NASA Astrophysics Data System (ADS)
Rooney, Tyrone O.; Mohr, Paul; Dosso, Laure; Hall, Chris
2013-02-01
The Afar triple junction, where the Red Sea, Gulf of Aden and African Rift System extension zones converge, is a pivotal domain for the study of continental-to-oceanic rift evolution. The western margin of Afar forms the southernmost sector of the western margin of the Red Sea rift where that margin enters the Ethiopian flood basalt province. Tectonism and volcanism at the triple junction had commenced by ˜31 Ma with crustal fissuring, diking and voluminous eruption of the Ethiopian-Yemen flood basalt pile. The dikes which fed the Oligocene-Quaternary lava sequence covering the western Afar rift margin provide an opportunity to probe the geochemical reservoirs associated with the evolution of a still active continental margin. 40Ar/39Ar geochronology reveals that the western Afar margin dikes span the entire history of rift evolution from the initial Oligocene flood basalt event to the development of focused zones of intrusion in rift marginal basins. Major element, trace element and isotopic (Sr-Nd-Pb-Hf) data demonstrate temporal geochemical heterogeneities resulting from variable contributions from the Afar plume, depleted asthenospheric mantle, and African lithosphere. The various dikes erupted between 31 Ma and 22 Ma all share isotopic signatures attesting to a contribution from the Afar plume, indicating this initial period in the evolution of the Afar margin was one of magma-assisted weakening of the lithosphere. From 22 Ma to 12 Ma, however, diffuse diking during continued evolution of the rift margin facilitated ascent of magmas in which depleted mantle and lithospheric sources predominated, though contributions from the Afar plume persisted. After 10 Ma, magmatic intrusion migrated eastwards towards the Afar rift floor, with an increasing fraction of the magmas derived from depleted mantle with less of a lithospheric signature. The dikes of the western Afar margin reveal that magma generation processes during the evolution of this continental rift margin are increasingly dominated by shallow decompressional melting of the ambient asthenosphere, the composition of which may in part be controlled by preferential channeling of plume material along the developing neo-oceanic axes of extension.
the role of magmatism and segmentation in the structural evolution of the Afar Rift
NASA Astrophysics Data System (ADS)
Stab, Martin; Bellahsen, Nicolas; Pik, Raphaël; Quidelleur, Xavier; Ayalew, Dereje; Leroy, Sylvie
2015-04-01
A common issue at volcanic passive margins (VPM) is the lack of observation of the structures that accommodate stretching and thinning. Indeed, the most distal parts and the Ocean-Continent Transition is often masked by thick seaward-dipping reflectors (SDR) sequences. Some current challenges are then to know if the observed thinning fit the divergence (thinning vs dyking); and what is the rheological effect of magma supply that re-thickens the crust during extension? In the Central Afar magmatic rift (Ethiopia), the structures related to rifting since Oligocene are cropping out onshore and are well preserved. We present here a new structural model based on field data and lavas (U-Th/He and K/Ar) datings along a balanced cross-section of the Central Afar Western Margin. We mapped continent-ward normal fault array affecting highly tilted trapp series (29-30 Ma) unconformably overlain by tilted Oligo-Miocene (25-7 Ma) acid series. The main extensional and necking/thinning event took place during the end of this Miocene magmatic episode. The Pliocene flood basalt (Stratoid series) is erupted over an already thinned crust. The bulk extension for the Afar Western Margin is ß ~ 2.50. Our main findings are: - Oligo-Miocene deformation in Central Afar appears to be largely distributed through space and time ("magmatic wide rift"). It has been accommodated in a 200-300 km wide strip being a diffuse incipient plate boundary during the whole rifting history until the formation of present-day magmatic segments. There is a period of tectonic quiescence accompanied with few magma erupted at the surface between 25 Ma and 7 Ma. We suggest that tectonic and magmatic activity was focused at that time on the highly faulted Danakil block and Southern Red Sea, away from our study zone. - ß ~ 2.50 is higher than the thinning factor of ~1.30 observed in geophysical studies. We propose that the continental crust in Central Afar has been re-thickened during extension by the syn-rift magmatic supply. The difference in tectono-magmatic style between Central Afar (distributed extension and thick crust) and Northern Afar Erta Ale segment (narrow graben, thin crust) may be explained by the difference of magma volume (extruded & underplated) brought to the crust during extension. Magma supply in Central Afar thus allows the crust to be stretched without extreme thinning despite high degree of divergence. Thus, break-up may occur in both Central and Northern Afar, not depending on the apparent thickness of the crust but rather on the ability of the system to localize deformation. - There appears to be a link between early-rift transform zones and distribution of magmatic activity that affects in turn the structural style. We suggest that the closest feature from the SDR at mature VPM is the Stratoid series. The difference of volume between the Stratoid and the enormous volume of SDR imaged in seismic studies (e.g South Atlantic) is probably best explained by an initial low mantle potential temperature in Afar. Contrasted structural styles in Afar are the product of magma supply and segmentation, controlling thinning and extension distribution in the rift.
Volcano-tectonic evolution of the Western Afar margin: new geochronological and structural data
NASA Astrophysics Data System (ADS)
Stab, Martin; Pik, Raphael; Bellahsen, Nicolas; Leroy, Sylvie; Ayalew, Dereje; Denèle, Yoann
2013-04-01
The rift system in NW-Afar (Ethiopia) is part of the Nubia-Somalia-Arabia triple junction located above the Afar hot spot active mainly since Oligocene times. It represents a unique natural laboratory for field study of superficial and deep lithospheric structure and process interactions during the transition between rifting and oceanic spreading in magma-rich setting. Most past field studies in Afar focused on the recognition and correlation of Afar's volcano-stratigraphic record and led to models of margin development that stress out the major trends of volcanic structures and give accordingly the following chronological "big picture". (1) 2km-thick flood basalt province emplaced at ca. 30 Ma due to hot spot activity over Jurassic to Permian sedimentary rocks and basement. (2) Rifting started around 25-20 Ma with half graben and great escarpment formation along with localization of volcanic activity in highly faulted narrower basins followed by lithospheric flexure. (3) The deformation migrated toward the rift centre with the emplacement around 8-5 Ma of bi-modal volcanics later faulted. (4) A second pulse of flood-basalt, the so-called Stratoid series, started at 4 Ma, until 1 Ma. In this contribution, we present new structural field data and lavas (U-Th/He) datings along a cross-section from the marginal graben to the Manda-Hararo active rift axis. In the newly explored Sullu Adu ranges, which were previously thought to be made of 8 Ma Dahla Basalts Fm., we mapped normal faults arrays affecting a complex magmatic series. We dated highly tilted 30 Ma pre-rift basic and silicic volcanic rocks that are unconformably overlain by syn-rift volcanics (25 to 8 Ma). This pattern is in some places either masked by unconformable thick stratoid cover or strongly eroded by dense river drainage. However, it is preserved enough to suggest a lower-than-expected extension ratio and/or the presence of major normal faults controlling seaward-dipping reflectors (SDR) emplacement such as the one observed on seismic reflection profiles in North and South Atlantic volcanic margins.
Seismicity During Continental Breakup in the Red Sea Rift of Northern Afar
NASA Astrophysics Data System (ADS)
Illsley-Kemp, Finnigan; Keir, Derek; Bull, Jonathan M.; Gernon, Thomas M.; Ebinger, Cynthia; Ayele, Atalay; Hammond, James O. S.; Kendall, J.-Michael; Goitom, Berhe; Belachew, Manahloh
2018-03-01
Continental rifting is a fundamental component of plate tectonics. Recent studies have highlighted the importance of magmatic activity in accommodating extension during late-stage rifting, yet the mechanisms by which crustal thinning occurs are less clear. The Red Sea rift in Northern Afar presents an opportunity to study the final stages of continental rifting as these active processes are exposed subaerially. Between February 2011 and February 2013 two seismic networks were installed in Ethiopia and Eritrea. We locate 4,951 earthquakes, classify them by frequency content, and calculate 31 focal mechanisms. Results show that seismicity is focused at the rift axis and the western marginal graben. Rift axis seismicity accounts for ˜64% of the seismic moment release and exhibits a swarm-like behavior. In contrast, seismicity at the marginal graben is characterized by high-frequency earthquakes that occur at a constant rate. Results suggest that the rift axis remains the primary locus of seismicity. Low-frequency earthquakes, indicative of magmatic activity, highlight the presence of a magma complex ˜12 km beneath Alu-Dalafilla at the rift axis. Seismicity at the marginal graben predominantly occurs on westward dipping, antithetic faults. Focal mechanisms show that this seismicity is accommodating E-W extension. We suggest that the seismic activity at the marginal graben is either caused by upper crustal faulting accommodating enhanced crustal thinning beneath Northern Afar or as a result of flexural faulting between the rift and plateau. This seismicity is occurring in conjunction with magmatic extension at the rift axis, which accommodates the majority of long-term extension.
NASA Astrophysics Data System (ADS)
Brown, C.; Ebinger, C. J.; Belachew, M.; Gregg, T.; Keir, D.; Ayele, A.; Aronovitz, A.; Campbell, E.
2008-12-01
Fault patterns record the strain history along passive continental margins, but geochronological constraints are, in general, too sparse to evaluate these patterns in 3D. The Afar depression in Ethiopia provides a unique setting to evaluate the time and space relations between faulting and magmatism across an incipient passive margin that formed above a mantle plume. The margin comprises a high elevation flood basalt province with thick, underplated continental crust, a narrow fault-line escarpment underlain by stretched and intruded crust, and a broad zone of highly intruded, mafic crust lying near sealevel. We analyze fault and seismicity patterns across and along the length of the Afar rift zone to determine the spatial distribution of strain during the final stages of continental breakup, and its relation to active magmatism and dike intrusions. Seismicity data include historic data and 2005-2007 data from the collaborative US-UK-Ethiopia Afar Geodynamics Project that includes the 2005-present Dabbahu rift episode. Earthquake epicenters cluster within discrete, 50 km-long magmatic segments that lack any fault linkage. Swarms also cluster along the fault-line scarp between the unstretched and highly stretched Afar rift zone; these earthquakes may signal release of stresses generated by large lateral density contrasts. We compare Coulomb static stress models with focal mechanisms and fault kinematics to discriminate between segmented magma intrusion and crank- arm models for the central Afar rift zone.
NASA Astrophysics Data System (ADS)
Stab, Martin; Leroy, Sylvie; Bellahsen, Nicolas; Pik, Raphaël; Ayalew, Dereje; Yirgu, Gezahegn; Khanbari, Khaled
2017-04-01
The Afro-Arabian rift system is characterized by complex interactions between magmatism and rifting, leading to long-term segmentation of the associated continental margins. However, past studies focused on specific rift segments and no attempt has yet been made to reconcile them into a single comprehensive geodynamic model. To address this, we present interpretations of seismic profiles offshore the Eritrea-Yemeni margins in the southern Red Sea and the Yemeni margin in the Gulf of Aden and reassess the regional geodynamic evolution including the new tectonic evolution of the Central Afar Magmatic margin. We point out the role of two major transform zones in structuring the volcanism and faulting of the Red Sea-Afar-Aden margins. We show that those transform zones not only control the present-day rift organization, but were also active since the onset of rifting in Oligocene times. Early syn-rift transform zones control the emplacement and the development of seaward-dipping-reflector wedges immediately after the Continental Flood basalts (30 Ma), and are closely associated with mantle plume melts in the course of the segment extension. The margins segmentation thus appears to reflect the underlying mantle dynamics and thermal anomaly, which have directly influenced the style of rifting (wide vs. narrow rift), in controlling the development of preferential lithospheric thinning and massive transfer of magmas in the crust.
Continental Break-up Above A Mantle Plume: Opening of The Southern Red Sea
NASA Astrophysics Data System (ADS)
Ebinger, C.; Eagles, G.; Elders, C.; Gloaguen, R.; McClay, K.; Tiberi, C.; Wolfenden, E.
Initial rifting in the Red Sea occurred concurrent with, or soon after flood basaltic mag- matism at~31 Ma in the Ethiopia-Yemen plume province. Yet, the development of the ca. 400 km-wide extensional province of the southern Red Sea between 31 Ma and the onset of seafloor spreading at ~4 Ma has been poorly understood, in large part owing to inaccessibility in the Afar depression. The Afar depression is a diffuse extensional province marking a triple point zone between plate boundaries in the Red Sea (Arabia Nubia), the Gulf of Aden (Arabia Somalia); and the Main Ethiopian Rift (Somalia Nu- bia). Complicating this setting, the Danakil horst is a microplate lying between oceanic provinces in the southernmost Red Sea and incipient seafloor spreading in the northern Afar depression. We have integrated exploration seismic, gravity, well, and magnetic data from offshore regions with remote sensing, geological and geophysical data from Ethiopia, Eritrea, and Yemen to evaluate models for continental break-up above mantle plumes. Plate kinematic reconstructions using a pole of rotation within the error ellipse of the Chu and Gordon (1999) pole predict real features in remote sensing and gravity data; these reconstructions provide a general framework for our interpretations. Field and geochronology studies along the western margin of Afar show a southward prop- agation of rifting since about 25 Ma when extension commenced offshore Red Sea and in Yemen. We also see an eastward migration of strain from the western border fault to narrow zones of primarily basaltic magmatism since mid-Miocene time. These magmatic sequences, where not onlapped by Pliocene-Recent sedimentary strata, dip steeply seaward and define a regional eastward flexure into transitional oceanic crust, as suggested by gravity models constrained by existing seismic data. Our synthesis suggests that the southern Afar depression, assumed to be most proximal to the plume, was the site of incipient seafloor spreading in Miocene time, but that this has ceased or stalled during plate reorganisation as the Aden rift propagated into Afar to make the Danakil a microplate.
A new model for the development of the active Afar volcanic margin
NASA Astrophysics Data System (ADS)
Pik, Raphaël; Stab, Martin; Bellahsen, Nicolas; Leroy, Sylvie
2016-04-01
Volcanic passive margins, that represent more than the three quarters of continental margins worldwide, are privileged witnesses of the lithospheric extension processes thatform new oceanic basins. They are characterized by voluminous amounts of underplated, intruded and extruded magmas, under the form of massive lavas prisms (seaward-dipping reflectors, or SDR) during the course of thinning and stretching of the lithosphere, that eventually form the ocean-continent transition. The origin and mechanisms of formation of these objects are still largely debated today. We have focussed our attention in the last few years on the Afar volcanic province which represents an active analogue of such volcanic margins. We explored the structural and temporal relationships that exist between the development of the major thinning and stretching structures and the magmatic production in Central Afar. Conjugate precise fieldwork analysis along with lavas geochronology allowed us to revisit the timing and style of the rift formation, since the early syn-rift period of time in the W-Afar marginal area to present days. Extension is primarily accommodated over a wide area at the surface since the very initial periods of extension (~ 25 Ma) following the emplacement of Oligocene CFBs. We propose in our reconstruction of central Afar margin history that extension has been associated with important volumes of underplated mafic material that compensate crustal thinning. This has been facilitated by major crustal-scale detachments that help localize the thinning and underplating at depth. In line with this 'magmatic wide-rift' mode of extension, we demonstrate that episodic extension steps alternate with more protracted magmatic phases. The production of syn-rift massive flood basalts (~ 4 Ma) occurs after early thinning of both the crust and the lithosphere, which suggests that SDR formation, is controlled by previous tectonic event. We determined how the melting regime evolved in response to the deformation of the lithosphere, through a petrological and geochemical study of the pre- to syn-rift lavas and concluded that the lithospheric mantle experienced the combined effect of post-plume cooling, but also thinning during the Miocene. This is accompanied by the early channelization of the plume head into narrower zones, which helped focus extension at the future volcanic margins location. The anomalous mantle potential temperature increased during the very last localization phase (< 1 Ma), which leads us to argue in favor of the focussed activity of a plume stem below the volcanic margin, instead of purely passive adiabatic decompression. Our new interpretation of the regional isotopic signatures of lavas depicts a clear framework of the Afar plume and lithospheric mantle relationships to on going extension and segmentation of these margins, and allow us to propose new contrasted models for their development.
Evolution of Northeast Atlantic Magmatic Continental Margins from an Ethiopian-Afar Perspective
NASA Astrophysics Data System (ADS)
England, R. W.; Cornwell, D. G.; Ramsden, A. M.
2014-12-01
One of the major problems interpreting the evolution of magmatic continental margins is that the structure which should record the pre-magmatic evolution of the rift and which potentially influences the character of the rifting process is partially or completely obscured by thick basalt lava flows and sills. A limited number of deep reflection seismic profiles acquired with tuned seismic sources have penetrated the basalts and provide an image of the pre-magmatic structure, otherwise the principle data are lower resolution wide-angle/refraction profiles and potential field models which have greater uncertainties associated with them. In order to sidestep the imaging constraints we have examined the Ethiopian - Afar rift system to try to understand the rifting process. The Main Ethiopian rift contains an embryonic magmatic passive margin dominated by faulting at the margins of the rift and en-echelon magmatic zones at the centre. Further north toward Afar the rift becomes in-filled with extensive lava flows fed from fissure systems in the widening rift zone. This rift system provides, along its length, a series of 'snapshots' into the possible tectonic evolution of a magmatic continental margin. Deep seismic profiles crossing the NE Atlantic margins reveal ocean dipping reflector sequences (ODRS) overlying extended crust and lower crustal sill complexes of intruded igneous rock, which extend back beneath the continental margin. The ODRS frequently occur in fault bounded rift structures along the margins. We suggest, by analogy to the observations that can be made in the Ethiopia-Afar rift that these fault bounded basins largely form at the embryonic rift stage and are then partially or completely filled with lavas fed from fissures which are now observed as the ODRS. Also in the seismic profiles we identify volcanic constructs on the ODRS which we interpret as the equivalent of the present day fissure eruptions seen in Afar. The ocean ward dip on the ODRS is predominantly the result of post-eruption differential subsidence, as opposed to syn-eruption extension. The timing of intrusion of the lower crustal sill complexes remains unclear but they are most likely to have been emplaced as the supply of magma increased, which implies they are a late stage addition.
Seismic Observations From the Afar Rift Dynamics Project: Preliminary Results
NASA Astrophysics Data System (ADS)
Hammond, J. O.; Guidarelli, M.; Belachew, M.; Keir, D.; Ayele, A.; Ebinger, C.; Stuart, G.; Kendall, J.
2008-12-01
Following the 2005 Dabbahu rifting event in Afar, 9 broadband seismometers were installed around the active rift segment to study the microseismicity associated with this and subsequent dyking events. These recorded more than one year of continuous data. In March 2007, 41 stations were deployed throughout Afar and the adjacent rift flanks as part of a large multi-national, collaboration involving universities and organisations from the UK, US and Ethiopia. This abstract describes the crustal and upper mantle structure results of the first 19 months of data. Bulk crustal structure has been determined using the H-k stacking of receiver functions and thickness varies from ~45 km on the rift margins to ~16 km beneath the northeastern Afar stations. Estimates of Vp/Vs show normal continental crust values (1.7-1.8) on the rift margins, and very high values (2.0-2.2) in Afar. A study of seismic noise interferometry is in early stages, but inversions using 20 s Green's function estimates, with some control from regional surface waves, show evidence for thin crustal regions around the recently rifted Dabbahu segment. To improve our understanding of the physical and compositional properties of the crust and locate regions of high attenuation (an indicator of melt), we determine attenuation (Q) using t* values measured from spectra of P wave arrivals. We present whole path attenuation from source to receiver, which will provide a starting point for a future tomographic inversion. SKS-wave splitting results show sharp changes over small lateral distances (40° over <30 km), with fast directions overlying the Dabbahu segment aligning parallel with the recent diking. This supports ideas of melt dominated anisotropy beneath the Ethiopian rift. Seismic tomography inversions show that in the top 150 km low velocities mimic the trend of the seismicity in Afar. The low velocity anomalies extend from the main Ethiopian rift NE, towards Djibouti, and from Djibouti NW towards the Dabbahu segment. Outside of these linear regions the velocities are relatively fast. Below ~250 km the anomaly broadens to cover most of the Afar region with only the rift margins remaining fast. The seismic studies will be integrated with results from other areas of the consortium project (e.g., Magneto- tellurics, GPS, insar, gravity, petrology, geochemistry), enabling us to develop a greater understanding of rifting beneath an area of incipient oceanic spreading.
Seismic Imaging of the crust and upper mantle beneath Afar, Ethiopia
NASA Astrophysics Data System (ADS)
Hammond, J. O.; Kendall, J. M.; Stuart, G. W.; Ebinger, C. J.
2009-12-01
In March 2007 41 seismic stations were deployed in north east Ethiopia. These stations recorded until October 2009, whereupon the array was condensed to 13 stations. Here we show estimates of crustal structure derived from receiver functions and upper mantle velocity structure, derived from tomography and shear-wave splitting using the first 2.5 years of data. Bulk crustal structure has been determined by H-k stacking receiver functions. Crustal Thickness varies from ~45km on the rift margins to ~16km beneath the northeastern Afar stations. Estimates of Vp/Vs show normal continental crust values (1.7-1.8) on the rift margins, and very high values (2.0-2.2) in Afar, similar to results for the Main Ethiopian Rift (MER). This supports ideas of high levels of melt in the crust beneath the Ethiopian Rift. Additionally, we use a common conversion point migration technique to obtain high resolution images of crustal structure beneath the region. Both techniques show a linear region of thin crust (~16km) trending north-south, the same trend as the Red Sea rift. SKS-wave splitting results show a general north east-south west fast direction in the MER, systematically rotating to a more north-south fast direction towards the Red Sea. Additionally, stations close to the recent Dabbahu diking episode show sharp lateral changes over small lateral distances (40° over <30km), with fast directions overlying the Dabbahu segment aligning parallel with the recent diking. This supports ideas of melt dominated anisotropy beneath the Ethiopian rift. The magnitude of splitting in this region is smaller than that seen at the MER, suggesting a thinner region of melt, or less focused melt is causing the anisotropy. Seismic tomography inversions show that in the top 150km low velocities highlight plate boundaries. The low velocity anomalies extend from the main Ethiopian rift NE, towards Djibouti, and from Djibouti NW towards the Dabbahu segment The lowest velocities exist on the rift margins, supporting ideas of preferential melt generation at these regions of high strain. This includes a region of low velocity close to the edge of the proposed location of the Danakil microplate. Outside of these focused regions the velocities are relatively fast. Below ~250km the anomaly broadens to cover most of the Afar region with only the rift margins remaining fast. At transition zone depths little anomaly is seen beneath Afar, but some low velocities remain present beneath the MER. These studies suggest that in northern Ethiopia the Red Sea rift is dominant. The presence of thin crust beneath northern Afar suggests that the Red Sea rift is creating oceanic like crust in this region. The lack of deep mantle low velocity anomalies beneath Afar suggest that a typical narrow conduit plume does not exist in this region, rather the velocity models seem more similar to passive upwelling of material beneath Afar.
NASA Astrophysics Data System (ADS)
Blecha, V.
A new Bouguer anomaly map of western part of southern Yemen margin has been compiled. Densities of rock samples from main geological units (Precambrian base- ment, Mesozoic sediments, Tertiary volcanites) have been measured and used for grav- ity modeling. Regional gravity map indicates decrease of thickness of continental crust from volcanites of the Yemen Trap Series towards the coast of the Gulf of Aden. Most remarkable feature in the map of residual anomalies is a positive anomaly over the Dhala graben. The Dhala graben is a prominent geological structure in the area of study trending parallel to the Red Sea axis. Gravity modeling on a profile across the Dhala graben presumes intrusive plutonic rocks beneath the graben. There are two other areas in the southwestern tip of Arabia, which have essentially the same struc- tural position as the Dhala graben: the Jabal Tirf volcanic rift zone in the southern Saudi Arabia and Jabal Hufash extensional zone in northern Yemen. All three areas extend along the line trending parallel to the Red Sea axis with length of about 500 km. The line coincides with the axis of Afar (Danakil) depression after Arabia is shifted and rotated back to Africa. These facts imply conclusion that the Oligocene - Early Miocene magmatic activity on the Jabal Tirf - Dhala lineament is related to the same original deep tectonic zone, forming present-day Afar depression and still active.
NASA Astrophysics Data System (ADS)
Kiros, T.; Wohnlich, S.; Hussien, B.
2017-12-01
The Central Highlands of Ethiopia have repeatedly experiencing large-scale landslide events. Debre Sina area is one of the most landslide prone areas located along the western Afar rift margin of Ethiopia, which is frequently affected by large-scale and deep-seated landslides. Despite that, urban and rural development is currently taking place in almost all constricted valleys as well as on the imposing cliffs. Therefore, understanding the major triggering factors and failure mechanisms in the Debre Sina area and surroundings is of critical importance. In the present study, we investigate the landslide in the area using geological and topographic analysis, structural settings, geophysical investigation (seismic refraction), rainfall data and seismicity. Furthermore, petrographical as well as X-ray Diffraction (XRD) analysis are conducted to explain the mineral composition of parent rock and its weathering products. The topographic analysis result revealed that the slope range from 100 - 400, with elevation of 1,800 - 2,500m, with aspect to east and southeast are highly prone to landslide. The seismic refraction method identified four main layers of geomaterials which contained a subsurface landslides anomaly within the layers. The results consist of clay, loosely cemented colluvial sediments and highly weathered agglomerates (1000-1500m/s) 7-15m, highly to moderately fractured porphyritic basalt, ignimbrite, rhyolite/trachyte and volcanic ash (1500-2500m/s) 10-30m, moderately to slightly fractured ignimbrite, rhyolite/trachyte and basalt (2500-3500m/s) 30-50m and very strong, massive, fresh rock/bed rock (>3500m/s) from 45m depth. The large-scale and deep-seated landslides problem in the study area appears to be caused by heavy rainfall, complex geology and rugged topography, the presence of geological structures oriented parallel to the rift margin N-S fault (NNE-SSW trending) of the central Ethiopian highlands and coinciding with the head scarp of the slides and seismicity. These findings could serve as a basis for planners and policy-makers, and will lead to an increased level of understanding of the natural geohazards problems in the country.
ERTS-1 imagery of eastern Africa: A first look at the geological structure of selected areas
NASA Technical Reports Server (NTRS)
Mohr, P. A. (Principal Investigator)
1972-01-01
The author has identified the following significant results. Imagery of the African rift system resolves the major Cainozoic faults, zones of warping, and associated volcanism. It also clearly depicts the crystal grain of the Precambrian rocks where these are exposed. New structural features, or new properties of known features such as greater extent, continuity, and linearity are revealed by ERTS-1 imagery. This applies, for example, to the NE-SW fracture zones in Yemen, the Aswa mylonite zone at the northern end of the Western Rift, the Nandi fault of western Kenya, the linear faults of the Elgeyo escarpment in the Gregory Rift, and the hemibasins of warped Tertiary lavas on the Red Sea margin of Yemen, matching those of Ethiopian plateau-Afar margin. A tentative scheme is proposed, relating the effect on the pattern of Cainozoic faulting of the degree of obliquity to Precambrian structural trend. It is particularly noteworthy that, even where the Precambrian grain determines the rift faulting to be markedly oblique to the overall trend of the rift trough, for example, in central Lake Tanganyika, the width of the trough is not significantly increased. Some ground mapped lithological boundaries are obscure on ERTS-1 imagery.
NASA Astrophysics Data System (ADS)
Alene, Mulugeta; Hart, William K.; Saylor, Beverly Z.; Deino, Alan; Mertzman, Stanley; Haile-Selassie, Yohannes; Gibert, Luis B.
2017-06-01
The Woranso-Mille (WORMIL) area in the west-central Afar, Ethiopia, contains several Pliocene basalt flows, tuffs, and fossiliferous volcaniclastic beds. We present whole-rock major- and trace-element data including REE, and Sr-Nd-Pb isotope ratios from these basalts to characterize the geochemistry, constrain petrogenetic processes, and infer mantle sources. Six basalt groups are distinguished stratigraphically and geochemically within the interval from 3.8 to 3 Ma. The elemental and isotopic data show intra- and inter-group variations derived primarily from source heterogeneity and polybaric crystallization ± crustal inputs. The combined Sr-Nd-Pb isotope data indicate the involvement of three main reservoirs: the Afar plume, depleted mantle, and enriched continental lithosphere (mantle ± crust). Trace element patterns and ratios further indicate the basalts were generated from spinel-dominated shallow melting, consistent with significantly thinned Pliocene lithosphere in western Afar. The on-land continuation of the Aden rift into western Afar during the Pliocene is reexamined in the context of the new geochemistry and age constraints of the WORMIL basalts. The new data reinforce previous interpretations that progressive rifting and transformation of the continental lithosphere to oceanic lithosphere allows for increasing asthenospheric inputs through time as the continental lithosphere is thinned. Accepted trace element values for BHVO-2 are those recently recommended by Jochum et al. (2016) rounded to provide the same significant figures as the data. Ternary model after Schilling et al. (1992); Endmembers from Rooney et al. (2012).
Uppermost mantle velocity from Pn tomography in the Gulf of Aden
NASA Astrophysics Data System (ADS)
Corbeau, Jordane; Rolandone, Frédérique; Leroy, Sylvie; Al-Lazki, Ali; Keir, Derek; Stuart, Graham; Stork, Anna
2013-04-01
We present an analysis of Pn traveltimes to determine lateral variations of velocity in the uppermost mantle and crustal thickness beneath the Gulf of Aden and its margins. No detailed tomographic image of the entire Gulf of Aden was available. Previous tomographic studies covered the eastern Gulf of Aden and were thus incomplete or at a large scale with a too low resolution to see the lithospheric structures. From 1990 to 2010, 49206 Pn arrivals were selected from the International Seismological Center catalogue. We also used temporary networks : YOCMAL (Young Conjugate Margins Laboratory) networks with broadband stations located in Oman, Yemen and Socotra from 2003 to 2011, and Djibouti network from 2009 to 2011. From these networks we picked Pn arrivals and selected 4110 rays. Using a least-squares tomographic code (Hearn, 1996), these data were analyzed to solve for velocity variations in the mantle lithosphere. We perform different inversions for shorter and longer ray path data sets in order to separate the shallow and deep structure within the mantle lid. In the upper lid, zones of low velocity (7.7 km/s) around Sanaa, Aden, Afar, and along the Gulf of Aden are related to active volcanism. Off-axis volcanism and a regional melting anomaly in the Gulf of Aden area may be connected to the Afar plume, and explained by the model of channeling material away from the Afar plume along ridge-axis. Our study validates the channeling model and shows that the influence of the Afar hotspot may extend much farther eastwards along the Aden and Sheba ridges into the Gulf of Aden than previously believed. Still in the upper lid, high Pn velocities (>8,2 km/s) are observed in Yemen and may be related to the presence of a magmatic underplating under the volcanic margin of Aden and under the Red Sea margins. In the lower lid, zones of low velocities are spatially located differently than in the upper lid. On the Oman margin, a low velocity zone (7.6 km/s) suggests deep partial melting. The Pn velocity below Socotra island is slower, whereas a high velocity zone is observed north of the Sheba ridge. The hot material may have flowed through Alula-Fartak transform zone towards Socotra.
The Red Sea and Gulf of Aden Basins
NASA Astrophysics Data System (ADS)
Bosworth, William; Huchon, Philippe; McClay, Ken
2005-10-01
We here summarize the evolution of the greater Red Sea-Gulf of Aden rift system, which includes the Gulfs of Suez and Aqaba, the Red Sea and Gulf of Aden marine basins and their continental margins, and the Afar region. Plume related basaltic trap volcanism began in Ethiopia, NE Sudan (Derudeb), and SW Yemen at ˜31 Ma, followed by rhyolitic volcanism at ˜30 Ma. Volcanism thereafter spread northward to Harrats Sirat, Hadan, Ishara-Khirsat, and Ar Rahat in western Saudi Arabia. This early magmatism occurred without significant extension, and continued to ˜25 Ma. Much of the Red Sea and Gulf of Aden region was at or near sea level at this time. Starting between ˜29.9 and 28.7 Ma, marine syn-tectonic sediments were deposited on continental crust in the central Gulf of Aden. At the same time the Horn of Africa became emergent. By ˜27.5-23.8 Ma a small rift basin was forming in the Eritrean Red Sea. At approximately the same time (˜25 Ma), extension and rifting commenced within Afar itself. At ˜24 Ma, a new phase of volcanism, principally basaltic dikes but also layered gabbro and granophyre bodies, appeared nearly synchronously throughout the entire Red Sea, from Afar and Yemen to northern Egypt. This second phase of magmatism was accompanied in the Red Sea by strong rift-normal extension and deposition of syn-tectonic sediments, mostly of marine and marginal marine affinity. Sedimentary facies were laterally heterogeneous, being comprised of inter-fingering siliciclastics, evaporite, and carbonate. Throughout the Red Sea, the principal phase of rift shoulder uplift and rapid syn-rift subsidence followed shortly thereafter at ˜20 Ma. Water depths increased dramatically and sedimentation changed to predominantly Globigerina-rich marl and deepwater limestone. Within a few million years of its initiation in the mid-Oligocene the Gulf of Aden continental rift linked the Owen fracture zone (oceanic crust) with the Afar plume. The principal driving force for extension was slab-pull beneath the Urumieh-Doktar arc on the north side of the narrowing Neotethys. Drag of Arabia by the northward-moving Indian plate across the partially locked northern Owen fracture zone and the position of the Carlsberg oceanic ridge probably also influenced the geometry of the Aden rift. The trigger for the onset of rifting, though, was the impingement of the Afar plume at ˜31 Ma. The Red Sea propagated away from the plume head, perpendicular to the extensional stresses then operating in Arabia, and arrived at the bend in the African-Levant margin, which itself may have been a stress concentration ripe for rifting. The local geometry of the early Red Sea rift was strongly influenced by pre-existing basement structures, and as a consequence followed a complex path from Afar to Suez. Each segment of the rift was initially an asymmetric half graben, with well-defined accommodation zones between sub-basins. In the Gulf of Aden, the positions of accommodation zones were strongly influenced by older Mesozoic rift basins. Early rift structures can be restored to their original contiguous geometries along both the Red Sea and Gulf of Aden conjugate margins. In both basins, present-day shorelines restore to a separation of 40-60 km along most of their lengths. The initial rift basins were 60-80 km in width. Oceanic spreading initiated on the Sheba Ridge east of the Alula-Fartaq fracture zone at ˜19-18 Ma. After stalling at this fracture zone, the ridge probably propagated west into the central Gulf of Aden by ˜16 Ma. This matches the observed termination of syn-tectonic deposition along the onshore Aden margins at approximately the same time. At ˜14 Ma, a transform boundary cut through Sinai and the Levant continental margin, linking the northern Red Sea with the Bitlis-Zagros convergence zone. This corresponded with collision of Arabia and Eurasia, which resulted in a new plate geometry with different boundary forces. Red Sea extension changed from rift normal (N60°E) to highly oblique and parallel to the Aqaba-Levant transform (N15°E). North of Suez in Egypt the rift system became emergent, perhaps due to minor compression of the Sinai sub-plate, and the marine connection to the Mediterranean Sea became restricted but not terminated. Red Sea sedimentation changed from predominantly open marine to evaporitic, although deep water persisted in many regions. A third phase of magmatism commenced, locally in Ethiopia but predominantly in western Saudi Arabia and extending north to Harrat Ash Shama and Jebel Druse in Jordan, Lebanon, and Syria. At ˜10 Ma, the Sheba Ridge rapidly propagated west over 400 km from the central Gulf of Aden to the Shukra al Sheik discontinuity. Oceanic spreading followed in the south-central Red Sea at ˜5 Ma. This corresponded in time to an important unconformity throughout the Red Sea basin and along the margins of the Gulf of Aden, coeval with the Messinian unconformity of the Mediterranean basin. A major phase of pull-apart basin development also occurred along the Aqaba-Levant transform. In the early Pliocene the influx of marine waters through Bab al Mandeb increased and Red Sea sedimentation thereafter returned to predominantly open marine conditions. By ˜3-2 Ma, oceanic spreading moved west of the Shukra al Sheik discontinuity, and the entire Gulf of Aden was an oceanic rift. During the last ˜1 My, the southern Red Sea plate boundary linked to the Aden spreading center through the Gulf of Zula, Danakil Depression, and Gulf of Tadjoura. Presently, the Red Sea spreading center appears to be propagating toward the northern Red Sea to link with the Aqaba-Levant transform. Alkali basaltic volcanism continues within the Younger Harrats of western Saudi Arabia and Yemen and offshore southern Red Sea islands. Most of the Arabian plate is now experiencing N-S upper crustal compression, whereas the maximum horizontal stress is oriented E-W in NE Africa. Arabia and Africa, now on separate plates, are therefore completely decoupled in terms of regional, far-field stresses.
Initiation and Along-Axis Segmentation of Seaward-Dipping Volcanic Sequences Captured in Afar
NASA Astrophysics Data System (ADS)
Ebinger, C.; Wolfenden, E.; Yirgu, G.; Keir, D.
2003-12-01
The Afar triple junction zone provides a unique opportunity to examine the early development of magmatic margins, as respective limbs of the triple junction capture different stages of the breakup process. Initial rifting in the southernmost Red Sea occurred concurrent with, or soon after flood basaltic magmatism at ~31 Ma in the Ethiopia-Yemen plume province, whereas the northern part of the Main Ethiopian rift initiated after 12 Ma. Both rift systems initiated with the development of high-angle border fault systems bounding broad basins, but 8-10 My after rifting we see riftward migration of strain from the western border fault to narrow zones of increasingly more basaltic magmatism. These localised zones of faulting and volcanism (magmatic segments) show a segmentation independent of the border fault segmentation. The much older, more evolved magmatic segments in the southern Red Sea, where not onlapped by Pliocene-Recent sedimentary strata, dip steeply riftward and define a regional eastward flexure into transitional oceanic crust, as indicated by gravity models constrained by seismic refraction and receiver function data. The southern Red Sea magmatic segments have been abandoned in Pliocene-Recent triple junction reorganisations, whereas the process of seaward-dipping volcanic sequence emplacement is ongoing in the seismically and volcanically active Main Ethiopian rift. Field, remote sensing, gravity, and seismicity data from the Main Ethiopian and southern Red Sea rifts indicate that seaward-dipping volcanic sequences initiate in moderately stretched continental crust above a narrow zone of dike-intrusion. Our comparison of active and ancient magmatic segments show that they are the precursors to seaward-dipping volcanic sequences analogous to those seen on passive continental margins, and provides insights into the initiation of along-axis segmentation of seafloor-spreading centers.
Plate break-up geometry in SE-Afar
NASA Astrophysics Data System (ADS)
Geoffroy, Laurent; Le Gall, Bernard; Daoud, Mohamed
2014-05-01
New structural data acquired in Djibouti strongly support the view of a magma-rich to magma-poor pair of conjugate margins developed in SE Afar since at least 9 Ma. Our model is illustrated by a crustal-scale transect that emphasizes the role of a two-stage extensional detachment fault system, with opposing senses of motion through time. The geometry and kinematics of this detachment fault pattern are mainly documented from lavas and fault dip data extracted from remote sensing imagery (Landsat ETM+, and corresponding DEM), further calibrated by field observations. Although expressed by opposite fault geometries, the two successive extensional events evidenced here are part of a two-stage continental extensional tear-system associated with the ongoing propagation of the Aden-Tadjoura oceanic axis to the NW. A flip-flop evolution of detachment faults accommodating lithosphere divergence has recently been proposed for the development of the Indian Ocean and continental margins (Sauter et al., 2013). However, the SE Afar evolution further suggests a radical and sudden change in lithosphere behavior during extension, from a long-term and widespread magmatic stage to a syn-sedimentary break-up stage where mantle melting concentrates along the future oceanic axis. Of special interest is the fact that a late and rapid stage of non-magmatic extension led to break-up, whose geometry triggered the location of the break-up axis and earliest oceanic accretion. New structural data acquired in Djibouti strongly support the view of a magma-rich to magma-poor pair of conjugate margins developed in SE Afar since at least 9 Ma. Our model is illustrated by a crustal-scale transect that emphasizes the role of a two-stage extensional detachment fault system, with opposing senses of motion through time. The geometry and kinematics of this detachment fault pattern are mainly documented from lavas and fault dip data extracted from remote sensing imagery (Landsat ETM+, and corresponding DEM), further calibrated by field observations. Although expressed by opposite fault geometries, the two successive extensional events evidenced here are part of a two-stage continental extensional tear-system associated with the ongoing propagation of the Aden-Tadjoura oceanic axis to the NW. A flip-flop evolution of detachment faults accommodating lithosphere divergence has recently been proposed for the development of the Indian Ocean and continental margins (Sauter et al., 2013). However, the SE Afar evolution further suggests a radical and sudden change in lithosphere behavior during extension, from a long-term and widespread magmatic stage to a syn-sedimentary break-up stage where mantle melting concentrates along the future oceanic axis. Of special interest is the fact that a late and rapid stage of non-magmatic extension led to break-up, whose geometry triggered the location of the break-up axis and earliest oceanic accretion.
NASA Astrophysics Data System (ADS)
Koptev, A.; Leroy, S. D.; Calais, E.; Gerya, T.
2016-12-01
We present numerical experiments that target to reveal the role of active mantle plume, far-field tectonic forces and pre-existing lithospheric heterogeneities in structural development of the East African Rift system (EARS). Starting with models capturing the essential geophysical features of the central and southern parts of the EARS (two «cratonic» bodies (Tanzanian craton and Bangweulu block) embedded into a «normal» surrounding lithosphere) we show that development of the magmatic Eastern branch, the amagmatic Western branch and its southern prolongation (Malawi rift) can be the result of non-uniform splitting of some hot plume material that has been initially seeded underneath the southern part of Tanzanian craton. The second series of experiments has been designed in order to investigate northern segment of the EARS where Afro-Arabian plate separation is supposed to be related with the impact of Afar mantle plume. These models permit us to reproduce observed orientation and relative position of two spreading axes (Red Sea, Gulf of Aden) and rifting (Main Ethiopian rift) one. All are joining at Afar triple junction. Finally, for laterally extended experiment we have used parameters of the best-fit models for the southern and northern segments of the EARS in order to define the position of Kenyan plume and the velocity boundary conditions. This model cover all rifting and spreading structure associated with both Afar and Kenyan plumes: Red Sea Rift and the Aden Ridge to the north of the Afar Triple Junction; Main Ethiopian Rift running to the south that continues as the Kenyan Rift; Western Rift and its southern prolongation corresponding to Malawi rift.We argue that main features of the EARS can be reproduced in a relatively simple context of the interaction between two mantle anomalies corresponding to Afar and Kenyan plumes and pre-stressed rheologically stratified continental lithosphere containing only first-order structural heterogeneities (such as Tanzanian and Bangweulu cratons).
Kinematics of the Danakil microplate
NASA Astrophysics Data System (ADS)
Eagles, Graeme; Gloaguen, Richard; Ebinger, Cynthia
2002-10-01
A refinement and extrapolation of recent motion estimates for the Danakil microplate, based on ancient kinematic indicators in the Afar region, describes the evolution of a microplate in the continental realm. The Danakil horst is an elevated part of this microplate, exposing a Precambrian basement within the Afar depression, the site of the Nubia-Somalia-Arabia triple junction. We compare evidence for strike- or oblique-slip faults in data from the Afar depression and southern Red Sea to small circles about published poles of rotation for the Danakil microplate with respect to Nubia. A reconstruction about the preferred pole reunites lengths of a Precambrian shear zone on the Nubia and Danakil sides and preserves a uniform basement fabric strike through Nubia, Danakil and Yemen. Since at least magnetic chron C5 (˜11 Ma) Danakil rotated about a different pole with respect to Nubia than either Somalia or Arabia, but between chrons C5 and C2A Nubia-Danakil motion was a close approximation to Nubia-Somalia motion. Since C2A relative motions of the Danakil microplate have been independent of movements on any of the neighbouring plate boundaries. We relate this to the onset of oceanic-type accretion within Afar. The resulting eastwards acceleration of Danakil was accommodated by westwards propagation of the Gulf of Aden rift that became the new, discrete, plate boundary between the Danakil microplate and the Somalia plate. Present-day activity suggests that the Red Sea and Aden rifts will link through Afar, thereby isolating the Danakil horst as a microcontinent on the Arabian margin.
NASA Astrophysics Data System (ADS)
Sani, Federico; Ghinassi, Massimiliano; Papini, Mauro; Oms, Oriol; Finotello, Alvise
2017-10-01
The Afar region is a triangular area located at the triple junction between the African, Somalia, and Arabian plates, which are currently diverging at different rates. Currently, the extension vector is roughly oriented in a NE-SW direction in the Afar, Red Sea and Gulf of Aden, in respect to Arabia plate, whereas the Nubian-Somalian divergence, evidenced by the Main Ethiopian Rift (MER), is approximately WNW-ESE (N95-100°E). This study focuses on the tectono-sedimentary evolution of a sector from Massawa to the north up to the continental Early-Middle Pleistocene Dandiero Basin to the south. This basin is filled with approximately 500 m thick fluvial-lacustrine deposits and includes six formations. Sedimentation occurred mainly along the basin axis and allowed accumulation of sand and mud deposits with subordinate gravels close to the basin margin. The age of the basin infill succession is well constrained through integration between paleomagnetic and paleontological data and ranges between 1.2 and 0.75 Ma. The Dandiero Basin is controlled by two main roughly NNW-SSE trending, east dipping normal faults. The westernmost fault delimits the basins from the plateau, whereas the easternmost marks the limit between the basin succession and the Late Pleistocene Samoti Plain. We infer that the NNW-trending faults were progressively activated as a consequence of the Danakil Block counter clockwise rotation and were superimposed to the N-S trending faults that delimited the basin at the time of its inception as a marginal graben roughly aligned to the Eritrean-Ethiopian plateau. The timing of deformation (1.2 Ma up to Present) is well constrained by the age of syntectonic sediments of the Dandiero Basin and volcanic products of the Alid Volcano. These relations allowed us to refine the timing and evolution of this sector of Afar and giving some insights on the geodynamics of the area.
Study of the deformation in Central Afar using InSAR NSBAS chain
NASA Astrophysics Data System (ADS)
Deprez, A.; Doubre, C.; Grandin, R.; Saad, I.; Masson, F.; Socquet, A.
2013-12-01
The Afar Depression (East Africa) connects all three continental plates of Arabia, Somalia and Nubia plates. For over 20 Ma, the divergent motion of these plates has led to the formation of large normal faults building tall scarps between the high plateaus and the depression, and the development of large basins and an incipient seafloor spreading along a series of active volcano-tectonic rift segments within the depression. The space-time evolution of the active surface deformation over the whole Afar region remains uncertain. Previous tectonic and geodetic studies confirm that a large part of the current deformation is concentrated along these segments. However, the amount of extension accommodated by other non-volcanic basins and normal faulting remains unclear, despite significant micro-seismic activity. Due to the active volcanism, large transient displacements related to dyking sequence, notably in the Manda Hararo rift (2005-2010), increase the difficulty to characterize the deformation field over simple time and space scales. In this study, we attempt to obtain a complete inventory of the deformation within the whole Afar Depression and to understand the associated phenomena, which occurred in this singular tectonic environment. We study in particular, the behavior of the structures activated during the post-dyking stage of the rift segments. For this purpose, we conduct a careful processing of a large set of SAR ENVISAT images over the 2004-2010 period, we also use previous InSAR results and GPS data from permanent stations and from campaigns conducted in 1999, 2003, 2010, 2012 within a GPS network particularly dense along the Asal-Ghoubbet segment. In one hand, in the western part of Afar, the far-field response of the 2005-2010 dyke sequence appears to be the dominant surface motion on the mean velocity field. In an other hand, more eastward across the Asal-Ghoubbet rift, strong gradients of deformation are observed. The time series analysis of both InSAR and GPS data allow us to (1) point out the role of volcano activity on the localization of the extensive deformation within these rifts, (2) describe the temporal evolution of the mostly aseismic fault slips, and eventually (3) characterize the behavior of the crust after the dyking events in relation to visco-elastic relaxation. Moreover, we analyze several interesting small patches of localized deformation revealing transient displacements by combining time series results and seismic data collected by the Arta Geophysical Observatory in Djibouti. In particular, a specific clear deformation pattern on the northern margin of the Tadjoura Bay could be associated with a seismic swarm, probably resulting from the occurrence of an offshore dyking event sequence along the immerged Tadjoura rift segment.
Structure and evolution of the eastern Gulf of Aden conjugate margins from seismic reflection data
NASA Astrophysics Data System (ADS)
d'Acremont, Elia; Leroy, Sylvie; Beslier, Marie-Odile; Bellahsen, Nicolas; Fournier, Marc; Robin, Cécile; Maia, Marcia; Gente, Pascal
2005-03-01
The Gulf of Aden is a young and narrow oceanic basin formed in Oligo-Miocene time between the rifted margins of the Arabian and Somalian plates. Its mean orientation, N75°E, strikes obliquely (50°) to the N25°E opening direction. The western conjugate margins are masked by Oligo-Miocene lavas from the Afar Plume. This paper concerns the eastern margins, where the 19-35 Ma breakup structures are well exposed onshore and within the sediment-starved marine shelf. Those passive margins, about 200 km distant, are non-volcanic. Offshore, during the Encens-Sheba cruise we gathered swath bathymetry, single-channel seismic reflection, gravity and magnetism data, in order to compare the structure of the two conjugate margins and to reconstruct the evolution of the thinned continental crust from rifting to the onset of oceanic spreading. Between the Alula-Fartak and Socotra major fracture zones, two accommodation zones trending N25°E separate the margins into three N110°E-trending segments. The margins are asymmetric: offshore, the northern margin is narrower and steeper than the southern one. Including the onshore domain, the southern rifted margin is about twice the breadth of the northern one. We relate this asymmetry to inherited Jurassic/Cretaceous rifts. The rifting obliquity also influenced the syn-rift structural pattern responsible for the normal faults trending from N70°E to N110°E. The N110°E fault pattern could be explained by the decrease of the influence of rift obliquity towards the central rift, and/or by structural inheritance. The transition between the thinned continental crust and the oceanic crust is characterized by a 40 km wide zone. Our data suggest that its basement is made up of thinned continental crust along the southern margin and of thinned continental crust or exhumed mantle, more or less intruded by magmatic rocks, along the northern margin.
Recent off-axis volcanism in the eastern Gulf of Aden: Implications for plume-ridge interaction
NASA Astrophysics Data System (ADS)
Leroy, Sylvie; d'Acremont, Elia; Tiberi, Christel; Basuyau, Clémence; Autin, Julia; Lucazeau, Francis; Sloan, Heather
2010-04-01
Evidence of anomalous volcanism is readily observed in the Gulf of Aden, although, much of this oceanic basin remains as yet unmapped. In this paper, we investigate the possible connection of the Afar hotspot with a major off-axis volcanic structure and its interpretation as a consequence of a the anomalous presence of melt by integrating several data sets, both published and unpublished, from the Encens-Sheba cruise, the Aden New Century (ANC) cruise and several other onshore and marine surveys. These include bathymetric, gravity, magnetic, magneto-telluric data, and rock samples. Based upon these observations, interpretations were made of seafloor morphology, gravity and magnetic models, seafloor age, geochemical analyses and tectonic setting. We discuss the possible existence of a regional melting anomaly in the Gulf of Aden area and of the probability of its connection to the Afar plume. Several models that might explain the anomalous volcanism are taken into account, such as a local melting anomaly unrelated to the Afar plume, an anomalously large volume of melt associated with seafloor spreading, and interaction of the ridge with the Afar plume. A local melting anomaly and atypical seafloor spreading prove inconsistent with our observations. Two previously proposed models of plume-ridge interactions are examined: the diffuse plume dispersion called pancaked flow and channelized along-axis flow. We conclude that the configuration and structure of this young ocean basin may have the effect of channeling material away from the Afar plume along the Aden and Sheba Ridges to produce the off-axis volcanism observed on the ridge flanks. This interpretation implies that the influence of the Afar hotspot may extend much farther eastwards into the Gulf of Aden than previously believed. The segmentation of the Gulf of Aden and the configuration of the Aden-Sheba system may provide a potential opportunity to study channeled flow of solid plume mantle from the plume along a segmented ridge and nearby continental margins.
Promises from Afar: A Model of International Student Psychological Contract in Business Education
ERIC Educational Resources Information Center
Bordia, Sarbari; Bordia, Prashant; Restubog, Simon Lloyd D.
2015-01-01
Despite their significant presence in western business schools, the needs and experiences of international students have not been adequately reflected in the business education literature. We draw upon psychological contract theory--used to understand employer-employee relationships--to develop a novel theoretical model on the international…
Constraints for timing of extensional tectonics in the western margin of the Red Sea in Eritrea
NASA Astrophysics Data System (ADS)
Ghebreab, Woldai; Carter, Andrew; Hurford, Anthony J.; Talbot, Christopher J.
2002-06-01
Recent work on asthenosphere-lithosphere coupling reinforces past observations that active and passive rifting models do not adequately describe real rifts. There remains insufficient knowledge of fundamental controls on rift architecture. In the actively extending Red Sea margin of eastern Eritrea, which lies at the Red Sea/Danakil-Gulf of Aden and the East African rift triple junction zone, the geometry and kinematics of extension are complex and poorly defined due to large data gaps. Extension and sea-floor spreading in both the Red Sea and Gulf of Aden have influenced the Neogene tectonic development of Eritrea but many of the structures have Pan-African origins and do not follow normal plate opening geometries. To constrain the rifting history in eastern Eritrea, apatite fission-track thermochronologic data were measured for 22 Pan-African rock samples. Results identify late Oligocene-early Miocene cooling coincident with extension and erosion along the conjugate margin in Yemen. A younger age group, confined to Mt Ghedem, relates to an episode of fault reactivation and dyke injection that began ˜10 Ma coincident with rotation of the nearby Danakil block. Initially this was driven by onset of sea-floor spreading in the Gulf of Aden and later, in the Pliocene, aided by northward rifting in the Afar depression concomitant with spreading in the Red Sea. These different processes highlight the complex linkage between different extensional events and rift architecture.
Crustal structure of an exhumed IntraCONtinental Sag (ICONS): the Mekele Basin in Northern Ethiopia.
NASA Astrophysics Data System (ADS)
Alemu, T. B.; Abdelsalam, M. G.
2017-12-01
The Mekele Sedimentary Basin (MSB) in Ethiopia is a Paleozoic-Mesozoic IntraCONtinental Sag (ICONS) exposed due to Cenozoic domal and rift flank uplift associated with the Afar mantle plume and Afar Depression (AD). ICONS are formed over stable lithosphere, and in contrast to rift and foreland basins, show circular-elliptical shape in map view, saucer shaped in cross section, and concentric gravity minima. Surface geological features of the MSB have been shown to exhibit geologic characteristics similar to those of other ICONS. We used the World Gravity Map (WGM 2012) data to investigate subsurface-crustal structure of the MSB. We also used 2D power spectrum analysis and inversion of the gravity field to estimate the Moho depth. Our results show the Bouguer anomalies of the WGM 2012 ranges between 130 mGal and - 110 mGal with the highest values within the AD. Despite the effect of the AD on the gravity anomalies, the MSB is characterized by the presence of gravity low anomaly that reaches in places -110 mGal, especially in its western part. The Moho depth estimates, from both spectral analysis and inversion of the gravity data, is between 36 and 40 km depth over most of the western and southern margins of the MSB. However, as the AD is approached, in the eastern margins of the MSB, crustal thickness estimates are highly affected by the anomalously thin and magmatic segment of the AD, and the Moho depth range between 30 and 25 km. Our results are consistent with that of seismic studies in areas far from the MSB, but within the Northwestern Ethiopian Plateau where the MSB is located. Those studies have reported an abrupt decrease in Moho depth from 40 km beneath the Northwestern plateau, to 20 km in the adjacent AD. Though the MSB is small (100 kmX100 km) compared to other ICONS, and affected by the neighboring AD, it is characterized by elliptical gravity minima and a relatively thicker crust that gradually thickens away from the rift. In addition, seismic imaging of faster shear wave velocity beneath the southwestern MSB at 80 km depth by previous studies mimic the surface and shallow subsurface features that we interpret as indicative of major characteristics of ICONS. Due to their location away from active plate boundaries, most ICONS are buried since the time of their formation. The MSB represents a rare example of a completely exhumed ICONS.
NASA Astrophysics Data System (ADS)
Polun, S. G.; Hickcox, K.; Tesfaye, S.; Gomez, F. G.
2016-12-01
The central Afar rift in Ethiopia and Djibouti is a zone of accommodation between the onshore propagations of the Gulf of Aden and Red Sea oceanic spreading centers forming part of the Afar triple junction that divides the Arabia, Nubia, and Somalia plates. While extension in the onshore magmatic propagators is accommodated through magmatism and associated faulting, extension in the central Afar is accommodated solely by large and small faults. The contributions of these major faults to the overall strain budget can be well characterized, but smaller faults are more difficult to quantify. Sparse GPS data covering the region constrain the total extension budget across the diffuse triple junction zone. Late Quaternary slip rates for major faults in Hanle, Dobe, Guma, and Immino grabens were estimated using the quantitative analysis of faulted landforms. This forms a nearly complete transect from the onshore propagation of the Red Sea rift in Tendaho graben and the onshore propagation of the Gulf of Aden rift at Manda Inakir. Field surveying was accomplished using a combination of electronic distance measurer profiling and low altitude aerial surveying. Age constraints are provided from the Holocene lacustrine history or through terrestrial cosmogenic nuclide (TCN) dating of the faulted geomorphic surface. Along this transect, late Quaternary slip rates of major faults appear to accommodate 25% of the total horizontal stretching rate between the southern margin of Tendaho graben and the Red Sea coast, as determined from published GPS velocities. This constrains the proportion of total extension between Nubia and Arabia that is accommodated through major faulting in the central Afar, compared to the magmatism and associated faulting of the magmatic propagators elsewhere in the triple junction. Along the transect, individual fault slip rates decrease from the southeast to the northwest, suggesting a `Crank-Arm' model may be more applicable to explain the regional kinematics and the evolution of the triple junction.
What China Inc. Can Learn from American Universities
ERIC Educational Resources Information Center
Fallows, James
2012-01-01
From afar, the boom in China's higher education system seems to be one more indication of its ceaseless rise overall. Potentially it is the most significant sign, since a China that could rival the existing American and Western-democratic dominance of the world's research and educational establishment might enjoy many other advantages as well.…
The thermal state of the Arabian plate derived from heat flow measurements in Oman and Yemen
NASA Astrophysics Data System (ADS)
Rolandone, Frederique; Lucazeau, Francis; Leroy, Sylvie; Mareschal, Jean-Claude; Jorand, Rachel; Goutorbe, Bruno; Bouquerel, Hélène
2013-04-01
The dynamics of the Afar plume and the rifting of the Red Sea and the Gulf of Aden affect the present-day thermal regime of the Arabian plate. However, the Arabian plate is a Precambrian shield covered on its eastern part by a Phanerozoic platform and its thermal regime, before the plume and rifting activities, should be similar to that of other Precambrian shields with a thick and stable lithosphere. The first heat flow measurements in the shield, in Saudi Arabia, yielded low values (35-44 mW/m2), similar to the typical shields values. Recent heat flow measurements in Jordan indicate higher values (56-66 mW/m2). As part of the YOCMAL project (YOung Conjugate MArgins Laboratory), we have conducted heat flow measurements in southern and northern Oman to obtain 10 new heat flux values in the eastern Arabian plate. We also derived 20 heat flux values in Yemen and Oman by processing thermal data from oil exploration wells. The surface heat flux in these different locations is uniformly low (45 mW/m2). The heat production in samples from the Dhofar and Socotra Precambrian basement is also low (0.7 µW/m3). Differences in heat flow between the eastern (60 mW/m2) and the western (45 mW/m2) parts of Arabia reflect differences in crustal heat production as well as a higher mantle heat flux in the west. We have calculated a steady state geotherm for the Arabian platform that intersects the isentropic temperature profile at a depth of about 150 km, consistent with the seismic observations. Seismic tomography studies of the mantle beneath Arabia also show this east-west contrast. Seismic studies have shown that the lithosphere is rather thin, 100 km or less below the shield and 150 km below the platform. The lithospheric thickness for the Arabian plate is 150 km, and the progressive thinning near the Red Sea, caused by the thermal erosion of the plume material, is too recent to be detected at the surface. The Afar plume mostly affects the base of the Arabian lithosphere along the Red Sea and the western part of the Gulf of Aden. The extent of this effect is explained by channeling of the asthenospheric magma by the rift. The subdued penetration into the Gulf of Aden is probably due to the important segmentation of the rift. The continental domain is not affected by rifting in the Gulf of Aden. The main thermal effect of the Arabian plate is probably the channeling of the Afar plume to the North.
NASA Astrophysics Data System (ADS)
Doubre, C.; Deprez, A.; Masson, F.; Socquet, A.; Lewi, E.; Grandin, R.; Calais, E.; Wright, T. J.; Bendick, R. O.; Pagli, C.; Peltzer, G.; de Chabalier, J. B.; Ibrahim Ahmed, S.
2014-12-01
The Afar Depression is an extraordinary submerged laboratory where the crustal mechanisms involved in the active rifting process can be studied. But the crustal movements at the regional scale are complicated by being the locus of the meeting of three divergent plate boundaries: the oceanic spreading ridges of the Red Sea and the Aden Ridge and the intra-continental East-African Rift (EAR). We present here the first GPS measurements conducted in a new network in Central Afar, complementing existing networks in Eritrea, around the Manda-Harraro 2005-2010 active segment, in the Northern part of the EAR and in Djibouti. Even if InSAR data were appropriate for mapping the deformation field, the results are difficult to interpret for analyzing the regional kinematics because of the atmospheric conditions, the lack of complete data catalogue, the acquisition configuration and the small velocity variations. Therefore, our measurements in the new sites are crucial to obtain an accurate velocity field over the whole depression, and focus specifically on the spatial organization of the deformation to characterize the tripe junction. These first results show that a small part of the motion of the Somalia plate with respect to the Nubia plate or the Arabia plate (2-3 mm/yr) occurs south of the Tadjura Gulf and East of the Adda-do segment in Southern Afar. The complex kinematic pattern involves a clockwise rotation of this Southeastern part of the Afar rift and can be related to the significant seismic activity regularly recorded in the region of Jigjiga (northern Somalia-Ethiopia border). The western continuation of the Aden Ridge into Afar extends West of the Asal rift segment and does not reach the young active segment of Manda-Inakir (MI). A slow gradient of velocity is observed across the Dobi Graben and across the large systems of faults between Lake Abhe and the MI rift segment. A striking change of the velocity direction occurs in the region of Assaïta, west of Lake Abhe, suggesting that this area represents the most probable location for the triple junction.
NASA Astrophysics Data System (ADS)
Koptev, Alexander; Burov, Evgueni; Calais, Eric; Leroy, Sylvie; Gerya, Taras; Cloetingh, Sierd; Guillou-Frottier, Laurent
2017-04-01
We use numerical thermo-mechanical experiments in order to analyze the role of active mantle plume, far-field tectonic stresses and pre-existing lithospheric heterogeneities in structural development of the East African Rift system (EARS). It is commonly assumed that the Cenozoic rifts have avoided the cratons and follow the mobile belts which serve as the weakest pathways within the non-uniform material structured during pre-rift stages. Structural control of the pre-existing heterogeneities within the Proterozoic belts at the scale of individual faults or rifts has been demonstrated as well. However, the results of our numerical experiments show that the formation of two rift zones on opposite sides of a thick lithosphere segment can be explained without appealing to pre-imposed heterogeneities at the crustal level. These models have provided a unified physical framework to understand the development of the Eastern branch, the Western branch and its southern prolongation by the Malawi rift around thicker lithosphere of the Tanzanian and Bangweulu cratons as a result of the interaction between pre-stressed continental lithosphere and single mantle plume anomaly corresponding to the Kenyan plume. The second series of experiments has been designed in order to investigate northern segment of the EARS where Afro-Arabian plate separation is supposed to be related with the impact of Afar mantle plume. We demonstrate that whereas relatively simple linear rift structures are preferred in case of uni-directional extension, more complex rifting patterns combining one or several ridge-ridge-ridge triple junctions can form in response to bi-directional extensional far-field stresses. In particular, our models suggest that Afar triple junction represents an end-member mode of plume-induced bi-directional rifting combining asymmetrical northward traction and symmetrical EW extension of similar magnitudes. The presence of pre-existing linear weak zones appears to be not mandatory for deformation localization ultimately leading to present configuration of the Afar triple junction. Finally, for laterally extended experiments we have used parameters of the best-fit models for the southern and northern segments of the EARS in order to define the position of Kenyan plume and the velocity boundary conditions. These models cover all rifting and spreading structures associated with both Afar and Kenyan plumes: Red Sea Rift and the Aden Ridge to the north of the Afar Triple Junction; Main Ethiopian Rift running to the south that continues as the Kenyan Rift; Western Rift and its southern prolongation corresponding to Malawi rift. We argue that all these basic features associated with Cenozoic rifting in the EARS can be reproduced in a relatively simple context of the interaction between two mantle anomalies corresponding to Afar and Kenyan plumes and pre-stressed rheologically stratified continental lithosphere containing only first-order structural heterogeneities (such as Tanzanian and Bangweulu cratons).
Faith-Based Diplomacy: A Pathway to Marginalizing Al-Qa’ida
2013-03-01
contrast to the Islamist governments 12 that have risen to power since early 2011. The Muslim Brotherhood in Egypt , for example, has advocated a more...Zarqawi who had been misbehaving, and he says, brother, we notice from afar X, Y, and Z is happening. Based on our experience in Egypt and around the...theory: “Al Qaeda is not a traditional hierarchical organization, with a pyramid -style organizational structure, and it does not exercise full command
Layered Crustal and Mantle Structure and Anisotropy beneath the Afar Depression and Malawi Rift Zone
NASA Astrophysics Data System (ADS)
Reed, Cory Alexander
Although a wealth of geophysical data sets have been acquired within the vicinity of continental rift zones, the mechanisms responsible for the breakup of stable continental lithosphere are ambiguous. Eastern Africa is host to the largest contemporary rift zone on Earth, and is thus the most prominent site with which to investigate the processes which govern the rupture of continental lithosphere. The studies herein represent teleseismic analyses of the velocity and thermomechanical structure of the crust and mantle beneath the Afar Depression and Malawi Rift Zone (MRZ) of the East African Rift System. Within the Afar Depression, the first densely-spaced receiver function investigation of crustal thickness and inferred velocity attenuation across the Tendaho Graben is conducted, and the largest to-date study of the topography of the mantle transition zone (MTZ) beneath NE Africa is provided, which reveals low upper-mantle velocities beneath the Afar concordant with a probable mantle plume traversing the MTZ beneath the western Ethiopian Plateau. In the vicinity of the MRZ, a data set comprised of 35 seismic stations is employed that was deployed over a two year period from mid-2012 to mid-2014, belonging to the SAFARI (Seismic Arrays For African Rift Initiation) experiment. Accordingly, the first MTZ topography and shear wave splitting analyses were conducted in the region. The latter reveals largely plate motion-parallel anisotropy that is locally modulated by lithospheric thickness abnormalities adjacent to the MRZ, while the former reveals normal MTZ thicknesses and shallow discontinuities that support the presence of a thick lithospheric keel within the MRZ region. These evidences strongly argue for the evolution of the MRZ via passive rifting mechanisms absent lower-mantle influences.
Inverse models of gravity data from the Red Sea-Aden-East African rifts triple junction zone
NASA Astrophysics Data System (ADS)
Tiberi, Christel; Ebinger, Cynthia; Ballu, Valérie; Stuart, Graham; Oluma, Befekadu
2005-11-01
The combined effects of stretching and magmatism permanently modify crustal structure in continental rifts and volcanic passive margins. The Red Sea-Gulf of Aden-Ethiopian rift triple junction zone provides a unique opportunity to examine incipient volcanic margin formation above or near an asthenospheric upwelling. We use gravity inversions and forward modelling to examine lateral variations in crust and upper mantle structure across the Oligocene flood basalt province, which has subsequently been extended to form the Red Sea, Gulf of Aden and Main Ethiopian rifts. We constrain and test the obtained models with new and existing seismic estimates of crustal thickness. In particular, we predict crustal thickness across the uplifted plateaux and rift valleys, and calibrate our results with recent receiver function analyses. We discuss the results together with a 3-D distribution of density contrasts in terms of magmatic margin structure. The main conclusions are: (1) a denser (+240 kg m-3) and/or a thinner crust (23 km) in the triple junction zone of the Afar depression; (2) a shallower Moho is found along the Main Ethiopian rift axis, with crustal thickness values decreasing from 32-33 km in the south to 24 km beneath the southern Afar depression; (3) thicker crust (~40 km) is present beneath the broad uplifted Oligocene flood basalt province, suggesting that crustal underplating compensates most of the plateau uplift and (4) possible magmatic underplating or a segmentation in the rift structure is observed at ~8°N, 39°W beneath several collapsed caldera complexes. These results indicate that magmatism has profoundly changed crustal structure throughout the flood basalt province.
Increase in earthquake swarm activity in the southern Red Sea, Afar and Gulf of Aden
NASA Astrophysics Data System (ADS)
Ruch, Joël; Keir, Derek; Ogubazghi, Ghebrebrhan; di Giacomo, Domenico; Ladron Viltres, Renier; Jónsson, Sigurjón
2017-04-01
Rifting events periodically occur at divergent plate boundaries, consisting of magmatic intrusions, seismic swarms, surface faulting and in some cases volcanic eruptions. While earthquake swarms also occur at other types of plate boundaries, the swarms that have been observed in inland rift zones (e.g., in Afar and Iceland) and in a few offshore cases show an unambiguous relation with magmatic intrusions. These swarms typically last for a few days to a few weeks, lack a clear mainshock-aftershock decay pattern. Here we present a new study on earthquake swarms in the southern Red Sea, Afar and Gulf of Aden. We provide the first earthquake swarm catalogue for the region, which we compiled by integrating reexamined global and local earthquake catalogues with historical observations from 1960 to 2016. We find that in several cases in all the three areas, swarms have been re-occurring at the same locations every few decades (e.g., in the Bada area in Eritrea and Port Sudan region in the southern Red Sea in 1967 and 1993, and in the western Gulf of Aden in 1979, 1997 and 2010-2012). This suggests the existence of active spreading centers that are more active than previously thought. The swarms show different families of earthquake magnitudes, with clusters of Mw4 and Mw5 events (southern Red Sea and Aden) and occasional larger than Mw6 events, primarily in the southern Afar region (the Serdo and Dobi areas). Of the three areas, Gulf of Aden shows the highest swarm activity, followed by the Afar area and the southern Red Sea. Despite seeing the least amount of activity and lower magnitudes, the southern Red Sea has experienced multiple earthquake swarms and three volcanic eruptions (two of which resulted in new volcanic islands) during the past 10 years. We show that the three areas have been subject to an almost simultaneous increase of earthquake swarm activity during the last 10 years. This period (2005-2014) was much more active compared to the preceding decades (1960-2005) and might indicate an increase of magma supply in the region.
Multiple mantle upwellings through the transition zone beneath the Afar Depression?
NASA Astrophysics Data System (ADS)
Hammond, J. O.; Kendall, J. M.; Stuart, G. W.; Thompson, D. A.; Ebinger, C. J.; Keir, D.; Ayele, A.; Goitom, B.; Ogubazghi, G.
2012-12-01
Previous seismic studies using regional deployments of sensors in East-Africa show that low seismic velocities underlie Africa, but their resolution is limited to the top 200-300km of the Earth. Thus, the connection between the low velocities in the uppermost mantle and those imaged in global studies in the lower mantle is unclear. We have combined new data from Afar, Ethiopia with 7 other regional experiments and global network stations across Kenya, Ethiopia, Eritrea, Djibouti and Yemen, to produce high-resolution models of upper mantle P- and S-wave velocities to the base of the transition zone. Relative travel time tomographic inversions show that within the transition zone two focussed sharp-sided low velocity regions exist: one beneath the Western Ethiopian plateau outside the rift valley, and the other beneath the Afar depression. Estimates of transition zone thickness suggest that this is unlikely to be an artefact of mantle discontinuity topography as a transition zone of normal thickness underlies the majority of Afar and surrounding regions. However, a low velocity layer is evident directly above the 410 discontinuity, co-incident with some of the lowest seismic velocities suggesting that smearing of a strong low velocity layer of limited depth extent may contribute to the tomographic models in north-east Afar. The combination of seismic constraints suggests that small low temperature (<50K) upwellings may rise from a broader low velocity plume-like feature in the lower mantle. This interpretation is supported by numerical and analogue experiments that suggest the 660km phase change and viscosity jump may impede flow from the lower to upper mantle creating a thermal boundary layer at the base of the transition zone. This allows smaller, secondary upwellings to initiate and rise to the surface. These, combined with possible evidence of melt above the 410 discontinuity can explain the seismic velocity models. Our images of secondary upwellings suggest that there is no evidence for a plume in the classical sense (i.e. a narrow conduit). Instead, we propose that secondary upwellings rise from the base of the transition zone and connect with the northeast flowing African superswell in the upper mantle.
Young rift kinematics in the Tadjoura rift, western Gulf of Aden, Republic of Djibouti
NASA Astrophysics Data System (ADS)
Daoud, Mohamed A.; Le Gall, Bernard; Maury, René C.; Rolet, JoëL.; Huchon, Philippe; Guillou, Hervé
2011-02-01
The Tadjoura rift forms the westernmost edge of the westerly propagating Sheba ridge, between Arabia and Somalia, as it enters into the Afar depression. From structural and remote sensing data sets, the Tadjoura rift is interpreted as an asymmetrical south facing half-graben, about 40 km wide, dominated by a large boundary fault zone to the north. It is partially filled up by the 1-3 Myr old Gulf Basalts which onlapped the older Somali Basalts along its shallower southern flexural margin. The major and trace element analysis of 78 young onshore lavas allows us to distinguish and map four distinct basaltic types, namely the Gulf, Somali, Goumarre, and Hayyabley Basalts. These results, together with radiometric age data, lead us to propose a revised volcano-stratigraphic sketch of the two exposed Tadjoura rift margins and to discriminate and date several distinct fault networks of this oblique rift. Morphological and statistical analyses of onshore extensional fault populations show marked changes in structural styles along-strike, in a direction parallel to the rift axis. These major fault disturbances are assigned to the arrest of axial fault tip propagation against preexisting discontinuities in the NS-oriented Arta transverse zone. According to our model, the sinistral jump of rifting into the Asal-Ghoubbet rift segment results from structural inheritance, in contrast with the en échelon or transform mechanism of propagation that prevailed along the entire length of the Gulf of Aden extensional system.
Ethiopian Tertiary dike swarms
NASA Technical Reports Server (NTRS)
Mohr, P. A.
1971-01-01
Mapping of the Ethiopian rift and Afar margins revealed the existence of Tertiary dike swarms. The structural relations of these swarms and the fed lava pile to monoclinal warping of the margins partly reflect a style of continental margin tectonics found in other parts of the world. In Ethiopia, however, conjugate dike trends appear to be unusually strongly developed. Relation of dikes to subsequent margin faulting is ambiguous, and there are instances where the two phenomena are spatially separate and of differing trends. There is no evidence for lateral migration with time of dike injection toward the rift zone. No separate impingement of Red Sea, Gulf of Aden, and African rift system stress fields on the Ethiopian region can be demonstrated from the Tertiary dike swarms. Rather, a single, regional paleostress field existed, suggestive of a focus beneath the central Ethiopian plateau. This stress field was dominated by tension: there is no cogent evidence for shearing along the rift margins. A gentle compression along the rift floor is indicated. A peculiar sympathy of dike hade directions at given localities is evident.
New heat flow measurements in Oman and the thermal state of the Arabian Shield and Platform
NASA Astrophysics Data System (ADS)
Rolandone, Frédérique; Lucazeau, Francis; Leroy, Sylvie; Mareschal, Jean-Claude; Jorand, Rachel; Goutorbe, Bruno; Bouquerel, Hélène
2013-03-01
The present-day thermal regime of the Arabian plate is affected by the dynamics of the Afar plume and the rifting of the Red Sea and the Gulf of Aden. The Arabian plate is a Precambrian Shield and its thermal regime, before the plume and rifting activities, should be similar to that of other Precambrian Shields with a thick lithosphere. This is consistent with low heat-flow values measured in Saudi Arabia (35-44 mWm- 2), but not with recent measurements in Jordan that show higher heat flow (56-66 mWm- 2). We have conducted measurements in the eastern Arabian plate to obtain 10 new heat-flux values. We also derived 20 heat-flux values from oil exploration wells. Our measurements show that surface heat flux is uniformly low (45 mWm- 2) in the eastern Arabian Shield and is consistent with low crustal heat production (0.7 μWm- 3). A steady-state geotherm for the Arabian platform that intersects the isentropic temperature profile at a depth of 150 km is consistent with the seismic observations. Differences in heat flow between the eastern (60 mWm- 2) and the western (45 mWm- 2) parts of Arabia reflect differences in crustal heat production as well as a higher mantle heat flux in the west. Seismic tomography studies of the mantle beneath Arabia show this east-west contrast. The lithospheric thickness for the Arabian plate is 150 km, and the progressive thinning near the Red Sea is caused by the thermal erosion of the plume. The Afar plume mostly affects the base of the Arabian lithosphere along the Red Sea and the western part of the Gulf of Aden by channeling magmas from the asthenosphere through the rift. The continental domain is not affected by rifting in the Gulf of Aden. The main thermal effect of the Arabian plate is probably the channeling of the Afar plume to the North.
NASA Astrophysics Data System (ADS)
Reed, C. A.; Gao, S. S.; Liu, K. H.; Yu, Y.
2016-06-01
The Afar Depression and its adjacent areas are underlain by an upper mantle marked by some of the world's largest negative velocity anomalies, which are frequently attributed to the thermal influences of a lower-mantle plume. In spite of numerous studies, however, the existence of a plume beneath the area remains enigmatic, partially due to inadequate quantities of broad-band seismic data and the limited vertical resolution at the mantle transition zone (MTZ) depth of the techniques employed by previous investigations. In this study, we use an unprecedented quantity (over 14 500) of P-to-S receiver functions (RFs) recorded by 139 stations from 12 networks to image the 410 and 660 km discontinuities and map the spatial variation of the thickness of the MTZ. Non-linear stacking of the RFs under a 1-D velocity model shows robust P-to-S conversions from both discontinuities, and their apparent depths indicate the presence of an upper-mantle low-velocity zone beneath the entire study area. The Afar Depression and the northern Main Ethiopian Rift are characterized by an apparent 40-60 km depression of both MTZ discontinuities and a normal MTZ thickness. The simplest and most probable interpretation of these observations is that the apparent depressions are solely caused by velocity perturbations in the upper mantle and not by deeper processes causing temperature or hydration anomalies within the MTZ. Thickening of the MTZ on the order of 15 km beneath the southern Arabian Plate, southern Red Sea and western Gulf of Aden, which comprise the southward extension of the Afro-Arabian Dome, could reflect long-term hydration of the MTZ. A 20 km thinning of the MTZ beneath the western Ethiopian Plateau is observed and interpreted as evidence for a possible mantle plume stem originating from the lower mantle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woldegabriel, Giday; Ambrose, Stanley H; Barboni, Doris
2009-01-01
Sediments containing Ardipithecus ramidus were deposited 4.4 million years ago on an alluvial floodplain in Ethiopia's western Afar rift. The Lower Aramis Member hominid-bearing unit, now exposed across a >9-kilometer structural arc, is sandwiched between two volcanic tuffs that have nearly identical {sup 40}Ar/{sup 39}Ar ages. Geological data presented here, along with floral, invertebrate, and vertebrate paleontological and taphonomic evidence associated with the hominids, suggest that they occupied a wooded biotope over the western three-fourths of the paleotransect. Phytoliths and oxygen and carbon stable isotopes of pedogenic carbonates provide evidence of humid cool woodlands with a grassy substrate.
Extensional crustal tectonics and crust-mantle coupling, a view from the geological record
NASA Astrophysics Data System (ADS)
Jolivet, Laurent; Menant, Armel; Clerc, Camille; Sternai, Pietro; Ringenbach, Jean-Claude; Bellahsen, Nicolas; Leroy, Sylvie; Faccenna, Claudio; Gorini, Christian
2017-04-01
In passive margins or back-arc regions, extensional deformation is often asymmetric, i.e. normal faults or extensional ductile shear zones dip in the same direction over large distances. We examine a number of geological examples in convergent or divergent contexts suggesting that this asymmetry results from a coupling between asthenospheric flow and crustal deformation. This is the case of the Mediterranean back-arc basins, such as the Aegean Sea, the northern Tyrrhenian Sea, the Alboran domain or the Gulf of Lion passive margin. Similar types of observation can be made on some of the Atlantic volcanic passive margins and the Afar region, which were all formed above a mantle plume. We discuss these contexts and search for the main controlling parameters for this asymmetric distributed deformation that imply a simple shear component at the scale of the lithosphere. The different geodynamic settings and tectonic histories of these different examples provide natural case-studies of the different controlling parameters, including a pre-existing heterogeneity of the crust and lithosphere (tectonic heritage) and the possible contribution of the underlying asthenospheric flow through basal drag or basal push. We show that mantle flow can induce deformation in the overlying crust in case of high heat flow and thin lithosphere. In back-arc regions, the cause of asymmetry resides in the relative motion between the asthenosphere below the overriding plate and the crust. When convergence and slab retreat work concurrently the asthenosphere flows faster than the crust toward the trench and the sense of shear is toward the upper plate. When slab retreat is the only cause of subduction, the sense of shear is opposite. In both cases, mantle flow is mostly the consequence of slab retreat and convergence. Mantle flow can however result also from larger-scale convection, controlling rifting dynamics prior to the formation of oceanic crust. In volcanic passive margins, in most cases normal faults dip toward the continent. This asymmetry may either result from the mantle flowing underneath regions evolving above a migrating plume, such as the Afar, when an asymmetry is observed at the scale of the rift, or from necking of the lithosphere when the conjugate margins show an opposite asymmetry. We summarize the various observed situations with normal faults dipping toward the continent ("hot" margins) or toward the ocean ("cold" margins) and discuss whether mantle flow is responsible for the observed asymmetry of deformation or not. Slipping along pre-existing heterogeneities seems a second-order phenomenon at lithospheric or crustal scale, except at the initiation of rifting.
NASA Astrophysics Data System (ADS)
Castillo, P. R.; Hilton, D. R.; Halldorsson, S. A.; Wang, R.
2012-12-01
The ultimate source of heat and magmatism associated with continental rifting in the East African Rift System (EARS) is generally viewed to be the African Superplume, but there is continuing debate on the surface expression of this large anomalous feature, which originates in the lower mantle. Previous studies have demonstrated an insignificant role for crustal contamination thereby identifying a single mantle plume signature in Quaternary basalts from the Main Ethiopian Rift in the northern EARS. This is designated to be the Afar plume and is characterized by, e.g., 3He/4He >15 RA, 206Pb/204Pb = 19.5 and 87Sr/86Sr = 0.7035 [Rooney et al., J. Pet. 53, 2012]. In contrast, the signature of plume(s) in the southern EARS is less constrained. Rogers et al. [EPSL 176, 2000] proposed a plume in the sub-lithospheric Kenyan mantle with characteristically lower 43Nd/144Nd than the Afar plume whereas Furman [JAES 48, 2007] advocated a high μ [HIMU] plume based primarily on the high 206Pb/204Pb ratios of lavas in all areas within and south of the Turkana Depression: both models assume a 3He/4He lower than the Afar plume. Here we report the trace element and Sr-Nd-Pb isotopic composition of basaltic lavas from the Rungwe Volcanic Province (RVP) in the southern extreme of the Western Rift previously identified as a high 3He/4He locality (~15 RA; [Hilton et al., GRL 38, 2011]). Trace element analyses are within the previously reported range of lava compositions that include a relatively large lithospheric component. More importantly, we identify correlations among incompatible trace element and isotopic ratios (e.g., 3He/4He vs 206Pb/204Pb, Rb/Sr, Nb/Ta; 87Sr/86Sr vs 208Pb/204Pb). Our new results suggest the presence of a distinct, high 3He/4He mantle source beneath RVP that is more radiogenic (e.g., 206Pb/204Pb up to ~19.8; 87Sr/86Sr up to 0.7055) than the Afar mantle plume. There is also very little or no HIMU signature in RPV basalts based on their high Sr and low Nd isotopic ratios.
Konrad, Kevin; Graham, David W; Thornber, Carl; Duncan, Robert A.; Kent, Adam J.R.; Al-Amri, Abdulla
2016-01-01
Elevated 3He/4He in the western harrats has been observed only at Rahat (up to 11.8 RA; Murcia et al., 2013), a volcanic field situated above thinned lithosphere beneath the Makkah-Medinah-Nafud volcanic lineament. Previous work established that spinel lherzolites at Hutaymah are sourced near the lithosphere-asthenosphere boundary (LAB), while other xenolith types there are derived from shallower depths within the lithosphere itself (Thornber, 1992). Helium isotopes are consistent with melts originating near the LAB beneath many of the Arabian harrats, and any magma derived from the Afar mantle plume currently appears to be of minor importance.
NASA Astrophysics Data System (ADS)
Polun, S. G.; Stockman, M. B.; Hickcox, K.; Horrell, D.; Tesfaye, S.; Gomez, F. G.
2015-12-01
As the only subaerial exposure of a ridge - ridge - ridge triple junction, the Afar region of Ethiopia and Djibouti offers a rare opportunity to assess strain partitioning within this type of triple junction. Here, the plate boundaries do not link discretely, but rather the East African rift meets the Red Sea and Gulf of Aden rifts in a zone of diffuse normal faulting characterized by a lack of magmatic activity, referred to as the central Afar. An initial assessment of Late Quaternary strain partitioning is based on faulted landforms in the Dobe - Hanle graben system in Ethiopia and Djibouti. These two extensional basins are connected by an imbricated accommodation zone. Several fault scarps occur within terraces formed during the last highstand of Lake Dobe, around 5 ka - they provide a means of calibrating a numerical model of fault scarp degradation. Additional timing constraints will be provided by pending exposure ages. The spreading rates of both grabens are equivalent, however in Dobe graben, extension is partitioned 2:1 between northern, south dipping faults and the southern, north dipping fault. Extension in Hanle graben is primarily focused on the north dipping Hanle fault. On the north margin of Dobe graben, the boundary fault bifurcates, where the basin-bordering fault displays a significantly higher modeled uplift rate than the more distal fault, suggesting a basinward propagation of faulting. On the southern Dobe fault, surveyed fault scarps have ages ranging from 30 - 5 ka with uplift rates of 0.71, 0.47, and 0.68 mm/yr, suggesting no secular variation in slip rates from the late Plestocene through the Holocene. These rates are converted into horizontal stretching estimates, which are compared with regional strain estimated from velocities of relatively sparse GPS data.
NASA Astrophysics Data System (ADS)
Doubre, C.; Deprez, A.; Masson, F.; Socquet, A.; Ulrich, P.; Ibrahim Ahmed, S.; de Chabalier, J. B.; Ahmadine Omar, A.; Vigny, C.; Ruegg, J. C.
