conditions and formation pressures that are only slightly greater than at the seafloor and are essentially equalized by water in wellbores. Expensive conventional drilling equipment is not required. NGH is the only hydrocarbon that is stable at its formation pressures and incapable of converting to gas without artificial stimulation. We suggest that specialized, NGH-specific drilling capability will offer opportunities for much less expensive drilling, more complex wellbore layouts that improve reservoir connectivity and in which gas-water separation can begin within the seafloor, and specialized production techniques. NGH is the only oceanic hydrocarbon deposit in which pressure can be controlled within the reservoir by balancing conversion and extraction. Oceanic NGH has a very low environmental risk, which also serves to distinguish it from other deepwater hydrocarbon deposits.

  16. Studying Petrophysical and Geomechanical Properties of Utica Point-Pleasant Shale and its Variations Across the Northern Appalachian Basin

    NASA Astrophysics Data System (ADS)

    Raziperchikolaee, S.; Kelley, M. E.; Burchwell, A.

    2017-12-01

    Understanding petrophysical and geomechanical parameters of shale formations and their variations across the basin are necessary to optimize the design of a hydraulic fracturing program aimed at enhancing long term oil/gas production from unconventional wells. Dipole sonic logging data (compressional-wave and shear-wave slowness) from multiple wells across the study area, coupled with formation bulk density log data, were used to calculate dynamic elastic parameters, including shear modulus, bulk modulus, Poisson's ratio, and Young's modulus for the shale formations. The individual-well data were aggregated into a single histogram for each parameter to gain an understanding of the variation in the properties (including brittleness) of the Utica Point-Pleasant formations across the entire study area. A crossplot of the compressional velocity and bulk density and a crossplot between the compressional velocity, the shear velocity, and depth of the measurement were used for a high level petrophysical characterization of the Utica Point-Pleasant. Detailed interpretation of drilling induced fractures recorded in image logs, and an analysis of shear wave anisotropy using multi-receiver sonic logs were also performed. Orientation of drilling induced fractures was measured to determine the maximum horizontal stress azimuth. Also, an analysis of shear wave anisotropy to predict stress anisotropy around the wellbore was performed to determine the direction of maximum horizontal stress. Our study shows how the detailed interpretation of borehole breakouts, drilling induced fractures, and sonic wave data can be used to reduce uncertainty and produce a better hydraulic fracturing design in the Utica Point Pleasant formations across the northern Appalachian Basin region of Ohio.

  17. Cross-well slug testing in unconfined aquifers: A case study from the Sleepers River Watershed, Vermont

    USGS Publications Warehouse

    Belitz, K.; Dripps, W.