2014-12-01
We present the results of the last GPS campaign conducted over the Djiboutian part of Eastern Afar. A large and dense geodetic network has been measured regularly since the 90's, and allows an accurate determination of the velocity field associated with the western tip of the Arabia-Somalia divergent plate boundary. Within the Tadjoura Gulf, the Aden ridge consists of a series of 3 en échelon, submerged spreading segments, except for the Asal segment, which is partly above water. The repetition of 6 to 7 measurements together with 6 permanent continuous GNSS stations allow an opportunity to study the spatial distribution of the active extension in relation to these 3 segments, but also to study time variations of the displacements, which are greatly expected to be transitory because of the occurrence of dyking events, small to intermediate seismic events, and volcanic activity. The divergent motion of the two margins of the Gulf occurs at ~15 mm/yr, which is consistent with the long-term estimates of the Arabia-Somalia motion. Across the Asal segment, this value confirms that the effect of the dyking event in 1978 has ended. The velocity gradients show that the deformation is distributed from the southern to the northern rift shoulder. As revealed by the InSAR data however, the along-axis variations of the deformation pattern, i.e. clear superficial active faults in the SE part of the rift and deep opening in the NW part, suggests the remaining influence of the previous dyke intrusions within the segment inner floor. The time series show that the velocity field was more heterogeneous before 2003, when the micro-seismic activity was significant, particularly around the volcanic center. The striking feature of the time evolution of the velocity field consists in the transition from an extension mainly localized across the Asal segment before 2003 to an extension more distributed, implying the influence of the southern Quaternary structures forming the Gaggade and Hanle Basins. This results in a decrease of the opening velocity across the Asal segment. This crucial change suggests that the activity of the volcanic/geothermal centre in the segment is a determining factor in the spatial organization of the deformation, by affecting the activity of the normal faults and thereby favoring the concentration of the extensive deformation.
NASA Astrophysics Data System (ADS)
Acton, Gary D.; Tessema, Abera; Jackson, Michael; Bilham, Roger
2000-08-01
Deformation throughout Afar over the past 2 myr has been characterized by widespread and intense crustal fragmentation that results from inhomogeneous extension across the region. In eastern Afar, this situation has evolved to localized extension associated with the westward propagation of the Gulf of Aden/Gulf of Tadjurah seafloor spreading system into the Asal-Ghoubbet Rift. During the gradual process of rift propagation and localization, crustal blocks in eastern Afar sustained clockwise rotations of ˜11°. To better understand the processes of rift propagation and localization and how they affect the rest of Afar, we have collected and analyzed over 400 oriented paleomagnetic samples from 67 lava flows from central and southern Afar. Unlike eastern Afar, the mean paleomagnetic direction from central Afar indicates that vertical-axis rotations are statistically insignificant (3.6°±4.4°), though small clockwise rotations (<8°) are permitted. Thus, propagation and localization in central Afar have not had the same influence in causing crustal block rotations or, perhaps more likely, have not reached the same stage of evolution as seen in eastern Afar. In addition, several of the lava flows record intriguing geomagnetic field behavior associated with polarity transitions, excursions, or large secular variation events. Interestingly, the transitional or anomalous virtual geomagnetic poles (VGPs) tend to cluster in two nearly antipodal regions, one in the northern Pacific Ocean and the other in the southwest Indian Ocean. One lava flow has recorded both of the antipodal transitional components, with the two components residing in magnetic minerals with unblocking temperatures above and below ˜500°C, respectively. Reheating and partial remagnetization by the overlying flow cannot explain either of the transitional directions because both differ significantly from that of the reversely magnetized overlying flow. The high-temperature component gives a VGP in the northern Pacific, whereas the lower-temperature component gives a nearly antipodal VGP south of Cape Town, South Africa. Hence, the configuration of the geomagnetic field appears to have jumped nearly instantaneously from a northern-hemisphere transitional state to a southern-hemisphere one during this normal-to-reverse polarity transition.
Evolution of the East African rift: Drip magmatism, lithospheric thinning and mafic volcanism
NASA Astrophysics Data System (ADS)
Furman, Tanya; Nelson, Wendy R.; Elkins-Tanton, Linda T.
2016-07-01
The origin of the Ethiopian-Yemeni Oligocene flood basalt province is widely interpreted as representing mafic volcanism associated with the Afar mantle plume head, with minor contributions from the lithospheric mantle. We reinterpret the geochemical compositions of primitive Oligocene basalts and picrites as requiring a far more significant contribution from the metasomatized subcontinental lithospheric mantle than has been recognized previously. This region displays the fingerprints of mantle plume and lithospheric drip magmatism as predicted from numerical models. Metasomatized mantle lithosphere is not dynamically stable, and heating above the upwelling Afar plume caused metasomatized lithosphere with a significant pyroxenite component to drip into the asthenosphere and melt. This process generated the HT2 lavas observed today in restricted portions of Ethiopia and Yemen now separated by the Red Sea, suggesting a fundamental link between drip magmatism and the onset of rifting. Coeval HT1 and LT lavas, in contrast, were not generated by drip melting but instead originated from shallower, dominantly anhydrous peridotite. Looking more broadly across the East African Rift System in time and space, geochemical data support small volume volcanic events in Turkana (N. Kenya), Chyulu Hills (S. Kenya) and the Virunga province (Western Rift) to be derived ultimately from drip melting. The removal of the gravitationally unstable, metasomatized portion of the subcontinental lithospheric mantle via dripping is correlated in each case with periods of rapid uplift. The combined influence of thermo-mechanically thinned lithosphere and the Afar plume together thus controlled the locus of continental rift initiation between Africa and Arabia and provide dynamic support for the Ethiopian plateau.
Present-day kinematics of the Danakil block (southern Red Sea-Afar) constrained by GPS
NASA Astrophysics Data System (ADS)
Ladron de Guevara, R.; Jonsson, S.; Ruch, J.; Doubre, C.; Reilinger, R. E.; Ogubazghi, G.; Floyd, M.; Vasyura-Bathke, H.
2017-12-01
The rifting of the Arabian plate from the Nubian and Somalian plates is primarily accommodated by seismic and magmatic activity along two rift arms of the Afar triple junction (the Red Sea and Gulf of Aden rifts). The spatial distribution of active deformation in the Afar region have been constrained with geodetic observations. However, the plate boundary configuration in which this deformation occurs is still not fully understood. South of 17°N, the Red Sea rift is composed of two parallel and overlapping rift branches separated by the Danakil block. The distribution of the extension across these two overlapping rifts, their potential connection through a transform fault zone and the counterclockwise rotation of the Danakil block have not yet been fully resolved. Here we analyze new GPS observations from the Danakil block, the Gulf of Zula area (Eritrea) and Afar (Ethiopia) together with previous geodetic survey data to better constrain the plate kinematics and active deformation of the region. The new data has been collected in 2016 and add up to 5 years to the existing geodetic observations (going back to 2000). Our improved GPS velocity field shows differences with previously modeled GPS velocities, suggesting that the rate and rotation of the Danakil block need to be updated. The new velocity field also shows that the plate-boundary strain is accommodated by broad deformation zones rather than across sharp boundaries between tectonic blocks. To better determine the spatial distribution of the strain, we first implement a rigid block model to constrain the overall regional plate kinematics and to isolate the plate-boundary deformation at the western boundary of the Danakil block. We then study whether the recent southern Red Sea rifting events have caused detectable changes in observed GPS velocities and if the observations can be used to constrain the scale of this offshore rift activity. Finally, we investigate different geometries of transform faults that might connect the two overlapping branches of the southern Red Sea rift in the Gulf of Zula region.
Afar-wide Crustal Strain Field from Multiple InSAR Tracks
NASA Astrophysics Data System (ADS)
Pagli, C.; Wright, T. J.; Wang, H.; Calais, E.; Bennati Rassion, L. S.; Ebinger, C. J.; Lewi, E.
2010-12-01
Onset of a rifting episode in the Dabbahu volcanic segment, Afar (Ethiopia), in 2005 renewed interest in crustal deformation studies in the area. As a consequence, an extensive geodetic data set, including InSAR and GPS measurements have been acquired over Afar and hold great potential towards improving our understanding of the extensional processes that operate during the final stages of continental rupture. The current geodetic observational and modelling strategy has focused on detailed, localised studies of dyke intrusions and eruptions mainly in the Dabbahu segment. However, an eruption in the Erta ‘Ale volcanic segment in 2008, and cluster of earthquakes observed in the Tat Ale segment, are testament to activity elsewhere in Afar. Here we make use of the vast geodetic dataset available to obtain strain information over the whole Afar depression. A systematic analysis of all the volcanic segments, including Dabbahu, Manda-Hararo, Alayta, Tat ‘Ale Erta Ale and the Djibouti deformation zone, is undertaken. We use InSAR data from multiple tracks together with available GPS measurements to obtain a velocity field model for Afar. We use over 300 radar images acquired by the Envisat satellite in both descending and ascending orbits, from 12 distinct tracks in image and wide swath modes, spanning the time period from October 2005 to present time. We obtain the line-of-sight deformation rates from each InSAR track using a network approach and then combine the InSAR velocities with the GPS observations, as suggested by Wright and Wang (2010) following the method of England and Molnar (1997). A mesh is constructed over the Afar area and then we solve for the horizontal and vertical velocities on each node. The resultant full 3D Afar-wide velocity field shows where current strains are being accumulated within the various volcanic segments of Afar, the width of the plate boundary deformation zone and possible connections between distinct volcanic segments on a regional scale. A comparison of crustal strains from the geodetic analysis with the seismicity data will also be made.
NASA Astrophysics Data System (ADS)
Hamlyn, J.; Keir, D.; Hammond, J.; Wright, T.; Neuberg, J.; Kibreab, A.; Ogubazghi, G.; Goitom, B.
2012-04-01
Nabro volcano dominates the central part of the Nabro Volcanic Range (NVR), which trends SSW-NNE covering a stretch of 110 km from the SEE margin of the Afar depression to the Red Sea. Regionally, the NVR sits within the Afar triangle, the triple junction of the Somalian, Arabian and African plates. On 12th June 2011 Nabro volcano suddenly erupted after being inactive for 10, 000 years. In response, a network of 8 seismometers, were located around the active vent. The seismic signals detected by this array and those arriving at a regional seismic station (located to the north-west) were processed to provide accurate earthquake locations for the period August-October. Transects of the volcano were used to create cross sections to aid the interpretation. Typically, the majority of the seismic events are located at the active vent and on the flanks of Nabro, with fewer events dispersed around the surrounding area. However, there appears to be a smaller hub of events to the south-west of Nabro beneath the neighbouring Mallahle volcanic caldera (located on the Ethiopian side of the international border). This may imply some form of co-dependent relationship within the plumbing of the magma system beneath both calderas.
Plate kinematics of the Afro-Arabian Rift System with emphasis on the Afar Depression, Ethiopia
NASA Astrophysics Data System (ADS)
Bottenberg, Helen Carrie
This work utilizes the Four-Dimensional Plates (4DPlates) software, and Differential Interferometric Synthetic Aperture Radar (DInSAR) to examine plate-scale, regional-scale and local-scale kinematics of the Afro-Arabian Rift System with emphasis on the Afar Depression in Ethiopia. First, the 4DPlates is used to restore the Red Sea, the Gulf of Aden, the Afar Depression and the Main Ethiopian Rift to development of a new model that adopts two poles of rotation for Arabia. Second, the 4DPlates is used to model regional-scale and local-scale kinematics within the Afar Depression. Most plate reconstruction models of the Afro-Arabian Rift System relies on considering the Afar Depression as a typical rift-rift-rift triple junction where the Arabian, Somali and Nubian (African) plates are separating by the Red Sea, the Gulf of Aden and the Main Ethiopian Rift suggesting the presence of "sharp and rigid" plate boundaries. However, at the regional-scale the Afar kinematics are more complex due to stepping of the Red Sea propagator and the Gulf of Aden propagator onto Afar as well as the presence of the Danakil, Ali Sabieh and East Central Block "micro-plates". This study incorporates the motion of these micro-plates into the regional-scale model and defined the plate boundary between the Arabian and the African plates within Afar as likely a diffused zone of extensional strain within the East Central Block. Third, DInSAR technology is used to create ascending and descending differential interferograms from the Envisat Advanced Synthetic Aperture Radar (ASAR) C-Band data for the East Central Block to image active crustal deformation related to extensional tectonics and volcanism. Results of the DInSAR study indicate no strong strain localization but rather a diffused pattern of deformation across the entire East Central Block.
Hotspots and Superswell Beneath Africa Inferred From Surface Wave Anisotropic Tomography.
NASA Astrophysics Data System (ADS)
Sebai, A.; Stutzmann, E.; Montagner, J.
2003-12-01
In order to study the interaction at depth between hotspots and lithosphere we present a new anisotropic S-wave tomographic model of Africa which is derived from Rayleigh and Love wave phase velocity measurements. The strongest negative anomaly corresponds to the Afar plume which is presently the most active area of Africa. This slow anomaly, visible down to the deepest inverted depth (400km), is associated with azimuthal anisotropy that is weak right beneath the Afar and whose direction at further distances is diverging around the plume. This is consistent with active upwelling beneath the Afar. The smaller hotspots of Tibesti, Darfur, Hoggar and Mt Cameroon have appeared in regions that had been weakened by Late Jurassic-Early Cretaceous (145 Ma) rifting of West and Central Africa. They are associated with slow velocities down to about 200km. The smaller amplitude of these anomalies with respect to the Afar area and their limited depth extent may indicate that these hotspots have their origin in the uppermost boundary layer between asthenosphere and lithosphere. Nevertheless, there may be a complex relationship at depths shallower than 150km between these hotspots and the Afar. The superswell, located in the southern part of Africa is characterized by a broad area of positive velocity anomaly visible down to 300km depth. The base of Kalahari craton ( ˜ 280 km) is evidently characterized by an increase of azimuthal anisotropy. The direction of azimuthal axis is roughly North-South that rotates at the longitude of the Eastern rift to move around the Afar. This may suggest a feeding of Victoria and Afar hotspots from the deep South African superplume.
Sr isotopic composition of Afar volcanics and its implication for mantle evolution
NASA Astrophysics Data System (ADS)
Barberi, F.; Civetta, L.; Varet, J.
1980-10-01
Investigations of Rb-Sr systematics of basalts from the Afar depression (Ethiopia) indicate the presence of a heterogeneous mantle source region. The Sr isotopic compositions of the basalts from the Afar axial and transverse ranges identify source regions which are enriched in LIL elements and radiogenic Sr (axial ranges) and others which are relatively depleted (transverse ranges). Sr isotopic composition of basalts from the Red Sea, Gulf of Aden and Gulf of Tadjoura, which range from 0.70300 to 0.70340 are also reported and compared with the more radiogenic Afar region, which is characterized by 87Sr/ 86Sr ranging from 0.70328 to 0.70410. Available geochemical and isotopic data suggest that a relation exists between magma composition and the advancement of the rifting process through progressive lithosphere attenuation leading to continental break-up. However, the petrogenetic process is not simple and probably implies a vertically zoned mantle beneath the Afar region. Sr isotopic evidence suggests that the vertically zoned mantle is more radiogenic and enriched in LIL elements in its upper part.
Seismically imaging the Afar plume
NASA Astrophysics Data System (ADS)
Hammond, J. O.; Kendall, J. M.; Bastow, I. D.; Stuart, G. W.; Keir, D.; Ayele, A.; Ogubazghi, G.; Ebinger, C. J.; Belachew, M.
2011-12-01
Plume related flood basalt volcanism in Ethiopia has long been cited to have instigated continental breakup in northeast Africa. However, to date seismic images of the mantle beneath the region have not produced conclusive evidence of a plume-like structure. As a result the nature and even existence of a plume in the region and its role in rift initiation and continental rupture are debated. Previous seismic studies using regional deployments of sensors in East-Africa show that low seismic velocities underlie northeast Africa, but their resolution is limited to the top 200-300km of the Earth. Thus, the connection between the low velocities in the uppermost mantle and those imaged in global studies in the lower mantle is unclear. We have combined new data from Afar, Ethiopia with 6 other regional experiments and global network stations across Ethiopia, Eritrea, Djibouti and Yemen, to produce high-resolution models of upper mantle P- and S- wave velocities to the base of the transition zone. Relative travel time tomographic inversions show that the top 100km is dominated by focussed low velocity zones, likely associated with melt in the lithosphere/uppermost asthenosphere. Below these depths a broad SW-NE oriented sheet like upwelling extends down to the top of the transition zone. Within the transition zone two focussed sharp-sided low velocity regions exist: one beneath the Western Ethiopian plateau outside the rift valley, and the other beneath the Afar depression. The nature of the transition zone anomalies suggests that small upwellings may rise from a broader low velocity plume-like feature in the lower mantle. This interpretation is supported by numerical and analogue experiments that suggest the 660km phase change and viscosity jump may impede flow from the lower to upper mantle creating a thermal boundary layer at the base of the transition zone. This allows smaller, secondary upwellings to initiate and rise to the surface. Our images of secondary upwellings suggest that there is no evidence for a plume in the classical sense (i.e. a narrow conduit). Instead, we propose that secondary upwellings rise from the base of the transition zone and connect in the upper mantle. This coupled with measurements of seismic anisotropy suggest that mantle material flows northeast towards Arabia, and may be responsible for the dramatic dynamic topography observed in northeast Africa and western Arabia.
Stress field during early magmatism in the Ali Sabieh Dome, Djibouti, SE Afar rift
NASA Astrophysics Data System (ADS)
Sue, Christian; Le Gall, Bernard; Daoud, Ahmed Mohamed
2014-09-01
The so-called Ali Sabieh range, SE Afar rift, exhibits an atypical antiform structure occurring in the overall extensional tectonic context of the Afar triple junction. We dynamically analyzed the brittle deformation of this specific structural high using four different methods in order to better constrain the tectonic evolution of this key-area in the Afar depression. Paleostress inversions appear highly consistent using the four methods, which a posteriori validates this approach. Computed paleostress fields document two major signals: an early E-W extensional field, and a later transcurrent field, kinematically consistent with the previous one. The Ali Sabieh range may have evolved continuously during Oligo-Miocene times from large-scale extensional to transcurrent tectonism, as the result of probable local stress permutation between σ1 and σ2 stress axes.
Barriers and facilitators to accessing skilled birth attendants in Afar region, Ethiopia.
King, Rosemary; Jackson, Ruth; Dietsch, Elaine; Hailemariam, Asseffa
2015-05-01
to explore barriers and facilitators that enable women to access skilled birth attendance in Afar Region, Ethiopia. researchers used a Key Informant Research approach (KIR), whereby Health Extension Workers participated in an intensive training workshop and conducted interviews with Afar women in their communities. Data was also collected from health-care workers through questionnaires, interviews and focus groups. fourteen health extension workers were key informants and interviewers; 33 women and eight other health-care workers with a range of experience in caring for Afar childbearing women provided data as individuals and in focus groups. participants identified friendly service, female skilled birth attendants (SBA) and the introduction of the ambulance service as facilitators to SBA. There are many barriers to accessing SBA, including women׳s low status and restricted opportunities for decision making, lack of confidence in health-care facilities, long distances, cost, domestic workload, and traditional practices which include a preference for birthing at home with a traditional birth attendant. many Afar men and women expressed a lack of confidence in the services provided at health-care facilities which impacts on skilled birth attendance utilisation. ambulance services that are free of charge to women are effective as a means to transfer women to a hospital for emergency care if required and expansion of ambulance services would be a powerful facilitator to increasing institutional birth. Skilled birth attendants working in institutions need to ensure their practice is culturally, physically and emotionally safe if more Afar women are to accept their midwifery care. Adequate equipping and staffing of institutions providing emergency obstetric and newborn care will assist in improving community perceptions of these services. Most importantly, mutual respect and collaboration between traditional birth attendants (Afar women׳s preferred caregiver), health extension workers and skilled birth attendants will help ensure timely consultation and referral and reduce delay for women if they require emergency maternity care. Copyright © 2015 Elsevier Ltd. All rights reserved.
American Federation for Aging Research
... Press Room Links Videos HuffPost Infoaging Biology of Aging Disease Center Healthy Aging Ask the Expert Contact Us Press Info Contact ... the pipeline of research in the biology of aging AFAR's Impact GIVE to AFAR's work to help ...
Anisotropic Signature of the Afar plume in the Upper Mantle.
NASA Astrophysics Data System (ADS)
Sicilia, D.; Montagner, J.; Debayle, E.; Leveque, J.; Cara, M.; Lepine, J.
2002-12-01
Plumes remain enigmatic geological objects and it is still unclear how they are formed and whether they act independently from plate tectonics. The role of plumes in mantle dynamics can be investigated by studying their interaction with lithosphere and crust and their perturbations on flow pattern in the mantle. The flow pattern can be derived from seismic anisotropy. An anisotropic surface wave tomography in the Horn of Africa was performed. The choice of the experiment in the Horn of Africa is motivated by the the presence of the Afar hotspot, one of the biggest continental hotspot. In the framework of the mantle degree 2 pattern, the Afar hotspot is the antipode of the Pacific superswell, but its origin at depth and its geodynamic importance are still debated. Data were collected from the permanent IRIS and GEOSCOPE networks and from the PASSCAL experiment in Tanzania and Saudi Arabia. We completed our data base with a French deployment of portable broadband stations surrounding the Afar Hotspot. Path average phase velocities are obtained by using a method based on a least-squares minimization (Beucler et al.,2002). A correction of the data is applied according to the a priori 3SMAC model (Nataf and Ricard, 1996). 3D-models of velocity, radial and azimuthal anisotropies are inverted for. Down to 250km, low velocities are found beneath the Red Sea, the Gulf of Aden, the South East of the Tanzania Craton, the Afar hotspot. High velocities are present in the eastern Arabia and the Tanzania Craton. These results are in agreement with the isotropic model of Debayle et al. (2002). The anisotropy model beneath Afar displays a complex pattern. The azimuthal anisotropy shows that the Afar plume might be interpreted as feeding other hotspots in central Africa. Deeper in the asthenosphere, a wide stem of positive radial anisotropy (VSH > VSV) comes up, where we might expect the reverse sign. The same observation was made below Iceland (Gaherty, 2001) and Hawaii (Montagner, 2002). Different interpretations of this observation can be proposed, in terms of perturbation of the flow pattern around Afar or of the predominant influence of water-rich plume material where other mechanisms of alignment prevail (Jung and Karato, 2001).
NASA Technical Reports Server (NTRS)
Kronberg, P. (Principal Investigator)
1974-01-01
The author has identified the following significant results. ERTS-1 MSS imagery covering the Afar-Triangle/Ethiopia and adjacent regions (Ethiopian Plateau, Somali Plateau, and parts of Yemen and Saudi Arabi) was applied to the mapping of lithologic and structural units of the test area at a scale 1:1,000,000. Results of the geological evaluation of the ERTS-1 imagery of the Afar have proven the usefullness of this type of satellite data for regional geological mapping. Evaluation of the ERTS images also resulted in new aspects of the structural setting and tectonic development of the Afar-Triangle, where three large rift systems, the oceanic rifts of the Red Sea and Gulf of Aden and the continental East African rift system, seem to meet each other. Surface structures mapped by ERTS do not indicate that the oceanic rift of the Gulf of Aden (Sheba Ridge) continues into the area of continental crust west of the Gulf of Tadjura. ERTS data show that the Wonji fault belt of the African rift system does not enter or cut through the central Afar. The Aysha-Horst is not a Horst but an autochthonous spur of the Somali Plateau.
A kinematic model for the development of the Afar Depression and its paleogeographic implications
NASA Astrophysics Data System (ADS)
Redfield, T. F.; Wheeler, W. H.; Often, M.
2003-11-01
The Afar Depression is a highly extended region of continental to transitional oceanic crust lying at the junction of the Red Sea, the Gulf of Aden and the Ethiopian rifts. We analyze the evolution of the Afar crust using plate kinematics and published crustal models to constrain the temporal and volumetric evolution of the rift basin. Our reconstruction constrains the regional-scale initial 3D geometry and subsequent extension and is well calibrated at the onset of rifting (˜20 Ma) and from the time of earliest documented sea-floor spreading anomalies (˜6 Ma Red Sea; ˜10 Ma Gulf of Aden). It also suggests the Danakil block is a highly extended body, having undergone between ˜200% and ˜400% stretch. Syn-rift sedimentary and magmatic additions to the crust are taken from the literature. Our analysis reveals a discrepancy: either the base of the crust has not been properly imaged, or a (plume-related?) process has somehow caused bulk removal of crustal material since extension began. Inferring subsidence history from thermal modeling and flexural considerations, we conclude subsidence in Afar was virtually complete by Mid Pliocene time. Our analysis contradicts interpretations of late (post 3 Ma) large (˜2 km) subsidence of the Hadar area near the Ethiopian Plateau, suggesting paleoclimatic data record regional, not local, climate change. Tectonic reconstruction (supported by paleontologic and isotopic data) suggests that a land bridge connected Africa and Arabia, via Danakil, up to the Early to Middle Pliocene. The temporal constraints on land bridge and escarpment morphology constrain Afar paleogeography, climate, and faunal migration routes. These constraints (particularly the development of geographic isolation) are fundamentally important for models evaluating and interpreting biologic evolution in the Afar, including speciation and human origins.
NASA Astrophysics Data System (ADS)
Sicilia, D.; Montagner, J.-P.; Cara, M.; Stutzmann, E.; Debayle, E.; Lépine, J.-C.; Lévêque, J.-J.; Beucler, E.; Sebai, A.; Roult, G.; Ayele, A.; Sholan, J. M.
2008-12-01
The Afar area is one of the biggest continental hotspots active since about 30 Ma. It may be the surface expression of a mantle "plume" related to the African Superswell. Central Africa is also characterized by extensive intraplate volcanism. Around the same time (30 Ma), volcanic activity re-started in several regions of the African plate and hotspots such as Darfur, Tibesti, Hoggar and Mount Cameroon, characterized by a significant though modest volcanic production. The interactions of mantle upwelling with asthenosphere, lithosphere and crust remain unclear and seismic anisotropy might help in investigating these complex interactions. We used data from the global seismological permanent FDSN networks (GEOSCOPE, IRIS, MedNet, GEO- FON, etc.), from the temporary PASSCAL experiments in Tanzania and Saudi Arabia and a French deployment of 5 portable broadband stations surrounding the Afar Hotspot. A classical two-step tomographic inversion from surface waves performed in the Horn of Africa with selected Rayleigh wave and Love wave seismograms leads to a 3D-model of both S V velocities and azimuthal anisotropy, as well as radial SH/ SV anisotropy, with a lateral resolution of 500 km. The region is characterized by low shear-wave velocities beneath the Afar Hotspot, the Red Sea, the Gulf of Aden and East of the Tanzania Craton to 400 km depth. High velocities are present in the Eastern Arabia and the Tanzania Craton. The results of this study enable us to rule out a possible feeding of the Central Africa hotspots from the "Afar plume" above 150-200 km. The azimuthal anisotropy displays a complex pattern near the Afar Hotspot. Radial anisotropy, although poorly resolved laterally, exhibits S H slower than S V waves down to about 150 km depth, and a reverse pattern below. Both azimuthal and radial anisotropies show a stratification of anisotropy at depth, corresponding to different physical processes. These results suggest that the Afar hotspot has a different and deeper origin than the other African hotspots (Darfur, Tibesti, Hoggar). These latter hotspots can be traced down to 200 km from S-wave velocity but have no visible effect on radial and azimuthal anisotropy.
NASA Astrophysics Data System (ADS)
Juliá, J.; Tang, Z.; Mai, P. M.; Zahran, H.
2014-12-01
Cenozoic volcanic outcrops in Arabia - locally known as harrats - span more than 2000 km along the western half of the Arabian plate, from eastern Yemen to southern Syria. The magmatism is bimodal in character, with older volcanics (30 to 20 My) being tholeiitic-to-transitional and paralleling the Red Sea margin, and younger volcanics (12 Ma to Recent) being transitional-to-strongly-alkalic and aligning in a more north-south direction. The bimodal character has been attributed to a two-stage rifting process along the Red Sea, where the old volcanics would have produced from shallow sources related to an initial passive rifting stage, and young volcanics would have originated from one or more deep-seated mantle plumes driving present active rifting. Early models suggested the harrats would have resulted from either lateral flow from the Afar plume in Ethiopia, or more locally from a separate mantle plume directly located under the shield. Most recently, tomographic images of the Arabian mantle have suggested the northern harrats could be resulting from flow originating at a deep plume under Jordan. In this work, we investigate the location of deep mantle plumes under the Arabian plate by mapping transition zone thickness with teleseismic receiver functions. The transition zone is bounded by seismic discontinuities, nominally at 410 and 660 km depth, originating from phase transitions in the olivine-normative component of the mantle. The precise depth of the discontinuities is strongly dependent on temperature and, due to the opposing signs of the corresponding Clapeyron slopes, positive temperature anomalies are expected to result in thinning of the transition zone. Our dataset consists of ~5000 low-frequency (fc < 0.25 Hz) receiver function waveforms obtained at ~110 broadband stations belonging to a number of permanent and temporary seismic networks in the region. The receiver functions were migrated to depth and stacked along a ~2000 km long record section displaying P-to-S conversions at seismic discontinuities under Western Arabia. Our results display a normal to thicker-than-average transition zone under the study area, suggesting thermal perturbations of the transition zone due to deep mantle upwellings under the western shield and/or Jordan are unlikely.
The Afar Depression: Was There a Triple Junction Above the Mantle Plume?
NASA Astrophysics Data System (ADS)
Ebinger, C.; Wolfenden, E.; Yirgu, G.; Ayalew, D.; Eagles, G.; Gloaguen, R.; Tiberi, C.; Rowland, J. R.; Deino, A.; Tesfaye, A.; Tesfaye, S.
2002-12-01
The Red Sea - Gulf of Aden- Main Ethiopian rift systems (Afar Depression) have served as the textbook example of a R-R-R triple junction zone which formed above a mantle plume (Ethiopia-Yemen flood basalt province, 31-28 Ma). Recent work has documented the onset and propagation of seafloor along the length of the Gulf of Aden and Red Sea arms, but the timing of continental rifting had been poorly constrained. Our aims were to constrain the timing of rift initiation in each arm of the rift near the proposed Oligocene triple junction and to re-assess models for break-up above a mantle plume. Although much of the early history of rifting is deeply buried by Pliocene-Recent lavas, erosional dissection of the rift margins provides windows into the early rift history. Along the southernmost Red Sea, faults commonly marked by eruptive centers initiated at about 26 Ma, coincident with rifting along the easternmost Gulf of Aden. New data from the rift immediately south of the southernmost Red Sea basin (ca.10N) constrain the earliest rift sequences in the northern Main Ethiopian rift (MER). Field and Ar-Ar data from sequences overlying the pre-rift flood basalts show that extension in the northern MER commenced at 12-10 Ma when the two rift systems were finally linked. The active zone of extension and magmatism in the southern Red Sea and eastern Gulf of Aden, however, had migrated east and north, respectively. Summarising, rifting in southern Ethiopia had commenced by 16-18 Ma, and had propagated northward to cut across Oligo-Miocene rift structures of the Red Sea and Gulf of Aden by 10 Ma, consistent with plate kinematic data. A triple junction could have developed only during the past 10 My, long after flood basaltic magmatism. Inverse models of gravity data predict a significant step (2-4 km) in the Moho where the youthful, less extended MER breaks into the Afar Depression. Project EAGLE (UK-US-Ethiopia) is now acquiring seismic data across and along this zone to evaluate mechanisms for rift segmentation and propagation prior to breakup.
Tectonic types of marginal and inner seas; their place in the development of the crust
NASA Astrophysics Data System (ADS)
Khain, V. E.; Levin, L. E.
1980-12-01
Inner and marginal deep seas are of considerable interest not only for their genesis but also as "micromodels" of oceans. In the latter case it must be noted that some of them essentially differ from oceans in several parameters. They have a shorter period of development, thicker sedimentary cover, less distinct linear magnetic anomalies or an absence of them, high heat-flow values and seismic activity over their whole area. Consequently, the analogy with the oceans has certain limitations as the deep structure of such seas is not homogeneous and they probably vary in genesis. Only a few marginal seas are cut off from the principal areas of the oceans by island arcs formed, most probably, along transform faults. The origin of this type is more or less reliably demonstrated for the Bering Sea. Other types of marginal seas are more numerous. Some of them (such as the Gulf of Aden and the Gulf of California) are embryonic apophyses connected with the oceans. Others are atrophied (the Tasman and the Labrador seas) small oceans. The group of marginal and inner seas which lie in the inside zone of mature or young island arcs is even more numerous. Only a few basins of this group resulted from linear spreading imprinted in the system of magnetic anomalies (the Shikoku-Parese-Vela basin), the rest are supposed to have been formed in the process of diffusal or polyaxial spreading of recent time as in Afar. The majority of inner and marginal seas are younger than recent oceans. They are formed by rifting, oriented crosswise to continental margins of the Atlantic type or along the strike of margins of Andean type. More ancient basins of marginal and inner seas have been involved in Phanerozoic orogens or more rarely became parts of platforms (Ciscaspian syneclise).
Differentiating flow, melt, or fossil seismic anisotropy beneath Ethiopia
NASA Astrophysics Data System (ADS)
Hammond, J. O. S.; Kendall, J.-M.; Wookey, J.; Stuart, G. W.; Keir, D.; Ayele, A.
2014-05-01
Ethiopia is a region where continental rifting gives way to oceanic spreading. Yet the role that pre-existing lithospheric structure, melt, mantle flow, or active upwellings may play in this process is debated. Measurements of seismic anisotropy are often used to attempt to understand the contribution that these mechanisms may play. In this study, we use new data in Afar, Ethiopia along with legacy data across Ethiopia, Djibouti, and Yemen to obtain estimates of mantle anisotropy using SKS-wave splitting. We show that two layers of anisotropy exist, and we directly invert for these. We show that fossil anisotropy with fast directions oriented northeast-southwest may be preserved in the lithosphere away from the rift. Beneath the Main Ethiopian Rift and parts of Afar, anisotropy due to shear segregated melt along sharp changes in lithospheric thickness dominates the shear-wave splitting signal in the mantle. Beneath Afar, away from regions with significant lithospheric topography, melt pockets associated with the crustal and uppermost mantle magma storage dominate the signal in localized regions. In general, little anisotropy is seen in the uppermost mantle beneath Afar suggesting melt retains no preferential alignment. These results show the important role melt plays in weakening the lithosphere and imply that as rifting evolves passive upwelling sustains extension. A dominant northeast-southwest anisotropic fast direction is observed in a deeper layer across all of Ethiopia. This suggests that a conduit like plume is lacking beneath Afar today, rather a broad flow from the southwest dominates flow in the upper mantle.
NASA Astrophysics Data System (ADS)
Rychert, C. A.; Harmon, N.; Hammond, J. O.; Laske, G.; Kendall, J.; Ebinger, C. J.; Shearer, P. M.; Bastow, I. D.; Keir, D.; Ayele, A.; Belachew, M.; Stuart, G. W.
2012-12-01
Heating, melting, and stretching destroy continents at volcanic rifts. Mantle plumes are often invoked to thermally weaken the continental lithosphere and accommodate rifting through the influx of magma. However the relative effects of mechanical stretching vs. melt infiltration and weakening are not well quantified during the evolution of rifting. S-to-p (Sp) imaging beneath the Afar Rift and hotspot regions such as Hawaii provides additional constraints. We use data from the Ethiopia/Kenya Broadband Seismic Experiment (EKBSE), the Ethiopia Afar Geophysical Lithospheric Experiment (EAGLE), a new UK/US led deployment of 46 stations in the Afar depression and surrounding area, and the PLUME experiment. We use two methodologies to investigate structure and locate robust features: 1) binning by conversion point and then simultaneous deconvolution in the frequency domain, and 2) extended multitaper followed by migration and stacking. We image a lithosphere-asthenosphere boundary at ~75 km beneath the flank of the Afar Rift vs. its complete absence beneath the rift, where the mantle lithosphere has been totally destroyed. Instead a strong velocity increase with depth at ~75 km depth matches geodynamic model predictions for a drop in melt percentage at the onset of decompression melting. The shallow depth of the onset of melting is consistent with a mantle potential temperature = 1350 - 1400°C, i.e., typical for adiabatic decompression melting. Therefore although a plume initially destroyed the mantle lithosphere, its influence directly beneath Afar today is minimal. Volcanism continues via adiabatic decompression melting assisted by strong melt buoyancy effects. This contrasts with a similar feature at much deeper depth, ~150 km, just west of Hawaii, where a deep thermal plume is hypothesized to impinge on the lithosphere. Improved high resolution imaging of rifting, ridges, and hotspots in a variety of stages and tectonic settings will increase constraints on the forces sustaining volcanism and the factors that dictate the style of breakup beneath rifts.
Bohannon, R.G.; Eittreim, S.L.
1991-01-01
The continental margins of the southern and central Red Sea and most of Wilkes Land, Antarctica have bulk crustal configurations and detailed structures that are best explained by a prolonged history of magmatic expansion that followed a brief, but intense period of mechanical extension. Extension on the Red Sea margins was spatially confined to a rift that was 20-30 km in width. The rifting phase along the Arabian margin of the central and southern Red Sea occurred 25-32 Ma ago, primarily by detachment faulting at upper crustal levels and ductile uniform stretching at depth. Rifting was followed by an early magmatic phase during which the margin was invaded by dikes and plutons, primarily of gabbro and diorite, at 20-24 Ma, after the crust was mechanically thinned from 40 km to ??? 20 km. We infer continued spreading after that in which broad shelves were formed by a process of magmatic expansion, because the offshore crust is only 8-15 km thick, including sediment, and seismic reflection data do not depict horst and graben or half graben structures from which mechanical extension might be inferred. The Wilkes Land margin is similar to the Arabian example. The margin is about 150 km in width, the amount of upper crustal extension is too low to explain the change in sub-sediment crustal thickness from ??? 35 km on the mainland to < 10 km beneath the margin and reflectors in the deepest seismic sequence are nearly flat lying. Our model requires large volumes of melt in the early stages of continental rifting. The voluminous melt might be partly a product of nearby hot spots, such as Afar and partly the result of an initial period of partial fusion in the deep continental lithosphere under lower temperatures than ordinarily required by dry solidus conditions. ?? 1991.
NASA Astrophysics Data System (ADS)
Natali, Claudio; Beccaluva, Luigi; Bianchini, Gianluca; Siena, Franca
2010-05-01
The Oligocene Continental Flood Basalts (CFB) of the Northern Ethiopia and the conjugate Yemen province testifies a huge volcanic event related to the "Afar plume" occurred at ca. 30 Ma (in 1 Ma or less; Hofmann et al., 1997) prior to the continental rifting stage. The zonal arrangement of CFB lavas with Low-Ti tholeiites (LT) in the west, High-Ti tholeiites (HT1) to the east and very High-Ti transitional basalts and picrites (HT2, TiO2 4-6 wt%) closer to the Afar triple junction has been considered a record of magmas generated from the flanks to the centre of a plume head, currently corresponding to the Afar hotspot (Beccaluva et al., 2009). In the central-eastern part of the plateau (Lalibela area), neighbouring the Afar escarpment, abundant rhyolites characterize the upper part of the volcanic sequence and have been interpreted as the differentiated products of CFB magmas (Ayalew et al., 2006). The unusual association of picrite and rhyolite magmas erupted in an elongated area, parallel to the Afar escarpment, appears to be related to peculiar tectonomagmatic events developed in the apical zone of a stretched lithosphere impinged by a mantle plume. As previously suggested, the HT basaltic and picritic magmas could have been generated in the innermost part (core) of the plume head from the hottest, deepest and most metasomatised mantle domains, enriched by "plume components" (Beccaluva et al., 2009). The late stages of these magmatic events were accompanied by the onset of continental rifting, with faulting and block tilting, leading to favourable conditions for magma differentiation in shallow (crustal) chambers located N-S along the future Afar Escarpment. Quantitative petrological modelling shows that efficient fractional crystallization processes of HT transitional basaltic magmas could result in highly differentiated peralkaline rhyolitic products, generally localized at the top (lower density) of the magma reservoirs. From these latter, abundant rhyolitic magma were erupted (sometimes alternating to HT basalts and picrites) during the paroxystic extensional phases which ultimately led to continental break-up and the formation of the Red Sea-Gulf of Aden-East African rift system centred in the Afar "triple junction". References: Ayalew et al. (2006). Geol. Soc. London Sp. Pub. 259, 121-130. Beccaluva et al. (2009). J. Petrol. 50, 1377-1403. Hofmann et al. (1997). Nature 389, 838-841.
NASA Astrophysics Data System (ADS)
HéBert, HéLèNe; Deplus, Christine; Huchon, Philippe; Khanbari, Khaled; Audin, Laurence
2001-11-01
The Aden spreading ridge (Somalia/Arabia plate boundary) does not connect directly to the Red Sea spreading ridge. It propagates toward the East African Rift through the Afar depression, where the presence of a hot spot has been postulated from seismological and geochemical evidence. The spreading direction (N37°E) is highly oblique to the overall trend (N90°E) of the ridge. We present and interpret new geophysical data gathered during the Tadjouraden cruise (R/V L'Atalante, 1995) in the Gulf of Aden west of 46°E. These data allow us to study the propagation of the ridge toward the Afar and to discuss the processes of the seafloor spreading initiation. We determine the lithospheric structure of the ridge using gravity data gathered during the cruise with the constraint of available refraction data. A striking Bouguer anomaly gradient together with the identification of magnetic anomalies defines the geographical extent of oceanic crust. The inversion of the Bouguer anomaly is performed in terms of variations of crustal thickness only and then discussed with respect to the expected thermal structure of the mantle lithosphere, which should depend not only on the seafloor spreading but also on the hot spot beneath East Africa. Our results allow us to define three distinct lithospheric domains in the western Gulf of Aden. East of 44°45'E the lithosphere displays an oceanic character (thermal subsidence recorded for the last 10 Ma and constant crustal thickness). Between 43°30'E and 44°10'E the lithosphere is of continental type but locally thinned beneath the axial valley. The central domain defined between 44°10'E and 44°45'E is characterized by a transitional lithosphere which can be seen as a stretched continental crust where thick blocks are mixed with thinned crust; it displays en echelon basins that are better interpreted as extension cells rather than accretion cells.
NASA Astrophysics Data System (ADS)
Pitcavage, E.; Furman, T.; Nelson, W. R.
2017-12-01
The East African Rift System (EARS) is earth's largest continental divergent boundary and an unparalleled natural laboratory for understanding magmatism related to successful continental rifting. Classic views of continental rifting suggest that faulting and extension are facilitated by ascending magmas that weaken the lithosphere thermally and structurally within basin-bounding accommodation zones. In the EARS Western Rift (WR), many volcanic fields are not aligned along rift-bounding faults, and magma compositions lack evidence for asthenospheric inputs expected along lithosphere-penetrating fault systems. We note that compositional input from the Cenozoic Afar mantle plume is not recognized convincingly in WR mafic alkaline lavas1. Rather, magma compositions demonstrate significant input from anciently metasomatized sub-continental lithospheric mantle (SCLM). Destabilization and foundering of metasomatized SCLM has an increasingly recognized role in continental magmatism worldwide, producing volatile-rich, alkaline volcanics when drips of foundered SCLM devolatilize and melt on descent. This magmatism can lead to faulting: the lithospheric thinning that results from this process may play a role in physical aspects of rifting, contrasting with faulting facilitated by asthenospheric melts. Geochemical and geophysical evidence indicates that drip magmatism has occurred in several EARS provinces, including Turkana, Chyulu Hills, and in Afar2 where it is geographically coincident with successful rifting. We present bulk geochemical data that suggest drip melting of metasomatized SCLM is occurring in several WR volcanic fields. We focus on Bufumbira (Uganda), where mafic lavas are derived from garnet+phlogopite+amphibole+zircon-bearing pyroxenite, indicating a deep metasomatized SCLM source. Isotopic and trace element data suggest that extent of melting increased with depth of melting, a signature of lithospheric drip. We propose that drip magmatism is an important driver of volcanism in the early history of these igneous provinces and may be fundamentally related to the onset of successful rifting. 1. Graham, D. et al. Goldschmidt Conference Abstracts (2011). 2. Furman, T., et al. Geochim. Cosmochim. Acta 185, 418-434 (2016).
Upper mantle temperature and the onset of extension and break-up in Afar, Africa
NASA Astrophysics Data System (ADS)
Armitage, John J.; Ferguson, David J.; Goes, Saskia; Hammond, James O. S.; Calais, Eric; Rychert, Catherine A.; Harmon, Nicholas
2015-05-01
It is debated to what extent mantle plumes play a role in continental rifting and eventual break-up. Afar lies at the northern end of the largest and most active present-day continental rift, where the East African Rift forms a triple junction with the Red Sea and Gulf of Aden rifts. It has a history of plume activity yet recent studies have reached conflicting conclusions on whether a plume still contributes to current Afar tectonics. A geochemical study concluded that Afar is a mature hot rift with 80 km thick lithosphere, while seismic data have been interpreted to reflect the structure of a young, oceanic rift basin above mantle of normal temperature. We develop a self-consistent forward model of mantle flow that incorporates melt generation and retention to test whether predictions of melt chemistry, melt volume and lithosphere-asthenosphere seismic structure can be reconciled with observations. The rare-earth element composition of mafic samples at the Erta Ale, Dabbahu and Asal magmatic segments can be used as both a thermometer and chronometer of the rifting process. Low seismic velocities require a lithosphere thinned to 50 km or less. A strong positive impedance contrast at 50 to 70 km below the rift seems linked to the melt zone, but is not reproduced by isotropic seismic velocity alone. Combined, the simplest interpretation is that mantle temperature below Afar is still elevated at 1450 °C, rifting started around 22-23 Ma, and the lithosphere has thinned from 100 to 50 km to allow significant decompressional melting.
NASA Astrophysics Data System (ADS)
Audin, L.; Quidelleur, X.; Coulié, E.; Courtillot, V.; Gilder, S.; Manighetti, I.; Gillot, P.-Y.; Tapponnier, P.; Kidane, T.
2004-07-01
A new detailed palaeomagnetic study of Tertiary volcanics, including extensive K-Ar and 40Ar/39Ar dating, helps constrain the deformation mechanisms related to the opening processes of the Afar depression (Ethiopia and Djibouti). Much of the Afar depression is bounded by 30 Myr old flood basalts and floored by the ca 2 Myr old Stratoid basalts, and evidence for pre-2 Ma deformation processes is accessible only on its borders. K-Ar and 40Ar/39Ar dating of several mineral phases from rhyolitic samples from the Ali Sabieh block shows indistinguishable ages around 20 Myr. These ages can be linked to separation of this block in relation to continental breakup. Different amounts of rotation are found to the north and south of the Holhol fault zone, which cuts across the northern part of the Ali Sabieh block. The southern domain did not record any rotation for the last 8 Myr, whereas the northern domain experienced approximately 12 +/- 9° of clockwise rotation. We propose to link this rotation to the counter-clockwise rotation observed in the Danakil block since 7 Ma. This provides new constraints on the early phases of rifting and opening of the southern Afar depression in connection with the propagation of the Aden ridge. A kinematic model of propagation and transfer of extension within southern Afar is proposed, with particular emphasis on the previously poorly-known period from 10 to 4 Ma.
Mesozoic evolution of northeast African shelf margin, Libya and Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aadland, R.K.; Schamel, S.
1989-03-01
The present tectonic features of the northeast African shelf margin between the Nile delta and the Gulf of Sirte are products of (1) precursory late Paleozoic basement arches, (2) early Mesozoic rifting and plate separation, and (3) Late Cretaceous structural inversion. The 250 km-wide and highly differentiated Mesozoic passive margin in the Western Desert region of Egypt is developed above a broad northwest-trending Late Carboniferous basement arch. In northeastern Libya, in contrast, the passive margin is restricted to just the northernmost Cyrenaica platform, where subsidence was extremely rapid in the Jurassic and Early Cretaceous. The boundary between the Western Desertmore » basin and the Cyrenaica platform is controlled by the western flank of the basement arch. In the middle Cretaceous (100-90 Ma), subsidence accelerated over large areas of the Western desert, further enhancing a pattern of east-west-trending subbasins. This phase of rapid subsidence was abruptly ended about 80 Ma by the onset of structural inversion that uplifted the northern Cyrenaica shelf margin and further differentiated the Western Desert subbasin along a northeasterly trend.« less
Geochemical Overview of the East African Rift System
NASA Astrophysics Data System (ADS)
Furman, T.
2003-12-01
Mafic volcanics of the East African Rift System (EARS) record a protracted history of continental extension that is linked to mantle plume activity. The modern EARS traverses two post-Miocene topographic domes separated by a region of polyphase extension in northern Kenya and southern Ethiopia. Basaltic magmatism commenced ˜45 Ma in this highly extended region, while the onset of plume-related activity took place ˜30 Ma with eruption of flood basalts in central Ethiopia. A spatial and temporal synthesis of EARS volcanic geochemistry shows progressive lithospheric removal (by erosion and melting) as the degree of rifting increases, with basalts in the most highly extended areas recording melting of depleted asthenosphere. Plume contributions are indicated locally in the northern half of the EARS, but are absent from the southern half. The geochemical signatures are compatible with a physical model in which the entire EARS is fed by a discontinuous plume emanating from the core-mantle boundary as the South African Superswell. Quaternary basaltic lavas erupted in the Afar triangle, Red Sea and Gulf of Aden define the geochemical signature attributed to the Afar plume (87Sr/86Sr 0.7034-0.7037, 143Nd/144Nd 0.5129-0.5130; La/Nb 0.6-0.9; Nb/U 40-50). These suites commonly record mixing with ambient upper mantle having less radiogenic isotopes but generally overlapping incompatible trace element abundances. Within the Ethiopian dome both lithospheric and sub-lithoshperic contributions can be documented clearly; lithospheric contributions are manifest in more radiogenic isotope values (87Sr/86Sr up to 0.7050) and distinctive trace element abundances (e.g., La/Nb <2.0, Nb/U > 10). The degree of lithospheric contribution is lowest within the active Main Ethiopian Rift and increases towards the southern margin of the dome. The estimated depth of melting (65-75 km) is consistent with geophysical observations of lithospheric thickness. In regions of prolonged volcanism the lithospheric contributions and estimated melting depths decrease through time, corresponding to a higher degree of rifting. In the Kenyan dome, including the western rift, the degree of extension is low and lithospheric melting is the dominant source for basaltic magmatism. Mafic lavas from these regions have generally lower MgO but higher contents of alkalis, P2O5 and many incompatible trace elements than are observed in the Ethiopian Rift. High values of 87Sr/86Sr, 207Pb/204Pb and Zr/Hf relative to other parts of the EARS indicate melting of metasomatized lithosphere. Melting in this area occurs at depths up to 100+ km, consistent with the thick crustal section observed seismically. Between the topographic domes, basalts from the Turkana region record melting at shallow levels ( ˜35 km) consistent with seismic evidence for nearly complete rifting of the crustal section. The geochemistry of these lavas is dominated by asthenospheric source materials, with only minor lithospheric involvement. Temporal evolution of EARS geochemistry reflects progressive rifting of the thick craton. This change is manifest within lavas that are interpreted as plume-derived, as Tb/Yb values decrease from 30 Ma through the present. The modern thermal anomaly associated with Afar volcanism does not appear to extend below the shallow mantle, but may reflect a large blob of deep mantle material that became stuck to Africa 30 Ma and has contributed to regional volcanism ever since. Relative contributions from this deep mantle source, shallow asthenosphere and lithosphere are controlled by the extent of rifting and cannot be predicted solely on the basis of surface topography.
EAGLE The controlled source experiment
NASA Astrophysics Data System (ADS)
Maguire, P. K. H.; Eagle Controlled Source Group
2003-04-01
In January 2003, a wide-angle reflection / refraction seismic project was carried out over the north-eastern section of the Main Ethiopian Rift as part of the international EAGLE (Ethiopia Afar Geoscientific Lithospheric Experiment) programme. EAGLE comprises a combination of passive and controlled source seismic experiments to determine the geometry and kinematics of a continental rift immediately prior to break-up, enabling the development of magmatic margin break-up models. A total of ˜900 seismic instruments were deployed along two 450km profiles, one along the axis of the Ethiopian Rift into the south-west corner of Afar; and a second across the rift, extending north and south across the uplifted, flood basalt covered, Ethiopian plateau. The two profiles intersect over the Nazret volcanic segment in the rift. This may be indicative of the transition from continental style rifting in which strain is accommodated on the rift bounding border faults, to a state where strain and magmatism have migrated to a narrow zone within the rift, a necessary pre-cursor to break-up. A further ˜300 instruments were deployed in a 100x100km^2 array around the intersection of the two profiles. A total of 16 borehole and 2 lake shots were fired into the network over a period of four days. The principal objectives of the controlled source project were to examine crustal strain, the distribution of crustal magmatic intrusions, the influence of pre-rift crustal property variations on rift development and also to provide a crustal seismic velocity distribution to improve images of the deep mantle, as well as earthquake locations derived from the EAGLE passive arrays.
Mediterranean extension and the Africa-Eurasia collision
NASA Astrophysics Data System (ADS)
Jolivet, Laurent; Faccenna, Claudio
2000-12-01
A number of tectonic events occurred contemporaneously in the Mediterranean region and the Middle East 30-25 Myr ago. These events are contemporaneous to or immediately followed a strong reduction of the northward absolute motion of Africa. Geological observations in the Neogene extensional basins of the Mediterranean region reveal that extension started synchronously from west to east 30-25 Myr ago. In the western Mediterranean it started in the Gulf of Lion, Valencia trough, and Alboran Sea as well as between the Maures massif and Corsica between 33 and 27 Ma ago. It then propagated eastward and southward to form to Liguro-Provençal basin and the Tyrrhenian Sea. In the eastern Mediterranean, extension started in the Aegean Sea before the deposition of marine sediments onto the collapsed Hellenides in the Aquitanian and before the cooling of high-temperature metamorphic core complexes between 20 and 25 Ma. Foundering of the inner zones of the Carpathians and extension in the Panonnian basin also started in the late Oligocene-early Miocene. The body of the Afro-Arabian plate first collided with Eurasia in the eastern Mediterranean region progressively from the Eocene to the Oligocene. Extensional tectonics was first recorded in the Gulf of Aden, Afar triple junction, and Red Sea region also in the Oligocene. A general magmatic surge occurred above all African hot spots, especially the Afar one. We explore the possibility that these drastic changes in the stress regime of the Mediterranean region and Middle East and the contemporaneous volcanic event were triggerred by the Africa/Arabia-Eurasia collision, which slowed down the motion of Africa. The present-day Mediterranean Sea was then locked between two collision zones, and the velocity of retreat of the African slab increased and became larger than the velocity of convergence leading to backarc extension. East of the Caucasus and northern Zagros collision zone the Afro-Arabian plate was still pulled by the slab pull force in the Zagros subduction zone, which created extensional stresses in the northeast corner of the Afro-Arabian plate. The Arabian plate was formed by propagation of a crack from the Carlsberg ridge westward toward the weak part of the African lithosphere above the Afar plume.
Multidisciplinary exploration of the Tendaho Graben geothermal fields
NASA Astrophysics Data System (ADS)
Armadillo, Egidio; Rizzello, Daniele; Verdoya, Massimo; Pasqua, Claudio; Marini, Luigi; Meqbel, Naser; Stimac, Jim; Kebede, Solomon; Mengiste, Andarge; Hailegiorgis, Getenesch; Abera, Fitsum; Mengesha, Kebede
2017-04-01
The NW-SE trending Tendaho Graben is the major extensional feature of the Afar, Ethiopia. Rifting and volcanic activity within the graben occurred mostly between 1.8 and 0.6 Ma, but extended to at least 0.2 Ma. Very recent (0.22- 0.03 Ma) activity is focused along the southern part of the younger and active Manda Hararo Rift, which is included in the north-western part of the graben. Extension gave rise to about 1600 m of vertical displacement (verified by drilling) of the basaltic Afar Stratoid sequence, over a crust with a mean thickness of about 23 km. The infill of graben, overlying the Stratoids, consists of volcanic and sedimentary deposits that have been drilled by six exploratory wells. Within the graben, two main geothermal fields have been explored by intensive geological, geochemical and geophysical surveys over an area that approximately covers a square sector of 40x40 km. Both new and existing data sets have been integrated. The Dubti-Ayrobera system is located along the central axis of the graben. Available data, acquired in the last three decades, comprise more than two thousands gravity and magnetic stations, 229 magnetotelluric stations and structural-geological and geochemical observations. The Alalobeda system is located along the SW flank of the graben, at about 25 km from the Dubti-Ayrobera system and has been very recently studied by means of gravimetric (300 stations), magnetotelluric and TDEM (140 stations) geological and geochemical surveys. The new residual magnetic anomaly map has been used to map the younger normal polarity basalt distribution and infer the location of the unknown main rift axis. The bedrock surface resulting by the 3D inversion of the new residual Bouguer anomaly enlightens the main normal faults hindered by sediments and the secondary structures represented by horsts and grabens. The three-dimensional resistivity models allow mapping the sedimentary infill of the graben, fracture zones in the Afar Stradoids bedrock and the dome-shape structure of the clay cap layer. The 2D and 3D gravimetric, magnetic and resistivity models have been integrated with the structural, geological and geochemical outcomings in order to get an updated conceptual model of the geothermal systems.
The 3rd ACR in TAL’AFAR: Challenges and Adaptations
2008-01-08
raisins, and cucumbers, usually served in the local diet with grilled lamb and unleavened bread. Tal’Afar contains 18 distinctly named neighbor...accordingly, visiting the Joint Readiness Training Center at Ft. Polk, Louisiana, in the fall of 2002 to brush up...less confront an ill- defined insurgency. Featuring Bradley fighting vehicles, Abrams tanks, Apache attack helicopters, and armed-to-the- teeth
Permian-Triassic Tethyan realm reorganization: Implications for the outward Pangea margin
NASA Astrophysics Data System (ADS)
Riel, Nicolas; Jaillard, Etienne; Martelat, Jean-Emmanuel; Guillot, Stéphane; Braun, Jean
2018-01-01
We present a new conceptual model to explain the first order Permian-Triassic evolution of the whole > 30 000 km long Pangea margin facing the Panthalassa ocean. Compilation of available geological, geochemical, geochronogical and paleomagnetic data all along this system allowed us to distinguish three part of the margin: western Laurentia, western Gondwana and eastern Gondwana. These segments record distinct tectonic and magmatic events, which all occur synchronously along the whole margin and correlate well with the main geodynamic events of this period, i.e. subduction of the Paleotethys mid-ocean ridge at 310-280 Ma, opening of the Neotethys at 280-260 Ma, counterclockwise rotation of Pangea at 260-230 Ma and closure of the Paleotethys at 230-220 Ma. Between 260 and 230 Ma, the reorganization of the Tethyan realm triggered the up to 35° rotation of Pangea around an Euler pole located in northernmost South America. This implied both an increase and a decrease of the convergence rate between the margin and the Panthalassa ocean, north and south of the Euler pole, respectively. Thus, the Permian-Triassic Pangean margin was marked: in western Laurentia by marginal sea closure, in western Gondwana by widespread bimodal magmatic and volcanic activity, in eastern Gondwana by transpressive orogenic phase. Therefore, we propose that the Permian-Triassic evolution of the outward margin of Pangea was controlled by the Tethyan realm reorganization.
Mantle plumes and associated flow beneath Arabia and East Africa
NASA Astrophysics Data System (ADS)
Chang, Sung-Joon; Van der Lee, Suzan
2011-02-01
We investigate mantle plumes and associated flow beneath the lithosphere by imaging the three-dimensional S-velocity structure beneath Arabia and East Africa. This image shows elongated vertical and horizontal low-velocity anomalies down to at least mid mantle depths. This three-dimensional S-velocity model is obtained through the joint inversion of teleseismic S- and SKS-arrival times, regional S- and Rayleigh waveform fits, fundamental-mode Rayleigh-wave group velocities, and independent Moho constraints from receiver functions, reflection/refraction profiles, and gravity measurements. In the resolved parts of our S-velocity model we find that the Afar plume is distinctly separate from the Kenya plume, showing the Afar plume's origin in the lower mantle beneath southwestern Arabia. We identify another quasi-vertical low-velocity anomaly beneath Jordan and northern Arabia which extends into the lower mantle and may be related to volcanism in Jordan, northern Arabia, and possibly southern Turkey. Comparing locations of mantle plumes from the joint inversion with fast axes of shear-wave splitting, we confirm horizontal mantle flow radially away from Afar. Low-velocity channels in our model support southwestward flow beneath Ethiopia, eastward flow beneath the Gulf of Aden, but not northwestwards beneath the entire Red Sea. Instead, northward mantle flow from Afar appears to be channeled beneath Arabia.
New Crustal Thickness for Djibouti, Afar, Using Seismic Techniques
NASA Astrophysics Data System (ADS)
Dugda, Mulugeta; Bililign, Solomon
2008-10-01
Crustal thickness and Poisson's ratio for the seismic station ATD in Djibouti, Afar, has been investigated using two seismic techniques (H-κ stacking of receiver functions and a joint inversion of receiver functions and surface wave group velocities). Both techniques give consistent results of crustal thickness 23±1.5 km and Poisson's ratio 0.31±0.02. We also determined a mean P-wave velocity (Vp) of ˜6.2 km/s but ˜6.9-7.0 km/s below a 2 - 5 km thick low velocity layer at the surface. Previous studies of crustal structure for Djibouti reported that the crust is 6 to 11 km thick while our study shows that the crust beneath Djibouti is between 20 and 25 km. This study argues that the crustal thickness values reported for Djibouti for the last 3 decades were not consistent with the reports for the other neighboring region in central and eastern Afar. Our results for ATD in Djibouti, however, are consistent with the reports of crustal thickness in many other parts of central and eastern Afar. We attribute this difference to how the Moho (the crust-mantle discontinuity) is defined (an increase of Vp to 7.4 km/s in this study vs. 6.9 km/s in previous studies).
The Somalian earthquakes of May, 1980, East Africa
NASA Astrophysics Data System (ADS)
Ruegg, J. C.; Lépine, J. C.; Tarantola, A.; Lévêque, J. J.
1981-04-01
A seismic crisis, with a mb = 5.3 main shock, occured in the Somali Republic, East Africa (10°N, 43°E) from April to November 1980. Up to 2000 earthquakes with ML > 2 have been recorded during this period. This earthquake sequence is of particular interest because it occured in a seismically inactive zone and include a rather long aftershock sequence. Two groups of epicenters were identified using a relative location procedure. Aftershocks observed during the first two weeks fall very close to the Borama city, while latter shocks are situated 10km west. This may suggest that the second group of earthquakes has been induced by the first one. These data show that the continental margin between the Somalian Plateau shield and the quasi-oceanic crust of the Afar-Gulf of Aden region, remains active to day and is relevant to intraplate seismicity.
NASA Astrophysics Data System (ADS)
Doubre, Cécile; Déprez, Aline; Masson, Frédéric; Socquet, Anne; Lewi, Elias; Grandin, Raphaël; Nercessian, Alexandre; Ulrich, Patrice; De Chabalier, Jean-Bernard; Saad, Ibrahim; Abayazid, Ahmadine; Peltzer, Gilles; Delorme, Arthur; Calais, Eric; Wright, Tim
2017-02-01
Kinematics of divergent boundaries and Rift-Rift-Rift junctions are classically studied using long-term geodetic observations. Since significant magma-related displacements are expected, short-term deformation provides important constraints on the crustal mechanisms involved both in active rifting and in transfer of extensional deformation between spreading axes. Using InSAR and GPS data, we analyse the surface deformation in the whole Central Afar region in detail, focusing on both the extensional deformation across the Quaternary magmato-tectonic rift segments, and on the zones of deformation transfer between active segments and spreading axes. The largest deformation occurs across the two recently activated Asal-Ghoubbet (AG) and Manda Hararo-Dabbahu (MH-D) magmato-tectonic segments with very high strain rates, whereas the other Quaternary active segments do not concentrate any large strain, suggesting that these rifts are either sealed during interdyking periods or not mature enough to remain a plate boundary. Outside of these segments, the GPS horizontal velocity field shows a regular gradient following a clockwise rotation of the displacements from the Southeast to the East of Afar, with respect to Nubia. Very few shallow creeping structures can be identified as well in the InSAR data. However, using these data together with the strain rate tensor and the rotations rates deduced from GPS baselines, the present-day strain field over Central Afar is consistent with the main tectonic structures, and therefore with the long-term deformation. We investigate the current kinematics of the triple junction included in our GPS data set by building simple block models. The deformation in Central Afar can be described by adding a central microblock evolving separately from the three surrounding plates. In this model, the northern block boundary corresponds to a deep EW-trending trans-tensional dislocation, locked from the surface to 10-13 km and joining at depth the active spreading axes of the Red Sea and the Aden Ridge, from AG to MH-D rift segments. Over the long-term, this plate configuration could explain the presence of the en-échelon magmatic basins and subrifts. However, the transient behaviour of the spreading axes implies that the deformation in Central Afar evolves depending on the availability of magma supply within the well-established segments.
NASA Astrophysics Data System (ADS)
Stuart, Finlay; Rogers, Nick; Davies, Marc
2016-04-01
The earliest basalts erupted by mantle plumes are Mg-rich, and typically derived from mantle with higher potential temperature than those derived from the convecting upper mantle at mid-ocean ridges and ocean islands. The chemistry and isotopic composition of picrites from CFB provide constraints on the composition of deep Earth and thus the origin and differentiation history. We report new He-Sr-Nd-Pb isotopic composition of the picrites from the Ethiopian flood basalt province from the Dilb (Chinese Road) section. They are characterized by high Fe and Ti contents for MgO = 10-22 wt. % implying that the parent magma was derived from a high temperature low melt fraction, most probably from the Afar plume head. The picrite 3He/4He does not exceed 21 Ra, and there is a negative correlation with MgO, the highest 3He/4He corresponding to MgO = 15.4 wt. %. Age-corrected 87Sr/86Sr (0.70392-0.70408) and 143Nd/144Nd (0.512912-0.512987) display little variation and are distinct from MORB and OIB. Age-corrected Pb isotopes display a significant range (e.g. 206Pb/204Pb = 18.70-19.04) and plot above the NHRL. These values contrast with estimates of the modern Afar mantle plume which has lower 3He/4He and Sr, Nd and Pb isotope ratios that are more comparable with typical OIB. These results imply either interaction between melts derived from the Afar mantle plume and a lithospheric component, or that the original Afar mantle plume had a rather unique radiogenic isotope composition. Regardless of the details of the origins of this unusual signal, our observations place a minimum 3He/4He value of 21 Ra for the Afar mantle plume, significantly greater than the present day value of 16 Ra, implying a significant reduction over 30 Myr. In addition the Afar source was less degassed than convecting mantle but more degassed than mantle sampled by the proto-Iceland plume (3He/4He ~50 Ra). This suggests that the largest mantle plumes are not sourced in a single deep mantle domain with a common depletion history and that they do not mix with shallower mantle reservoirs to the same extent.
Upper Mantle Structure beneath Afar: inferences from surface waves.
NASA Astrophysics Data System (ADS)
Sicilia, D.; Montagner, J.; Debayle, E.; Lepine, J.; Leveque, J.; Cara, M.; Ataley, A.; Sholan, J.
2001-12-01
The Afar hotspot is related to one of the most important plume from a geodynamic point of view. It has been advocated to be the surface expression of the South-West African Superswell. Below the lithosphere, the Afar plume might feed other hotspots in central Africa (Hadiouche et al., 1989; Ebinger & Sleep, 1998). The processes of interaction between crust, lithosphere and plume are not well understood. In order to gain insight into the scientific issue, we have performed a surface-wave tomography covering the Horn of Africa. A data set of 1404 paths for Rayleigh waves and 473 paths for Love waves was selected in the period range 45-200s. They were collected from the permanent IRIS and GEOSCOPE networks and from the PASSCAL experiment, in Tanzania and Saudi Arabia. Other data come from the broadband stations deployed in Ethiopia and Yemen in the framework of the French INSU program ``Horn of Africa''. The results presented here come from a path average phase velocities obtained with a method based on a least-squares minimization (Beucler et al., 2000). The local phase velocity distribution and the azimuthal anisotropy were simultaneously retrieved by using the tomographic technique of Montagner (1986). A correction of the data is applied according to the crustal structure of the 3SMAC model (Nataf & Ricard, 1996). We find low velocities down to 200 km depth beneath the Red Sea, the Gulf of Aden, Afars, the Ethiopian Plateau and southern Arabia. High velocities are present in the eastern Arabia and the Tanzania Craton. The anisotropy beneath Afar seems to be complex, but enables to map the flow pattern at the interface lithosphere-asthenosphere. The results presented here are complementary to those obtained by Debayle et al. (2001) at upper-mantle transition zone depths using waveform inversion of higher Rayle igh modes.
The role of tephra studies in African paleoanthropology as exemplified by the Sidi Hakoma Tuff
NASA Astrophysics Data System (ADS)
WoldeGabriel, Giday; Endale, Tamrat; White, Tim D.; Thouveny, Nicolas; Hart, William K.; Renne, Paul R.; Asfaw, Berhane
2013-01-01
Beginning in the 1960s, geological and paleoanthropological exploration of the Ethiopian rift system's basins have led to the discovery and assembly of the most comprehensive record of human biological and technological change during the last 6 million years. The hominid fossils, including partial skeletons, were primarily discovered in the Afar Rift, the Main Ethiopian Rift, and in the Omo Basin of the broadly rifted zone of SW Ethiopia. The paleoanthropological research areas within the SW Afar Rift that have yielded many diverse hominid species and the oldest stone tools are, from north to south, Woranso-Mille (aff. Ardipithecus and Au. afarensis), Hadar (Au. afarensis, Homo sp.), Dikika (Au. afarensis), Gona (Ar. kadabba, Ar. ramidus, H. erectus, and oldest stone tools), Middle Awash (Ar. kadabba, Ar. ramidus, Au. anamensis, Au. afarensis, Au. garhi, H. erectus, H. rhodesiensis, H. sapiens idaltu, and the oldest paleo-butchery locality), and Galili (Au. afarensis). Additional hominid remains were discovered at Melka Kunture on the banks of the Awash River near its source along the western margin of the central part of the Main Ethiopian Rift (H. erectus), at Konso (H. erectus and A. boisei), and at the southern end of the MER, and in the Omo Basin (Au. anamensis, Au. afarensis, Au. aethiopicus, Au. boisei, H. habilis, and H. erectus). Distal and sometimes proximal tephra units interbedded within fossilifeous sedimentary deposits have become key elements in this work by providing chronological and correlative control and depositional contexts. Several regional tephra markers have been identified within the northern half of the eastern African rift valley in Ethiopia and Kenya, and in marine sediments of the Gulf of Aden Rift and the NW Indian Ocean. Out of the many regional tephra stratigraphic markers that range in age from the early Pliocene (3.97 Ma) to the late Pleistocene (0.16 Ma), the Sidi Hakoma Tuff (SHT) has been more widely identified and thoroughly characterized than any of the others. An age of 3.446 ± 0.041 Ma was determined on the SHT according to the most recent calibration, and it is the only regional stratigraphic marker whose source has been traced to a buried caldera in the central sector of the Main Ethiopian Rift. This paper describes new SHT occurrences and presents chemical and chronological results in the context of a broader review of the importance of this key marker. Moreover, the geographic distributions, probable dispersal mechanisms, and importance of regional tephra units in determining the tectonic and sedimentological processes in the different rift basins of the eastern African rift valleys are considered.
A Heated Debate: Evidence for Two Thermal Upwellings in East Africa
NASA Astrophysics Data System (ADS)
Rooney, T.; Herzberg, C.; Bastow, I.
2008-12-01
East African Cenozoic magmatism records the thermal influence of one or more long-lived mantle plumes. We present primary magma compositions, mantle potential temperatures (Tp), and mantle melt fractions using PRIMELT2 in order to examine the geographic and historical distribution of upper mantle thermal anomalies in East Africa. Regional magmatism can be divided into an early flood basalt phase in Ethiopia/Yemen (~30 Ma), a longer-lived episode of basaltic magmatism in Kenya and Southern Ethiopia (~45 to 23 Ma), and a more recent phase (~23 Ma to Present) that is coincidental with the development of the East African Rift (EAR). We have carefully selected a total of 54 samples from these time periods, excluding erroneous results derived from lavas with evidence of clinopyroxene fractionation or volatile rich and pyroxenitic sources. Our results show that elevated Tp in the Ethiopian/Yemen flood basalt province (Tp max =1520°C) and in the early Kenya/S. Ethiopia magmatism (Tp max = 1510°C) are virtually identical. Our results indicate that the existing geochemical division between high and low Ti Ethiopia/Yemen flood basalts has a thermal basis: low-Ti lavas are hotter than the high-Ti lavas. Magmatism in the region subsequent to 23 Ma exhibits only minor cooling (Tp max = 1490°C), though more substantial cooling is observed in Turkana, Kenya (60°C) and Yemen (80°C). Rift lavas from Ethiopia exhibit a clear decrease in Tp away from Afar southwestward along the EAR before progressively rising again in Southern Ethiopia towards Turkana. South of Turkana, elevated Tp is observed in the western and eastern branches of the EAR surrounding the Tanzania Craton. The modern spatial distribution of Tp in EAR magmatism indicate two distinct heat sources, one in Afar and another under the Tanzania craton. We suggest that hot mantle plume material from Afar and Turkana (which may or may not merge at depth) is channeled beneath the thinned rift lithosphere and provides a significant thermal input to EAR magmatism resulting in elevated Tp, even in magmas clearly derived from the lithosphere. Our results add to the debate generated by numerous global-scale tomographic inversions that presently do not show consensus as to the number and location of low-velocity upwellings beneath East Africa.
NASA Astrophysics Data System (ADS)
Krienitz, M.-S.; Haase, K. M.; Mezger, K.; van den Bogaard, P.; Thiemann, V.; Shaikh-Mashail, M. A.
2009-04-01
New 40Ar/39Ar ages combined with chemical and Sr, Nd, and Pb isotope data for volcanic rocks from Syria along with published data of Syrian and Arabian lavas constrain the spatiotemporal evolution of volcanism, melting regime, and magmatic sources contributing to the volcanic activity in northern Arabia. Several volcanic phases occurred in different parts of Syria in the last 20 Ma that partly correlate with different tectonic events like displacements along the Dead Sea Fault system or slab break-off beneath the Bitlis suture zone, although the large volume of magmas and their composition suggest that hot mantle material caused volcanism. Low Ce/Pb (<20), Nb/Th (<10), and Sr, Nd, and Pb isotope variations of Syrian lavas indicate the role of crustal contamination in magma genesis, and contamination of magmas with up to 30% of continental crustal material can explain their 87Sr/86Sr. Fractionation-corrected major element compositions and REE ratios of uncontaminated lavas suggest a pressure-controlled melting regime in western Arabia that varies from shallow and high-degree melt formation in the south to increasingly deeper regions and lower extents of the beginning melting process northward. Temperature estimates of calculated primary, crustally uncontaminated Arabian lavas indicate their formation at elevated mantle temperatures (Texcess ˜ 100-200°C) being characteristic for their generation in a plume mantle region. The Sr, Nd, and Pb isotope systematic of crustally uncontaminated Syrian lavas reveal a sublithospheric and a mantle plume source involvement in their formation, whereas a (hydrous) lithospheric origin of lavas can be excluded on the basis of negative correlations between Ba/La and K/La. The characteristically high 206Pb/204Pb (˜19.5) of the mantle plume source can be explained by material entrainment associated with the Afar mantle plume. The Syrian volcanic rocks are generally younger than lavas from the southern Afro-Arabian region, indicating a northward progression of the commencing volcanism since the arrival of the Afar mantle plume beneath Ethiopia/Djibouti some 30 Ma ago. The distribution of crustally uncontaminated high 206Pb/204Pb lavas in Arabia indicates a spatial influence of the Afar plume of ˜2600 km in northward direction with an estimated flow velocity of plume material on the order of 22 cm/a.
The Main Ethiopian Rift: a Narrow Rift in a Hot Craton?
NASA Astrophysics Data System (ADS)
Gashawbeza, E.; Keranen, K.; Klemperer, S.; Lawrence, J.
2008-12-01
The Main Ethiopian Rift (MER) is a classic example of a narrow rift, but a synthesis of our results from the EAGLE (Ethiopia-Afar Geoscientific Lithospheric Experiment Phase I broadband experiment) and from the EBSE experiment (Ethiopia Broadband Seismic Experiment) suggests the MER formed in thin, hot, weak continental lithosphere, in strong contrast with predictions of the Buck model of modes of continental lithospheric extension. Our joint inversion of receiver functions and Rayleigh-wave group velocities yields shear-wave velocities of the lowermost crust and uppermost mantle across the MER and the Ethiopian Plateau that are significantly lower than the equivalent velocities in the Eastern and Western branches of the East African Rift System. The very low shear-wave velocities, high electrical conductivity in the lower-crust, and high shear-wave splitting delay times beneath a very broad region of the MER and the Ethiopian Plateau indicate that the lower-crust is hot and likely contains partial melt. Our S-receiver function data demonstrate shallowing of the lithosphere-asthenosphere boundary from 90 km beneath the northwestern Ethiopian Plateau to 60 km beneath the MER. Although we lack good spatial resolution on the lithosphere-asthenosphere boundary, the region of thinned lithosphere may be intermediate in width between the narrow surface rift (< 100 km) and the broader zone of strain in the lower crust (~ 300 km). The MER developed as a narrow rift at the surface, localized along the Neoproterozoic suture that joined East and West Gondwana. However, a far broader of lower crust and uppermost mantle remains thermally weakened since the Oligocene formation of the flood basalts by the Afar plume head. If the lithosphere- asthenosphere boundary is indeed a strain marker then lithospheric mantle deformation is localized beneath the surface rift. The development of both the Eastern/Western branches of the East African Rift System to the south and of the MER in the north as narrow rifts, despite vastly different lithospheric strength profiles, indicates that inherited structure, rather than rheological stratification, is the primary control on the mode of extension in these continental rifts.
Strike-slip tectonics during rift linkage
NASA Astrophysics Data System (ADS)
Pagli, C.; Yun, S. H.; Ebinger, C.; Keir, D.; Wang, H.
2017-12-01
The kinematics of triple junction linkage and the initiation of transforms in magmatic rifts remain debated. Strain patterns from the Afar triple junction provide tests of current models of how rifts grow to link in area of incipient oceanic spreading. Here we present a combined analysis of seismicity, InSAR and GPS derived strain rate maps to reveal that the plate boundary deformation in Afar is accommodated primarily by extensional tectonics in the Red Sea and Gulf of Aden rifts, and does not require large rotations about vertical axes (bookshelf faulting). Additionally, models of stress changes and seismicity induced by recent dykes in one sector of the Afar triple junction provide poor fit to the observed strike-slip earthquakes. Instead we explain these patterns as rift-perpendicular shearing at the tips of spreading rifts where extensional strains terminate against less stretched lithosphere. Our results demonstrate that rift-perpendicular strike-slip faulting between rift segments achieves plate boundary linkage during incipient seafloor spreading.
Keir, Derek; Belachew, M.; Ebinger, C.J.; Kendall, J.-M.; Hammond, J.O.S.; Stuart, G.W.; Ayele, A.; Rowland, J.V.
2011-01-01
Rifting of the continents leading to plate rupture occurs by a combination of mechanical deformation and magma intrusion, yet the spatial and temporal scales over which these alternate mechanisms localize extensional strain remain controversial. Here we quantify anisotropy of the upper crust across the volcanically active Afar Triple Junction using shear-wave splitting from local earthquakes to evaluate the distribution and orientation of strain in a region of continental breakup. The pattern of S-wave splitting in Afar is best explained by anisotropy from deformation-related structures, with the dramatic change in splitting parameters into the rift axis from the increased density of dyke-induced faulting combined with a contribution from oriented melt pockets near volcanic centres. The lack of rift-perpendicular anisotropy in the lithosphere, and corroborating geoscientific evidence of extension dominated by dyking, provide strong evidence that magma intrusion achieves the majority of plate opening in this zone of incipient plate rupture. PMID:21505441
Measuring positive and negative affect and physiological hyperarousal among Serbian youth.
Stevanovic, Dejan; Laurent, Jeff; Lakic, Aneta
2013-01-01
This study extended previous cross-cultural work regarding the tripartite model of anxiety and depression by developing Serbian translations of the Positive and Negative Affect Scale for Children (PANAS-C), the Physiological Hyperarousal Scale for Children (PH-C), and the Affect and Arousal Scale (AFARS). Characteristics of the scales were examined using 449 students (M age = 12.61 years). Applying item retention criteria established in other studies, PH-C, PANAS-C, and AFARS translations with psychometric properties similar to English-language versions were identified. Preliminary validation of the scales was conducted using a subset of 194 students (M age = 12.37 years) who also completed measures of anxiety and depression. Estimates of reliability, patterns of correlations among scales, and age and gender differences were consistent with previous studies with English-speaking samples. Findings regarding scale validity were mixed, although consistent with existing literature. Serbian translations of the PH-C, PANAS-C, and AFARS mirror the original English-language scales in terms of both strengths and weaknesses.
NASA Astrophysics Data System (ADS)
Stork, A. L.; Stuart, G. W.; Henderson, C. M.; Keir, D.; Hammond, J. O. S.
2013-04-01
The Afar Depression, Ethiopia, offers unique opportunities to study the transition from continental rifting to oceanic spreading because the process is occurring onland. Using traveltime tomography and data from a temporary seismic deployment, we describe the first regional study of uppermost mantle P-wave velocities (VPn). We find two separate low VPn zones (as low as 7.2 km s-1) beneath regions of localized thinned crust in northern Afar, indicating the existence of high temperatures and, potentially, partial melt. The zones are beneath and off-axis from, contemporary crustal magma intrusions in active magmatic segments, the Dabbahu-Manda-Hararo and Erta'Ale segments. This suggests that these intrusions can be fed by off-axis delivery of melt in the uppermost mantle and that discrete areas of mantle upwelling and partial melting, thought to characterize segmentation of the uppermost mantle at seafloor spreading centres, are initiated during the final stages of break-up.
Gibson, D.L.
2000-01-01
Previously undated post-Devonian sediments outcropping north of Fowlers Gap station near the western margin of the Bancannia Trough are shown by plant macro- and microfossil determinations to be of Early Cretaceous (most likely Neocomian and/or Aptian) age, and thus part of the Eromanga Basin. They are assigned to the previously defined Telephone Creek Formation. Study of the structural configuration of this unit and the unconformably underlying Devonian rocks suggests that the gross landscape architecture of the area results from post-Early Cretaceous monoclinal folding along blind faults at the western margin of the trough, combined with the effects of differential erosion. This study shows that, while landscape evolution in the area has been dynamic, the major changes that have occurred are on a geological rather than human timescale.
Silicic central volcanoes as precursors to rift propagation: the Afar case
NASA Astrophysics Data System (ADS)
Lahitte, Pierre; Gillot, Pierre-Yves; Courtillot, Vincent
2003-02-01
The Afar depression is a triple junction characterised by thinned continental crust, where three rift systems meet (Red Sea, Gulf of Aden and East African Rift). About 100 recent K-Ar ages obtained on Plio-Pleistocene lavas [Lahitte et al., J. Geophys. Res. (2002) in press; Kidane et al., J. Geophys. Res. (2002) in press], complemented by new geomorphological interpretations, allow better understanding of the volcano-tectonic activity linked to rift propagation. In Central Afar, a significant spatial and temporal correlation is observed between the occurrence of silicic central volcanoes and the initiation of the successive phases of on-land propagation of the Red Sea and Aden rifts. Inside the Afar depression, at the scale of both a whole ridge and a small rift segment, silicic lavas are systematically erupted close to the location of a future rift segment and prior to the main extensive phase associated with fissural basaltic activity. Central silicic volcanoes therefore appear to be precursor features, and their locations underline the preferred direction of future rift propagation. Evolved volcanoes (and associated magma chambers) form zones of localised lithospheric weakness, which concentrate stress and guide the development of fractures in which fissural magmatism is next emplaced. Differentiated silicic lavas are erupted first. Then, as extension increases, basaltic magma directly erupts to the surface. This composite style of rifting, with volcanic and tectonic components, is a scaled-down equivalent of the continental break-up process at the largest scale.
Multi Plumes and Their Flows beneath Arabia and East Africa
NASA Astrophysics Data System (ADS)
Chang, S.; van der Lee, S.
2010-12-01
The three-dimensional S-velocity structure beneath Arabia and East Africa is estimated down to the lower mantle to investigate vertical and horizontal extension of low-velocity anomalies that bear out the presence of mantle plumes and their flows beneath lithosphere. We estimated this model through joint inversion of teleseismic S- and SKS-arrival times, regional S- and Rayleigh waveform fits, fundamental-mode Rayleigh-wave group velocities, and independent Moho constraints from receiver functions, reflection/refraction profiles, and gravity measurements. With the unprecedented resolution in our S-velocity model, we found different flow patterns of hot materials upwelling beneath Afar beneath the Red Sea and the Gulf of Aden. While the low-velocity anomaly from Afar is well confined beneath the Gulf of Aden, inferring mantle flow along the gulf, N-S channel of low velocity is found beneath Arabia, not along the Red Sea. The Afar plume is distinctively separate from the Kenya plume, showing its origin in the lower mantle beneath southwestern Arabia. We identified another low-velocity extension to the lower mantle beneath Jordan and northern Arabia, which is thought to have caused volcanism in Jordan, northern Arabia, and possibly southern Turkey. Comparing locations of mantle plumes from the joint inversion with fast axes of shear-wave splitting, we confirmed horizontal plume flow from Afar in NS direction beneath Arabia and in NE-SW direction beneath Ethiopia as a likely cause of the observed seismic anisotropy.
Flow, melt and fossil seismic anisotropy beneath Ethiopia
NASA Astrophysics Data System (ADS)
Hammond, James; Kendall, J.-Michael; Wookey, James; Stuart, Graham; Keir, Derek; Ayele, Atalay
2014-05-01
Ethiopia is a region where continental rifting gives way to oceanic spreading. Yet the role that pre-existing lithospheric structure, melt, mantle flow or active upwellings may play in this process is debated. Measurements of seismic anisotropy are often used to attempt to understand the contribution that these mechanisms may play. In this study we use new data in Afar, Ethiopia along with legacy data across Ethiopia, Djibouti and Yemen to obtain estimates of mantle anisotropy using SKS-wave splitting. We show that two layers of anisotropy exist, and use shear-wave splitting tomography to invert for these. We show that fossil anisotropy with fast directions oriented northeast-southwest may be preserved in the lithosphere away from the rift. Beneath the Main Ethiopian Rift and parts of Afar, anisotropy due aligned melt due to sharp changes in lithospheric thickness dominate the shear-wave splitting signal in the mantle. Beneath Afar, away from lithospheric topography, melt pockets associated with the crustal magma storage dominate the signal and little anisotropy is seen in the uppermost mantle suggesting melt retains no preferential alignment, possibly due to a lack of mantle lithosphere. These results show the important role melt plays in weakening the lithosphere and imply that as rifting evolves passive upwelling sustains extension. A dominant northeast-southwest anisotropic fast direction is observed in a deeper layer across all of Ethiopia. This suggests that a conduit like plume is absent beneath Afar today, rather a broad flow from the southwest dominates in the upper mantle.
Yasin, Mohammed; Animut, Getachew
2014-08-01
The experiment was conducted to determine the supplementary feeding value of ground Prosopis juliflora pod (Pjp) and cottonseed meal (CSM) and their mixtures on feed intake, body weight gain and carcass parameters of Afar sheep fed a basal diet of pasture hay. Twenty-five yearling fat-tailed Afar rams with mean initial live weight 17.24 ± 1.76 kg (mean ± SD) were used in a randomized complete block design. Animals were blocked on their initial body weight. The experiment was conducted for 12 weeks and carcass evaluation followed. Treatments were hay alone ad libitum (T 1) or with 300 g CSM (T 2), 300 g Pjp (T 5), 2:1 ratio (T 3) and 1:2 ratio of CSM : Pjp (T 4). The CP contents of the hay, CSM and Pjp were 10.5, 44.5 and 16.7 %, respectively. Hay DM intake was higher (P < 0.05) for non-supplemented and total DM intake was lower in non-supplemented. Average daily weight gain (ADG) was lower (P < 0.05) for T 1 compared to all supplemented treatments except T 5. Hot carcass weight and rib-eye muscle area also followed the same trend like that of ADG. Compared with feeding hay alone, supplementing with CSM or a mixture of CSM and Pjp appeared to be a better feeding strategy, biologically, for yearling Afar rams.
New records of marginal locations for American pika (Ochotona princeps) in the Western Great Basin
Constance I. Millar; Robert D. Westfall; Diane L. Delany
2013-01-01
We describe 46 new site records documenting occupancy by American pika (Ochotona princeps) at 21 locations from 8 mountain regions in the western Great Basin, California, and Nevada. These locations comprise a subset of sites selected from regional surveys to represent marginal, isolated, or otherwise atypical pika locations, and to provide...
Strain transfer between disconnected, propagating rifts in Afar
NASA Astrophysics Data System (ADS)
Manighetti, I.; Tapponnier, P.; Courtillot, V.; Gallet, Y.; Jacques, E.; Gillot, P.-Y.
2001-01-01
We showed before that both the Aden and Red Sea plate boundaries are currently rifting and propagating along two distinct paths into Afar through the opening of a series of disconnected, propagating rifts. Here we use new geochronological, tectonic, and paleomagnetic data that we acquired mostly in the southeastern part of Afar to examine the geometry, kinematics, and time-space evolution of faulting related to strain transfer processes. It appears that transfer of strain is accommodated by a bookshelf faulting mechanism wherever rifts or plate boundaries happen to overlap without being connected. This mechanism implies the rotation about a vertical axis of small rigid blocks along rift-parallel faults that are shown to slip with a left-lateral component, which is as important as their normal component of slip (rates of ˜2-3 mm/yr). By contrast, where rifts do not overlap, either a classic transform fault (Maskali) or an oblique transfer zone (Mak'arrasou) kinematically connects them. The length of the Aden-Red Sea overlap has increased in the last ˜0.9 Myr, as the Aden plate boundary propagated northward into Afar. As a consequence, the first-order blocks that we identify within the overlap did not all rotate during the same time-span nor by the same amounts. Similarly, the major faults that bound them did not necessarily initiate and grow as their neighboring faults did. Despite these variations in strain distribution and kinematics, the overlap kept accommodating a constant amount of strain (7 to 15% of the extension amount imposed by plate driving forces), which remained distributed on a limited number (seven or eight) of major faults, each one having slipped at constant rates (˜3 and 2 mm/yr for vertical and lateral rates, respectively). The fault propagation rates and the block rotation rates that we either measure or deduce are so fast (30-130 mm/yr and 15-38°/Myr, respectively) that they imply that strain transfer processes are transient, as has been shown to be the case for the processes of tearing, rift propagation, and strain jumps in Afar.
First results from a full-waveform inversion of the African continent using Salvus
NASA Astrophysics Data System (ADS)
van Herwaarden, D. P.; Afanasiev, M.; Krischer, L.; Trampert, J.; Fichtner, A.
2017-12-01
We present the initial results from an elastic full-waveform inversion (FWI) of the African continent which is melded together within the framework of the Collaborative Seismic Earth Model (CSEM) project. The continent of Africa is one of the most geophysically interesting regions on the planet. More specifically, Africa contains the Afar Depression, which is the only place on Earth where incipient seafloor spreading is sub-aerially exposed, along with other anomalous features such as the topography in the south, and several smaller surface expressions such as the Cameroon Volcanic Line and Congo Basin. Despite its significance, relatively few tomographic images exist of Africa, and, as a result, the debate on the geophysical origins of Africa's anomalies is rich and ongoing. Tomographic images of Africa present unique challenges due to uneven station coverage: while tectonically active areas such as the Afar rift are well sampled, much of the continent exhibits a severe lack of seismic stations. And, while Africa is mostly surrounded by tectonically active spreading plate boundaries, the interior of the continent is seismically quiet. To mitigate such issues, our simulation domain is extended to include earthquakes occurring in the South Atlantic and along the western edge of South America. Waveform modelling and inversion is performed using Salvus, a flexible and high-performance software suite based on the spectral-element method. Recently acquired recordings from the AfricaArray and NARS seismic networks are used to complement data obtained from global networks. We hope that this new model presents a fresh high-resolution image of African geodynamic structure, and helps advance the debate regarding the causative mechanisms of its surface anomalies.
A comparison of Holocene fluctuations of the eastern and western margins of the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Levy, L.; Kelly, M. A.; Lowell, T. V.; Hall, B. L.; Applegate, P. J.; Howley, J.; Axford, Y.
2013-12-01
Determining how the Greenland Ice Sheet (GrIS) responded to past temperature fluctuations is important for assessing its future stability in a changing climate. We present a record of the Holocene extents of the western GrIS margin near Kangerlussuaq (67.0°N, 50.7°W) and compare this with the past fluctuations of Bregne ice cap (71°N, 25.6° W), a small ice cap in the Scoresby Sund region 90 km from the eastern GrIS margin, to examine the mechanisms that influenced past ice margin fluctuations. The past extents of the Bregne ice cap are a proxy for the climatic conditions that influenced the nearby GrIS margin. We used glacial geomorphic mapping, 10Be dating of boulders and bedrock, and sediment cores from proglacial and non-glacial lakes. In western Greenland, 10Be ages on the Keglen moraines, 13 km west of the current GrIS margin and the Ørkendalen moraines, ≤2 km west of the current ice margin date to 7.3 × 0.1 ka (n=6) and 6.8 × 0.3 ka (n=9), respectively. Fresh moraines, ≤50 m from the current ice margin date to AD 1830-1950 and are likely associated with advances during the Little Ice Age (LIA). In some areas, the LIA moraines lie stratigraphically above the Ørkendalen moraines, indicating the GrIS was inboard of the Ørkendalen limit from 6.8 ka to the 20th century. In eastern Greenland, 10Be ages show that Bregne ice cap retreated within its late Holocene limit by 10.7 ka. A lack of clastic sediment in a proglacial lake suggests the ice cap was smaller or completely absent from ~10-2.6 ka. A snowline analysis indicates that temperatures ~0.5°C warmer than present would render the entire ice cap into an ablation zone. Glacial silts in the proglacial lake at ~2.6 and ~1.9 cal kyr BP to present indicate advances of Bregne ice cap. Fresh moraines ≤200 m of Bregne ice cap were deposited ≤2.6 cal kyr BP and mark the largest advance of the Holocene. Both the western GrIS margin and Bregne ice cap were influenced by Northern Hemisphere summer insolation during the Holocene. The western GrIS margin retreated significantly and Bregne ice cap likely disappeared during the warm early to middle Holocene. 10Be ages (10.7 ka) outboard of the late Holocene moraines at Bregne ice cap compared to those outside of the LIA moraines near Kangerlussuaq (6.8 ka) differ by ~4 kyr. This disparity in ages may have been caused by a large late Holocene advance in eastern Greenland, or perhaps the western GrIS margin retreated farther inland during the middle Holocene. Decreasing Northern Hemisphere summer insolation during the late Holocene, combined with a strong, cold East Greenland Current near Scoresby Sund may have influenced a significant ice cap advance. The temporal pattern of the responses of the eastern and western ice margins to Holocene climate changes may be indicative of how the GrIS will respond to future changes.
NASA Astrophysics Data System (ADS)
van Hengstum, Peter J.; Donnelly, Jeffrey P.; Fall, Patricia L.; Toomey, Michael R.; Albury, Nancy A.; Kakuk, Brian
2016-02-01
Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.
van Hengstum, Peter J.; Donnelly, Jeffrey P.; Fall, Patricia L.; Toomey, Michael R.; Albury, Nancy A.; Kakuk, Brian
2016-01-01
Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval. PMID:26906670
van Hengstrum, Peter J.; Donnelly, Jeffrey P.; Fall, Patricia L.; Toomey, Michael; Albury, Nancy A.; Kakuk, Brian
2016-01-01
Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.
van Hengstum, Peter J; Donnelly, Jeffrey P; Fall, Patricia L; Toomey, Michael R; Albury, Nancy A; Kakuk, Brian
2016-02-24
Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.
A New Structural Model for the Red Sea from Seismic Data
NASA Astrophysics Data System (ADS)
Mooney, W. D.; Yao, Z.; Zahran, H. M.; El-Hadidy, S. Y.
2017-12-01
We present a new structureal model for the Red Sea that shows opening on an east-dipping low-angle detachment fault. We measured phase velocities using Rayleigh-wave data recorded at recently-installed, dense broadband seismic stations in the Arabian shield and determined the shear-wave velocity structure. Our results clearly reveal a 300-km wide upper mantle seismic low-velocity zone (LVZ) beneath the western Arabian shield at a depth of 60 km and with a thickness of 130 km. The LVZ has a north-south trend and follows the late-Cenozoic volcanic areas. The lithosphere beneath the western Arabian shield is remarkably thin (60-90 km). The 130-km thick mantle LVZ does not appear beneath the western Red Sea and the spreading axis. Thus, the Red Sea at 20°- 26° N is an asymmetric rift, with thin lithosphere located east of the Red Sea axis, as predicted by the low-angle detachment model for rift development. Passive rifting at the Red Sea and extensional stresses in the shield are probably driven by slab pull from the Zagros subduction zone. The low shear-wave velocity (4.0-4.2 km/s) and the geometry of LVZ beneath the western shield indicate northward flow of hot asthenosphere from the Afar hot spot. The upwelling of basaltic melt in fractures or zones of localized lithospheric thinning has produced extensive late Cenozoic volcanism on the western edge of the shield, and the buoyant LVZ has caused pronounced topography uplift there. Thus, the evolution of the Red Sea and the Arabian shield is driven by subduction of the Arabian plate along its northeastern boundary, and the Red Sea opened on a east-dipping low-angle detachment fault.
Tschopp, Rea; Bekele, Shiferaw; Moti, Tesfaye; Young, Douglas; Aseffa, Abraham
2015-06-15
This cross-sectional study investigated the prevalence of brucellosis and bovine tuberculosis (BTB) in local cattle and goat breeds of Oromo and Afar pastoralist communities living in two distinct parts around the Awash National Park. A questionnaire survey was carried out to assess information on husbandry, milk consumption habits, and on knowledge-attitude-practice regarding both diseases. Among a total of 771 animals from all sites tested by comparative intradermal tuberculin test (CIDT) none were BTB reactors with the >4mm cut-off. Using the >2mm cut-off, individual apparent prevalence was 0.9% (95%CI: 0.23-3.56%) in cattle and 0.7% (95%CI: 0.12-3.45%) in goats. Herd prevalence in Oromia and Afar sites was 0% and 66.7% respectively in goats and 16.7% and 50% in cattle. Among the 327 animals tested by enzyme linked immunoassay for brucellosis, 4.8% (95%CI: 1.2-17.1%) of cattle and 22.8% (95%CI: 5.98-29.5%) of goats were reactors. Highest individual prevalence of both diseases was found in Afar settlements with brucellosis being as high as 50%. Respondent ethnicity was the only risk factor for brucellosis positivity in goats in the univariable risk factor analysis. Knowledge about the diseases was poor. Raw goat milk was regularly consumed by women and children, putting them at risk for brucellosis. This study highlighted an increased prevalence gradient of BTB and brucellosis from West to East along the study sites with high brucellosis individual prevalence and abortion rates among Afar settlements in particular. Copyright © 2015 Elsevier B.V. All rights reserved.
First Evidence of Epithermal Gold Occurrences in the SE Afar Rift, Republic of Djibouti
NASA Astrophysics Data System (ADS)
Moussa, Nima; Fouquet, Yves; Caminiti, Antoine Marie; Le Gall, Bernard; Rolet, Joel; Bohn, Marcel; Etoubleau, Joel; Delacourt, Christophe; Jalludin, Mohamed
2010-05-01
The Republic of Djibouti, located at the SE part of the Afar volcanic Triangle, is characterized by intense tectonic and bimodal volcanic activity, and is emplaced over an earlier magmatic rift system, as old as 25-30 Ma. Each magmatic event is accompanied by hydrothermal activity. Few works have been so far published on hydrothermal mineralization in the Afar area. Mineralization generally occur as veins and are mainly associated with acidic volcanic intrusions along the fractures at the edges of grabens established during the last 4 Ma. Eighty samples from hydrothermal quartz ± carbonate veins and breccias were studied on 9 different sites representative of 4 main volcanic events ranging in age from early Miocene up to Present. Gold was found in excess of 200 ppb in 30% of the samples. Mineralogical analyses based on optical reflected light microscopy, X-Ray diffractometry, X-Ray fluorescence, inductively coupled plasma mass spectroscopy and electron microprobe, led us to identify two types of gold mineralization (i) native gold, electrum, hessite and sulfides (chalcopyrite, pyrite, bornite, ± sphalerite, and galena) in massive quartz breccias and banded chalcedony, (ii) gold, electrum, hematite, magnetite, trace minerals (argentite) and adularia in banded chalcedony. Another group without gold is characterized by quartz, pyrite ± goethite. Secondary minerals are characterized by goethite, native silver and native copper. Arsenic is enriched in pyrite in samples with a high gold content. The bimodal volcanism, the occurrence of adularia, the native gold and electrum in banded silica veins, are classically observed in neutral epithermal systems. The discovery of this type of mineralization in a recent-active continental rift system supplies new insights about hydrothermal processes associated with volcanic activity in a spreading context. Keywords: Republic of Djibouti, Afar Triangle, Hydrothermal, Epithermal system, Gold
Anisotropic surface wave tomography in the Horn of Africa.
NASA Astrophysics Data System (ADS)
Sicilia, D.; Montagner, J. P.; Debayle, E.; Leveque, J. J.; Cara, M.; Lepine, J. C.; Beucler, E.; Sebai, A.
2003-04-01
One of the largest continental hotspot is located in the Afar Depression, in East of Africa. It has been advocated to be the surface expression of the South-West African Superswell, which is the antipode of the Pacific Superswell in the framework of the mantle degree 2 pattern. We performed an anisotropic surface wave tomography in the Horn of Africa in order to image the seismic structure beneath the region. Data were collected from the permanent IRIS and GEOSCOPE networks and from the PASSCAL experiment in Tanzania and Saudi Arabia. We supplemented our data base with a French deployment of 5 portable broadband stations surrounding the Afar Hotspot. Path average phase velocities are obtained using a method based on a least-squares minimization (Beucler et al., 2002). The data are corrected from the effect of the crust according to the a priori 3SMAC model (Nataf et Ricard, 1996). 3D-models of velocity, radial and azimuthal anisotropies are inverted for. We find low velocities beneath the Red Sea, the Gulf of Aden, the South East of the Tanzania Craton, the Hotspot and Central Africa. High velocities are present in the eastern Arabia and the Tanzania Craton. These results are in agreement with the anisotropic model of Debayle et al.(2002). The flow pattern can be derived from fast axis directions of seismic anisotropy. The anisotropy model beneath Afar displays a complex pattern, in which the hotspot seems to play a perturbating role. The azimuthal anisotropy shows that the Afar plume might be interpreted as feeding other hotspots in central Africa. The directions of fast axis are in good agreement with the results of previous SKS studies performed in the region (Gao et al., 1997; Wolfe et al., 1999; Barruol and Ismail, 2001).
NASA Astrophysics Data System (ADS)
Medynski, S.; Pik, R.; Burnard, P.; Vye-Brown, C.; France, L.; Schimmelpfennig, I.; Whaler, K.; Johnson, N.; Benedetti, L.; Ayelew, D.; Yirgu, G.
2015-01-01
Unravelling the volcanic history of the Dabbahu/Manda Hararo rift segment in the Afar depression (Ethiopia) using a combination of cosmogenic (36Cl and 3He) surface exposure dating of basaltic lava-flows, field observations, geological mapping and geochemistry, we show in this paper that magmatic activity in this rift segment alternates between two distinct magma chambers. Recent activity in the Dabbahu rift (notably the 2005-2010 dyking crises) has been fed by a seismically well-identified magma reservoir within the rift axis, and we show here that this magma body has been active over the last 30 kyr. However, in addition to this axial magma reservoir, we highlight in this paper the importance of a second, distinct magma reservoir, located 15 km west of the current axis, which has been the principal focus of magma accumulation from 15 ka to the subrecent. Magma supply to the axial reservoir substantially decreased between 20 ka and the present day, while the flank reservoir appears to have been regularly supplied with magma since 15 ka ago, resulting in less variably differentiated lavas. The trace element characteristics of magmas from both reservoirs were generated by variable degrees of partial melting of a single homogeneous mantle source, but their respective magmas evolved separately in distinct crustal plumbing systems. Magmatism in the Dabbahu/Manda Hararo rift segment is not focussed within the current axial depression but instead is spread out over at least 15 km on the western flank. This is consistent with magneto-telluric observations which show that two magma bodies are present below the segment, with the main accumulation of magma currently located below the western flank, precisely where the most voluminous recent (<15 ka) flank volcanism is observed at the surface. Applying these observations to slow spreading mid-ocean ridges indicates that magma bodies likely have a lifetime of a least 20 ka, and that the continuity of magmatic activity is maintained by a system of separate relaying reservoirs, which could in return control the location of spreading. This long term (>105 yr) alternation between distinct crustal reservoirs located broadly at the same location relative to the segment appears to be a key feature for organizing and maintaining active spreading centres over stable soft points in the mantle.
A LREE-depleted component in the Afar plume: Further evidence from Quaternary Djibouti basalts
NASA Astrophysics Data System (ADS)
Daoud, Mohamed A.; Maury, René C.; Barrat, Jean-Alix; Taylor, Rex N.; Le Gall, Bernard; Guillou, Hervé; Cotten, Joseph; Rolet, Joël
2010-02-01
Major, trace element and isotopic (Sr, Nd, Pb) data and unspiked K-Ar ages are presented for Quaternary (0.90-0.95 Ma old) basalts from the Hayyabley volcano, Djibouti. These basalts are LREE-depleted (La n/Sm n = 0.76-0.83), with 87Sr/ 86Sr ratios ranging from 0.70369 to 0.70376, and rather homogeneous 143Nd/ 144Nd ( ɛNd = + 5.9-+ 7.3) and Pb isotopic compositions ( 206Pb/ 204Pb = 18.47-18.55, 207Pb/ 204Pb = 15.52-15.57, 208Pb/ 204Pb = 38.62-38.77). They are very different from the underlying enriched Tadjoura Gulf basalts, and from the N-MORB erupted from the nascent oceanic ridges of the Red Sea and Gulf of Aden. Their compositions closely resemble those of (1) depleted Quaternary Manda Hararo basalts from the Afar depression in Ethiopia and (2) one Oligocene basalt from the Ethiopian Plateau trap series. Their trace element and Sr, Nd, Pb isotope systematics suggest the involvement of a discrete but minor LREE-depleted component, which is probably an intrinsic part of the Afar plume.
NASA Astrophysics Data System (ADS)
Doubre, C.; Socquet, A.; Masson, F.; Cressot, C.; Mohamed, K.; Vigny, C.; Ruegg, J.
2010-12-01
Due to the presence of magma and a complex thermal structure, the dynamics of divergent plate boundaries are complicated, with microseismicity (ML<4) contributing very little to the total moment release. For the last 35 years several geodetic campaigns have been conducted at the western tip of the Aden Ridge propagating on land into Afar (Republic of Djibouti). The first segment above water, the Asal Rift, experienced a seismo-volcanic event in 1978, which was the first rifting episode, along with the 1978-1985 Icelandic Krafla event, to be monitored by terrestrial geodetic measurements. These measurements revealed the opening of two 1-2 m-wide dykes in the rift inner floor. Since then, terrestrial and spatial geodetic monitoring shows that the rift kept opening, during the post-rifting period, at a rate largely exceeding the plates’ motions. This significant opening rate is decreasing with time to tend, three decades after the rifting event, to the far-field opening rate. We present here the results of the GPS measurements of a 45 site network covering the Tadjoura-Asal Rift System, previously made every two years from 1995 to 2003, and repeated in 2010. The calculated 1999-2010 horizontal velocity field is very homogeneous with a quasi-constant N045° direction with respect to Somalia and a regular increase from the southern to the northern margin of the Asal Rift clearly controlled by a few normal faults, and reaching a maximum of 12.5 mm/yr. A non-negligible part of the Arabia-Somalia divergent movement (1 to 2 mm/yr) is observed south of this rift, which sheds light on the role of the active normal faults bounding the asymmetrical Gaggadé Basin and therefore brings important constraints on the location of the Red Sea Ridge-Aden Ridge-East African Rift triple junction. Since the last 2003 campaign, the lack of micro-seismicity within the Asal Rift seems to be associated with a ˜2 mm/yr decrease of the opening rate deduced from the GPS time series analysis. These results confirm the importance of non-steady state behavior of the Asal volcano-tectonic rift segment, and the role of geothermal/volcanic activity on the occurrence of transients, as suggested by InSAR results.
NASA Astrophysics Data System (ADS)
Alotaibi, T.; Furlong, K. P.
2016-12-01
Rift initiation and localization might reflect spatial changes in the lithospheric yield strength. However, this does not appear to be the case in the Red Sea extensional system where fission track analysis shows no significant changes in the geothermal gradient prior to the Red Sea rift onset. In contrast, though the whole Red Sea rift initiated 25 Ma ago, its extensional architecture changes dramatically along strike from narrow localized spreading in the south to asymmetrical diffuse extension north of 21° latitude. This onset of diffuse extension has been recorded in the north-western Arabian margin as old as 33 Ma. Such diversity in the extensional style might reflect along strike yield strength variations as a consequence of the geological setting in the Arabian margin. The north-western Arabian basin, which is part of the Arabian margin, bounded by Qiba high from the east, the Arabian shield from the south and the west and Syrian plateau from the north. The basin accommodates part of the Red Sea diffuse extension and has a preexisting structural architecture represented in the Cenozoic failed rift that called Sarhan graben. Our goal is to analyze the current lithospheric yield strength spatial variations along the Red Sea rift and emphasize their relationship with the Arabian margin structural architecture. We hypothesize that the north-western Arabian margin's lithospheric weakness and structural diversity are playing an important role in producing region of diffuse extension by their interaction with the forces applied by far field stresses represented by the New Tethys slab pull. On the other hand, the south-western Arabian margin interacts with the far field stresses as a single strong block in which led to localize the extension in the southern Red Sea. Our work may improve the scientific community understanding for how rifts initiate and evolve over time.
From rifting to orogeny; using sediments to unlock the secrets of the Greater Caucasus
NASA Astrophysics Data System (ADS)
Vincent, Stephen; Guo, Li; Lavrishchev, Vladimir; Maynard, James; Harland, Melise
2017-04-01
The western Greater Caucasus formed by the tectonic inversion of the western strand of the Greater Caucasus Basin, a Mesozoic rift that opened at the southern margin of Laurasia. Facies analysis has identified fault-bounded regions of basinal, turbiditic and hemipelagic sediments. These are flanked by areas of marginal, shallow marine sediments to the north and south. Subsidence analysis derived from lithology, thickness and palaeowater depth data indicates that the main phase of rifting occurred during the Aalenian to Bajocian synchronous with that in the eastern Alborz and, possibly, the South Caspian Basin. Secondary episodes of subsidence during the late Tithonian to Berriasian and Hauterivian to early Aptian are tentatively linked to initial rifting within the western, and possibly eastern, Black Sea, and during the late Campanian to Danian to the opening of the eastern Black Sea. Initial uplift, subaerial exposure and sediment derivation from the western Greater Caucasus occurred at the Eocene-Oligocene transition. Oligocene and younger sediments on the southern margin of the former basin were derived from the inverting basin and uplifted parts of its northern margin, indicating that the western Greater Caucasus Basin had closed by this time. The previous rift flanks were converted to flexural basins that accumulated thick, typically hemipelagic and turbiditic sediments in the early, underfilled, stage of their development. A predominance of pollen representing a montane forest environment (dominated by Pinacean pollen) within these sediments suggests that the uplifting Caucasian hinterland had a paleoaltitude of around 2 km from Early Oligocene time. The closure of the western Greater Caucasus Basin and significant uplift of the range at c. 34 Ma is earlier than stated in many studies and needs to be incorporated into geodynamic models for the Arabia-Eurasia region.
Istopically Defined Source Reservoirs of Primitive Magmas in the East African Rift.
NASA Astrophysics Data System (ADS)
Rooney, T. O.; Furman, T.; Hanan, B.
2005-12-01
Extension within the East African Rift is a function of the interaction between plume-driven uplift and far-field stresses associated with plate tectonic processes. Geochemical and isotopic investigation of primitive basalts from the Main Ethiopian Rift (MER) reveals systematic spatial variations in the contributions from distinct and identifiable source reservoirs that, in turn help identify the mechanisms by which along-axis rifting has progressed. The Sr-Nd-Pb isotopic characteristics of MER basalts can be described by a three-component mixing model involving the long-lived Afar plume, a depleted mantle component similar to the source region for Gulf of Aden MORB from east of 48° E and a reservoir that is likely lithospheric (sub-continental mantle lithosphere, magmatic underplate or lower crust). Quaternary basalts in the central MER exhibit a systematic decrease in plume influence southward from 9.5° N to 8° N, i.e., away from the modern surface expression of the Afar plume in Djibouti and Erta 'Ale. The composition of the Afar plume component is comparable to the "C" mantle reservoir. This southward decrease in plume influence is coupled with an increase in the influence of the lithospheric and depleted mantle components. Linear arrays observed within Pb-Pb isotopic space at each eruptive center require distinctive ratio of lithospheric + depleted mantle components mixing with variable amounts of the "C"-like plume component. This isotopic evidence suggests the depleted mantle and lithosphere mixed prior to the generation of the recent magmas. To the south, the Sr-Nd-Pb isotopic compositions of Turkana (Kenya) rift basalts record a mix of a similar "C"-like plume component and a fourth HIMU-like source component. Low 3He/4He values observed in the HIMU-dominated lavas from Turkana contrast with the higher ratios found in basalts associated with the "C"-like Afar plume. Further analysis of "C"-HIMU lavas at Turkana is required to fully constrain the He isotopic signatures. Thus, along-axis patterns in Quaternary EARS magmatism are compatible with two "C"-like plumes with contributions from the upper mantle and chemically distinct lithospheric components. Alternatively, a single "C"-like plume can account for these relationships. In the single plume scenario, the HIMU source component present in the 30 Ma Turkana lavas may represent melting of metasomatised lithosphere, derived from the accretion of island-arc-backarc basins during Pan-African events (e.g. Schilling et al., 1992). The recent plume-dominated activity in Turkana and Afar are separated by a region characterized by waning plume influence and a greater contribution from the depleted mantle. This intermediate zone, which is located in the south-central MER represents the modern site of contact between the northward propagating Kenya / Turkana Rift and the southward propagating Afar Rift zone.
African humid periods triggered the reactivation of a large river system in Western Sahara.
Skonieczny, C; Paillou, P; Bory, A; Bayon, G; Biscara, L; Crosta, X; Eynaud, F; Malaizé, B; Revel, M; Aleman, N; Barusseau, J-P; Vernet, R; Lopez, S; Grousset, F
2015-11-10
The Sahara experienced several humid episodes during the late Quaternary, associated with the development of vast fluvial networks and enhanced freshwater delivery to the surrounding ocean margins. In particular, marine sediment records off Western Sahara indicate deposition of river-borne material at those times, implying sustained fluvial discharges along the West African margin. Today, however, no major river exists in this area; therefore, the origin of these sediments remains unclear. Here, using orbital radar satellite imagery, we present geomorphological data that reveal the existence of a large buried paleodrainage network on the Mauritanian coast. On the basis of evidence from the literature, we propose that reactivation of this major paleoriver during past humid periods contributed to the delivery of sediments to the Tropical Atlantic margin. This finding provides new insights for the interpretation of terrigenous sediment records off Western Africa, with important implications for our understanding of the paleohydrological history of the Sahara.
NASA Astrophysics Data System (ADS)
Cadenas, P.; Fernández-Viejo, G.; Pulgar, J. A.; Tugend, J.; Manatschal, G.; Minshull, T. A.
2018-03-01
The Alpine Pyrenean-Cantabrian orogen developed along the plate boundary between Iberia and Europe, involving the inversion of Mesozoic hyperextended basins along the southern Biscay margin. Thus, this margin represents a natural laboratory to analyze the control of structural rift inheritance on the compressional reactivation of a continental margin. With the aim to identify former rift domains and investigate their role during the subsequent compression, we performed a structural analysis of the central and western North Iberian margin, based on the interpretation of seismic reflection profiles and local constraints from drill-hole data. Seismic interpretations and published seismic velocity models enabled the development of crustal thickness maps that helped to constrain further the offshore and onshore segmentation. Based on all these constraints, we present a rift domain map across the central and western North Iberian margin, as far as the adjacent western Cantabrian Mountains. Furthermore, we provide a first-order description of the margin segmentation resulting from its polyphase tectonic evolution. The most striking result is the presence of a hyperthinned domain (e.g., Asturian Basin) along the central continental platform that is bounded to the north by the Le Danois High, interpreted as a rift-related continental block separating two distinctive hyperextended domains. From the analysis of the rift domain map and the distribution of reactivation structures, we conclude that the landward limit of the necking domain and the hyperextended domains, respectively, guide and localize the compressional overprint. The Le Danois block acted as a local buttress, conditioning the inversion of the Asturian Basin.
NASA Astrophysics Data System (ADS)
Ukstins, Ingrid A.; Renne, Paul R.; Wolfenden, Ellen; Baker, Joel; Ayalew, Dereje; Menzies, Martin
2002-05-01
40Ar/ 39Ar dating of mineral separates and whole-rock samples of rhyolitic ignimbrites and basaltic lavas from the pre- and syn-rift flood volcanic units of northern Ethiopia provides a temporal link between the Ethiopian and Yemen conjugate rifted volcanic margins. Sixteen new 40Ar/ 39Ar dates confirm that basaltic flood volcanism in Ethiopia was contemporaneous with flood volcanism on the conjugate margin in Yemen. The new data also establish that flood volcanism initiated prior to 30.9 Ma in Ethiopia and may predate initiation of similar magmatic activity in Yemen by ˜0.2-2.0 Myr. Rhyolitic volcanism in Ethiopia commenced at 30.2 Ma, contemporaneous with the first rhyolitic ignimbrite unit in Yemen at ˜30 Ma. Accurate and precise 40Ar/ 39Ar dates on initial rhyolitic ignimbrite eruptions suggest that silicic flood volcanism in Afro-Arabia post-dates the Oligocene Oi2 global cooling event, ruling out a causative link between these explosive silicic eruptions (with individual volumes ≥200 km 3) and climatic cooling which produced the first major expansion of the Antarctic ice sheets. Ethiopian volcanism shows a progressive and systematic younging from north to south along the escarpment and parallel to the rifted margin, from pre-rift flood volcanics in the north to syn-rift northern Main Ethiopian Rift volcanism in the south. A dramatic decrease in volcanic activity in Ethiopia between 25 and 20 Ma correlates with a prominent break-up unconformity in Yemen (26-19 Ma), both of which mark the transition from pre- to syn-rift volcanism (˜25-26 Ma) triggered by the separation of Africa and Arabia. The architecture of the Ethiopian margin is characterized by accumulation and preservation of syn-rift volcanism, while the Yemen margin was shaped by denudational unloading and magmatic starvation as the Arabian plate rifted away from the Afar plume. A second magmatic hiatus and angular unconformity in the northern Main Ethiopian Rift is evident at 10.6-3.2 Ma, and is also observed throughout the Arabian plate in Jordanian, Saudi Arabian and Yemeni intraplate volcanic fields and is possibly linked to tectonic re-organization and initiation of sea floor spreading in the Gulf of Aden and the Red Sea at 10 and 5 Ma, respectively.
NASA Astrophysics Data System (ADS)
Yokelson, Intan; Gehrels, George E.; Pecha, Mark; Giesler, Dominique; White, Chelsi; McClelland, William C.
2015-10-01
The Gravina belt consists of Upper Jurassic through Lower Cretaceous marine clastic strata and mafic-intermediate volcanic rocks that occur along the western flank of the Coast Mountains in southeast Alaska and coastal British Columbia. This report presents U-Pb ages and Hf isotope determinations of detrital zircons that have been recovered from samples collected from various stratigraphic levels and from along the length of the belt. The results support previous interpretations that strata in the western portion of the Gravina belt accumulated along the inboard margin of the Alexander-Wrangellia terrane and in a back-arc position with respect to the western Coast Mountains batholith. Our results are also consistent with previous suggestions that eastern strata accumulated along the western margin of the inboard Stikine, Yukon-Tanana, and Taku terranes and in a fore-arc position with respect to the eastern Coast Mountains batholith. The history of juxtaposition of western and eastern assemblages is obscured by subsequent plutonism, deformation, and metamorphism within the Coast Mountains orogen, but may have occurred along an Early Cretaceous sinistral transform system. Our results are inconsistent with models in which an east-facing subduction zone existed along the inboard margin of the Alexander-Wrangellia terrane during Late Jurassic-Early Cretaceous time.
NASA Astrophysics Data System (ADS)
Moussa, N.; Boiron, M. C.; Grassineau, N.; Fouquet, Y.; Le Gall, B.; Mohamed, J.
2015-12-01
The Afar rift results from the interaction of a number of actively-propagating tectono-magmatic axes. Recent field investigations in the SE Afar rift have emphasized the importance of hydrothermal system in rift-related volcanic complexes. Mineralization occur as gold-silver bearing veins and are associated with felsic volcanism. Late carbonate veins barren of sulfides and gold are common. The morphologies and textures of quartz show crustiform colloform banding, massive and breccias. Microthermometric measurements were made on quartz-hosted two phases (liquid + vapor) inclusions; mean homogenization temperature range from 150°C to 340°C and ice-melting temperatures range from -0.2° to 1.6°C indicating that inclusion solutions are dilute and contain 0.35 to 2.7 equivalent wt. % NaCl. Furthermore, δ18O and δ13C values from calcite range from 3.7 to 26.6 ‰ and -7.5 to 0.3‰, respectively. The presence of platy calcite and adularia indicate that boiling condition existed. This study shows that precious-metal deposition mainly occurred from hydrothermal fluids at 200°C at around 300 and 450 m below the present-day surface in a typical low-sulphidation epithermal environment.
NASA Astrophysics Data System (ADS)
Vicente de Gouveia, S.; Besse, J.; Frizon de Lamotte, D.; Greff-Lefftz, M.; Lescanne, M.; Gueydan, F.; Leparmentier, F.
2018-04-01
Rifts are often associated with ancient traces of hotspots, which are supposed to participate to the weakening of the lithosphere. We investigated the expected past trajectories followed by three hotspots (Afar, East-Africa and Lake-Victoria) located around the Red Sea. We used a hotspot reference frame to compute their location with respect to time, which is then compared to mantle tomography interpretations and geological features. Their tracks are frequently situated under continental crust, which is known to strongly filter plume activity. We looked for surface markers of their putative ancient existence, such as volcanism typology, doming, and heat-flow data from petroleum wells. Surface activity of the East-Africa hotspot is supported at 110 Ma, 90 Ma and 30 Ma by uplift, volcanic activity and rare gas isotopic signatures, reminiscent of a deep plume origin. The analysis of heat-flow data from petroleum wells under the Arabian plate shows a thermal anomaly that may correspond to the past impact of the Afar hotspot. According to derived hotspot trajectories, the Afar hotspot, situated (at 32 Ma) 1000 km north-east of the Ethiopian-Yemen traps, was probably too far away to be accountable for them. The trigger of the flood basalts would likely be linked to the East-Africa hotspot. The Lake-Victoria hotspot activity appears to have been more recent, attested only by Cenozoic volcanism in an uplifted area. Structural and thermal weakening of the lithosphere may have played a major role in the location of the rift systems. The Gulf of Aden is located on inherited Mesozoic extensional basins between two weak zones, the extremity of the Carlsberg Ridge and the present Afar triangle, previously impacted by the East-Africa hotspot. The Red Sea may have opened in the context of extension linked to Neo-Tethys slab-pull, along the track followed by the East Africa hotspot, suggesting an inherited thermal weakening.
Luizza, Matthew; Wakie, Tewodros; Evangelista, Paul; Jarnevich, Catherine S.
2016-01-01
The threats posed by invasive plants span ecosystems and economies worldwide. Local knowledge of biological invasions has proven beneficial for invasive species research, but to date no work has integrated this knowledge with species distribution modeling for invasion risk assessments. In this study, we integrated pastoral knowledge with Maxent modeling to assess the suitable habitat and potential impacts of invasive Cryptostegia grandiflora Robx. Ex R.Br. (rubber vine) in Ethiopia’s Afar region. We conducted focus groups with seven villages across the Amibara and Awash-Fentale districts. Pastoral knowledge revealed the growing threat of rubber vine, which to date has received limited attention in Ethiopia, and whose presence in Afar was previously unknown to our team. Rubber vine occurrence points were collected in the field with pastoralists and processed in Maxent with MODIS-derived vegetation indices, topographic data, and anthropogenic variables. We tested model fit using a jackknife procedure and validated the final model with an independent occurrence data set collected through participatory mapping activities with pastoralists. A Multivariate Environmental Similarity Surface analysis revealed areas with novel environmental conditions for future targeted surveys. Model performance was evaluated using area under the receiver-operating characteristic curve (AUC) and showed good fit across the jackknife models (average AUC = 0.80) and the final model (test AUC = 0.96). Our results reveal the growing threat rubber vine poses to Afar, with suitable habitat extending downstream of its current known location in the middle Awash River basin. Local pastoral knowledge provided important context for its rapid expansion due to acute changes in seasonality and habitat alteration, in addition to threats posed to numerous endemic tree species that provide critical provisioning ecosystem services. This work demonstrates the utility of integrating local ecological knowledge with species distribution modeling for early detection and targeted surveying of recently established invasive species.
The life cycle of continental rifting as a focus for U.S.-African scientific collaboration
NASA Astrophysics Data System (ADS)
Abdelsalam, Mohamed G.; Atekwana, Estella A.; Keller, G. Randy; Klemperer, Simon L.
2004-11-01
The East African Rift System (EARS) provides the unique opportunity found nowhere else on Earth, to investigate extensional processes from incipient rifting in the Okavango Delta, Botswana, to continental breakup and creation of proto-oceanic basins 3000 km to the north in the Afar Depression in Ethiopia, Eritrea, and Djibouti.The study of continental rifts is of great interest because they represent the initial stages of continental breakup and passive margin development, they are sites for large-scale sediment accumulation, and their geomorphology may have controlled human evolution in the past and localizes geologic hazards in the present. But there is little research that provides insights into the linkage between broad geodynamic processes and the life cycle of continental rifts: We do not know why some rifts evolve into mid-ocean ridges whereas others abort their evolution to become aulacogens. Numerous studies of the EARS and other continental rifts have significantly increased our understanding of rifting processes, but we particularly lack studies of the embryonic stages of rift creation and the last stages of extension when continental breakup occurs.
NASA Astrophysics Data System (ADS)
Boschman, L.; Van Hinsbergen, D. J. J.; Langereis, C. G.; Molina-Garza, R. S.; Kimbrough, D. L.
2017-12-01
The North American Cordillera has been shaped by a long history of accretion of arcs and other buoyant crustal fragments to the western margin of the North American Plate since the Early Mesozoic. Accretion of these terranes resulted from a complex tectonic history interpreted to include episodes of both intra-oceanic subduction within the Panthalassa/Pacific Ocean, as well as continental margin subduction along the western margin of North America. Western Mexico, at the southern end of the Cordillera, contains a Late Cretaceous-present day long-lived continental margin arc, as well as Mesozoic arc and SSZ ophiolite assemblages of which the origin is under debate. Interpretations of the origin of these subduction-related rock assemblages vary from far-travelled exotic intra-oceanic island arc character to autochthonous or parautochthonous extended continental margin origin. We present new paleomagnetic data from four localities: (1) the Norian SSZ Vizcaíno peninsula Ophiolite; (2) its Lower Jurassic sedimentary cover; and (3) Barremian and (4) Aptian sediments derived from the Guerrero arc. The data show that the Mexican ophiolite and arc terranes have a paleolatitudinal plate motion history that is equal to that of the North American continent. This suggests that these rock assemblages were part of the overriding plate and were perhaps only separated from the North American continent by temporal fore- or back-arc spreading. These spreading phases resulted in the temporal existence of tectonic plates between the North American and Farallon Plates, and upon closure of the basins, in the growth of the North American continent without addition of any far-travelled exotic terranes.
NASA Technical Reports Server (NTRS)
Fitch, T. J.
1971-01-01
A model for oblique convergence between plates of lithosphere is proposed in which at least a fraction of slip parallel to the plate margin results in transcurrent movements on a nearly vertical fault which is located on the continental side of a zone of plate consumption. In an extreme case of complete decoupling only the component of slip normal to the plate margin can be inferred from underthrusting. Recent movements in the western Sunda region provide the most convincing evidence for decoupling of slip, which in this region is thought to be oblique to the plate margin. A speculative model for convergence along the margins of the Philippine Sea is constructed from an inferred direction of oblique slip in the Philippine region. This model requires that the triple point formed by the junction of the Japanese and Izu-Bonin trenches and the Nankai trough migrate along the Sagami trough.
Anisotropic structure of the African upper mantle from Rayleigh and Love wave tomography
NASA Astrophysics Data System (ADS)
Sebai, Amal; Stutzmann, Eléonore; Montagner, Jean-Paul; Sicilia, Déborah; Beucler, Eric
2006-04-01
The geodynamics of the mantle below Africa is not well understood and anisotropy tomography can provide new insight into the coupling between the African plate and the underlying mantle convection. In order to study the anisotropic structure of the upper mantle beneath Africa, we have measured phase velocities of 2900 Rayleigh and 1050 Love waves using the roller-coaster algorithm [Beucler, E., Stutzmann, E., Montagner, J.-P., 2003. Surface-wave higher mode phase velocity measurments, using a roller-coaster type algorithm. Geophys. J. Int. 155 (1), 289-307]. These phase velocities have been inverted to obtain a new tomographic model that gives access to isotropic S V-wave velocity perturbations, azimuthal and radial anisotropies. Isotropic S V-wave velocity maps have a lateral resolution of 500 km. Anisotropy parameters have a lateral resolution of 1000 km which is uniform over Africa for azimuthal anisotropy but decreases at the West and South of Africa for radial anisotropy. At shallow depth, azimuthal anisotropy varies over horizontal distances much smaller than the continent scale. At 280 km depth, azimuthal anisotropy is roughly N-S, except in the Afar area, which might indicate differential motion between the African plate and the underlying mantle. The three cratons of West Africa, Congo and Kalahari are associated with fast velocities and transverse anisotropy that decrease very gradually down to 300 km depth. On the other hand, we observe a significant change in the direction and amplitude of azimuthal anisotropy at about 180 km depth, which could be the signature of the root of these cratons. The Tanzania craton is a shallower structure than the other African cratons and the slow velocities (-2%) observed on the maps at 180 and 280 km depth could be the signature of hot material such as a plume head below the craton. This slow velocity anomaly extends toward the Afar and azimuthal anisotropy fast directions are N-S at 180 km depth, indicating a possible interaction between the Tanzania small plume and the Afar. The Afar plume is associated with a very slow velocity anomaly (-6%) which extens below the Red sea, the Gulf of Aden and the Ethiopian rift at 80 km depth. The Afar plume can be observed down to our deepest depth (300 km) and is associated with radial anisotropy smaller than elsewhere in Africa, suggesting active upwelling. Azimuthal anisotropy directions change with increasing depth, being N-S below the Red sea and Gulf of Aden at 80 km depth and E-W to NE-SW at 180 km depth. The Afar plume is not connected with the smaller hotspots of Central Africa, which are associated either with shallow slow velocities for Mt Cameroon or with no particular velocity anomaly and N-S azimuthal anisotropy for the hotspots of Tibesti, Darfur and Hoggar. A shallow origin for these hotspots is in agreement with their normal 3He/4He ratio and with their location in a region that had been weakened by the rifting of West and Central Africa.
The Afar rift zone deformation dynamics retrieved through phase and amplitude SAR data
NASA Astrophysics Data System (ADS)
Casu, F.; Pagli, C.; Paglia, L.; Wang, H.; Wright, T. J.; Lanari, R.
2011-12-01
The Dabbahu rift segment of the Afar depression has been active since 2005 when a 2.5 km3 dyke intrusion and hundreds of earthquakes marked the onset a rifting episode which continues to date. Since 2003, the Afar depression has been repeatedly imaged by the ENVISAT satellite, generating a large SAR archive which allow us to study the ongoing deformation processes and the dynamics of magma movements. We combine sets of small baseline interferograms through the advanced DInSAR algorithm referred to as Small BAseline Subset (SBAS), and we generate both ground deformation maps and time series along the satellite Line-Of-Sight (LOS), with accuracies on the order of 5 mm. The main limitation of DInSAR applications is that large and rapid deformations, such as those caused by dyke intrusions and eruptions in Afar, cannot be fully measured. The phase information often degrades and some areas of the interferograms are affected by high fringe rates, leading to difficulties in the phase unwrapping, and/or to complete loss of coherence due to significant misregistration errors. This limitation can be overcome by exploiting the SAR image amplitude information instead of the phase, and by calculating the Pixel-Offset (PO) field of a given SAR image pair, for both range and azimuth directions. Moreover, after computing the POs for each image pair, it is possible to combine them, following the same rationale of the SBAS technique, to finally retrieve the offset-based deformation time series. Such technique, named PO-SBAS, permits to retrieve the deformation field in areas affected by very large displacements at an accuracy that, for ENVISAT data, correspond to 30cm and 15 cm for the range and azimuth, respectively. In this work, we study the Afar rift region deformations by using both the phase and amplitude information of several sets of SAR images acquired from ascending and descending ENVISAT tracks. In particular, we use the phase information to construct dense and accurate deformation maps and time series in areas not affected by large displacements. While in areas where the deformation gradient causes loss of coherence, we retrieve the displacement field through the amplitude information. This approach allows us to obtain a spatially detailed deformation map of the study area. In addition, by combining ascending and descending data we reconstruct the vertical and East-West components of deformation field. Furthermore, in areas affected by large deformations, we can also retrieve the full 3D deformation field, by using the North-South displacement component obtained from the azimuth PO information. Distinct sources of deformations interact in Afar. Fault movements and magma chamber deflation have accompanied dyke intrusions but quantifying each contribution to the total deformation has been challenging, also due to loss of coherence in the central part of the rift. Here we combined the phase and amplitude information in order to retrieve the full deformation field of repeated intrusions. This allows us to better constrain the fault movements that occur as the dyke propagates as well as the magma movements from individual magma chambers.
African humid periods triggered the reactivation of a large river system in Western Sahara
Skonieczny, C.; Paillou, P.; Bory, A.; Bayon, G.; Biscara, L.; Crosta, X.; Eynaud, F.; Malaizé, B.; Revel, M.; Aleman, N.; Barusseau, J. -P.; Vernet, R.; Lopez, S.; Grousset, F.
2015-01-01
The Sahara experienced several humid episodes during the late Quaternary, associated with the development of vast fluvial networks and enhanced freshwater delivery to the surrounding ocean margins. In particular, marine sediment records off Western Sahara indicate deposition of river-borne material at those times, implying sustained fluvial discharges along the West African margin. Today, however, no major river exists in this area; therefore, the origin of these sediments remains unclear. Here, using orbital radar satellite imagery, we present geomorphological data that reveal the existence of a large buried paleodrainage network on the Mauritanian coast. On the basis of evidence from the literature, we propose that reactivation of this major paleoriver during past humid periods contributed to the delivery of sediments to the Tropical Atlantic margin. This finding provides new insights for the interpretation of terrigenous sediment records off Western Africa, with important implications for our understanding of the paleohydrological history of the Sahara. PMID:26556052
Borgogno, Franco
2014-12-01
In this paper the author discusses two points regarding Ferenczi's views of psychoanalysis. The first concerns the fact that analysts, like their patients, "come from afar" (a concept of Borgogno, 2011). The second, closely linked to the first, has to do with Ferenczi's belief that psychoanalytical knowledge is not intellectual but visceral, seeing that if analysts are to truly understand their patients they must first "take on" their suffering in such a way as to "become the patient." The author follows Ferenczi's progression along these two points through his whole oeuvre, from his first psychoanalytical writings to the Clinical Diary (1932a) of the last year of his life.
NASA Astrophysics Data System (ADS)
Boedo, F. L.; Willner, A. P.; Vujovich, G. I.; Massonne, H.-J.
2016-12-01
In central-western Argentina, an Early Paleozoic belt including mafic-ultramafic bodies, marine metasedimentary rocks and high-pressure rocks occur along the western margin of the Precordillera and in the Frontal Cordillera. First pressure-temperature estimates are presented here for low-grade rocks of the southern sector of this belt based on two metasedimentary and one metabasaltic sample from the Peñasco Formation. Peak metamorphic conditions resulted within the range of 345-395 °C and 7.0-9.3 kbar within the high-pressure greenschist facies. The corresponding low metamorphic gradient of 13 °C/km is comparable with subduction related geothermal gradients. Comparison between these results and data from other localities of the same collision zone (Guarguaraz and Colohuincul complexes) confirms a collision between Chilenia and the composite margin of western Gondwana and suggests a stronger crustal thickening in the south of the belt, causing exhumation of more deeply buried sequences. During the Early Paleozoic a long-lived marine sedimentation coupled with the intrusion of MORB-like basalts occurred along a stable margin before the collision event. This contrasts with the almost contemporaneous sedimentation registered during accretion in accretionary prism settings and additionally proves the development of a collision zone along western Precordillera and the eastern Frontal Cordillera as well as the existence of Chilenia as a separate microcontinent.
NASA Astrophysics Data System (ADS)
Badji, R.; Charvis, P.; Bracene, R.; Galve, A.; Badsi, M.; Ribodetti, A.; Benaissa, Z.; Klingelhoefer, F.; Medaouri, M.; Beslier, M.
2013-12-01
This work is part of the Algerian-French SPIRAL program (Sismique Profonde et Investigation Régionale du Nord de l'Algérie) which provides unprecedented images of the deep structure of the western Algerian Margin based on several wide-angle and multichannel seismic data shot across the Algerian Margin. One of the different hypotheses for the opening of the western Mediterranean Sea, we are testing is that the western part of the Algerian margin was possibly part of the southern edge of the Alboran continental block during its westward migration related to the rollback of the Betic-Rif-Alboran subduction zone. A tomographic inversion of the first arrival traveltimes along a 100-km long wide-angle seismic profile shot over 40 Ocean Bottom Seismometers, across the Margin offshore Mostaganem (Northwestern Algerian Margin) was conducted. The final model reveals striking feature in the deep structure of the margin from north to south: 1- the oceanic crust is as thin as 4-km, with velocities ranging from 5.0 to 7.1 km/s, covered by a 3.3 km thick sedimentary pile (seismic velocities from 1.5 to 5.0 km/s) characterized by an intense diapiric activity of the Messinian salt layer. 2- a sharp transition zone, less than 10 km wide, with seismic velocities intermediate between oceanic seismic velocities (observed northward) and continental seismic velocities (observed southward). This zone coincides with narrow and elongated pull apart basins imaged by multichannel seismic data. No evidence of volcanism nor of exhumed serpentinized upper mantle as described along many extensional continental margins are observed along this segment of the margin. 3- a thinned continental crust coincident with a rapid variation of the Moho depth imaged from 12 to ~20 km with a dip up to 50%. The seafloor bathymetry is showing a steep continental slope (>20%). Either normal or inverse faults are observed along MCS lines shot in the dip direction but they do not present large vertical displacement and could be related primarily to strike slip motion. These results support the hypothesis, that the margin offshore Mostaganem is not an extensional margin but rather a transform margin. There is little evidence of tectonic inversion as described eastward along the Kabylian Margin. Possibly strike slip motion affected the thinned continental crust and the transition zone suggesting that this margin is a vestige of the Subduction-Transform Edge Propagator (STEP) related to the westward migration of the Alboran block.
Seismic constraints on a large dyking event in Western Gulf of Aden
NASA Astrophysics Data System (ADS)
Ahmed, A.; Doubre, C.; Leroy, S.; Perrot, J.; Audin, L.; Rolandone, F.; Keir, D.; Al-Ganad, I.; Khanbari, K.; Mohamed, K.; Vergne, J.; Jacques, E.; Nercessian, A.
2012-04-01
In November 2010, a large number of events were recorded by the world seismic networks showing important activity occurring along the western part of the Aden Ridge. West of the Shulka El Sheik transform zone, events in this large seismic swarm (magnitudes above 5) occurred in a complex area, where the change of both the ridge direction and the bathymetry suggest the propagation of the ridge into a continental lithosphere and the influence of the thermal anomaly of the Afar Hot Spot. We combine several sets of data from permanent networks and temporary 3C broad stations installed after the beginning of the event along the southern and eastern coasts of Yemen and Djibouti respectively, we located more than 600 earthquakes with magnitudes ranging from 2.5 to 5.6 that occurred during the first months following the first event. The spatial distribution of the main seismicity reveals a very clear N115°-trending alignment, parallel to the mean direction of the en-echelon spreading segments that form the ridge at this longitude. Half of the events, which represent half of the total seismic energy released during the first months, are located in the central third section of the segment. Here several volcanic cones and recent lava flows observed from bathymetric and acoustic reflectivity data during the Tadjouraden cruise (Audin, 1999, Dauteuil et al., 2001) constitute the sea floor. In addition to this main activity, two small groups of events suggest the activiation of landslides into a large fan and the activity in a volcanic area 50 km due east from the main active zone. The time evolution of the seismicity shows several bursts of activity. Some of them are clearly related to sudden activities within the volcanic areas, when others exhibit horizontal migration of the events, with velocity around ~ 1 km/h. The time-space evolution of the seismicity clearly reveals the intrusion of dykes associated with magma propagation from the crustal magmatic centres into the rift zone.We use knowledge from spatial geodetic observations of rifting episodes in the regions: the Harrat Al-Shaqah event in 2009 (Arabia Souadia), the Tanzanian one in 2007, and the major Dabahu Manda Harraro rifting episode in Afar. Taking into account that the geodetic moment is one order of magnitude higher than the seismic moment during such events, the seismic activity of this event of the Aden ridge represents a major rifting episode certainly associated with the opening of the segment by dyking estimated to be higher than 10 m.
NASA Astrophysics Data System (ADS)
Ahmed, Abdulhakim; Tiberi, Christel; Leroy, Sylvie; Stuart, Graham W.; Keir, Derek; Sholan, Jamal; Khanbari, Khaled; Al-Ganad, Ismael; Basuyau, Clémence
2013-06-01
We analyse P-wave receiver functions across the western Gulf of Aden and southern Red Sea continental margins in Western Yemen to constrain crustal thickness, internal crustal structure and the bulk seismic velocity characteristics in order to address the role of magmatism, faulting and mechanical crustal thinning during continental breakup. We analyse teleseismic data from 21 stations forming the temporary Young Conjugate Margins Laboratory (YOCMAL) network together with GFZ and Yemeni permanent stations. Analysis of computed receiver functions shows that (1) the thickness of unextended crust on the Yemen plateau is ˜35 km; (2) this thins to ˜22 km in coastal areas and reaches less than 14 km on the Red Sea coast, where presence of a high-velocity lower crust is evident. The average Vp/Vs ratio for the western Yemen Plateau is 1.79, increasing to ˜1.92 near the Red Sea coast and decreasing to 1.68 for those stations located on or near the granitic rocks. Thinning of the crust, and by inference extension, occurs over a ˜130-km-wide transition zone from the Red Sea and Gulf of Aden coasts to the edges of the Yemen plateau. Thinning of continental crust is particularly localized in a <30-km-wide zone near the coastline, spatially co-incident with addition of magmatic underplate to the lower crust, above which on the surface we observe the presence of seaward dipping reflectors (SDRs) and thickened Oligo-Miocene syn-rift basaltic flows. Our results strongly suggest the presence of high-velocity mafic intrusions in the lower crust, which are likely either synrift magmatic intrusion into continental lower crust or alternatively depleted upper mantle underplated to the base of the crust during the eruption of the SDRs. Our results also point towards a regional breakup history in which the onset of rifting was synchronous along the western Gulf of Aden and southern Red Sea volcanic margins followed by a second phase of extension along the Red Sea margin.
NASA Astrophysics Data System (ADS)
Hayward, N.
2017-12-01
The structure of the western margin of the North American craton (Laurentia) in the northern Canadian Cordillera and its role in the development of the Neoproterozoic-Early Paleozoic Selwyn Basin are reassessed through 3D inversion of a new compilation of aeromagnetic data and archival Bouguer gravity data. The region's tectonic history is obscured by partial burial beneath Selwyn Basin, and a tectonic overprint that includes terrane accretion, regional plutonism, and strike-slip faults with displacements of 100s and perhaps 1000s of kilometers. Despite the implied complexity, preliminary geological and geophysical based interpretations of the structure of the western margin of Laurentia, have been adopted with few refinements in over two decades. Regionally continuous, NE-trending, crustal lineaments, including the Fort Norman line and Leith Ridge fault, were interpreted as having had long-standing influence on the craton development, its western margin, and overlapping sedimentary basin. New results reveal limited evidence for the regional continuity of the NE-trending lineaments. Instead, models suggest that the structure of the Laurentian margin is characterised by segmentation on numerous shorter structures of varied strike. The western margin of the craton and its structures are bound by a NW-trending structure that connects with the Richardson Trough to the north and may have been active during rifting of the Misty Creek embayment. This boundary also marks the easternmost limit of both granitic intrusions in Selwyn Basin, which gravity models suggest are of greater extent than reflected on geological maps, and SEDEX occurrences. An ENE-trending structure beneath northern Selwyn Basin is interpreted as marking the southern edge of a previously unidentified cratonic promontory, akin to the Liard line that marks a transfer fault that bounds the promontory of the Macdonald Platform, south of Selwyn Basin. The ENE-trending structure is traced from the Tintina fault in the west to near to the Great Bear magmatic zone. The structure's regional continuity also limits the interpretation of a post-Cretaceous structure, inboard of the Tintina fault that could be responsible for 1000's km of dextral strike-slip ascribed to the Baja-BC terrane translation model.
The Yilgarn Craton western Australia: A tectonic synthesis
NASA Technical Reports Server (NTRS)
Fripp, R. E. P.
1986-01-01
The Yilgarn Craton in Western Australia is one of the larger contiguous preserved Archaean crustal fragments, with an area of about 650,000 square kilometres. Of this, by area, about 70% is granitoid and 30% greenstone. The Craton is defined by the Darling Fault on its western margin, by Proterozoic deformation belts on its southern and northwestern margins, and by unconformable younger sediments on its eastern and northeastern margins. A regional geotectonic synthesis at a scale of 1:500,000 is being prepared. This is based largely upon the 1:250,000 scale mapping of the Geological Survey of Western Australia together with interpretation using geophysical data, mainly airborne magnetic surveys. On a regional basis the granitoids are classied as pre-, syn- and post-tectonic with respect to greenstone belt deformation. The post-tectonic granitoids yield Rb-Sr isochrons of about 2.6 b.y., close to Rb-Sr ages for the greenstones themselves which are up to about 2.8 b.y. old, although data for the latter is sparse. Contacts between earlier granitoids and greenstones which are not obscured by the post-tectonic granitoids are most commonly tectonic contacts, intensely deformed and with mylonitic fabrics. The general concensus however is that there is a pre-tectonic, pre-greenhouse sialic gneiss preserved in places. A discussion follows.
The Continental Margins of the Western North Atlantic.
ERIC Educational Resources Information Center
Schlee, John S.; And Others
1979-01-01
Presents an interpretation of geological and geophysical data, which provides a summary of the structural and sedimentary history of the United States Atlantic Margin. The importance of an understanding of the development of the outer continental shelf to future hydrocarbon exploration is detailed. (BT)
The Colorado front range: anatomy of a Laramide uplift
Kellogg, Karl; Bryant, Bruce; Reed, John C.
2004-01-01
Along a transect across the Front Range from Denver to the Blue River valley near Dillon, the trip explores the geologic framework and Laramide (Late Cretaceous to early Eocene) uplift history of this basement-cored mountain range. Specific items for discussion at various stops are (1) the sedimentary and structural record along the upturned eastern margin of the range, which contains several discontinuous, east-directed reverse faults; (2) the western structural margin of the range, which contains a minimum of 9 km of thrust overhang and is significantly different in structural style from the eastern margin; (3) mid- to late-Tertiary modifications to the western margin of the range from extensional faulting along the northern Rio Grande rift trend; (4) the thermal and uplift history of the range as revealed by apatite fission track analysis; (5) the Proterozoic basement of the range, including the significance of northeast-trending shear zones; and (6) the geologic setting of the Colorado mineral belt, formed during Laramide and mid-Tertiary igneous activity.
DELP Symposium: Tectonics of eastern Asia and western Pacific Continental Margin
NASA Astrophysics Data System (ADS)
Eastern Asia and the western Pacific make up a broad region of active plate tectonic interaction. The area is a natural laboratory for studying the processes involved in the origin and evolution of volcanic island arcs, marginal basins, accretionary prisims, oceanic trenches, accreted terranes, ophiolite emplacement, and intracontinental deformation. Many of our working concepts of plate tectonics and intraplate deformation were developed in this region, even though details of the geology and geophysics there must be considered of a reconnaissance nature.During the past few years researchers have accumulated a vast amount of new and detailed information and have developed a better understanding of the processes that have shaped the tectonic elements in this region. To bring together scientists from many disciplines and to present the wide range of new data and ideas that offer a broader perspective on the interrelations of geological, geochemical, geophysical and geodetic studies, the symposium Tectonics of Eastern Asia and Western Pacific Continental Margin was held December 13-16, 1988, at the Tokyo Institute of Technology in Japan, under the auspicies of DELP (Dynamics and Evolution of the Lithosphere Project).
Slab geometry of the South American margin from joint inversion of body waves and surface waves
NASA Astrophysics Data System (ADS)
Porritt, R. W.; Ward, K. M.; Porter, R. C.; Portner, D. E.; Lynner, C.; Beck, S. L.; Zandt, G.
2016-12-01
The western margin of South America is a long subduction zone with a complex, highly three -dimensional geometry. The first order structure of the slab has previously been inferred from seismicity patterns and locations of volcanoes, but confirmation of the slab geometry by seismic imaging for the entire margin has been limited by either shallow, lithospheric scale models or broader, upper mantle images, often defined on a limited spatial footprint. Here, we present new teleseismic tomographic SV seismic models of the upper mantle from 10°S to 40°S along the South American subduction zone with resolution to a depth of 1000 km as inferred from checkerboard tests. In regions near the Peru Bolivia border (12°S to 18°S) and near central Chile and western Argentina (29.5°S to 33°S) we jointly invert the multi-band direct S and SKS relative delay times with Rayleigh wave phase velocities from ambient noise and teleseismic surface wave tomography. This self-consistent model provides information from the upper crust to below the mantle transition zone along the western margin in these two regions. This consistency allows tracing the slab from the South American coastline to the sub-transition zone upper mantle. From this model we image several features, but most notable is a significant eastward step near the southern edge of the margin (24°-30° S). West of this step, a large high shear velocity body is imaged in the base of and below the transition zone. We suggest this may be a stagnant slab, which is descending into the lower mantle now that it is no longer attached to the surface. This suggests a new component to the subduction history of western South America when an older slab lead the convergence before anchoring in the transition zone, breaking off from the surface, and being overtaken by the modern, actively subducting slab now located further east.
NASA Astrophysics Data System (ADS)
Poort, Jeffrey; Lucazeau, Francis; Le Gal, Virginie; Rabineau, Marina; Dal Cin, Michela; Bouzid, Abderrezak; Palomino, Desirée; Leroux, Estelle; Akhmanov, Grigory; Battani, Anne; Bachir, Roza Si; Khlystov, Oleg; Koptev, Aleksandre
2017-04-01
While there is now a large consensus that Western Mediterranean basins developed in a Miocene back-arc setting due to slab roll-back and that some of its domains are floored by oceanic crust, there is still a lot of speculation on the configuration, nature and evolution of its margins and the ocean-continent transitions (OCT). A thick Messinian layer of evaporites in the deep basin obscures deep seismic reflectors, and only recently seismic refraction and wide-angle studies revealed a confident picture of basement configuration. In order to further constrain models of crustal structure and margin evolution, heat flow is one of the key parameters needed. Recent heat flow studies on other margins have shown the existence of a persistent thermal anomaly under rifted margins that urges to reconsider the classical models of its evolution. The young age of OCT and ceased oceanic formation in the Western Mediterranean make it an interesting test case for a thermo-mechanical study of its margins. The presence of halokinetic structuring and salt diapirs urges the need of close spaced heat flow measurement to evaluate heat refraction and advective heat transfer by fluid migration. During the WestMedFlux cruise on the research vessel L'Atalante, we collected a total of 150 new heat flow measurement (123 in pogo mode, 27 with a sediment corer) in the deep basin of the Western Mediterranean where heat flow data were sparse. Preliminary analysis of the heat flow data confirms two regional trends: in the southern Provencal basin an overall increase from west to east (from about 60 mW/m2 at the Golf of Lion towards 75 mW/m2 at the West-Sardinia margin), while in the northern part of the Algero-Balearic basin heat flow increases from east to west (from about 80 to 100 mW/m2). On this regional trends, several local anomalies are clearly differentiated. In the deep oceanic basin, strong anomalies seem to be merely associated to salt diapiric structures. On the OCT and on the rifted continent, both strongly reduced and elevated heat flow are observed and suggest other heat sink and sources. We will discuss on the different processes that might have affected the surface heat flow (e.g., bottom water currents, slope instabilities and focused fluid migrations) and try to link the large scale heat flow patterns with crustal nature, structuring of the margins and mantle dynamics.
Upper-mantle seismic structure in a region of incipient continental breakup: northern Ethiopian rift
NASA Astrophysics Data System (ADS)
Bastow, Ian D.; Stuart, Graham W.; Kendall, J.-Michael; Ebinger, Cynthia J.
2005-08-01
The northern Ethiopian rift forms the third arm of the Red Sea, Gulf of Aden triple junction, and marks the transition from continental rifting in the East African rift to incipient oceanic spreading in Afar. We determine the P- and S-wave velocity structure beneath the northern Ethiopian rift using independent tomographic inversion of P- and S-wave relative arrival-time residuals from teleseismic earthquakes recorded by the Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE) passive experiment using the regularised non-linear least-squares inversion method of VanDecar. Our 79 broad-band instruments covered an area 250 × 350 km centred on the Boset magmatic segment ~70 km SE of Addis Ababa in the centre of the northern Ethiopian rift. The study area encompasses several rift segments showing increasing degrees of extension and magmatic intrusion moving from south to north into the Afar depression. Analysis of relative arrival-time residuals shows that the rift flanks are asymmetric with arrivals associated with the southeastern Somalian Plate faster (~0.65 s for the P waves; ~2 s for the S waves) than the northwestern Nubian Plate. Our tomographic inversions image a 75 km wide tabular low-velocity zone (δVP~-1.5 per cent, δVS~-4 per cent) beneath the less-evolved southern part of the rift in the uppermost 200-250 km of the mantle. At depths of >100 km, north of 8.5°N, this low-velocity anomaly broadens laterally and appears to be connected to deeper low-velocity structures under the Afar depression. An off-rift low-velocity structure extending perpendicular to the rift axis correlates with the eastern limit of the E-W trending reactivated Precambrian Ambo-Guder fault zone that is delineated by Quaternary eruptive centres. Along axis, the low-velocity upwelling beneath the rift is segmented, with low-velocity material in the uppermost 100 km often offset to the side of the rift with the highest rift flank topography. Our observations from this magmatic rift zone, which is transitional between continental and oceanic rifting, do not support detachment fault models of lithospheric extension but instead point to strain accommodation via magma assisted rifting.
NASA Astrophysics Data System (ADS)
Coulié, E.; Quidelleur, X.; Gillot, P.-Y.; Courtillot, V.; Lefèvre, J.-C.; Chiesa, S.
2003-02-01
It is now generally accepted that continental flood basalt (CFB) volcanism bears a strong relationship with continental breakup. The Ethiopian Afar plume has been linked to the opening of the Afar depression. Propagation of the Red Sea and Gulf of Aden rifts within the depression, still an ongoing process, has rifted away the Ethiopian and Yemenite trap sequences. They are in some locations more than 2 km thick and comprise a wide range of volcanic products, from tholeiitic basalts, in the lower part, to more acidic material in the upper part. Recent studies have established that the bulk of trap volcanism erupted about 30 Ma ago over a period of 1 Myr in the Ethiopian sections, while ages obtained on the Yemenite sections seem more distributed through time. Here, for the first time in a single study, we present geochronological results obtained for basalts and more evolved products for both Ethiopian and Yemenite traps. This approach eliminates inter-laboratory biases and discrepancies in the ages of standards, and imposes better constraints on the eruptive chronology of this CFB province. In addition, both the K-Ar and 40Ar/ 39Ar techniques have been applied simultaneously, in order to demonstrate that similar ages are indeed obtained for undisturbed samples. The two dating techniques used here yield concordant ages for most samples. On both sides of the Afar depression, our results support that the onset of basaltic volcanism is coeval, with undistinguishable ages of 30.6±0.4 and 30.2±0.4 Ma obtained from Ethiopia and Yemen, respectively. Most of the basaltic lava pile has been erupted in less than 1 Myr, but acidic volcanism seems more spread out through time. It is coeval with basalts in northern Ethiopia but extends to about 26 Ma in Yemen, as already recognized. A younger rhyolitic episode, probably related to the major 20 Ma phase of opening of the Red Sea and Gulf of Aden, as expressed in the Afar depression, is also observed in Yemen and central Ethiopia.
Crustal Structure of the Flood Basalt Province of Ethiopia from Constrained 3-D Gravity Inversion
NASA Astrophysics Data System (ADS)
Mammo, Tilahun
2013-12-01
The Oligocene Afar mantle plume resulted in the eruption of a large volume of basaltic magma, including major sequences of rhyolitic ignimbrites, in a short span of time across Ethiopia. In order to assess the impact of these magmatic processes on the crust and to investigate the general crustal configuration beneath the Ethiopian plateau, northern part of the Main Ethiopian Rift and the Afar depression, analysis and modeling of the gravity field have been conducted. The Bouguer gravity map is dominated by long-wavelength anomalies that primarily arise from the isostatic compensation of the topography. Consequently, anomalies within the crust/upper mantle are masked and quantitative interpretation becomes difficult. The long-wavelength anomalies are approximated using admittance technique and subsequently removed from the Bouguer anomalies to obtain the residual isostatic anomalies. The residual map contains both short- and intermediate-wavelength anomalies related to geologic and tectonic features. The long-wavelength regional isostatic field is used to map the crust-mantle interface and the results are in good agreement with those determined by other geophysical methods. Seismic constrained gravity inversion was performed on the isostatic residual field and series of three-dimensional models have been constructed for the structures of the crust and upper mantle beneath the uplifted and rifted flood basalt province of northern Ethiopia. The inversion results have shown that the NW plateau has thick crust that rests on normal lithospheric mantle. Afar, On the other hand, is marked by thin stretched crust resting on a low-density upper mantle indicating a hotter thermal regime and partial melt. No lithospheric mantle is observed beneath Afar. The models further indicate the presence of an extensive sub-crustal thick (~12 km on average) and high-density (~3.06 gm/cc) mafic accreted igneous layer of fractionated cumulate (magmatic underplating) beneath the NW plateau. The study suggests that the underplate was fundamental to the accretion process and may have played a role in compensating most of the plateau uplift and in localizing stresses.
Comparing the composition of the earliest basalts erupted by the Iceland and Afar mantle plumes.
NASA Astrophysics Data System (ADS)
Stuart, Finlay M.
2013-04-01
The first basalts erupted by mantle plumes are typically generated by mantle melting at temperatures 200-300°C higher than average ambient mantle. This is consistent with the derivation of from a thermal boundary layer at the core-mantle boundary. Mantle plume temperatures decrease with time, likely as large plume heads give way to thin plume conduits. Consequently the early, hot plume basalts are a window into the deep mantle. At it's simplest they provide a test of whether the discrete plume source regions are primordial mantle that have been isolated since soon after Earth accretion, or have substantial contributions from subducted slabs. Here I present new isotopic and trace element determinations of the earliest picritic basalts from the ~30 Ma Afar plume in Ethiopia. They will be compared with similar material from the ~60 Ma proto-Iceland plume (PIP) in an effort to test prevailing models regarding the source of mantle plumes. The extremely primordial nature of the helium in the PIP picrites (3He/4He ~ 50 Ra) contrasts with much lower values of the Ethiopian flood basalt province (~21 Ra). The Iceland plume 3He/4He has decreased (linearly) with time, mirroring the secular cooling of the Iceland mantle plume identified by decreasing MgO and FeO in primary melts. In 60 million years the Iceland plume 3He/4He is still higher than the maximum Afar plume value. The Sr-Nd-Pb isotopic composition of the high 3He/4He Ethiopian flood basalt province picrites are remarkably homogenous (e.g. 87Sr/86Sr = 0.70396-0.70412; 206Pb/204Pb = 18.82-19.01). In comparison the PIP picrites have ranges that span nearly the global range of E-MORB and N-MORB. The Afar and proto-Iceland mantle plumes are clearly not initiated in a single deep mantle domain with the same depletion/enrichment and degassing histories, and the same scale of heterogeneity. This implies that there is more than one plume source region/mechanism that is capable of generating comparable volumes of basalt melt at Earth surface.
Fluvial-deltaic sedimentation and stratigraphy of the ferron sandstone
Anderson, P.B.; Chidsey, T.C.; Ryer, T.A.
1997-01-01
East-central Utah has world-class outcrops of dominantly fluvial-deltaic Turonian to Coniacian aged strata deposited in the Cretaceous foreland basin. The Ferron Sandstone Member of the Mancos Shale records the influences of both tidal and wave energy on fluvial-dominated deltas on the western margin of the Cretaceous western interior seaway. Revisions of the stratigraphy are proposed for the Ferron Sandstone. Facies representing a variety of environments of deposition are well exposed, including delta-front, strandline, marginal marine, and coastal-plain. Some of these facies are described in detail for use in petroleum reservoir characterization and include permeability structure.
NASA Astrophysics Data System (ADS)
Desa, Maria Ana; Ismaiel, Mohammad; Suresh, Yenne; Krishna, Kolluru Sree
2018-05-01
The ocean floor in the Bay of Bengal has evolved after the breakup of India from Antarctica since the Early Cretaceous. Recent geophysical investigations including updated satellite derived gravity map postulated two phases for the tectonic evolution of the Bay of Bengal, the first phase of spreading occurred in the NW-SE direction forming its Western Basin, while the second phase occurred in the N-S direction resulting in its Eastern Basin. Lack of magnetic data along the spreading direction in the Western Basin prompted us to acquire new magnetic data along four tracks (totaling ∼3000 km) to validate the previously identified magnetic anomaly picks. Comparison of the synthetic seafloor spreading model with the observed magnetic anomalies confirmed the presence of Mesozoic anomalies M12n to M0 in the Western Basin. Further, the model suggests that this spreading between India and Antarctica took place with half-spreading rates of 2.7-4.5 cm/yr. The trend of the fracture zones in the Western Basin with respect to that of the Southeastern Continental Margin of India (SCMI) suggests that SCMI is an oblique transform margin with 37° obliquity. Further, the SCMI consists of two oblique transform segments separated by a small rift segment. The strike-slip motion along the SCMI is bounded by the rift segments of the Northeastern Continental Margin of India and the southern margin of Sri Lanka. The margin configuration and fracture zones inferred in its conjugate Western Enderby Basin, East Antarctica helped in inferring three spreading corridors off the SCMI in the Western Basin of the Bay of Bengal. Detailed grid reconstruction models traced the oblique strike-slip motion off the SCMI since M12n time. The strike-slip motion along the short northern transform segment ended by M11n time. The longer transform segment, found east of Sri Lanka lost its obliquity and became a pure oceanic transform fault by M0 time. The eastward propagation of the Africa-Antarctica spreading center initiated the anticlockwise separation of Sri Lanka from India by M12n time. Seafloor spreading south of Sri Lanka due to the India-Antarctica spreading episode and the simultaneously occurring strike-slip motion east of Sri Lanka restricted this separation resulting in a failed rift. Thus Sri Lanka with strike-slip motion to its east, failed rift towards west, continental extension to its north and rifting to its south behaved as a short lived microplate during the Early Cretaceous period and remained attached to India thereafter.
Structural styles of the western onshore and offshore termination of the High Atlas, Morocco
NASA Astrophysics Data System (ADS)
Hafid, Mohamad; Zizi, Mahmoud; Bally, Albert W.; Ait Salem, Abdellah
2006-01-01
The present work aims (1) at documenting, by regional seismic transects, how the structural style varies in the western High Atlas system and its prolongation under the present-day Atlantic margin, (2) at understanding how this variation is related to the local geological framework, especially the presence of salt within the sedimentary cover, and (3) at discussing the exact geographic location of the northern front of the western High Atlas and how it links with the most western Atlas front in the offshore Cap Tafelney High Atlas. Previous work showed that the structural style of the Atlas belt changes eastward from a dominantly thick-skinned one in central and eastern High Atlas and Middle Atlas of Morocco to a dominantly thin-skinned one in Algeria and Tunisia. We propose here to show that a similar structural style change can be observed in the other direction of the Atlas Belt within its western termination, where the western High Atlas intersects at right angle the Atlantic passive margin and develops into a distinct segment, namely the High Atlas of Cap Tafelney, where salt/evaporite-based décollement tectonics prevail. To cite this article: M. Hafid et al., C. R. Geoscience 338 (2006).
NASA Astrophysics Data System (ADS)
Vesely, Fernando F.; Trzaskos, Barbara; Kipper, Felipe; Assine, Mario Luis; Souza, Paulo A.
2015-08-01
The Paraná Basin is a key locality in the context of the Late Paleozoic Ice Age (LPIA) because of its location east of the Andean proto-margin of Gondwana and west of contiguous interior basins today found in western Africa. In this paper we document the sedimentary record associated with an ice margin that reached the eastern border of the Paraná Basin during the Pennsylvanian, with the aim of interpreting the depositional environments and discussing paleogeographic implications. The examined stratigraphic succession is divided in four stacked facies associations that record an upward transition from subglacial to glaciomarine environments. Deposition took place during deglaciation but was punctuated by minor readvances of the ice margin that deformed the sediment pile. Tillites, well-preserved landforms of subglacial erosion and glaciotectonic deformational structures indicate that the ice flowed to the north and northwest and that the ice margin did not advance far throughout the basin during the glacial maximum. Consequently, time-equivalent glacial deposits that crop out in other localities of eastern Paraná Basin are better explained by assuming multiple smaller ice lobes instead of one single large glacier. These ice lobes flowed from an ice cap covering uplifted lands now located in western Namibia, where glacial deposits are younger and occur confined within paleovalleys cut onto the Precambrian basement. This conclusion corroborates the idea of a topographically-controlled ice-spreading center in southwestern Africa and does not support the view of a large polar ice sheet controlling deposition in the Paraná Basin during the LPIA.
NASA Astrophysics Data System (ADS)
Lakeman, Thomas R.; England, John H.
2013-07-01
The study revises the maximum extent of the northwest Laurentide Ice Sheet (LIS) in the western Canadian Arctic Archipelago (CAA) during the last glaciation and documents subsequent ice sheet retreat and glacioisostatic adjustments across western Banks Island. New geomorphological mapping and maximum-limiting radiocarbon ages indicate that the northwest LIS inundated western Banks Island after ~ 31 14C ka BP and reached a terminal ice margin west of the present coastline. The onset of deglaciation and the age of the marine limit (22-40 m asl) are unresolved. Ice sheet retreat across western Banks Island was characterized by the withdrawal of a thin, cold-based ice margin that reached the central interior of the island by ~ 14 cal ka BP. The elevation of the marine limit is greater than previously recognized and consistent with greater glacioisostatic crustal unloading by a more expansive LIS. These results complement emerging bathymetric observations from the Arctic Ocean, which indicate glacial erosion during the Last Glacial Maximum (LGM) to depths of up to 450 m.
Japan's Winning Margins. Management, Training, and Education.
ERIC Educational Resources Information Center
Lorriman, John; Kenjo, Takashi
This book explains the fundamental reasons for Japan's astonishing commercial success in relation to its Western competitors. Chapter 1 is an introduction. Chapter 2 discusses implications of Japanese history for education, training, and management. Chapter 3 looks at the first winning margin--education. It covers the following: Japan's long…
A one-million-year-old Homo cranium from the Danakil (Afar) Depression of Eritrea.
Abbate, E; Albianelli, A; Azzaroli, A; Benvenuti, M; Tesfamariam, B; Bruni, P; Cipriani, N; Clarke, R J; Ficcarelli, G; Macchiarelli, R; Napoleone, G; Papini, M; Rook, L; Sagri, M; Tecle, T M; Torre, D; Villa, I
1998-06-04
One of the most contentious topics in the study of human evolution is that of the time, place and mode of origin of Homo sapiens. The discovery in the Northern Danakil (Afar) Depression, Eritrea, of a well-preserved Homo cranium with a mixture of characters typical of H. erectus and H. sapiens contributes significantly to this debate. The cranium was found in a succession of fluvio-deltaic and lacustrine deposits and is associated with a rich mammalian fauna of early to early-middle Pleistocene age. A magnetostratigraphic survey indicates two reversed and two normal magnetozones. The layer in which the cranium was found is near the top of the lower normal magnetozone, which is identified as the Jaramillo subchron. Consequently, the human remains can be dated at approximately 1 million years before present.
Jackson, Ruth; Hailemariam, Assefa
2016-09-01
Women's preference to give birth at home is deeply embedded in Ethiopian culture. Many women only go to health facilities if they have complications during birth. Health Extension Workers (HEWs) have been deployed to improve the utilization of maternal health services by bridging the gap between communities and health facilities. This study examined the barriers and facilitators for HEWs as they refer women to mid-level health facilities for birth. A qualitative study was conducted in three regions: Afar Region, Southern Nations Nationalities and People's Region and Tigray Region between March to December 2014. Interviews and focus group discussions were conducted with 45 HEWs, 14 women extension workers (employed by Afar Pastoralist Development Association, Afar Region) and 11 other health workers from health centers, hospitals or health offices. Data analysis was done based on collating the data and identifying key themes. Barriers to health facilities included distance, lack of transportation, sociocultural factors and disrespectful care. Facilitators for facility-based deliveries included liaising with Health Development Army (HDA) leaders to refer women before their expected due date or if labour starts at home; the introduction of ambulance services; and, provision of health services that are culturally more acceptable for women. HEWs can effectively refer more women to give birth in health facilities when the HDA is well established, when health staff provide respectful care, and when ambulance is available at any time.
Wakie, Tewodros; Evangelista, Paul H.; Jarnevich, Catherine S.; Laituri, Melinda
2014-01-01
We used correlative models with species occurrence points, Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices, and topo-climatic predictors to map the current distribution and potential habitat of invasive Prosopis juliflora in Afar, Ethiopia. Time-series of MODIS Enhanced Vegetation Indices (EVI) and Normalized Difference Vegetation Indices (NDVI) with 250 m2 spatial resolution were selected as remote sensing predictors for mapping distributions, while WorldClim bioclimatic products and generated topographic variables from the Shuttle Radar Topography Mission product (SRTM) were used to predict potential infestations. We ran Maxent models using non-correlated variables and the 143 species-occurrence points. Maxent generated probability surfaces were converted into binary maps using the 10-percentile logistic threshold values. Performances of models were evaluated using area under the receiver-operating characteristic (ROC) curve (AUC). Our results indicate that the extent of P. juliflora invasion is approximately 3,605 km2 in the Afar region (AUC = 0.94), while the potential habitat for future infestations is 5,024 km2 (AUC = 0.95). Our analyses demonstrate that time-series of MODIS vegetation indices and species occurrence points can be used with Maxent modeling software to map the current distribution of P. juliflora, while topo-climatic variables are good predictors of potential habitat in Ethiopia. Our results can quantify current and future infestations, and inform management and policy decisions for containing P. juliflora. Our methods can also be replicated for managing invasive species in other East African countries.
NASA Astrophysics Data System (ADS)
Hernández-Almeida, I.; Cortese, G.; Yu, P.-S.; Chen, M.-T.; Kucera, M.
2017-08-01
Radiolarians are a very diverse microzooplanktonic group, often distributed in regionally restricted assemblages and responding to specific environmental factors. These properties of radiolarian assemblages make the group more conducive for the development and application of basin-wide ecological models. Here we use a new surface sediment data set from the western Pacific to demonstrate that ecological patterns derived from basin-wide open-ocean data sets cannot be transferred on semirestricted marginal seas. The data set consists of 160 surface sediment samples from three tropical-subtropical regions (East China Sea, South China Sea, and western Pacific), combining 54 new assemblage counts with taxonomically harmonized data from previous studies. Multivariate statistical analyses indicate that winter sea surface temperature at 10 m depth (SSTw) was the most significant environmental variable affecting the composition of radiolarian assemblages, allowing the development of an optimal calibration model (Locally Weighted-Weighted Averaging regression inverse deshrinking, R2cv = 0.88, root-mean-square error of prediction = 1.6°C). The dominant effect of SSTw on radiolarian assemblage composition in the western Pacific is attributed to the East Asian Winter Monsoon (EAWM), which is particularly strong in the marginal seas. To test the applicability of the calibration model on fossil radiolarian assemblages from the marginal seas, the calibration model was applied to two downcore records from the Okinawa Trough, covering the last 18 ka. We observe that these assemblages find most appropriate analogs among modern samples from the marginal basins (East China Sea and South China Sea). Downcore temperature reconstructions at both sites show similarities to known regional SST reconstructions, providing proof of concept for the new radiolarian-based SSTw calibration model.
NASA Astrophysics Data System (ADS)
Yi, Zhiyu; Huang, Baochun; Yang, Liekun; Tang, Xiangde; Yan, Yonggang; Qiao, Qingqing; Zhao, Jie; Chen, Liwei
2015-07-01
We report the first combined geochronologic and paleomagnetic study of volcanic rocks from the Shiquanhe and Yare Basins at the westernmost Lhasa Terrane, which aims to provide an accurate constraint on the shape and paleoposition of the southern margin of Asia prior to the India-Asia collision. Three new 40Ar/39Ar ages of 92.5 ± 2.9 Ma, 92.4 ± 0.9 Ma, and 79.6 ± 0.7 Ma determined by fresh matrix or feldspar from lava flows suggest a Late Cretaceous age for the investigated units. Characteristic remanent magnetizations have been successfully isolated from 38 sites which pass positive fold and/or reversal, conglomerate tests and are hence interpreted as primary in origin. The two paleopoles obtained from Yare and Shiquanhe yield consistent paleolatitudes of 13.6°N ± 9.6°N and 14.2°N ± 2.7°N, respectively (for a reference site of 31.5°N, 80°E), indicating that the southern margin of Asia near the western syntaxis was located far south during the Late Cretaceous time. A reconstruction of the Lhasa Terrane in the frame of Eurasia with paleomagnetic data obtained from its western and eastern parts indicates that the southern margin of Eurasia probably had a quasi-linear orientation prior to the collision formerly trending approximately 315°E. This is compatible with the shape of the Neo-Tethys slab observed from seismic tomographic studies. Our findings provide a solid basis for evaluating Cenozoic crustal shortening in the Asian interior and the size of Greater India near the western syntaxis.