    1999-01-01

    Normally, slug test measurements are limited to the well in which the water level is perturbed. Consequently, it is often difficult to obtain reliable estimates of hydraulic properties, particularly if the aquifer is anisotropic or if there is a wellbore skin. In this investigation, we use partially penetrating stress and observation wells to evaluate specific storage, radial hydraulic conductivity and anisotropy of the aquifer, and the hydraulic conductivity of the borehole skin. The study site is located in the W9 subbasin of the Sleepers River Research Watershed, Vermont. At the site, ~3 m of saturated till are partially penetrated by a stress well located in the center of the unconfined aquifer and six observation wells located above, below, and at the depth of the stress well at radial distances of 1.2 and 2.4 m. The observation wells were shut in with inflatable packers. The semianalytical solution of Butler (1995) was used to conduct a sensitivity analysis and to interpret slug test results. The sensitivity analysis indicates that the response of the stress well is primarily sensitive to radial hydraulic conductivity, less sensitive to anisotropy and the conductivity of the borehole skin, and nearly insensitive to specific storage. In contrast, the responses of the observation wells are sensitive to all four parameters. Interpretation of the field data was facilitated by generating type curves in a manner analogous to the method of Cooper et al. (1967). Because the value of radial hydraulic conductivity is obtained from a match point, the number of unknowns is reduced to three. The estimated values of radial hydraulic conductivity and specific storage are comparable to those derived from the methods of Bouwer and Rice (1976) and Cooper et al. (1967). The values and skin conductivity, however, could not have been obtained without the use of observation wells.Normally, slug test measurements are limited to the well in which the water level is perturbed. Consequently, it is often difficult to obtain reliable estimates of hydraulic properties, particularly if the aquifer is anisotropic or if there is a wellbore skin. In this investigation, we use partially penetrating stress and observation wells to evaluate specific storage, radial hydraulic conductivity and anisotropy of the aquifer, and the hydraulic conductivity of the borehole skin. The study site is located in the W9 subbasin of the Sleepers River Research Watershed, Vermont. At the site, approximately 3 m of saturated till are partially penetrated by a stress well located in the center of the unconfined aquifer and six observation wells located above, below, and at the depth of the stress well at radial distances of 1.2 and 2.4 m. The observation wells were shut in with inflatable packers. The semianalytical solution of Buffer (1995) was used to conduct a sensitivity analysis and to interpret slug test results. The sensitivity analysis indicates that the response of the stress well is primarily sensitive to radial hydraulic conductivity, less sensitive to anisotropy and the conductivity of the borehole skin, and nearly insensitive to specific storage. In contrast, the responses of the observation wells are sensitive to all four parameters. Interpretation of the field data was facilitated by generating type curves in a manner analogous to the method of Cooper et al. (1967). Because the value of radial hydraulic conductivity is obtained from a match point, the number of unknowns is reduced to three. The estimated values of radial hydraulic conductivity and specific storage are comparable to those derived from the methods of Bouwer and Rice (1976) and Cooper et al. (1967). The values and skin conductivity, however, could not have been obtained without the use of observation wells.

  18. Introducing GEOPHIRES v2.0: Updated Geothermal Techno-Economic Simulation Tool: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckers, Koenraad J; McCabe, Kevin

    This paper presents an updated version of the geothermal techno-economic simulation tool GEOPHIRES (GEOthermal Energy for Production of Heat and electricity (IR) Economically Simulated). GEOPHIRES combines reservoir, wellbore, surface plant and economic models to estimate the capital, and operation and maintenance costs, lifetime energy production, and overall levelized cost of energy of a geothermal plant. The available end-use options are electricity, direct-use heat and cogeneration. The main updates in the new version include conversion of the source code from FORTRAN to Python, the option to couple to an external reservoir simulator, updated cost correlations, and more flexibility in selecting themore » time step and number of injection and production wells. An overview of all the updates and two case-studies to illustrate the tool's new capabilities are provided in this paper.« less

  19. Failure of a gas well to respond to a foam hydraulic fracturing treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauscher, B.D.

    1996-12-31

    Well No. 1 (not the real name of the well) is not producing gas at maximum capacity following a foam hydraulic fracturing treatment performed upon completion of the well in 1987. The failure of the stimulation treatment, which has affected other wells throughout the field, was due to a combination of three factors: (1) downward fracture growth and proppant settling during injection (2) embedment due to a high pressure drawdown in the wellbore during flowback procedures, and (3) poor cleanup of the fracture fluid due to high capillary pressures. The following are recommendations to help improve future fracturing treatments throughoutmore » the field: (1) Fracture at lower treating pressures; (2) Improve perforating techniques; (3) Change flowback procedures; and (4) Evaluate using N{sub 2} as a fracture fluid.« less

  20. In situ conversion process systems utilizing wellbores in at least two regions of a formation

    DOEpatents

    Vinegar, Harold J [Bellaire, TX; Hsu, Chia-Fu [Granada Hills, CA

    2011-09-27

    A system for heating a subsurface formation is described. The system includes a plurality of elongated heaters located in a plurality of openings in the formation. At least two of the heaters are substantially parallel to each other for at least a portion of the lengths of the heaters. At least two of the heaters have first end portions in a first region of the formation and second end portions in a second region of the formation. A source of time-varying current is configured to apply time-varying current to at least two of the heaters. The first end portions of at least two heaters are configured to have substantially the same voltage applied to them. The second portions of at least two heaters are configured to have substantially the same voltage applied to them.

Top