NASA Astrophysics Data System (ADS)
Amundsen, Ingrid Marie Hasle; Blinova, Maria; Hjelstuen, Berit Oline; Mjelde, Rolf; Haflidason, Haflidi
2011-12-01
The northeastern high-latitude North Atlantic is characterised by the Bellsund and Isfjorden fans on the continental slope off west Svalbard, the asymmetrical ultraslow Knipovich spreading ridge and a 1,000 m deep rift valley. Recently collected multichannel seismic profiles and bathymetric records now provide a more complete picture of sedimentary processes and depositional environments within this region. Both downslope and alongslope sedimentary processes are identified in the study area. Turbidity currents and deposition of glacigenic debris flows are the dominating downslope processes, whereas mass failures, which are a common process on glaciated margins, appear to have been less significant. The slide debrite observed on the Bellsund Fan is most likely related to a 2.5-1.7 Ma old failure on the northwestern Barents Sea margin. The seismic records further reveal that alongslope current processes played a major role in shaping the sediment packages in the study area. Within the Knipovich rift valley and at the western rift flank accumulations as thick as 950-1,000 m are deposited. We note that oceanic basement is locally exposed within the rift valley, and that seismostratigraphic relationships indicate that fault activity along the eastern rift flank lasted until at least as recently as 1.5 Ma. A purely hemipelagic origin of the sediments in the rift valley and on the western rift flank is unlikely. We suggest that these sediments, partly, have been sourced from the western Svalbard—northwestern Barents Sea margin and into the Knipovich Ridge rift valley before continuous spreading and tectonic activity caused the sediments to be transported out of the valley and westward.
Episodic methane release events from Last Glacial marginal sediments in the western North Pacific
NASA Astrophysics Data System (ADS)
Uchida, Masao; Shibata, Yasuyuki; Ohkushi, Ken'ichi; Ahagon, Naokazu; Hoshiba, Mayumi
2004-08-01
According to recent observations of anomalous bottom-simulating reflections (BSR), the northwest Pacific marginal sediments around Japan main islands bear large abundances of methane hydrate [, 2002]. During the Last Glacial, direct and indirect evidence accumulated from geochemical data suggests that methane episodically released from hydrate trapped in the seafloor sediments [, 1995; , 2003; , 2000]. Here we show that marginal sediments from the western North Pacific contain a hopanoid 17α(H), 21β(H)-hop-22(29)-ene (diploptene) derived from the activity of methanotrophic bacteria in water column and/or surface sediment during a warming period (Interstadial 3) in the Last Glacial. The carbon isotopic compositions of diploptene range between -41.0‰ and -27.9‰ (relative to PDB). In the horizon indicative of a contribution of methanotrophic bacteria, foraminiferal isotope signals were also found with highly depleted 13C compositions of planktonic foraminifera (˜-1.9‰, PDB) and benthic foraminifera (˜-0.8‰, PDB), suggesting indirect records of enhanced incorporation of 13C-depleted CO2 formed by methanotrophic process that use 12C-enriched methane as their main source of carbon. From combined isotopic data of molecular (diploptene) and foraminifera, the most prominent signal of methane release was detected in the sediments deposited around 25.4 cal. kyr BP (˜100 year time span), corresponding to the Interstadial 3. This is the first evidence of methane hydrate instability in the open western North Pacific during the Last Glacial. Considering the glacial-interglacial hydrographic conditions in this region, the instability of methane hydrate may be modulated by intermediate water warming and/or the lowering of sea level. Our results suggest that the western North Pacific marginal regions may be a profound effect on rapid global warming climate changes during the Last Glacial.
Formation of an Oceanic Transform Fault During Continental Rifting
NASA Astrophysics Data System (ADS)
Illsley-Kemp, F.; Bull, J. M.; Keir, D.; Gerya, T.; Pagli, C.; Gernon, T.; Ayele, A.; Goitom, B.; Hammond, J. O. S.; Kendall, J. M.
2017-12-01
We integrate evidence from surface faults, geodetic measurements, local seismicity, and 3D numerical modelling of the subaerial Afar continental rift to show that an oceanic-style transform fault is forming during the final stages of continental breakup. Transform faults are a fundamental tenet of plate tectonics, connecting offset extensional segments of mid-ocean ridges, and are vital in palaeotectonic reconstructions of passive margins. The current consensus is that transform faults initiate after the onset of seafloor spreading. However this inference has been difficult to test given the lack of observations of transform fault formation. We present the first direct observation of transform fault initiation, and shed unprecedented light on their formation mechanisms. We demonstrate that they originate during late-stage continental rifting, earlier in the rifting cycle than previously thought. Our results have important implications for reconstructing the breakup history of the continents. Palaeotectonic reconstructions that use transform fault terminations as an indicator of the continent-ocean boundary may have placed the continent-ocean boundary landward of its true location. This will have led to an overestimation of the age of continental breakup of between 8-18 Myr. Our results therefore have significant implications for studies that rely on accurate dating of continental breakup events.
Research from Afar: Considerations for Conducting an Off-Site Research Project.
ERIC Educational Resources Information Center
Williams, Reg Arthur; Hagerty, Bonnie M.; Hoyle, Kenneth; Yousha, Steven M.; Abdoo, Yvonne; Andersen, Curt; Engler, Dorothy
1999-01-01
Critical elements in the success of off-site research projects include the following: negotiation, attention to personnel issues, communication, participation of research subjects, data management, and concern for privacy issues. (SK)
NASA Astrophysics Data System (ADS)
Pitcavage, E.; Furman, T.; Nelson, W. R.
2016-12-01
The East African Rift System (EARS) is the earth's largest continental divergent boundary and is an unparalleled natural laboratory for understanding magmatic processes related to continental rifting. A fundamental unresolved question in EARS magmatism is the degree to which volcanism and rifting are influenced by Cenozoic plume-related melting rather than older, tectonically-driven metasomatism. In the latter scenario, metasomatism by carbonatite or silicate magmas and/or fluids that accompanies tectonic events such as the Proterozoic Pan-African Orogeny will create geochemical heterogeneities and rheological weaknesses in the sub-continental lithospheric mantle (SCLM). In the Western Rift, abundant alkaline mafic lavas record significant contributions from metasomatized SCLM. Modification, destabilization and foundering of metasomatized SCLM has an increasingly recognized role in continental magmatism worldwide. Lithospheric drip magmatism occurs when foundered lithosphere devolatilizes and melts on descent. Lithospheric thinning is one consequence of this process, and may play a role in physical aspects of rifting. Geochemical and geophysical evidence that drip magmatism has occurred in several areas of the EARS, including Turkana, Chyulu Hills, and Oligocene HT2 flood basalts in Afar, suggests that this process is fundamentally related to the onset of successful rifting. We use geochemical characteristics of primitive lavas from the Bufumbira volcanic field in the Western Rift's Virunga Province to demonstrate that ancient, tectonically-driven metasomatism modified the SCLM and contributes to recent volcanism. Further, we identify geochemical signatures which indicate that lithospheric drip melting is the primary petrogenetic process generating these lavas. Sr-Nd-Pb-Hf isotopic data show that the northern portion of the Western Rift, including Bufumbira, requires magma sources distinct from the rest of the EARS. Trace element data show that Bufumbira lavas are derived from depths within the garnet stability field and that source mineralogy includes phlogopite with potential amphibole and zircon; and that extent of melting increased with depth of melting, a signature of lithospheric drip.
Crusius, John; Pedersen, Thomas F.; Kienast, Stephanie; Keigwin, Lloyd D.; Labeyrie, Laurent
2004-01-01
Elevated productivity in the northwest Pacific is suggested as a new possible control driving past intervals of low-O2 intermediate water along the western continental margin of North America. According to this mechanism, O2 consumption would occur near the site of formation of North Pacific Intermediate Water (NPIW), due to increased respiration of organic carbon in response to a high-productivity event. Evidence is provided for such a productivity increase during the Bølling-Ållerød interval (14.7–12.9 ka), a time when laminated sediments were deposited along the northern California margin. By this mechanism, low-O2 events in intermediate waters off the western North American margin could occur without significant changes in the rate of NPIW ventilation.
Rising synchrony controls western North American ecosystems
Bryan A. Black; Peter van der Sleen; Emanuele Di Lorenzo; Daniel Griffin; William J. Sydeman; Jason B. Dunham; Ryan R. Rykaczewski; Marisol García-Reyes; Mohammad Safeeq; Ivan Arismendi; Steven J. Bograd
2018-01-01
Along the western margin of North America, the winter expression of the North Pacific High (NPH) strongly influences interannual variability in coastal upwelling, storm track position, precipitation, and river discharge. Coherence among these factors induces covariance among physical and biological processes across adjacent marine and terrestrial ecosystems. Here, we...
NASA Astrophysics Data System (ADS)
Somoza, Luis; Medialdea, Teresa; Vázquez, Juan T.; González, Francisco J.; León, Ricardo; Palomino, Desiree; Fernández-Salas, Luis M.; Rengel, Juan
2017-04-01
Spain presented on 11 May 2009 a partial submission for delimiting the extended Continental Shelf in respect to the area of Galicia to the Commission on the Limits of the Continental Shelf (CLCS). The Galicia margin represents an example of the transition between two different types of continental margins (CM): a western hyperpextended margin and a northern convergent margin in the Bay of Biscay. The western Galicia Margin (wGM 41° to 43° N) corresponds to a hyper-extended rifted margin as result of the poly-phase development of the Iberian-Newfoundland conjugate margin during the Mesozoic. Otherwise, the north Galicia Margin (nGM) is the western end of the Cenozoic subduction of the Bay of Biscay along the north Iberian Margin (NIM) linked to the Pyrenean-Mediterranean collisional belt Following the procedure established by the CLCS Scientific and Technical Guidelines (CLCS/11), the points of the Foot of Slope (FoS) has to be determined as the points of maximum change in gradient in the region defined as the Base of the continental Slope (BoS). Moreover, the CLCS guidelines specify that the BoS should be contained within the continental margin (CM). In this way, a full-coverage multibeam bathymetry and an extensive dataset of up 4,736 km of multichannel seismic profiles were expressly obtained during two oceanographic surveys (Breogham-2005 and Espor-2008), aboard the Spanish research vessel Hespérides, to map the outer limit of the CM.In order to follow the criteria of the CLCS guidelines, two types of models reported in the CLCS Guidelines were applied to the Galicia Margin. In passive margins, the Commission's guidelines establish that the natural prolongation is based on that "the natural process by which a continent breaks up prior to the separation by seafloor spreading involves thinning, extension and rifting of the continental crust…" (para. 7.3, CLCS/11). The seaward extension of the wGM should include crustal continental blocks and the so-called Peridotite Ridge (PR), composed by serpentinized exhumed continental mantle. Thus, the PR should be regarded as a natural component of the continental margin since these seafloor highs were formed by hyperextension of the margin. Regarding convergent margins, the architecture of the nGM can be classified according the CLCS/11 as a "poor- or non-accretionary convergent continental margin" characterized by a poorly developed accretionary wedge, which is composed of: a large sedimentary apron mainly formed by large slumps and thrust wedges of igneous (ophiolitic/continental) body overlying subducting oceanic crust (Fig. 6.1B, CLCS/11). According to para. 6.3.6. (CLCS/11), the seaward extent of this type of continental convergent margins is defined by the seaward edge of the accretionary wedge. Applying this definition, the seaward extent of the margin is defined by the outer limit of the ophiolitic deformed body that marks the edge of the accretionary wedge. These geological criteria were strictly applied for mapping the BoS region, where the FoS were determinate by using the maximum change in gradient within this mapped region. Acknowledgments: Project for the Extension of the Spanish Continental according UNCLOS (CTM2010-09496-E) and Project CTM2016-75947-R
The origin of strike-slip tectonics in continental rifts
NASA Astrophysics Data System (ADS)
Ebinger, C. J.; Pagli, C.; Yun, S. H.; Keir, D.; Wang, H.
2016-12-01
Although continental rifts are zones of lithospheric extension, strike-slip tectonics is also accommodated within rifts and its origin remains controversial. Here we present a combined analysis of recent seismicity, InSAR and GPS derived strain maps to reveal that the plate motion in Afar is accommodated primarily by extensional tectonics in all rift arms and lacks evidences of regional scale bookshelf tectonics. However in the rifts of central Afar we identify crustal extension and normal faulting in the central part of the rifts but strike-slip earthquakes at the rift tips. We investigate if strike-slip can be the result of Coulomb stress changes induced by recent dyking but models do not explain these earthquakes. Instead we explain strike-slips as shearing at the tips of a broad zone of spreading where extension terminates against unstretched lithosphere. Our results demonstrate that plate spreading can develop both strike-slip and extensional tectonics in the same rifts.
Caring from Afar: Asian H1B Migrant Workers and Aging Parents.
Lee, Yeon-Shim; Chaudhuri, Anoshua; Yoo, Grace J
2015-09-01
With the growth in engineering/technology industries, the United States has seen an increase in the arrival of highly skilled temporary migrant workers on H1B visas from various Asian countries. Limited research exists on how these groups maintain family ties from afar including caring for aging parents. This study explores the experiences and challenges that Asian H1B workers face when providing care from a distance. A total of 21 Chinese/Taiwanese, Korean, and Indian H1B workers participated in in-depth qualitative interviews. Key findings indicate that despite distance, caring relationships still continue through regular communications, financial remittances, and return visits, at the same time creating emotional, psychological, and financial challenges for the workers. Findings highlight the need for further research in understanding how the decline of aging parent's health impacts the migrants' adjustment and health in the United States.
Mesozoic evolution of the northeast African shelf margin, Libya and Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aadland, R.K.; Schamel, S.
1988-08-01
The present tectonic features of the northeast African shelf margin between the Nile delta and the Gulf of Sirte are products of (1) precursory late Paleozoic basement arches, (2) early Mesozoic rifting and plate separation, and (3) Late Cretaceous structural inversion. Isopach and structural maps, cross sections, and sediment accumulation (geohistory) curves constructed from 89 wells in the Western Desert and 27 wells in northeastern Libya depict the structural and stratigraphic development of the northeast African shelf margin.
Forced folding in a salty basin: Gada'-Ale in the Afar
NASA Astrophysics Data System (ADS)
Rafflin, Victoria; Hetherington, Rachel; Hagos, Miruts; van Wyk de Vries, Benjamin
2017-04-01
The Gada'-Ale Volcano in the Danakil Depression of Ethiopia is a curious shield-like, or flat dome-like volcanic centre in the Afar Rift. It has several fissure eruptions seen on its mid and lower flanks. It has an even more curious ring structure on its western side that has been interpreted as a salt diapir. The complex lies the central part of the basin where there are 1-2 km thick salt deposits. The area was active in 1990's (Amelung et al 2000) with no eruptive activity, but a possible intrusion. There was also an intrusion north of Gada'-Ale at Dallol in 2005 (Nobile et al 2012). Using Google Earth imagery, we have mapped the volcano, and note that: a) the main edifice has a thin skin of lava lying light coloured rock; b) that these thin deposits are sliding down the flank of volcano, and thrusting at the base. In doing so, they are breaking into detached plates. The light colour of the deposits, and the ability of the rock to slide on them suggest that are salt; Fractures on and around the volcano form curved patterns, around raised areas with several km diameter. These could be surface expressions of shallow sills. Putting the observations together with the known geology of adjacent centres like Dallol and Alu, we suggest that Gada'-Ale is a forced fold, created over a sill that has either bulged into a laccolith, or risen as a saucer-shaped sill. The upraised salt has caused the thin veneer of volcanics to slide off. That there are eruptive fissures on Gada'-Ale, and possible sill intrusions around the base suggests that the centre lies over a complex of sills that have gradually intruded and bulged the structure to its present level. Eruptions have contribute only a small amount to the whole topography of the edifice. We hope to visit the volcano in March and will being hot-off-the press details back to the EGU!
Geochemical signals of progressive continental rupture in the Main Ethiopian Rift
NASA Astrophysics Data System (ADS)
Furman, T.; Bryce, J.; Yirgu, G.; Ayalew, D.; Cooper, L.
2003-04-01
Mafic volcanics of the Main Ethiopian Rift record the development of magmatic rift segments during continental extension. The Ethiopian Rift is one arm of a triple junction that formed above a Paleogene mantle plume, concurrent with eruption of flood basalts ca. 30 Ma across northern Ethiopian and Yemen. The geochemistry of Ethiopian Rift lavas thus provides insight into processes associated with the shift from mechanical (lithospheric) to magmatic (asthenospheric) segmentation in the transitional phase of continental rifting. Quaternary basalts from five volcanic centers representing three magmatic segments display along-axis geochemical variations that likely reflect the degree of rifting and magma supply, which increase abruptly with proximity to the highly-extended Afar region. To first order, the geochemical data indicate a decreasing degree of shallow-level fractionation and greater involvement of depleted or plume-like mantle source materials in basalts sampled closer to the Afar. These spatially controlled geochemical signatures observed in contemporaneous basalts are similar to temporal variations documented in southern Ethiopia, where Quaternary lavas indicate a greater degree of crustal extension than those erupted at the onset of plume activity. Primitive Ethiopian Rift basalts have geochemical signatures (e.g., Ce/Pb, La/Nb, Ba/Nb, Ba/Rb, U/Th) that overlap ocean island basalt compositions, suggesting involvement of sub-lithospheric source materials. The estimated depth of melting (65-75 km) is shallower than values obtained for young primitive mafic lavas from the Western Rift and southern Kenya as well as Oligocene Ethiopian flood basalts from the onset of plume-driven activity. Basalts from the Turkana region (N. Kenya) and Erta 'Ale (Danakil depression) reflect melting at shallower levels, corresponding to the greater degree of crustal extension in these provinces. Preliminary Sr and Nd isotopic data trend towards primitive earth values, consistent with values observed previously in central Ethiopia that are associated with moderately high 3He/4He values (<19 RA; Marty et al. 1996) and interpreted as reflecting involvement of a mantle plume. Taken together, these data support a model in which upwelling plume material sampled in central Ethiopia incorporates depleted mantle during ascent beneath the more highly extended portions of the African Rift.
NASA Astrophysics Data System (ADS)
Keranen, Katie M.; Klemperer, Simon L.; Julia, Jordi; Lawrence, Jesse F.; Nyblade, Andy A.
2009-05-01
The Main Ethiopian Rift (MER) is a classic narrow rift that developed in hot, weak lithosphere, not in the initially cold, thick, and strong lithosphere that would be predicted by common models of rift mode formation. Our new 1-D seismic velocity profiles from Rayleigh wave/receiver function joint inversion across the MER and the Ethiopian Plateau indicate that hot lower crust and upper mantle are present throughout the broad region affected by Oligocene flood basalt volcanism, including both the present rift and the adjacent Ethiopian Plateau hundreds of kilometers from the rift valley. The region of hot lithosphere closely corresponds to the region of flood basalt volcanism, and we interpret that the volcanism and thermal perturbation were jointly caused by impingement of the Afar plume head. Across the affected region, Vs is 3.6-3.8 km/s in the lowermost crust and ≤4.3 km/s in the uppermost mantle, both ˜0.3 km/s lower than in the eastern and western branches of the East African Rift System to the south. We interpret the low Vs in the lower crust and upper mantle as indicative of hot lithosphere with partial melt. Our results lead to a hybrid rift mode, in which the brittle upper crust has developed as a narrow rift along the Neoproterozoic suture between East and West Gondwana, while at depth lithospheric deformation is distributed over the broad region (˜400 km wide) thermally perturbed by the broad thermal upwelling associated with the Afar plume head. Development of both the East African Rift System to the south (in cold, strong lithosphere) and the MER to the north (in hot, weak lithosphere) as narrow rifts, despite their vastly different initial thermal states and depth-integrated lithospheric strength, indicates that common models of rift mode formation that focus only on temperature, thickness, and vertical strength profiles do not apply to these classic continental rifts. Instead, inherited structure and associated lithospheric weaknesses are the primary control on the mode of extension.
Keranen, K.M.; Klemperer, S.L.; Julia, J.; Lawrence, J. F.; Nyblade, A.A.
2009-01-01
[1] The Main Ethiopian Rift (MER) is a classic narrow rift that developed in hot, weak lithosphere, not in the initially cold, thick, and strong lithosphere that would be predicted by common models of rift mode formation. Our new 1-D seismic velocity profiles from Rayleigh wave/receiver function joint inversion across the MER and the Ethiopian Plateau indicate that hot lower crust and upper mantle are present throughout the broad region affected by Oligocene flood basalt volcanism, including both the present rift and the adjacent Ethiopian Plateau hundreds of kilometers from the rift valley. The region of hot lithosphere closely corresponds to the region of flood basalt volcanism, and we interpret that the volcanism and thermal perturbation were jointly caused by impingement of the Afar plume head. Across the affected region, Vs is 3.6-3.8 km/s in the lowermost crust and ???4.3 km/s in the uppermost mantle, both ??0.3 km/s lower than in the eastern and western branches of the East African Rift System to the south. We interpret the low Vs in the lower crust and upper mantle as indicative of hot lithosphere with partial melt. Our results lead to a hybrid rift mode, in which the brittle upper crust has developed as a narrow rift along the Neoproterozoic suture between East and West Gondwana, while at depth lithospheric deformation is distributed over the broad region (??400 km wide) thermally perturbed by the broad thermal upwelling associated with the Afar plume head. Development of both the East African Rift System to the south (in cold, strong lithosphere) and the MER to the north (in hot, weak lithosphere) as narrow rifts, despite their vastly different initial thermal states and depth-integrated lithospheric strength, indicates that common models of rift mode formation that focus only on temperature, thickness, and vertical strength profiles do not apply to these classic continental rifts. Instead, inherited structure and associated lithospheric weaknesses are the primary control on the mode of extension. ?? 2009 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Baker, J. A.; Thirlwall, M. F.; Menzies, M. A.
1996-07-01
Oligocene flood basalts from western Yemen have a relatively limited range in initial isotopic composition compared with other continental flood basalts: 87Sr/86Sr = 0.70365-0.70555 ; 143Nd/144Nd = 0.5129-0.51248 ( ɛNd = +6.0 to -2.4) ; 206pb/204Pb = 17.9-19.3 . Most compositions lie outside the isotopic ranges of temporally and spatially appropriate mantle source compositions observed in this area, i.e., Red Sea/Gulf of Aden MORB mantle, the Afar plume, and Pan-African lithospheric mantle Correlations between indices of fractionation, silica, and isotope ratios suggest that crustal contamination has substantially modified the primary isotopic and incompatible trace element characteristics of the flood basalts. However, significant scatter in these correlations was produced by: (a) the heterogeneous isotopic composition of Pan-African crust; (b) the difference in susceptibility of magmas to contamination as a result of variable incompatible trace element contents in primary melts produced by differing degrees of partial melting; (c) the presence or absence of plagioclase as a fractionating phase generating complex contamination trajectories for Sr; (d) sampling over a wide area not representing a single coherent magmatic system; and (e) variation in contamination mechanisms from assimilation associated with fractionation (AFC) to assimilation by hot mafic magmas with little concomitant fractionation. The presence of plagioclase as a fractionating phase in some suites that were undergoing AFC requires assimilation to have taken place within the crust and, coupled with the limited LREE-enrichment accompanying isotopic variations, excludes the possibility that an AFC-type process took place during magma transfer through the lithospheric mantle. Isotopic compositions of some of the inferred crustal assimilants are similar to those postulated by other workers for an enriched lithospheric mantle source of many flood basalts in southwestern Yemen, Ethiopia, and Djibouti. The western Yemen flood basalts contain 0-30% crust which largely swamps their primary lead isotopic signature, but the primary SrNd isotopic signature is close to that of the least contaminated and isotopically most depleted flood basalts. LREE/HFSE and LILE/HFSE ratios also correlate with isotopic data as a result of crustal contamination. However, Nb/La and K/Nb ratios of >1.1 and <150, respectively, in least contaminated samples require an OIB-like source. The pre-contamination isotopic signature is estimated to be: 87Sr/86Sr ˜ 0.7036; 143Nd/144Nd ˜ 0.51292 ; 206Pb/204Pb ˜ 18.4-19.0 . This, coupled with low LILE/HFSE ratios, suggest the source has characteristics akin to the Afar plume. A mantle source isotopically more depleted than Bulk Earth, but not as depleted as MORB, coupled with LILE depletion, also characterises other examples of plume-derived flood volcanism. This mantle reservoir is responsible for the second largest outbursts of volcanism on Earth and has radiogenic isotopic characteristics akin to PREMA mantle, but the incompatible trace element signature of HIMU mantle.
Li, Jun; Kong, Wei-jia; Zhao, Xue-yan; Hu, Yu-juan
2008-11-01
To set up the oxidative stress experimental model of rat cochlea with stria vascularis marginal cells injury induced by hydrogen peroxide in vitro. Cultured marginal cells of rat were treated by 200, 300, 400, 600 and 800 micromol/L hydrogen peroxide (H(2)O(2)) for 0.5, 1, 2, 4, 16 and 24 hours, respectively. Cell viability was assessed by the CCK-8 assay. The content of the lipid peroxidation production malondialdehyde (MDA) were detected in H(2)O(2) induced marginal cells injury with different concentration H(2)O(2). Apoptosis was assessed by flow cytometry by propidium sodium staining. The expression of the cleaved-caspase-3 was assessed by Western blot. Being exposed to H(2)O(2), marginal cells displayed nuclear pyknosis and margination, cytoplasmic condensation, cell shrinkage and formation of membrane and bounded apoptotic bodies. A time-dependent and dose-dependent decrease of cellular viability was detected with the treatment of H(2)O(2). Cellular maleic dialdehyde was generated in proportion to the concentration of H(2)O(2) at 2 hours and the number of apoptotic cells increased significantly (P < 0. 05). Western blot showed the expression of the cleaved-caspase-3 increased when 200 micromol/L, 300 micromol/L and 400 micromol/L H(2)O(2) treated cultured marginal cells. Thereafter the expression of the cleaved-caspase-3 decreased with 600 micromol/L H(2)O(2) and with 800 micromol/L H(2)O(2) the expression of cleaved-caspase-3 was weak. The findings indicated that the experimental model can be established successfully using cultured cells exposed to H(2)O(2) and activation of caspase-3 is associated with hydrogen peroxide induced rat marginal cells the oxidative stress injury.
New Cultural Economies of Marginality: Revisiting the West Coast, South Island, New Zealand
ERIC Educational Resources Information Center
Conradson, David; Pawson, Eric
2009-01-01
Marginal regions have been the subject of political concern and remedial action in western states for several decades now. The West Coast of the South Island of New Zealand is an interesting case study in this regard, for recent economic growth has confounded earlier expectations of post-restructuring decline, while also contradicting several of…
ERIC Educational Resources Information Center
Yang, Peidong
2014-01-01
This paper presents an ethnographic interpretation of education as a social technology of state sovereign power and governing in the borderlands of contemporary China. Illustrated with snapshots from ethnographic fieldwork conducted in a Pumi (Premi) ethnic village located along China's south-western territorial margins, it is argued that the…
NASA Astrophysics Data System (ADS)
Collot, J.; Patriat, M.; Etienne, S.; Rouillard, P.; Soetaert, F.; Juan, C.; Marcaillou, B.; Palazzin, G.; Clerc, C.; Maurizot, P.; Pattier, F.; Tournadour, E.; Sevin, B.; Privat, A.
2017-10-01
Classically, deepwater fold-and-thrust belts are classified in two main types, depending if they result from near- or far-field stresses and the understanding of their driving and triggering mechanism is poorly known. We present a geophysical data set off the western margin of New Caledonia (SW Pacific) that reveals deformed structures of a deepwater fold-and-thrust belt that we interpret as a near-field gravity-driven system, which is not located at a rifted passive margin. The main factor triggering deformation is inferred to be oversteepening of the margin slope by postobduction isostatic rebound. Onshore erosion of abnormally dense obducted material, combined with sediment loading in the adjacent basin, has induced vertical motions that have caused oversteepening of the margin. Detailed morphobathymetric, seismic stratigraphic, and structural analysis reveals that the fold-and-thrust belt extends 200 km along the margin, and 50 km into the New Caledonia Trough. Deformation is rooted at depths greater than 5 km beneath the seafloor, affects an area of 3,500 km2, and involves a sediment volume of approximately 13,000 km3. This deformed belt is organized into an imbricate fan system of faults, and one out-of-sequence thrust fault affects the seabed. The thrust faults are deeply rooted in the basin along a low-angle floor thrust and connected to New Caledonia Island along a major detachment. This study not only provides a better knowledge of the New Caledonia margin but also provides new insight into the mechanisms that trigger deepwater fold-and-thrust belts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trevena, A.S.; Varga, R.J.; Collins, I.D.
Salin basin of central Myanmar is a tertiary fore-arc basin that extends over 10,000 mi{sup 2} and contains 30,000+ ft of siliciclastic rocks. In the western Salin basin, Tertiary deltaic and fluvial formations contain thousands of feet of lithic sandstones that alternate with transgressive shallow marine shales. Facies and paleocurrent studies indicate deposition by north-to-south prograding tidal deltas and associated fluvial systems in a semi-restricted basin. Presence of serpentinite and volcanic clasts in Tertiary sandstones may imply that the basin was bounded to the east by the volcanic arc and to the west by a fore-arc accretionary ridge throughout muchmore » of the Cenozoic. Salin basin is currently defined by a regional north/south-trending syncline with uplifts along the eastern and western margins. Elongate folds along the eastern basin margin verge to the east and lie above the reverse faults that dip west; much of Myanmar's present hydrocarbon production is from these structures. Analogous structures occur along the western margin, but verge to the west and are associated with numerous hydrocarbon seeps and hand-dug wells. These basin-bounding structures are the result of fault-propagation folding. In the western Salin basin, major detachments occur within the shaly Tabyin and Laungshe formations. Fault ramps propagated through steep forelimbs on the western sides of the folds, resulting in highly asymmetric footwall synclines. Stratigraphic and apatite fission track data are consistent with dominantly Plio-Pleistocene uplift, with limited uplift beginning approximately 10 Ma. Paleostress analysis of fault/slickenside data indicates that fold and thrust structures formed during regional east/west compression and are not related in any simple way to regional transpression as suggested by plate kinematics.« less
Western Continental Margin of India - Re-look using potential field data
NASA Astrophysics Data System (ADS)
Rajaram, M.; S P, A.
2008-05-01
The Western Continental Margin of India (WCMI) evolved as a result of rifting between India and Madagascar that took place during mid Cretaceous (~88Ma).The WCMI is equally important in terms of natural resources as well as research point of view. The major tectonic elements in the western offshore includes the Laxmi and Chagos- Laccadive ridge dividing the WCMI and the adjoining Arabian sea into two basins, Pratap Ridge, Alleppey platform etc. Different theories have been proposed for the evolution of each of these tectonic elements. In the current paper we look at geopotential data on the west coast of India and the western off-shore. The data sets utilized include Satellite derived High Resolution Free Air Gravity data over the off-shore, Bouguer data onland, Champ Satellite Magnetic data, published Marine Magnetic data collected by ONGC, NIO, ground magnetic data over west cost collected by IIG and available aeromagnetic data. From the free air gravity anomaly the structural details of the western offshore can be delineated. The Euler depths of FAG depict deep solutions associated with Pratap Ridge, Comorin Ridge, the west coast fault and the Laxmi Ridge. These may be associated with continental margin and continental fragments. From the aeromagnetic and marine magnetic data it is evident that the West Coast Fault is dissected at several places. The shallow circular feature associated with Bombay High is evident both on the FAG and the analytic signal derived from satellite Magnetic data. The crustal magnetic thickness from MF5 lithospheric model of the Champ appears to suggest that the continental crust extends up to the Chagos- Laccadive ridge. Based on the analysis of these geopotential data sets the various theories for the evolution of the WCMI will be evaluated and these results will be presented.
NASA Astrophysics Data System (ADS)
Bloomer, S. H.; Stern, R. J.
2002-12-01
The initiation of subduction is probably the geologic process most responsible for large-scale changes in the motions and interactions of plates. To the extent that subduction drives mantle convection, the initiation of subduction also drives major changes in the convection of the mantle. The mechanisms of subduction initiation remain, however, obscure, but it is becoming increasingly clear that Eocene sequences in the western Pacific provide an outstanding opportunity to study this phenomenon. The major subduction zones of the western Pacific (Tonga, Mariana, Izu, Bonin) all first produced volcanic products in early Eocene time (55-48 Ma). The similarity of timing and of the characteristics of these margins suggests that there may be a common process involved. There is no evidence in the forearc crust of any of these convergent margins for proximity to a continental margin at the time of initiation. Current models of plate motion (particularly given recent reinterpretations of the Hawaiian hotspot bend) show no major plate reorganization that might have provided excess compressional stress across the western Pacific margins. The only mechanically viable mechanism for subduction initiation in the region appears to be spontaneous failure due to gravitational instability of cold, old oceanic lithosphere. There are a number of geologic and geophysical unknowns in assessing the viability of such spontaneous nucleation. The lithosphere becomes stronger as it ages as well as becoming denser. Failure of such crust to form a nascent subduction zone requires a crustal weakness such as a fault and a mechanism to decrease the bending strength of the plate. Paleomagnetic data and plate reconstructions for both the IBM and the Tonga-Kermedec region provide no clear answer to these issues and in fact conflict with interpretations placing large transform faults at the site of subduction nucleation. The large-scale rotations inferred from those data for the IBM conflict, or at least complicate, geologic observations around the Philippine Sea. We will review the currrent structural, mechanical, and geologic constraints on pre-subduction geometry of the western Pacific and will discuss the most essential problems to be solved if we are to constrain how subduction began in the Pacific in Eocene time.
NASA Astrophysics Data System (ADS)
Dai, H. K.; Zheng, J.; Su, Y. P.; Xiong, Q.; Pan, S. K.
2017-12-01
The nature of the sub-continental lithospheric mantle (SCLM) beneath the western North China Craton (NCC) is poorly known, which hinders understanding the cratonic response to the southward subduction of the Paleo-Asian Ocean. Mineral chemical data of spinel lherzolite xenoliths from newly discovered Cenozoic Langshan basalts in the northwestern part of the craton have been integrated with data from other localities across the western NCC, to put constrains on the SCLM nature and to explore the reworking processes involved. Compositions of mineral cores (i.e., Mg# in olivine = 88 91) and P-T estimates ( 1.2 GPa, 950 oC) suggest the Langshan xenoliths/xenocrysts represent fragments of the uppermost SCLM and experienced <15% melt extraction. These characteristics are similar to those of mantle xenoliths from other locaties (Siziwangqi and Hannuoba) along the northern margin of the western NCC. Disequilibrium characteristics are observed in xenoliths/xenocrysts in this study, including pyroxene spongy coronae and compositionally zoned olivine. They are interpreted to be induced by partial melting and by ironic diffusion with silicate melts in the mantle respectively, shortly before the eruption of host basalt. Metasomatism is recorded in clinopyroxene cores by concomitant enrichments in light rare earth elements and high field strength elements and was likely related to the migration of silicate melts derived from a mantle modified by slab melts during the Paleozoic time. The SCLM along the northern margin of the western NCC is fertile in nature constrained by mantle xenoliths from several localities (Langshan in this study, Siziwangqi and Hannuoba in references). Considering 1) the coexistence of fertile lithospheric mantle (similar to the Phanerozoic SCLM of the eastern NCC) and the overlying ancient continental crust, and 2) the sharp decrease in lithospheric thickness from the inner part to the northern margin of the western NCC, the SCLM beneath the northwestern part should have been strongly rejuvenated or replaced by fertile and non-cratonic mantle. Combined with other geological evidence on the northwestern margin, the mantle replacement and metasomatism were likely triggered by southward subduction of the Paleo-Asian Ocean.
The Maliac Ocean: the origin of the Tethyan Hellenic ophiolites
NASA Astrophysics Data System (ADS)
Ferriere, Jacky; Baumgartner, Peter O.; Chanier, Frank
2016-10-01
The Hellenides, part of the Alpine orogeny in Greece, are rich in ophiolitic units. These ophiolites and associated units emplaced during Jurassic obduction, testify for the existence of one, or several, Tethyan oceanic realms. The paleogeography of these oceanic areas has not been precisely described. However, all the authors now agree on the presence of a main Triassic-Jurassic ocean on the eastern side of the Pelagonian zone (Vardar Domain). We consider that this Maliac Ocean is the most important ocean in Greece and Albania. Here, we limit the detailed description of the Maliac Ocean to the pre-convergence period of approximately 70 Ma between the Middle Triassic rifting to the Middle Jurassic convergence period. A quick overview on the destiny of the different parts of the Maliac Ocean during the convergence period is also proposed. The studied exposures allow to reconstruct: (1) the Middle to Late Triassic Maliac oceanic lithosphere, corresponding to the early spreading activity at a Mid-Oceanic Ridge; (2) the Western Maliac Margin, widely exposed in the Othris and Argolis areas; (3) the Eastern-Maliac Margin in the eastern Vardar domain (Peonias and Paikon zones). We established the following main characteristics of the Maliac Ocean: (1) the Middle Triassic rifting marked by a rapid subsidence and volcanism seems to be short-lived (few My); (2) the Maliac Lithosphere is only represented by Middle to Late Triassic units, especially the Fourka unit, composed of WPB-OIB and MORB pillow-lavas, locally covered by a pelagic Middle Triassic to Middle Jurassic sedimentary cover; (3) the Western Margin is the most complete and our data allow to distinguish a proximal and a deeper distal margin; (4) the evolution of the Eastern Margin (Peonias and Paikon series) is similar to that of the W-Margin, except for its Jurassic terrigenous sediments, while the proximal W-Margin was dominated by calcarenites; (5) we show that the W- and E-margins are not Volcanic Passive Margins; and (6) during the Middle Jurassic convergence period, the Eastern Margin became an active margin and both margins were affected by obduction processes.
Metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera
Nokleberg, Warren J.; Bundtzen, Thomas K.; Eremin, Roman A.; Ratkin, Vladimir V.; Dawson, Kenneth M.; Shpikerman, Vladimir I.; Goryachev, Nikolai A.; Byalobzhesky, Stanislav G.; Frolov, Yuri F.; Khanchuk, Alexander I.; Koch, Richard D.; Monger, James W.H.; Pozdeev, Anany I.; Rozenblum, Ilya S.; Rodionov, Sergey M.; Parfenov, Leonid M.; Scotese, Christopher R.; Sidorov, Anatoly A.
2005-01-01
The Proterozoic and Phanerozoic metallogenic and tectonic evolution of the Russian Far East, Alaska, and the Canadian Cordillera is recorded in the cratons, craton margins, and orogenic collages of the Circum-North Pacific mountain belts that separate the North Pacific from the eastern North Asian and western North American Cratons. The collages consist of tectonostratigraphic terranes and contained metallogenic belts, which are composed of fragments of igneous arcs, accretionary-wedge and subduction-zone complexes, passive continental margins, and cratons. The terranes are overlapped by continental-margin-arc and sedimentary-basin assemblages and contained metallogenic belts. The metallogenic and geologic history of terranes, overlap assemblages, cratons, and craton margins has been complicated by postaccretion dismemberment and translation during strike-slip faulting that occurred subparallel to continental margins. Seven processes overlapping in time were responsible for most of metallogenic and geologic complexities of the region (1) In the Early and Middle Proterozoic, marine sedimentary basins developed on major cratons and were the loci for ironstone (Superior Fe) deposits and sediment-hosted Cu deposits that occur along both the North Asia Craton and North American Craton Margin. (2) In the Late Proterozoic, Late Devonian, and Early Carboniferous, major periods of rifting occurred along the ancestral margins of present-day Northeast Asia and northwestern North America. The rifting resulted in fragmentation of each continent, and formation of cratonal and passive continental-margin terranes that eventually migrated and accreted to other sites along the evolving margins of the original or adjacent continents. The rifting also resulted in formation of various massive-sulfide metallogenic belts. (3) From about the late Paleozoic through the mid-Cretaceous, a succession of island arcs and contained igneous-arc-related metallogenic belts and tectonically paired subduction zones formed near continental margins. (4) From about mainly the mid-Cretaceous through the present, a succession of continental-margin igneous arcs (some extending offshore into island arcs) and contained metallogenic belts, and tectonically paired subduction zones formed along the continental margins. (5) From about the Jurassic to the present, oblique convergence and rotations caused orogen-parallel sinistral, and then dextral displacements within the plate margins of the Northeast Asian and North American Cratons. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more continuous arcs, subduction zones, passive continental margins, and contained metallogenic belts. These fragments were subsequently accreted along the margins of the expanding continental margins. (6) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs, subduction zones, and contained metallogenic belts to continental margins. In this region, the multiple arc accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, formation of collision-related metallogenic belts, and uplift; this resulted in the substantial growth of the North Asian and North American continents. (7) In the middle and late Cenozoic, oblique to orthogonal convergence of the Pacific Plate with present-day Alaska and Northeast Asia resulted in formation of the present ring of volcanoes and contained metallogenic belts around the Circum-North Pacific. Oblique convergence between the Pacific Plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western part of the Aleutian- Wrangell arc. Associated with dextral-slip faulting was crustal extrusion of terranes from western Alaska into the Bering Sea.
Understanding the nature of mantle upwelling beneath East-Africa
NASA Astrophysics Data System (ADS)
Civiero, Chiara; Hammond, James; Goes, Saskia; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, Mike; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rumpker, Georg; Stuart, Graham
2014-05-01
The concept of hot upwelling material - otherwise known as mantle plumes - has long been accepted as a possible mechanism to explain hotspots occurring at Earth's surface and it is recognized as a way of removing heat from the deep Earth. Nevertheless, this theory remains controversial since no one has definitively imaged a plume and over the last decades several other potential mechanisms that do not require a deep mantle source have been invoked to explain this phenomenon, for example small-scale convection at rifted margins, meteorite impacts or lithospheric delamination. One of the best locations to study the potential connection between hotspot volcanism at the surface and deep mantle plumes on land is the East African Rift (EAR). We image seismic velocity structure of the mantle below EAR with higher resolution than has been available to date by including seismic data recorded by stations from many regional networks ranging from Saudi Arabia to Tanzania. We use relative travel-time tomography to produce P- velocity models from the surface down into the lower mantle incorporating 9250 ray-paths in our model from 495 events and 402 stations. We add smaller earthquakes (4.5 < mb < 5.5) from poorly sampled regions in order to have a more uniform data coverage. The tomographic results allow us to image structures of ~ 100-km length scales to ~ 1000 km depth beneath the northern East-Africa rift (Ethiopia, Eritrea, Djibouti, Yemen) with good resolution also in the transition zone and uppermost lower mantle. Our observations provide evidence that the shallow mantle slow seismic velocities continue trough the transition zone and into the lower mantle. In particular, the relatively slow velocity anomaly beneath the Afar Depression extends up to depths of at least 1000 km depth while another low-velocity anomaly beneath the Main Ethiopian Rift seems to be present in the upper mantle only. These features in the lower mantle are isolated with a diameter of about 400 km indicating deep multiple sources of upwelling that converge in broader low-velocity bodies along the rift axis at shallow depths. Moreover, our preliminary models show that the low-velocity feature in the transition zone and uppermost lower mantle beneath Afar trends to the northeast beneath the Red Sea and Saudi Arabia as opposed to being linked to the African Superplume towards the southwest.
NASA Astrophysics Data System (ADS)
Martina, Federico; Canelo, Horacio N.; Dávila, Federico M.; de Hollanda, María Helena M.; Teixeira, Wilson
2018-04-01
In the Famatina range, Sierras Pampeanas of Argentina (SW Gondwana), subvertical calc-alkaline lamprophyric dike swarms crop out through >300 km. The dikes cut Ordovician units with a prominent NW-SE trending and are covered by continental sedimentary successions of Pennsylvanian to Permian age. The dikes show a strong structural control associated with Riedel fault systems. Detailed field analysis suggested a ∼N-S opening direction oblique to the attitude of dike walls and a left-lateral transtensional tectonics during the emplacement. 40Ar/39Ar geochronology of a lamprophyric sample defined a crystallization age (plateau; whole rock) of 357.1 ± 7.1 Ma (MSWD = 2.3). Coetaneous ductile zones with dominant strike-slip motion, documented along western Argentina for >600 km, suggest a regional event in SW Gondwana during the Mississippian. We propose that this deformation was the result of the counterclockwise fast rotation of Gondwana between 365 and 345 Ma, when the Famatina range and western Argentina occupied a sub-polar position. A transform margin along SW Gondwana better explains our (and others) data rather than a subduction margin. This scenario is also consistent with the occurrence of A-type granites and normal-fault basins within the foreland as well as bimodal volcanics.
Deltaic sedimentation and stratigraphic sequences in post-orogenic basins, Western Greece
NASA Astrophysics Data System (ADS)
Piper, David J. W.; Kontopoulos, N.; Panagos, A. G.
1988-03-01
Post-orogenic basin sediments in the gulfs of Corinth, Patras and Amvrakia, on the western coast of Greece, occur in four tectonic settings: (1) true graben; (2) simple and complex half graben; (3) shallow half graben associated with the high-angel surface traces of thrust faults; and (4) marginal depressions adjacent to graben in which sediment loading has occurred. Late Quaternary facies distribution has been mapped in all three basins. Sea level changes, interacting with the apparently fortuitous elevation of horsts at basin margins, result in a complex alternation of well-mixed marine, stratified marine, brackish and lacustrine facies. Organic carbon contents of muds are high in all but the well-mixed marine facies. Basin margin slope is the most important determinant of facies distribution. The steep slopes of the Gulf of Corinth half graben result in fan-deltas which deliver coarse sediments in turbidity currents to the deep basin floor. Where gradients are reduced by marginal downwarping (Gulf of Patras) or on the gentle slopes of thrust-related half graben (Gulf of Amvrakia) coarse sediments are trapped on the subaerial delta or the coastal zone, and the fine sediment reaching the basin floor appears derived mainly from muddy plumes during winter floods.
NASA Astrophysics Data System (ADS)
Nehyba, Slavomír
2018-02-01
Two coarse-grained Gilbert-type deltas in the Lower Badenian deposits along the southern margin of the Western Carpathian Foredeep (peripheral foreland basin) were newly interpreted. Facies characterizing a range of depositional processes are assigned to four facies associations — topset, foreset, bottomset and offshore marine pelagic deposits. The evidence of Gilbert deltas within open marine deposits reflects the formation of a basin with relatively steep margins connected with a relative sea level fall, erosion and incision. Formation, progradation and aggradation of the thick coarse-grained Gilbert delta piles generally indicate a dramatic increase of sediment supply from the hinterland, followed by both relatively continuous sediment delivery and an increase in accommodation space. Deltaic deposition is terminated by relatively rapid and extended drowning and is explained as a transgressive event. The lower Gilbert delta was significantly larger, more areally extended and reveals a more complicated stratigraphic architecture than the upper one. Its basal surface represents a sequence boundary and occurs around the Karpatian/Badenian stratigraphic limit. Two coeval deltaic branches were recognized in the lower delta with partly different stratigraphic arrangements. This different stratigraphic architecture is mostly explained by variations in the sediment delivery and /or predisposed paleotopography and paleobathymetry of the basin floor. The upper delta was recognized only in a restricted area. Its basal surface represents a sequence boundary probably reflecting a higher order cycle of a relative sea level rise and fall within the Lower Badenian. Evidence of two laterally and stratigraphically separated coarse-grained Gilbert deltas indicates two regional/basin wide transgressive/regressive cycles, but not necessarily of the same order. Provenance analysis reveals similar sources of both deltas. Several partial source areas were identified (Mesozoic carbonates of the Northern Calcareous Alps and the Western Carpathians, crystalline rocks of the eastern margin of the Bohemian Massif, older sedimentary infill of the Carpathian Foredeep and/or the North Alpine Foreland Basin, sedimentary rocks of the Western Carpathian/Alpine Flysch Zone).
ERIC Educational Resources Information Center
Mfum-Mensah, Obed
2017-01-01
This paper employs postcolonial framework to discuss the contradictions of promoting western education in Islamic communities in sub-Saharan Africa (SSA). Prior to colonization, Islamic education was an important socializing process that instilled strong Islamic identity in Islamic communities in SSA. European encounters in SSA and the…
Mesozoic to Recent, regional tectonic controls on subsidence patterns in the Gulf of Mexico basin
NASA Astrophysics Data System (ADS)
Almatrood, M.; Mann, P.; Bugti, M. N.
2016-12-01
We have produced subsidence plots for 26 deep wells into the deeper-water areas of the Gulf of Mexico (GOM) in order to identify regional tectonic controls and propose tectonic phases. Our results show three sub-regions of the GOM basin that have distinctive and correlative subsidence patterns: 1) Northern GOM from offshore Texas to central Florida (9 wells) - this area is characterized by a deeply buried, Triassic-early Jurassic rift event that is not represented by our wells that penetrate only the post-rift Cretaceous to recent passive margin phase. The sole complexity in the passive margin phase of this sub-region is the acceleration of prograding clastic margins including the Mississippi fan in Miocene time; 2) Southeastern GOM in the Straits of Florida and Cuba area (5 wells) - this area shows that the Cretaceous passive margin overlying the rift phase is abruptly drowned in late Cretaceous as this part of the passive margin of North America that is flexed and partially subducted beneath the Caribbean arc as it encroaches from the southwest to eventually collide with the North American passive margin in the Paleogene; 3) Western GOM along the length of the eastern continental margin of Mexico (12 wells) - this is the most complex of the three areas in that shares the Mesozic rifting and passive margin phase but is unique with a slightly younger collisional event and foreland basin phase associated with the Laramide orogeny in Mexico extending from the KT boundary to the Oligocene. Following this orogenic event there is a re-emergence of the passive margin phase during the Neogene along locally affected by extensional and convergent deformation associated with passive margin fold belts. In summary, the GOM basin exhibits evidence for widespread rifting and passive margin formation associated with the breakup of Pangea in Mesozoic times that was locally superimposed and deformed during the late Cretaceous-Paleogene period by: 1) Caribbean subduction and collision along its southeastern edge; and 2) Laramide collision along its western edge in Mexico.
NASA Astrophysics Data System (ADS)
Vernikovskaya, Antonina E.; Vernikovsky, Valery A.; Matushkin, Nikolay Yu.; Kadilnikov, Pavel I.; Romanova, Irina V.
2017-04-01
Rocks from active continental margin complexes are characterized by a wide variety of chemical compositions from depleted in alkali to alkali differentiates. When addressing issues of geodynamic settings in which such rocks form, it is important to understand the evolution of the host tectonic structure, as well as the chemical affiliation of the various rocks composing it. The Yenisey Ridge orogen located in the south-western framing of Siberia is one of the more studied regions with a long history of Neoproterozoic magmatic events. This orogen was formed during the collision of the Central Angara terrane with Siberia, which took place 761-718 Ma. Subsequent subduction-related events in the orogen have been recorded in the coeval magmatism (711-629 Ma) of two complexes: one is the active continental margin complex (Nb enriched igneous rocks - gabbroids, trachybasalts, A-type granites and carbonatites, including contact metasomatites zones with Nb mineralization), and the other one is an island arc complex (differentiated series volcanics, gabbroids and plagiogranites). The rocks of these complexes are respectively located in two suture zones: the Tatarka-Ishimba zone that formed due to the collision mentioned above, and the Yenisei suture marking the subduction zone [Vernikovsky et al., 2003; 2008]. The final Neoproterozoic stage in the evolution of the active margin of Siberia is manifested as adakite-gabbro-anorthosite magmatism in the 576-546 Ma interval. Our results indicate a genetic relationship between the adakites and their host NEB-type metabasites of the Zimovey massif. These Neoproterozoic adakites could have formed in a setting of transform-strike-slip drift of lithospheric plates after the subduction stopped, both from a crustal and mantle-crustal source, similarly to the Cenozoic magmatic complexes of the transform margin in the eastern framing of Eurasia [Khanchuk et al., 2016]. Vernikovsky V.A., Vernikovskaya A.E., Kotov A.B., Sal'nikova E.B., Kovach V.P. Neoproterozoic accretionary and collisional events on the western margin of the Siberian craton: new geological and geochronological evidence from the Yenisey Ridge // Tectonophysics, 2003, V. 375, P. 147-168. Vernikovsky V.A., Vernikovskaya A.E., Sal'nikova E.B., Berezhnaya N.G., Larionov A.N., Kotov A.B., Kovach V.P., Vernikovskaya I.V., Matushkin N.Yu., Yasenev A.M. Late Riphean alkaline magmatism in the western margin of the Siberian Craton: A result of continental rifting or accretionary events? // Doklady Earth Sciences, 2008, V. 419, Iss. 1, P. 226-230. Khanchuk A.I., Kemkin I.V., Kruk N.N. The Sikhote-Alin orogenic belt, Russian South East: Terranes and the formation of continental lithosphere based on geological and isotopic Data // Journal of Asian Earth Sciences, 2016, V. 120, P. 117-138.
48 CFR 5108.070 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... accompanying Industrial Preparedness Program Production Capacity Survey (DD Form 1519 TEST). The firm is... is contractually bound by inclusion of AFARS 5152.208-9001 in their contract to maintain production capacity for a negotiated length of time, to conduct subcontractor planning, and to produce specified...
48 CFR 5108.070 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... accompanying Industrial Preparedness Program Production Capacity Survey (DD Form 1519 TEST). The firm is... is contractually bound by inclusion of AFARS 5152.208-9001 in their contract to maintain production capacity for a negotiated length of time, to conduct subcontractor planning, and to produce specified...
48 CFR 5108.070 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... accompanying Industrial Preparedness Program Production Capacity Survey (DD Form 1519 TEST). The firm is... is contractually bound by inclusion of AFARS 5152.208-9001 in their contract to maintain production capacity for a negotiated length of time, to conduct subcontractor planning, and to produce specified...
48 CFR 5108.070 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... accompanying Industrial Preparedness Program Production Capacity Survey (DD Form 1519 TEST). The firm is... is contractually bound by inclusion of AFARS 5152.208-9001 in their contract to maintain production capacity for a negotiated length of time, to conduct subcontractor planning, and to produce specified...
NASA Astrophysics Data System (ADS)
Almadani, Sattam Abdulkareem
The dissertation utilizes a set of sophisticated computer programs developed at the Geophysics group at Missouri S&T to characterize crustal properties beneath the Afar Depression in Ethiopia where extensional tectonics dominates. In this study, measurements of crustal thickness (H), crustal mean V p/Vs [which is related to Poisson's ratio (sigma)], and the sharpness of the Moho (R) were determined using teleseismic data from 18 broadband seismic sensors that we deployed along a profile of 250 km long with a station spacing of ˜ 10 km. The stations had been recording continuously for an entire year from December 2009 until December 2010. The measurements were determined by stacking P-to-S converted waves (PmS) and their multiples (PPmS and PSmS). Results suggest that the average crustal thickness beneath the Afar Depression is about 28.56+/-0.28 km and the crust is characterized by large Vp/Vs of 1.93+/-0.017 and smaller-than-normal overall stacking amplitude of the P-to-S converted phases beneath most stations. Our results suggest that the crust beneath the entire study area is significantly thinned and extensively intruded by mafic dikes, representing a transitional stage between continental and ocean crust. The Tendaho Graben has the thinnest and most mafic crust, which is also supported by the observation of gravity data which suggest that the active magmatic areas are characterized by higher gravity anomalies while the thicker crusts have smaller and negative anomalies. Thus, the crust beneath the center of the Tendaho Graben is likely to be oceanic-type, and becomes progressively more continental away from the center.
NASA Astrophysics Data System (ADS)
Lindsey, N.; Ebinger, C. J.; Pritchard, M. E.; Cote, D. M.
2010-12-01
Knowledge of how the continental lithosphere accommodates strain in an active rift setting is essential to both earthquake and volcanic hazard analyses. Far-field and impinging mantle plumes drive extension within the fault-bounded rift systems of East Africa. Our study aims to evaluate models of distributed strain and localized strain between multiple rigid plates using earthquake catalogs and existing constraints, including high resolution DEMs that reveal the spatial distribution of young faults across the broad uplifts of eastern and southern Africa. We determine cumulative seismic moment release within 0.5 degree bins across the Afro-Arabian rift system using the entire NEIC earthquake catalog (1973-present), and compare these results to geodetic estimates of strain and extensional velocity. The small bin size permits comparison of strain with geological factors, including geological terrain, border fault distribution, and the presence or absence of volcanism. Our results highlight the significance of magmatism in strain accommodation across the rift system, and suggest that some strain and magmatism occur within ‘rigid blocks’, such as the Tanzania craton. Throughout the Afro-Arabian rift system, seismic moment release lags geodetic moment release by a factor of 2, consistent with aseismic creep deformation. However, our comparisons indicate that aseismic deformation accounts for a much higher percent of geodetic moment release: approximately 90% in the Main Ethiopian and Eastern rifts, and >97% in the Afar rift zone where incipient seafloor spreading occurs. The time-averaged strain distributions match the estimates from intense seismo-volcanic rifting episodes in Afar, indicating the data base is representative of longer-term patterns in Afar. We see no systematic variation in interbasinal accommodation zones or rift segment offsets, arguing against the development of transform-like structures prior to plate rupture.
NASA Astrophysics Data System (ADS)
George, R. M.; Rogers, N. W.
2002-09-01
Southern Ethiopian flood basalts erupted in two episodes: the pre-rift Amaro and Gamo transitional tholeiites (45-35 million years) followed by the syn-extensional Getra-Kele alkali basalts (19-11 million years). These two volcanic episodes are distinct in both trace element and isotope ratios (Zr/Nb ratios in Amaro/Gamo lavas fall between 7 and 14, and 3-4.7 in the Getra-Kele lavas whereas 206Pb/204Pb ratios fall between 18-19 and 18.9-20, respectively). The distinctive chemistries of the two eruptive phases record the tapping of two distinct source regions: a mantle plume source for the Amaro/Gamo phase and an enriched continental mantle lithosphere source for the Getra-Kele phase. Isotope and trace element variations within the Amaro/Gamo lavas reflect polybaric fractional crystallisation initiated at high pressures accompanied by limited crustal contamination. We show that clinopyroxene removal at high (0.5 GPa) crustal pressures provides an explanation for the common occurrence of transitional tholeiites in Ethiopia relative to other, typically tholeiitic flood basalt provinces. The mantle plume signature inferred from the most primitive Amaro basalts is isotopically distinct from that contributing to melt generation in central Ethiopian and Afar. This, combined with Early Tertiary plate reconstructions and similarities with Kenyan basalts farther south, lends credence to derivation of these melts from the Kenyan plume rather than the Afar mantle plume. The break in magmatism between 35 and 19 Ma is consistent with the northward movement away from the Kenya plume predicted from plate tectonic reconstructions. In this model the Getra-Kele magmatism is a response to heating of carbonatitically metasomatised lithosphere by the Afar mantle plume beneath southern Ethiopia at this time.
The 2011 eruption of Nabro volcano, Eritrea: perspectives on magmatic processes from melt inclusions
NASA Astrophysics Data System (ADS)
Donovan, Amy; Blundy, Jon; Oppenheimer, Clive; Buisman, Iris
2018-01-01
The 2011 eruption of Nabro volcano, Eritrea, produced one of the largest volcanic sulphur inputs to the atmosphere since the 1991 eruption of Mt. Pinatubo, yet has received comparatively little scientific attention. Nabro forms part of an off-axis alignment, broadly perpendicular to the Afar Rift, and has a history of large-magnitude explosive silicic eruptions, as well as smaller more mafic ones. Here, we present and analyse extensive petrological data obtained from samples of trachybasaltic tephra erupted during the 2011 eruption to assess the pre-eruptive magma storage system and explain the large sulphur emission. We show that the eruption involved two texturally distinct batches of magma, one of which was more primitive and richer in sulphur than the other, which was higher in water (up to 2.5 wt%). Modelling of the degassing and crystallisation histories demonstrates that the more primitive magma rose rapidly from depth and experienced degassing crystallisation, while the other experienced isobaric cooling in the crust at around 5 km depth. Interaction between the two batches occurred shortly before the eruption. The eruption itself was likely triggered by recharge-induced destabilisation of vertically extensive mush zone under the volcano. This could potentially account for the large volume of sulphur released. Some of the melt inclusions are volatile undersaturated, and suggest that the original water content of the magma was around 1.3 wt%, which is relatively high for an intraplate setting, but consistent with seismic studies of the Afar plume. This eruption was smaller than some geological eruptions at Nabro, but provides important insights into the plumbing systems and dynamics of off-axis volcanoes in Afar.
Geodynamics of the East African Rift System ∼30 Ma ago: A stress field model
NASA Astrophysics Data System (ADS)
Min, Ge; Hou, Guiting
2018-06-01
The East African Rift System (EARS) is thought to be an intra-continental ridge that meets the Red Sea and the Gulf of Aden at the Ethiopian Afar as the failed arm of the Afar triple junction. The geodynamics of EARS is still unclear even though several models have been proposed. One model proposes that the EARS developed in a local tensile stress field derived from far-field loads because of the pushing of oceanic ridges. Alternatively, some scientists suggest that the formation of the EARS can be explained by upwelling mantle plumes beneath the lithospheric weak zone (e.g., the Pan-African suture zone). In our study, a shell model is established to consider the Earth's spherical curvature, the lithospheric heterogeneity of the African continent, and the coupling between the mantle plumes and the mid-ocean ridge. The results are calculated via the finite element method using ANSYS software and fit the geological evidence well. To discuss the effects of the different rock mechanical parameters and the boundary conditions, four comparative models are established with different parameters or boundary conditions. Model I ignores the heterogeneity of the African continent, Model II ignores mid-ocean spreading, Model III ignores the upwelling mantle plumes, and Model IV ignores both the heterogeneity of the African continent and the upwelling mantle plumes. Compared to these models is the original model that shows the best-fit results; this model indicates that the coupling of the upwelling mantle plumes and the mid-ocean ridge spreading causes the initial lithospheric breakup in Afar and East Africa. The extension direction and the separation of the EARS around the Tanzanian craton are attributed to the heterogeneity of the East African basement.
Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean
Polyak, L.; Bischof, J.; Ortiz, J.D.; Darby, D.A.; Channell, J.E.T.; Xuan, C.; Kaufman, D.S.; Lovlie, R.; Schneider, D.A.; Eberl, D.D.; Adler, R.E.; Council, E.A.
2009-01-01
Sediment cores from the western Arctic Ocean obtained on the 2005 HOTRAX and some earlier expeditions have been analyzed to develop a stratigraphic correlation from the Alaskan Chukchi margin to the Northwind and Mendeleev-Alpha ridges. The correlation was primarily based on terrigenous sediment composition that is not affected by diagenetic processes as strongly as the biogenic component, and paleomagnetic inclination records. Chronostratigraphic control was provided by 14C dating and amino-acid racemization ages, as well as correlation to earlier established Arctic Ocean stratigraphies. Distribution of sedimentary units across the western Arctic indicates that sedimentation rates decrease from tens of centimeters per kyr on the Alaskan margin to a few centimeters on the southern ends of Northwind and Mendeleev ridges and just a few millimeters on the ridges in the interior of the Amerasia basin. This sedimentation pattern suggests that Late Quaternary sediment transport and deposition, except for turbidites at the basin bottom, were generally controlled by ice concentration (and thus melt-out rate) and transportation distance from sources, with local variances related to subsurface currents. In the long term, most sediment was probably delivered to the core sites by icebergs during glacial periods, with a significant contribution from sea ice. During glacial maxima very fine-grained sediment was deposited with sedimentation rates greatly reduced away from the margins to a hiatus of several kyr duration as shown for the Last Glacial Maximum. This sedimentary environment was possibly related to a very solid ice cover and reduced melt-out over a large part of the western Arctic Ocean.
Feminization and marginalization? Women Ayurvedic doctors and modernizing health care in Nepal.
Cameron, Mary
2010-03-01
The important diversity of indigenous medical systems around the world suggests that gender issues, well understood for Western science, may differ in significant ways for non-Western science practices and are an important component in understanding how social dimensions of women's health care are being transformed by global biomedicine. Based on ethnographic research conducted with formally trained women Ayurvedic doctors in Nepal, I identify important features of medical knowledge and practice beneficial to women patients, and I discuss these features as potentially transformed by modernizing health care development. The article explores the indirect link between Ayurveda's feminization and its marginalization, in relation to modern biomedicine, which may evolve to become more direct and consequential for women's health in the country.
NASA Astrophysics Data System (ADS)
Hartnady, Chris; Hartnady, Michael; Wise, Edward; Blake, Dylan; McGibbon, David; Hay, E. Rowena
2017-04-01
The Danakil Depression in the North Afar region of Ethiopia reaches elevations deeper than 120 m below sea level and contains a Pleistocene-Holocene evaporite sequence currently investigated for potash mineral deposits. Separated from the main Ethiopian escarpment by the Dogua horst mountains, the asymmetric half-graben is bordered on its western (Nubian) side by the active, normal Main Danakil Rift-border Fault (MDRF). Above the MDRF, a series of piedmont alluvial fans (bajadas) fringes the Dogua Horst, emanating from a series of wadi catchments between the larger perennial rivers (Ragali, Saba) that drain from the high (>2000 m) Ethiopian Plateau. On its eastern side, the Danakil block contains Proterozoic-Palaeozoic sequences correlated with similar units in the Dogua range, and forms a microplate rotating independently between the larger Nubian and Arabian plates (McClusky et al., 2010). An understanding of the sedimentary and tectonic evolution of the Danakil-Nubia (DA-NU) plate system is crucial to the beneficial development of fresh groundwater resources and to an assessment of seismotectonic and volcanic geohazards in the area. Between the Mt Alid caldera in the Dandeiro graben and the Erta'Ale crater in the south Danakil, the rate of present-day DA-NU motion is 10.9 - 13.5 mm/yr, with direction azimuths N106E- N096E (after Schettino et al., 2016). DA-NU relative motion is focussed along the east-dipping MDRF in the Danakil but switches to an eastern (west-dipping) rift-border normal fault in the Dandiero, a northward extension of the Renda-Maglalla-Coma graben, separating the Dogua Horst from the main part of the NU plate. This change in rifting asymmetry occurs across a WNW/ESE-striking zone of basement faulting that terminates the Dogua Horst and functions as a left-stepping proto-transform fault zone, across the NNW direction of DA-NU proto-rift propagation. From 13-channel multispectral data of the European Space Agency satellite Sentinel-2A, a false-colour composite image, centred about MDRF and covering a wide region across the Ethiopia-Eritrea border, was created by combination of selected spectral band-ratios. This Sentinel-2A-based lithological mapping is integrated with the new ALOS AW3D30 digital elevation model, providing geomorphometric analysis and morphotectonic interpretations that allow 1) revision of previous fault-zone mapping, 2) seismotectonic contextualization of the earthquake record, and 3) improved discrimination of volcanic units and centres, both basaltic and silicic, along the northward propagating DA-NU rift zone. References McClusky, S., et al., 2010. Kinematics of the southern Red Sea-Afar Triple Junction and implications for plate dynamics. Geophys. Res. Lett., 37, L05301, doi:10.1029/2009GL041127 Schettino, A., Macchiavelli, C., Pierantoni, P.P., Zanoni, D., and Rasul, N., 2016. Recent kinematics of the tectonic plates surrounding the Red Sea and Gulf of Aden. Geophys. J. Int., 207, 457-480, doi: 10.1093/gji/gg
J. Dunham; B. Rieman; G. Chandler
2003-01-01
The bull trout Salvelinus confluentus is believed to be among the most thermally sensitive species in coldwater habitats in western North America. We conducted a comprehensive field assessment of thermal habitat associations throughout the southern margin of the species' range. We developed models of thermal habitat associations using two data sets representing a...
Inclusion of Marginalized Boys: A Survey of a Summer School Using Positive Psychology Interventions
ERIC Educational Resources Information Center
Andersen, Frans Ørsted; Nissen, Poul; Poulsen, Line
2016-01-01
Marginalized boys at risk of dropping out of high school have for a long time been a problem in the Western world. 100 such Danish 14-16 year old boys were in the summers of 2013, 2014 and 2015 exposed to a new school program, "The Boys Academy," inspired by Seligman and the American KIPP schools suggesting seven character strengths to…
NASA Astrophysics Data System (ADS)
Lebedeva, N. K.; Kuz'mina, O. B.
2018-01-01
The detailed study of Boreholes 8, 10, and 2 in the Russkaya Polyana district (Omsk Trough) made it possible to reveal the complex structure of the Upper Cretaceous sediments formed in unstable conditions of the marginal part of the Western Siberian basin. The Pokur, Kuznetsovo, Ipatovo, Slavgorod, and Gan'kino formations were subjected to palynological analysis and substantiation of their Late Cretaceous age. Eight biostratigraphic units with dinocysts and five units with spores and pollen from the Albian to the Maastrichtian were identified. The joint application of biostratigraphic and magnetostratigraphic methods made it possible to reveal the stratigraphic breaks in the studied sedimentary stratum and to estimate their scope. The age of the Lower Lyulinvor Subformation was specified in the marginal part of the Omsk Trough. The ingression traces of the Western Siberian basin in the Albian were found for the first time in the considered region.
NASA Astrophysics Data System (ADS)
Schilling, Jean-Guy; Kingsley, Richard H.; Hanan, Barry B.; McCully, Brian L.
1992-07-01
The rare-earth-element concentrations and Nd, Sr, and Pb isotopic compositions of the basalts in the Gulf of Aden are described and related to asthenospheric and lithospheric interactions with a thermal toruslike plume. Specific attention is given to the spatial and temporal traits of the mantle sources, and isotopic and geochemical data are used to determine the extent to which basaltic volcanism is derived from a mantle plume, the mantle lithosphere, and upwelling of the depleted atmosphere. The impingement and dispersion of a plume head is confirmed beneath the Afar region, and the geological record shows continental stretching and rifting prior to the impingement in the outskirts of the Horn of Africa. The data suggest that the isotopic variations along the Gulf of Aden/Red Sea/Ethiopia Rift system can be explained by the interaction of a thermal toruslike plume with the depleted asthenosphere and the overlying continental mantle lithosphere.
Elizabeth A. Leger; Erin K. Espeland; Keith R. Merrill; Susan E. Meyer
2009-01-01
Cheatgrass (Bromus tectorum) is an invasive weed in western North America found primarily growing at elevations less than 2200 m. We asked whether cheatgrass is capable of becoming adapted to a marginal habitat, by investigating a population at a high elevation invasion edge. We used a combination of methods, including reciprocal field transplants, controlled...
NASA Astrophysics Data System (ADS)
Wu, J. E.; Suppe, J.; Chen, Y. W.
2016-12-01
Seismic tomographic studies have revealed a swath of flat slab anomalies in the mantle transition zone at 410 to 660 km depths under Japan, Korea and NE China that continue northwards at deeper depths under the Russian Far East. These slab anomalies are remarkable because they appear to be continuous from their western edge far inland (>2000 km) under the NE Eurasian margin to the present-day NW Pacific subduction zones, which suggests they are Pacific slabs that were subducted in the Cenozoic. Other studies have proposed that some of these slabs were subducted at an ancient subduction zone during the Mesozoic or earlier. Here we discuss the fate of these slabs and their implications for the plate tectonic reconstruction of the NW Pacific margin along NE Asia and Alaska. We present both new and recently published slab mapping (Wu et al., 2016; JGR Solid Earth) including 30 major and minor slabs mapped in 3D from MITP08 global seismic tomography. We unfolded our mapped slabs to a spherical Earth model to estimate their pre-subduction size, shape and locations. The slab constraints were input into GPlates software to constrain a new regional NW Pacific plate tectonic reconstruction in the Cenozoic. Mapped slabs included the Marianas, Izu-Bonin, Japan and Kuril slabs, the Philippine Sea slabs and Aleutian slabs under the Bering Sea. Our mapped western Pacific slabs between the southernmost Izu-Bonin trench and the western Aleutians had unfolded E-W lengths of 3400 to 4900 km. Our plate model shows that these slabs are best reconstructed as Pacific slabs that were subducted in the Cenozoic and account for fast Pacific subduction along the NE Eurasian margin since plate reorganization at 50 Ma. Our mapped northern Kuril slab edge near the western Aleutians and a southern edge at the southernmost Izu-Bonin trench are roughly east-west and consistent with the orientations of Pacific absolute motions since 50 Ma. We interpret these long E-W slab edges as STEP fault-type transforms (i.e. lithospheric tears that progressively formed during subduction). We further discuss our plate model against the opening of the NW Pacific marginal basins in the Cenozoic, including the Japan Sea, Kuril Basin and Okhotsk Sea.
NASA Astrophysics Data System (ADS)
Samalens, Kevin; Cattaneo, Antonio; Migeon, Sébastien
2016-04-01
The Ligurian Margin (Western Mediterranean) is at the transition between the Southern Alpes and the Liguro-Provençal margin and it is one of the most seismic areas of France. Several historic earthquakes have been indexed; the strongest, on February 23rd, 1887, occurred offshore Menton and Imperia and also caused a tsunami wave. Its equivalent magnitude has been estimated between 6 and 6.5. In addition, a moderate recurrent seismicity shakes the margin. The aim of this study is to understand the link between seismic activity and slope destabilization, and to identify the sedimentary deposits resulting from mass transport or turbidity currents. During Malisar (Geoazur laboratory), Prisme 2 and Prisme 3 (Ifremer) cruises, bathymetry, seafloor imagery (SAR), geophysics data (CHIRP SYSIF and high resolution seismics), and sediment cores have been acquired on the continental slope, focussing on canyons and submarine landslides, and in the basin. These data record numerous mass transport deposits (slump, debrites) in the different physiographic areas of the margin. To search for evidences of past Ligurian margin seismicity during the Holocene, we focused on the northeast part of the margin, the Finale area. We identified and sampled acoustically transparent Mass Transport Deposits up to 20-m thick in the bottom of three coaleshing canyons: Noli, Pora and Centa canyons from W to E in the area offshore Finale Ligure. We also recovered an MTD in the collecting deeper canyon system. MTDs in cores appear as sediment with different degrees of deformation (tilted blocks, slump, debrites) and are topped by hemipelagites. The radiocarbon age of the top of MTDs can be considered synchronous and centered around 4900 yr BP. Mass wasting occurring over more than 50 km of the Ligurian margin could indicate that an earthquake stroke the Finale area sector at that time.
The Ocean-Continent Transition at the North Atlantic Volcanic Margins
NASA Astrophysics Data System (ADS)
White, R. S.; Christie, P. A.; Kusznir, N. J.; Roberts, A. M.; Eccles, J.; Lunnon, Z.; Parkin, C. J.; Smith, L. K.; Spitzer, R.; Roberts, A. W.
2005-05-01
The continental margins of the northern North Atlantic are the best studied volcanic margins in the world. There is a wealth of integrated wide-angle and deep seismic profiles across the continent-ocean transition and the adjacent oceanic and continental crust, several of which form conjugate margin studies. We show new results from the integrated Seismic Imaging and Modelling of Margins (iSIMM) profiles across the Faroes continental margin which image both the extruded volcanics which generate seaward dipping reflector sequences and the underlying lower-crustal intrusions from which the extruded basalts are fed. This enables estimation of the degree of continental stretching and the total volume of melt generated from the mantle at the time of continental breakup. The new results are set in the context of profiles along the entire northern North Atlantic margins. The pattern of melt generation during continental breakup and the initiation of seafloor spreading allows us to map the pattern of enhanced sub-lithospheric mantle temperatures caused by initiation of the Iceland mantle plume over this period. The initial mantle plume thermal anomalies have the shape of rising hot sheets of mantle up to 2000 km in length, which focus into a more axisymmetric shape under the present location of Iceland. These spatial and temporal variations in the mantle temperature exert important controls on the history of uplift and subsidence and thermal maturation of the sediments near the continental margin and its hinterland. The iSIMM Scientific Team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, R Spitzer, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms, J Eccles and D Healy. The iSIMM project is supported by Liverpool and Cambridge Universities, Schlumberger Cambridge Research, Badley Technology Limited, WesternGeco, Amerada Hess, Anadarko, BP, ConocoPhillips, ENI-UK, Statoil, Shell, the NERC and DTI. We thank WesternGeco for provision of Q-streamer data.
Foster, D.A.; Mueller, P.A.; Mogk, D.W.; Wooden, J.L.; Vogl, J.J.
2006-01-01
Defining the extent and age of basement provinces west of the exposed western margin of the Archean Wyoming craton has been elusive because of thick sedimentary cover and voluminous Cretaceous-Tertiary magmatism. U-Pb zircon geochronological data from small exposures of pre-Belt supergroup basement along the western side of the Wyoming craton, in southwestern Montana, reveal crystallization ages ranging from ???2.4 to ???1.8 Ga. Rock-forming events in the area as young as ???1.6 Ga are also indicated by isotopic (Nd, Pb, Sr) signatures and xenocrystic zircon populations in Cretaceous-Eocene granitoids. Most of this lithosphere is primitive, gives ages ???1.7-1.86 Ga, and occurs in a zone that extends west to the Neoproterozoic rifted margin of Laurentia. These data suggest that the basement west of the exposed Archean Wyoming craton contains accreted juvenile Paleoproterozoic arc-like terranes, along with a possible mafic underplate of similar age. This area is largely under the Mesoproterozoic Belt basin and intruded by the Idaho batholith. We refer to this Paleoproterozoic crust herein as the Selway terrane. The Selway terrane has been more easily reactivated and much more fertile for magma production and mineralization than the thick lithosphere of the Wyoming craton, and is of prime importance for evaluating Neoproterozoic continental reconstructions. ?? 2006 NRC Canada.
NASA Astrophysics Data System (ADS)
Schnyder, Jara S. D.; Jo, Andrew; Eberli, Gregor P.; Betzler, Christian; Lindhorst, Sebastian; Schiebel, Linda; Hebbeln, Dierk; Wintersteller, Paul; Mulder, Thierry; Principaud, Melanie
2014-05-01
An approximately 5000km2 hydroacoustic and seismic data set provides the high-resolution bathymetry map of along the western slope of Great Bahama Bank, the world's largest isolated carbonate platform. This large data set in combination with core and sediment samples, provides and unprecedented insight into the variability of carbonate slope morphology and the processes affecting the platform margin and the slope. This complete dataset documents how the interplay of platform derived sedimentation, distribution by ocean currents, and local slope and margin failure produce a slope-parallel facies distribution that is not governed by downslope gradients. Platform-derived sediments produce a basinward thinning sediment wedge that is modified by currents that change directions and strength depending on water depth and location. As a result, winnowing and deposition change with water depth and distance from the margin. Morphological features like the plunge pool and migrating antidunes are the result of currents flowing from the banktop, while the ocean currents produce contourites and drifts. These continuous processes are punctuated by submarine slope failures of various sizes. The largest of these slope failures produce several hundred of km2 of mass transport complexes and could generate tsunamis. Closer to the Cuban fold and thrust belt, large margin collapses pose an equal threat for tsunami generation. However, the debris from margin and slope failure is the foundation for a teeming community of cold-water corals.
Tectonics of the Western Gulf of Oman
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, R.S.; Ross, D.A.
1979-07-10
The Oman line, running northward from the Strait of Hormuz separates a continent-continent plate boundary to the northwest (Persian Gulf region) from an ocean-continent plate boundary to the southeast (Gulf of Oman region). A large basement ridge detected on multichannel seismic reflection and gravity profiles to the west of the Oman line is probably a subsurface continuation of the Musandam peninsula beneath the Strait of Hormuz. Collision and underthrusting beneath Iran of the Arabian plate on which this ridge lies has caused many of the large earthquakes that have occurred in this region. Convergence between the oceanic crust of themore » Arabian plate beneath the Gulf of Oman and the continental Eurasian plate beneath Iran to the north is accommodated by northward dipping subduction. A deformed sediment prism which forms the offshore Makran continental margin and which extends onto land in the Iranian Makran has accumulated above the descending plate. In the western part of the Gulf of Oman, continued convergence has brought the opposing continental margin of Oman into contact with the Makran continental margin. This is an example of the initial stages of a continent-continent type collision. A model of imbricate thrusting is proposed to explain the development of the fold ridges and basins on the Makran continental margin. Sediments from the subducting plate are buckled and incorporated into the edge of the Makran continental margin in deformed wedges and subsequently uplifted along major faults that penetrate the accretionary prism further to the north.« less
A.P. Lamb,; L.M. Liberty,; Blakely, Richard J.; Pratt, Thomas L.; Sherrod, B.L.; Van Wijk, K.
2012-01-01
We present evidence that the Seattle fault zone of Washington State extends to the west edge of the Puget Lowland and is kinemati-cally linked to active faults that border the Olympic Massif, including the Saddle Moun-tain deformation zone. Newly acquired high-resolution seismic reflection and marine magnetic data suggest that the Seattle fault zone extends west beyond the Seattle Basin to form a >100-km-long active fault zone. We provide evidence for a strain transfer zone, expressed as a broad set of faults and folds connecting the Seattle and Saddle Mountain deformation zones near Hood Canal. This connection provides an explanation for the apparent synchroneity of M7 earthquakes on the two fault systems ~1100 yr ago. We redefi ne the boundary of the Tacoma Basin to include the previously termed Dewatto basin and show that the Tacoma fault, the southern part of which is a backthrust of the Seattle fault zone, links with a previously unidentifi ed fault along the western margin of the Seattle uplift. We model this north-south fault, termed the Dewatto fault, along the western margin of the Seattle uplift as a low-angle thrust that initiated with exhu-mation of the Olympic Massif and today accommodates north-directed motion. The Tacoma and Dewatto faults likely control both the southern and western boundaries of the Seattle uplift. The inferred strain trans-fer zone linking the Seattle fault zone and Saddle Mountain deformation zone defi nes the northern margin of the Tacoma Basin, and the Saddle Mountain deformation zone forms the northwestern boundary of the Tacoma Basin. Our observations and model suggest that the western portions of the Seattle fault zone and Tacoma fault are com-plex, require temporal variations in principal strain directions, and cannot be modeled as a simple thrust and/or backthrust system.
NASA Astrophysics Data System (ADS)
Pérez-Gussinyé, M.; Metois, M.; Fernández, M.; Vergés, J.; Fullea, J.; Lowry, A. R.
2009-09-01
Detailed information on lateral variations in lithospheric properties can aid in understanding how surface deformation relates to deep Earth processes. The effective elastic thickness, Te, of the lithosphere is a proxy for lithospheric strength. Here, we present a new Te map of the African lithosphere estimated from coherence analysis of topography and Bouguer anomaly data. The latter data set derives from the EGM 2008 model, the highest resolution gravity database over Africa, enabling a significant improvement in lateral resolution of Te. The methodology used for Te estimation improves upon earlier approaches by optimally combining estimates from several different window sizes and correcting for an estimation bias term. Our analysis finds that Te is high, ~ 100 km, in the West African, Congo, Kalahari and Tanzania cratons. Of these, the Kalahari exhibits the lowest Te. Based in part on published seismic and mineral physics constraints, we suggest this may reflect modification of Kalahari lithosphere by anomalously hot asthenospheric mantle. Similarly, the Tanzania craton exhibits relatively lower Te east of Lake Victoria, where a centre of seismic radial anisotropy beneath the craton has been located and identified with a plume head, thus suggesting that here too, low Te reflects modification of cratonic lithosphere by an underlying hot mantle. The lowest Te in Africa occurs in the Afar and Main Ethiopian rifts, where lithospheric extension is maximum. In the western Ethiopian plateau a local Te minimum coincides with published images of a low P and S seismic velocity anomaly extending to ~ 400 km depth. Finally, the Darfur, Tibesti, Hoggar and Cameroon line volcanic provinces are characterised by low Te and no deep-seated seismic anomalies in the mantle. Corridors of relatively low Te connect these volcanic provinces to the local Te minima within the western Ethiopian plateau. We interpret the low Te to indicate thinner lithosphere within the corridors than in the surrounding cratons. We speculate that these corridors may provide potential conduits for hot asthenospheric material to flow from the western Ethiopian plateau to the volcanic provinces of central and western Africa.
NASA Astrophysics Data System (ADS)
Perez-Gussinye, M.; Metois, M.; Fernandez, M.; Verges, J.; Fullea, J.; Lowry, A. R.
2009-12-01
Detailed information on lateral variations in lithospheric properties can aid in understanding how surface deformation relates to deep Earth processes. The effective elastic thickness, Te, of the lithosphere is a proxy for lithospheric strength. Here, we present a new Te map of the African lithosphere estimated from coherence analysis of topography and Bouguer anomaly data. The latter data set derives from the EGM 2008 model, the highest resolution gravity database over Africa, enabling a significant improvement in lateral resolution of Te. The methodology used for Te estimation improves upon earlier approaches by optimally combining estimates from several different window sizes and correcting for an estimation bias term. Our analysis finds that Te is high, ~ 100 km, in the West African, Congo, Kalahari and Tanzania cratons. Of these, the Kalahari exhibits the lowest Te. Based in part on published seismic and mineral physics constraints, we suggest this may reflect modification of Kalahari lithosphere by anomalously hot asthenospheric mantle. Similarly, the Tanzania craton exhibits relatively lower Te east of Lake Victoria, where a centre of seismic radial anisotropy beneath the craton has been located and identified with a plume head, thus suggesting that here too, low Te reflects modification of cratonic lithosphere by an underlying hot mantle. The lowest Te in Africa occurs in the Afar and Main Ethiopian rifts, where lithospheric extension is maximum. In the western Ethiopian plateau a local Te minimum coincides with published images of a low P and S seismic velocity anomaly extending to ~400 km depth. Finally, the Darfur, Tibesti, Hoggar and Cameroon line vo provinces lcanic are characterised by low Te and no deep-seated seismic anomalies in the mantle. Corridors of relatively low Te connect these volcanic provinces to the local Te minima within the western Ethiopian plateau. We interpret the low Te to indicate thinner lithosphere within the corridors than in the surrounding cratons. We speculate that these corridors may provide potential conduits for hot asthenospheric material to flow from the western Ethiopian plateau to the volcanic provinces of central and western Africa.
O. Valerio-Mendoza; F. Armendariz-Toledano; G. Cuellar-Rodriguez; Jose F. Negron; G. Zuniga
2017-01-01
The distribution range of the western pine beetle Dendroctonus brevicomis LeConte (Coleoptera: Curculionidae) is supported only by scattered records in the northern parts of Mexico, suggesting that its populations may be marginal and rare in this region. In this study, we review the geographical distribution of D. brevicomis in northern Mexico and perform a geometric...
NASA Astrophysics Data System (ADS)
MartíNez, Fernando; Taylor, Brian; Goodliffe, Andrew M.
1999-06-01
The Woodlark Basin in the southwest Pacific is a young ocean basin which began forming by ˜6 Ma following the rifting of continental and arc lithosphere. The N-S striking Moresby Transform divides the oceanic basin into eastern and western parts which have contrasting characteristics. Seafloor spreading west of Moresby Transform began after ˜2 Ma, and although spreading rates decrease to the west, the western basin has faster spreading characteristics than the eastern basin. These include (1) ˜500 m shallower seafloor; (2) Bouguer gravity anomalies that are >30 mGals lower; (3) magnetic anomaly and modeled seafloor magnetization amplitudes that are higher; (4) a spreading center with an axial high in contrast to the axial valleys of the eastern basin; (5) smoother seafloor fabric; and (6) exclusively nontransform spreading center offsets in contrast to the eastern basin, which has transform faults and fracture zones that extend across most of the basin. Overall depth contrasts and Bouguer anomalies can be matched by end-member models of thicker crust (˜2 km) or thinner lithosphere (<1/3) in the western basin. Correlated with these contrasts, the surrounding rifted margins abruptly thicken westward of the longitude of Moresby Transform. We examine alternative explanations for these contrasts and propose that rift-induced secondary mantle convection driven by thicker western margin lithosphere is most consistent with the observations. Although rift-induced convection has been cited as a cause for the voluminous excess magmatism at some rifted margins, the observations in the Woodlark Basin suggest that this mechanism may significantly affect the morphology, structure, and geophysical characteristics of young ocean basins in alternate ways which resemble increased spreading rate.
NASA Astrophysics Data System (ADS)
Nair, Nisha; Pandey, Dhananjai K.
2018-02-01
Interpretation of multichannel seismic reflection data along the Mumbai Offshore Basin (MOB) revealed the tectonic processes that led to the development of sedimentary basins during Cenozoic evolution. Structural interpretation along three selected MCS profiles from MOB revealed seven major sedimentary sequences (∼3.0 s TWT, thick) and the associated complex fault patterns. These stratigraphic sequences are interpreted to host detritus of syn- to post rift events during rift-drift process. The acoustic basement appeared to be faulted with interspaced intrusive bodies. The sections also depicted the presence of slumping of sediments, subsidence, marginal basins, rollover anticlines, mud diapirs etc accompanied by normal to thrust faults related to recent tectonics. Presence of upthrusts in the slope region marks the locations of local compression during collision. Forward gravity modeling constrained with results from seismic and drill results, revealed that the crustal structure beneath the MOB has undergone an extensional type tectonics intruded with intrusive bodies. Results from the seismo-gravity modeling in association with litholog data from drilled wells from the western continental margin of India (WCMI) are presented here.
ERIC Educational Resources Information Center
Hamilton, Kendra
2006-01-01
Imam Yahya Hendi came from afar--the occupied Palestinian Territories--to become, in 1999, the first full-time Muslim chaplain serving at a university in the United States. He is now the chaplain at Georgetown University. Rumee Ahmed, appointed earlier this year as Brown University's first Muslim chaplain, had a significantly shorter trip, moving…
[Activities of Dept. of Geological Sciences, Colorado University
NASA Technical Reports Server (NTRS)
Bilham, Roger
1997-01-01
Using remotely sensed data and GPS observations we completed a study of neotectonic processes responsible for landscape changes in an area of active extensional deformation and volcanism. The findings from this study describe the extensional processes operating in the region of the Afar triple junction and the northern Ethiopian rift.
Contemporary Economic Debate in Britain: A View from Afar.
ERIC Educational Resources Information Center
Edwards, Ron; Millnow, Alex
1992-01-01
Seeks to explain economists' differences of opinion, through the example of contemporary British economic debate. Observes that part of the explanation lies in the complexity of economic issues. Argues that the more important factor lies in economists' ideological differences. Contrasts the views of the libertarian and market interventionist…
Bridging Some Intercultural Gaps: Methodological Reflections from Afar
ERIC Educational Resources Information Center
Kama, Amit
2006-01-01
Identity formation and self construction are inherently cultural phenomena. Although it may seem that human psychology--e.g., basic traits, tendencies, "characteristics," or even the definition of self--are universal and ahistorical, this essentialist view is quite erroneous and needs to be recognized and avoided. The task of studying one's…
Ahyong, Shane T; Taylor, Joanne; Mccallum, Anna W
2013-11-04
Seven species of Munididae are reported from the continental margin of north-western Australia. Three species are new to science: Crosnierita adela sp. nov., Onconida ariel sp. nov. and Plesionida aurelia sp. nov., each presently known only from Western Australia. Four species are reported for the first time from Australian waters, Bathymunida balssi Van Dam, 1838, Bathymunida dissimilis Baba & de Saint Laurent, 1996, Crosnierita yante (Macpherson, 1994) and Torbenella orbis (Baba, 2005). Keys to the world species of the genera represented are provided.
Glacimarine Sedimentary Processes and Facies on the Polar North Atlantic Margins
NASA Astrophysics Data System (ADS)
Dowdeswell, J. A.; Elverhfi, A.; Spielhagen, R.
Major contrasts in the glaciological, oceanic and atmospheric parameters affecting the Polar North Atlantic, both over space between its eastern and western margins, and through time from full glacial to interglacial conditions, have lead to the deposition of a wide variety of sedimentary facies in these ice-influenced seas. The dynamics of the glaciers and ice sheets on the hinterlands surrounding the Polar North Atlantic have exterted a major influence on the processes, rates and patterns of sedimentation on the continental margins of the Norwegian and Greenland seas over the Late Cenozoic. The western margin is influenced by the cold East Greenland Current and the Svalbard margin by the northernmost extent of the warm North Atlantic Drift and the passage of relatively warm cyclonic air masses. In the fjords of Spitsbergen and the northwestern Barents Sea, glacial meltwater is dominant in delivering sediments. In the fjords of East Greenland the large numbers of icebergs produced from fast-flowing outlets of the Greenland Ice Sheet play a more significant role in sedimentation. During full glacials, sediments are delivered to the shelf break from fast-flowing ice streams, which drain huge basins within the parent ice sheet. Large prograding fans located on the continental slope offshore of these ice streams are made up of stacked debris flows. Large-scale mass failures, turbidity currents, and gas-escape structures also rework debris in continental slope and shelf settings. Even during interglacials, both the margins and the deep ocean basins beyond them retain a glacimarine overprint derived from debris in far-travelled icebergs and sea ice. Under full glacial conditions, the glacier influence is correspondingly stronger, and this is reflected in the glacial and glacimarine facies deposited at these times.
Cretaceous plate interaction during the formation of the Colombian plateau, Northandean margin
NASA Astrophysics Data System (ADS)
Kammer, Andreas; Piraquive, Alejandro; Díaz, Sebastián
2015-04-01
The Cretaceous subduction cycle at the Northandean margin ends with an accretionary event that welds the plateau rocks of the present Western Cordillera to the continental margin. A suture between plateau and rock associations of the continental margin is well exposed at the western border of the Central Cordillera, but overprinted by intense block tectonics. Analyzed in detail, its evolution tracks an increased coupling between lower and upper plate, as may be accounted for by the following stages: 1) The Cretaceous plateau suite records at its onset passive margin conditions, as it encroaches on the continental margin and accounts for an extensional event that triggered the emplacement of ultramafic and mafic igneous rock suites along major faults. 2) An early subduction stage of a still moderate plate coupling is documented by the formation of a magmatic arc in an extensional setting that may have been prompted by slab retreat. Convergence direction was oblique, as attested the transfer of strike-slip displacements to the forearc region. 3) A phase of strong plate interaction entailed the delamination of narrow crustal flakes and their entrainment to depths below the petrologic Moho, as evidenced by their present association to serpentinites in a setting that bears characteristics of a subduction channel. 4) During the final collisional stage deformation is transferred to the lower plate, where the stacking of imbricate sheets, combined with their erosional unloading, led to the formation of an antiformal bulge that fed a foreland basin. - The life time of this Cretaceous subduction cycle was strictly synchronous to the construction of the Colombian plateau. With the final collisional stage magmatic activity vanished. This coincidence incites to explore a relationship between plume activity and subduction.
NASA Astrophysics Data System (ADS)
Levy, L.; Hammer, S. K.; Kelly, M. A.; Lowell, T. V.; Hall, B. L.; Howley, J. A.; Wilcox, P.; Medford, A.
2014-12-01
The margins of the Greenland Ice Sheet are currently responding to present-day climate changes. Determining how the ice sheet margins have responded to past climate changes provides a means to understand how they may respond in the future. Here we present a multi-proxy record used to reconstruct the Holocene fluctuations of the Vindue glacier, an ice sheet outlet glacier in eastern Greenland. Lake sediment cores from Qiviut lake (informal name), located ~0.75 km from the present-day Vindue glacier margin contain a sharp transition from medium sand/coarse silt to laminated gyttja just prior to 6,340±130 cal yr BP. We interpret this transition to indicate a time when the Vindue glacier retreated sufficiently to cease glacial sedimentation into the lake basin. Above this contact the core contains laminated gyttja with prominent, ~0.5 cm thick, silt layers. 10Be ages of boulders on bedrock located between Qiviut lake and the present-day ice margin date to 6.81 ± 0.67 ka (n = 3), indicating the time of deglaciation. These ages also agree well with the radiocarbon age of the silt-gyttja transition in Qiviut lake cores. 10Be ages on boulders on bedrock located more proximal to the ice margin (~0.5 km) yield ages of 2.67 ± 0.18 ka (n = 2). These ages indicate either the continued recession of the ice margin during the late Holocene or an advance at this time. Boulders on the historical moraines show that ice retreated from the moraine by AD 1620 ± 20 yrs (n = 2). These results are in contrast with some areas of the western margin of the ice sheet where 10Be ages indicate that the ice sheet was behind its Historical limit from the middle Holocene (~6-7 ka) to Historical time. This may indicate that the eastern margin may have responded to late Holocene cooling more sensitively or that the advance associated with the Historical moraines overran any evidence of late Holocene fluctuations along the western margin of the ice sheet.
NASA Astrophysics Data System (ADS)
Doubre, C.; Ruegg, J.; de Chabalier, J.; Vigny, C.; Jacques, E.
2006-12-01
In November 1978, a seismo-volcanic crisis occurred in the Asal-Ghoubbet Rift, which is located at the western termination of the oceanic Aden Ridge propagating inland into the Afar Depression and accommodates a large part of the divergent motion of the Arabia and Somalia plates. This episode offered the opportunity to study the rifting process controlling the evolution of a sub-aerial opening segment at the transition from continental break-up to oceanic spreading. This major crustal spreading episode started with two major earthquakes in the subaerial part of the rift (mb=5.3 and 5.0) and was followed by the week-long, basaltic fissure eruption of the Ardukoba at the western tip of the central volcanic chain. The geophysical survey carried out for the crisis was possible by means of the Arta Observatory in Djibouti within the framework of field surveys financed by the French agency CNRS-INSU. This allowed the measurements of the surface breaks (dry open fissures up to 100 m, normal fault throws up to 80 cm), the crustal deformation by geodetic networks and leveling (up to 2m of horizontal widening, 70 cm of inner-floor subsidence), and the evolution of the seismic activity (eastward migration along the Aden Ridge) associated with this rifting event. Elastic modeling shows that both the deformation pattern and the seismic activity can be explained by the aseismic intrusion of two dykes below the rift inner-floor. Subsequently, a continuous geodetic and seismic monitoring has been maintained and shows that the post-dyke injection evolution of the rift is dominated by two distinct periods. During the six first years (1979-1986), high rates of horizontal opening and slip of creeping normal faults accommodate the subsidence of the inner-floor surrimposed to the development of a 25 km-wide uplift. Since 1986-87, the strain rates have decreased and currently reach values consistent with long-term velocities deduced from morpho-tectonic studies. The evolution of the deformation field deduced from geodetic and seismic data is discussed in terms of kinematic relation with creeping faults and dyking, continuous aseismic dyking injection/inflation at depth, and transient variations associated with a relaxation mechanism related to the sudden opening of dykes. An active process involving fluid migration is required to explain the discrepancy between the far field and near field velocities measured by GPS, the general doming identified by leveling data, the periods of slip acceleration along continuously creeping faults observed from InSAR data, and the time variations of low-magnitude seismicity. All these observations therefore illustrate that some parts of the crust in the rift during the rifting episode and throughout the whole post-rifting period are in a critical state close to failure.
NASA Astrophysics Data System (ADS)
Tassy, Aurélie; Crouzy, Emmanuel; Gorini, Christian; Rubino, Jean-Loup
2015-04-01
The Mesozoïc Egyptian margin is the south margin of a remnant of the Neo-Tethys Ocean, at the African northern plate boundary. East Mediterranean basin developed during the late Triassic-Early Jurassic rifting with a NW-SE opening direction (Frizon de Lamotte et al., 2011). During Mesozoïc, Egypt margin was a transform margin with a NW-SE orientation of transform faults. In the Eastern Mediterranean basin, Mesozoïc margins are characterized by mixed carbonate-siliciclastics platforms where subsidence and eustacy are the main parameters controlling the facies distribution and geometries of the platform-to-basin transition. Geometries and facies on the platform-slope-basin system, today well constrained on the Levant area, where still poorly known on the Egyptian margin. Geometries and stratigraphic architecture of the Egyptian margin are revealed, thanks to a regional seismic and well data-base provided by an industrial-academic group (GRI, Total). The objective is to understand the sismostratigraphic architecture of the platform-slope-basin system in a key area from Western Desert to Nile delta and Levant margin. Mapping of the top Jurassic and top Cretaceous show seismic geomorphology of the margin, with the cartography of the hinge line from Western Desert to Sinaï. During the Jurassic, carbonate platform show a prograding profile and a distally thickening of the external platform, non-abrupt slope profiles, and palaeovalleys incisions. Since the Cretaceous, the aggrading and retrograding mixed carbonate-siliciclastic platform show an alternation of steep NW-SE oblique segments and distally steepened segments. These structures of the platform edge are strongly controlled by the inherited tethyan transform directions. Along the hinge line, embayments are interpreted as megaslides. The basin infilling is characterised by an alternation of chaotic seismic facies and high amplitude reflectors onlaping the paleoslopes. MTC deposits can mobilize thick sedimentary series (up to 3500 m) as a mixed combination of debris flows, internal preserved blocks, and/or compressively-deformed distal allochthonous masses. Transported material have proceeded from the dismantling of the Mesozoic mixed carbonate-siliciclastic platform. They can spread down slope over areas as large as 70000 of km2. According to stratigraphic correlations with global sea-level positions, platform instability would have been triggered by the gravitational collapse of the carbonate-siliciclastic platform under its own weight after successive subaerial exposures which were able to generate karstification processes. Seismic interpretation is constrained by a detailed assessment of the Egyptian margin paleogeography supported by wells. This margin segment is briefly compared to the outcropping Apulian margin in Italy.
Two-dimensional, average velocity field across the Asal Rift, Djibouti from 1997-2008 RADARSAT data
NASA Astrophysics Data System (ADS)
Tomic, J.; Doubre, C.; Peltzer, G.
2009-12-01
Located at the western end of the Aden ridge, the Asal Rift is the first emerged section of the ridge propagating into Afar, a region of intense volcanic and tectonic activity. We construct a two-dimensional surface velocity map of the 200x400 km2 region covering the rift using the 1997-2008 archive of InSAR data acquired from ascending and descending passes of the RADARSAT satellite. The large phase signal due to turbulent troposphere conditions over the Afar region is mostly removed from the 11-year average line of sight (LOS) velocity maps, revealing a clear deformation signal across the rift. We combine the ascending and descending pass LOS velocity fields with the Arabia-Somalia pole of rotation adjusted to regional GPS velocities (Vigny et al., 2007) to compute the fields of the vertical and horizontal, GPS-parallel components of the velocity over the rift. The vertical velocity field shows a ~40 km wide zone of doming centered over the Fieale caldera associated with shoulder uplift and subsidence of the rift inner floor. Differential movement between shoulders and floor is accommodated by creep at 6 mm/yr on Fault γ and 2.7 mm/yr on Fault E. The horizontal field shows that the two shoulders open at a rate of ~15 mm/yr, while the horizontal velocity decreases away from the rift to the plate motion rate of ~11 mm/yr. Part of the opening is concentrated on faults γ (5 mm/yr) and E (4 mm/yr) and about 4 mm/yr is distributed between Fault E and Fault H in the southern part of the rift. The observed velocity field along a 60 km-long profile across the eastern part of the rift can be explained with a 2D mechanical model involving a 5-9 km-deep, vertical dyke expanding horizontally at a rate of 5 cm/yr, a 2 km-wide, 7 km-deep sill expanding vertically at 1cm/yr, and down-dip and opening of faults γ and E. Results from 3D rift models describing along-strike velocity decrease away from the Goubbet Gulf and the effects of a pressurized magma chamber will be presented.
NASA Astrophysics Data System (ADS)
Dunbar, N. W.; Brown, F. H.; Levin, N. E.; McIntosh, W. C.; Rogers, M.; Semaw, S.; Simpson, S. W.; Stinchcomb, G. E.
2016-12-01
The Gona region, on the western flank of the southern Afar Rift, in Ethiopia, contains a rich and complex tephra record that provides insight into structural evolution of the region and chronological controls on the local record of human evolution. Despite lack of source volcanoes in the Gona region, thick (up to 80 cm), fine-grained (20-500 µm), fresh, pure, glassy distal tephra layers, which are discontinuous and appear to have undergone significant secondary thickening shortly after deposition, are present in sediments deposited in the last two million years. Altered tephra are present in older sediments. New data are consistent with those reported by Quade et al. (2008), showing that tephra from Gona are typically rhyolitic, consistent with derivation from large, but distant volcanic eruptions. Significant geochemical variation is observed between different tephra layers, particularly with respect to FeO (ranging between 2 and 7.5 wt.% in different rhyolitic tephra), Ca, Mn, and Cl. Elements Na and K are variable, consistent with alkali mobility during glass hydration. Although some tephra layers contain feldspar and are thus datable using the 40Ar/39Ar, others are not directly datable, so must be geochemically linked to dated source eruptions. A unit of particular focus is the widespread marker tuff known locally as the Boolihinan tuff, which is associated with significant hominin fossils and artifacts. This locally aphyric unit, which consists of highly expanded rhyolitic glass, exhibits some geochemical variability, particularly with respect to SiO2 (74-78 wt.%), but yields a robust compositions with respect to Fe, Ca, Mn, and Cl. The Boolihinan tuff was previously tentatively correlated to a 1.6 Ma tephra found in DSDP core DEM-4-1. However, we suggest here a more robust correlation to two samples of an unwelded ignimbrite with 40Ar/39Ar ages of 1.281±0.061 and 1.253±0.041 (27-01 and 27-05 of Morgan et al., 2012) from the Melka Kunture area, which is over 300 km from the Gona field area. The Boolihinan tuff is interpreted to be the ashfall equivalent of the unwelded ignimbrite. This correlation provides a chronological marker which in turn provides improved age constraints to the fossils and artifacts at Gona that are found in association with this tephra.
NASA Astrophysics Data System (ADS)
Rao Gangumalla, Srinivasa; Radhakrishna, Munukutla
2014-05-01
The eastern continental margin of India has evolved as a consequence of rifting and breakup between India and east Antarctica during the early Cretaceous. Plate reconstruction models for the breakup of eastern Gondwanaland by many earlier workers have unambiguously placed the southeast margin of Sri Lanka and India together as a conjugate segment with the east Antarctica margin that extends from Gunnerus Ridge in the west to western Enderby basin in the east. In this study, we present results of integrated analysis of gravity, geoid, magnetic and seismic data from these two conjugate portions in order to examine the lithosphere structure and early seafloor spreading, style of breakup, continent-ocean boundary (COB) and rheological characteristics at these margins. The interpreted COB lies at a distance of 55-140 km on the side of southeast margin of Sri Lanka and India, whereas, it lies at a distance of 190-550 km on the side of east Antarctica margin. The seismic profiles and the constrained potential field models across these two segments do not show the existence of seaward dipping reflector sequences or magmatic underplating suggesting that these segments have not encountered major magmatic activity. While, significant crustal thinning/stretching is observed at the east Antarctic margin, the Cauvery offshore had experienced limited stretching with faulted Moho interface. Further, the conspicuous residual geoid low in the Cauvery offshore basin is inferred to be due to a continental crustal block. The modelled Lithosphere-Astenosphere Boundary (LAB) in these two margins is located around 110-120 km depth with slightly thicker lithosphere at the east Antarctica margin. In addition, the interpretation of magnetic anomalies provided structure of the oceanic crust generated through seafloor spreading processes with age and magnetization data constrained from the identified magnetic anomalies in the respective margins. Using the Bouguer coherence method, we computed spatial variations in effective elastic thickness (Te) at these margin segments. The estimated Te values at the Indian margin ranges between 5-8 km in the southeast of Sri Lanka to around 10-12 km in the Cauvery offshore which decrease further north to < 5 km in the Cauvery-Palar basin. Along the east Antarctic margin, the Te values ranges between 5-10 km in the Gunnerus ridge region, 35-40 km in the western Enderby basin which decrease further towards the central Enderby basin up to 20 km. In this study, the above results have been analyzed in terms of early breakup mechanism and subsequent evolution of these two conjugate segments.
NASA Astrophysics Data System (ADS)
Shahraki, Meysam; Schmeling, Harro; Haas, Peter
2018-01-01
Isostatic equilibrium is a good approximation for passive continental margins. In these regions, geoid anomalies are proportional to the local dipole moment of density-depth distributions, which can be used to constrain the amount of oceanic to continental lithospheric thickening (lithospheric jumps). We consider a five- or three-layer 1D model for the oceanic and continental lithosphere, respectively, composed of water, a sediment layer (both for the oceanic case), the crust, the mantle lithosphere and the asthenosphere. The mantle lithosphere is defined by a mantle density, which is a function of temperature and composition, due to melt depletion. In addition, a depth-dependent sediment density associated with compaction and ocean floor variation is adopted. We analyzed satellite derived geoid data and, after filtering, extracted typical averaged profiles across the Western and Eastern passive margins of the South Atlantic. They show geoid jumps of 8.1 m and 7.0 m for the Argentinian and African sides, respectively. Together with topography data and an averaged crustal density at the conjugate margins these jumps are interpreted as isostatic geoid anomalies and yield best-fitting crustal and lithospheric thicknesses. In a grid search approach five parameters are systematically varied, namely the thicknesses of the sediment layer, the oceanic and continental crusts and the oceanic and the continental mantle lithosphere. The set of successful models reveals a clear asymmetry between the South Africa and Argentine lithospheres by 15 km. Preferred models predict a sediment layer at the Argentine margin of 3-6 km and at the South Africa margin of 1-2.5 km. Moreover, we derived a linear relationship between, oceanic lithosphere, sediment thickness and lithospheric jumps at the South Atlantic margins. It suggests that the continental lithospheres on the western and eastern South Atlantic are thicker by 45-70 and 60-80 km than the oceanic lithospheres, respectively.
Kou, Qi; Chen, Jun; Li, Xinzheng; He, Lisheng; Wang, Yong
2017-07-01
Several specimens of the giant deep-sea isopod genus Bathynomus were collected by a deep-sea lander at a depth of 898 m near Hainan Island in the northern South China Sea. After careful examination, this material and the specimens collected from the Gulf of Aden, north-western Indian Ocean, previously reported as Bathynomus sp., were identified to be the same as a new species to the genus. Bathynomus jamesi sp. nov. can be distinguished from the congeners by: the distal margin of pleotelson with 11 or 13 short straight spines and central spine not bifid; uropodal endopod and exopod with distolateral corner slightly pronounced; clypeus with lateral margins concave; and antennal flagellum extending when extended posteriorly reaches the pereonite 3. In addition, Bathynomus jamesi sp. nov. is also supported by molecular analyses based on mitochondrial COI and 16S rRNA gene sequences. The distribution range of the new species includes the western Pacific and north-western Indian Ocean. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Hierarchical Marginal Land Assessment for Land Use Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Shujiang; Post, Wilfred M; Wang, Dali
2013-01-01
Marginal land provides an alternative potential for food and bioenergy production in the face of limited land resources; however, effective assessment of marginal lands is not well addressed. Concerns over environmental risks, ecosystem services and sustainability for marginal land have been widely raised. The objective of this study was to develop a hierarchical marginal land assessment framework for land use planning and management. We first identified major land functions linking production, environment, ecosystem services and economics, and then classified land resources into four categories of marginal land using suitability and limitations associated with major management goals, including physically marginal land,more » biologically marginal land, environmental-ecological marginal land, and economically marginal land. We tested this assessment framework in south-western Michigan, USA. Our results indicated that this marginal land assessment framework can be potentially feasible on land use planning for food and bioenergy production, and balancing multiple goals of land use management. We also compared our results with marginal land assessment from the Conservation Reserve Program (CRP) and land capability classes (LCC) that are used in the US. The hierarchical assessment framework has advantages of quantitatively reflecting land functions and multiple concerns. This provides a foundation upon which focused studies can be identified in order to improve the assessment framework by quantifying high-resolution land functions associated with environment and ecosystem services as well as their criteria are needed to improve the assessment framework.« less
The Volcanic Myths of the Red Sea - Temporal Relationship Between Magmatism and Rifting
NASA Astrophysics Data System (ADS)
Stockli, D. F.; Bosworth, W.
2017-12-01
The Cenozoic Red Sea is one of the premier examples of continental rifting and active break-up. It has been cited as an example for both prototypical volcanic, pure shear rift systems with limited crustal stretching as well as magma-poor simple-shear rifting and highly asymmetric rift margins characterized by low-angle normal faults. In light of voluminous Oligocene continental flood basalts in the Afar/Ethiopian region, the Red Sea has often been viewed as a typical volcanic rift, despite evidence for asymmetric extension and hyperextended crust (Zabargad Island). An in-depth analysis of the timing, spatial distribution, and nature of Red Sea volcanism and its relationship to late Cenozoic extensional faulting should shed light on some of the misconceptions. The Eocene appearance of the East African super-plume was not accompanied by any recognized significant extensional faulting or rift-basin formation. The first phase of volcanism more closely associated with the Red Sea occurred in northern Ethiopia and western Yemen at 31-30 Ma and was synchronous with the onset of continental extension in the Gulf of Aden. Early Oligocene volcanism has also been documented in southern and central Saudi Arabia and southern Sudan. However, this voluminous Oligocene volcanism entirely predates Red Sea extensional faulting and rift formation. Marking the onset of Red Sea rifting, widespread, spatially synchronous intrusion of basaltic dikes occurred at 24-21 Ma along the entire Red Sea-Gulf of Suez rift and continuing into northern Egypt. While the initiation of lithospheric extension in the central and northern and central Red Sea and Gulf of Suez was accompanied by only sparse basaltic volcanism and possible underplating, the main phase of rifting in the Miocene Red Sea/Gulf of Suez completely lacks any significant rift-related volcanism, suggesting plate-boundary forces probably drove overall separation of Arabia from Africa. During progressive rifting, there is also no evidence for the formation of SDRs or the accretion of a thick proto-oceanic crust. In fact, there appears to be evidence for hyperextension and possible mantle exhumation prior to Pliocene inception of seafloor spreading, making the Red Sea overall a rather magma-poor rift - and hardly the poster child for magmatic rifting and continental break-up.
NASA Astrophysics Data System (ADS)
Bourgois, Jacques; Toussaint, Jean-François; Gonzalez, Humberto; Azema, Jacques; Calle, Bernardo; Desmet, Alain; Murcia, Luis A.; Acevedo, Alvaro P.; Parra, Eduardo; Tournon, Jean
1987-12-01
The Western Cordillera of Colombia was formed by intense alpine-type nappe-forming folding and thrusting. The Cretaceous (80-120 Ma B.P.) tholeiitic material of the Western Cordilleran nappes has been obducted onto the Paleozoic and Precambrian polymetamorphic micaschists and gneiss of the Central Cordillera. Near Yarumal, the Antioquia batholith (60-80 Ma B.P.) intrudes both obducted Cretaceous oceanic material and the polymetamorphic basement rock of the Central Cordillera. Therefore, nappe emplacement and obduction onto the Central Cordillera occurred during Late Senonian to Early Paleocene. The nappes travelled from northwest to southeast so that the highest unit, the Rio Calima nappe therefore has the most northwestern source, whereas the lowest units originated from a more southeastward direction. Sedimentological analysis of the volcanoclastic and sandy turbidite material from each unit suggests a marginal marine environment. During Cretaceous times the opening of this marginal sea, from now on called the "Colombia marginal basin", probably originated by detachment of a block from the South American continent related to the Farallon-South America plate convergence. In the Popayan area (southern Colombia), the Central Cordilleran basement exhibits glaucophane schist facies metamorphism. This high pressure low temperature metamorphism is of Early Cretaceous (125 Ma B.P.) age and is related to an undated metaophiolitic complex. The ophiolitic material originating from the Western Cordilleran is thrust over both the blueschist belt and the metaophiolitic complex. These data suggest that the "Occidente Colombiano" suffered at least two phases of ophiolitic obduction during Mesozoic time.
NASA Astrophysics Data System (ADS)
van Dijk, W. M.; Mastbergen, D. R.; Van der Werf, J. J.; Leuven, J.; Kleinhans, M. G.
2017-12-01
Channel bank failure and collapses of shoal margins due to flow slides have been recorded in Dutch estuaries for the past 200 years. The effects of these collapses on the morphodynamics of estuaries are unknown, but could potentially increase the dynamics of channel-shoal interactions by causing perturbations of up to a million cubic meters per event, which could impact habitats and navigability. The processes of shoal margin collapses are currently not included in numerical morphodynamic models. The objectives of this study are to investigate where shoal margins collapses typically occur, what their dimensions are, and to model how shoal margin collapses affect the morphodynamics at the channel-shoal scale. We identified 300 shoal margin collapses from bathymetry data of the Western Scheldt estuary for the period 1959-2015, and found that the shape of a shoal margin collapse is well represented by 1/3 of an ellipsoid, and that its volume has a log-normal distribution with an average of 100,000 m3. We implemented a parameterization for shoal margin collapses and tested their effects on morphodynamics in a Delft3D numerical model schematization of the Western Scheldt estuary. Three sets of scenarios were analyzed for near-field morphodynamics and far-field effects on flow pattern and channel-bar morphology: 1) an observed single shoal margin collapse of 2014, 2) collapses on various locations that are susceptible to collapses, and 3) our novel stochastic model producing collapses over a time span of a decade. Results show that single shoal margin collapses only affect the local dynamics in longitudinal direction and dampen out within a year when the collapse is small. When larger disturbances reach the seaward or landward sill at tidal channel junctions over a longer time span, the bed elevation at the sill increases on average and decrease the hydraulic geometry of the channel junctions. The extent of far-field effects is sensitive to the grain-size of the deposit, where finer sediments are transported further away. The location of the deposit across the channel matters for disturbing the region around the collapse, where sediment transport is highest for the strongest residual current. These results imply that disturbances caused by dredging and dumping may likewise affect the dynamics of channel junctions.
Tectonic evolution of west Antarctica and its relation to east Antarctica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalziel, I.W.D.
1987-05-01
West Antarctica consists of five major blocks of continental crust separated by deep sub-ice basins. Marie Byrd Land appears to have been rifted off the adjacent margin of the East Antarctic craton along the line of the Transantarctic Mountains during the Mesozoic. Ellsworth-Whitmore mountains and Haag Nunataks blocks were also rifted from the margin of the craton. They appear to have moved together with the Antarctic Peninsula and Thurston Island blocks, segments of a Pacific margin Mesozoic-Cenozoic magmatic arc, during the Mesozoic opening of the Weddell Sea basin. Paleomagnetic data suggest that all four of these blocks remained attached tomore » western Gondwanaland (South America-Africa) until approximately 125 m.y. ago, and that the present geographic configuration of the Antarctic continent was essentially complete by the mid-Cretaceous, although important Cenozoic rifting has also occurred. Fragmentation of the Gondwanaland supercontinent was preceded in the Middle to Late Jurassic by an important and widespread thermal event of uncertain origin that resulted in the emplacement of an extensive bimodal igneous suite in South America, Africa, Antarctica, and Australia. This was associated with the development of the composite back-arc basin along the western margin of South America. Inversion of this basin in the mid-Cretaceous initiated Andean orogenesis. The presentation will include new data from the joint US-UK West Antarctic Tectonics Project.« less
NASA Astrophysics Data System (ADS)
Casas, Josep M.; Brendan Murphy, J.
2018-06-01
We present a pre-orogenic, early Paleozoic, palinspastic reconstruction of the northern Gondwana margin that was subsequently involved in the Late Paleozoic Variscan orogeny in central and Western Europe. Our reconstruction is based on two pre-orogenic data sets, the age and distribution of Cambrian-Ordovician magmatism and the detrital zircon age signature of late Neoproterozoic-early Paleozoic clastic rocks. We obtain this reconstruction by unfolding the Ibero-Armorican arc and by restoring the movement of the large-scale dextral strike-slip faults that transect the different tectono-stratigraphic units. Our results favour an irregular shape for this part of the northern Gondwana margin with a N-S central segment linking two E-W oriented segments. The proposed reconstruction and the structural restoration of the main features of Variscan deformation is in accordance with some aspects of previously proposed structural models, such as the curved geometry of the Gondwanan margin required by the indentor model for continental collision, the role played by the large strike-slip faults in dispersing formerly juxtaposed units, and the regional-scale oroclinal folding of part of this margin during late Carboniferous-Early Permian times. The combined use of the pre-orogenic geological constraints and palinspastic restoration is a useful approach that may provide a foundation for continual refinement of reconstructions as more data become available.
From Afar to Zulu: A Dictionary of African Cultures.
ERIC Educational Resources Information Center
Haskins, Jim; Biondi, Joann
This resource provides information on over 30 of Africa's most populous and well-known ethnic groups. The text concisely describes the history, traditions, environment, social structure, religion, and daily lifestyles of these diverse cultures. Each entry opens with a map outlining the area populated by the group and a list of key data regarding…
Curriculum and the American Rural School.
ERIC Educational Resources Information Center
Feldmann, Doug
This book begins by tracing the history of curriculum development and the subjugation of rural school districts to curriculum decisions made from afar and tailored to urban needs. Local and teacher interpretation of the formal curriculum gave rise to the enacted curriculum, or that which was actually taught in classrooms. But for rural schools,…
Support from Afar: Using Chemical Safety Information on the Internet.
ERIC Educational Resources Information Center
Stuart, Ralph
One of the major challenges facing people committed to Teaching Safety in High Schools, Colleges, and Universities is keeping up with both the wide range of relevant technical information about potential hazards (ranging from fire protection to chemical hazards to biological issues) and the ever-changing world of safety regulations and standards.…
Retroflexion of Voiced Stops: Data from Dhao, Thulung, Afar and German
ERIC Educational Resources Information Center
Hamann, Silke; Fuchs, Susanne
2010-01-01
The present article illustrates that the specific articulatory requirements for voiced alveolar or dental stops can cause tongue tip retraction and tongue mid lowering and thus retroflexion of voiced front coronals. This retroflexion is shown to have occurred diachronically in the three typologically unrelated languages Dhao (Malayo-Polynesian),…
NASA Astrophysics Data System (ADS)
Ayele, A.; Keir, D.; Wright, T. J.; Ebinger, C. J.; Stuart, G. W.; Neuberg, J.
2009-12-01
The advent of digital and broadband seismic stations helped to capture the complex dynamics of earthquakes and volcanic sources processes ranging from high frequency microfractures to ultra long period transient signals. The September 2005 dike in the Afar depression of Ethiopia demonstrated to be one of the rare events of its kind to demonstrate the complex interaction of ambient tectonic stress, volcanic processes and dike intrusions. Unusually long period tremor in the range 18-20 seconds is observed by seismic stations located from ~ 350-700 km distance on 25 September, 2006 at about 14:00:00 GMT. This tremor sustain for about 30 minutes at FURI station. This time is coincident with the major emplacement phase of the dike beneath the Ado Ale Volcanic Complex (AVC before the small felsic eruption at Da’Ure in the afternoon of September 26, 2005. This tremor sustain for about 30 minutes at FURI station. The preliminary interpretation of this observation is postulated to be a highly pressurized magma source/reservoir breaking into the channel and its interaction with its deformable rock walls.
Mapping Distribution and Forecasting Invasion of Prosopis juliflora in Ethiopia's Afar Region
NASA Astrophysics Data System (ADS)
West, A. M.; Wakie, T.; Luizza, M.; Evangelista, P.
2014-12-01
Invasion of non-native species is among the most critical threats to natural ecosystems and economies world-wide. Mesquite (which includes some 45 species) is an invasive deciduous tree which is known to have an array of negative impacts on ecosystems and rural livelihoods in arid and semi-arid regions around the world, dominating millions of hectares of land in Asia, Africa, Australia and the Americas. In Ethiopia, Prosopis juliflora (the only reported mesquite) is the most pervasive plant invader, threatening local livelihoods and the country's unique biodiversity. Due to its rapid spread and persistence, P. juliflora has been ranked as one of the leading threats to traditional land use, exceeded only by drought and conflict. This project utilized NASA's Earth Observing System (EOS) data and species distribution modeling to map current infestations of P. juliflora in the Afar region of northeastern Ethiopia, and forecast its suitable habitat across the entire country. This project provided a time and cost-effective strategy for conducting risk assessments of invasive mesquite and subsequent monitoring and mitigation efforts by land managers and local communities.
NASA Astrophysics Data System (ADS)
Roberts, Gareth G.; White, Nicky; Paul, Jonathan
2013-04-01
The physiography of the Earth's surface is a manifestation of vertical motions, erosion, and deposition of sediment. We show that a history of uplift rate of the continents during the last ~ 100 million years can be determined by jointly inverting the longitudinal profiles of rivers. We assume that the shape of a river profile is controlled by the history of uplift rate and moderated by the erosional process. We have parameterized fluvial erosion using a nonlinear advective-diffusive formulation. A river profile per se contains no information about the erosional timescale; values of erosional parameters must be calibrated. If either vertical incision rate or knickzone retreat rate is known independently, for example when palaeo-river profiles are preserved, we can calibrate the erosional model directly. Independent spot measurements of uplift offer another way to calibrate a regional model. In our inverse model, uplift rate is allowed to vary smoothly as a function of space and time, and upstream drainage area is invariant. Using this inverse methodology, we show that there exist time-correlative commonalities in the shapes of river profiles draining uplifted regions. We find that the rate at which knickzones propagate upstream is linearly dependent on slope in nearly all cases (i.e. n = 1 in the detachment-limited erosional model for ~ 600 North American and African rivers). The exponent on upstream drainage, m, which controls knickzone retreat rate, is typically < 0.5. Calculated retreat rates are therefore insensitive to large changes in upstream drainage area. Simultaneous inversion of profiles from the Colorado, Columbia, Mississippi and Rio Grande catchments shows that western North America experienced three regional phases of uplift during the last 100 Ma. The first phase of uplift occurred between 80-50 Ma, which generated ~ 1 km of topography at a rate of ~ 0.03 mm/yr. A second phase of uplift generated ~ 1.5 km of topography between 35-15 Ma at a rate of ~ 0.06 mm/yr. A final and smaller phase of uplift commenced ~ 5 Ma. These distinct phases of uplift are corroborated by spot estimates of palaeoaltimetry, timed growth of relief, thermochronometric data and by stratigraphic evidence of pulsed clastic efflux delivered to the Gulf of Mexico. An episodic uplift history is consistent with punctuated dynamic support of a large region, which is currently centred on Yellowstone. Inversion of the Congo, Nile, Niger, Ogooue, Orange, Zambezi rivers and their major tributaries indicates that domal swells in Africa have experienced a staged uplift history. The West African margin has experienced at least two phases of uplift during the last 30 Ma. Uplift in Afar began ~ 35 Ma. The Hoggar and Tibesti swells, in central North Africa, have an older history of uplift. These results are consistent with a staged magmatic history, delivery of sediment to the continental margins and stratigraphic observations, which suggest that the African landscape is responding to convection in the mantle.
Lund, K.
2008-01-01
The U.S. and Canadian Cordilleran miogeocline evolved during several phases of Cryogenian-Devonian intracontinental rifting that formed the western mangin of Laurentia. Recent field and dating studies across central Idaho and northern Nevada result in identification of two segments of the rift margin. Resulting interpretations of rift geometry in the northern U.S. Cordillera are compatible with interpretations of northwest- striking asymmetric extensional segments subdivided by northeast-striking transform and transfer segments. The new interpretation permits integration of miogeoclinal segments along the length of the western North American Cordillera. For the U.S. Cordillera, miogeoclinal segments include the St. Mary-Moyie transform, eastern Washington- eastern Idaho upper-plate margin, Snake River transfer, Nevada-Utah lower-plate margin, and Mina transfer. The rift is orthogonal to most older basement domains, but the location of the transform-transfer zones suggests control of them by basement domain boundaries. The zigzag geometry of reentrants and promontories along the rift is paralleled by salients and recesses in younger thrust belts and by segmentation of younger extensional domains. Likewise, transform transfer zones localized subsequent transcurrent structures and igneous activity. Sediment-hosted mineral deposits trace the same zigzag geometry along the margin. Sedimentary exhalative (sedex) Zn-Pb-Ag ??Au and barite mineral deposits formed in continental-slope rocks during the Late Devonian-Mississippian and to a lesser degree, during the Cambrian-Early Ordovician. Such deposits formed during episodes of renewed extension along miogeoclinal segments. Carbonate-hosted Mississippi Valley- type (MVT) Zn-Pb deposits formed in structurally reactivated continental shelf rocks during the Late Devonian-Mississippian and Mesozoic due to reactivation of preexisting structures. The distribution and abundance of sedex and MVT deposits are controlled by the polarity and kinematics of the rift segment. Locally, discrete mineral belts parallel secondary structures such as rotated crustal blocks at depth that produced sedimentary subbasins and conduits for hydrothermal fluids. Where the miogeocline was overprinted by Mesozoic and Cenozoic deformation and magmatism, igneous rock-related mineral deposits are common. ??2008 Geological Society of America.
Basement thrust sheets in the Clearwater orogenic zone, central Idaho and western Montana
NASA Astrophysics Data System (ADS)
Skipp, Betty
1987-03-01
The Clearwater orogenic zone in central Idaho and western Montana contains at least two major northeast-directed Cordilleran thrust plates of Early Proterozoic metasedimentary and metaigneous rocks that overrode previously folded Middle Proterozoic rocks of the Belt basin in Cretaceous time. The northeastward migration of the resultant thickened wedge of crustal material combined with Cretaceous subduction along the western continental margin produced a younger northern Bitterroot lobe of the Idaho batholith relative to an older southern Atlanta lobe. Eocene extensional unroofing and erosion of the Bitterroot lobe has exposed the roots of the thick Cordilleran thrust sheets.
Evolution of the northern Main Ethiopian rift: birth of a triple junction
NASA Astrophysics Data System (ADS)
Wolfenden, Ellen; Ebinger, Cynthia; Yirgu, Gezahegn; Deino, Alan; Ayalew, Dereje
2004-07-01
Models for the formation of the archetypal rift-rift-rift triple junction in the Afar depression have assumed the synchronous development of the Red Sea-Aden-East African rift systems soon after flood basaltic magmatism at 31 Ma, but the timing of intial rifting in the northern sector of the East African rift system had been poorly constrained. The aims of our field, geochronology, and remote sensing studies were to determine the timing and kinematics of rifting in the 3rd arm, the Main Ethiopian rift (MER), near its intersection with the southern Red Sea rift. New structural data and 10 new SCLF 40Ar/39Ar dates show that extension in the northern Main Ethiopian rift commenced after 11 Ma, more than 17 My after initial rifting in the southern Red Sea and Gulf of Aden. The triple junction, therefore, could have developed only during the past 11 My, or 20 My after the flood basaltic magmatism. Thus, the flood basaltic magmatism and separation of Arabia from Africa are widely separated in time from the opening of the Main Ethiopian rift, which marks the incipient Nubia-Somalia plate boundary; triple junction formation is not a primary feature of breakup above the Afar mantle plume. The East African rift system appears to have propagated northward from the Mesozoic Anza rift system into the Afar depression to cut across Oligo-Miocene rift structures of the Red Sea and Gulf of Aden, in response to global plate reorganisations. Structural patterns reveal a change from 130°E-directed extension to 105°E-directed extension sometime in the interval 6.6 to 3 Ma, consistent with predictions from global plate kinematic studies. The along-axis propagation of rifting in each of the three arms of the triple junction has led to a NE-migration of the triple junction since 11 Ma.
NASA Astrophysics Data System (ADS)
Campisano, C. J.; Dimaggio, E. N.; Arrowsmith, J. R.; Kimbel, W. H.; Reed, K. E.; Robinson, S. E.; Schoville, B. J.
2008-12-01
Understanding the geographic, temporal, and environmental contexts of human evolution requires the ability to compare wide-ranging datasets collected from multiple research disciplines. Paleoanthropological field- research projects are notoriously independent administratively even in regions of high transdisciplinary importance. As a result, valuable opportunities for the integration of new and archival datasets spanning diverse archaeological assemblages, paleontological localities, and stratigraphic sequences are often neglected, which limits the range of research questions that can be addressed. Using geoinformatic tools we integrate spatial, temporal, and semantically disparate paleoanthropological and geological datasets from the Hadar sedimentary basin of the Afar Rift, Ethiopia. Applying newly integrated data to investigations of fossil- rich sediments will provide the geospatial framework critical for addressing fundamental questions concerning hominins and their paleoenvironmental context. We present a preliminary cyberinfrastructure for data management that will allow scientists, students, and interested citizens to interact with, integrate, and visualize data from the Afar region. Examples of our initial integration efforts include generating a regional high-resolution satellite imagery base layer for georeferencing, standardizing and compiling multiple project datasets and digitizing paper maps. We also demonstrate how the robust datasets generated from our work are being incorporated into a new, digital module for Arizona State University's Hadar Paleoanthropology Field School - modernizing field data collection methods, on-the-fly data visualization and query, and subsequent analysis and interpretation. Armed with a fully fused database tethered to high-resolution satellite imagery, we can more accurately reconstruct spatial and temporal paleoenvironmental conditions and efficiently address key scientific questions, such as those regarding the relative importance of internal and external ecological, climatological, and tectonic forcings on evolutionary change in the fossil record. In close association with colleagues working in neighboring project areas, this work advances multidisciplinary and collaborative research, training, and long-range antiquities conservation in the Hadar region.
Abdu, Jemal; Kahssay, Molla; Gebremedhin, Merhawi
2018-01-01
Poor nutritional status of women has been a serious problem in Ethiopia. Rural women are more likely to be undernourished than urban women. Afar region is the most likely to be undernourished (43.5%). Despite the humanitarian and food aid, food insecurity and maternal underweight are very high in the region. Household food insecurity is not adequately studied in Afar region. The aim of this study was to assess the prevalence of household food insecurity and underweight status and its association among reproductive age women. The study was conducted in Assayita district in June 2015. Community-based cross-sectional study design was used among nonpregnant women. Household data was collected using structured questionnaire. Multistage cluster sampling procedure was applied. Two pastoral and two agropastoral Kebeles have been selected by simple random sampling. Systematic random sampling was used to select respondents. The total sample size was 549 households. Household Food Insecurity Access Scale (HFIAS) and anthropometric data were used to determine food insecurity and underweight, respectively. Multivariate regression models were used to measure associations. Prevalence of HFIAS was 70.4 with a mean of 7.0 (3.6 ± SD); 26.1%, 30.20%, and 14.1% were mild, moderate, and severe food insecurity, respectively. Underweight prevalence (BMI < 18.5) was 41.1% with prevalence of mild, moderate, and severe underweight being 34.5%, 3.9%, and 2.7%, respectively. Age, parity, and having >2 children below five years of age were statistically associated with household food insecurity and maternal underweight. Household food insecurity and maternal underweight were very high. Age, parity, and having ≥2 children below five years of age were associated with household food insecurity. Maternal underweight was associated with maternal age, marital status, parity, number of children below 5 years, household food insecurity, and vocation of the respondents.
NASA Astrophysics Data System (ADS)
Lavayssiere, A.; Rychert, C.; Harmon, N.; Keir, D.; Hammond, J. O. S.; Kendall, J. M.; Leroy, S. D.; Doubre, C.
2017-12-01
The lithosphere is modified during rifting by a combination of mechanical stretching, heating and potentially partial melt. We image the crust and upper mantle discontinuity structure beneath the northern East African Rift System (EARS), a unique tectonically active continental rift exposing along strike the transition from continental rifting in the Main Ethiopian rift (MER) to incipient seafloor spreading in Afar and the Red Sea. S-to-P receiver functions from 182 stations across the northern EARS were generated from 3688 high quality waveforms using a multitaper technique and then migrated to depth using a regional velocity model. Waveform modelling of data stacked in large conversion point bins confirms the depth and strength of imaged discontinuities. We image the Moho at 29.6±4.7 km depth beneath the Ethiopian plateaux with a variability in depth that is possibly due to lower crustal intrusions. The crust is 27.3±3.9 km thick in the MER and thinner in northern Afar, 17.5±0.7 km. The model requires a 3±1.2% reduction in shear velocity with increasing depth at 68.5±1.5 km beneath the Ethiopian plateaux, consistent with the lithosphere-asthenosphere boundary (LAB). We do not resolve a LAB beneath Afar and the MER. This is likely associated with partial melt near the base of the lithosphere, reducing the velocity contrast between the melt-intruded lithosphere and the partially molten asthenosphere. We identify a 4.5±0.7% increase in velocity with depth at 91±3 km beneath the MER. This change in velocity is consistent with the onset of melting found by previous receiver functions and petrology studies. Our results provide independent constraints on the depth of melt production in the asthenosphere and suggest melt percolation through the base of the lithosphere beneath the northernmost East African rift.
The marginal economic value of streamflow from National Forests: Evidence from western water markets
Thomas C. Brown
2007-01-01
Evidence from over 2,000 water market transactions that occurred in the western U.S. over the past 14 years (1990 through 2003) was examined to learn who is selling to whom and for what purpose, how much water is involved, and how much it is selling for. Roughly half of the transactions were sales of water rights; the rest were water leases. The transactions show that...
Volcanic outcrops of southeast Ethiopia and the Ogaden Dyke Swarm
NASA Astrophysics Data System (ADS)
Mège, Daniel; Purcell, Peter; Jourdan, Fred; Pochat, Stéphane
2013-04-01
A new map of Tertiary volcanics occurrences in the Ogaden region of southeast Ethiopia and adjacent areas of Somalia has been prepared. Outcrop areas, mapped using satellite images and helicopter--supported field work in 2008, are more widespread than previously recognized, while magnetic and drill data reveal the vast subsurface extent of the magmatism. Several spectacular 'meandering' outcrops, over 100 km long, are undoubtedly exhumed canyon--filling flows and magnetic data show that many other apparently isolated outcrops are actually part of similar flows, the bulk of which are now subsurface. Age dating and well intersections show several volcanic episodes, with the major outpouring occurring across a broad peneplain in the Oligocene. Geological and aeromagnetic mapping, and 40Ar/39Ar age dating, reveal a dyke swarm extending SSE from the southern Afar margin more than 600 km across the Somali Plate, and coeval with dyke injection in the Red Sea rift at ~25 Ma. The Ogaden Dyke Swarm, which occurs in an area historically considered remote from the impact of the Afro--Arabian rifting and volcanism, appears associated with the Marda Fault and marks a zone of crustal dilation along the Red Sea trend across the Horn of Africa. Contemporaneous rifts, also trending WNW/ESE and over 120 km long, occur in NE Somalia, confirming the predominantly NE/SW--directed crustal stress regime in the Ogaden and adjacent region at this time.
Kahsay, Znabu Hadush; Tegegne, Dessie; Mohammed, Ebrahim; Kiros, Getachew
2018-01-01
Use of modern contraceptive methods reduces the risk of unwanted pregnancy, and is influenced by individual-level factors. Willingness to use modern contraceptive methods maybe a useful metric when considering health outcomes as it could predict health behaviors. Therefore, the current study aimed to assess the willingness of women to use modern contraceptives in Afar pastoralist communities. A community-based cross-sectional study was conducted from May 1 to 30, 2016. Three hundred forty-five women of childbearing age (15-49 years) were systematically sampled with proportionate allocation from seven randomly selected kebeles (neighborhoods) in Aballa District of Afar Region, Ethiopia. All women meeting the inclusion criteria in each selected household were interviewed at home using a semi-structured questionnaire. Construct validity was assured using factor analysis. A combination of individual behavioral models were applied in order to measure willingness to use modern contraceptive methods. Multiple logistic regressions were utilized to identify factors associated with willingness to use contraceptive at P-value of less than 0.05. Three hundred twenty-two women participated in the study, for a response rate of 93.3%. The mean age of respondents was 27 (±6) years. About one-third (N = 106, 32.9%) of the participants reported that they were willing to use modern contraceptives. Orthodox Christians (AOR = 4.22, 95% CI 1.94-8.92), women aged 19 or older at first marriage (AOR = 2.89, 95% CI 1.16-7.23), and women who had never experienced a stillbirth (AOR = 3.85, 95%CI 1.37-10.78) were more likely to report being willing to use modern contraceptives. Additionally, perceived severity of an unwanted pregnancy (AOR = 1.71, 95% CI 1.57-1.93) and perceived self-efficacy to use contraceptives (AOR = 1.26, 95% CI 1.17-1.65) were positively associated with the willingness. Women who had never had an abortion were less likely to express willingness to use modern contraceptives (AOR = 0.41, 95% CI 0.19-0.92) and perceived importance of cultural and religious norms (AOR = 0.85, 95% CI 0.62-0.90) was also negatively associated with willingness. The majority of women in this study were not willing to use modern contraceptive methods. A previous pregnancy outcome of stillbirth was associated with reduced willingness, while a prior abortion was associated with increased willingness. Perceived severity of unwanted pregnancy and higher self-efficacy surrounding contraceptive use were strong predictors of increased willingness to use contraceptives. Religious and cultural norms also appear to influence perception towards modern contraception. Thus, involvement of cultural and religious leaders and consideration of a woman's reproductive history are recommended when designing health education messages on contraception for Afar pastoralist women.
3D displacement time series in the Afar rift zone computed from SAR phase and amplitude information
NASA Astrophysics Data System (ADS)
Casu, Francesco; Manconi, Andrea
2013-04-01
Large and rapid deformations, such as those caused by earthquakes, eruptions, and landslides cannot be fully measured by using standard DInSAR applications. Indeed, the phase information often degrades and some areas of the interferograms are affected by high fringe rates, leading to difficulties in the phase unwrapping, and/or to complete loss of coherence due to significant misregistration errors. This limitation can be overcome by exploiting the SAR image amplitude information instead of the phase, and by calculating the Pixel-Offset (PO) field SAR image pairs, for both range and azimuth directions. Moreover, it is possible to combine the PO results by following the same rationale of the SBAS technique, to finally retrieve the offset-based deformation time series. Such technique, named PO-SBAS, permits to retrieve the deformation field in areas affected by very large displacements at an accuracy that, for ENVISAT data, correspond to 30 cm and 15 cm for the range and azimuth, respectively [1]. Moreover, the combination of SBAS and PO-SBAS time series can help to better study and model deformation phenomena characterized by spatial and temporal heterogeneities [2]. The Dabbahu rift segment of the Afar depression has been active since 2005 when a 2.5 km3 dyke intrusion and hundreds of earthquakes marked the onset a rifting episode which continues to date. The ENVISAT satellite has repeatedly imaged the Afar depression since 2003, generating a large SAR archive. In this work, we study the Afar rift region deformations by using both the phase and amplitude information of several sets of SAR images acquired from ascending and descending ENVISAT tracks. We combined sets of small baseline interferograms through the SBAS algorithm, and we generate both ground deformation maps and time series along the satellite Line-Of-Sight (LOS). In areas where the deformation gradient causes loss of coherence, we retrieve the displacement field through the amplitude information. Furthermore, we could also retrieve the full 3D deformation field, by considering the North-South displacement component obtained from the azimuth PO information. The combination of SBAS and PO-SBAS information permits to better retrieve and constrain the full deformation field due to repeated intrusions, fault movements, as well as the magma movements from individual magma chambers. [1] Casu, F., A. Manconi, A. Pepe and R. Lanari, 2011. Deformation time-series generation in areas characterized by large displacement dynamics: the SAR amplitude Pixel-Offset SBAS technique, IEEE Transaction on Geosciences and Remote Sensing. [2] Manconi, A. and F. Casu, 2012. Joint analysis of displacement time series retrieved from SAR phase and amplitude: impact on the estimation of volcanic source parameters, Geophysical Research Letters, doi:10.1029/2012GL052202.
NASA Astrophysics Data System (ADS)
Alemayehu, Melesse; Zhang, Hong-Fu; Aulbach, Sonja
2017-07-01
We present new trace element compositions of amphiboles, Sr-Nd-Hf isotope compositions of clinopyroxenes and mineral modes for spinel peridotite xenoliths that were entrained in a Miocene alkali basalt (Gundeweyn, northwestern Ethiopian plateau), in order to understand the geochemical evolution and variation occurring within the continental lithospheric mantle (CLM) in close proximity to the East African Rift system, and its dynamic implications. With the exception of a single amphibole-bearing sample that is depleted in LREE (La/YbN = 0.45 × Cl), amphiboles in lherzolites and in one harzburgite show variable degrees of LREE enrichment (La/YbN = 2.5-12.1 × Cl) with flat HREE (Dy/YbN = 1.5-2.1 × Cl). Lherzolitic clinoyroxenes have 87Sr/86Sr (0.70227 to 0.70357), 143Nd/144Nd (0.51285 to 0.51346), and 176Hf/177Hf (0.28297 to 0.28360) ranging between depleted lithosphere and enriched mantle. LREE-enriched clinopyroxenes generally have more enriched isotope compositions than depleted ones. While lherzolites with isotope compositions similar to those of the Afar plume result from the most recent metasomatic overprint, isotope compositions more depleted than present-day MORB can be explained by an older melt extraction and/or isotopic rehomogenisation event, possibly related to the Pan-African orogeny. Several generations of amphibole are recognized in accord with this multi-stage evolution. Texturally unequilibrated amphibole occurring within the peridotite matrix and in melt pockets attest to continued hydration and refertilization of the lithospheric mantle subsequent to Oligocene flood basalt magmatism, during which an earlier-emplaced inventory of amphibole was likely largely consumed. However, a single harzburgite contains amphibole with the highest Mg# and lowest TiO2 content, which is interpreted as sampling a volumetrically subordinate mantle region beneath the Ethiopian plateau that was not tapped during flood basalt magmatism. Strikingly, both trace-element enriched and depleted lherzolites have high clinopyroxene and orthopyroxene and low olivine contents (median 15, 24 and 56 vol.%), combined with primitive olivine Mg# (median 89.5), indicating the presence of refertilized mantle beneath Gundeweyn. Despite its fertility and FeO-rich character (hence high inferred density), and impingement by the Afar plume, the CLM beneath the Ethiopian plateau, though apparently thinned through thermochemical erosion, has so far resisted whole-sale delamination or dripping. This is tentatively ascribed to insufficient stress and density contrasts at the periphery of the Afar plume, which reached its greatest thermochemical buoyancy in the Afar region, northeast of Gundeweyn.
Variations in the mantle transition zone beneath the Ethiopian Rift and Afar
NASA Astrophysics Data System (ADS)
Cornwell, D. G.; Hetenyi, G.; Blanchard, T.; Stuart, G. W.
2010-12-01
We use receiver functions calculated on broadband seismological data across Ethiopia to identify and map 3-D changes in the mantle transition zone (MTZ) thickness beneath the Ethiopian rift, Afar and the uplifted Ethiopian Plateau. The MTZ that divides the upper and lower mantle in the Earth is marked by discontinuities whose position and nature is controlled by local temperature and composition. It is commonly assumed that positive temperature anomalies cause an overall thinning of the MTZ by deepening the mineral phase transition of olivine (α-spinel) to wadsleyite (β-spinel) at around 410 km depth and shallowing the mineral phase transition of ringwoodite (γ-spinel) to magnesiowustite-perovskite at around 660 km depth. Such regions of anomalously hot mantle have been interpreted to extend from the core-mantle boundary (e.g. the African Superplume) to the Earth's surface from global tomographic models. Previous studies in Ethiopia or Afar that invoke receiver functions are mainly restricted to illuminating the MTZ beneath permanent seismological stations and, together with a regional receiver function study, all have found difficulty in imaging the discontinuities. They were unable to provide conclusive evidence for a thinned transition zone and could not constrain lateral changes in MTZ thickness that are required to assess whether the African Superplume intersects the MTZ beneath Ethiopia. We use seismological data from permanent stations as well as from four temporary arrays to compute receiver functions. We perform time-to-depth migration using the common conversion point (CCP) method with a regional velocity model that includes the slow mantle anomalies to estimate the depth-to-discontinuties and produce an MTZ thickness map. The signature of both the 410 and the 660 km discontinuities is clearly identified across ~500x500 km2. The 410 is relatively flat at 444±10 km depth throughout the region. The 660 is more perturbed with steep topographic changes and lies at 685±20 km depth. The mean depth of both interfaces being deeper than the respective nominal depths can be related to the low resolution of the global velocity model. However, the 410 is deepened more than the 660, resulting in a regionally thinned MTZ in the area of study by up to 25 km (equivalent of +150°C anomaly in the MTZ). A locally thickened (+13 km) MTZ is observed beneath part of the rift where the Main Ethiopian Rift opens into Afar. We interpret that elevated temperatures caused by the lower mantle African Superplume interacting with the MTZ in this region explains the thinned MTZ. Furthermore, the very slow upper mantle above the MTZ is a result of heat transfer from lower to upper mantle. This raised the mantle temperature, which facilitated the onset of rifting in Ethiopia.
1987-09-01
Reelfoot Lake was formed in a series of meander scars after the earthquake. Most recent active channels have affected only the western margin of the...with a few prominent meander loop scars, and the lower eastern margin as essentially a collective backswamp. Subsidence of Reelfoot Lake itself as a...open river with the various bankline and sandbar habitats involved there. Open water may well have existed dt various times in part of the Reelfoot Lake
Overview of Petroleum Settings in Deep Waters of the Brazilian South Atlantic Margin
NASA Astrophysics Data System (ADS)
Anjos, Sylvia; Penteado, Henrique; Oliveira, Carlos M. M.
2015-04-01
The objective of this work is to present an overall view of the tectonic and stratigraphic evolution of the western South Atlantic with focus on the Brazilian marginal basins. It includes the structural evolution, stratigraphic sequences, depositional environments and petroleum systems model along the Brazilian marginal basins. In addition, a description of the main petroleum provinces and selected plays including the pre-salt carbonates and post-salt turbidite reservoirs is presented. Source-rock ages and types, trap styles, main reservoir characteristics, petroleum compositions, and recent exploration results are discussed. Finally, an outlook and general assessment of the impact of the large pre-salt discoveries on the present-day and future production curves are given.
Volcanological and tectonic control of stratigraphy and structure in the western Deccan traps
NASA Astrophysics Data System (ADS)
Devey, C. W.; Lightfoot, P. C.
1986-08-01
Many of the world's flood basalt provinces form elevated plateaux at the margins of continents, although in most cases their present large elevation is not the result of mountain building processes. Several explanations have recently been put forward to explain such occurrences of epeirogeny. The Deccan Trap basalt province forms one such elevated plateau, and results are presented here showing how the epeirogenic uplift in this region, combined with crustal subsidence probably associated with the rifting of the Indian continental margin, has affected the structure of the basalt sequence. Trace element analytical data are used for samples from numerous vertical sections through the Deccan Traps lava series along and around the Western Ghats ridge in India. The results reinforce the previously defined stratigraphy of the Mahabaleshwar area, and extend it over a region covering some 36 000 km2, reaching as far south as Belgaum and the Trap/basement contact. These results show that the lava pile is not flat lying, but forms a very low amplitude anticlinal fold structure plunging southwards by up to 0.3 ° over most of the area, although in the south there is evidence of a reversal of this plunge. The fold is interpreted as being the result of two tilting processes: (1) westward tilting near the coast, due to the foundering of the passive continental margin, and (2) epeirogenic uplift along the whole west coast of India producing the observed topography and the peninsula-wide drainage patterns, and also the easterly component of dip. Variations in the magnitude of the latter effect along the western continental margin may also be important in generating the plunge of the fold, although the possibility of some component of depositional dip may also be important. This latter possibility can be modelled using a simple computer program. The results of this modelling show that a migrating linear volcanic edifice fits the observations best.
Godfrey, N.J.; Beaudoin, B.C.; Klemperer, S.L.; Levander, A.; Luetgert, J.; Meltzer, A.; Mooney, W.; Tréhu, A.
1997-01-01
The nature of the Great Valley basement, whether oceanic or continental, has long been a source of controversy. A velocity model (derived from a 200-km-long east-west reflection-refraction profile collected south of the Mendocino triple junction, northern California, in 1993), further constrained by density and magnetic models, reveals an ophiolite underlying the Great Valley (Great Valley ophiolite), which in turn is underlain by a westward extension of lower-density continental crust (Sierran affinity material). We used an integrated modeling philosophy, first modeling the seismic-refraction data to obtain a final velocity model, and then modeling the long-wavelength features of the gravity data to obtain a final density model that is constrained in the upper crust by our velocity model. The crustal section of Great Valley ophiolite is 7-8 km thick, and the Great Valley ophiolite relict oceanic Moho is at 11-16 km depth. The Great Valley ophiolite does not extend west beneath the Coast Ranges, but only as far as the western margin of the Great Valley, where the 5-7-km-thick Great Valley ophiolite mantle section dips west into the present-day mantle. There are 16-18 km of lower-density Sierran affinity material beneath the Great Valley ophiolite mantle section, such that a second, deeper, "present-day" continental Moho is at about 34 km depth. At mid-crustal depths, the boundary between the eastern extent of the Great Valley ophiolite and the western extent of Sierran affinity material is a near-vertical velocity and density discontinuity about 80 km east of the western margin of the Great Valley. Our model has important implications for crustal growth at the North American continental margin. We suggest that a thick ophiolite sequence was obducted onto continental material, probably during the Jurassic Nevadan orogeny, so that the Great Valley basement is oceanic crust above oceanic mantle vertically stacked above continental crust and continental mantle.
NASA Astrophysics Data System (ADS)
Ahmed, Abdulhakim; Leroy, Sylvie; Keir, Derek; Korostelev, Félicie; Khanbari, Khaled; Rolandone, Frédérique; Stuart, Graham; Obrebski, Mathias
2014-12-01
Breakup of continents in magma-poor setting occurs primarily by faulting and plate thinning. Spatial and temporal variations in these processes can be influenced by the pre-rift basement structure as well as by early syn-rift segmentation of the rift. In order to better understand crustal deformation and influence of pre-rift architecture on breakup we use receiver functions from teleseismic recordings from Socotra which is part of the subaerial Oligo-Miocene age southern margin of the Gulf of Aden. We determine variations in crustal thickness and elastic properties, from which we interpret the degree of extension related thinning and crustal composition. Our computed receiver functions show an average crustal thickness of ~ 28 km for central Socotra, which decreases westward along the margin to an average of ~ 21 km. In addition, the crust thins with proximity to the continent-ocean transition to ~ 16 km in the northwest. Assuming an initial pre-rift crustal thickness of 35 km (undeformed Arabian plate), we estimate a stretching factor in the range of ~ 2.1-2.4 beneath Socotra. Our results show considerable differences between the crustal structure of Socotra's eastern and western sides on either side of the Hadibo transfer zone; the east displays a clear intracrustal conversion phase and thick crust when compared with the western part. The majority of measurements across Socotra show Vp/Vs ratios of between 1.70 and 1.77 and are broadly consistent with the Vp/Vs values expected from the granitic and carbonate rock type exposed at the surface. Our results strongly suggest that intrusion of mafic rock is absent or minimal, providing evidence that mechanical thinning accommodated the majority of crustal extension. From our observations we interpret that the western part of Socotra corresponds to the necking zone of a classic magma-poor continental margin, while the eastern part corresponds to the proximal domain.
NASA Astrophysics Data System (ADS)
Likhanov, Igor I.; Régnier, Jean-Luc; Santosh, M.
2018-04-01
The tectonic evolution of the Siberian Cratonic margins offers important clues for global paleogeographic reconstructions, particularly with regard to the complex geological history of Central Asia. The Yenisey Ridge fold-and-thrust belt at the western margin of the Siberian Craton forms part of the Central Asian Orogenic Belt (CAOB) and is a key to understand the Precambrian tectonic evolution of the Siberian Craton and crustal growth in the CAOB, the world's largest Phanerozoic accretionary orogenic belt. Here we report for the first time, the occurrence of glaucophane schist relics in tectonites within the Yenisey shear zone which provides insights on Chilean-type convergent boundary. We present results from isotope geochronology (SHRIMP zircon analysis and mica 40Ar/39Ar dating), coupled with P-T calculations derived from conventional geothermobarometry and pseudosections in the system NCKFMASH that suggest two superimposed metamorphic events. During the first stage, glaucophane schists formed at around 640-620 Ma at P-T conditions of 8-10 kbar and 400-450 °C. In the second stage, the rocks experienced dynamic metamorphism (c. 600 Ma) at 11-15 kbar/550-640 °C. The differences in P-T parameters between weakly deformed rocks and intensely deformed tectonites and P-T paths suggest distinct tectonic processes. Geochemical features of the mafic tectonites suggest N-MORB and E-MORB affinity, and the zircon U-Pb ages suggest formation of the protoliths at 701.6 ± 8.4. The sequence of spreading, subduction and shear deformation identified in our study correlate with the early stages of development of the Paleo-Asian Ocean at the western margin of the Siberian Craton and supports the spatial proximity of Siberia and Laurentia at 700-600 Ma, as proposed for the Late Neoproterozoic paleogeographic reconstructions and as robustly constrained from large igneous province (LIP) record.
The Valencia trough and the origin of the western Mediterranean basins
NASA Astrophysics Data System (ADS)
Vegas, R.
1992-03-01
Evolutionary models for the Valencia trough must be necessarily related to the Neogene-Present geodynamics of the western Mediterranean basins. All these basins occupy new space created in the wake of the westward translation of the Alboran block and the counter-clockwise rotation of the Corso-Sardinian block. This escape-tectonics, microplate dispersal, model can account for the co-existence and progressive migration of compressional and extensional strain fields within the Africa-Europe broad zone of convergence. In this escape-tectonics model, the Valencia trough has resulted in a complex evolution which includes: (1) latest Oligocene-Early Miocene rifting along the Catalan-Valencian margin due to the opening of the Gulf of Lions; (2) almost simultaneous, Early Miocene, transpressive thrusting in the Balearic margin related to the initiation of displacement of the Alboran block; and (3) Late Miocene generalized extension as a consequence of the opening of the South Balearic basin.
Questions from Afar: The Influence of Outsideness on Web-Based Conversation
ERIC Educational Resources Information Center
Deed, Craig; Edwards, Anthony; Gomez, Viviana
2015-01-01
This paper defines the metaphor of outsideness in relation to web-based interaction. Outsideness is conceived of as a key influence in online academic conversation. In particular, through the sharing of cultural perspectives, asking questions to resolve doubt, and collaborative writing and re-writing as a basis for shaping ideas through reasoning.…
Virtually Stress Free: Keeping Online Graduate Management Students Healthy from Afar
ERIC Educational Resources Information Center
Martinak, M. Linda
2012-01-01
This article examines stress experienced by graduate management students in an online learning environment. I use qualitative methodology to examine data collected from 32 students in 2 sections of a graduate online course. Findings identify 6 categories of stressors experienced by the students as well as 6 categories of stress relief agents.…
Multimodal Integration of High Resolution EEG and Functional Magnetic Resonance: a Simulation Study
2001-10-25
Luca Romani3, Paolo Maria Rossini2, and Febo Cincotti4 1 Dip. Fisiologia umana e Farmacologia, Università "La Sapienza", Rome, 2 “AFAR", Ospedale...Organization Name(s) and Address(es) Dip. Fisiologia umana e Farmacologia, Università "La Sapienza", Rome Performing Organization Report Number Sponsoring
Lessons from Afar: A Review of www.daisakuikeda.org, Official Website of Daisaku Ikeda
ERIC Educational Resources Information Center
Arauz, Luis
2012-01-01
Daisaku Ikeda (1928- ) is a Buddhist leader, peace builder, school founder, and poet. His own biography and lifework provide a model for how one can transform adversity into alternative opportunities for some of the most disenfranchised students. Scrutinizing Ikeda's official website (www.daisakuikeda.org) reveals an extensive collection of his…
The South China sea margins: Implications for rifting contrasts
Hayes, D.E.; Nissen, S.S.
2005-01-01
Implications regarding spatially complex continental rifting, crustal extension, and the subsequent evolution to seafloor spreading are re-examined for the northern and southern-rifted margins of the South China Sea. Previous seismic studies have shown dramatic differences in the present-day crustal thicknesses as the manifestations of the strain experienced during the rifting of the margin of south China. Although the total crustal extension is presumed to be the same along the margin and adjacent ocean basin, the amount of continental crustal extension that occurred is much less along the east and central segments of the margin than along the western segment. This difference was accommodated by the early formation of oceanic crust (creating the present-day South China Sea basin) adjacent to the eastern margin segment while continued extension of continental crust was sustained to the west. Using the observed cross-sectional areas of extended continental crust derived from deep penetration seismics, two end-member models of varying rift zone widths and varying initial crustal thicknesses are qualitatively examined for three transects. Each model implies a time difference in the initiation of seafloor spreading inferred for different segments along the margin. The two models examined predict that the oceanic crust of the South China Sea basin toward the west did not begin forming until sometime between 6-12 my after its initial formation (???32 Ma) toward the east. These results are compatible with crustal age interpretations of marine magnetic anomalies. Assuming rifting symmetry with conjugate margin segments now residing along the southern portions of the South China Sea basin implies that the total width of the zone of rifting in the west was greater than in the east by about a factor of two. We suggest the most likely causes of the rifting differences were east-west variations in the rheology of the pre-rift crust and associated east-west variations in the thermal structure of the pre-rift lithosphere. The calculated widths of rifted continental crust for the northern and southern margins, when combined with the differential widths of seafloor generated during the seafloor spreading phase, indicate the total crustal extension that occurred is about 1100 km and is remarkably consistent to within ???10% for all three (eastern, central, western) segments examined. ?? 2005 Elsevier B.V. All rights reserved.
Langenheim, Victoria; Jachens, Robert C.; Aiken, Carlos
2014-01-01
The crustal structure of the Peninsular Ranges batholith can be divided geophysically into two parts: (1) a western mafic part that is dense, magnetic, and characterized by relatively high seismic velocities (>6.25 km/s), low heat flow (<60 mW/m2), and relatively sparse seismicity, and (2) an eastern, more felsic part that is less dense, weakly magnetic, and characterized by lower seismic velocities (<6.25 km/s), high heat flow (>60 mW/m2), and abundant microseismicity. Potential-field modeling indicates that the dense, mafic part of the batholith extends to depths of at least 20 km and likely to the Moho. The magnetic anomalies of the western part of the batholith extend south beyond the spatially extensive exposures of the batholith to the tip of the Baja California peninsula, which suggests that the mafic part of the batholith projects beneath Cenozoic volcanic cover another 400 km. The linearity and undisrupted nature of the magnetic belt of anomalies suggest that the western part of the batholith has behaved as a rigid block since emplacement of the batholith. The batholith may have influenced not only the development of the Gulf of California oblique rift, but also strike-slip faulting along its northern margin, and transtensional faulting along its western margin, likely because it is thermally and mechanically more resistant to deformation than the surrounding crust.
Harter, D E V; Jentsch, A; Durka, W
2015-05-01
Corynephorus canescens (L.) P.Beauv. is an outbreeding, short-lived and wind-dispersed grass species, highly specialised on scattered and disturbance-dependent habitats of open sandy sites. Its distribution ranges from the Iberian Peninsula over Atlantic regions of Western and Central Europe, but excludes the two other classical European glacial refuge regions on the Apennine and Balkan Peninsulas. To investigate genetic patterns of this uncommon combination of ecological and biogeographic species characteristics, we analysed AFLP variation among 49 populations throughout the European distribution range, expecting (i) patterns of SW European glacial refugia and post-glacial expansion to the NE; (ii) decreasing genetic diversity from central to marginal populations; and (iii) interacting effects of high gene flow and disturbance-driven genetic drift. Decreasing genetic diversity from SW to NE and distinct gene pool clustering imply refugia on the Iberian Peninsula and in western France, from where range expansion originated towards the NE. High genetic diversity within and moderate genetic differentiation among populations, and a significant pattern of isolation-by-distance indicate a gene flow drift equilibrium within C. canescens, probably due to its restriction to scattered and dynamic habitats and limited dispersal distances. These features, as well as the re-colonisation history, were found to affect genetic diversity gradients from central to marginal populations. Our study emphasises the need for including the specific ecology into analyses of species (re-)colonisation histories and range centre-margin analyses. To account for discontinuous distributions, new indices of marginality were tested for their suitability in studies of centre-periphery gradients. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
The tectonographic development of Patagonia and its relevance to hydrocarbon exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Light, M.P.R.; Urien, C.M.; Maslanyj, M.P.
1993-02-01
Patagonia accreted successively from the southwest onto the southern margin of the Proterozoic Plata Craton and Brazilian Guapore Shield between the Late Proterozoic and Early Devonian. The thrust-like stacking of terranes onto the southern termination of the Pelotas Terrane is considered to have developed a pervasive northwest to north-trending fabric. During the Permo-Triassic the northwest to north-trending fabric of the Patagonian Plate was re-activated by dextral strike-slip movement causing extension. The deformation was caused by oblique subduction and accretion of the madre Dos Dios to Pichidangui Terranes along its western margin. To the northeast the more competent shield underwent compressionmore » (Ventania-Gond-wanide Folding) and extension occurred parallel to the axis of the embryo South Atlantic, where a shallow sea transgressed. Ridge on its western side, now preserved on the facing shelf margins of Argentina and Namibia. In the Late Triassic-Lower Jurassic, the Malvinas and Microplate was situated south of the Transkei (South Africa) and an intracratonic basin separated it from two sutures formed at the margin of the Argentine Shelf and along the axis of the West Malvinas Basin. Subduction/arc activity on the west flank of this intracratonic basin, in association with trench pull is believed to have initiated Late Triassic-Early Jurassic strike slip extension and volcanicity in Patagonia. This exploited the pervasive northwest and north-trending Paleozoic fabric. By the Mid-Jurassic the Malvinas Microplate had docked with the eastern margin of the Patagonian Shelf and was undergoing clockwise rotation between the Malvinas-Agulhas and Burwood Bank-Scotia Ridge dextral strike-slip systems. Rifting had now progressed southwestwards to the Pacific and north eastwards to the Colorado and Outeniqua Basins.« less
Thermal evolution of a hyperextended rift basin, Mauléon Basin, western Pyrenees
NASA Astrophysics Data System (ADS)
Hart, Nicole R.; Stockli, Daniel F.; Lavier, Luc L.; Hayman, Nicholas W.
2017-06-01
Onshore and offshore geological and geophysical observations and numerical modeling have greatly improved the conceptual understanding of magma-poor rifted margins. However, critical questions remain concerning the thermal evolution of the prerift to synrift phases of thinning ending with the formation of hyperextended crust and mantle exhumation. In the western Pyrenees, the Mauléon Basin preserves the structural and stratigraphic record of Cretaceous extension, exhumation, and sedimentation of the proximal-to-distal margin development. Pyrenean shortening uplifted basement and overlying sedimentary basins without pervasive shortening or reheating, making the Mauléon Basin an ideal locality to study the temporal and thermal evolution of magma-poor hyperextended rift systems through coupling bedrock and detrital zircon (U-Th)/He thermochronometric data from transects characterizing different structural rifting domains. These new data indicate that the basin was heated during early rifting to >180°C with geothermal gradients of 80-100°C/km. The proximal margin recorded rift-related exhumation/cooling at circa 98 Ma, whereas the distal margin remained >180°C until the onset of Paleocene Pyrenean shortening. Lithospheric-scale numerical modeling shows that high geothermal gradients, >80°C/km, and synrift sediments >180°C, can be reached early in rift evolution via heat advection by lithospheric depth-dependent thinning and blanketing caused by the lower thermal conductivity of synrift sediments. Mauléon Basin thermochronometric data and numerical modeling illustrate that reheating of basement and synrift strata might play an important role and should be considered in the future development of conceptual and numerical models for hyperextended magma-poor continental rifted margins.
Tectonic implications of facies patterns, Lower Permian Dry Mountain trough, east-central Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallegos, D.M.; Snyder, W.S.; Spinosa, C.
1991-02-01
Paleozoic tectonism is indicated by a study of a west-east facies analysis transect across the northern portion of the Lower Permian Dry Mountain trough (DMT). In an attempt to characterize the Early Permian basin-filling sequences, three broadly recognizable facies packages have been identified across the DMT: the western margin facies and the central basin facies of the DMT and an eastern shelf facies. In the western margin facies of the basin, pulses of tectonic activity are recorded at McCloud Spring in the Sulphur Springs Range. Here, shallow open-marine carbonate overlies eroded Vinini Formation and, in turn, is unconformably overlain bymore » basinal marine carbonate. An unconformity also marks the contact with the overriding prograding coarse clastic facies. These abrupt transitions suggest the sediments were deposited in a tectonically active area where they preservation of Waltherian sequences is unlikely to occur. Similarly abrupt transitions are evident in the western part of the central basin facies. At Portuguese Springs n the Diamond Range, a thin basal marine conglomerate delineates Lower Permian sedimentation over the Pennsylvanian Ely Formation. Coarsening-upward basinal carbonate strata of pelagic, hemipelagic, and turbidite components overlie the basal conglomerate. this progression of sediments is unconformably overlain by a subaerial sequence of coarse clastic deposits. Within the eastern part of the central basin facies in the Maverick Spring Range, the Lower Permian sediments are open-marine siltstone, wackestone, packstone, and grainstone. The sediments are assigned to a gradually sloping ramp, indicating the effects of tectonism on this margin of the basin were subdued.« less
Seismic stratigraphy of the Mianwali and Bannu depressions, north-western Indus foreland basin
NASA Astrophysics Data System (ADS)
Farid, Asam; Khalid, Perveiz; Ali, Muhammad Y.; Iqbal, Muhammad Asim; Jadoon, Khan Zaib
2017-11-01
Regional seismic reflection profiles, deep exploratory wells, and outcrop data have been used to study the structure and stratigraphic architecture of the Mianwali and Bannu depressions, north-western Indus foreland basin. Synthetic seismograms have been used to identify and tie the seismic horizons to the well data. Nine mappable seismic sequences are identified within the passive and active margin sediments. In general, the Mianwali and Bannu depressions deepens towards north due to the flexure generated by the loading and southward shifting of the thrust sheets of the North-western Himalayan Fold and Thrust Belt. The seismic profiles show a classic wedge shaped foreland basin with a prominent angular unconformity which clearly differentiates the active and passive margin sediments. The onlap patterns in the Late Cretaceous sediments suggest the initial onset of foreland basin formation when the Indian Plate collided with Eurasian Plate. As the collision progressed, the lithospheric flexure caused an uplift along the flexural bulge which resulted in onlaps within the Paleocene and Eocene sequences. The tectonic activity reached to its maximum during Oligocene with the formation of a prominent unconformity, which caused extensive erosion that increases towards the flexural bulge.
NASA Astrophysics Data System (ADS)
Matthews, W. A.; Guest, B.; Coutts, D.; Bain, H.; Hubbard, S.
2017-05-01
The development of the Cordilleran orogen of western North American is disputed despite a century of study. Paleomagnetic observations require large-scale dextral displacements of crustal fragments along the western margin of North America, from low latitudes to moderate latitudes during the Cretaceous-Paleogene. A lack of corroborating geological evidence for large-scale (>1500 km) displacements has prevented the widespread integration of paleomagnetic data into most contemporary tectonic models for the margin. Here we use detrital zircons from the Nanaimo basin, southwestern British Columbia, Canada as an independent test of its Late Cretaceous paleogeographic position. We compare 4310 detrital zircon U/Pb dates from 16 samples to potential source areas in western North America to test hypothesized northern and southern Late Cretaceous paleogeographic positions. Our detrital zircon data suggest that sediment in the Nanaimo basin derives from either a geographically restricted portion of the Belt-Purcell basin or the Mojave-Sonoran region of southwestern North America. A paleogeographic position for the basin adjacent to the Mojave-Sonoran region is preferred as it is consistent with the paleomagnetic results, but further geological, isotopic, or geophysical data are required to rule out a Belt-Purcell source.
NASA Astrophysics Data System (ADS)
Ott, B.; Mann, P.
2015-12-01
The offshore Nicaraguan Rise in the western Caribbean Sea is an approximately 500,000 km2 area of Precambrian to Late Cretaceous tectonic terranes that have been assembled during the Late Cretaceous formation of the Caribbean plate and include: 1) the Chortis block, a continental fragment; 2) the Great Arc of the Caribbean, a deformed Cretaceous arc, and 3) the Caribbean large igneous province formed in late Cretaceous time. Middle Eocene to Recent eastward motion of the Caribbean plate has been largely controlled by strike-slip faulting along the northern Caribbean plate boundary zone that bounds the northern margin of the Nicaraguan Rise. These faults reactivate older rift structures near the island of Jamaica and form the transtensional basins of the Honduran Borderlands near Honduras. Recent GPS studies suggest that small amount of intraplate motion within the current margin of error of GPS measurements (1-3 mm/yr) may occur within the center of the western Caribbean plate at the Pedro Bank fault zone and Hess Escarpment. This study uses a database of over 54,000 km of modern and vintage 2D seismic data, combined with earthquake data and results from previous GPS studies to define the active areas of inter- and intraplate fault zones in the western Caribbean. Intraplate deformation occurs along the 700-km-long Pedro Bank fault zone that traverses the center of the Nicaraguan Rise and reactivates the paleo suture zone between the Great Arc of the Caribbean and the Caribbean large igneous province. The Pedro Bank fault zone also drives active extension at the 200-km-long San Andres rift along the southwest margin of the Nicaraguan Rise. Influence of the Cocos Ridge indentor may be contributing to reactivation of faulting along the southwesternmost, active segment of the Hess Escarpment.
NASA Astrophysics Data System (ADS)
Boekhout, F.; Reitsma, M. J.; Spikings, R.; Rodriguez, R.; Ulianov, A.; Gerdes, A.; Schaltegger, U.
2018-03-01
The tectonic evolution of the western Gondwana margin during Pangaea amalgation is recorded in variations in the Permo-Carboniferous back-arc basin sedimentation of Peru. This study provides the first radiometric age constraints on the volcanic and sedimentary sequences of south-central eastern Peru up to the western-most tip of Bolivia, and now permits the correlation of lateral facies variations to the late Paleozoic pre-Andean orogenic cycle. The two phases of Gondwanide magmatism and metamorphism at c. 315 Ma and c. 260 Ma are reflected in two major changes in this sedimentary environment. Our detrital U-Pb zircon ages demonstrate that the timing of Ambo Formation deposition corroborates the Late Mississipian age estimates. The transition from the Ambo to the Tarma Formation around the Middle Pennsylvanian Early Gondwanide Orogeny (c. 315 Ma) represents a relative deepening of the basin. Throughout the shallow marine deposits of the Tarma Formation evidence for contemporaneous volcanism becomes gradually more pronounced and culminates around 312 - 309 Ma. Continuous basin subsidence resulted in a buildup of platform carbonates of the Copacabana Formation. Our data highlights the presence of a previously unrecognized phase of deposition of mainly fluvial sandstones and localized volcanism (281-270 Ma), which we named ´Oqoruro Formation'. This sedimentary succession was previously miss-assigned to the so-called Mitu Group, which has recently been dated to start deposition in the Middle Triassic (∼245-240 Ma). The emersion of this marine basin coincides with the onset of a major plutonic pulse related to the Late Gondwanide Orogeny (c. 260). Exhumation lead to the consequent retreat of the epeiric sea to the present-day sub-Andean region, and the coeval accumulation of the fluvial Oqoruro Formation in south eastern Peru. These late Paleozoic palaeoenvironmental changes in the back-arc basins along the western Gondwana margin of southern reflect changes in tectonic plate reorganization in a long-lived Paleozoic accretionary orogeny.
NASA Astrophysics Data System (ADS)
McPhei, J.
1987-07-01
Late Carboniferous continental conglomerates interbedded with silicic ignimbrite sheets outcrop along more than 400 km of the western margin of the southern portion of the New England Orogen. Farther east, the coeval sedimentary facies are volcanogenic shallow marine and turbidite deposits. The volcanic source terrain, no longer exposed, was located to the west of the existing conglomerate-ignimbrite sequences and was underlain by continental crust which is, in part, represented by the northern Lachlan Fold Belt. The regional Late Carboniferous palaeogeography was similar to that of the present-day western continental margin of South America. The geology of the oceanward-flank of the Andean arc in northern Chile and a section of the Late Carboniferous continental sequence near Currabubula are comparable in detail. The Andean stratovolcanoes and ignimbrite centres thus provide the means of reconstruction of the Late Carboniferous volcanic source terrain. The geological record of both of these continental margin volcanic arcs, preserved in deposits of the arc flanks, is shaped by volcanism, especially the eruption of voluminous ignimbrites, and by uplift, deformation and glaciation centered on the arc. For the arc sections considered, diversity in the flank sequences arises because these controls vary in importance spatially and during the life of the arc (20-30 Ma). For the entire Andean arc, arc-parallel variations in the sites of active volcanism and its character appear to be related to differences in the continental crust thickness and the circumstances of subduction of oceanic crust, particularly the dip of the Benioff Zone. By analogy, variation in the age, duration and style of volcanic activity along the late Palaeozoic magmatic arc of the western New England Orogen perhaps reflects the former existence of significant differences in crust thickness and in the angle of subduction.
Cenozoic seismic stratigraphy of the SW Bermuda Rise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mountain, G.S.; Driscoll, N.W.; Miller, K.G.
1985-01-01
The seismic Horizon A-Complex (Tucholke, 1979) readily explains reflector patterns observed along the western third of the Bermuda Rise; farther east, basement is much more rugged and gravity flows shed from local topographic highs complicate the stratigraphy. Distal turbidites on the southwestern Bermuda Rise onlap reflector A* from the west, suggesting early Paleocene mass wasting of the North American margin. Locally erosive bottom currents cut into the middle Eocene section of the SW Bermuda Rise; these northward flowing currents preceded those that formed reflector Au along the North American margin near the Eocene-Oligocene boundary. Southward flowing currents swift enough tomore » erode the sea floor and to form reflector Au did not reach as far east as the SW Bermuda Rise. Instead, the main effect of these Au currents was to pirate sediment into contour-following geostrophic flows along the North American margin and to deprive the deep basin and the Bermuda Rise of sediment transported down-slope. Consequently, post-Eocene sediments away from the margin are fine-grained muds. Deposition of these muds on the SW Bermuda Rise was controlled by northward flowing bottom currents. The modern Hatteras Abyssal Plain developed in the late Neogene as turbidites once again onlapped the SW Bermuda Rise. Today, these deposits extend farthest east in fracture zone valleys and in the swales between sediment waves. Northward flowing currents continue at present to affect sediment distribution patterns along the western edge of the Bermuda Rise.« less
NASA Astrophysics Data System (ADS)
Rao, G. Srinivasa; Kumar, Manish; Radhakrishna, M.
2018-02-01
The continental breakup history at the northwest continental margin of India remained conjectural due to lack of clearly discernable magnetic anomaly identifications and the presence of several enigmatic structural/basement features whose structure was partly obscured by the Late Cretaceous Deccan magmatic event. In this study, a detailed analysis of the existing seismic and seismological data covering both onshore and offshore areas of the northwest Indian margin along with 3-D/2-D constrained potential field (gravity, magnetic and geoid) modeling has been carried out. The crustal structure and lithosphere-asthenosphere boundary (LAB) delineated across the margin provided valuable insights on the mechanism of continental extension. An analysis of the residual geoid anomaly (degree-10) map and the modeled LAB below Deccan volcanic province (DVP) revealed significant variation in upper mantle characteristics between the northwest (NW) and south central (SC) parts of DVP having thinner lithosphere in the NW part. The depth to LAB ranges 80-130 km at the margin with gradual thinning towards the western offshore having sharp gradient in the south (SC part of DVP) and gentle gradient in the north (NW part of DVP). The Moho configuration obtained from seismically constrained 3-D gravity inversion reveals that Moho depths vary 34-42 km below DVP and gradually thins to 16-20 km in the western offshore. The effective elastic thickness (Te) map computed through 3-D flexural modeling indicates that the Te values are in general lower in the region and range 12-25 km. Such lower Te values could be ascribed to the combined effect of the lithosphere stretching during Gondwana fragmentation in the Mesozoic and subsequent thermal influence of the Reunion plume. Based on the crustal stretching factors (β), Te estimates and the modeled lithosphere geometry at the margin in this study, we propose that the lithosphere below Laxmi-Gop basin region (β > 3.0) had undergone continuous stretching since India-Madagascar rifting ( 88 Ma) /much prior to this event. However, this continuous stretching did not lead to breakup. Due to syn-rift cooling, the developed necking zone (brittle-ductile deformation) got ceased and led to the development of a new necking zone between Seychelles and Laxmi Ridge. Subsequent stretching between Seychelles and the Laxmi Ridge contemporaneous with the Deccan flood basalts eruption led to the seafloor spreading in the Western Basin (anomaly C28n). Thus, the Laxmi Ridge became a continental sliver.
Ito, M.; Matsukawa, M.; Saito, T.; Nichols, D.J.
2006-01-01
The Choyr Basin is one of several Early Cretaceous rift basins in southwestern Mongolia that developed in specific regions between north-south trending fold-and-thrust belts. The eastern margin of the basin is defined by high-angle normal and/or strike-slip faults that trend north-to-south and northeast-to-southwest and by the overall geometry of the basin, which is interpreted to be a half graben. The sedimentary succession of the Choyr Basin documents one of the various types of tectono-sedimentary processes that were active in the rift basins of East Asia during Early Cretaceous time. The sedimentary infill of the Choyr Basin is newly defined as the Khalzan Uul and Khuren Dukh formations based on detailed mapping of lateral and vertical variations in component lithofacies assemblages. These two formations are heterotopic deposits and constitute a third-order fluvio-lacustrine sequence that can be divided into transgressive and highstand systems tracts. The lower part of the transgressive systems tract (TST) is characterized by sandy alluvial-fan and braided-river systems on the hanging wall along the western basin margin, and by a gravelly alluvial-fan system on the footwall along the eastern basin margin. The alluvial-fan and braided-river deposits along the western basin margin are fossiliferous and are interpreted to have developed in association with a perennial fluvial system. In contrast, alluvial-fan deposits along the eastern basin margin do not contain any distinct faunas or floras and are interpreted to have been influenced by a high-discharge ephemeral fluvial system associated with fluctuations in wetting and drying paleohydrologic processes. The lower part of the TST deposit fines upward to siltstone-dominated flood-plain and ephemeral-lake deposits that constitute the upper part of the TST and the lower part of the highstand systems tract (HST). These mudstone deposits eventually reduced the topographic irregularities typical of the early stage of synrift basin development, with an associated decrease in topographic-slope gradients. Finally, a high-sinuosity meandering river system drained to the south during the late highstand stage in response to the northward migration of the depocenter. The upper HST deposits are also fossiliferous and are interpreted to have been influenced by a perennial fluvial system, although the average annual discharge of this system was probably less than 5 percent of that involved in the formation of the lower TST deposits along the western basin margin. ?? 2006 Elsevier Ltd. All rights reserved.
Stevens, C.H.; Stone, P.; Miller, J.S.
2005-01-01
Data bearing on interpretations of the Paleozoic and Mesozoic paleogeography of southwestern North America are important for testing the hypothesis that the Paleozoic miogeocline in this region has been tectonically truncated, and if so, for ascertaining the time of the event and the possible role of the Mojave-Sonora megashear. Here, we present an analysis of existing and new data permitting reconstruction of the Paleozoic continental margin of southwestern North America. Significant new and recent information incorporated into this reconstruction includes (1) spatial distribution of Middle to Upper Devonian continental-margin facies belts, (2) positions of other paleogeographically significant sedimentary boundaries on the Paleozoic continental shelf, (3) distribution of Upper Permian through Upper Triassic plutonic rocks, and (4) evidence that the southern Sierra Nevada and western Mojave Desert are underlain by continental crust. After restoring the geology of western Nevada and California along known and inferred strike-slip faults, we find that the Devonian facies belts and pre-Pennsylvanian sedimentary boundaries define an arcuate, generally south-trending continental margin that appears to be truncated on the southwest. A Pennsylvanian basin, a Permian coral belt, and a belt of Upper Permian to Upper Triassic plutons stretching from Sonora, Mexico, into westernmost central Nevada, cut across the older facies belts, suggesting that truncation of the continental margin occurred in the Pennsylvanian. We postulate that the main truncating structure was a left-lateral transform fault zone that extended from the Mojave-Sonora megashear in northwestern Mexico to the Foothills Suture in California. The Caborca block of northwestern Mexico, where Devonian facies belts and pre-Pennsylvanian sedimentary boundaries like those in California have been identified, is interpreted to represent a missing fragment of the continental margin that underwent ???400 km of left-lateral displacement along this fault zone. If this model is correct, the Mojave-Sonora megashear played a direct role in the Pennsylvanian truncation of the continental margin, and any younger displacement on this fault has been relatively small. ?? 2005 Geological Society of America.
Venus orogenic belt environments - Architecture and origin
NASA Astrophysics Data System (ADS)
Head, James W.; Vorder Bruegge, Richard W.; Crumpler, L. S.
1990-08-01
Orogenic belt environments (Danu, Akna, Freyja, and Maxwell Montes) in Western Ishtar Terra, Venus, display a range of architectural elements, including (from the center of Western Ishtar outward) an inboard plateau (Lakshmi Planum), the linear orogenic belts themselves, outboard plateaus, steep scarps bounding Ishtar, adjacent linear foredeeps and outboard rises, and outboard low-lying volcanic plains. The main elements of the architecture are interpreted to be due to the convergence, underthrusting, and possible subduction of lowland plains at the margins of a preexisting tessera plateau of thicker crust.
Greek Islands, Western Asia Minor as seen from STS-58
NASA Technical Reports Server (NTRS)
1993-01-01
This north-looking view shows the western margin of Turkey (right) and the Dodecanese Islands of Greece between the Aegean Sea (left) and the Sea of Crete (foreground). The largest island is Crete (foreground) with the semicircular island of Thira beyond. Thira is dominated by the volcanoe Santorini. Two airplane contrails appear between the Turkish mainland and the large island of Rhodes immediately offshore. The narrow straits of the Dardanelles, joining the Black Sea to the Mediterranean, can be detected top left.
ERIC Educational Resources Information Center
Mehta, Jal
2013-01-01
Context: No Child Left Behind is only the most recent manifestation of a longstanding American impulse to reform schools through accountability systems created from afar. While research has explored the causes and consequences of No Child Left Behind, this study puts the modern accountability movement in longer historical perspective, seeking to…
ERIC Educational Resources Information Center
De Bolle, Marleen; De Fruyt, Filip; Decuyper, Mieke
2010-01-01
Psychometric properties of the Dutch version of the Affect and Arousal Scales (AFARS) were inspected in a combined clinical and population sample (N = 1,215). The validity of the tripartite structure and the relations between Negative Affect, Positive Affect, and Physiological Hyperarousal (PH) were investigated for boys and girls, younger (8-11…
Visuality, mobility and the cosmopolitan: inhabiting the world from afar.
Szerszynski, Bronislaw; Urry, John
2006-03-01
In earlier publications based on the research discussed in this article (e.g. Szerszynski and Urry 2002), we argued that an emergent culture of cosmopolitanism, refracted into different forms amongst different social groups, was being nurtured by a widespread 'banal globalism'--a proliferation of global symbols and narratives made available through the media and popular culture. In the current article we draw on this and other empirical research to explore the relationship between visuality, mobility and cosmopolitanism. First we describe the multiple forms of mobility that expand people's awareness of the wider world and their capacity to compare different places. We then chart the changing role that visuality has played in citizenship throughout history, noting that citizenship also involves a transformation of vision, an absenting from particular contexts and interests. We explore one particular version of that transformation--seeing the world from afar, especially in the form of images of the earth seen from space--noting how such images conventionally connote both power and alienation. We then draw on another research project, on place and vision, to argue that the shift to a cosmopolitan relationship with place means that humans increasingly inhabit their world only at a distance.
Oceanization starts from below during continental rupturing in the northern Red Sea
NASA Astrophysics Data System (ADS)
Cai, Y.; Ligi, M.; Bonatti, E.; Bosworth, W.; Cipriani, A.; Palmiotto, C.; Rasul, N. M.; Ronca, S.; Sanfilippo, A.; Seyler, M.; Nomani, S.; AlQutub, A. S.
2015-12-01
The role of magmatism in continental rupturing and in the birth of a new ocean is not well understood. Continental rupture can take place with intense and voluminous volcanism, as in the Southern Red Sea or in a relatively amagmatic mode, as in the Northern Red Sea. Mantle upwelling and melting may be affected by the south to north decreasing opening rate of the Red Sea and by the influence of the Afar plume, also decreasing from south to north. The tholeiitic basalts of the Red Sea spreading system contrast with the extensive Cenozoic basaltic lava fields of the western part of the Arabian peninsula that form one of the largest alkali basalt provinces in the world. In order to establish possible relationship between the Red Sea rift evolution and the western Saudi Arabia intraplate alkali volcanism, field work was carried out on Lunayyir, Ishara, al Kura and Khaybar volcanic fields. Collected samples cover a wide range of chemical diversity (from olivine basalt to trachyte) and span over a 20 Ma interval. We attempt a comparison of the geochemistry of igneous rocks from western Arabia dykes and volcanic fields with those from the Red Sea axis and from the islands of Zabargad and Brothers in the northern Red Sea, that represent basaltic melts injected into the thinned continental crust before continental rupturing and initiation of seafloor spreading. Gabbros drilled in the western Red Sea and exposed on the Brothers islands suggest that continental break up in the northern Red Sea, a relatively non-volcanic rift, is preceded by intrusion of oceanic-type basaltic melts that crystallize at progressively shallower crustal depths as rifting progresses towards continental break-up. A seismic reflection profile running across the central part of the southern Thetis basin shows a ~5 km wide reflector that marks the roof of a magma chamber located ~3.5 km below seafloor. The presence of a few kilometers deep subrift magma chamber soon after the initiation of oceanic spreading implies the crystallization of lower oceanic crust intrusives as a last step in a sequence of basaltic melt intrusion from pre-oceanic continental rifting to oceanic spreading. Thus oceanic crust accretion in the Red Sea rift starts at depth before continental break up, emplacement of oceanic basalt at the sea floor, and development of Vine-Matthews magnetic anomalies.
2013-02-01
Siberian margin (6.5 mm yr-1 full rate) [Vogt et al., 1979; DeMets et al., 1994; Sella et al., 2002]. For comparison, the ultraslow- spreading Southwest...that systemati~:ally decrea:;e from 12.8 mm yr 1 <~l its western eod {near Greeolund) to 6.5 nun yr 1 at its eastern end (the Siberian margin ) [Vogt et...perennial pack ice has made it possible to test these hypotheses. In 2007 the AGAVE expedi- tion utilized a oovcl vduclc (CAMPER) to acquire high
NASA Astrophysics Data System (ADS)
Dugda, Mulugeta Tuji
Crust and upper mantle structure beneath eastern Africa has been investigated using receiver functions and surface wave dispersion measurements to understand the impact of the hotspot tectonism found there on the lithospheric structure of the region. In the first part of this thesis, I applied H-kappa stacking of receiver functions, and a joint inversion of receiver functions and Rayleigh wave group velocities to determine the crustal parameters under Djibouti. The two methods give consistent results. The crust beneath the GEOSCOPE station ATD has a thickness of 23+/-1.5 km and a Poisson's ratio of 0.31+/-0.02. Previous studies give crustal thickness beneath Djibouti to be between 8 and 10 km. I found it necessary to reinterprete refraction profiles for Djibouti from a previous study. The crustal structure obtained for ATD is similar to adjacent crustal structure in many other parts of central and eastern Afar. The high Poisson's ratio and Vp throughout most of the crust indicate a mafic composition, suggesting that the crust in Afar consists predominantly of new igneous rock emplaced during the late synrift stage where extension is accommodated within magmatic segments by diking. In the second part of this thesis, the seismic velocity structure of the crust and upper mantle beneath Ethiopia and Djibouti has been investigated by jointly inverting receiver functions and Rayleigh wave group velocities to obtain new constraints on the thermal structure of the lithosphere. Crustal structure from the joint inversion for Ethiopia and Djibouti is similar to previously published models. Beneath the Main Ethiopian Rift (MER) and Afar, the lithospheric mantle has a maximum shear wave velocity of 4.1-4.2 km/s and extends to a depth of at most 50 km. In comparison to the lithosphere away from the East African Rift System in Tanzania, where the lid extends to depths of ˜100-125 km and has a maximum shear velocity of 4.6 km/s, the mantle lithosphere under the Ethiopian Plateau appears to have been thinned by ˜30-50 km and the maximum shear wave velocity reduced by ˜0.3 km/s. Results from a 1D conductive thermal model suggest that the shear velocity structure of the lithosphere beneath the Ethiopian Plateau can be explained by a plume model, if a plume rapidly thinned the lithosphere by ˜30--50 km at the time of the flood basalt volcanism (c. 30 Ma), and if warm plume material has remained beneath the lithosphere since then. About 45-65% of the 1-1.5 km of plateau uplift in Ethiopia can be attributed to the thermally perturbed lithospheric structure. In the final part of this thesis, the shear-wave velocity structure of the crust and upper mantle beneath Kenya has been obtained from a joint inversion of receiver functions, and Rayleigh wave group and phase velocities. The crustal structure from the joint inversion is consistent with crustal structure published previously by different authors. The lithospheric mantle beneath the East African Plateau in Kenya is similar to the lithosphere under the East African Plateau in Tanzania. Beneath the Kenya Rift, the lithosphere extends to a depth of at most ˜75 km. The lithosphere under the Kenya Plateau is not perturbed when compared to the highly perturbed lithosphere beneath the Ethiopian Plateau. On the other hand, the lithosphere under the Kenya Rift is perturbed as compared to the Kenya Plateau or the rest of the East African Plateau, but is not as perturbed as the lithosphere beneath the Main Ethiopian Rift or the Afar. Although Kenya and Ethiopia have similar uplift and rifting histories, they have different volcanic histories. Much of Ethiopia has been affected by the Afar Flood Basalt volcanism, which may be the cause of this difference in lithospheric structure between these two regions.
NASA Astrophysics Data System (ADS)
Cooper, Dee Ann; Cooper, Roger W.; Stevens, James B.; Stevens, M. S.; Cobban, William A.; Walaszczyk, Ireneusz
2017-12-01
The upper lower Cenomanian through middle Santonian (Upper Cretaceous) of the Boquillas Formation in the Big Bend Region of Trans-Pecos Texas consists of a marine carbonate succession deposited at the southern end of the Western Interior Seaway. The Boquillas Formation, subdivided into the lower, c. 78 m thick limestone-shale Ernst Member, and the upper, c. 132 m thick limestone/chalk/marl San Vicente Member, was deposited in a shallow shelf open marine environment at the junction between the Western Interior Seaway and the western margins of the Tethys Basin. Biogeographically, the area was closely tied with the southern Western Interior Seaway. The richly fossiliferous upper Turonian, Coniacian and lower Santonian parts of the Boquillas Formation are particularly promising for multistratigraphic studies.
Racine, Louise
2003-12-01
Providing culturally competent care to non-Western populations remains a challenge in Western pluralist societies. Limitations related to the use of cultural theories to adapt nursing care have to be acknowledged. Cultural theories erase the impact of the larger social context on non-Western populations' health. Health problems arising from social inequities have to be addressed, if culturally adapted nursing interventions, are to be designed. To this end, post-colonialist theoretical approach represents a promising avenue since it is aimed at unmasking health problems intersecting with race, ethnicity, gender, and social classes. Research endeavours are directed at integrating marginalized knowledge in nursing theorization. As well, post-colonialism, from which the concept of cultural safety is derived, is a means to enhance the quality of care offered by nurses coming from dominant ethnic group to non-Western populations.
The Phuket Terrane: A Late Palaeozoic rift at the margin of Sibumasu
NASA Astrophysics Data System (ADS)
Ridd, Michael F.
2009-09-01
It is widely accepted that Sibumasu rifted from Gondwana in the Late Palaeozoic. But the rifts themselves have not previously been documented in Southeast Asia. This paper identifies the pre-Middle Permian Kaeng Krachan Group of Upper Peninsular Thailand as the infill of one such rift, which is given the name Phuket Terrane. Indirect evidence suggests the rift-infill is several kilometres thick and glacially-influenced diamictites are conspicuous in the succession. There are significant similarities with the >3 km thick pre-Middle Permian rift-infill of the Carnarvon Basin of Western Australia. East of the Khlong Marui Fault belt the succession is thinner and diamictites are a minor component. A tectono-stratigraphic model is proposed involving Gondwana glaciers dropping their load at the (present) western margin of the Phuket Terrane from where it was re-sedimented in the rapidly subsiding marine rift basin. It is suggested that the Khlong Marui Fault formed part of the eastern boundary of the rift system. The Three Pagodas Fault belt similarly juxtaposes different pre-Middle Permian successions. Rifting ceased in the Early Permian and a passive margin formed as the Mesotethys ocean widened, the upper part of the Kaeng Krachan Group and the overlying Ratburi Limestone representing the post-rift sequence.
Origin of silicic crust by rifting and bimodal plume volcanism in the Afar Depression
NASA Astrophysics Data System (ADS)
Ghatak, A.; Basu, A. R.; Ebinger, C. J.
2010-12-01
The youngest mantle plume province worldwide occurs at the seismically and volcanically active East African - Red Sea - Gulf of Aden (Afar) triple junction, where one or more upwellings has impinged the thick cratonic lithosphere since ~45 Ma. A spectacular example of magmatism in the Afar depression is seen in the present to < 2 Ma old bimodal fissural mafic and peralkaline silicic eruptions in the ~60 km-long Dabbahu-Manda Hararo (DMH) Rift. In this study we report major, trace elements, and Nd-Sr-Pb isotopes in recent basaltic and silicic rocks originating from the center of the DMH rift segment, exposed along the rift axis and flanks of this segment. The rare earth element (REE) patterns of the silicic rocks and basalts are different in two significant ways: (1) the silicic rocks show a prominent positive Ce-anomaly that is extremely rare in volcanic rocks; and (2) this positive Ce-anomaly is accompanied by a strong negative Eu-anomaly. These anomalies are absent in the basaltic rocks. The positive Ce-anomaly is probably due to interaction in a magma chamber, similar in composition to the basalts, with deep saline aquifer or brines that typically show positive Ce-anomaly. The REE patterns of the two lava groups are interpreted to be due to fractional crystallization of plagioclase in a magma chamber similar in REE composition as the basalts that erupted in the DMH segments. We interpret the silicic rocks to be residues after ~20% fractional crystallization of plagioclase in the DMH basalts. The Nd-Pb isotopic composition of the basalts and rhyolites of the DMH are similar to the Ethiopian plume as defined by the ~30 Ma old Ethiopian flood basalts. Based on their high 3He/4He ratios (R/RA ~30) and Nd-Sr-Pb isotopic data, the source of the Ethiopian plume is generally believed to be in the lower mantle. Therefore, the similarity of the Nd-Pb and Pb-Pb isotopic variations between the Ethiopian plume and the DMH lavas indicates that these lavas were sourced from the lower mantle, and this source zone showed little variation over the past 30 Ma. Some of the silicic lavas fall distinctly outside the plume field toward more radiogenic 87Sr/86Sr at relatively restricted Nd and Pb isotopic compositions. This excursion in Sr-isotopic ratios of the silicic lavas, in concert with their positive Ce-anomaly, is interpreted to be due to mixing of the Afar plume derived basaltic magma with fluids from saline aquifers. We conclude that the bimodal lavas are consanguineous, the silicic lavas being generated by fractional crystallization of plagioclase in a lower mantle plume-derived basaltic magma-chamber, caused by the interaction with saline aquifers. The generation of bimodal volcanism from parental primitive basalts without any contribution from pre-existing continental crust in Dabbahu may explain other similar intraplate magmatism including early Archean-Hadean continental crust formation prior to onset of arc-volcanism.
NASA Astrophysics Data System (ADS)
Cluett, A.; Thomas, E. K.
2017-12-01
Anthropogenic warming is projected to drive profound change to the Arctic hydrological cycle within the century, most notably in the intensification of rainfall, with potential feedbacks to the climate system and cryosphere. However, the relationship between hydroclimate and cryosphere variability is poorly constrained in the long-term due to a scarcity of high-resolution hydroclimate records from the Arctic. We analyze the stable hydrogen isotopes (dD) of leaf wax biomarkers from lacustrine sediments spanning the Holocene to 9000 cal. year B.P. from Lake Gus (67.032ºN, 52.427ºW, 300 m a.s.l.; informal name), a small lake approximately 90 km from the modern western margin of the Greenland Ice Sheet. We interpret the signal of aquatic leaf wax isotopes in the context of a survey of 100 modern lake water samples from western Greenland across an aridity gradient to better understand the combined climatological and hydrological controls on lake water dD in the study area. We compare variability of aquatic and terrestrial leaf wax isotopes to infer changes in relative moisture throughout the Holocene, and complement our leaf wax record with analysis of glycerol dialkyl glycerol tetraethers (GDGTs) and alkenones, to produce records of summer temperature. Pairing temperature and leaf wax isotope records provides a means to constrain the changing dD-temperature relationship throughout the Holocene and infer moisture source variability. In combination, these proxies produce a comprehensive hydroclimate record at approximately centennial scale to evaluate shifts in relative moisture, temperature, and moisture source, and to investigate the interaction between hydroclimate and Greenland Ice Sheet margin fluctuations through the Holocene.
Plate tectonic model for the oligo-miocene evolution of the western Mediterranean
NASA Astrophysics Data System (ADS)
Cohen, Curtis R.
1980-10-01
This paper outlines a plate tectonic model for the Oligo-Miocene evolution of the western Mediterranean which incorporates recent data from several tectonic domains (Corsica, Sardinia, the Kabylies, Balearic promontory, Iberia, Algero-Provençal Basin and Tunisian Atlas). Following late Mesozoic anticlockwise rotation of the Iberian peninsula (including the Balearic promontory and Sardinia), late Eocene collision occurred between the Kabylies and Balearic promontory forming a NE-trending suture with NW-tectonic polarity. As a result of continued convergence between the African and European plates, a polarity flip occurred and a southward-facing trench formed south of the Kabylie—Balearic promontory suture. During late Oligocene time an E-W-trending arc and marginal basin developed behind the southward-facing trench in the area of the present-day Gulf of Lion. Opening of this basin moved the Corsica—Sardinia—Calabria—Petit Kabylie—Menorca plate southward, relative to the African plate. Early Miocene back-arc spreading in the area between the Balearic promontory and Grand Kabylie emplaced the latter in northern Algeria and formed the South Balearic Basin. Coeval with early Miocene back-arc basin development, the N-S-extension in the Gulf of Lion marginal basin changed to a more NW-SE direction causing short-lived extension in the area of the present-day Valencia trough and a 30° anticlockwise rotation of the Corsica-Sardinia-Calabria—Petit Kabylie plate away from the European plate. Early—middle Miocene deformation along the western Italian and northeastern African continental margins resulted from this rotation. During the early late Miocene (Tortonian), spreading within a sphenochasm to the southwest of Sardinia resulted in the emplacement of Petit Kabylie in northeastern Algeria.
NASA Astrophysics Data System (ADS)
Lifton, N. A.; Newall, J. C.; Fredin, O.; Glasser, N. F.; Fabel, D.; Rogozhina, I.; Bernales, J.; Prange, M.; Sams, S.; Eisen, O.; Hättestrand, C.; Harbor, J.; Stroeven, A. P.
2017-12-01
Numerical ice sheet models constrained by theory and refined by comparisons with observational data are a central component of work to address the interactions between the cryosphere and changing climate, at a wide range of scales. Such models are tested and refined by comparing model predictions of past ice geometries with field-based reconstructions from geological, geomorphological, and ice core data. However, on the East Antarctic Ice sheet, there are few empirical data with which to reconstruct changes in ice sheet geometry in the Dronning Maud Land (DML) region. In addition, there is poor control on the regional climate history of the ice sheet margin, because ice core locations, where detailed reconstructions of climate history exist, are located on high inland domes. This leaves numerical models of regional glaciation history in this near-coastal area largely unconstrained. MAGIC-DML is an ongoing Swedish-US-Norwegian-German-UK collaboration with a focus on improving ice sheet models by combining advances in numerical modeling with filling critical data gaps that exist in our knowledge of the timing and pattern of ice surface changes on the western Dronning Maud Land margin. A combination of geomorphological mapping using remote sensing data, field investigations, cosmogenic nuclide surface exposure dating, and numerical ice-sheet modeling are being used in an iterative manner to produce a comprehensive reconstruction of the glacial history of western Dronning Maud Land. We will present an overview of the project, as well as field observations and preliminary in situ cosmogenic nuclide measurements from the 2016/17 expedition.
NASA Astrophysics Data System (ADS)
Kováč, Michal; Márton, Emő; Oszczypko, Nestor; Vojtko, Rastislav; Hók, Jozef; Králiková, Silvia; Plašienka, Dušan; Klučiar, Tomáš; Hudáčková, Natália; Oszczypko-Clowes, Marta
2017-08-01
The data on the Neogene geodynamics, palaeogeography, and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas (ALCAPA Mega-unit) are summarized, re-evaluated, supplemented, and newly interpreted. The proposed concept is illustrated by a series of palinspastic and palaeotopographic maps. The Miocene development of the Outer Carpathians reflects the vanishing subduction of the residual oceanic and/or thinned continental crust. A compression perpendicular to the front of the orogenic system led to the closing of residual flysch troughs and to accretionary wedge growth, as well as to the development of a foredeep on the margin of the European Platform. Docking of the Outer Western Carpathians accretionary wedge, together with the Central Western Carpathians and Northern Pannonian domain, was accompanied by stretching of the overriding microplate. An orogen parallel and perpendicular extension was associated with the opening and subsidence of the Early and Middle Miocene hinterland (back-arc) basin system that compensated counter-clockwise rotations of the individual crustal fragments of ALCAPA. The Late Miocene development relates to the opening of the Pannonian Basin System. This process was coupled with common stretching of both ALCAPA and Tisza-Dacia Mega-units due to the pull exerted by subduction rollback in front of the Eastern Carpathians. The filling up of the hinterland basin system was associated with thermal subsidence and was followed by the Pliocene tectonic inversion and consequent erosion of the basin system margins, as well as part of the interior.
NASA Astrophysics Data System (ADS)
Stroeven, Arjen P.; Hättestrand, Clas; Kleman, Johan; Heyman, Jakob; Fabel, Derek; Fredin, Ola; Goodfellow, Bradley W.; Harbor, Jonathan M.; Jansen, John D.; Olsen, Lars; Caffee, Marc W.; Fink, David; Lundqvist, Jan; Rosqvist, Gunhild C.; Strömberg, Bo; Jansson, Krister N.
2016-09-01
To provide a new reconstruction of the deglaciation of the Fennoscandian Ice Sheet, in the form of calendar-year time-slices, which are particularly useful for ice sheet modelling, we have compiled and synthesized published geomorphological data for eskers, ice-marginal formations, lineations, marginal meltwater channels, striae, ice-dammed lakes, and geochronological data from radiocarbon, varve, optically-stimulated luminescence, and cosmogenic nuclide dating. This is summarized as a deglaciation map of the Fennoscandian Ice Sheet with isochrons marking every 1000 years between 22 and 13 cal kyr BP and every hundred years between 11.6 and final ice decay after 9.7 cal kyr BP. Deglaciation patterns vary across the Fennoscandian Ice Sheet domain, reflecting differences in climatic and geomorphic settings as well as ice sheet basal thermal conditions and terrestrial versus marine margins. For example, the ice sheet margin in the high-precipitation coastal setting of the western sector responded sensitively to climatic variations leaving a detailed record of prominent moraines and other ice-marginal deposits in many fjords and coastal valleys. Retreat rates across the southern sector differed between slow retreat of the terrestrial margin in western and southern Sweden and rapid retreat of the calving ice margin in the Baltic Basin. Our reconstruction is consistent with much of the published research. However, the synthesis of a large amount of existing and new data support refined reconstructions in some areas. For example, the LGM extent of the ice sheet in northwestern Russia was located far east and it occurred at a later time than the rest of the ice sheet, at around 17-15 cal kyr BP. We also propose a slightly different chronology of moraine formation over southern Sweden based on improved correlations of moraine segments using new LiDAR data and tying the timing of moraine formation to Greenland ice core cold stages. Retreat rates vary by as much as an order of magnitude in different sectors of the ice sheet, with the lowest rates on the high-elevation and maritime Norwegian margin. Retreat rates compared to the climatic information provided by the Greenland ice core record show a general correspondence between retreat rate and climatic forcing, although a close match between retreat rate and climate is unlikely because of other controls, such as topography and marine versus terrestrial margins. Overall, the time slice reconstructions of Fennoscandian Ice Sheet deglaciation from 22 to 9.7 cal kyr BP provide an important dataset for understanding the contexts that underpin spatial and temporal patterns in retreat of the Fennoscandian Ice Sheet, and are an important resource for testing and refining ice sheet models.
NASA Astrophysics Data System (ADS)
Cadenas, Patricia; Fernández-Viejo, Gabriela; Álvarez-Pulgar, Javier; Tugend, Julie; Manatschal, Gianreto; Minshull, Tim
2017-04-01
This study presents a new rift domain map in the central and western North Iberian margin, in the southern Bay of Biscay. This margin was structured during polyphase Triassic to Lower Cretaceous rifting events which led to hyperextension and exhumation and the formation of oceanic crust during a short-lived seafloor spreading period. Extension was halted due to the Alpine convergence between the Iberian and the European plates which led to the formation of the Cantabrian-Pyrenean orogen during the Cenozoic. In the Bay of Biscay, while the northern Biscay margin was slightly inverted, the North Iberian margin, which is at present-day part of the western branch of the Alpine belt together with the Cantabrian Mountains, exhibits several degrees of compressional reactivation. This makes this area a natural laboratory to study the influence of rift inheritance into the inversion of a passive margin. Relying on the interpretation of geological and geophysical data and the integration of wide-angle results, we have mapped five rift domains, corresponding to the proximal, necking, hyperthinned, exhumed mantle, and oceanic domains. One of the main outcomes of this work is the identification of the Asturian Basin as part of a hyperthinned domain bounded to the north by the Le Danois basement high. We interpret Le Danois High as a rift-related crustal block inherited from the margin structure. Our results suggest that the inherited rift architecture controlled the subsequent compressional reactivation. The hyperextended domains within the abyssal plain focused most of the compression resulting in the development of an accretionary wedge and the underthrusting of part of these distal domains beneath the margin. The presence of the Le Danois continental block added complexity, conditioning the inversion undergone by the Asturian Basin. This residual block of less thinned continental crust acted as a local buttress hampering further compressional reactivation within the platform and the inner basin, which were only slightly inverted and uplifted passively due to the underthrusting of the hyperextended domains beneath Le Danois High. The new inverted rift domain map adds some constraints to support kinematic reconstructions and confine palinspatic restorations of the inverted rifted margin. Furthermore, it provides more insights to comprehend the strain partitioning within the Bay of Biscay-Pyrenean inverted hyperextended rift and the broad structural variability observed in such a reduced area, arising from the strong segmentation and the obliquity between the NW-SE and WNW-ESE trending rift structures and the E-W compressional front.
NASA Astrophysics Data System (ADS)
Grandin, R.; Socquet, A.; Binet, R.; Jacques, E.; Klinger, Y.; de Chabalier, J.; King, G.; Tait, S.; Tapponnier, P.; Delorme, A.; Elissalde, C.
2007-12-01
In September 2005, a magmato-tectonic episode initiated in Western Afar (Ethiopia) when a swarm of moderate magnitude earthquakes (M<5.6) was recorded for several days. A small eruption also occurred on the eastern flank of Dabba'hu, a large silicic volcano located at the northern extremity of the Dabba'hu rift segment. The terrain is exceptionally favorable for InSAR imagery and surface fault mapping, making this event a rare opportunity to study how surface faulting and dike injection were mechanically coupled during the rifting event. Based on the combination of InSAR images shot on both ascending and descending tracks, and the correlation of SAR amplitude images, we deduced the vertical motions inside the rift during the main intrusion event. Together with the correlation of SPOT optical images, the horizontal component of opening can be retrieved. We provide evidence for an average of 6 m of opening across the 40 km northern Dabba'hu segment, during the September crisis. The inner floor of the rift subsided by ~ 2m, while the shoulders were uplifted by ~ 2m. A deficit of opening was observed in the southern segment during the main crisis. However, a second intrusive event occurred in mid-2006, leading to the further opening of this 20 km segment by an additional ~ 2m. A series of interferograms covering the post-crises periods show that significant motion also occurred between the crises and after the second crisis. Using a comparison between pre-crisis aerial photographs and post-crisis high-resolution Quickbird images, combined with SAR coherence images, we are able to map the structures that were reactivated during the crisis, and show extensive evidence of newly exposed fractures in recent basalts. The motion on a large number of en echelon faults and fissures could be observed with much greater detail than during the main rifting event. Using a DEM of the area, generated using SPOT images, the relation between faulting and rift morphology is addressed. Concentric subsidence and/or uplift occurred at various stages of the crisis on distinct volcanic edifices, pointing to a complex scenario for the possible connection between shallow and deep magmatic chambers. The estimated extension rate of 15 mm/year across the plate boundary [Vigny et al., 2006] yields a recurrence time of the order of 500 years for events of this magnitude. Surprisingly, despite the large volume of magma intruded during the September 2005 event (~ 15 km2), no basalt flows were observed.
NASA Astrophysics Data System (ADS)
Guest, B.; Matthews, W.; Hubbard, S. M.; Coutts, D. S.; Bain, H.
2016-12-01
The development of Cordilleran orogen of western North American is disputed despite a century of study. Paleomagnetic observations require large-scale dextral displacement of crustal fragments along the western margin of North America, from low latitudes to moderate latitudes during the Cretaceous-Paleogene. A lack of corroborating geological evidence for large-scale displacements has prevented the widespread integration of paleomagnetic data into contemporary tectonic models for the margin. Here we investigate the Cretaceous paleogeographic position of the Baja-BC block, a crustal fragment consisting of the Alexander and Wrangel terranes, using detrital zircons from the Nanaimo Basin of Vancouver Island, British Columbia. We compare 4310 detrital zircon U/Pb analyses from 16 samples to potential source areas in western North America to test hypothesized northern and southern paleogeographic positions. Our detrital zircon data suggest that sediment in the Nanaimo Basin derives from the Mojave-Sonoran Region of southwestern North America, supporting a southerly late Cretaceous paleogeographic position. We present a speculative Cretaceous to Paleogene paleogeographic reconstruction for the southwestern United States and northern Mexico that accommodates the presence, and northward transport, of the Baja-BC block. We propose that the Western Coast Mountains Batholith and the Nanaimo Basin represent the missing segment of the Mesozoic magmatic arc and associated forearc regions, between the Sierra Nevada and Peninsular Ranges Batholiths. This segment was translated northward following capture by the Kula plate. As such, we reconcile the paleomagnetic data for the Baja-BC block with the geology of the southwestern United States. Our model, albeit speculative, is compatible with the large-scale tectonic and magmatic processes that affected western North America in the Late Cretaceous and Paleogene.
2016-06-10
Accountability Office, GAO-13-646. 8 Ibid. 9 Ibid. 10 British Broadcast Corporation , “US Shifts on AFRICOM Base Plans,” BBC News, 18 February...integrate from afar with such intricate circumstances in our operating environments. 62 BIBLIOGRAPHY British Broadcast Corporation . “US Shifts On AFRICOM
ERIC Educational Resources Information Center
Baumann, Paul R., Ed.
This teaching guide offers educators glimpses into the value of remote sensing, the process of observing and analyzing the earth from a distance. Remote sensing provides information in forms to see spatial patterns over large areas in a more realistic way than thematic maps and allows a macro-scale look at global problems. The six instructional…
1991-01-01
DEFICIENCY OF GLUCOSE - 6 - PHOSPHATE DEHYDROGENASE (G- 6 ...the prevalence of deficient activity of the enzyme glucose - 6 - phosphate dehydrogenase (G- 6 -PD) among - Ces difficiences enzymatiques sant plus particu...Screening for glucose - 6 - 3 - CaosBy W.H. - Hematologic diseases. In : I lunter’s Tropical phosphate dehydrogenase (G- 6 -PD) deficiency by a simple
Davey, F.J.; Jacobs, S.S.
2007-01-01
Multibeam sonar bathymetry documents a lack of significant channels crossing outer continental shelf and slope of the western Ross Sea. This indicates that movement of bottom water across the shelf break into the deep ocean in this area is mainly by laminar or sheet flow. Subtle, ~20 m deep and up to 1000 m wide channels extend down the continental slope, into tributary drainage patterns on the upper rise, and then major erosional submarine canyons. These down-slope channels may have been formed by episodic pulses of rapid down slope water flow, some recorded on bottom current meters, or by sub-ice melt water erosion from an icesheet grounded at the margin. Narrow, mostly linear furrows on the continental shelf thought to be caused by iceberg scouring are randomly oriented, have widths generally less than 400 m and depths less than 30m, and extend to water depths in excess of 600 m.
Isotopic evaluation of ocean circulation in the Late Cretaceous North American seaway
NASA Astrophysics Data System (ADS)
Coulson, Alan B.; Kohn, Matthew J.; Barrick, Reese E.
2011-12-01
During the mid- and Late Cretaceous period, North America was split by the north-south oriented Western Interior Seaway. Its role in creating and maintaining Late Cretaceous global greenhouse conditions remains unclear. Different palaeoceanographic reconstructions portray diverse circulation patterns. The southward extent of relatively cool, low-salinity, low-δ18O surface waters critically distinguishes among these models, but past studies of invertebrates could not independently assess water temperature and isotopic compositions. Here we present oxygen isotopes in biophosphate from coeval marine turtle and fish fossils from western Kansas, representing the east central seaway, and from the Mississippi embayment, representing the marginal Tethys Ocean. Our analyses yield precise seawater isotopic values and geographic temperature differences during the main transition from the Coniacian to the early Campanian age (87-82 Myr), and indicate that the seaway oxygen isotope value and salinity were 2‰ and 3‰ lower, respectively, than in the marginal Tethys Ocean. We infer that the influence of northern freshwater probably reached as far south as Kansas. Our revised values imply relatively large temperature differences between the Mississippi embayment and central seaway, explain the documented regional latitudinal palaeobiogeographic zonation and support models with relatively little inflow of surface waters from the Tethys Ocean to the Western Interior Seaway.
Resource potential of the western North Atlantic Basin
Dillon, William P.; Manheim, Frank T.; Jansa, L.F.; Palmason, Gudmundur; Tucholke, Brian E.; Landrum, Richard S.
1986-01-01
We here consider the petroleum resources only of the off shelf portion of the western North Atlantic Ocean. Very little information is available for this region; off the eastern United States, only four petroleum exploration holes have been drilled in one restricted area seaward of the shelf, off the Baltimore Canyon trough. However, by interpreting seismic reflection profiles and Stratigraphie data from the Deep Sea Drilling Project (DSDP) and other wells on the adjacent slope and shelf, we can evaluate the geologic conditions that existed during development of the basin and that might lead to petroleum accumulations.The wellknown factors that lead to oil and gas accumulations are availability of source beds, adequate maturation, and the presence of reservoir beds and seals configured to create a trap. The western boundary of the area considered in this paper, the present sloperise break, is one that has developed from the interplay of sedimentation and erosion at the continental margin; these processes are affected by variations in margin subsidence, sedi-ment input, oceanic circulation, sea level, and other factors. Thus the sloperise break has migrated over time and is locally underlain by slope and shelf deposits, as well as deepbasin facies. These changes in depositional environments may well have caused juxtaposition of source and reservoir beds with effective seals.
Weigmann, Simon; Kaschner, Carina Julia
2017-05-08
A new very small deep-water catshark, Bythaelurus vivaldii, is described based on two female specimens caught off Somalia in the northwestern Indian Ocean during the German 'Valdivia' expedition in 1899. It is morphologically closest to the recently described B. bachi, which is the only other Bythaelurus species in the western Indian Ocean that shares a stout body of large specimens and the presence of oral papillae. It further resembles B. vivaldii in the broad mouth and broad posterior head, but differs in the presence of composite oral papillae and a higher diversity in dermal denticle morphology. Additionally, the new species differs from all congeners in the western Indian Ocean in a larger pre-second dorsal fin length, a longer head, a larger interdorsal space, a larger intergill length, a longer pectoral-fin posterior margin, a shorter caudal fin, an intermediate caudal fin preventral margin, and a larger internarial width. Furthermore, the second dorsal fin of the new species is smaller than in its congeners in the western Indian Ocean except for B. lutarius, which is easily distinguished by the slender body and virtual absence of oral papillae, as well as the aforementioned further characters. An updated key to all valid species of Bythaelurus is provided.
Ursenbacher, Sylvain; Guillon, Michaël; Cubizolle, Hervé; Dupoué, Andréaz; Blouin-Demers, Gabriel; Lourdais, Olivier
2015-07-01
Understanding the impact of postglacial recolonization on genetic diversity is essential in explaining current patterns of genetic variation. The central-marginal hypothesis (CMH) predicts a reduction in genetic diversity from the core of the distribution to peripheral populations, as well as reduced connectivity between peripheral populations. While the CMH has received considerable empirical support, its broad applicability is still debated and alternative hypotheses predict different spatial patterns of genetic diversity. Using microsatellite markers, we analysed the genetic diversity of the adder (Vipera berus) in western Europe to reconstruct postglacial recolonization. Approximate Bayesian Computation (ABC) analyses suggested a postglacial recolonization from two routes: a western route from the Atlantic Coast up to Belgium and a central route from the Massif Central to the Alps. This cold-adapted species likely used two isolated glacial refugia in southern France, in permafrost-free areas during the last glacial maximum. Adder populations further from putative glacial refugia had lower genetic diversity and reduced connectivity; therefore, our results support the predictions of the CMH. Our study also illustrates the utility of highly variable nuclear markers, such as microsatellites, and ABC to test competing recolonization hypotheses. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Lawton, T. F.; Molina-Garza, R. S.; Barboza-Gudiño, R.; Rogers, R. D.
2013-05-01
Major sediment dispersal systems on western Pangea evolved in concert with thermal uplift, rift and drift phases of the Gulf of Mexico Basin, and were influenced by development of a continental arc on Pangea's western margin. Existing literature and preliminary data from fieldwork, sandstone petrology and detrital zircon analysis reveal how major drainages in Mexico changed from Late Triassic through Late Jurassic time and offer predictions for the ultimate destinations of sand-rich detritus along the Gulf and paleo-Pacific margins. Late Triassic rivers drained away from and across the present site of the Gulf of Mexico, which was then the location of a major thermal dome, the Texas uplift of recent literature. These high-discharge rivers with relatively mature sediment composition fed a large-volume submarine fan system on the paleo-Pacific continental margin of Mexico. Predictably, detrital zircon age populations are diverse and record sources as far away as the Amazonian craton. This enormous fluvial system was cut off abruptly near the Triassic-Jurassic boundary by extensive reorganization of continental drainages. Early and Middle Jurassic drainage systems had local headwaters and deposited sediment in extensional basins associated with arc magmatism. Redbeds accumulated across northern and eastern Mexico and Chiapas in long, narrow basins whose locations and dimensions are recorded primarily by inverted antiformal massifs. The Jurassic continental successions overlie Upper Triassic strata and local subvolcanic plutons; they contain interbedded volcanic rocks and thus have been interpreted as part of the Nazas continental-margin arc. The detritus of these fluvial systems is volcanic-lithic; syndepositional grain ages are common in the detrital zircon populations, which are mixed with Oaxaquia-derived Permo-Triassic and Grenville age populations. By this time, interior Pangea no longer supplied sediment to the paleo-Pacific margin, possibly because the continental-margin arc blocked westward drainage and detritus was captured in rift basins. Latest Middle Jurassic fluvial systems formed as the Yucatan block rotated counterclockwise and the Gulf of Mexico began to open. Sediment dispersal, partly equivalent to salt deposition in the Gulf, was largely southward in southern Oaxaquia, but large-volume braided river systems on the Maya (Yucatan) block, represented by the Todos Santos Formation in Chiapas, evidently flowed northward along graben axes toward the western part of the Gulf of Mexico Basin. River systems of nuclear Mexico, or Oaxaquia, occupied a broad sedimentary basin west and south of a divide formed adjacent to the translating Maya block. Despite their big-river characteristics, these deposits contain mainly Grenville and Permo-Triassic grains derived from Oaxaquia basement and subordinate Early and Middle Jurassic grains derived from volcanic rocks and plutons of the arc. Early Late Jurassic (Oxfordian) marine flooding of the entire Gulf rim and nuclear Mexico, evidently resulting in part from marginal subsidence adjoining newly-formed oceanic crust, terminated fluvial deposition adjacent to the young Gulf of Mexico.
Geometry, structure, and concealed lithology of the San Rafael Basin, southeastern Arizona
Bultman, Mark W.
1999-01-01
The contiguous United States has been well explored for exposed conventional mineral deposits. Therefore, it is likely that many economically viable and strategically significant conventional undiscovered mineral deposits will be found in bedrock concealed beneath basin sediments. Mineral resource assessments must incorporate an understanding of the geometry, structure, and concealed lithology of basins in order to be accurate. This report presents an analysis of the basin geometry and structure of the San Rafael basin in southeastern Arizona. In addition, a new methodology for inferring concealed lithology is presented and applied in the San Rafael basin. Gravity data is used to model the geometry of the basin using recent models of sediment density vs. depth developed in the region. This modeling indicates that the basin has a maximum depth of approximately 1.05 km plus or minus 0.10 km. In the southern portion, the basin can be modeled as an asymmetric graben faulted on the western margin. The northern portion of the basin is structurally more complex and may have high angle faults on the western, northern, and eastern margin. Near-ground closely spaced Earth’s total intensity magnetic field data is used to locate concealed faults within the basin. This data is also used to infer lithology concealed by shallow basin sediments. Airborne Earth’s total intensity magnetic field data is used to help infer concealed lithology in deep portions of the basin. The product of integrating all data and interpretations is a map which presents the geometry of the basin, faults and contacts concealed by basin sediments, and an estimate of the bedrock lithology concealed by basin sediment. Based on basin geometry and concealed lithology, the San Rafael basin has a high potential for concealed mineral deposits on its western and northern margin. In particular, a newly discovered magnetic anomaly in the northern portion of the basin can be modeled as a granitic intrusion with highly altered margins and may represent a potential mineral resource target. Based on the permeability and porosity of upper basin fill found in nearby basins, the San Rafael basin may contain an aquifer up to 300 meters thick over a substantial area of the basin.
NASA Astrophysics Data System (ADS)
Xiao, W.; Wang, R.; Zhang, T.; Duan, X.; Polyak, L.
2017-12-01
In the Pleistocene the western Arctic Ocean was affected by deglacial discharge events from ice sheets in northern North America as well as the East Siberian and Chukchi margins. Distribution of Ice Rafted Debris (IRD) >250 μm and planktonic foraminiferal N. pachyderma (sin.) (Nps) δ18O and δ13C was compared in CHINARE sediment cores ARC2-M03 (Wang et al., 2013) and ARC3-P37 from the Chukchi Abyssal Plain and Northwind Ridge, respectively, to identify the impacts of icebergs and meltwater on paleoceanographic environments since MIS 5. The IRD is mainly composed of quartz grains and fragments of clastic rocks and detrital carbonates. The carbonates, mostly dolomites characteristic of the Canadian Arctic Archipelago (CAA) provenance, typically anti-correlate with quartz and clastic rocks, indicating different sources such as Chukchi-Alaskan or East Siberian margin. Most of the Nps δ18O depletions correspond to peaks in detrital carbonates, suggesting a strong influence of meltwater from the Laurentide Ice Sheet (LIS) on the western Arctic Ocean. A conspicuous dark gray interval interpreted to represent glacial/deglacial environments of MIS 4/3 age, shows a remarkable depletion in Nps δ13C along with high δ18O values and absence of IRD. This unusual signature may be related to a persistent sea-ice cover and/or high fluxes of terrigenous material with deglacial debris flows. In a younger grey interval corresponding to MIS2, high abundances of quartz and clastic rocks in the Northwind Ridge core ARC3-P37 indicate iceberg discharge from areas other than CAA, such as the Mackenzie LIS lobe or Chukchi-Alaskan margin. The MIS2-Holocene transition is marked by an increase in detrital carbonates co-occurring with Nps δ13C and δ18O depletion (Polyak et al., 2007), indicative of LIS iceberg/meltwater fluxes from the CAA. We note that stable-isotope events in the study area may go unnoticed because of gaps in foraminiferal records related to dissolution and/or adverse conditions for planktonic foraminifers (very low salinities and high turbidity) during deglaciations.
The Tell-Rif belt in the geodynamic frame of the West Mediterranean
NASA Astrophysics Data System (ADS)
Leprêtre, Rémi; Frizon de Lamotte, Dominique; Combier, Violaine; Gorini, Christian; Eschard, Remi
2017-04-01
The Tell-Rif (Tell in Algeria and Tunisia; Rif in Morocco) or Maghrebides is the orogenic system fringing the West Mediterranean basins to the south. This system comprises 3 major tectonic-paleogeographic zones from north to south: (1) the internal zones (AlKaPeCa for Alboran, Kabylies, Peloritan, Calabria) originated from the former northern European margin of the Maghrebian Tethys (MT); (2) the "flyschs zone" regarded as the former sedimentary cover of the MT and (3) the external zones, the former southern African passive margin of the MT. In the geodynamic frame of the West Mediterranean basins formation, the Tell-Rif is interpreted as the direct result of the progressive closure of the MT until the collision between AlKaPeCa and Africa at 17 Ma and the propagation of the deformation within Africa. Such a scenario gives a consistent explanation for the off-shore geodynamics and is now shared by almost all the authors. Nevertheless, all the geodynamic models do not integrate recent developments regarding the geology the Tell-Rif. In particular, the following points must be integrated in any models: (1) The importance of pre-Late Oligocene (pre-30 Ma) contractional events not only in the Atlas System, where they are well established, but also in the Tell-Rif system, where their effects are often ignored or minimized; (2) The existence of MP-BT metamorphic rocks associated with fragments of ophiolites in the Eastern External Rif and likely in the Western External Tell suggesting that the southern Maghrebian Tethys margin is more complicated than what could be expected for a single linear oceanic domain; (3) The presence over the Rif and western Tell of wide Miocene basins developed along with the ones of the West Mediterranean Basins. Among these basins, the Cheliff Basin occupies a large part of the western Tell in Algeria. These elements must be taken into account for a reassessment of the complex relationships between the West Mediterranean Basins and the surrounding mountain belts. Integration of these major issues allows us to re-evaluate the configuration of the African margin before the inversion and to propose a kinematic scenario for the Tell-Rif.
NASA Astrophysics Data System (ADS)
Peace, Alexander; McCaffrey, Ken; Imber, Jonny; van Hunen, Jeroen; Hobbs, Richard; Gerdes, Keith
2013-04-01
Passive margins are produced by continental breakup and subsequent seafloor spreading, leaving a transition from continental to oceanic crust. Magmatism is associated with many passive margins and produces diagnostic criteria that include 1) abundant breakup related magmatism resulting in a thick igneous crust, 2) a high velocity zone in the lower crust and 3) seaward dipping reflectors (SDRs) in seismic studies. These Volcanic Passive Margins (VPMs) represent around 75% of the Atlantic passive margins, but beyond this high level description, these magma-rich settings remain poorly understood and present numerous challenges to petroleum exploration. In VPMs the extent to which the volume, timing, location and emplacement history of magma has played a role in controlling heat flow and thermal evolution during margin development remains poorly constrained. Reasons for this include; 1) paucity of direct heat flow and thermal gradient measurements at adequate depth ranges across the margins, 2) poor onshore exposure 3) highly eroded flood basalts and 4) poor seismic imaging beneath thick offshore basalt sequences. As a result, accurately modelling the thermal history of the basins located on VPMs is challenging, despite the obvious importance for determining the maturation history of potential source rocks in these settings. Magmatism appears to have affected the thermal history of the Vøring Basin on the Norwegian VPM, in contrast the effects on the Faeroe-Shetland Basin was minimal. The more localised effects in the Faeroe-Shetland Basin compared to Vøring Basin may be explained by the fact that the main reservoir sandstones appear to be synchronous with thermal uplift along the basin margin and pulsed volcanism, indicating that the bulk of the magmatism occurred at the basin extremities in the Faeroe-Shetland Basin, where its effect on source maturation was lessened. Our hypothesis is that source maturation occurs as a result of regional temperature and pressure increases, and the effects of even a large singular magmatic event are small beyond the immediate vicinity, therefore quantifying cumulative regional heat flow is of utmost importance. The apparently complex relationships between source rock maturation and magmatism are not limited to the north-east Atlantic margins. Other VPMs of interest include the regions between West Greenland and Eastern Canada (Labrador Sea, Davis Strait and Baffin Bay), East Greenland, NW Australia, Western India and segments of the Western African and Eastern South American margins. This project utilises 1D numerical modelling of magmatic intrusions into a sedimentary column to gain an understanding into the thermal influence of post-breakup magmatic activity on source rock maturation in representative VPMs. Considerations include the timing, periodicity of intrusions, thickness, spacing and background heat in the basin.
NASA Astrophysics Data System (ADS)
Grevemeyer, Ingo; Ranero, Cesar; Sallares, Valenti; Prada, Manel; Booth-Rea, Guillermo; Gallart, Josep; Zitellini, Nevio
2017-04-01
The Western Mediterranean Sea is a natural laboratory to study the processes of continental extension, rifting and back-arc spreading in a convergent setting caused by rollback of fragmented subducting oceanic slabs during the latest phase of consumption of the Tethys ocean, leading to rapid extension in areas characterized by a constant convergence of the African and European Plates since Cretaceous time. Opening of the Algerian-Balearic Basin was governed by a southward and westward retreating slab 21 to 18 Myr and 18 to15 Myr ago, respectively. Opening of the Tyrrhenian Basin was controlled by the retreating Calabrian slab 6 to 2 Myr ago. Yet, little is known about the structure of the rifted margins, back-arc extension and spreading. Here we present results from three onshore/offshore seismic refraction and wide-angle lines and two offshore lines sampling passive continental margins of southeastern Spain and to the south of the Balearic promontory and the structure of the Tyrrhenian Basin to the north of Sicily. Seismic refraction and wide-angle data were acquired in the Algerian-Balearc Basin during a cruise of the German research vessel Meteor in September of 2006 and in the Tyrrhenian Sea aboard the Spanish research vessel Sarmiento de Gamboa in July of 2015. All profiles sampled both continental crust of the margins surrounding the basins and extend roughly 100 km into the Algerian-Balearic and the Tyrrhenian Basins, yielding constraints on the nature of the crust covering the seafloor in the basins and adjacent margins. Crust in the Algerian-Balearic basin is roughly 5-6 km thick and the seismic velocity structure mimics normal oceanic crust with the exception that lower crustal velocity is <6.8 km/s, clearly slower than lower crust sampled in the Pacific Basin. The seismic Moho in the Algerian-Balearic Basin occurs at 11 km below sea level, reaching >24 km under SE Spain and the Balearic Islands, displaying typical features and structure of continental crust. Offshore Sicily, continental crust reaches 22 km. However, the Tyrrhenian Basin indicates a lithosphere with velocities increasing continuously from 3 km/s to 7.5 km/s, mimicking features attributed to un-roofed and hence serpentinized mantle. Therefore, even though the opening of both basins was controlled by slab rollback, the resulting structures of the basins indicate striking differences. It is interesting to note that the continent/ocean transition zone of the margins did not show any evidence for high velocity lower crustal rocks, in contrast to what has been sampled in Western Pacific arc/back-arc systems.
Creely, Scott; Force, Eric R.
2007-01-01
The middle Eocene Ione Formation extends over 200 miles (320 km) along the western edge of the Sierra Nevada. Our study was concentrated in the type region, 30 miles (48 km) along strike. There a bedrock ridge forms the seaward western side of the Ione depositional tract, defining a subbasin margin. The eastern limit of the type Ione is locally defined by high-angle faults. Ione sediments were spread over Upper Mesozoic metamorphic and plutonic bedrock, fed by gold-bearing streams dissecting the western slope of the ancestral Sierra Nevada. By middle Eocene time, a tropical or subtropical climate prevailed, leading to deep chemical weathering (including laterization) and a distinctively mature mineral assemblage was fed to and generated within Ione deposits. The Ione is noted for its abundant kaolinitic clay, some of it coarsely crystalline; the clay is present as both detrital grains and authigenic cement. Quartz is abundant, mostly as angular grains. Heavy mineral fractions are dominated by altered ilmenite and zircon. Distribution of feldspar is irregular, both stratigraphically and areally. Non-marine facies are most voluminous, and include conglomerates, especially at the base and along the eastern margins of the formation where they pass into Sierran auriferous gravels. Clays, grading into lignites, and gritty sands are also common facies. Both braided and meandering fluvial facies have been recognized. Shallow marine waters flooded the basin probably twice. Tongues of sediment exhibiting a variety of estuarine to marine indicators are underlain and overlain by fluvial deposits. Marine body fossils are found at only a few localities, but burrows identified as Ophiomorpha and cf. Thalassinoides are abundant in many places. Other clues to marginal marine deposition are the occurrence of glauconite in one bed, typical relations of lagoonal to beach (locally heavy-mineral-rich) lithofacies, closed-basin three-dimensional morphology of basinal facies, and high sulfur content of some marginal coals. The Ione has been said to be deltaic; however the two transgressional-regressional cycles we propose imply that only the regressional parts were deltaic. At other times, much of the type Ione would better be termed an intertidal estuary. Because the lower marine sequence was deposited against a paleobasin margin on the west, deltaic morphology was constrained, but apparently progradation was from north to south despite drainage into the basin from the east. Relations to the south are unclear due to the Stockton arch. The eastern margin of the type-Ione basin, and to some extent even its marine facies, are poorly constrained. A surface on Sierran bedrock to the east may have been stripped of some Ione basinal facies, leaving only coeval entrenched fluvial channel deposits.
Identification of hyper-extended crust east of Davie Ridge in the Mozambique Channel
NASA Astrophysics Data System (ADS)
Klimke, Jennifer; Franke, Dieter
2015-04-01
Davie Ridge is a ~1200 km wide, N-S trending bathymetrical high in the Mozambique Channel. Today, it is widely accepted that Davie Ridge is located along a fossil transform fault that was active during the Middle Jurassic and Early Cretaceous (~165-120 Ma). This transform fault results from the breakup of Gondwana, when Madagascar (together with India and Antarctica) drifted from its northerly position in the Gondwana Supercontinent (adjacent to the coasts of Tanzania, Somalia and Kenya) to its present position (e.g. Coffin and Rabinowitz, 1987; Rabinowitz et al., 1983; Segoufin and Patriat, 1980). The southward motion of Madagascar relative to Africa is constrained by the interpretation of magnetic anomalies in the Western Somali Basin, located north of Madagascar (e.g. Rabinowitz et al., 1983). According to Bird (2001), sheared margins share typical characteristics and a common evolution: 1. The transition from continental to oceanic crust is relatively abrupt (~ 50-80 km). 2. Along the continental side of the margin, complex rift basins form that display a wide range of faults. 3. Prominent marginal ridges form along the sheared margin that probably originate from the propagation of the oceanic spreading center along the plate boundary (Bird, 2001). In February and March 2014, a dense geophysical dataset (multichannel seismic, magnetics, gravimetry and bathymetry) with a total of 4300 profile km along the sheared margin was acquired with the R/V Sonne by the Federal Institute for Geosciences and Natural Resources (BGR). A special objective of the project, amongst others, is the characterization and interpretation of the continent-ocean transition seaward of Davie Ridge in the Mozambique Channel. Seismic profiles located east of Davie Ridge in the Western Somali Basin reveal a wide sequence of half-grabens bounded by listric normal faults. We tentatively suggest that this crust is of continental origin and results from rifting between Africa and Madagascar during the breakup of Gondwana. This implies that the continent-ocean transition is located at least ~ 150 km east of Davie Ridge. References Bird, D., 2001. Shear margins: Continent-ocean transform and fracture zone boundaries. The Leading Edge, 150-159. Coffin, M. F., und Rabinowitz, P. D., 1987. Reconstruction of Madagascar and Africa: Evidence from the Davie Fracture Zone and Western Somali Basin. Journal of Geophysical Research: Solid Earth, vol. 92, no. B9, 9385-9406. Rabinowitz, P.D., Coffin, M.F. and Falvey, D.A., 1983. The separation of Madagascar and Africa. Science 220, 67-69. Segoufin, J., und Patriat, P., 1980. Existence d'anomalies mesozoiques dans le bassin de Somalie. Implications pour les relations Afrique-Antarctique-Madagascar: C.R. Acad. Sci. Paris, v. 291, p. 85-88.
NASA Astrophysics Data System (ADS)
Meaza, Hailemariam; Frankl, Amaury; Poesen, Jean; Zenebe, Amanuel; Deckers, Jozef; Vaneetvelde, Veerle; Lanckriet, Sil; Nyssen, Jan
2016-04-01
With increasing population, producing more food and fibers has led to an expansion of the area under cultivation. For this, much attention is given to low-lying flat areas in search of suitable agricultural lands. The objectives of this paper are therefore: (1) to review the opportunities and challenges of natural resources in the marginal grabens for rural development; (2) to highlight the knowledge gaps and priorities in research and development in the marginal grabens, and (3) to supplement the literature review through repeat transect walks, focus group discussions and interviews across the western rift valley of northern Ethiopia. The paper shows that marginal grabens along the rift valleys are rich both in blue and green water resources due to their topographical and geological characteristics. Spate irrigation has been a growing water management practice to respond to soil moisture deficit. Besides, marginal grabens are fertile plains as a result of alluvial deposition that could be suitable for agricultural development. However, rainfall variability and groundwater withdrawal lead to graben basin closure and salinization. Notably, riverbed incisions and sediment deposition affects drainage systems and water supply in the marginal grabens. As a result, socioeconomic and natural capital of the marginal graben farmers are continuously threatened. Thus, the benefits of natural resources for rural development in the marginal grabens along the rift valley can be optimized if the current bottlenecks are converted into opportunities. A better understanding of the complex marginal graben system via a robust land evaluation framework will improve livelihoods of the communities that live in the (closed) marginal grabens. Keywords: population pressure, marginal grabens, endorheic lakes, salinization, Ethiopia
Phanerozoic tectonic evolution of the Circum-North Pacific
Nokleberg, Warren J.; Parfenov, Leonid M.; Monger, James W.H.; Norton, Ian O.; Khanchuk, Alexander I.; Stone, David B.; Scotese, Christopher R.; Scholl, David W.; Fujita, Kazuya
2000-01-01
The Phanerozoic tectonic evolution of the Circum-North Pacific is recorded mainly in the orogenic collages of the Circum-North Pacific mountain belts that separate the North Pacific from the eastern part of the North Asian Craton and the western part of the North American Craton. These collages consist of tectonostratigraphic terranes that are composed of fragments of igneous arcs, accretionary-wedge and subduction-zone complexes, passive continental margins, and cratons; they are overlapped by continental-margin-arc and sedimentary-basin assemblages. The geologic history of the terranes and overlap assemblages is highly complex because of postaccretionary dismemberment and translation during strike-slip faulting that occurred subparallel to continental margins.We analyze the complex tectonics of this region by the following steps. (1) We assign tectonic environments for the orogenic collages from regional compilation and synthesis of stratigraphic and faunal data. The types of tectonic environments include cratonal, passive continental margin, metamorphosed continental margin, continental-margin arc, island arc, oceanic crust, seamount, ophiolite, accretionary wedge, subduction zone, turbidite basin, and metamorphic. (2) We make correlations between terranes. (3) We group coeval terranes into a single tectonic origin, for example, a single island arc or subduction zone. (4) We group igneous-arc and subduction- zone terranes, which are interpreted as being tectonically linked, into coeval, curvilinear arc/subduction-zone complexes. (5) We interpret the original positions of terranes, using geologic, faunal, and paleomagnetic data. (6) We construct the paths of tectonic migration. Six processes overlapping in time were responsible for most of the complexities of the collage of terranes and overlap assemblages around the Circum-North Pacific, as follows. (1) During the Late Proterozoic, Late Devonian, and Early Carboniferous, major periods of rifting occurred along the ancestral margins of present-day Northeast Asia and northwestern North America. The rifting resulted in the fragmentation of each continent and the formation of cratonal and passive continental-margin terranes that eventually migrated and accreted to other sites along the evolving margins of the original or adjacent continents. (2) From about the Late Triassic through the mid-Cretaceous, a succession of island arcs and tectonically paired subduction zones formed near the continental margins. (3) From about mainly the mid-Cretaceous through the present, a succession of igneous arcs and tectonically paired subduction zones formed along the continental margins. (4) From about the Jurassic to the present, oblique convergence and rotations caused orogenparallel sinistral and then dextral displacements within the upper-plate margins of cratons that have become Northeast Asia and North America. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more nearly continuous arcs, subduction zones, and passive continental margins. These fragments were subsequently accreted along the expanding continental margins. (5) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs and subduction zones to the continental margins. Accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, and uplift. The accretions resulted in substantial growth of the North Asian and North American Continents. (6) During the middle and late Cenozoic, oblique to orthogonal convergence of the Pacifi c plate with present-day Alaska and Northeast Asia resulted in formation of the modern-day ring of volcanoes around the Circum-North Pacific. Oblique convergence between the Pacific plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western p
NASA Astrophysics Data System (ADS)
Bhattacharya, G. C.; Subrahmanyam, V.
1986-12-01
Magnetic total intensity values and bathymetric data collected on the continental margin off Saurashtra were, used to prepare magnetic anomalies and bathymetric contour maps. The magnetic anomalies are considered to have been caused by the Deccan Trap flood basalts which underlie the Tertiary sediments. Interpretation of the magnetic data using two-dimensional modelling method suggests that the magnetic basement is block faulted and deepens in steps from less than 1.0 km in the north to about 8.0 km towards the southern portion of the study area. The WNW-ESE trending faults identified in the present study extend across the Saurashtra continental margin between Porbandar and Veraval and appear to represent a major linear tectonic feature. The relationship of these fault lineaments with the regional tectonic framework have been discussed to indicate that they conform better as the northern boundary faults of the Narmada rift graben on the continental margin off Saurashtra.
NASA Astrophysics Data System (ADS)
Stone, Paul; Stevens, Calvin H.
1988-04-01
Pennsylvanian and Early Permian paleogeographic features in east-central California include a southeast-trending carbonate shelf edge and turbidite basin that we infer paralleled a segment of the western margin of the North American continent. This segment of the continental margin was oblique to an adjoining segment on the north that trended southwestward across Nevada into easternmost California. We propose that the southeast-trending segment of the margin originated by tectonic truncation of the originally longer southwest-trending segment in Early or Middle Pennsylvanian to late Early Permian time, significantly earlier than a previously hypothesized Late Permian or Early Triassic continental truncation event. We interpret the truncating structure to have been a sinistral transform fault zone along which a continental fragment was removed and carried southeastward into the Caborca-Hermosillo region of northern Mexico, where it is now represented by exposures of Late Proterozoic and Paleozoic miogeoclinal rocks.
Recent changes to the Gulf Stream causing widespread gas hydrate destabilization.
Phrampus, Benjamin J; Hornbach, Matthew J
2012-10-25
The Gulf Stream is an ocean current that modulates climate in the Northern Hemisphere by transporting warm waters from the Gulf of Mexico into the North Atlantic and Arctic oceans. A changing Gulf Stream has the potential to thaw and convert hundreds of gigatonnes of frozen methane hydrate trapped below the sea floor into methane gas, increasing the risk of slope failure and methane release. How the Gulf Stream changes with time and what effect these changes have on methane hydrate stability is unclear. Here, using seismic data combined with thermal models, we show that recent changes in intermediate-depth ocean temperature associated with the Gulf Stream are rapidly destabilizing methane hydrate along a broad swathe of the North American margin. The area of active hydrate destabilization covers at least 10,000 square kilometres of the United States eastern margin, and occurs in a region prone to kilometre-scale slope failures. Previous hypothetical studies postulated that an increase of five degrees Celsius in intermediate-depth ocean temperatures could release enough methane to explain extreme global warming events like the Palaeocene-Eocene thermal maximum (PETM) and trigger widespread ocean acidification. Our analysis suggests that changes in Gulf Stream flow or temperature within the past 5,000 years or so are warming the western North Atlantic margin by up to eight degrees Celsius and are now triggering the destabilization of 2.5 gigatonnes of methane hydrate (about 0.2 per cent of that required to cause the PETM). This destabilization extends along hundreds of kilometres of the margin and may continue for centuries. It is unlikely that the western North Atlantic margin is the only area experiencing changing ocean currents; our estimate of 2.5 gigatonnes of destabilizing methane hydrate may therefore represent only a fraction of the methane hydrate currently destabilizing globally. The transport from ocean to atmosphere of any methane released--and thus its impact on climate--remains uncertain.
NASA Astrophysics Data System (ADS)
Lins, Lidia; Leliaert, Frederik; Riehl, Torben; Pinto Ramalho, Sofia; Alfaro Cordova, Eliana; Morgado Esteves, André; Vanreusel, Ann
2017-02-01
Understanding processes responsible for shaping biodiversity patterns on continental margins is an important requirement for comprehending anthropogenic impacts in these environments and further management of biodiversity. Continental margins perform crucial functions linked to key ecological processes which are mainly structured by surface primary productivity and particulate organic matter flux to the seafloor, but also by heterogeneity in seafloor characteristics. However, to what extent these processes control local and regional biodiversity remains unclear. In this study, two isobathic parallel transects located at the shelf break (300-400 m) and upper slope (1000 m) of the western Iberian margin were used to test how food input and sediment heterogeneity affect nematode diversity independently from the spatial factors geographical distance and water depth. We also examined the potential role of connectedness between both depth transects through molecular phylogenetic analyses. Regional generic diversity and turnover were investigated at three levels: within a station, between stations from the same depth transect, and between transects. High variability in food availability and high sediment heterogeneity at the shelf-break transect were directly linked to high diversity within stations and higher variation in community structure across stations compared to the upper slope transect. Contrastingly, environmental factors (food availability and sediment) did not vary significantly between stations located at the upper slope, and this lack of differences were also reflected in a low community turnover between these deeper stations. Finally, differences in nematode communities between both transects were more pronounced than differences within each of the isobathic transects, but these changes were paralleled by the previously mentioned environmental changes. These results suggest that changes in community structure are mainly dictated by environmental factors rather than spatial differences at the western Iberian margin. Furthermore, phylogenetic relationships revealed no evidence for depth-endemic lineages, indicating regular species interchanges across different depths.
Habitat Evaluation Procedures (HEP) Report : Oxbow Conservation Area, 2002-2005 Technical Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Brian
2005-02-01
This Habitat Evaluation Procedure (HEP) study was performed to determine baseline habitat units on the Oxbow Conservation Area in Grant County, Oregon. The evaluation is a required part of the Memorandum of Agreement between the Confederated Tribes of the Warm Springs and Bonneville Power Administration (BPA) relating to the acquisition and management of the Oxbow Conservation Area. The HEP team was comprised of individuals from the Washington Department of Fish and Wildlife and the Confederated Tribes of the Warm Springs Reservation of Oregon. The survey was conducted using the following HEP evaluation models for key species: black-capped chickadee (Poecile atricapilla),more » mallard (Anas platyrhynchos), mink (Mustela vison), western meadowlark (Sturnella neglecta), white-tailed deer (Odocoileus virginiana), and yellow warbler (Dendroica petechia). Cover types used in this survey were conifer forest, irrigated meadow, riparian meadow, upland meadow, riparian shrub, upland shrub, and mine tailings. The project generated 701.3 habitat units for mitigation crediting purposes. Results for each HEP species are: (1) Black-capped chickadee habitat was good, with only isolated areas lacking snags or having low tree canopy cover. (2) Mallard habitat was poor in upland meadows and marginal elsewhere due to a lack of herbaceous/shrub cover and low herbaceous height. (3) Mink habitat was good, limited only by the lack of the shrub component. (4) Western meadowlark habitat was marginal in upland meadow and mine tailing cover types and good in irrigated meadow. Percent cover of grass and height of herbaceous variables were limiting factors. (5) White-tailed deer habitat was marginal due to relatively low tree canopy cover, reduced shrub cover, and limited browse diversity. (6) Yellow Warbler habitat was marginal due to less than optimum shrub height and the lack of hydrophytic shrubs. General ratings (poor, marginal, etc.) are described in the introduction section.« less
NASA Astrophysics Data System (ADS)
Schaeffer, A. J.; Snyder, D. B.; Cairns, S.; Elliot, B.; Audet, P.; Esteve, C.; Murray-Bergquist, L.; Falck, H.
2016-12-01
The tectonic evolution of the Beaufort Sea continental margin has contributed to the maturation of these rocks into a major petroleum reservoir. Recent shallow offshore seismic reflection data suggest that Banks Island represents thin crust along a rifted margin established during the opening of the Arctic Ocean. In this case, rifting of the margin caused Banks Island to subside and accumulate sediments rich in petroleum source material. The cooling history and further subsidence of these sediments is important for understanding the thermal maturation of petroleum products. Recently published surface-wave velocity models of North America indicate seismic velocities at 100-150 km depths similar to those beneath Canada's diamond mines in the central Slave craton north of Yellowknife. These results imply that Banks Island is part of the Canadian Shield and that any kimberlites found thereon might contain diamonds. However, the fast velocities are inconsistent with this being a tectonically disrupted and thinned lithosphere along the Arctic margin of the Canada Basin. The problem is therefore to reconcile mantle structure typical of the Canadian Shield with crust typical of a rifted passive margin. Possibly related seismicity beneath the Mackenize River Delta and offshore in the Beaufort Sea has been observed for decades but its origin remains unknown, although has been suggested as due to incipient subduction of oceanic lithosphere beneath the North American craton. Resolving these questions requires high-resolution 3-D seismic models obtained from an array of broadband seismograph stations. Here we present preliminary results on the structure of the crust and uppermost mantle underlying the western Canadian Arctic. These results are generated using new data from the Banks Island Seismograph Network (BISN), three stations installed over the summer of 2014 and 2015; augmented with several USArray Transportable Array stations and older POLARIS and CNSN stations on neighbouring Arctic Islands.
NASA Astrophysics Data System (ADS)
Fan, Jian-Jun; Li, Cai; Wang, Ming; Xie, Chao-Ming
2018-01-01
When and how the Bangong-Nujiang Tethyan Ocean closed is a highly controversial subject. In this paper, we present a detailed study and review of the Cretaceous ophiolites, ocean islands, and flysch deposits in the middle and western segments of the Bangong-Nujiang suture zone (BNSZ), and the Cretaceous volcanic rocks, late Mesozoic sediments, and unconformities within the BNSZ and surrounding areas. Our aim was to reconstruct the spatial-temporal patterns of the closing of the middle and western segments of the Bangong-Nujiang Tethyan Ocean. Our conclusion is that the closure of the ocean started during the Late Jurassic and was mainly complete by the end of the Early Cretaceous. The closure of the ocean involved both "longitudinal diachronous closure" from north to south and "transverse diachronous closure" from east to west. The spatial-temporal patterns of the closure process can be summarized as follows: the development of the Bangong-Nujiang Tethyan oceanic lithosphere and its subduction started before the Late Jurassic; after the Late Jurassic, the ocean began to close because of the compressional regime surrounding the BNSZ; along the northern margin of the Bangong-Nujiang Tethyan Ocean, collisions involving the arcs, back-arc basins, and marginal basins of a multi-arc basin system first took place during the Late Jurassic-early Early Cretaceous, resulting in regional uplift and the regional unconformity along the northern margin of the ocean and in the Southern Qiangtang Terrane on the northern side of the ocean. However, the closure of the Bangong-Nujiang Tethyan Ocean cannot be attributed to these arc-arc and arc-continent collisions, because subduction and the development of the Bangong-Nujiang Tethyan oceanic lithosphere continued until the late Early Cretaceous. The gradual closure of the middle and western segments of Bangong-Nujiang Tethyan Ocean was diachronous from east to west, starting in the east in the middle Early Cretaceous, and being mainly complete by the end of the Early Cretaceous. The BNSZ and its surrounding areas underwent orogenic uplift during the Late Cretaceous.
Late Cenozoic extensional faulting in Central-Western Peloponnesus, Greece
NASA Astrophysics Data System (ADS)
Skourtsos, E.; Fountoulis, I.; Mavroulis, S.; Kranis, H.
2012-04-01
A series of forearc-dipping, orogen-parallel extensional faults are found in the central-western Peloponnesus, (south-western Aegean) which control the western margin of Mt Mainalon. The latter comprises HP/LT rocks of the Phyllites-Quartzites Unit (PQ), overlain by the carbonates and flysch of the Tripolis Unit while the uppermost nappe is the Pindos Unit, a sequence of Mesozoic pelagic sequence, topped by a Paleocene flysch. Most of the extensional structures were previously thought of as the original thrust between the Pindos and Tripolis Units. However, the cross-cutting relationships among these structures indicate that these are forearc (SW-dipping) extensional faults, downthrowing the Pindos thrust by a few tens or hundreds of meters each, rooting onto different levels of the nappe pile. In SW Mainalon the lowermost of the extensional faults is a low-angle normal fault dipping SW juxtaposing the metamorphic rocks of the PQ Unit against the non-metamorphic sequence of the Tripolis Unit. High-angle normal faults, found further to the west, have truncated or even sole onto the low-angle ones and control the eastern margin of the Quaternary Megalopolis basin. All these extensional structures form the eastern boundary of a series of Neogene-Quaternary tectonic depressions, which in turn are separated by E-W horsts. In the NW, these faults are truncated by NE to NNE-striking, NW-dipping faults, which relay the whole fault activity to the eastern margin of the Pyrgos graben. The whole extensional fault architecture has resulted (i) in the Pindos thrust stepping down from altitudes higher than 1000 m in Mainalon in the east, to negative heights in North Messinia and Southern Ilia in the west; and (ii) the gradual disappearance of the Phyllite-Quartzite metamorphics of Mainalon towards the west. The combination of these extensional faults (which may reach down to the Ionian décollement) with the low-angle floor thrusts of the Pindos, Tripolis and Ionian Units leads to additional ENE-WSW shortening, normal to the Hellenic Arc, west of the Peloponnesus.
NASA Astrophysics Data System (ADS)
Tapponnier, P.; Dyment, J.; Zinger, M. A.; Franken, D.; Afifi, A. M.; Wyllie, A.; Ali, H. G.; Hanbal, I.
2013-12-01
A new marine geophysical survey on the Saudi Arabian side of the Red Sea confirms early inferences that ~ 2/3 of the eastern Red Sea is floored by oceanic crust. Most seismic profiles south of 24°N show a strongly reflective, landward-deepening volcanic basement up to ~ 100 km east of the axial ridge, beneath thick evaporitic deposits. This position of the Ocean-Continent Boundary (OCB) is consistent with gravity measurements. The low amplitudes and long wavelengths of magnetic anomalies older than Chrons 1-3 can be accounted for by low-pass filtering due to thick sediments. Seafloor-spreading throughout the Red Sea started around 15 Ma, as in the western Gulf of Aden. Its onset was coeval with the activation of the Aqaba/Levant transform and short-cutting of the Gulf of Suez. The main difference between the southern and northern Red Sea lies not in the nature of the crust but in the direction and modulus of the plate motion rate. The ~ 30° counterclockwise strike change and halving of the spreading rate (~ 16 to ~ 8 mm/yr) between the Hermil (17°N) and Suez triple junctions results in a shift from slow (≈ North Atlantic) to highly oblique, ultra-slow (≈ Southwest Indian) ridge type. The obliquity of spreading in the central and northern basins is taken up by transform discontinuities that stop ~ 40 km short of the coastline, at the OCB. Three large transform fault systems (Jeddah, Zabargad, El Akhawein) nucleated as continental transfer faults reactivating NNE-trending Proterozoic shear zones. The former two systems divide the Red Sea into three main basins. Between ~15 and ~5 Ma, for about 10 million years, thick evaporites were deposited directly on top of oceanic crust in deep water, as the depositional environment, modulated by climate, became restricted by the Suez and Afar/Bab-el-Mandeb volcano-tectonic 'flood-gates.' The presence of these thick deposits (up to ~ 8 km) suffices to account for the difference between the Red Sea and the Gulf of Aden. Widespread salt tectonics was triggered by the flow of large evaporite sheets and salt glaciers toward the ridge axis. Such flow was more pervasive in the north, where slower spreading resulted in a deeper trough, and was guided by the rugged topography of the oceanic seafloor. The Red Sea may represent the best model for comparably deep evaporitic basins along the Earth's passive margins, particularly in the South Atlantic.
Iraq: Post-Saddam Governance and Security
2009-05-07
Kurdish-inhabited cities into the KRG, including Khanaqin, Mandali, Sinjar, Makhmour, Akre , Hamdaniya, Tal Afar, Tilkaif, and Shekhan. A June 2008...4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a ...collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 07 MAY 2009 2. REPORT TYPE 3. DATES COVERED
Adaptive Reorganization of German Special Operations Forces
2013-12-01
Accordingly, special operations must be commanded and controlled at the highest level to ensure operations remain synchronized with strategic...Ministry of Defense, “White Papers 2006,” German Ministry of Defense, Berlin 2006, 17. 45.Ibid. 46. Franz Joseph Jung , former Federal Minister of the...makers, wishful thinking, and overcontrol of missions executed from afar.”65 In addition, General Carl Stiner, the second Commander in Chief (CINC) of
Mentoring from Afar: Nurse Mentor Challenges in the Canadian Armed Forces.
Neal, Laura D M
2015-06-01
There is an integral connection between leadership, mentoring and professional career progression within the nursing profession. The purpose of this article is to examine recommendations and best practices from the literature and provide a basis to construct a formalized successful mentoring dyad program with guidelines on establishing and maintaining a productive mentoring relationship over long distance. Canadian Armed Forces (CAF) nurses practice within a unique domain both domestically and abroad. The military environment incorporates many aspects of mentoring that could benefit significantly by distance interchange. Supported through examining literature within nursing, CAF publications and other professions along with contrasting successful distance mentoring programs, the findings suggest that a top-down, leadership-driven formal mentoring program could be beneficial to CAF nurses. The literature review outlines definitions of terms for mentorship and distance mentoring or e-mentoring. A cross section of technology is now embedded in all work environments with personal communication devices commonplace. Establishing mentoring relationships from afar is practical and feasible. This article provides a guided discussion for nursing leaders, managers and grassroots nurses to implement mentoring programs over distances. The recommendations and findings of this article could have universal applications to isolated nursing environments outside of Canadian military operational frameworks. Copyright © 2015 Longwoods Publishing.
Temesgen, Tedla Mulatu; Umer, Jemal Yousuf; Buda, Dawit Seyoum; Haregu, Tilahun Nigatu
2012-01-01
Traditional birth attendants (TBAs) have been a subject of discussion in the provision of maternal and newborn health care. The objective of this study was to assess the role of trained traditional birth attendants in maternal and newborn health care in Afar Regional State of Ethiopia. A qualitative study was used where 21 in-depth interviews and 6 focus group discussions were conducted with health service providers, trained traditional birth attendants, mothers, men, kebele leaders and district health personnel. The findings of this study indicate that trained traditional birth attendants are the backbone of the maternal and child health development in pastoralist communities. However, the current numbers are inadequate and cannot meet the needs of the pastoralist communities including antenatal care, delivery, postnatal care and family planning. In addition to service delivery, all respondents agreed on multiple contributions of trained TBAs, which include counselling, child care, immunisation, postnatal care, detection of complication and other social services. Without deployment of adequate numbers of trained health workers for delivery services, trained traditional birth attendants remain vital for the rural community in need of maternal and child health care services. With close supportive supervision and evaluation of the trainings, the TBAs can greatly contribute to decreasing maternal and newborn mortality rates.
Magma-driven antiform structures in the Afar rift: The Ali Sabieh range, Djibouti
NASA Astrophysics Data System (ADS)
Le Gall, Bernard; Daoud, Mohamed Ahmed; Maury, René C.; Rolet, Joël; Guillou, Hervé; Sue, Christian
2010-06-01
The Ali Sabieh Range, SE Afar, is an antiform involving Mesozoic sedimentary rocks and synrift volcanics. Previous studies have postulated a tectonic origin for this structure, in either a contractional or extensional regime. New stratigraphic, mapping and structural data demonstrate that large-scale doming took place at an early stage of rifting, in response to a mafic laccolithic intrusion dated between 28 and 20 Ma from new K-Ar age determinations. Our 'laccolith' model is chiefly supported by: (i) the geometry of the intrusion roof, (ii) the recognition of roof pendants in its axial part, and (iii) the mapping relationships between the intrusion, the associated dyke-sill network, and the upper volcanic/volcaniclastic sequences. The laccolith is assumed to have inflated with time, and to have upwardly bent its sedimentary roof rocks. From the architecture of the ˜1 km-thick Mesozoic overburden sequences, ca. 2 km of roof lifting are assumed to have occurred, probably in association with reactivated transverse discontinuities. Computed paleostress tensors indicate that the minimum principal stress axis is consistently horizontal and oriented E-W, with a dominance of extensional versus strike-slip regimes. The Ali Sabieh laccolith is the first regional-scale magma-driven antiform structure reported so far in the Afro-Arabian rift system.
NASA Astrophysics Data System (ADS)
Audin, L.; Manighetti, I.; Tapponnier, P.; Métivier, F.; Jacques, E.; Huchon, P.
2001-02-01
A detailed geophysical survey of the Ghoubbet Al Kharab (Djibouti) clarifies the small-scale morphology of the last submerged rift segment of the propagating Aden ridge before it enters the Afar depression. The bathymetry reveals a system of antithetic normal faults striking N130°E, roughly aligned with those active along the Asal rift. The 3.5kHz sub-bottom profiler shows how the faults cut distinct layers within the recent, up to 60m thick, sediment cover on the floor of the basin. A large volcanic structure, in the centre of the basin, the `Ghoubbet' volcano, separates two sedimentary flats. The organization of volcanism and the planform of faulting, with en echelon subrifts along the entire Asal-Ghoubbet rift, appear to confirm the westward propagation of this segment of the plate boundary. Faults throughout the rift have been active continuously for the last 8400yr, but certain sediment layers show different offsets. The varying offsets of these layers, dated from cores previously retrieved in the southern basin, imply Holocene vertical slip rates of 0.3-1.4mmyr-1 and indicate a major decrease in sedimentation rate after about 6000yr BP, and a redistribution of sediments in the deepest troughs during the period that preceded that change.
McEducation Marginalized: Multiverse of Learning-Living in Grassroots Commons
ERIC Educational Resources Information Center
Prakash, Madhu Suri; Stuchul, Dana; Madhu, Suri; Stuchul, Dana
2004-01-01
Fast food explored both as metaphor and social reality help us challenge the assumptions about education as a universal good transformed into a universal human right. Relations between education, development, and "one world" discourses expose the incommensurability of Western liberal ideals with diverse cosmo-visions now flourishing among…
Hybridization of foxtail and bristlecone pines
William B. < /p> Critchfield
1977-01-01
The pines have been more successful than most of their coniferous relatives in occupying marginal habitats at the upper and lower edges of the forest zone in western North America. Among the groups restricted to such habitats is subsection Baljourianae of Pinus, comprising the fox tail and bristlecone pines. These pines...
Moral Philosophy, Disability, and Inclusive Education
ERIC Educational Resources Information Center
Fitch, E. Frank
2009-01-01
Disability and dependence are integral to the human experience and yet have been largely marginalized or denigrated within Western philosophy. Joining a growing counter narrative from the disability studies movement, several mainstream moral philosophers are helping to redress this error. In this essay, the author discusses ideas from four such…
Applying Indigenizing Principles of Decolonizing Methodologies in University Classrooms
ERIC Educational Resources Information Center
Louie, Dustin William; Pratt, Yvonne Poitras; Hanson, Aubrey Jean; Ottmann, Jacqueline
2017-01-01
This case study examines ongoing work to Indigenize education programs at one Canadian university. The history of the academy in Canada has been dominated by Western epistemologies, which have devalued Indigenous ways of knowing and set the grounds for continued marginalization of Indigenous students, communities, cultures, and histories. We argue…
Infrared thermometry for deficit irrigation of peach trees
USDA-ARS?s Scientific Manuscript database
Water shortage has been a major concern for crop production in the western states of the USA and other arid regions in the world. Deficit irrigation can be used in some cropping systems as a potential water saving strategy to alleviate water shortage, however, the margin of error in irrigation manag...
Development Priorities for African Universities
ERIC Educational Resources Information Center
Baijnath, Narend; James, Genevieve
2015-01-01
African knowledge remains at best on the margins, struggling for an epistemological foothold in the face of an ever dominant Western canon. At worst, African knowledge is disparaged, depreciated, and dismissed. It is often ignored even by African scholars who, having gained control of the academy in the postcolonial context, seemingly remain…
Zhou, Huan; Sun, Shuai; Sylvia, Sean; Yue, Ai; Shi, Yaojiang; Zhang, Linxiu; Medina, Alexis; Rozelle, Scott
2016-01-01
Objectives. To test whether text message reminders sent to caregivers improve the effectiveness of a home micronutrient fortification program in western China. Methods. We carried out a cluster-randomized controlled trial in 351 villages (clusters) in Shaanxi Province in 2013 and 2014, enrolling children aged 6 to 12 months. We randomly assigned each village to 1 of 3 groups: free delivery group, text messaging group, or control group. We collected information on compliance with treatments and hemoglobin concentrations from all children at baseline and 6-month follow-up. We estimated the intent-to-treat effects on compliance and child anemia using a logistic regression model. Results. There were 1393 eligible children. We found that assignment to the text messaging group led to an increase in full compliance (marginal effect = 0.10; 95% confidence interval [CI] = 0.03, 0.16) compared with the free delivery group and decrease in the rate of anemia at end line relative to the control group (marginal effect = −0.07; 95% CI = −0.12, −0.01), but not relative to the free delivery group (marginal effect = −0.03; 95% CI = −0.09, 0.03). Conclusions. Text messages improved compliance of caregivers to a home fortification program and children’s nutrition. PMID:27077354
Detrital Zircons Split Sibumasu in East Gondwana
NASA Astrophysics Data System (ADS)
Zhang, X.; Chung, S. L.
2017-12-01
It is widely accepted that Sibumasu developed as a united terrane and originated from NW Australian margin in East Gondwana. Here we report new detrital zircon U-Pb-Hf isotopic data from Sumatra that, in combination with literature data, challenge and refute the above long-held view. In particular, the East and West Sumatra terranes share nearly identical Precambrian to Paleozoic detrital zircon age distributions and Hf isotopes, indicating a common provenance/origin for them. The Sumatra detrital zircons exhibit a prominent population of ca. 1170-1070 Ma, indistinguishable from those of the Lhasa and West Burma terranes, with detritus most probably sourcing from western Australia. By contrast, Sibuma (Sibumasu excluding Sumatra) detrital zircons display a prevailing population of ca. 980-935 Ma, strongly resembling those of the western Qiangtang terrane, with detrital materials most likely derived from Greater India and Himalayas. Such markedly distinct detrital zircon age profiles between Sumatra and Sibuma require disparate sources/origin for them, provoking disintegration of the widely-adopted, but outdated, term Sibumasu and thus inviting a new configuration of East Gondwana in the early Paleozoic, with Sumatra and West Burma lying outboard the Lhasa terrane in the NW Australian margin and Sibuma situated in the northern Greater Indian margin. More future investigations are needed to establish the precise rifting and drifting histories of Sumatra and Sibuma, as two separated terranes, during the breakup of Gondwana.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pindell, J.L.; Drake, C.L.; Pitman, W.C.
1991-03-01
For several decades, Cretaceous arc collision was assumed along northern Venezuela based on isotopic ages of metamorphic minerals. From subsidence histories in Venezuelan/Trinidadian basins, however, it is now clear that the Cretaceous metamorphic rocks were emplaced southeastward as allochthons above an autochthonous suite of rocks in the Cenozoic, and that the pre-Cenozoic autochthonous rocks represent a Mesozoic passive margin. The passive margin rocks have been metamorphosed separately during overthrusting by the allochthons in central Venezuela, but they are uplifted but not significantly metamorphosed in Eastern Venezuela and Trinidad. There, in the Serrania del Interior and Central Ranges of Venezuela/Trinidad, Mesozoic-Paleogenemore » passive margin sequences were uplifted in Neogene time, when the Caribbean Plate arrived from the west and transpressionally inverted the passive margin. Thus, this portion of South America's Atlantic margin subsided thermally without tectonism from Jurassic to Eocene time, and these sections comprise the only Mesozoic-Cenozoic truly passive Atlantic margin in the Western Hemisphere that is now exposed for direct study. Direct assessments of sedimentological, depositional and faunal features indicative of, and changes in, water depth for Cretaceous and Paleogene time may be made here relative to a thermally subsiding passive margin without the complications of tectonism. Work is underway, and preliminary assessments presented here suggest that sea level changes of Cretaceous-Paleogene time are not as pronounced as the frequent large and rapid sea level falls and rises that are promoted by some.« less
NASA Astrophysics Data System (ADS)
Phethean, Jordan J. J.; Kalnins, Lara M.; van Hunen, Jeroen; Biffi, Paolo G.; Davies, Richard J.; McCaffrey, Ken J. W.
2016-12-01
Accurate reconstructions of the dispersal of supercontinent blocks are essential for testing continental breakup models. Here, we provide a new plate tectonic reconstruction of the opening of the Western Somali Basin during the breakup of East and West Gondwana. The model is constrained by a new comprehensive set of spreading lineaments, detected in this heavily sedimented basin using a novel technique based on directional derivatives of free-air gravity anomalies. Vertical gravity gradient and free-air gravity anomaly maps also enable the detection of extinct mid-ocean ridge segments, which can be directly compared to several previous ocean magnetic anomaly interpretations of the Western Somali Basin. The best matching interpretations have basin symmetry around the M0 anomaly; these are then used to temporally constrain our plate tectonic reconstruction. The reconstruction supports a tight fit for Gondwana fragments prior to breakup, and predicts that the continent-ocean transform margin lies along the Rovuma Basin, not along the Davie Fracture Zone (DFZ) as commonly thought. According to our reconstruction, the DFZ represents a major ocean-ocean fracture zone formed by the coalescence of several smaller fracture zones during evolving plate motions as Madagascar drifted southwards, and offshore Tanzania is an obliquely rifted, rather than transform, margin. New seismic reflection evidence for oceanic crust inboard of the DFZ strongly supports these conclusions. Our results provide important new constraints on the still enigmatic driving mechanism of continental rifting, the nature of the lithosphere in the Western Somali Basin, and its resource potential.
NASA Astrophysics Data System (ADS)
Jessen, Simon P.; Rasmussen, Tine L.; Nielsen, Tove; Solheim, Anders
2010-05-01
Data have been compiled from eleven sediment cores from 76° to 80°N on the western Svalbard slope. The cores are from water depths between 630 and 1880 m and show clear similarities in lithology and magnetic susceptibility. All cores penetrated into mass transported sediments from glacigenic debris flow events and turbidity flow events. The mass transport probably occurred when the ice reached the shelf edge. The deposits date between 24,080 ± 150 and 23,550 ± 185 calibrated (cal) years BP. The records also include laminated, fine grained sediments interpreted as deposits from sediment-laden meltwater plumes dated between 14,780 ± 220 and 14,300 ± 260 cal years BP. In Holocene sediments a diatom-rich fine grained layer dates 10,100 ± 150 to 9840 ± 200 cal years BP. The eleven cores have been stacked into one record with absolute age control from 35 AMS 14C dates. Together with oxygen isotope stratigraphy and contents of ice rafted detritus the stacked record provides a useful chronology tool for cores on the western Svalbard slope. Our study improves the age control of earlier well documented glacial events and shows that the maximum glacial state and the onset of the deglaciation both occurred 2500-3000 years earlier than previously reconstructed for the western Svalbard margin. The results indicate that during the last 30,000 years advance and retreat of the Svalbard-Barents Sea Ice Sheet was closely linked to the flow of Atlantic Water and Polar Water over the margin.
Ophthalmic examination of the captive western lowland gorilla (Gorilla gorilla gorilla).
Liang, David; Alvarado, Thomas P; Oral, Deniz; Vargas, Jose M; Denena, Melissa M; McCulley, James P
2005-09-01
This study examined the captive western lowland gorilla (Gorilla gorilla gorilla) eye as compared and contrasted with the human eye. Bilateral ophthalmic examinations of western lowland gorillas (n = 5) while under general anesthesia were performed opportunistically, including slit-lamp biomicroscopy, dilated fundus examination, cycloplegic retinoscopy, Schiotz tonometry, corneal diameter and thickness measurements, A-scan and B-scan ultrasonography, keratometry, and cultures of the eyelid margins and bulbar conjunctiva. Mean spherical equivalent refractive error by cycloplegic retinoscopy was +1.20 +/- 0.59 diopters. Mean intraocular pressure by Schiotz tonometry was 12.0 +/- 4.3 mm Hg. Mean optic nerve head cup to disc ratio was 0.42 +/- 0.11. Mean horizontal corneal diameter was 13.4 +/- 0.8 mm, and mean vertical cornea diameter was 12.7 +/- 0.8 mm. Mean central corneal thickness by ultrasound pachymetry was 489 +/- 52 microm. Mean axial length of the eye by A-scan was 22.75 +/- 0.71 mm. Mean lens thickness by A-scan was 4.23 +/- 0.34 mm. Mean anterior chamber depth by A-scan was 4.00 +/- 0.26 mm. Mean keratometry reading was 44.38 +/- 1.64 diopters. Eyelid margin and bulbar conjunctival cultures isolated Candida sp. (n = 5), Staphylococcus aureus (n = 4), Staphylococcus epidermidis (n = 3), Staphylococcus saccharolyticus (n = 3), and Micrococcus sp. (n = 3). This study suggests important similarities between western lowland gorilla and human eyes. These similarities may allow diagnostics, techniques, and equipment for human eye surgery, such as those used for cataract extraction and intraocular lens implantation, to be successfully utilized for gorillas.
Torri, Maria Costanza
2010-01-01
The precarious socio-economic and health conditions of indigenous populations legitimize claims of marginalization and attest to the inherent inequality that indigenous groups suffer. In the last few years, advocates have urged the use of traditional indigenous health practices as more culturally fitting for most indigenous populations. An intercultural health program can reduce the conditions of social and cultural marginalization in an indigenous population. However, accepting and integrating indigenous medicine into a westernized health system presents a major challenge to intercultural healthcare in Latin America. The objective of this paper is to analyze the case of Makewe hospital, one of the first and few examples of intercultural health initiatives in Chile. The paper will examine the implementation of this initiative and the main challenges in creating an effective intercultural health program.
Distributions of Pu, Am and Cs in margin sediments from the western Mediterranean (Spanish coast).
Gascó, C; Antón, M P; Pozuelo, M; Meral, J; González, A M; Papucci, C; Delfanti, R
2002-01-01
Continental margins are important areas to be considered when studying the distributions and depositions of pollutants, both conventional and radioactive. Coastal sediments accumulate most of those contaminants which can be introduced following atmospheric and/or fluvial pathways. Moreover, their residence times within the water column are usually shortened due to their affinity to associate with the downward falling particulate matter, more abundant at shallower depths. In this paper the distribution profiles and inventories of plutonium, americium and cesium are detailed, providing useful information about recent sedimentation phenomena such as sediment mixing, slumping processes and bioturbation. Unsupported 210Pb data are used as reliable indicators of enhanced/reduced deposition events. Also, the calculated inventories have enabled the estimation of the radiological contribution of the Spanish Mediterranean margin to the total radioactivity deposited onto the Mediterranean sea floor.
On the preservation of laminated sediments along the western margin of North America
VanGeen, A.; Zheng, Yen; Bernhard, J.M.; Cannariato, K.G.; Carriquiry, J.; Dean, W.E.; Eakins, B.W.; Ortiz, J.D.; Pike, J.
2003-01-01
Piston, gravity, and multicores as well as hydrographic data were collected along the Pacific margin of Baja California to reconstruct past variations in the intensity of the oxygen-minimum zone (OMZ). Gravity cores collected from within the OMZ north of 24??N did not contain laminated surface sediments even though bottom water oxygen (BWO) concentrations were close to 5 ??mol/kg. However, many of the cores collected south of 24??N did contain millimeter- to centimeter-scale, brown to black laminations in Holocene and older sediments but not in sediments deposited during the Last Glacial Maximum. In addition to the dark laminations, Holocene sediments in Soledad Basin, silled at 290 m, also contain white coccolith laminae that probably represent individual blooms. Two open margin cores from 430 and 700 m depth that were selected for detailed radiocarbon dating show distinct transitions from bioturbated glacial sediment to laminated Holocene sediment occurring at 12.9 and 11.5 ka, respectively. The transition is delayed and more gradual (11.3-10.0 ka) in another dated core from Soledad Basin. The observations indicate that bottom-water oxygen concentrations dropped below a threshold for the preservation of laminations at different times or that a synchronous hydrographic change left an asynchronous sedimentary imprint due to local factors. With the caveat that laminated sections should therefore not be correlated without independent age control, the pattern of older sequences of laminations along the North American western margin reported by this and previous studies suggests that multiple patterns of regional productivity and ventilation prevailed over the past 60 kyr. Copyright 2003 by the American Geophysical Union.
Magnetotelluric characterization of the northern margin of the Yilgarn Craton (Western Australia)
NASA Astrophysics Data System (ADS)
Piña-Varas, Perla; Dentith, Michael
2017-04-01
The northern margin of the Yilgarn Craton (Western Australia) was deformed during the convergence and collision with the Pilbara Craton and the intervening Glenburgh Terrain that created the Capricorn Orogen. The Yilgarn Craton is one of the most intensively mineralised areas of continental crust with world class deposits of gold and nickel. However, the region to its north has surprisingly few deposits. Cratonic margins are considered to be key indicators of prospectivity at a regional scale. The northern limit of the Yilgarn Craton within the Capricorn Orogen is not well resolved at date because of overlying Proterozoic sedimentary basins. We present here some of the results of an extensive magnetotelluric (MT) study that is being performed in the area. This study is a component of large multi-disciplinary geoscience project on the 'Distal Footprints of Giant Ore Systems' in the Capricorn Orogen. The MT dataset consists of a total of 240 broadband magnetotelluric stations (BBMT) and 84 long period stations (LMT). Analysis of the dataset reveals a clear 3-D geoelectrical behaviour and extreme complexity for most of the sites, including an extremely high number of sites with phases out-of-quadrant at long periods. 3-D inverse modelling of the MT data shows high resistivity Archean units and low resistivity Paleoproterozoic basins, including very low resistivity structures at depth. These strong resistivity contrasts allow us to successfully map northern margin of the Yilgarn Craton beneath basin cover, as well as identifying major lateral conductivity changes in the deep crust suggestive of different tectonic blocks. Upper crustal conductive zones can be correlated with faults on seismic reflection data. Our results suggest MT surveys are a useful tool for regional-scale exploration in the study area and in area of thick cover in general.
Overview of the sedimentological processes in the western North Atlantic
NASA Astrophysics Data System (ADS)
Benetti, S.; Weaver, P.; Wilson, P.
2003-04-01
The sedimentary processes operating within the western North Atlantic continental margin include both along-slope sediment transport, which builds sediment drifts and waves, and down-slope processes involving mass wasting. Sedimentation along a large stretch of the margin (north of 32°N) has been heavily influenced by processes that occurred during glacial times (e.g. cutting of canyons and infilling of abyssal plains) when large volumes of sediment were supplied to the shelf edge either by ice grounded on continental shelves or river discharge. The large area of sea floor occupied by depositional basins and abyssal plains testifies to the dominance of turbidity currents. The widespread presence of slide complexes in this region has been related to earthquakes and melting of gas hydrates. South of 32°N, because of the low sediment supply from rivers even during glacial times and the reduced sedimentation due to the erosive effects of the Gulf Stream, few canyon systems and slides are observed and Tertiary sediment cover is thin and irregular. Turbidity currents filled re-entrant basins in the Florida-Bahama platform. Tectonic activity is primarily responsible for the overall morphology and sedimentation pattern along the Caribbean active margin. Along the whole margin, the reworking of bottom sediments by deep-flowing currents seems to be particularly active during interglacials. To some extent this observation must reflect the diminished effect of downslope transport during interglacials, but our data also contribute to the debate over changes in deep water circulation strength on glacial-interglacial timescales. Strong bottom circulation, an open basin system and high sediment supply have led to the construction of large elongate contourite drifts, mantled by smaller scale bedforms. These drifts are mostly seen in regions protected or distant from the masking influence of turbidity currents and sediment mass movements.
NASA Astrophysics Data System (ADS)
Herguera, J. C.; Nava Fernandez, C.; Bernal, G.; Paull, C. K.
2015-12-01
The North American Monsoon regime results from an interplay between the ocean, atmosphere and continental topography though there is an ongoing debate as to the relative importance of sea surface temperatures (SSTs) in the NE tropical Pacific warm water lens region, solar radiation variability, land snow cover and soil moisture over the Western North America mountain ranges and the strength and spatial patterns of the dominant winds. The links between these factors and the monsoonal variability appear to be of variable importance during the short instrumental record, and hampers any prediction on the future evolution of this climatic regime in a warming climate. The terrigenous component in very-high sedimentation rate sediments on the margins of the Gulf of California links monsoonal precipitation patterns on land with the varying importance of the lithogenic component in these margin sediments. Here we use the elemental composition of Si and Fe in these margin sediments, as a proxy for the lithogenic component in a collection of box and kasten cores from the eastern and western margins of the lower Gulf of California. This region shows a strong tropical influence during the summer, as part of the northernmost extension of the eastern tropical Pacific warm water lens region. A period when the southwestern winds bring moist air masses inland enhancing the monsoonal rains on the eastern reaches of Sierra Madre Occidental. High resolution XRF results allow us to explore the relationships between different elemental ratios in these sediments and the available instrumental record and several paleo-reconstructions to evaluate the possible links between external forcings and internal feedback effects, to help to understand the controls on the evolution of the monsoonal regime in this region.
Larval Transport on the Atlantic Continental Shelf of North America: a Review
NASA Astrophysics Data System (ADS)
Epifanio, C. E.; Garvine, R. W.
2001-01-01
This review considers transport of larval fish and crustaceans on the continental shelf. Previous reviews have contained only limited treatments of the physical processes involved. The present paper provides a physical background that is considerably more comprehensive. It includes a discussion of three principal forcing agents: (1) wind stress; (2) tides propagating from the deep ocean; and (3) differences in density associated with the buoyant outflow of estuaries, surface heat flux, or the interaction of coastal and oceanic water masses at the seaward margin of the shelf. The authors discuss the effects of these forcing agents on transport of larvae in the Middle Atlantic and South Atlantic Bights along the east coast of North America. The discussion concentrates on three species (blue crab, menhaden, bluefish) that have been the subject of a very recent multi-disciplinary study. Taken as a whole, the reproductive activities of these three species span the entire year and utilize the entire shelf, from the most seaward margin to the estuarine nursery. The blue crab is representative of species affected by physical processes occurring during summer and early autumn on the inner and mid-shelf. Menhaden are impacted by processes occurring in winter on the outer and mid-shelf. Bluefish are influenced primarily by processes occurring during early spring at the outer shelf margin near the western boundary current. The authors conclude that alongshore wind stress and density differences, i.e. buoyancy-driven flow, are the primary agents of larval transport in the region. Circulation associated with the western boundary current is only important at the shelf margin and tidally driven processes are generally inconsequential.
NASA Astrophysics Data System (ADS)
Bartolome, R.; Gorriz, E.; Danobeitia, J.; Barba, D. C., Sr.; Martí, D.; L Cameselle, A.; Nuñez-Cornu, F. J.; Bandy, W. L.; Mortera, C.; Nunez, D.; Alonso, J. L.; Castellon, A.; Prada, M.
2016-12-01
During the TSUJAL marine geophysical survey, conducted in February and March 2014 Spanish, Mexican and British scientists and technicians explored the western margin of Mexico, considered one of the most active seismic zones in America. This work aims to characterize the internal structure of the subduction zone of the Rivera plate beneath the North American plate in the offshore part of the Jalisco Block, to link the geodynamic and the recent tectonic deformation occurring there with the possible generation of tsunamis and earthquakes. For this purpose, it has been carried out acquisition, processing and geological interpretation of a multichannel seismic reflection profile running perpendicular to the margin. Crustal images show an oceanic domain, dominated by subduction-accretion along the lower slope of the margin with a subparallel sediment thickness of up to 1.6 s two way travel time (approx. 2 km) in the Middle American Trench. Further, from these data the region appears to be prone to giant earthquake production. The top of the oceanic crust (intraplate reflector) is very well imaged. It is almost continuous along the profile with a gentle dip (<10°); however, it is disrupted by normal faulting resulting from the bending of the plate during subduction. The continental crust presents a well-developed accretionary prism consisting of highly deformed sediments with prominent slumping towards the trench that may be the result of past tsunamis. Also, a Bottom Simulating Reflector (BSR) is identified in the first half a second (twtt) of the section. High amplitude reflections at around 7-8 s twtt clearly image a discontinuous Moho, defining a very gentle dipping subduction plane.
NASA Astrophysics Data System (ADS)
Bartolome, Rafael; Górriz, Estefanía; Dañobeitia, Juanjo; Cordoba, Diego; Martí, David; Cameselle, Alejandra L.; Núñez-Cornú, Francisco; Bandy, William L.; Mortera-Gutiérrez, Carlos A.; Nuñez, Diana; Castellón, Arturo; Alonso, Jose Luis
2016-10-01
During the TSUJAL marine geophysical survey, conducted in February and March 2014, Spanish, Mexican and British scientists and technicians explored the western margin of Mexico, considered one of the most active seismic zones in America. This work aims to characterize the internal structure of the subduction zone of the Rivera plate beneath the North American plate in the offshore part of the Jalisco Block, to link the geodynamic and the recent tectonic deformation occurring there with the possible generation of tsunamis and earthquakes. For this purpose, it has been carried out acquisition, processing and geological interpretation of a multichannel seismic reflection profile running perpendicular to the margin. Crustal images show an oceanic domain, dominated by subduction-accretion along the lower slope of the margin with a subparallel sediment thickness of up to 1.6 s two-way travel time (approx. 2 km) in the Middle American Trench. Further, from these data the region appears to be prone to giant earthquake production. The top of the oceanic crust (intraplate reflector) is very well imaged. It is almost continuous along the profile with a gentle dip (<10°); however, it is disrupted by normal faulting resulting from the bending of the plate during subduction. The continental crust presents a well-developed accretionary prism consisting of highly deformed sediments with prominent slumping towards the trench that may be the result of past tsunamis. Also, a bottom simulating reflector (BSR) is identified in the first half a second (twtt) of the section. High amplitude reflections at around 7-8 s twtt clearly image a discontinuous Moho, defining a very gentle dipping subduction plane.
Evolution of Devonian carbonate-shelf margin, Nevada
Morrow, J.R.; Sandberg, C.A.
2008-01-01
The north-trending, 550-km-long Nevada segment of the Devonian carbonate-shelf margin, which fringed western North America, evidences the complex interaction of paleotectonics, eustasy, biotic changes, and bolide impact-related influences. Margin reconstruction is complicated by mid-Paleozoic to Paleogene compressional tectonics and younger extensional and strike-slip faulting. Reports published during the past three decades identify 12 important events that influenced development of shelf-margin settings; in chronological order, these are: (1) Early Devonian inheritance of Silurian stable shelf inargin, (2) formation of Early to early Middle 'Devonian shelf-margin basins, (3) propradation of later Middle Devonian shelf margin, (4) late Middle Devonian Taghanic ondap and continuing long-term Frasnian transgression, (5) initiation of latest Middle Devonian to early Frasnian proto-Antler orogenic forebulge, (6) mid-Frasnian Alamo Impact, (7) accelerated development of proto-Antler forebulge and backbulge Pilot basin, (8) global late Frasnian sentichatovae sea-level rise, (9) end-Frasnian sea-level fluctuations and ensuing mass extinction, (10) long-term Famennian regression and continept-wide erosion, (11) late Famennian emergence: of Ahtler orogenic highlands, and (12) end-Devonian eustatic sea-level fall. Although of considerable value for understanding facies relationships and geometries, existing standard carbonate platform-margin models developed for passive settings else-where do not adequately describe the diverse depositional and, structural settings along the Nevada Devonian platform margin. Recent structural and geochemical studies suggest that the Early to Middle Devonian-shelf-margin basins may have been fault-bound and controlled by inherited Precambrian structure. Subsequently, the migrating latest Middle to Late Devonian Antler orogenic forebulge exerted a dominant control on shelf-margin position, morphology, and sedimentation. ??Geological Society of America.
Mantle convection patterns reveal the enigma of the Red Sea rifting
NASA Astrophysics Data System (ADS)
Petrunin, Alexey; Kaban, Mikhail; El Khrepy, Sami; Al-Arifi, Nassir
2017-04-01
Initiation and further development of the Red Sea rift (RSR) is usually associated with the Afar plume at the Oligocene-Miocene separating the Arabian plate from the rest of the continent. Usually, the RSR is divided into three parts with different geological, tectonic and geophysical characteristics, but the nature of this partitioning is still debatable. To understand origin and driving forces responsible for the tectonic partitioning of the RSR, we have developed a global mantle convection model based on the refined density model and viscosity distribution derived from tectonic, rheological and seismic data. The global density model of the upper mantle is refined for the Middle East based on the high-resolution 3D model (Kaban et al., 2016). This model based on a joint inversion of the residual gravity and residual topography provides much better constraints on the 3D density structure compared to the global model based on seismic tomography. The refined density model and the viscosity distribution based on a homologous temperature approach provide an initial setup for further numerical calculations. The present-day snapshot of the mantle convection is calculated by using the code ProSpher 3D that allows for strong lateral variations of viscosity (Petrunin et al., 2013). The setup includes weak plate boundaries, while the measured GPS velocities are used to constrain the solution. The resulting mantle flow patterns show clear distinctions among the mantle flow patterns below the three parts of the RSR. According to the modeling results, tectonics of the southern part of the Red Sea is mainly determined by the Afar plume and the Ethiopian rift opening. It is characterized by a divergent mantle flow, which is connected to the East African Rift activity. The rising mantle flow is traced down to the transition zone and continues in the lower mantle for a few thousand kilometers south-west of Afar. The hot mantle anomaly below the central part of the RSR can be explained either by the asthenospheric upwelling due to the Red Sea floor spreading or by a secondary plume rising from the transition zone. According to our model, there is no obvious evidence for a direct connection of the hot anomaly below the central part of the RSR and the Afar plume in the upper mantle. In the northern part of the RSR, we found the ridge-axis aligned downstream flow contradicting the hypothesis of the intra-continental rifting in this area. Likely, the tectonics of this area implies a complex interplay of the Dead Sea transform fault development and the Sinai and Mediterranean tectonics. Kaban, M. K., S. El Khrepy, N. Al-Arifi, M. Tesauro, and W. Stolk (2016), Three dimensional density model of the upper mantle in the Middle East: Interaction of diverse tectonic processes, J. Geophys. Res. Solid Earth, 121, doi:10.1002/2015JB012755. Petrunin, A. G.; Kaban, M. K.; Rogozhina, I.; Trubitsyn, V. (2013). Revising the spectral method as applied to modeling mantle dynamics. Geochemistry Geophysics Geosystems (G3), EDOC: 21048.
Investigating the Relationship Between Dynamic Topography and Sediment Flux in Africa
NASA Astrophysics Data System (ADS)
Walford, H. L.; White, N. J.
2002-12-01
It is generally accepted that the `basin and swell' topography of Africa is maintained by circulation within the mantle. Many swells are volcano-capped, and their topographic expression shows a close correlation with the long wavelength (>1000 km) free-air gravity anomaly, which can be regarded as a proxy for the convective pattern. Tomographic studies have revealed a region of slow seismic velocities in the lower mantle beneath the `African Superswell', a region of anomalously high elevation that stretches from the South Atlantic Ocean across southern Africa to the volcanic hot spot beneath Afar. Models based on gravity or seismology offer little constraint on the timing and development of dynamic topography since these observations are restricted to the present day. Recently, tomographic data has been combined with geomorphologically derived uplift rates from southern Africa, providing useful temporal constraints for dynamical modelling. Another way to investigate the history of dynamic topography is to interrogate the stratigraphic record. Africa is almost entirely surrounded by passive continental margins, formed during the break-up of Gondwana in the Mesozoic. Sediment has been accumulating on these margins throughout the Cenozoic, providing an indirect record of onshore vertical motions. The development of `basin and swell' topography together with epeirogenic uplift caused by the African Superswell would have had a profound effect on the drainage systems of the entire continent. 40% of the African continent is drained by just 6 rivers, which have formed large deltas on the continental shelf (i.e. Nile, Congo, Niger, Zambezi, Orange and Ogooue). Elevation of a catchment area is a primary control on the amount of sediment supplied to a major delta. Hence, by calculating the sediment flux to the deltas of Africa as a function of time, the history of vertical motions can be indirectly constrained. Analysis of several deltas reveals a widespread modification of African drainage at the start of the Neogene. The Miocene saw the establishment of the Eonile, enhanced progradation of the Niger Delta, major deposition along the West African margin following an Oligocene hiatus and renewed sedimentation in the Zambezi Delta. It has been proposed that Africa came to rest with respect to the mantle in the Oligocene, at ~30 Ma. The Early Neogene increase in sediment flux seen around Africa is consistent with the development of dynamic topography at this time. Earlier and later increases in sediment flux suggest that dynamic topography has waxed and waned over a longer time scale.
NASA Technical Reports Server (NTRS)
Biggs, Douglas, C.; Mueller-Karger, Frank E.
1994-01-01
When anticyclonic eddies shed by the Loop Current of the Gulf of Mexico reach the western margin of the gulf, they influence the surface circulation over the continental slope and rise. Of particular interest is the generation of cyclone (cold-core)-anticyclone (warm-core) pairs when aging Loop Current eddies interact with the continental margin. In this paper we describe the physical and biological characteristics of these cyclone-anticyclone pairs. Our objective was to determine how eddy pairs affect the distribution of phytoplankton in the region and how satellite ocean color measurements are applicable to tracing of the eddies. We present shipboard data collected between 1980 and 1982 on the hydrography, chlorophyll stocks, and nutrient concentrations of eddy pairs in the western Gulf of Mexico and compare these data with coastal zone color scanner (CZCS) images collected during the time frame of the cruises. Surface pigment concentrations followed a seasonal cycle, with low concentrations (0.05-0.1 mg m(exp -3)) found within cyclones and anticyclones from April through early November and higher concentrations (greater than 0.1 mg(exp -3)) found in the winter. CZCS pigment concentrations were locally high in the flow confluence of cyclone-anticyclone pairs. The CZCS imagery shows that some cyclone-anticyclone geometries transport high-chlorophyll shelf water seaward at least 100-200 km off-shelf.
Dislocation models of interseismic deformation in the western United States
Pollitz, F.F.; McCrory, P.; Svarc, J.; Murray, J.
2008-01-01
The GPS-derived crustal velocity field of the western United States is used to construct dislocation models in a viscoelastic medium of interseismic crustal deformation. The interseismic velocity field is constrained by 1052 GPS velocity vectors spanning the ???2500-km-long plate boundary zone adjacent to the San Andreas fault and Cascadia subduction zone and extending ???1000 km into the plate interior. The GPS data set is compiled from U.S. Geological Survey campaign data, Plate Boundary Observatory data, and the Western U.S. Cordillera velocity field of Bennett et al. (1999). In the context of viscoelastic cycle models of postearthquake deformation, the interseismic velocity field is modeled with a combination of earthquake sources on ???100 known faults plus broadly distributed sources. Models that best explain the observed interseismic velocity field include the contributions of viscoelastic relaxation from faulting near the major plate margins, viscoelastic relaxation from distributed faulting in the plate interior, as well as lateral variations in depth-averaged rigidity in the elastic lithosphere. Resulting rigidity variations are consistent with reduced effective elastic plate thickness in a zone a few tens of kilometers wide surrounding the San Andreas fault (SAF) system. Primary deformation characteristics are captured along the entire SAF system, Eastern California Shear Zone, Walker Lane, the Mendocino triple junction, the Cascadia margin, and the plate interior up to ???1000 km from the major plate boundaries.
Iraq: Post-Saddam Governance and Security
2009-07-08
cities into the KRG, including Khanaqin, Mandali, Sinjar, Makhmour, Akre , Hamdaniya, Tal Afar, Tilkaif, and Shekhan. A June 2008 UNAMI report leaned...4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a ...collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 08 JUL 2009 2. REPORT TYPE 3. DATES COVERED
Iraq: Post-Saddam Governance and Security
2009-06-08
Makhmour, Akre , Hamdaniya, Tal Afar, Tilkaif, and Shekhan. A June 2008 UNAMI report leaned toward the Kurds on some of these territories, but with...4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a ...collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 08 JUN 2009 2. REPORT TYPE 3. DATES COVERED
2009-06-03
Ninveveh that UNAMI has been studying include: Khanaqin, Sinjar, Makhmour, Akre , Hamdaniya, Tal Afar, Tilkaif, Mandali, and Shekhan. A June 2008 report...Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection...of information if it does not display a currently valid OMB control number. 1. REPORT DATE 03 JUN 2009 2. REPORT TYPE 3. DATES COVERED 00-00
Blunting the Spear: Why Good People Get Out
2015-03-01
Viewed from afar, it appears audacious and self -serving. Upon closer inspection, this same attitude becomes determinant in a fighter pilot’s...tributions to education in the Royal Netherlands Air Force. The Drew Papers are dedicated to promoting the understanding of air and space power theory and...across the finish line—thank you. I would also like to recognize Ms. Sophie Ryan and Ms. Arden Gale. With- out their help, the statistical analysis and
Beleaguered Muslim Fortresses and Ethiopian Imperial Expansion from the 13th to the 16th Century
2008-06-01
year later Emperor Zara Yakob (r. 1433-1468) took the throne of the Ethiopian Empire.84 Sultan Badlay’s area of control roughly covered the Afar plain...101 Ahmed, 2000: 12; Henze, 79-81; Pankhurst, 1982: 62; Iliffe, 59 (Emperor Zara Yakob as part of...the Christian Empire. On the other hand, throughout that time period, the Christian Emperors, particularly Amda Seyon and Zara Yakob, expanded
NASA Technical Reports Server (NTRS)
Bannert, D.
1972-01-01
Apollo 9 photographs of the region northwest of the Gulf of Tadjura were studied. The occurrence of a large region of basement rocks, probably crystalline in nature, with a strongly faulted overlayer was recognized and has been named the Tadjura uplift. Study of this region is adding detailed knowledge to the literature on the phenomenon of plate drift in the southern Red Sea region.
NASA Technical Reports Server (NTRS)
Nummedal, D.
1978-01-01
There are two overflights planned for the field conference; one for the Cheney-Palouse tract of the eastern channeled scabland, the other covering the coulees and basins of the western region. The approximate flight lines are indicated on the accompanying LANDSAT images. The first flight will follow the eastern margin of this large scabland tract, passing a series of loess remnants, gravel bars and excavated rock basins. The western scablands overflight will provide a review of the structurally controlled complex pattern of large-scale erosion and deposition characteristic of the region between the upper Grand Coulee (Banks Lake) and the Pasco Basin.
NASA Astrophysics Data System (ADS)
Ratheesh-Kumar, R. T.; Xiao, Wenjiao
2018-05-01
Gondwana correlation studies had rationally positioned the western continental margin of India (WCMI) against the eastern continental margin of Madagascar (ECMM), and the eastern continental margin of India (ECMI) against the eastern Antarctica continental margin (EACM). This contribution computes the effective elastic thickness (Te) of the lithospheres of these once-conjugated continental margins using the multitaper Bouguer coherence method. The results reveal significantly low strength values (Te ∼ 2 km) in the central segment of the WCMI that correlate with consistently low Te values (2-3 km) obtained throughout the entire marginal length of the ECMM. This result is consistent with the previous Te estimates of these margins, and confirms the idea that the low-Te segments in the central part of the WCMI and along the ECMM represents paleo-rift inception points of the lithospheric margins that was thermally and mechanically weakened by the combined action of the Marion hotspot and lithospheric extension during the rifting. The uniformly low-Te value (∼2 km) along the EACM indicates a mechanically weak lithospheric margin, probably due to considerable stretching of the lithosphere, considering the fact that this margin remained almost stationary throughout its rift history. In contrast, the ECMI has comparatively high-Te variations (5-11 km) that lack any correlation with the regional tectonic setting. Using gravity forward and inversion applications, we find a leading order of influence of sediment load on the flexural properties of this marginal lithosphere. The study concludes that the thick pile of the Bengal Fan sediments in the ECMI masks and has erased the signal of the original load-induced topography, and its gravity effect has biased the long-wavelength part of the observed gravity signal. The hence uncorrelated flat topography and deep lithospheric flexure together contribute a bias in the flexure modeling, which likely accounts a relatively high Te estimate.
NASA Astrophysics Data System (ADS)
Knight, M.; Herrero-Bervera, E.; Molina-Garza, R. S.; Böhnel, H. N.
2003-12-01
We summarize results of recent paleomagnetic, structural, petrologic and magnetic fabric studies along an east-west (60 km long) transect across the Peninsular Ranges Batholith (PRB) in north-central Baja California. The transect includes both magnetite rich plutons from the western sector of the PRB, and ilmenite rich plutons from the eastern sector, as well as plutons on the eastern and western side of major tectonic discontinuities. We include results for 8 plutons, included well-characterized bodies such as San Pedro M rtir (SP), San José (SJ) and La Zarza (LZ), and relatively little known plutons such as Potrero (PO), Aguaje del Burro (AB), El Milagro (MI), and San Telmo (ST). Plutons on the western sector of the PRB yield a paleomagnetic pole at 82° N-186.4° E (A95=4.8° ). When rotated into a pre- Gulf of California position, the pole (79.2° -188.2° ) is statistically undistinguishable from the North American reference pole. In contrast, SP, SJ and PO plutons, on either side of the NW trending Main Martir Thrust yield clearly discordant direction that can only be reconciled with results for the western plutons assuming southwestward tilt of ˜ 25° for SP and greater than 45° for SJ and PO. We find strong evidence in support of tilt of the plutons from thermochronological, structural, and geobarometric data. These data will be discussed elsewhere. Here we focus on magnetic fabric data. AMS for SJ is strongly developed with high values for degree of anisotropy (P= 1.14 a 1.40), but marked east-west asymmetry that contrasts with the general symmetry of the pluton along a north-south axis. Oblate fabrics (T ˜ +0.4) with dispersed lineation directions dominate the west side of the pluton and prolate fabrics (T ˜ -0.15) with steep to vertical lineations dominate on its eastern side. This fabric is interpreted to result from magma flow. SP, a much larger pluton and sensibly asymmetric, displays high degrees of anisotropy (P ˜1.2) on its western side but dominantly oblate (T ˜ +0.4) fabric, with foliations parallel to the pluton margins. In contrast, the eastern side of the pluton displays low P values ( ˜ 1.06-1.10), but markedly oblate fabrics (T ˜ +0.6) parallel to the pluton margin. Fabrics in the pluton interior are weakly developed. These data are interpreted to support models of pluton emplacement that involve drag (vertical shear) along the western margin of the pluton along the Main M rtir Thrust during pluton ascent, thus facilitating tilt and deformation of the smaller plutons to the west.
Rift-Related Sediments of the Passive Continental Margin of the Paleo-Asian Ocean (Baikal Segment)
NASA Astrophysics Data System (ADS)
Mazukabzov, A. M.; Stanevich, A. M.; Gladkochub, D. P.; Donskaya, T. V.; Khubanov, V. B.; Motova, Z. L.; Kornilova, T. A.
2018-02-01
The geological position, composition, and age of detrital zircons of sedimentary deposits of the Nugan Formation of the Western Baikal region underlying the Golousta Formation of the Baikal series of Ediacaran age have been studied. The formation of both stratigraphic units due to the same sources of detrital material, located within the southern flank of the Siberian Craton, has been proved. The deposits of the Nugan Formation have been demonstrated to mark the rifting stage of the formation of the passive margin of the Paleo-Asiatic Ocean: their accumulation occurred in the Late Cryogenian during the interval 720-640 Ma.
Regulating the Student Body/ies: University Policies and Student Parents
ERIC Educational Resources Information Center
Moreau, Marie-Pierre
2016-01-01
Despite a cultural positioning of care at the margins of academia, student parents now represent a significant proportion of the higher education population in England and in other Western countries. Research shows that, beyond the diversity of their experiences, time, childcare, financial, and well-being related issues prevail among them.…
USDA-ARS?s Scientific Manuscript database
Rangeland ecosystems account for about half of the earth's land surface. They play an important role in providing forage for livestock and wildlife, and they serve as critical watershed areas. Many of the world's rangelands have been degraded by overgrazing, marginal crop production, mineral and e...
Academic Marginalism in Western Balkans: The Case of Croatia
ERIC Educational Resources Information Center
Brajkovic, Lucia
2016-01-01
This qualitative study relies on document analysis and in-depth, open-ended interviews with university leaders and government officials in a post-socialist and a recent European Union entrant country, Croatia. The study seeks to provide a comprehensive overview of the Croatian academic sector, as well as to unpack the top academic officials'…
The oak (Quercus) biodiversity of California and adjacent regions
Kevin C. Nixon
2002-01-01
Twenty species of oak (Quercus) are known from California. The white oak group is the most diverse, and includes a complex of scrub oak species that are often encountered in chaparral, mixed forest and desert margin habitats. The Protobalanus group (e.g., Quercus chrysolepis) is a unique and distinctive clade of western North...
Re-Envisioning Religious Education in Light of Persons with "Disabilities"
ERIC Educational Resources Information Center
Kyle, Eric J.
2013-01-01
The lived experience of persons with disabilities necessarily challenges our understandings of religious education. In this article, the author reviews how the marginalized lives of persons with disabilities might lead us to re-envision how religious education is defined and embodied in Western Christian communities. Based on this, suggestions are…
ERIC Educational Resources Information Center
Beckford, Clinton L.; Jacobs, Clint; Williams, Naomi; Nahdee, Russell
2010-01-01
Generally speaking, environmental education teaching, research, and practice have been informed by the traditions of western, Euro-centric culture. In this context indigenous perspectives are often marginalized, maligned, and perceived to be unscientific and therefore inferior. This essay adds to the growing body of literature exploring aboriginal…
Magna Carta: Teaching Medieval Topics for Historical Significance
ERIC Educational Resources Information Center
Metzger, Scott Alan
2010-01-01
The Middle Ages are an immensely important era in the Western experience. Unfortunately, medieval studies are often marginalized or trivialized in school curriculum. With the approach of the 800th anniversary of Magna Carta, the famous charter of rights from medieval England, one has a timely and useful example for considering what a focus on…
The Balika Shivir: A Girls' Education Program with a Social Change Agenda
ERIC Educational Resources Information Center
Singh, Manjari
2010-01-01
The Balika Shivir, a six-month, non-formal, residential, education program for illiterate adolescent girls was an intervention strategy used to reach a traditionally underserved and marginalized population in rural western India. The primary objective of the Balika Shivir was to impart literacy and numeracy skills to attending girls, and to…
ERIC Educational Resources Information Center
Foster, Ellen Kathleen
2017-01-01
Historically an elite, formally-trained, and Western-centric population has dominated technology development, creating an inequity in who decides what roles technoscience will play, and how it will affect different publics. More recently, tactics to counter observed inequities have taken the form of citizen science, "civic science",…
On the Margins of SoTL Discourse: An Asian Perspective
ERIC Educational Resources Information Center
Chng, Huang Hoon; Looker, Peter
2013-01-01
The International Society for the Scholarship of Teaching and Learning (ISSOTL) began in 2004, constituted by 67 scholars, mostly from English-speaking countries located in the Western hemisphere. Since then, the world has become increasingly global and borderless, and students' movements across continents in search a good education have meant…
Geoelectric structure of northern Cambay rift basin from magnetotelluric data
NASA Astrophysics Data System (ADS)
Danda, Nagarjuna; Rao, C. K.; Kumar, Amit
2017-10-01
Broadband and long-period magnetotelluric data were acquired over the northern part of the Cambay rift zone along an east-west profile 200 km in length. The decomposed TE- and TM-mode data were inverted using a 2-D nonlinear conjugate gradient algorithm to obtain the lithospheric structure of the region. A highly conductive ( 1000 S) layer was identified within the Cambay rift zone and interpreted as thick Quaternary and Tertiary sediments. The crustal conductors found in the profile were due to fluid emplacement in the western part, and the presence of fluids and/or interconnected sulfides caused by metamorphic phases in the eastern part. The demarcation of the Cambay rift zone is clearly delineated with a steeply dipping fault on the western margin, whereas the eastern margin of the rift zone gently dips along the NE-SW axis, representing a half-graben structure. A highly resistive body identified outside the rift zone is interpreted as an igneous granitic intrusive complex. Moderately conductive (30-100 Ω-m) zones indicate underplating and the presence of partial melt due to plume-lithosphere interactions.[Figure not available: see fulltext.
Morphology and deformational history of Tellus Regio, Venus: Evidence for assembly and collision
NASA Astrophysics Data System (ADS)
Gilmore, M. S.; Head, J. W.
2018-05-01
Tessera terrain is the oldest stratigraphic unit on Venus, but its origin and evolution are inadequately understood. Here we have performed detailed mapping of Tellus Regio, the third largest tessera plateau on Venus. Tellus Regio is shown to have distinct marginal and interior facies. The east and west margins of Tellus rise up to 2 km above the interior and include ridges and troughs ∼5-20 km across, oriented parallel to the present plains-tessera boundary. Structures characteristic of the interior of Tellus are found within the eastern and western margins and are deformed by the margin-parallel ridges indicating their presence during the time of the formation of the current margins. These relationships suggest that the margins formed by the application of external horizontal compressional stresses at the edges of an already-existing tessera interior. Structural and stratigraphic relationships in southwest Tellus show the assembly of three structurally distinct tessera regions and intervening plains that are consistent with the collision of the southwest margin into the plateau interior. This requires that tessera terrain was formed regionally and collected into the present day Tellus plateau. The latest stages of activity in Tellus include volcanism and pervasive, distributed, 1-2 km wide graben, which may have been formed due to large-scale gravitational relaxation of the plateau topography. A large intratessera plains unit may have formed via crustal delamination. The collisional oroclinal deformation of the margins are most consistent with models that invoke mantle downwelling for the origin of Tellus Regio and other tessera plateaus with similar structural relationships.
Deep sea sedimentation processes and geomorphology: Northwest Atlantic continental margin
NASA Astrophysics Data System (ADS)
Mosher, David; Campbell, Calvin; Gardner, Jim; Chaytor, Jason; Piper, David; Rebesco, Michele
2017-04-01
Deep-sea sedimentation processes impart a fundamental control on the morphology of the western North Atlantic continental margin from Blake Spur to Hudson Strait. This fact is illustrated by the variable patterns of cross-margin gradients that are based on extensive new multibeam echo-sounder data informed by subbottom profiler and seismic reflection data. Erosion by off-shelf sediment transport in turbidity currents creates gullies, canyons and channels and a steep upper slope. Amalgamation of these conduits produces singular channels and turbidite fan complexes on the lower slope, flattening slope-profile gradients. The effect is an exponentially decaying "graded" slope profile. Comparatively, sediment mass failure produces steeper upper slopes due to head scarp development and a wedging architecture to the lower slope as deposits thin in the downslope direction. This process results in either a "stepped" slope, and/or a significant downslope gradient change where MTDs pinch out. Large drift deposits created by geostrophic currents are developed all along the margin. Blake Ridge, Sackville Spur, and Hamilton Spur are large detached drifts on disparate parts of the margin. They form a linear "above grade" profile along their crests from the shelf to abyssal plain. Deeper portions of the US continental margin are dominated by the Chesapeake Drift and Hatteras Outer Ridge; both plastered elongate mounded drifts. Farther north, particularly on the Grand Banks margin, are plastered and separated drifts. These drifts form "stepped" slope profiles, where they onlap the margin. Trough-mouth fan complexes become more common along the margin with increasing latitude. Sediment deposition and retention, particularly those dominated by glacigenic debris flows, characterize these segments producing an "above grade" slope profile. Understanding these geomorphological consequences of deep sea sedimentation processes is important to extended continental shelf mapping in which gradients and gradient change is a critical metric.
Rapid response to climate change in a marginal sea.
Schroeder, K; Chiggiato, J; Josey, S A; Borghini, M; Aracri, S; Sparnocchia, S
2017-06-22
The Mediterranean Sea is a mid-latitude marginal sea, particularly responsive to climate change as reported by recent studies. The Sicily Channel is a choke point separating the sea in two main basins, the Eastern Mediterranean Sea and the Western Mediterranean Sea. Here, we report and analyse a long-term record (1993-2016) of the thermohaline properties of the Intermediate Water that crosses the Sicily Channel, showing increasing temperature and salinity trends much stronger than those observed at intermediate depths in the global ocean. We investigate the causes of the observed trends and in particular determine the role of a changing climate over the Eastern Mediterranean, where the Intermediate Water is formed. The long-term Sicily record reveals how fast the response to climate change can be in a marginal sea like the Mediterranean Sea compared to the global ocean, and demonstrates the essential role of long time series in the ocean.
NASA Astrophysics Data System (ADS)
Sélo, Madeleine; Benkhelil, Jean; Mascle, Jean; Storzer, Dieter; Exon, Neville
2002-01-01
We present and discuss a few fission track data, and microstructural observations, from rock samples dredged along the western and southwestern continental margin of Tasmania. The results allow assessing the thermal and tectonic regimes that were active prior to and during the margin creation. The different ages, as provided by fission tracks, and deformational styles, as evidenced from microstructures, are then tentatively correlated with the two main rifting episodes, in Late Jurassic-Cretaceous times and Eocene-Oligocene respectively, deduced from kinematical reconstructions, that have led to the present- day southern margin of Tasmania. To cite this article: M. Sélo et al., C. R. Geoscience 334 (2002) 59-66
NASA Astrophysics Data System (ADS)
Charton, Rémi; Bertotti, Giovanni; Arantegui, Angel; Bulot, Luc
2018-05-01
The occurrence of km-scale exhumations during syn- and post-rift stages has been documented along Atlantic continental margins, which are also characterised by basins undergoing substantial subsidence. The relationship between the exhuming and subsiding domains is poorly understood. In this study, we reconstruct the evolution of a 50 km long transect across the Moroccan rifted margin from the western Anti-Atlas to the Atlantic basin offshore the city of Sidi Ifni. Low-temperature thermochronology data from the Sidi Ifni area document a ca. 8 km exhumation between the Permian and the Early/Middle Jurassic. The related erosion fed sediments to the subsiding Mesozoic basin to the NW. Basement rocks along the transect were subsequently buried by 1-2 km between the Late Jurassic and the Early Cretaceous. From late Early/Late Cretaceous onwards, rocks present along the transect were exhumed to their present-day position.
Normal Faulting at the Western Margin of the Altiplano Plateau, Southern Peru
NASA Astrophysics Data System (ADS)
Schildgen, T. F.; Hodges, K. V.; Whipple, K. X.; Perignon, M.; Smith, T. M.
2004-12-01
Although the western margin of the Altiplano Plateau is commonly used to illustrate the marked differences in the evolution of a mountain range with strong latitudinal and longitudinal precipitation gradients, the nature of tectonism in this semi-arid region is poorly understood and much debated. The western margin of the Altiplano in southern Peru and northern Chile marks an abrupt transition from the forearc region of the Andes to the high topography of the Cordillera Occidental. This transition has been interpreted by most workers as a monocline, with modifications due to thrust faulting, normal faulting, and gravity slides. Based on recent fieldwork and satellite image analysis, we suggest that, at least in the semi-arid climate of southern Peru, this transition has been the locus of significant high-angle normal faulting related to the block uplift of the Cordillera Occidental. We have focused our initial work in the vicinity of 15\\deg S latitude, 71\\deg W longitude, where the range front crosses Colca Canyon, a major antecedent drainage northwest of Arequipa. In that area, Oligocene to Miocene sediments of the Moquegua Formation, which were eroded from uplifted terrain to the northeast, presently dip to the northeast at angles between 2 and 10º. Field observations of a normal fault contact between the Moquegua sedimentary rocks and Jurassic basement rocks, as well as 15-m resolution 3-D images generated from ASTER satellite imagery, show that the Moquegua units are down-dropped to the west across a steeply SW-dipping normal fault of regional significance. Morphology of the range front throughout southern Peru suggests that normal faulting along the range front has characterized the recent tectonic history of the region. We present geochronological data to constrain the timing of movement both directly from the fault zone as well as indirectly from canyon incision that likely responded to fault movement.
NASA Astrophysics Data System (ADS)
Meneghini, Francesca; Marroni, Michele; Pandolfi, Luca
2017-04-01
Orogenic processes are widely demonstrated to be strongly controlled by inherited structures. The paleogeography of the converging margins, and the tectonic processes responsible for their configuration, will influence the location of subduction initiation, the distribution of deformation between upper and lower plate, the shape of the accretionary prism and of the subsequent orogeny, through controlling the development of single or doubly-vergent orogens, and, as a corollary, the modality of exhumation of metamorphosed units. The "alpine age" collisional belts of the Mediterranean area are characterized by tangled architectures derived from the overlapping of several deformation events related to a multiphase, long history that comprises not only the collision of continental margins, but that can be regarded as an heritage of both the rifting-related configuration of the continental margins, and the subduction-related structures. The Northern Apennines is a segment of these collisional belts that originated by the Late Cretaceous-Middle Eocene closure of the northern branch of the western Tethys, and the subsequent Late Eocene-Early Oligocene continental collision between the Europe and Adria plates. Due to a different configuration of the paired Adria and Europe continental margins, inherited from a rifting phase dominated by asymmetric, simple-shear kinematics, the Northern Apennines expose a complex groups of units, referred to as Ligurian Units, that record the incorporation into the subduction factory of either fragments of the Ligure-Piemontese oceanic domain (i.e. Internal Ligurian Units), and various portions of the thinned Adria margin (i.e. External Ligurian Units), describable as an Ocean-Continent Transition Zone (OCTZ). The structural relationships between these groups of Units are crucial for the definition of the pre-collisional evolution of the belt and have been the subject of big debates in the literature, together with the location and orientation of subduction initiation. We have reviewed the ages and characteristics of the tectono-metamorphic events recorded in both the External and Internal Ligurian Units. Deformation and metamorphism in the External Ligurian Units pre-dates the subduction-related metamorphism recorded in the ocean-derived Internal Ligurian Units. We thus propose that closure of the Ligure-Piemontese branch of the western Tethys occurred through a subduction that nucleated inside the OCTZ of Adria, instead of localizing at the boundary between the oceanic basin and the Adria margin, and developed a doubly-vergent prism fed firstly by both continental extensional allochthons and ocean-derived rocks from the OCTZ, and only after by rocks and sediments from the oceanic realm. We believe that this revised location of the inception of subduction, and the subsequent pre-collisional architecture, considered as inherited from the rifting and the oceanic opening phases, allow reconciling most of the controversies on the geodynamic evolution of the Apenninic orogeny, prior to collision.
Foreland sedimentary record of Andean mountain building during advancing and retreating subduction
NASA Astrophysics Data System (ADS)
Horton, Brian K.
2016-04-01
As in many ocean-continent (Andean-type) convergent margins, the South American foreland has long-lived (>50-100 Myr) sedimentary records spanning not only protracted crustal shortening, but also periods of neutral to extensional stress conditions. A regional synthesis of Andean basin histories is complemented by new results from the Mesozoic Neuquén basin system and succeeding Cenozoic foreland system of west-central Argentina (34-36°S) showing (1) a Late Cretaceous shift from backarc extension to retroarc contraction and (2) an anomalous mid-Cenozoic (~40-20 Ma) phase of sustained nondeposition. New detrital zircon U-Pb geochronological results from Jurassic through Neogene clastic deposits constrain exhumation of the evolving Andean magmatic arc, retroarc thrust belt, foreland basement uplifts, and distal eastern craton. Abrupt changes in sediment provenance and distal-to-proximal depositional conditions can be reconciled with a complex Mesozoic-Cenozoic history of extension, post-extensional thermal subsidence, punctuated tectonic inversion involving thick- and thin-skinned shortening, alternating phases of erosion and rapid accumulation, and overlapping igneous activity. U-Pb age distributions define the depositional ages of several Cenozoic stratigraphic units and reveal a major late middle Eocene-earliest Miocene (~40-20 Ma) hiatus in the Malargüe foreland basin. This boundary marks an abrupt shift in depositional conditions and sediment sources, from Paleocene-middle Eocene distal fluviolacustrine deposition of sediments from far western volcanic sources (Andean magmatic arc) and subordinate eastern cratonic basement (Permian-Triassic Choiyoi igneous complex) to Miocene-Quaternary proximal fluvial and alluvial-fan deposition of sediments recycled from emerging western sources (Malargüe fold-thrust belt) of Mesozoic basin fill originally derived from basement and magmatic arc sources. Neogene eastward advance of the fold-thrust belt involved thick-skinned basement inversion with geometrically and kinematically linked thin-skinned thrust structures at shallower levels in the eastern foreland, including well-dated late Miocene growth strata. The mid-Cenozoic hiatus potentially signifies nondeposition during passage of a flexural forebulge or nondeposition during neutral to extensional conditions possibly driven by a transient retreating-slab configuration along the western margin of South America. Similar long-lived stratigraphic gaps are commonly observed in other foreland records of continental convergent margins. It is proposed that Andean orogenesis along the South American convergent margin has long been sensitive to variations in subduction dynamics throughout Mesozoic-Cenozoic time, such that shifts in relative convergence and degree of mechanical coupling along the subduction interface (i.e., transitions between advancing versus retreating modes of subduction) have governed fluctuating contractional, extensional, and neutral conditions. Unclear is whether these various modes affected the entire convergent margin simultaneously due to continental-scale changes (e.g., temporal shifts in plate convergence, absolute motion of upper plate, or mantle wedge circulation) or whether parts of the margin behaved independently due to smaller-scale fluctuations (e.g., spatial variations in the age of the subducted plate, buoyant asperities in the downgoing slab, or asthenospheric anomalies).
NASA Astrophysics Data System (ADS)
Barron, J. A.; Anderson, L.; Starratt, S.; Wahl, D.; Anderson, L.; Addison, J. A.
2015-12-01
Comparative analyses of marine and terrestrial proxy records reveal regional changes in precipitation seasonality and relationships with sea surface temperatures (SSTs) as indicators of ocean-atmosphere dynamics. Enhanced La Niña-like conditions and cooler SSTs characterized the middle Holocene (~8.O to 4.0 ka) waters off northern California and in the eastern equatorial Pacific. Terrestrial records suggest that winters in the western US were generally dry, although wetter intervals attributed to winter precipitation beginning at ~5.5 ka are documented in coastal Oregon and Washington and in the northern Great Basin. Proxy studies suggest that the North American Monsoon (NAM) intensified beginning at ~7.5 ka, coinciding with warming Gulf of California SSTs coupled with a more northerly position of the Intertropical Convergence Zone (ITCZ). If monsoonal precipitation spread northward into the eastern Great Basin and the western Rockies of Colorado, it is possible that wetter intervals of the middle Holocene in Nevada, Utah, and western Colorado may reflect increases in both summer and winter precipitation. El Niño event frequency and intensity began increasing between 4.0 and 3.0 ka, when modern ocean-atmosphere dynamics appear to have been established along the California coastal margin. Effects included cool, wet winters, enhanced spring coastal upwelling that extended into the summer, and higher September-October SSTs corresponding with the end of the coastal upwelling season. Winters became wetter in both the coastal and interior regions of the western US, while spring and summers generally became drier. The intensity of NAM precipitation also declined due to a more southerly mean position of the ITCZ. By ~3.0 cal ka the modern climatology of the margins of eastern North Pacific was established, resulting in intensification of the northwest-southwest precipitation dipole and the development of distinct Pacific Decadal Oscillation cycles.
Emura, Fabian; Mejía, Juan; Donneys, Alberto; Ricaurte, Orlando; Sabbagh, Luis; Giraldo-Cadavid, Luis; Oda, Ichiro; Saito, Yutaka; Osorio, Camilo
2015-11-01
Large multicenter gastric cancer endoscopic submucosal dissection (ESD) studies conducted at major Japanese institutions have reported en bloc resection, en bloc tumor-free margin resection, and curative resection rates of 92.7% to 96.1%, 82.6% to 94.5%, and 73.6% to 85.4%, respectively, with delayed bleeding and perforation rates of 0.6% to 6.0% and 3.6% to 4.7%, respectively. Although ESD is currently an alternative treatment in some countries, particularly in Asia, it remains uncertain whether ESD therapeutic outcomes in Western endoscopy settings can be comparable to those achieved in Japan. To evaluate the ESD therapeutic outcomes for differentiated early gastric cancer (EGC) in a Western endoscopy setting. Consecutive case series performed by an expertly trained Western endoscopist. Fifty-three patients with 54 lesions. ESD for early gastric cancers (T1) satisfying expanded inclusion criteria. En bloc resection, en bloc tumor-free margin resection, and curative resection rates were 98%, 93%, and 83%, respectively. The delayed bleeding rate was 7%, and the perforation rate was 4%. The mean patient age was 67 years, and the mean tumor size was 19.8 mm, with 54% of the lesions located in the lesser curvature. The median procedure time was 61 minutes, with ESD procedures 60 minutes or longer associated with submucosal fibrosis (P < .001) and tumor size 25 mm or larger (P = .03). In every ESD procedure, both circumferential incision and submucosal dissection were performed by using a single knife. Two of the 4 delayed bleeding cases required surgery, and all perforations were successfully managed by using endoscopic clips. Long-term outcome data are currently unavailable. ESD for differentiated EGC resulted in favorable therapeutic outcomes in a Western endoscopy setting comparable to those achieved at major Japanese institutions. Copyright © 2015 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
How Many Plumes In Africa ? The Geochemical Point of View
NASA Astrophysics Data System (ADS)
Pik, R.; Marty, B.; Hilton, D.
2004-12-01
Since the Oligocene, volcanic activity in Africa was particularly important in the Horn of Africa where ~ 1 million km3 of continental flood basalts (the Ethiopian CFB) erupted 30 Ma ago in a time interval of 1-2 Ma or less. The Afar volcanic province which is still magmatically active is thought to represent the surface expression of a deep mantle plume, a view consistent with ultra-low velocity anomalies at the base of the mantle beneath the African superswell and the Ethiopia-Afar volcanic province. This plume origin is also supported by the occurrence of 3He/4He ratios up to 20 Ra (Ra is the 3He/4He ratio of atmospheric helium) much higher than those of mid-ocean ridge basalts (on average, 8,b1 Ra) and thought to characterize mantle material originating from below the 660 km discontinuity. However, a deep mantle origin for "high 3He" material is currently questioned by some models which rather ascribe a lithospheric or shallow asthenospheric origin for such He component. The origin of this signal can be tested with the distribution of He isotopic signatures and other geochemical tracers among different African volcanic provinces. All these other provinces exhibit 3He/4He ratios that are equal to, or lower than, the mean MORB ratio of 7-9 Ra (Cameroon line: 5-7 Ra; Hoggar: 8 Ra, this work; Darfur 5.4-7.5 Ra; West African rift: 5-8.5 Ra, this work; Comores, 6.5 Ra, this work). Although low 3He/4He ratios in intraplate volcanic provinces could result from crustal recycling in the mantle and remobilisation of recycled crust during plume uprise, the upper range of 3He/4He values within the field of MORB values points to the strong involvement of asthenospheric mantle and limited interactions of magmas with the aged African crust. Furthermore, these "low-3He" volcanic provinces are characterized by strongly alkaline to undersaturated volcanism indicative of low degrees of partial melting and a thermal regime of the asthenosphere cooler than the one that gave rise to transitional to tholeiitic Ethiopian CFBs. These geochemical observations also conflict with models that advocate channelling of the Afar hotspot material by pre-existing tectonic features to account for all these African volcanic provinces.
The Axum-Adwa basalt-trachyte complex: a late magmatic activity at the periphery of the Afar plume
NASA Astrophysics Data System (ADS)
Natali, C.; Beccaluva, L.; Bianchini, G.; Siena, F.
2013-08-01
The Axum-Adwa igneous complex consists of a basalt-trachyte (syenite) suite emplaced at the northern periphery of the Ethiopian plateau, after the paroxysmal eruption of the Oligocene (ca 30 Ma) continental flood basalts (CFB), which is related to the Afar plume activity. 40Ar/39Ar and K-Ar ages, carried out for the first time on felsic and basaltic rocks, constrain the magmatic age of the greater part of the complex around Axum to 19-15 Ma, whereas trachytic lavas from volcanic centres NE of Adwa are dated ca 27 Ma. The felsic compositions straddle the critical SiO2-saturation boundary, ranging from normative quartz trachyte lavas east of Adwa to normative (and modal) nepheline syenite subvolcanic domes (the obelisks stones of ancient axumites) around Axum. Petrogenetic modelling based on rock chemical data and phase equilibria calculations by PELE (Boudreau 1999) shows that low-pressure fractional crystallization processes, starting from mildly alkaline- and alkaline basalts comparable to those present in the complex, could generate SiO2-saturated trachytes and SiO2-undersaturated syenites, respectively, which correspond to residual liquid fractions of 17 and 10 %. The observed differentiation processes are consistent with the development of rifting events and formation of shallow magma chambers plausibly located between displaced (tilted) crustal blocks that favoured trapping of basaltic parental magmas and their fractionation to felsic differentiates. In syenitic domes, late- to post-magmatic processes are sometimes evidenced by secondary mineral associations (e.g. Bete Giorgis dome) which overprint the magmatic parageneses, and mainly induce additional nepheline and sodic pyroxene neo-crystallization. These metasomatic reactions were promoted by the circulation of Na-Cl-rich deuteric fluids (600-400 °C), as indicated by mineral and bulk rock chemical budgets as well as by δ18O analyses on mineral separates. The occurrence of this magmatism post-dating the CFB event, characterized by comparatively lower volume of more alkaline products, conforms to the progressive vanishing of the Afar plume thermal effects and the parallel decrease of the partial melting degrees of the related mantle sources. This evolution is also concomitant with the variation of the tectono-magmatic regime from regional lithospheric extension (CFB eruption) to localized rifting processes that favoured magmatic differentiation.
NASA Astrophysics Data System (ADS)
Molnar, Nicolas; Cruden, Alexander; Betts, Peter
2017-04-01
The kinematic evolution of the Danakil Block is well constrained but the processes responsible for the formation of an isolated continental segment around 13 Ma ago with an independent pole of rotation are still matter of debate. We performed three-dimensional analogue experiments of rotational continental extension containing a pre-existing linear weakness zones in the lithospheric mantle to investigate the formation of the Red Sea, including the Danakil Block. We imposed a rotational extensional boundary condition that simulates the progressive anticlockwise rotation of the Arabian Plate with respect to the Nubia Plate over the last 13-15 Ma and we simulated the presence of a narrow thermal anomaly related to the northward channelling of Afar plume by varying the viscosity of the model lithospheric mantle. The results from experiments containing a linear zone of weakness oriented at low angles with respect to the rift axis show that early stages of deformation are characterised by the development of two rift sub-parallel compartments that delimit an intra-rift block in the vicinity of the weak lithosphere boundary zone, which are analogous to the two rift branches that confine the Danakil Block in the southern Red Sea. The imposed rotational boundary condition creates a displacement gradient along the intra-rift block and prevents the nucleation of the early rift compartments to the north of the block, enhancing the formation of an independently rotating intra-rift segment. Comparison with geodetic data supports our modelling results, which are also in agreement with the "crank-arm" model of Sichler (1980. La biellette Danakile: un modèle pour l'évolution géodynamique de l'Afar. Bull. la Société Géologique Fr. 22, 925-933). Additional analogue models of i) orthogonal extension with an identical lithospheric mantle weakness and, ii) rotational extension with a homogeneous lithosphere (i.e., no lithospheric mantle weakness) show no evidence of developing rotating intra-rift segments and therefore suggest that if these processes had acted diachronously, the Danakil Block would not have formed. Based on the modelling results, we hypothesize that the Danakil Block formed as a result of the interaction between northward rift propagation and a north-northeast-trending mantle weakness zone, associated with anticlockwise rotation of the Arabian Plate and simultaneous northward channelling of the Afar plume.
Teklehaymanot, Tilahun
2017-07-05
The Afar people inhabit the sub-arid and arid part of Ethiopia. Recurrent drought and invasive encroaching plants are taking out plants that have cultural importance, and threaten the biodiversity and the associated traditional knowledge. Thus, the aim of the current study is to conduct an ethnobotanical survey and document medicinal and edible plants in Yalo Woreda in Afar regional state. A cross-sectional ethnobotanical study was carried out in eight kebeles of Yalo Woreda from October 2015 to December 2016. One hundred sixty informants were selected using purposive sampling. The data on diseases, medicinal and edible plants were collected using semi-structure interview and group discussion. The statistical methods, informant consensus factor, fidelity level, and preference ranking were conducted to analyze the data. One hundred and six plants were reported; gender and age differences had implication on the number of plants reported by informants. The knowledge of medicinal plants among informants of each kebele was not different (p < 0.5) and was not associated in particular with the religious establishment in the kebeles (informant*kebeles, Eta square = 0.19). Family Fabaceae was the major plant species, and shrubs (44%) were dominant plants reported. Leaf (52.94%) and oral (68%) were primary plant part used for remedy preparation and route of application, respectively. The plants with low fidelity values Indigofera articulata (0.25), Cadaba farinosa (0.22), Cadaba rotundifolia (0.19), and Acalypha fruticosa (0.15) were used to treat the category of diseases with high informant consensus value (0.69). Sixteen edible plants were identified that were consumed during wet and dry seasons. Balanites aegyptiaca, Balanites rotundifolia, and Dobera glabra were 'famine food' that were collected and stored for years. People in Yalo Woreda are more dependent on natural resources of the area for their livelihood. The threat of climatic change and encroaching invasive plants on medicinal and edible plants affects the traditional use of plants in the Yalo Woreda. The conservation of the plants in the home garden and natural habitat and integration of edible plants into agroforestry development programs in sub-arid and arid regions has to be encouraged to conserve plants of medical and economic importance.
NASA Astrophysics Data System (ADS)
Hall, S. R.; Farber, D. L.; Audin, L.; Saillard, M.; Finkel, R. C.
2008-12-01
After more than 40 years of study, the timing and nature of Andean uplift remains an area of great scientific debate. The forearc of the Andean margin is of particular neotectonic interest, as previous models of Andean orogenesis attributed little-no Neogene deformation to the western margin of Altiplano. However, using the combination of remote sensing with high-resolution data, in situ cosmogenic isotope concentrations and thermochronology, in recent years the community has made important advances in addressing the rates, timings, styles, and locations of active deformation within the forearc of the Andean margin. To first order, we find that - both in terms of tectonics and climate - since 10Ma, the Andean forearc has been quite a dynamic region. Neotectonic studies in this region have been facilitated by the high degree of geomorphic surface preservation that the hyperarid (for at least the last 3My) coastal Atacama Desert has provided. Specifically, in southern Peru (14°-18°S), vast pediment surfaces have been abandoned through incision along the major river drainages that carve the deep canyons into the Precordillera and Western Cordillera. While the exact timing of the periods of more intense incision plausibly correspond with climate events, the total amount of incision integrated over many climate cycles is a useful indicator of tectonic activity. In this region, we find a number of geomorphic and structural features that provide strong evidence for distributed crustal deformation along range-sub-parallel contractile and strike-slip structures. Specifically, we see 1) ancient surfaces reflecting erosion rates as low as <0.1m/Ma, 2) the existence of young (30ka-1Ma) low- relief pediment surfaces due to recent landscape modifications, 3) active structures accommodating compressional, extensional, and shearing stresses 4) a consistent rate of river incision of ~0.3mm/yr along exoreic rivers, 5) spatially and temporally variable uplift rates based on marine terrace chronologies, and 6) Pleistocene mass-wasting events accommodating the redistribution of ~109-1010 m3 of material per event. Furthermore, the observation that Pleistocene incision rates are comparable with Late Miocene and Pliocene rates, suggests to us, that the rates and style of surface uplift within the forearc of southern Peru has been occurring somewhat consistently since at least 10Ma. We suggest, that in this region of southern Peru, the steep western wedge of the Andean margin accommodates the high topography of the Altiplano through a combination of uplift along steeply dipping contractile structures and isostatic responses to the focused removal of large amounts of crustal material in the massive canyons of the Precordillera and Western Cordillera through mass-wasting events and valley incision.
Big mantle wedge, anisotropy, slabs and earthquakes beneath the Japan Sea
NASA Astrophysics Data System (ADS)
Zhao, Dapeng
2017-09-01
The Japan Sea is a part of the western Pacific trench-arc-backarc system and has a complex bathymetry and intense seismic activities in the crust and upper mantle. Local seismic tomography revealed strong lateral heterogeneities in the crust and uppermost mantle beneath the eastern margin of the Japan Sea, which was determined using P and S wave arrival times of suboceanic earthquakes relocated precisely with sP depth phases. Ambient-noise tomography revealed a thin crust and a thin lithosphere beneath the Japan Sea and significant low-velocity (low-V) anomalies in the shallow mantle beneath the western and eastern margins of the Japan Sea. Observations with ocean-bottom seismometers and electromagnetometers revealed low-V and high-conductivity anomalies at depths of 200-300 km in the big mantle wedge (BMW) above the subducting Pacific slab, and the anomalies are connected with the low-V zone in the normal mantle wedge beneath NE Japan, suggesting that both shallow and deep slab dehydrations occur and contribute to the arc and back-arc magmatism. The Pacific slab has a simple geometry beneath the Japan Sea, and earthquakes occur actively in the slab down to a depth of ∼600 km beneath the NE Asian margin. Teleseismic P and S wave tomography has revealed that the Philippine Sea plate has subducted aseismically down to the mantle transition zone (MTZ, 410-660 km) depths beneath the southern Japan Sea and the Tsushima Strait, and a slab window is revealed within the aseismic Philippine Sea slab. Seismic anisotropy tomography revealed a NW-SE fast-velocity direction in the BMW, which reflects corner flows induced by the fast deep subduction of the Pacific slab. Large deep earthquakes (M > 7.0; depth > 500 km) occur frequently beneath the Japan Sea western margin, which may be related to the formation of the Changbai and Ulleung intraplate volcanoes. A metastable olivine wedge is revealed within the cold core of the Pacific slab at the MTZ depth, which may be related to the deep seismicity. However, many of these results are still preliminary, due to the lack of seismic stations in the Japan Sea. The key to resolving these critical geoscientific issues is seismic instrumentation in the Japan Sea, for which international cooperation of geoscience communities in the East Asian countries is necessary.
Petrology of exhumed mantle rocks at passive margins: ancient lithosphere and rejuvenation processes
NASA Astrophysics Data System (ADS)
Müntener, Othmar; McCarthy, Anders; Picazo, Suzanne
2014-05-01
Mantle peridotites from ocean-continent transition zones (OCT's) and ultraslow spreading ridges question the commonly held assumption of a simple link between mantle melting and MORB. 'Ancient' and partly refertilized mantle in rifts and ridges illustrates the distribution of the scale of chemical and isotopic upper mantle heterogeneity even on a local scale. Field data and petrology demonstrates that ancient, thermally undisturbed, pyroxenite-veined subcontinental mantle blobs formed parts of the ocean floor next to thinned continental crust. These heterogeneities might comprise an (ancient?) subduction component. Upwelling of partial melts that enter the conductive lithospheric mantle inevitably leads to freezing of the melt and refertilization of the lithosphere and this process might well be at the origin of the difference between magma-poor and volcanic margins. Similar heterogeneity might be created in the oceanic lithosphere, in particular at slow to ultra-slow spreading ridges where the thermal boundary layer (TBM) is thick and may be veined with metasomatic assemblages that might be recycled in subduction zones. In this presentation, we provide a summary of mantle compositions from the European realm to show that inherited mantle signatures from previous orogenies play a key role on the evolution of rift systems and on the chemical diversity of peridotites exposed along passive margins and ultra-slow spreading ridges. Particularly striking is the abundance of plagioclase peridotites in the Alpine ophiolites that are interpreted as recorders of refertilization processes related to thinning and exhumation of mantle lithosphere. Another important result over the last 20 years was the discovery of extremely refractory Nd-isotopic compositions with highly radiogenic 147Sm/144Nd which indicates that partial melting processes and Jurassic magmatism in the Western Thetys are decoupled. Although the isotopic variability might be explained by mantle heterogeneities, an alternative is that these depleted domains represent snapshots of melting processes that are related to Permian and/or even older crust forming processes. The findings of the these refractory mantle rocks over the entire Western Alpine arc and the similarity in model ages of depletion suggests a connection to the Early Permian magmatic activity. Shallow and deep crustal magmatism in the Permian is widespread over Western Europe and the distribution of these mafic rocks are likely to pre-determine the future areas of crustal thinning and exhumation during formation of the Thethyan passive margins.
NASA Astrophysics Data System (ADS)
Henderson, I.
2004-12-01
Magmatism is often described as being syn-kinematic where one or more increments of intrusion punctuate deformation with successive generations of injections being progressively deformed. Recent studies have also demonstrated that there is a strong link between sites of concentrated magmatism and crustal deformation zones. Pegmatite formation in the Mesoproterozoic of south Norway has always been considered as post-kinematic in nature relative to Sveconorwegian (Grenvillian) deformation (1.13Ga to ~0.85Ga) during accretion of the SW margin of Baltica. We present structural data demonstrating that the pegmatites are kinematically related to fold geometries associated with peak metamorphism and form an integral part of the deformation episode associated with terrane accretion. Undeformed pegmatites are emplaced in sub-horizontal fractures suggesting that the maximum compressive stress was sub-horizontal. The pegmatites display a systematic deformation pattern that is consistent with deformation in the limbs of the isoclinal folds in the country rock into which they intrude. The sense of shear of deformation kinematics on the pegmatites reverse across the isoclinal fold limbs suggesting that the pegmatites are syn-deformational and that they have been injected into fractures intrinsically linked to the fold development. Pegmatites are also deformed into asymmetric anticlinal folds above thrust structures and are cut by thrust structures. We also present data which demonstrates that the style of deformation changes with proximity to the major terrane-bounding thrust structure and that the pegmatites demonstrate classic imbricate style geometries on a regional scale related to regional transpression. This evidence suggests that the pegmatites are syn-deformational and were injected into thrust-related fractures and that the pegmatites are structurally related to Sveconorwegian fold geometries associated with peak metamorphism at approximately 1.14Ga. Deformation was progressive and incremental with longer periods of ductile deformation at low strain rate punctuated by shorter periods of fracturing and pegmatite injection at high strain rate. The pegmatites also, therefore, delineate the orogenic event responsible for overthrusting of the Bamble Terrane with the underlying Telemark Terrane during crustal accretion on the western margin of Fennoscandia. We also present preliminary Re-Os data from some of these pegmatites to date the exact timing of thrusting. This work therefore implies an intimate spatial and temporal relationship between deformation and magmatism during crustal accretion on the western margin of Fennoscandia.
NASA Astrophysics Data System (ADS)
Polonia, A.; Torelli, L.; Artoni, A.; Carlini, M.; Faccenna, C.; Ferranti, L.; Gasperini, L.; Govers, R.; Klaeschen, D.; Monaco, C.; Neri, G.; Nijholt, N.; Orecchio, B.; Wortel, R.
2016-04-01
The Calabrian Arc is a narrow subduction-rollback system resulting from Africa/Eurasia plate convergence. While crustal shortening is taken up in the accretionary wedge, transtensive deformation accounts for margin segmentation along transverse lithospheric faults. One of these structures is the NNW-SSE transtensive fault system connecting the Alfeo seamount and the Etna volcano (Alfeo-Etna Fault, AEF). A second, NW-SE crustal discontinuity, the Ionian Fault (IF), separates two lobes of the CA subduction complex (Western and Eastern Lobes) and impinges on the Sicilian coasts south of the Messina Straits. Analysis of multichannel seismic reflection profiles shows that: 1) the IF and the AEF are transfer crustal tectonic features bounding a complex deformation zone, which produces the downthrown of the Western lobe along a set of transtensive fault strands; 2) during Pleistocene times, transtensive faulting reactivated structural boundaries inherited from the Mesozoic Tethyan domain which acted as thrust faults during the Messinian and Pliocene; and 3) the IF and the AEF, and locally the Malta escarpment, accommodate a recent tectonic event coeval and possibly linked to the Mt. Etna formation. Regional geodynamic models show that, whereas AEF and IF are neighboring fault systems, their individual roles are different. Faulting primarily resulting from the ESE retreat of the Ionian slab is expressed in the northwestern part of the IF. The AEF, on the other hand, is part of the overall dextral shear deformation, resulting from differences in Africa-Eurasia motion between the western and eastern sectors of the Tyrrhenian margin of northern Sicily, and accommodating diverging motions in the adjacent compartments, which results in rifting processes within the Western Lobe of the Calabrian Arc accretionary wedge. As such, it is primarily associated with Africa-Eurasia relative motion.
Geological setting of the southern termination of Western Alps
NASA Astrophysics Data System (ADS)
d'Atri, Anna; Piana, Fabrizio; Barale, Luca; Bertok, Carlo; Martire, Luca
2016-09-01
A revision of the stratigraphic and tectonic setting of the southern termination of the Western Alps, at the junction of the Maritime Alps with the westernmost Ligurian Alps, is proposed. In response to the Alpine kinematic evolution, a number of tectonic units formed on the deformed palaeo-European continental margin and were arranged in a NW-SE striking anastomosed pattern along the north-eastern boundary of the Argentera Massif. Because these tectonic units often cut across the palaeogeographic subdivision of the Alpine literature and show only partial affinity with their distinctive stratigraphic features, new attributions are proposed. The Subbriançonnais domain is here intended as a "deformation zone", and its tectonic units have been attributed to Dauphinois and Provençal domains; furthermore, the Eocene Alpine Foreland Basin succession has been interpreted, based on the affinity of its lithologic characters and age, as a single feature resting above all the successions of the different Mesozoic domains. The Cretaceous tectono-sedimentary evolution of the studied domains was characterized by intense tectonic controls on sedimentation inducing lateral variations of stratigraphic features and major hydrothermal phenomena. Since the early Oligocene, transpressional tectonics induced a NE-SW shortening, together with significant left-lateral movements followed by (late Oligocene-middle Miocene) right-lateral movements along E-W to SE-NW striking shear zones. This induced the juxtaposition and/or stacking of Briançonnais, Dauphinois and Ligurian tectonic units characterized by different metamorphic histories, from anchizonal to lower greenschist facies. This evolution resulted in the arrangement of the tectonostratigraphic units in a wide "transfer zone" accommodating the Oligocene WNW-ward movement of portions of the palaeo-European margin placed at the south-western termination of Western Alps and the Miocene dextral shearing along SE striking faults that bound the Argentera Massif on its NE side.
NASA Astrophysics Data System (ADS)
Ojala, Antti E. K.
2016-02-01
LiDAR digital elevation models (DEMs) from southern and western Finland were investigated to map and discriminate features of De Geer moraines, sparser and more scattered end moraines, and larger end moraine features (i.e., ice-marginal complexes). The results indicate that the occurrence and distribution of De Geer moraines and scattered end moraine ridges in Finland are more widespread than previously suggested. This is probably attributed to the ease of detecting and mapping these features with high-resolution DEMs, indicating the efficiency of LiDAR applications in geological and geomorphological studies. The variable appearance and distribution of moraine ridges in Finland support previous interpretations that no single model is likely to be appropriate for the genesis of De Geer moraines at all localities and for all types of end moraines. De Geer moraine appearances and interdistances probably result from a combination of the general rapidity of ice-margin recession during deglaciation, the proglacial water depth in which they were formed, and local glacier dynamics related to climate and terrain topography. The correlation between the varved clay-based rate of deglaciation and interdistances of distinct and regularly spaced De Geer moraine ridges indicates that the rate of deglaciation is probably involved in the De Geer ridge-forming process, but more thorough comparisons are needed to understand the extent to which De Geer interdistances represent an annual rate of ice-margin decay and the rapidity of regional deglaciation.
Outcrop shapes for correlation of Lower Mississippian carbonates in western North America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haines, F.
1993-03-01
Examination of the sedimentary cycles in Mississippian carbonates in Iowa, Utah, Montana and Alberta shows a hierarchy of stratigraphic subdivisions: large sequences, cycles, rhythmic bands or marker beds, and couplets of laminated and dense beds. The 3 sequences shoal upward from dark mudstone to an oolitic or crinoidal cap beneath a disconformity. Sequence 1 (Horton Creek Member in Illinois, Upper Fitchville in Utah and Lower Banff oolite in Alberta) thins rapidly to fossiliferous limestone at a Waulsortian shelf margin on the southern edge of the Central Montana Trough. Sequence 2 (Hannibal-Chouteau in Missouri, Middle Banff in Alberta, lower Lodgepole cliffmore » in Montana and lower Chinese wall in Utah) thins at a shelf margin which is north-south in western Montana but swings east then northwest around an embayment in NW Montana and SW Alberta. Sequence 3 (Burlington-Keokuk in Iowa, Upper Banff and Pekisko in Alberta, and upper Lodgepole-massive lower Mission Canyon in Utah and Montana) marker beds lose their identity without a shelf margin in NW Montana and SW Alberta. Rhythmic bands, currently under study, demonstrate episodic deposition over large areas, band tops are sometimes bored, hardened and oxidized. Silty bands are used as marker beds. The S-4 marker (Dolby Creek) maintains a similar bed form despite facies changes. Laminated and dense limestone couplets are common in the basinal facies from Utah to Alberta and in the Chouteau formation of Missouri.« less
NASA Astrophysics Data System (ADS)
Samant, Hrishikesh; Pundalik, Ashwin; D'souza, Joseph; Sheth, Hetu; Lobo, Keegan Carmo; D'souza, Kyle; Patel, Vanit
2017-02-01
The Panvel flexure is a 150-km long tectonic structure, comprising prominently seaward-dipping Deccan flood basalts, on the western Indian rifted margin. Given the active tectonic faulting beneath the Panvel flexure zone inferred from microseismicity, better structural understanding of the region is needed. The geology of Elephanta Island in the Mumbai harbour, famous for the ca. mid-6th century A.D. Hindu rock-cut caves in Deccan basalt (a UNESCO World Heritage site) is poorly known. We describe a previously unreported but well-exposed fault zone on Elephanta Island, consisting of two large faults dipping steeply east-southeast and producing easterly downthrows. Well-developed slickensides and structural measurements indicate oblique slip on both faults. The Elephanta Island fault zone may be the northern extension of the Alibag-Uran fault zone previously described. This and two other known regional faults (Nhava-Sheva and Belpada faults) indicate a progressively eastward step-faulted structure of the Panvel flexure, with the important result that the individual movements were not simply downdip but also oblique-slip and locally even rotational (as at Uran). An interesting problem is the normal faulting, block tectonics and rifting of this region of the crust for which seismological data indicate a normal thickness (up to 41.3 km). A model of asymmetric rifting by simple shear may explain this observation and the consistently landward dips of the rifted margin faults.
NASA Astrophysics Data System (ADS)
Moxness, Levi D.; Isbell, John L.; Pauls, Kathryn N.; Limarino, Carlos O.; Schencman, Jazmin
2018-07-01
Both global and regional climate drivers contributed to glaciation during the late Paleozoic Ice Age (LPIA). However, the transition from icehouse to greenhouse conditions was asynchronous across Gondwana suggesting that, in some cases, regional controls played a significant role in deglaciation. Of particular interest to understanding changing LPIA climatic conditions, is the eastern Paganzo Basin. This region was flanked by ice centers in the Precordilleran and Sierras Pampeanas regions of Argentina on the west, and major ice sheets in the Paraná, Chaco-Paraná, and Sauce Grande basins to the east, all of which resided between ∼40 and 65° S latitude. Hypotheses on the occurrence of ice in the eastern Paganzo Basin are based on interpretations of the narrow, steep-walled, Olta-Malanzán paleovalley as carved by an alpine glacier or by an outlet glacier draining an eastern ice sheet, and that glaciers deposited coarse clastics within the paleovalley. However, we found no evidence for glaciation. Rather, gravel from prograding alluvial fans/fan deltas and rock falls ponded drainage resulting in lacustrine activity in the eastern end of the valley. A transition from either subaerially or shallow subaqueously deposited sandstones to marine mudstones in the western end of the Olta paleovalley suggest a marine transgression, which, in turn, was overlain by deposits of prograding Gilbert-type deltas. Dropstones were from rock falls off valley walls and rafting by lake ice rather than from icebergs. Therefore, we conclude that the climate in western Argentina resulted from uplift induced glaciation in the Precordilleran region and along the western margin of the Paganzo Basin, and the occurrence of a precipitation shadow to the east. The disappearance of the western glaciers during the mid-Carboniferous, prior to deglaciation elsewhere at the same paleolatitude, resulted from a westward shift in the position of the active margin, collapse of the glaciated upland(s), and an expansion of the precipitation shadow across the whole of western Argentina.
Whither Conscription in Singapore
2011-06-10
15 June 2004, http://www.mindef.gov.sg/content/imindef/resources/ speeches /2004/15jun04_speech.print.html?Status=1 (accessed 20 April 2011). 2... Speech , 2002), http://www.nato.int/docu/ speech /2002/s020410a.htm (accessed 20 October 2010). 10Charles C. Moskos, John Allen Williams, and David R...from afar through the media. In a speech by the US Secretary of Defense, Robert Gates, he also remarks that with an all volunteer US military, wars
Recent crustal movements and seismicity in the western coastal region of peninsular India
NASA Astrophysics Data System (ADS)
Kailasam, L. N.
1983-09-01
Recent crustal movements, tectonics and seismicity of the western coastal region of peninsular India have been studied in detail in the very recent past. Prominent geomorphic features and large-scale manifestation of Holocene deformation and crustal movements have been noticed and studied over this coastal region from the Gulf of Cambay to the southernmost parts of Kerala, evidence for which is afforded in the form of Recent and sub-Recent raised beaches, sandbars, raised old terraces, pebble beds, etc. The sedimentary formations in this narrow coastal belt include Neogene and Quaternary sediments. The Bouguer gravity map of the western coastal tract shows some prominent gravity features extending into the offshore regions, suggestive of some significant tectonic and structural features. The seismic data in the offshore regions bring out some prominent roughly northwest-southeast as well as east-west faults and shears, in addition to prominent structural "highs" off the Bombay and Ratnagiri coast which have proved oil. The seismicity in this coastal tract as well as the faulted western margin of the western continental shelf in the Arabian Sea is generally of magnitude 3-6.
ERIC Educational Resources Information Center
Orelus, Pierre W., Ed.
2012-01-01
"A Decolonizing Encounter" examines the effects of western colonialism on historically marginalized and colonized populations living both in the West and the "third world". Specifically, it explores crucial issues such as the decolonizing of schools and communities of color; the decentralization of power of the capitalist and…
Horse Rock Ridge Research Natural Area: guidebook supplement 27.
Alan B. Curtis
2003-01-01
Horse Rock Ridge Research Natural Area (HRR RNA) was established in June 1995 to protect the best remaining example of a grassy âbaldâ (treeless area) on the western margin of the Cascade Range and its associated botanical, wildlife, and scenic values. This bald is surrounded by old-growth Pseudotsuga menziesii/Tsuga heterophylla...
The Role of Higher Education Centres in Research and Policy: A Case from a European Periphery
ERIC Educational Resources Information Center
Zgaga, Pavel
2014-01-01
This article focuses on higher education research and policies in small and/or peripheral countries that usually occupy a marginal position in contemporary international debates. The region discussed here is South-eastern Europe and especially the Western Balkans. First, an outline of emerging research centres and the developments in higher…
Soil erosion and management activities on forested slopes
Robert R. Ziemer
1986-01-01
Some of the most productive forests in the Western United States grow on marginally stable mountainous slopes, where disturbance increases the likelihood of erosion. Much of the public's concern about, and, consequently, most of the research on, erosion from these forested areas is related more to the degradation of stream resources by eroded material than to the...
Thinning in mature eastern white pine: 43-year case study
Paul D. Anderson; John C. Zasada; Glen W. Erickson; Zigmond A. Zasada
2002-01-01
A white pine (Pinus strobus L.) stand at the western margin of the species range, approximately 125 years of age at present, was thinned in 1953 from 33.5 m2 ha-1 to target residual basal areas of 18.4, 23.0, 27.5. and 32.1 m2 ha-1. Repeated measurement over...
GIFTS from Our Journals: Transferring Notes in the Margin to Teachable Moments
ERIC Educational Resources Information Center
O'Keefe, Patricia
2013-01-01
Great Ideas for Teaching Students (GIFTS) are among the most popular and well-attended panel sessions at many academic conferences. This article describes the process by which current research in the "Western Journal of Communication" can be transferred into GIFTS for lower division communication classrooms. The goal is to provide an entree for…
Bohannon, R.G.
1987-01-01
A tectonic reconstruction of pre-Red Sea Afro/Arabia suggests that the early rift was narrow with intense extension confined to an axial belt 20 to 40 km wide. Steep Moho slopes probably developed during rift formation as indicated by published gravity data, two published seismic interpretations and the surface geology.
NASA Astrophysics Data System (ADS)
Xie, X.; Mann, P.; Escalona, A.
2008-12-01
Thick, Eocene to Miocene clastic sedimentary basins are widespread across on- and offshore northern South America and have been identified using seismic reflection data in offshore basins of the Leeward Antilles, the Lesser Antilles arc and forearc, and the Barbados accretionary prism. Several 3 to12-km-thick Paleogene depocenters occur in shelf to deep basinal settings along the offshore margins of Venezuela, Trinidad and Tobago, and Barbados. Previous studies proposed that the proto-Orinoco River has been the single fluvial source for these distal, continentally-derived sandstone units along northern Venezuela as part of the early Eocene to Miocene, proto-Maracaibo fluvial-deltaic system that emanated from the northern Andes of western Venezuela and Colombia. Those distal sandstones were displaced eastward with the movement of the Caribbean plate by several hundred kilometers and are now found in basins and islands of the southeastern Caribbean region. We collected nine Eocene age sandstone samples from well cores and outcrops along the northern South America margin, including Lake Maracaibo, Trinidad and Tobago, and Barbados Island. In total, 945 single detrital zircon grains were analyzed using LA-ICP-MS. The objective is to reconstruct the paleogeography, paleo-drainage system, and tectonic history during Eocene time. New data show that the Eocene Misoa Formation of Lake Maracaibo was characterized by a mixture of Precambrian, Paleozoic, and Mesozoic ages matching age provinces from eastern Cordillera and the Guayana Shield, which is consistent with previous proto-Orinoco River model flowing from the western Amazonian region of Colombia and Brazil through the Maracaibo basin into the area of western Falcon basin. However, coeval Eocene samples from Barbados and Trinidad show a much different age population dominated by Precambrian matching the eastern part of the Guyana shield to the south, which suggests that the western onland system and eastern offshore units belong to different systems. We postulate that a series of smaller, north-flowing drainages provided a line of sediment source dispersal of Eocene sandstone from the north central and eastern edge of the Guyana shield onto the Eocene passive margin that extended from central Venezuela to Trinidad instead of being tectonically transported to their present locations suggested by earlier studies.
Finn, Carol A.; Goodge, John W.
2010-01-01
Aeromagnetic and satellite magnetic data provide glimpses of the crustal architecture within the Ross Sea sector of the enigmatic, ice-covered East Antarctic shield critical for understanding both global tectonic and climate history. In the central Transantarctic Mountains (CTAM), exposures of Precambrian basement, coupled with new high-resolution magnetic data, other recent aeromagnetic transects, and satellite magnetic and seismic tomography data, show that the shield in this region comprises an Archean craton modified both by Proterozoic magmatism and early Paleozoic orogenic basement reactivation. CTAM basement structures linked to the Ross Orogeny are imaged 50–100 km farther west than previously mapped, bounded by inboard upper crustal Proterozoic granites of the Nimrod igneous province. Magnetic contrasts between craton and rift margin sediments define the Neoproterozoic rift margin, likely reactivated during Ross orogenesis and Jurassic extension. Interpretation of satellite magnetic and aeromagnetic patterns suggests that the Neoproterozoic rift margin of East Antarctica is offset by transfer zones to form a stepwise series of salients tracing from the CTAM northward through the western margin of the Wilkes Subglacial Basin to the coast at Terre Adélie. Thinned Precambrian crust inferred to lie east of the rift margin cannot be imaged magnetically because of modification by Neoproterozoic and younger tectonic events.
Elastic thickness estimates at northeast passive margin of North America and its implications
NASA Astrophysics Data System (ADS)
Kumar, R. T. Ratheesh; Maji, Tanmay K.; Kandpal, Suresh Ch; Sengupta, D.; Nair, Rajesh R.
2011-06-01
Global estimates of the elastic thickness (Te) of the structure of passive continental margins show wide and varying results owing to the use of different methodologies. Earlier estimates of the elastic thickness of the North Atlantic passive continental margins that used flexural modelling yielded a Te value of ~20-100 km. Here, we compare these estimates with the Te value obtained using orthonormalized Hermite multitaper recovered isostatic coherence functions. We discuss how Te is correlated with heat flow distribution and depth of necking. The E-W segment in the southern study region comprising Nova Scotia and the Southern Grand Banks show low Te values, while the zones comprising the NE-SW zones, viz., Western Greenland, Labrador, Orphan Basin and the Northern Grand Bank show comparatively high Te values. As expected, Te broadly reflects the depth of the 200-400°C isotherm below the weak surface sediment layer at the time of loading, and at the margins most of the loading occurred during rifting. We infer that these low Te measurements indicate Te frozen into the lithosphere. This could be due to the passive nature of the margin when the loads were emplaced during the continental break-up process at high temperature gradients.
Till, A.B.; Harris, A.G.; Wardlaw, B.R.; Mullen, M.
2007-01-01
Reexamination of existing conodont collections from the central Alaska Range indicates that Upper Triassic marine slope and basin rocks range in age from at least as old as the late Carnian to the early middle Norian. The conodont assemblages typical of these rocks are generally cosmopolitan and do not define a distinct paleogeographic faunal realm. One collection, however, containsEpigondolella multidentata sensu Orchard 1991c, which appears to be restricted to western North American autochthonous rocks. Although paleogeographic relations cannot be determined with specificity, the present distribution of biofaces within the Upper Triassic sequence could not have been the result of simple accordion-style collapse of the Late Triassic margin.
Chakraborty, Parthasarathi; Vudamala, Krushna; Chennuri, Kartheek; Armoury, Kazip; Linsy, P; Ramteke, Darwin; Sebastian, Tyson; Jayachandran, Saranya; Naik, Chandan; Naik, Richita; Nath, B Nagender
2016-05-01
Total Hg distributions and its speciation were determined in two sediment cores collected from the western continental marginal high of India. Total Hg content in the sediment was found to gradually increase (by approximately two times) towards the surface in both the cores. It was found that Hg was preferentially bound to sulfide under anoxic condition. However, redox-mediated reactions in the upper part of the core influenced the total Hg content in the sediment cores. This study suggests that probable increase in authigenic and allogenic Hg deposition attributed to the increasing Hg concentration in the surface sediment in the study area.
African hot spot volcanism: small-scale convection in the upper mantle beneath cratons.
King, S D; Ritsema, J
2000-11-10
Numerical models demonstrate that small-scale convection develops in the upper mantle beneath the transition of thick cratonic lithosphere and thin oceanic lithosphere. These models explain the location and geochemical characteristics of intraplate volcanos on the African and South American plates. They also explain the presence of relatively high seismic shear wave velocities (cold downwellings) in the mantle transition zone beneath the western margin of African cratons and the eastern margin of South American cratons. Small-scale, edge-driven convection is an alternative to plumes for explaining intraplate African and South American hot spot volcanism, and small-scale convection is consistent with mantle downwellings beneath the African and South American lithosphere.
Global tectonic studies: Hotspots and anomalous topography
NASA Technical Reports Server (NTRS)
Burke, K.; Kidd, W. S. F.; Delong, S.; Thiessen, R. L.; Carosella, R.; Mcgetchin, T. R.
1979-01-01
Volcanic activity on Earth and its secular variations are compared with that on other terrestrial planets. Activity at divergent, transform, and convergent plate margins is described with particular emphasis on hot spots and flood basalts. The timing and causing of uplifting above 500 meters, which in not associated with either plate boundaries or the normal nonplate margin edges of continents is considered with particular focus on the Guyana Highlands in southern Venezuela and western British Guiana, and the Brazilian Highlands in the central, eastern, and southern parts of the country. The mode and mechanism of plateau uplifting and the re-elevation of old mountain belts and subsidence of intra-continental basins are also discussed.
Mccallum, Anna W; Cabezas, Patricia; Andreakis, Nikos
2016-10-04
Six species of Paramunida are reported from the continental margin of north-western Australia. Three species are new to science: Paramunida christinae sp. nov., P. ioannis sp. nov., and P. spiniantennata sp. nov. Two species are reported for the first time from Australian waters, P. evexa Macpherson, 1996 and P. tricarinata (Alcock, 1894). These species were confirmed by molecular evidence from the mitochondrial markers ND1 and 16S. We also examine phylogenetic relationships within the genus, and provide an identification key for all known Paramunida species.
Beyond men and women: a critical perspective on gender and disaster.
Gaillard, J C; Sanz, Kristinne; Balgos, Benigno C; Dalisay, Soledad Natalia M; Gorman-Murray, Andrew; Smith, Fagalua; Toelupe, Vaito'a
2017-07-01
Consideration of gender in the disaster sphere has centred almost exclusively on the vulnerability and capacities of women. This trend stems from a polarised Western understanding of gender as a binary concept of man-woman. Such an approach also mirrors the dominant framing of disasters and disaster risk reduction (DRR), emphasising Western standards and practices to the detriment of local, non-Western identities and experiences. This paper argues that the man-woman dichotomy is an insufficient construct with which to address the gendered dimensions of a disaster as it fails to capture the realities of diverse gender minorities in non-Western contexts. The paper presents case studies from the Philippines, Indonesia, and Samoa, where gender minorities display specific patterns of vulnerability associated with their marginal positions in society, yet, importantly, also possess a wide array of endogenous capacities. Recognition of these differences, needs, skills, and unique resources is essential to moving towards inclusive and gender-sensitive DRR. © 2017 The Author(s). Disasters © Overseas Development Institute, 2017.
Probabilistic Seismic Risk Model for Western Balkans
NASA Astrophysics Data System (ADS)
Stejskal, Vladimir; Lorenzo, Francisco; Pousse, Guillaume; Radovanovic, Slavica; Pekevski, Lazo; Dojcinovski, Dragi; Lokin, Petar; Petronijevic, Mira; Sipka, Vesna
2010-05-01
A probabilistic seismic risk model for insurance and reinsurance purposes is presented for an area of Western Balkans, covering former Yugoslavia and Albania. This territory experienced many severe earthquakes during past centuries producing significant damage to many population centres in the region. The highest hazard is related to external Dinarides, namely to the collision zone of the Adriatic plate. The model is based on a unified catalogue for the region and a seismic source model consisting of more than 30 zones covering all the three main structural units - Southern Alps, Dinarides and the south-western margin of the Pannonian Basin. A probabilistic methodology using Monte Carlo simulation was applied to generate the hazard component of the model. Unique set of damage functions based on both loss experience and engineering assessments is used to convert the modelled ground motion severity into the monetary loss.
NASA Astrophysics Data System (ADS)
Gómez de la Peña, Laura; Gràcia, Eulàlia; Muñoz, Araceli; Acosta, Juan; Gómez-Ballesteros, María; R. Ranero, César; Uchupi, Elazar
2016-10-01
The Palomares continental margin is located in the southeastern part of Spain. The margin main structure was formed during Miocene times, and it is currently part of the wide deformation zone characterizing the region between the Iberian and African plates, where no well-defined plate boundary occurs. The convergence between these two plates is here accommodated by several structures, including the left lateral strike-slip Palomares Fault. The region is characterized by sparse, low to moderate magnitude (Mw < 5.2) shallow instrumental earthquakes, although large historical events have also occurred. To understand the recent tectonic history of the margin we analyze new high-resolution multibeam bathymetry data and re-processed three multichannel seismic reflection profiles crossing the main structures. The analysis of seafloor morphology and associated subsurface structure provides new insights of the active tectonic features of the area. In contrast to other segments of the southeastern Iberian margin, the Palomares margin contains numerous large and comparatively closely spaced canyons with heads that reach near the coast. The margin relief is also characterized by the presence of three prominent igneous submarine ridges that include the Aguilas, Abubacer and Maimonides highs. Erosive processes evidenced by a number of scars, slope failures, gullies and canyon incisions shape the present-day relief of the Palomares margin. Seismic images reveal the deep structure distinguishing between Miocene structures related to the formation of the margin and currently active features, some of which may reactivate inherited structures. The structure of the margin started with an extensional phase accompanied by volcanic accretion during the Serravallian, followed by a compressional pulse that started during the Latemost Tortonian. Nowadays, tectonic activity offshore is subdued and limited to few, minor faults, in comparison with the activity recorded onshore. The deep Algero-Balearic Basin is affected by surficial processes, associated to halokinesis of Messinian evaporites.
NASA Astrophysics Data System (ADS)
Keppie, J. Duncan; Nance, R. Damian; Murphy, J. Brendan; Dostal, J.
2003-04-01
Modern Tethyan, Mediterranean, and Pacific analogues are considered for several Appalachian, Caledonian, and Variscan terranes (Carolina, West and East Avalonia, Oaxaquia, Chortis, Maya, Suwannee, and Cadomia) that originated along the northern margin of Neoproterozoic Gondwana. These terranes record a protracted geological history that includes: (1) ˜1 Ga (Carolina, Avalonia, Oaxaquia, Chortis, and Suwannee) or ˜2 Ga (Cadomia) basement; (2) 750-600 Ma arc magmatism that diachronously switched to rift magmatism between 590 and 540 Ma, accompanied by development of rift basins and core complexes, in the absence of collisional orogenesis; (3) latest Neoproterozoic-Cambrian separation of Avalonia and Carolina from Gondwana leading to faunal endemism and the development of bordering passive margins; (4) Ordovician transport of Avalonia and Carolina across Iapetus terminating in Late Ordovician-Early Silurian accretion to the eastern Laurentian margin followed by dispersion along this margin; (5) Siluro-Devonian transfer of Cadomia across the Rheic Ocean; and (6) Permo-Carboniferous transfer of Oaxaquia, Chortis, Maya, and Suwannee during the amalgamation of Pangea. Three potential models are provided by more recent tectonic analogues: (1) an "accordion" model based on the orthogonal opening and closing of Alpine Tethys and the Mediterranean; (2) a "bulldozer" model based on forward-modelling of Australia during which oceanic plateaus are dispersed along the Australian plate margin; and (3) a "Baja" model based on the Pacific margin of North America where the diachronous replacement of subduction by transform faulting as a result of ridge-trench collision has been followed by rifting and the transfer of Baja California to the Pacific Plate. Future transport and accretion along the western Laurentian margin may mimic that of Baja British Columbia. Present geological data for Avalonia and Carolina favour a transition from a "Baja" model to a "bulldozer" model. By analogy with the eastern Pacific, we name the oceanic plates off northern Gondwana: Merlin (≡Farallon), Morgana (≡Pacific), and Mordred (≡Kula). If Neoproterozoic subduction was towards Gondwana, application of this combined model requires a total rotation of East Avalonia and Carolina through 180° either during separation (using a western Transverse Ranges model), during accretion (using a Baja British Columbia "train wreck" model), or during dispersion (using an Australia "bulldozer" model). On the other hand, Siluro-Devonian orthogonal transfer ("accordion" model) from northern Africa to southern Laurussia followed by a Carboniferous "Baja" model appears to best fit the existing data for Cadomia. Finally, Oaxaquia, Chortis, Maya, and Suwannee appear to have been transported along the margin of Gondwana until it collided with southern Laurentia on whose margin they were stranded following the breakup of Pangea. Forward modeling of a closing Mediterranean followed by breakup on the African margin may provide a modern analogue. These actualistic models differ in their dictates on the initial distribution of the peri-Gondwanan terranes and can be tested by comparing features of the modern analogues with their ancient tectonic counterparts.
NASA Astrophysics Data System (ADS)
Olyphant, Jared R.; Johnson, Roy A.; Hughes, Amanda N.
2017-10-01
The Guinea Plateau (offshore Guinea) and its conjugate, the Demerara Plateau (offshore French Guiana), comprise two of the most prominent passive continental margins in the Atlantic Ocean. The conjugate plateaus formed as a result of two periods of rifting, the Jurassic opening of the Central Atlantic Ocean and the northward-propagating Cretaceous opening of the Southern Atlantic Ocean. Although several studies are published on the Demerara Plateau that explain the evolution of its multi-rift history and the effect of rifting on its distinct geometry, the Guinea Plateau, and in particular its south-eastern margin, remain relatively unexplored in the literature. Here we present interpretations of the structure and evolution of the Guinea Plateau using recent 2-D and 3-D seismic-reflection data collected at the intersection of the southern and eastern margins. We substantiate our study with calculated subsidence curves at four locations along the southern margin, as well as two 2-D gravity forward models along regional seismic-reflection profiles to estimate stretching factors (β) and crustal thicknesses. We combine our results with previous studies concerning the south-western Guinea margin, and compare them to published interpretations regarding the conjugate margins of the Demerara Plateau. The resolved amounts of rift-related volcanism, listric-style normal faults, and moderate stretching factors suggest that a component of upper-crustal asymmetry (simple shear) and depth-dependent stretching may have persisted at the Demerara-Guinea conjugate margins during Cretaceous rifting of the equatorial segment of the Southern Atlantic Ocean.
Hotspot activity and plume pulses recorded by geometry of spreading axes
NASA Astrophysics Data System (ADS)
Abelson, Meir; Agnon, Amotz
2001-06-01
Anomalous plan view geometry (planform) of spreading axes is shown to be a faithful indicator of hotspot influence, possibly capable of detecting pulses of hotspot discharge. A planform anomaly (PA) occurs when the orientation of second-order ridge segments is prominently oblique to the spreading direction. PA is found in the vicinity of hotspots at shallow ridges (<1.5 km), suggesting hotspot influence. In places the PA and shallow bathymetry are accompanied by geochemical anomalies, corroborating hotspot influence. This linkage is best expressed in the western Gulf of Aden, where the extent of the PA from the Afar hotspot coincides with the extent of La/Sm and Sr isotopic anomalies. Using fracture mechanics we predict PA to reflect overpressurized melt that dominates the stresses in the crust, consistent with hotspot regime. Accordingly, the temporal variations of the planform previously inferred from magnetic anomalies around the Kolbeinsey Ridge (KR), north of Iceland, record episodes of interaction with the hotspot and major pulses of the plume. This suggestion is corroborated by temporal correlation of episodes showing PA north of Iceland with plume pulses previously inferred by the V-shaped ridges around the Reykjanes Ridge (RR), south of Iceland. In contrast to the RR, the temporal correlation suggests simultaneous incidence of the plume pulses at Iceland and KR, hundreds of kilometers to the north. A deep northward branch of the Iceland plume active during pulse-periods may explain these observations.
Two-stage magmatism during the evolution of the transitional Ethiopian rift
NASA Astrophysics Data System (ADS)
Cornwell, D. G.; England, R. W.; Maguire, P. K.; Kendall, M.; Stuart, G. W.
2008-12-01
The Ethiopian rift marks the transition between continental rifting and incipient seafloor spreading. The Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE) included a 400 km-long cross-rift profile with 97 broadband passive seismometers with the aim to investigate the change from mechanical to magmatic extension by defining the lithospheric structure and extent of magmatism beneath the rift. Complimentary studies of P-wave receiver functions, shear-wave splitting and teleseismic earthquake arrival times show that the lithospheric structure is inherently different beneath the north-western rift flank, rift valley and south- eastern rift flank, with contrasting crustal thickness and composition, upper mantle velocity and lithospheric anisotropy. Two stages of magmatic addition are interpreted: 1) a 6--18 km-thick underplate lens at the base of the crust, which probably formed synchronous with an Oligocene flood basalt event (and therefore pre-dates the adjacent rifting by ~20 Myr); and 2) a 20--30 km-wide zone of intense dyking and partial melt, which most likely pervades the entire crust beneath the rift valley and marks the locus of current rift extension. Furthermore, Precambrian collision-related lithospheric fabric is proposed to be the main source of the strong anisotropy that is observed along the entire cross-rift profile, which may be augmented by magmatism beneath the rift. An active, followed by a passive magma-assisted rifting model that is controlled by a combination of far-field plate stresses, the pre-existing lithospheric framework and magmatism is invoked to explain the rift evolution.
Governance, Identity, and Counterinsurgency: Evidence from Ramadi and Tal Afar
2013-03-01
seen as the improvement of governance in the form of effective and efficient ad- ministration of government and public services. How- ever, good...army; they fight the United States, and this is seen as an honorable endeav- or; no central control of resistance groups. • Terrorists - foreigners who...to hold their turf in a war against an enemy who seems to be every- where but is not often seen . The cost has been high: in the last 6 weeks, 21
Defeating the U-boat. Inventing Antisubmarine Warfare (Newport Papers Number 36)
2010-08-01
did not explain how this number had been arrived at but claimed it could be achieved by no more than four cruisers and twelve armed liners in the...cover of darkness, ambush and destroy the largest unarmed liners afloat.33 Aube made clear that unlike in the past, ships, their crews, and cargoes...would not be captured but sunk without warning: “Having fol- lowed the liner from afar, come nightfall, the torpedo-boat will, perfectly silently and
NASA Astrophysics Data System (ADS)
Lubberts, Ronald K.; Ben-Avraham, Zvi
2002-02-01
The Dead Sea Basin is a morphotectonic depression along the Dead Sea Transform. Its structure can be described as a deep rhomb-graben (pull-apart) flanked by two block-faulted marginal zones. We have studied the recent tectonic structure of the northwestern margin of the Dead Sea Basin in the area where the northern strike-slip master fault enters the basin and approaches the western marginal zone (Western Boundary Fault). For this purpose, we have analyzed 3.5-kHz seismic reflection profiles obtained from the northwestern corner of the Dead Sea. The seismic profiles give insight into the recent tectonic deformation of the northwestern margin of the Dead Sea Basin. A series of 11 seismic profiles are presented and described. Although several deformation features can be explained in terms of gravity tectonics, it is suggested that the occurrence of strike-slip in this part of the Dead Sea Basin is most likely. Seismic sections reveal a narrow zone of intensely deformed strata. This zone gradually merges into a zone marked by a newly discovered tectonic depression, the Qumran Basin. It is speculated that both structural zones originate from strike-slip along right-bending faults that splay-off from the Jordan Fault, the strike-slip master fault that delimits the active Dead Sea rhomb-graben on the west. Fault interaction between the strike-slip master fault and the normal faults bounding the transform valley seems the most plausible explanation for the origin of the right-bending splays. We suggest that the observed southward widening of the Dead Sea Basin possibly results from the successive formation of secondary right-bending splays to the north, as the active depocenter of the Dead Sea Basin migrates northward with time.
Basin-wide Millennial Cycles in Arabian Sea Climate Over the Last Glacial
NASA Astrophysics Data System (ADS)
Pourmand, A.; Marcantonio, F.
2005-05-01
High-frequency Dansgaard-Oeschger (D-O) and Heinrich cycles first discovered in the records of North Atlantic ice and marine sediments have been found to extend beyond the North Atlantic There is ample evidence for these millennial cycles of climate variability in the sediments of the Arabian Sea. We employ uranium-series radionuclide proxies to determine changes in the fluxes of sedimentary components in two cores from the western (W) and northeastern (NE) Arabian Sea in order to investigate fluctuations of export production and wind strength on a large regional scale during the last glacial period. In the NE Arabian Sea off of the Pakistani margin, 230Th-derived detrital (eolian) fluxes are highest during periods consistent with the timing of North Atlantic D-O stadial and H 1-7 events. Authigenic uranium concentrations, which we interpret as a proxy for primary productivity, also show an increase during North Atlantic D-O interstadials. Preliminary results from W Arabian Sea sediments off of the Oman margin corroborate that these millennial cycles in productivity and eolian fluxes are indeed basin-wide events. Authigenic U concentrations in these sediments are, on average, about twice those measured in the NE Arabian Sea, suggesting, qualitatively, an enhancement of primary productivity in the western part of the basin. In contrast, fluxes of eolian material to the Oman margin are, on average, more than 10 times lower than those delivered to the Pakistani margin, even though the patterns of millennial variability are virtually identical. We associate enhanced export production and a decreased eolian input during relatively warmer D-O interstadials with an intensification of southwest monsoonal winds. Similarly, decreased export production is coincident with an increase in eolian fluxes during North Atlantic stadial and H events. These results provide strong evidence for a basin-wide atmospheric teleconnection between Arabian Sea and North Atlantic climate on sub-Milankovitch timescales.
Playing jigsaw with large igneous provinces - a plate-tectonic reconstruction of Ontong Java Nui
NASA Astrophysics Data System (ADS)
Hochmuth, Katharina; Gohl, Karsten; Uenzelmann-Neben, Gabriele; Werner, Reinhard
2015-04-01
Ontong Java Nui is a Cretaceous large igneous province (LIP), which was rifted apart into various smaller plateaus shortly after its emplacement around 125 Ma in the central Pacific. It incorporated the Ontong Java Plateau, the Hikurangi Plateau and the Manihiki Plateau as well as multiple smaller fragments, which have been subducted. Its size has been estimated to be approximately 0.8% of the Earth's surface. A volcanic edifice of this size has potentially had a great impact on the environment such as its CO2 release. The break-up of the "Super"-LIP is poorly constrained, because the break-up and subsequent seafloor spreading occurred within the Cretaceous Quiet Period. The Manihiki Plateau is presumably the centerpiece of this "Super"-LIP and shows by its margins and internal fragmentation that its tectonic and volcanic activity is related to the break-up of Ontong Java Nui. By incorporating two new seismic refraction/wide-angle reflection lines across two of the main sub-plateaus of the Manihiki Plateau, we can classify the break-up modes of the individual margins of the Manihiki Plateau. The Western Plateaus experienced crustal stretching due to the westward motion of the Ontong Java Plateau. The High Plateau shows sharp strike-slip movements at its eastern boundary towards an earlier part of Ontong Java Nui, which is has been subducted, and a rifted margin with a strong volcanic overprint at its southern edges towards the Hikurangi Plateau. These observations allow us a re-examination of the conjugate margins of the Hikurangi Plateau and the Ontong Java Plateau. The repositioning of the different plateaus leads to the conclusion that Ontong Java Nui was larger (~1.2% of the Earth's surface at emplacement) than previously anticipated. We use these finding to improve the plate tectonic reconstruction of the Cretaceous Pacific and to illuminate the role of the LIPs within the plate tectonic circuit in the western and central Pacific.
Present-day crustal motion around eastern margin of the Pamir plateau from GPS measurements
NASA Astrophysics Data System (ADS)
Pan, Z.; He, J.; Zhou, Y.; Wang, W.
2017-12-01
The Pamir plateau is featured mainly by northward convex thrust faults in its center and by strike-slip faults on its western and eastern sides. To better describe the deformation pattern of the Pamir plateau, a new campaign-mode GPS network has been deployed with 18 stations around the boundary between the Pamir and the Tarim since 2012. The network has been surveyed 3 times, and each site has been surveyed for at least 48 hours with Trimble NetR8 receivers and zephyr geodetic antennas. By combining the nearest Continuous GPS sites (GUAO KIT3 POL2 CHUM URUM ARTU BJFS IISC IRKT LHAZ SHAO ULAB WUHN YIBL), we then processed the observing data with GAMIT/GLOBK software to obtain the velocity field of the network. Results show that, unlike the western margin of the Pamir plateau where significant ( 9mm/yr) left-lateral motion between the Tajik basin and the Pamir was observed, the eastern margin between the Pamir and the Tarim exists negligible strike-slip motion along the boundary. However, perpendicular to the Pamir-Tarim boundary, we observed clearly coeval extension and compression strain across this boundary. By calibrating the strain distribution and the simplified structure profiles, it can be seen that the extension rate locates mainly around the Tashkurghan basin; while the compression strain around the Tashkurghan basin and the Tarim basin. We also predicted that among the total strain rate, the extension rate is about 4-6mm/yr and the compression rate about 2-3mm/yr. This suggests that the general tectonic stress across the eastern margin of the Pamir plateau is extension, in agreement with previous result of anti-clockwise rotation of the Pamir. Finally, the possible mechanics on co-existence of extension and compression along same direction has been discussed by building a two-dimensional viscoelastic finite model.
Reconstructing the role of South China in Pangea and earlier supercontinents
NASA Astrophysics Data System (ADS)
Cawood, Peter; Zhao, Guochun; Yao, Jinlong; Wang, Wei; Xu, Yajun; Wang, Yuejun
2017-04-01
The history of the South China Craton and the constituent Yangtze and Cathaysia blocks is directly linked to Earth's Phanerozoic and Precambrian record of supercontinent assembly and dispersal. Exposed Archean rocks are limited to isolated fragments in the Yangtze Block and preserve a record of Meso- to Neo-Archean igneous activity, sedimentation and metamorphism associated with a period of global craton formation and stabilization that corresponds with assembly of the Kenor supercontinent/supercraton. However, there is insufficient data to link its history with other similar aged cratons. The tectonostratigraphic record in South China in the Paleoproterozoic, corresponding with assembly of Nuna, suggests that rock units in the Yangtze Block were spatially linked with northwestern Laurentia and possibly Siberia, whereas Cathaysia was joined to northern India. From the formation of Rodinia at the end of the Mesoproterozoic through to that of Pangea in the mid-Paleozoic, Cathaysia remained joined to northern India. Early Neoproterozoic supra-subduction zone magmatic arc-back arc assemblages ranging in age from 1000 Ma to 810 Ma occur within Cathaysia, along its northwestern margin, and along the southeastern margin of the Yangtze Block. These rocks provide a record of convergent plate interaction along the periphery of Rodinia, which continued along the western margin of the Yangtze Block until around 700 Ma and correlates with similar along strike subduction zone magmatism in northwest India, Seychelles and Madagascar. During final assembly of Gondwana in the early Paleozoic suturing of India-South China with the Western Australia-Mawson blocks along the Kuunga Orogen resulted in the accretion of the Sanya Block of Hainan Island with the rest of Cathaysia. The accretion of Laurussia to Gondwana in the mid-Paleozoic to form Pangea corresponds with the initiation of lithospheric extension along the northern margin of Gondwana and the separation of a number of continental blocks, including South China, which then drifted northward across the Paleo-Tethys to collide with the Asian segment of Pangea in the Permo-Triassic.
The Group of Macha Craters in Western Yakutia
NASA Astrophysics Data System (ADS)
Gurov, E. P.
1996-03-01
The group of Macha craters is placed in the marginal part of Aldan Anteclise in Macha river basin, the left tributary of Lena river. Coordinates of the craters: 60 degrees 06 minutes N, 117 degrees 35 minutes E. The Macha craters were discovered by aerovisual observations of Aldan Shield and Aldan Anteclise during the impact craters search in this region.
The Bologna Process and Its Impact on Higher Education at Russia's Margins: The Case of Kaliningrad
ERIC Educational Resources Information Center
Ganzle, Stefan; Meister, Stefan; King, Conrad
2009-01-01
Embracing the Russian Federation since 2003, the Bologna process is no longer exclusively confined to western European countries. As early as 1999, Vladimir Putin declared the Russian exclave of Kaliningrad, wedged between Lithuania and Poland, as a potential pilot region for intensified cooperation between Russia and the EU on a number of policy…
ERIC Educational Resources Information Center
Barwood, Donna; Penney, Dawn; Cunningham, Christine
2017-01-01
Internationally, research has repeatedly highlighted the marginal and apparently precarious position of Health and Physical Education (HPE) in schools. It has also consistently identified staffing as a key concern in relation to prospects for quality teaching and learning. This paper reports on mixed-methods research that has specifically…
ERIC Educational Resources Information Center
Neuhaus, Dolf-Alexander
2016-01-01
This article sets out to elucidate the role of Japanese Protestants in the education of Koreans during the early twentieth century. Scholarship has often assigned only marginal roles to Japanese Protestants within the history of Japanese imperialism, despite the remarkable success of western missionaries in Korea at the time. As imperial expansion…
Moving across the Margins: A Review of "Stigma and Perseverance in the Lives of Boys Who Dance"
ERIC Educational Resources Information Center
Rogers, Karl; Sanders, James H., III
2012-01-01
Examining the first phase of a three-year study of adolescent boys engaged in preprofessional dance training, Doug Risner's "Stigma and Perseverance in the Lives of Boys Who Dance: An Empirical Study of Male Identities in Western Theatrical Dance Training" broadly identifies the challenges facing male students pursuing dance education. His book…
Thematic mapper study of Alaskan ophiolites
NASA Technical Reports Server (NTRS)
Bird, J. M.
1986-01-01
The combinations of Thematic Mapper (TM) bands that best distinguish basalts of the Brooks Range ophiolites were determined. Geochemical analyses, including major, trace, and rare earth elements (REE), are being done in order to study the significance of TM spectral variations that were observed within some of the sampled rock units. An image of the topography of the western Brooks Range and Colville Basin was constructed. Elevation data for the rest of Northern Alaska are being acquired to expand the area covered by the topography image. Two balanced cross sections (one along the eastern margin, the other along the western margin of the Brooks Range) are being constructed, using the techniques of fault-bend and fault-propagation folding. These are being used to obtain regional shortening estimates for the Brooks Range in an attempt to constrain tectonic models for the evolution of Northern Alaska. The TM data are being used to confirm reconnaissance maps and to obtain structural data where no maps exist. Along with the TM data, digital topography, seismic reflection profiles, and magnetic and gravity surveys are examined to better understand the evolution of the Colville Basin, north of the Brooks Range.
Source rock potential of middle cretaceous rocks in Southwestern Montana
Dyman, T.S.; Palacas, J.G.; Tysdal, R.G.; Perry, W.J.; Pawlewicz, M.J.
1996-01-01
The middle Cretaceous in southwestern Montana is composed of a marine and nonmarine succession of predominantly clastic rocks that were deposited along the western margin of the Western Interior Seaway. In places, middle Cretaceous rocks contain appreciable total organic carbon (TOC), such as 5.59% for the Mowry Shale and 8.11% for the Frontier Formation in the Madison Range. Most samples, however, exhibit less than 1.0% TOC. The genetic or hydrocarbon potential (S1+S2) of all the samples analyzed, except one, yield less than 1 mg HC/g rock, strongly indicating poor potential for generating commercial amounts of hydrocarbons. Out of 51 samples analyzed, only one (a Thermopolis Shale sample from the Snowcrest Range) showed a moderate petroleum potential of 3.1 mg HC/g rock. Most of the middle Cretaceous samples are thermally immature to marginally mature, with vitrinite reflectance ranging from about 0.4 to 0.6% Ro. Maturity is high in the Pioneer Mountains, where vitrinite reflectance averages 3.4% Ro, and at Big Sky Montana, where vitrinite reflectance averages 2.5% Ro. At both localities, high Ro values are due to local heat sources, such as the Pioneer batholith in the Pioneer Mountains.
Oguz, Temel; Macias, Diego; Tintore, Joaquin
2015-01-01
Buoyancy-induced unstable boundary currents and the accompanying retrograde density fronts are often the sites of pronounced mesoscale activity, ageostrophic frontal processes, and associated high biological production in marginal seas. Biophysical model simulations of the Catalano-Balearic Sea (Western Mediterranean) illustrated that the unstable and nonlinear southward frontal boundary current along the Spanish coast resulted in a strain-driven frontogenesis mechanism. High upwelling velocities of up to 80 m d-1 injected nutrients into the photic layer and promoted enhanced production on the less dense, onshore side of the front characterized by negative relative vorticity. Additional down-front wind stress and heat flux (cooling) intensified boundary current instabilities and thus ageostrophic cross-frontal circulation and augmented production. Specifically, entrainment of nutrients by relatively strong buoyancy-induced vertical mixing gave rise to a more widespread phytoplankton biomass distribution within the onshore side of the front. Mesoscale cyclonic eddies contributed to production through an eddy pumping mechanism, but it was less effective and more limited regionally than the frontal processes. The model was configured for the Catalano-Balearic Sea, but the mechanisms and model findings apply to other marginal seas with similar unstable frontal boundary current systems. PMID:26065688
Cold-seep ostracods from the western Svalbard margin: direct palaeo-indicator for methane seepage?
NASA Astrophysics Data System (ADS)
Yasuhara, Moriaki; Sztybor, Kamila; Rasmussen, Tine L.; Okahashi, Hisayo; Sato, Runa; Tanaka, Hayato
2018-01-01
Despite their high abundance and diversity, microfossil taxa adapted to a particular chemosynthetic environment have rarely been studied and are therefore poorly known. Here we report on an ostracod species, Rosaliella svalbardensis gen. et sp. nov., from a cold methane seep site at the western Svalbard margin, Fram Strait. The new species shows a distinct morphology, different from other eucytherurine ostracod genera. It has a marked similarity to Xylocythere, an ostracod genus known from chemosynthetic environments of wood falls and hydrothermal vents. Rosaliella svalbardensis is probably an endemic species or genus linked to methane seeps. We speculate that the surface ornamentation of pore clusters, secondary reticulation, and pit clusters may be related to ectosymbiosis with chemoautotrophic bacteria. This new discovery of specialized microfossil taxa is important because they can be used as an indicator species for past and present seep environments (http://zoobank.org/urn:lsid:zoobank.org:pub:6075FF30-29D5-4DAB-9141-AE722CD3A69B).
Chronology of desert margin in western India using improved luminescence dating protocols
NASA Astrophysics Data System (ADS)
Chauhan, Naveen; Morthekai, P.
2017-12-01
The present study provides improved chronology for the desert margin fluvial sediments of semi-arid region located in the Mahi river basin, western India. The sequence has preserved a near-continuous record of climate change since the Last Interglacial. An earlier attempt of dating based on feldspar IRSL chronology shows a combined effect of anomalous fading and unbleached components resulting in age inversions. The present work tries to explore the possibility of using blue light stimulated luminescence (BLSL) of quartz, infra-red stimulated luminescence (IRSL) of feldspar and the newly developed methodologies, like natural correction factor based single aliquot regeneration (NCF-SAR) protocol and decision making schemes based on distribution of doses and beta heterogeneity concept for luminescence dating of sediments. Observations suggest that quartz suffered from significant sensitivity changes during natural signal measurement and partial bleaching. A combination of NCF-SAR protocol and sample specific equivalent dose computation helped in arriving at better age estimate for present samples. The study also compares the criteria for the selection of different age models that are used at present. The age of the alluvial sequence is now bracketed between 10 ka (upper aeolian unit) and 75 ka (lowermost fluvial unit).
Millar, J Alasdair; Millar, Robyn C
2014-01-01
The Australian federal government has proposed an AUD $7 patient co-payment for a general practitioner (GP) consultation. One effect of the co-payment may be that patients will seek assistance at public hospital emergency departments (EDs), where currently there is no user charge. We studied the possible financial impact of patient diversion on the Western Australia (WA) health budget. We constructed a spreadsheet model of changes in annual cash flows including the co-payment, GP fees for service, and rates of diversion to emergency departments with additional marginal costs for ED attendance. Changes in WA cash flows are the aggregate of marginal ED costs of treating diverted patients and added expenditure in fees paid to rural doctors who also man local emergency centres. The estimated costs to WA are AUD $6.3 million, $35.9 million and $87.4 million at 1, 5, and 10 per cent diversion, respectively. Commonwealth receipts increase and expenditure on Medicare benefits declines. A diversion of patients from GP surgeries to ED in WA caused by the co-payment will result in increased costs to the state, which may be substantial, and will reduce net costs to the Commonwealth.
NASA Astrophysics Data System (ADS)
Michaud, François; Calmus, Thierry; Ratzov, Gueorgui; Royer, Jean-Yves; Sosson, Marc; Bigot-Cormier, Florence; Bandy, William; Mortera Gutiérrez, Carlos
2011-08-01
The relative motion of the Pacific plate with respect to the North America plate is partitioned between transcurrent faults located along the western margin of Baja California and transform faults and spreading ridges in the Gulf of California. However, the amount of right lateral offset along the Baja California western margin is still debated. We revisited multibeam swath bathymetry data along the southern end of the Tosco-Abreojos fault system. In this area the depths are less than 1,000 m and allow a finer gridding at 60 m cell spacing. This improved resolution unveils several transcurrent right lateral faults offsetting the seafloor and canyons, which can be used as markers to quantify local offsets. The seafloor of the southern end of the Tosco-Abreojos fault system (south of 24°N) displays NW-SE elongated bathymetric highs and lows, suggesting a transtensional tectonic regime associated with the formation of pull-apart basins. In such an active tectonic context, submarine canyon networks are unstable. Using the deformation rate inferred from kinematic predictions and pull-apart geometry, we suggest a minimum age for the reorganization of the canyon network.
NASA Astrophysics Data System (ADS)
Lymer, Gaël; Vendeville, Bruno; Gaullier, Virginie; Chanier, Frank; Gaillard, Morgane
2017-04-01
The Western Tyrrhenian Basin, Mediterranean Sea, is a fascinating basin in terms of interactions between crustal tectonics, salt tectonics and sedimentation. The METYSS (Messinian Event in the Tyrrhenian from Seismic Study) project is based on 2100 km of HR seismic data acquired in 2009 and 2011 along the Eastern Sardinian margin. The main aim is to study the Messinian Salinity Crisis (MSC) in the Western Tyrrhenian Basin, but we also investigate the thinning processes of the continental crust and the timing of crustal vertical motions across this complex domain. Our first results allowed us to map the MSC seismic markers and to better constrain the timing of the rifting, which ended before the MSC across the upper and middle parts of the margin. We also evidenced that crustal activity persisted long after the end of rifting. This has been particularly observed on the upper margin, where several normal faults and a surprising compressional structure were recently active. In this study we investigate the middle margin, the Cornaglia Terrace, where the Mobile Unit (MU, mobile Messinian salt) accumulated during the MSC and acts as a décollement. Our goal is to ascertain whether or not crustal tectonics existed after the pre-MSC rift. This is a challenge where the MU is thick, because potential basement deformations could be first accommodated by the MU and therefore would not find any expression in the supra-salt layers (Upper Unit, UU and Plio-Quaternary, PQ). However our investigations clearly reveal interactions between crustal and salt tectonics along the margin. We thus evidence gravity gliding of the salt and its brittle sedimentary cover along basement slopes generated by the post-MSC tilting of some basement blocks bounded by crustal normal faults, formerly due to the rifting. Another intriguing structure also got our interest. It corresponds to a wedge-shaped of MU located in a narrow N-S half graben bounded to the west by a major, east-verging, crustal normal fault. Below the MU, the sediments thicken toward the fault. The top of the MU is sub-horizontal and the supra-salt layers are sub-horizontal. At a first glance this geometry would suggest that the pre-salt unit and the MU are syn-tectonic and that nothing happened after Messinian times. However some subtle evidence of deformations in the UU and PQ (an anticline to the west and a small west-verging normal fault in the east) imply that some crustal tectonics activity persisted after the end of the rifting. To understand why the salt unit is wedge-shaped, we considered several scenarii that we tested with physical modelling. We demonstrate that this structure is related to the post-rift activity of the major crustal normal fault, whose vertical motion has been cushioned by lateral flow of an initially tabular salt layer, which thinned upslope and inflated downslope, keeping the overlying sediments remained sub-horizontal. Such interactions between thin-skinned and thick-skinned tectonics highlight how the analysis of the salt tectonics is a powerful tool to reveal recent deep crustal tectonics in the Western Mediterranean Basin.
NASA Astrophysics Data System (ADS)
Martín, A.; González, M.; Helenes, J.; García, J.; Aragón, M.; Carreño, A.
2008-12-01
The northern Gulf of California contains two parallel, north-south trending rift basin systems separated by a basement-high. The interpretation of several exploration wells, and ~4500 km of seismic reflection data from PEMEX (Mexican national oil company) indicate that the tectonically active basins to the west (Wagner- Consag and Upper Delfin basins) may have initiated synchronously with the now abandoned Tiburón- Tepoca-Altar basins to the east in the Sonora margin. In both basin systems the lower sequence (A) is marine mudstone-siltstone, has parallel reflectors and a largely uniform thickness that reaches up to1.5 km, and gradually pinches out toward the lateral margins. This suggests that the unit was deposited prior to their segmentation by transtensional faulting. Marine microfossils from borehole samples from sequence A in the Tiburón and Consag basins indicates middle Miocene (>11.2 Ma) proto-Gulf conditions. Sequence B conformably overlies sequence A, and is characterized by up to 2 km growth strata with a fanning geometry that show a clear genetic relationship to the major transtensional faults that control the segmentation of the two basin systems. Sequence C in the Tiburón and Tepoca basins is comparatively thin (<800 m) and includes several unconformities, but is much less affected by faulting. In contrast, sequence C in the active Wagner, Consag and Upper Delfin basin is a much thicker (up to 2 km) growth sequence with abundant volcanic intrusions. Marked variations in sequence C in the different basin systems clearly demonstrate a major westward shift of deformation and subsidence at this time. The modern depocenter in Wagner-Consag basins is controlled by the Consag and Wagner faults, which trend parallel to the north ~20 km apart, and show opposite normal offset. These two faults merge at an oblique angle (70°-50°, respectively) into the Cerro Prieto transform fault to the north and likely accommodate an important amount of dextral shear. To the south the Consag and Wagner faults connect with a diffuse zone of deformation defined by a series of NE trending faults with moderate normal displacement in the Upper Delfin basin. These NE-trending faults intersect the northern strand of the Ballenas transform fault along the Baja California margin, whereas the eastern end of the NE-trending faults is poorly defined along the western flank of the central antiform. In summary, sequence A was likely deposited across most of the northern gulf in the late Miocene, sequence B marks the onset of two discrete transtensional basin systems controlled by both low and high-angle faults in late Miocene-Pliocene time, and sequence C marks the regional migration of plate- margin shearing to its present location in the western gulf. Thermal effects associated with abundant volcanism and sedimentation along the western margin of the gulf likely controlled the asymmetric partitioning plate margin and shearing during the most recent phase of oblique rifting.
Geology of the Molina Member of the Wasatch Formation, Piceance Basin, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenz, J.; Nadon, G.; LaFreniere, L.
1996-06-01
The Molina Member of the Wasatch Formation has been cored in order to assess the presence/absence and character of microbial communities in the deep subsurface. Geological study of the Molina Member was undertaken in support of the microbiological tasks of this project, for the purposes of characterizing the host strata and of assessing the potential for post-depositional introduction of microbes into the strata. The Molina Member comprises a sandy fluvial unit within a formation dominated by mudstones. Sandy to conglomeratic deposits of braided and meandering fluvial systems are present on the western and eastern margins of the basin respectively, althoughmore » the physical and temporal equivalence of these systems cannot be proven. Distal braided facies of planar-horizontal bedded sandstones are recognized on the western margin of the basin. Natural fractures are present in all Molina sandstones, commonly as apparent shear pairs. Core from the 1-M-18 well contains natural fractures similar to those found in outcrops, and has sedimentological affinities to the meandering systems of the eastern margin of the basin. The hydrologic framework of the Molina, and thus any potential post-depositional introduction of microbes into the formation, should have been controlled by approximately east-west flow through the natural fracture system, the geometries and extent of the sandstones in which the fractures occur, and hydraulic gradient. Migration to the well site, from outcropping recharge areas at the edge of the basin, could have started as early as 40 million years ago if the cored strata are connected to the eastern sedimentary system.« less
NASA Astrophysics Data System (ADS)
Deschamps, Anne; Lallemand, Serge
2002-12-01
Based on geological and geophysical data collected from the West Philippine Basin and its boundaries, we propose a comprehensive Cenozoic history of the basin. Our model shows that it is a back arc basin that developed between two opposed subduction zones. Rifting started around 55 Ma and spreading ended at 33/30 Ma. The initial spreading axis was parallel to the paleo-Philippine Arc but became inactive when a new spreading ridge propagated from the eastern part of the basin, reaching the former one at an R-R-R triple junction. Spreading occurred mainly from this second axis, with a quasi-continuous counter-clockwise rotation of the spreading direction. The Gagua and Palau-Kyushu ridges acted as transform margins accommodating the opening. Arc volcanism occurred along the Palau-Kyushu Ridge (eastern margin) during the whole opening of the basin, whereas the paleo-Philippine Arc decreased its activity between 43 and 36 Ma. The western margin underwent a compressive event in late Eocene-early Oligocene time, leading to the rising of the Gagua Ridge and to a short subduction episode along Eastern Luzon. In the western part of the basin, the spreading system was highly disorganized due to the presence of a mantle plume. Overlapping spreading centers and ridge jumps occurred toward the hot region and a microplate developed. Shortly after the end of the spreading, a late stage of amagmatic extension occurred between 30 and 26 Ma in the central part of the basin, being responsible for the deep rift valley that cut across the older spreading fabric.
NASA Astrophysics Data System (ADS)
Riel, Nicolas; Jaillard, Etienne; Guillot, Stéphane; Martelat, Jean-Emmanuel; Braun, Jean
2013-04-01
From Permian to Triassic times, tectonic plate reorganization provoked Pangaea breakup, counterclockwise rotation of Gondwana, closing of the Paleo-Tethys Ocean and opening of the Neo-Tethys oceanic realm. Meanwhile, the switch from arc volcanism to widespread S-type magmatism along the western South American active margin around 275-265 Ma is symptomatic of the onset of a large-scale Permian-Triassic thermal anomaly (PTTA)affecting the whole margin. Here we report metamorphic and U-Pb geochronological results from the El Oro metamorphic complex in the forearc zone of southwestern Ecuador, which recorded the last step, at 230-225 Ma, of the PTTA. The change in the drift direction of Gondwana from north to east at ca. 270 Ma was related to plate reorganization and provoked the verticalization of the subducted Panthalassa slab. As the slab verticalized, strong heat advection produced a high heat flow beneath the active margin inducing the development of a huge thermal anomaly responsible for the PTTA, which lasted 30 Ma. This voluminous magmatic activity culminated at the Permian-Triassic boundary, and may have contributed to the degradation of life conditions on the Earth surface.
Origin of the high plateau in the Central Andes, Bolivia, South America
NASA Astrophysics Data System (ADS)
Lamb, Simon; Hoke, Leonore
1997-08-01
The Bolivian Altiplano, in the Central Andes of South America, is part of the second largest high plateau on Earth. It is an elongate region of subdued relief, ˜1.2 × 105 km2 and ˜4 km above sea level, bounded by the Eastern Cordillera and volcanic arc (Western Cordillera). Here the crust is up to ˜75 km thick. We describe the Cenozoic geological evolution of this region, using a revised chronostratigraphy and an analysis of the crustal and lithospheric structure. Crustal shortening and magmatic addition and, locally, sedimentation are the main mechanisms of Cenozoic crustal thickening, leading to nearly 4 km of surface uplift since the Paleocene. Addition of mafic melts appears to be a first-order mechanism of Cenozoic crustal growth, contributing ˜40% of the crustal thickening beneath the volcanic arc. Removal of the basal part of the lithosphere may have caused two episodes of widespread arc and behind-arc mafic volcanism, at ˜23 Ma and 0 - ˜5 Ma, contributing to the surface uplift. The Altiplano originated as a sedimentary basin, several hundred kilometers wide, between the proto-Western Cordillera and a narrow zone of uplift (proto-Eastern Cordillera) farther east. The latter zone formed by inversion of the center of a wide lacustrine or marine Cretaceous - Paleocene basin close to sea-level at ˜45 Ma. A thickness of 2-4 km of Paleogene continental elastics accumulated in the proto-Altiplano basin. Subsequently, in the Oligocene, we estimate that this region and the western margin of the Eastern Cordillera were technically shortened ˜22% (˜65 km), resulting in ˜9 km of average crustal thickening. The Altiplano basin was rejuvenated at ˜25 Ma and subsequently flooded with up to 8 km thickness of detritus eroded from the uplifting Eastern and Western Cordilleras. Between ˜25 and 5 Ma, folding and thrusting in the western margin of the Eastern Cordillera migrated westward into the center of the Altiplano basin, essentially terminating deposition, except in local subbasins, and accommodating ˜13% (˜30 km) of shortening and an estimated ˜7 km of average crustal thickening. Subsequently, there has been strike-slip deformation and limited local thrusting (< 5 km of shortening). Geomorphological and geochronological evidence for 1.5-2 km of surface uplift of this region since the Late Miocene suggests ˜14 km of lower crustal thickening beneath an essentially rigid "lid", and can be explained by ˜100-150 km of underthrusting of the Brazilian shield and adjacent regions beneath the eastern margin of the Central Andes. The present subdued relief in the Altiplano may be a result of ductile flow in the lower crust and sedimentation and erosion in an internal drainage basin.
Doebrich, J.L.; Al-Jehani, A. M.; Siddiqui, A.A.; Hayes, T.S.; Wooden, J.L.; Johnson, P.R.
2007-01-01
The Neoproterozoic Ar Rayn terrane is exposed along the eastern margin of the Arabian shield. The terrane is bounded on the west by the Ad Dawadimi terrane across the Al Amar fault zone (AAF), and is nonconformably overlain on the east by Phanerozoic sedimentary rocks. The terrane is composed of a magmatic arc complex and syn- to post-orogenic intrusions. The layered rocks of the arc, the Al Amar group (>689 Ma to ???625 Ma), consist of tholeiitic to calc-alkaline basaltic to rhyolitic volcanic and volcaniclastic rocks with subordinate tuffaceous sedimentary rocks and carbonates, and are divided into an eastern and western sequence. Plutonic rocks of the terrane form three distinct lithogeochemical groups: (1) low-Al trondhjemite-tonalite-granodiorite (TTG) of arc affinity (632-616 Ma) in the western part of the terrane, (2) high-Al TTG/adakite of arc affinity (689-617 Ma) in the central and eastern part of the terrane, and (3) syn- to post-orogenic alkali granite (607-583 Ma). West-dipping subduction along a trench east of the terrane is inferred from high-Al TTG/adakite emplaced east of low-Al TTG. The Ar Rayn terrane contains significant resources in epithermal Au-Ag-Zn-Cu-barite, enigmatic stratiform volcanic-hosted Khnaiguiyah-type Zn-Cu-Fe-Mn, and orogenic Au vein deposits, and the potential for significant resources in Fe-oxide Cu-Au (IOCG), and porphyry Cu deposits. Khnaiguiyah-type deposits formed before or during early deformation of the Al Amar group eastern sequence. Epithermal and porphyry deposits formed proximal to volcanic centers in Al Amar group western sequence. IOCG deposits are largely structurally controlled and hosted by group-1 intrusions and Al Amar group volcanic rocks in the western part of the terrane. Orogenic gold veins are largely associated with north-striking faults, particularly in and near the AAF, and are presumably related to amalgamation of the Ar Rayn and Ad Dawadimi terranes. Geologic, structural, and metallogenic characteristics of the Ar Rayn terrane are analogous to the Andean continental margin of Chile, with opposite subduction polarity. The Ar Rayn terrane represents a continental margin arc that lay above a west-dipping subduction zone along a continental block represented by the Afif composite terrane. The concentration of epithermal, porphyry Cu and IOCG mineral systems, of central arc affiliation, along the AAF suggests that the AAF is not an ophiolitic suture zone, but originated as a major intra-arc fault that localized magmatism and mineralization. West-directed oblique subduction and ultimate collision with a land mass from the east (East Gondwana?) resulted in major transcurrent displacement along the AAF, bringing the eastern part of the arc terrane to its present exposed position, juxtaposed across the AAF against a back-arc basin assemblage represented by the Abt schist of the Ad Dawadimi terrane. Our findings indicate that arc formation and accretionary processes in the Arabian shield were still ongoing into the latest Neoproterozoic (Ediacaran), to about 620-600 Ma, and lead us to conclude that evolution of the Ar Rayn terrane (arc formation, accretion, syn- to postorogenic plutonism) defines a final stage of assembly of the Gondwana supercontinent along the northeastern margin of the East African orogen. ?? 2007 Elsevier B.V. All rights reserved.
Tectonic elements of the continental margin of East Antarctica, 38-164ºE
O'Brien, P.E.; Stagg, H.M.J.
2007-01-01
The East Antarctic continental margin from 38–164ºE is divided into western and eastern provinces that developed during the separation of India from Australia–Antarctica (Early Cretaceous) and Australia from Antarctica (Late Cretaceous). In the overlap between these provinces the geology is complex and bears the imprint of both extension/spreading episodes, with an overprinting of volcanism. The main rift-bounding faults appear to approximately coincide with the outer edge of the continental shelf. Inboard of these faults, the sedimentary cover thins above shallowing basement towards the coast where crystalline basement generally crops out. The continental slope and the landward flanks of the ocean basins, are blanketed by up to 9–10 km of mainly post-rift sediments in margin-parallel basins, except in the Bruce Rise area. Beneath this blanket, extensive rift basins are identified off Enderby and Wilkes Land/Terre Adélie; however, their extent and detailed structures are difficult to determine.
NASA Astrophysics Data System (ADS)
Picha, Frank; Gibson, Richard I.
1985-07-01
The structural pattern set by late Precambrian rifting and fragmentation of the North American continent is apparent in both sedimentary and tectonic trends in western Utah and eastern Nevada. The late Precambrian cratonic margin (Cordilleran hingeline) displays several prominent structural features, such as the Wasatch and Ancient Ephraim faults, Fillmore arch and northeast-trending lineaments, which were repeatedly reactivated as structural uplifts, ramps, strike-slip faults, and extensional detachments. The renewed activity affected, among others, the geometry of the late Paleozoic Ancestral Rocky Mountain uplifts and basins, the extent of the Jurassic Arapien basin, the sedimentary pattern of the Cretaceous foreland basin, the geometry of the Sevier orogenic belt, and the extent and type of Basin-and-Range extensional tectonics. The rifted cratonic margin has thus remained a major influence on regional structures long after rifting has ceased. *Present address: Everest Geotech, 10101 Southwest Freeway, Houston, Texas 77074
Song, Huiming; Liu, Yu; Li, Qiang; Gao, Na; Ma, Yongyong; Zhang, Yanhua
2014-01-01
Tree-ring samples from Chinese Pine (Pinus tabulaeformis Carr.) collected at Mt. Shimen on the western Loess Plateau, China, were used to reconstruct the mean May–July temperature during AD 1630–2011. The regression model explained 48% of the adjusted variance in the instrumentally observed mean May–July temperature. The reconstruction revealed significant temperature variations at interannual to decadal scales. Cool periods observed in the reconstruction coincided with reduced solar activities. The reconstructed temperature matched well with two other tree-ring based temperature reconstructions conducted on the northern slope of the Qinling Mountains (on the southern margin of the Loess Plateau of China) for both annual and decadal scales. In addition, this study agreed well with several series derived from different proxies. This reconstruction improves upon the sparse network of high-resolution paleoclimatic records for the western Loess Plateau, China. PMID:24690885
Geologic map of the Morena Reservoir 7.5-minute quadrangle, San Diego County, California
Todd, Victoria R.
2016-06-01
IntroductionMapping in the Morena Reservoir 7.5-minute quadrangle began in 1980, when the Hauser Wilderness Area, which straddles the Morena Reservoir and Barrett Lake quadrangles, was mapped for the U.S. Forest Service. Mapping was completed in 1993–1994. The Morena Reservoir quadrangle contains part of a regional-scale Late Jurassic(?) to Early Cretaceous tectonic suture that coincides with the western limit of Jurassic metagranites in this part of the Peninsular Ranges batholith (PRB). This suture, and a nearly coincident map unit consisting of metamorphosed Cretaceous and Jurassic back-arc basinal volcanic and sedimentary rocks (unit KJvs), mark the boundary between western, predominantly metavolcanic rocks, and eastern, mainly metasedimentary, rocks. The suture is intruded and truncated by the western margin of middle to Late Cretaceous Granite Mountain and La Posta plutons of the eastern zone of the batholith.
Evidence for Active Westward Tilting of Fortymile Wash, Nye County, Nevada
NASA Astrophysics Data System (ADS)
McKague, H. L.; Sims, D. W.; Waiting, D. J.
2006-12-01
Fortymile Wash is located east and south of a potential high-level nuclear waste repository at Yucca Mountain, Nevada. Several lines of evidence suggest that this may be an area of active westward tilting associated with the continued development of Crater Flat basin and slip on the Bare Mountain normal fault. Near the southern end of Busted Butte, the incised channel of Fortymile Wash changes trend downgradient from south to south-southwest. Further southward, the incised main channel grades to a divergent distributary channel system that shows evidence of increasingly westward tilt. Viewed in profiles oriented normal to the incised channel and across the Fortymile Wash distributary system, topographic elevation of the western margin of the fan decreases southward, resulting in the elevation of the western margin of Fortymile Basin being as much as 18 m [59 ft] lower than the channel system on the eastern fan margin. Mapping of the surficial deposits within the distributary channel system (Pelletier, et al., 2005; Geophy. Res. Ltr., Vol. 32) may be interpreted to show a westward shift (downslope) of the locus of erosional activity toward the topographically lower western fan margin. Most of the older alluvium (Qa3 {86±40-16 ka}) has been eroded from the eastern portion, while incipient incision into the older alluvium is occurring on the western side of the distributary channel system. The results from level-line benchmark surveys (Gilmore, 1992; USGS OFR 92- 450) from 1915 and 1984 show gradual and systematic elevation changes east of the Bare Mountain fault to just east of Amargosa City, Nevada, where a step-like increase occurs. The level-line surveys are near and along the path of U.S. Highway 95, which traverses the distributary channel system of the Fortymile Wash alluvial fan in the southern portion of the Fortymile Wash basin. These lines of evidence indicate disequilibrium in the channel system that would result from active westward tilting of the Fortymile Wash basin. The active tilting in Fortymile Wash may be associated with continued development of Crater Flat basin and slip on the Bare Mountain fault, with the steeply dipping southern segment of the Bare Mountain fault not only controlling the southward-increasing subsidence in Southern Crater Flat, but also the changes observed in the southern Fortymile Wash basin 20 km [12.5 mi] to the southeast. An alternative interpretation is westward tilting, which is the result of active, but not evident, faulting beneath or near Fortymile Wash. Additional evidence indicating the presence of a fault beneath Fortymile Wash is the easterly dip of Miocene tuffs in Fran Ridge north of Busted Butte. This abstract is an independent product of the Center for Nuclear Waste Regulatory Analyses and does not necessarily reflect the view or regulatory position of the U.S. Nuclear Regulatory Commission.
NASA Astrophysics Data System (ADS)
Menéndez, Silvia; Rodríguez-Martínez, Marta; Moreno-Eris, Elena; Perejón, Antonio; Reitner, Joachim
2010-05-01
Archaeocyath-rich facies are located in a quarry close to Urda village, at Toledo Mountains, Spain. The outcrops belong to the Caliza de los Navalucillos Formation and they record a considerably high diverse archaeocyath assemblage in the Lower Cambrian successions from the Central Iberian Zone (Julivert et al. 1972 [1974]). In fact, it is first time recorded the presence of Agyrekocyathus, Dokidocyathus, and Plicocyathus in the Central Iberian Zone. Therefore Plicocyathus is no longer exclusive to biozone VI in Spain. The presence of Anthomorpha is characteristic for the early Botomian, presently early Stage 4 (ICS, 2009), and the assemblage corresponds to the biozone VII (late Ovetian, following the biozonation of Perejón & Moreno-Eiris, 2006). The fossiliferous part of the succession is formed by seven lithofacies, all of them tectonically folded and with a low grade metamorphic overprint. They are comprised by two main groups of facies: (a) mound-shaped to massive lithofacies (A1, A2, A3, A4) and (b) massive to bedded and nodular lithofacies (B1, B2, B3). Archaeocyaths occur in several facies: (A1) mound-shaped white marble with irregular to stromatactoid cavities; (A2) massive mottled white to grey limestone; (A3) massive grey limestone with slumps levels; (A4) massive archaeocyath-rich orange limestone; as well as in carbonate nodules embedded in siltstones and cherts (B1, B2 and B3). The best preserved assemblage comes from the nodule record, where fossils are partially pyritized. This type of preservation is exceptional and has never been described before. XRD and wavelength-dispersive electron microprobe analyses reveal the presence of pyrite and pyrrotine partially altered to iron oxides and hydroxides (hematite and goethite) surrounding the archaeocyath cups. In Central Iberian Zone, the development of mounds and nodular facies like those described here is unusual, although the Botomian marks the peak for Early Cambrian archaeocyathan-microbial mounds in Western Gondwana margin. Powdered microsamples have been analysed for their elemental and isotopic composition (δ13C values range from + 0.41 to + 3.05). Sulphur minerals and silicates where analyzed with XRD and wavelength-dispersive electron microprobe. Major elements were measured with ICP-OES and minor and trace elements were analyzed with ICP-MS. These are the first palaeontological, sedimetological, geochemical and isotopical data provided to reconstruct the depositional environment of these Archaeocyath-rich facies at the Western Gondwana margin. References Julivert, M., Fontboté, J.M., Ribeiro, A., Nabais Conde L.E. 1972. Mapa tectónico de la Península Ibérica y Baleares, Escala 1: 1.000.000, Memoria Explicativa [1974], 113 pp. Instituto Geológico y Minero de España. Perejón, A., Moreno-Eiris, E. 2006. Biostratigraphy and palaeobiography of the archaeocyaths on the south-western margin of Gondwana. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 157 (4): 611-627.
Modelling of sea floor spreading initiation and rifted continental margin formation
NASA Astrophysics Data System (ADS)
Tymms, V. J.; Isimm Team
2003-04-01
Recent observations of depth dependent (heterogeneous) stretching where upper crustal extension is much less than that of the lower crust and lithospheric mantle at both non-volcanic and volcanic margins plus the discovery of broad domains of exhumed continental mantle at non-volcanic rifted margins are not predicted by existing quantitative models of rifted margin formation which are usually based on intra-continental rift models subjected to very large stretching factors. New conceptual and quantitative models of rifted margin formation are required. Observations and continuum mechanics suggest that the dominant process responsible for rifted continental margin formation is sea-floor spreading of the young ocean ridge, rather than pre-breakup intra-continental rifting. Simple fluid flow models of ocean ridge processes using analytical iso-viscous corner-flow demonstrate that the divergent motion of the upwelling mantle beneath the ocean ridge, when viewed in the reference frame of the young continental margin, shows oceanward flow of the lower continental crust and lithospheric mantle of the young rifted margin giving rise to depth dependent stretching as observed. Single-phase fluid-models have been developed to model the initiation of sea-floor spreading and the thermal, stretching and thinning evolution of the young rifted continental margin. Finite element fluid-flow modelling incorporating the evolving temperature dependent viscosity field on the fluid flow also show depth dependent stretching of the young continental margin. Two-phase flow models of ocean ridges incorporating the transport of both solid matrix and melt fluid (Spiegelman &Reynolds 1999) predict the divergent motion of the asthenosphere and lithosphere matrix, and the focusing of basaltic melt into the narrow axial zone spreading centre at ocean ridges. We are adapting two-phase flow models for application to the initiation of sea-floor spreading and rifted continental margin formation. iSIMM investigators are V Tymms, NJ Kusznir, RS White, AM Roberts, PAF Christie, N Hurst, Z Lunnon, CJ Parkin, AW Roberts, LK Smith, R Spitzer, A. Davies and A. Surendra, with funding from NERC, DTI, Agip UK, BP, Amerada Hess Ltd., Anadarko, Conoco, Phillips, Shell, Statoil, and WesternGeco.
Lidz, B.H.; McNeill, D.F.
1995-01-01
New foraminiferal evidence from two boreholes on the paleoshelf and slope of western Great Bahama Bank has wide-ranging implications for understanding formation and evolution of carbonate-platform margins. The new data, abundant well-preserved planktic foraminifera, were obtained by disaggregating samples from intercalated pelagic layers and selected parts of thick hemipelagic limestone. The new data define six units in one hole and seven in the other, bracket the biozones present and their ages, indicate different sedimentation rates, and show that within the limits of biostratigraphic resolution the biozones are correlative between the holes. Most importantly, the revised ages show that the paleoshelf borehole probably penetrated the late Miocene rather than middle Miocene. -from Authors
Kochmanski, Joseph; Marchlewicz, Elizabeth H; Savidge, Matthew; Montrose, Luke; Faulk, Christopher; Dolinoy, Dana C
2017-03-01
Environmental factors, including exogenous exposures and nutritional status, can affect DNA methylation across the epigenome, but effects of exposures on age-dependent epigenetic drift remain unclear. Here, we tested the hypothesis that early-life exposure to bisphenol A (BPA) and/or variable diet results in altered epigenetic drift, as measured longitudinally via target loci methylation in paired mouse tail tissue (3 wks/10 mos old). Methylation was quantified at two repetitive elements (LINE-1, IAP), two imprinted genes (Igf2, H19), and one non-imprinted gene (Esr1) in isogenic mice developmentally exposed to Control, Control+BPA (50μg/kg diet), Mediterranean, Western, Mediterranean+BPA, or Western+BPA diets. Across age, methylation levels significantly (p<0.050) decreased at LINE-1, IAP, and H19, and increased at Esr1. Igf2 demonstrated Western-specific changes in early-life methylation (p=0.027), and IAP showed marginal negative modification of drift in Western (p=0.058) and Western+BPA (p=0.051). Thus, DNA methylation drifts across age, and developmental nutritional exposures can alter age-related methylation patterns. Copyright © 2016 Elsevier Inc. All rights reserved.
Oguz, Temel; Macias, Diego; Garcia-Lafuente, Jesus; Pascual, Ananda; Tintore, Joaquin
2014-01-01
A three dimensional biophysical model was employed to illustrate the biological impacts of a meandering frontal jet, in terms of efficiency and persistency of the autotrophic frontal production, in marginal and semi-enclosed seas. We used the Alboran Sea of the Western Mediterranean as a case study. Here, a frontal jet with a width of 15-20 km, characterized by the relatively low density Atlantic water mass, flows eastward within the upper 100 m as a marked meandering current around the western and the eastern anticyclonic gyres prior to its attachment to the North African shelf/slope topography of the Algerian basin. Its inherent nonlinearity leads to the development of a strong ageostrophic cross-frontal circulation that supplies nutrients into the nutrient-starved euphotic layer and stimulates phytoplankton growth along the jet. Biological production is larger in the western part of the basin and decreases eastwards with the gradual weakening of the jet. The higher production at the subsurface levels suggests that the Alboran Sea is likely more productive than predicted by the satellite chlorophyll data. The Mediterranean water mass away from the jet and the interiors of the western and eastern anticyclonic gyres remain unproductive.
NASA Astrophysics Data System (ADS)
Betton, P. J.; Civetta, L.
1984-11-01
Neodymium isotope and REE analyses of recent volcanic rocks and spinel lherzolite nodules from the Afar area are reported. The 143Nd/ 144Nd ratios of the volcanic rocks range from 0.51286 to 0.51304, similar to the range recorded from Iceland. However, the 87Sr/ 86Sr ratios display a distinctly greater range (0.70328-0.70410) than those reported from the primitive rocks of Iceland. Whole rock samples and mineral separates from the spinel lherzolite nodules exhibit uniform 143Nd/ 144Nd ratios (ca. 0.5129) but varied 87Sr/ 86Sr ratios in the range 0.70427-0.70528. The Sr sbnd Nd isotope variations suggest that the volcanic rocks may have been produced by mixing between two reservoirs with distinct isotopic compositions. Two possible magma reservoirs in this area are the source which produced the "MORB-type" volcanics in the Red Sea and Gulf of Aden and the anomalous source represented by the nodule suite. The isotopic composition of the volcanics is compatible with mixing between these two reservoirs. It is shown that the anomalous source with a high 87Sr/ 86Sr ratio cannot have been produced by simple processes of partial melting and mixing within normal mantle. Instead the high 87Sr/ 86Sr is equated with a fluid phase. A primitive cognate fluid, subducted seawater or altered oceanic lithosphere may have been responsible for the generation of the source with a high 87Sr/ 86Sr ratio.
2013-01-01
Background A cross-sectional study was carried out in four districts of the Afar region in Ethiopia to determine the prevalence of brucellosis in camels, and to identify risky practices that would facilitate the transmission of zoonoses to humans. This study involved testing 461 camels and interviewing 120 livestock owners. The modified Rose Bengal plate test (mRBPT) and complement fixation test (CFT) were used as screening and confirmatory tests, respectively. SPSS 16 was used to analyze the overall prevalence and potential risk factors for seropositivity, using a multivariable logistic regression analysis. Results In the camel herds tested, 5.4% had antibodies against Brucella species, and the district level seroprevalence ranged from 11.7% to 15.5% in camels. The logistic regression model for camels in a herd size > 20 animals (OR = 2.8; 95% CI: 1.16-6.62) and greater than four years of age (OR = 4.9; 95% CI: 1.45-16.82) showed a higher risk of infection when compared to small herds and those ≤ 4 years old. The questionnaire survey revealed that most respondents did not know about the transmission of zoonotic diseases, and that their practices could potentially facilitate the transmission of zoonotic pathogens. Conclusions The results of this study revealed that camel brucellosis is prevalent in the study areas. Therefore, there is a need for implementing control measures and increasing public awareness in the prevention methods of brucellosis. PMID:24344729
Hotspots and superswell beneath Africa inferred from surface wave anisotropic tomography.
NASA Astrophysics Data System (ADS)
Sebai, A.; Stutzmann, E.; Montagner, J.-P.; Sicilia, D.; Beucler, E.
2003-04-01
In order to study the interaction at depth of hotspots with lithosphere and asthenosphere beneath Africa, we have determined an anisotropic tomographic model using Rayleigh and Love waves. We computed phase velocities along 1480 Rayleigh wave and 452 Love wave paths crossing Africa. For each path, fundamental mode and overtone phase velocities are computed in the period range 46-240sec by waveform inversion using the method derived by Beucler at al. (2003). These phase velocities are corrected for the effect of shallow layers and their lateral variations in velocity and anisotropy are then obtained using the method of Montagner (1986). Rayleigh and Love wave phase velocity maps are inverted together with the corresponding errors to obtain the anisotropic 3D S-wave velocity model. In this model, the Afar hotspot corresponds to the strongest negative velocity anomaly. The Tibesti and Darfur hotspots are located close to the Afar zone and the possible connection between the two areas is investigated. At shallow depth, the rift system of West and Central Africa is characterized by a negative velocity anomaly where it is difficult to separate the influence of the Mt Cameroun, Darfur and Tibesti hospots. In the superswell area, the positive anomaly at shallow depth is consistent with the existence of elevated plateaux and high bathymetry suggesting that the superplume is pushing the lithosphere upward. Anisotropy directions are in agreement with the convergence of Africa toward Eurasia with a roughly North-South fast direction.
Rethinking geochemical feature of the Afar and Kenya mantle plumes and geodynamic implications
NASA Astrophysics Data System (ADS)
Meshesha, Daniel; Shinjo, Ryuichi
2008-09-01
We discuss the spatial and temporal variation in the geochemistry of mantle sources which were sampled by the Eocene to Quaternary mafic magmas in the vicinity of the Afar and Kenya plume upwelling zones, East Africa. Despite the contributions of lithospheric and crustal sources, carefully screened Eocene to Quaternary mafic lavas display wide range of Sr-Nd-Pb isotopic and incompatible trace elemental compositions that can be attributed to significant intraplume heterogeneity. The geochemical variations reflect the involvement of at least four mantle plume components as sources for the northeastern Africa magmatism: (1) isotopically depleted but trace element-enriched component; (2) component characterized by radiogenic Pb isotope signatures (HIMU?); (3) enriched mantle-like component; and (4) high-3He/4He-type (as HT2-type basalts) plume component. The first component disappears in the Miocene-Quaternary magmatism, and the second component is hardly recognized after the eruption of Miocene basalt in southern Ethiopia. Plume-unrelated depleted asthenosphere starts to involve at a nascent stage of seafloor spreading centers in the Red Sea and Gulf of Aden. The other two-plume components have persisted from the late Eocene to present, but their proportions have changed through time and space. We propose a model of multiple impingements of plumelets within the broad upwelling zone connected to the African Superplume in the lower mantle beneath southern Africa. The plumelet contains a matrix of high-3He/4He-type component with blobs, streaks, or ribbons of other components.
Mega debris flow deposits on the western Wilkes Land margin, East Antarctica
Donda, F.; O'Brien, P.E.; De Santis, L.; Rebesco, M.; Brancolini, Giuliano
2007-01-01
Multichannel seismic data collected off Western Wilkes Land (East Antarctica) reveal the occurrence of mega debris flow deposits on the lower slope and rise that were formed throughout the Miocene. Commonly, debris flow units are separated by thin deposits of well-stratified facies, interpreted as predominantly glaciomarine mixed contouritic and distal turbidite deposits. These units could act as weak layers and could have played a major role in the slope instability. High sedimentation rates, due to large amounts of sediment delivered from a temperate, wet-based ice sheet, constituted a key factor in the sediment failures. The main trigger mechanism would probably have been earthquakes enhanced by isostatic rebound following major ice sheet retreats.
Do Continental Shelves Act as an Atmospheric CO2 Sink?
NASA Astrophysics Data System (ADS)
Cai, W.
2003-12-01
Recent air-to-sea CO2 flux measurements at several major continental shelves (European Atlantic Shelves, East China Sea and U.S. Middle Atlantic Bight) suggest that shelves may act as a one-way pump and absorb atmospheric CO2 into the ocean. These observations also favor the argument that continental shelves are autotrophic (i.e., net production of organic carbon, OC). The U.S. South Atlantic Bight (SAB) contrasts these findings in that it acts as a strong source of CO2 to the atmosphere while simultaneously exporting dissolved inorganic carbon (DIC) to the open ocean. We report pCO2, DIC, and alkalinity data from the SAB collected in 8 cruises along a transect from the shore to the shelf break in the central SAB. The shelf-wide net heterotrophy and carbon exports in the SAB are subsidized by the export of OC from the abundant intertidal marshes, which are a sink for atmospheric CO2. It is proposed here that the SAB represents a marsh-dominated heterotrophic ocean margin as opposed to river-dominated autotrophic margins. To further investigate why margins may behave differently in term of CO2 sink/source, the physical and biological conditions of several western boundary current margins are compared. Based on this and other studies, DIC export flux from margins to the open ocean must be significant in the overall global ocean carbon budget.
Haeussler, P.J.; Bradley, D.C.; Wells, R.E.; Miller, M.L.
2003-01-01
Onshore evidence suggests that a plate is missing from published reconstructions of the northeastern Pacific Ooean in Paleocene- Eocene time. The Resurrection plate, named for the Resurrection Peninsula ophiolite near Seward, Alaska, was located east of the Kula plate and north of the Farallon plate. We interpret coeval near-trench magmatism in southern Alaska and the Cascadia margin as evidence for two slab windows associated with trench-ridge-trench (TRT) triple junctions, which formed the western and southern boundaries of the Resurrection plate. In Alaska, the Sanak-Baranof belt of near-trench intrusions records a west-to-east migration, from 61 to 50 Ma, of the northern TRT triple junction along a 2100-km-long section of coastline. In Oregon, Washington, and southern Vancouver Island, voluminous basaltic volcanism of the Siletz River Volcanics, Crescent Formation, and Metchosin Volcanics occurred between ca. 66 and 48 Ma. Lack of a clear age progression of magmatism along the Cascadia margin suggests that this southern triple junction did not migrate significantly. Synchronous near-trench magmatism from southeastern Alaska to Puget Sound at ca. 50 Ma documents the middle Eocene subduction of a spreading center, the crest of which was subparallel to the margin. We interpret this ca. 50 Ma event as recording the subduction-zone consumption of the last of the Resurrection plate. The existence and subsequent subduction of the Resurrection plate explains (1) northward terrane transport along the southeastern Alaska-British Columbia margin between 70 and 50 Ma, synchronous with an eastward-migrating triple junction in southern Alaska; (2) rapid uplift and voluminous magmatism in the Coast Mountains of British Columbia prior to 50 Ma related to subduction of buoyant, young oceanic crust of the Resurrection plate; (3) cessation of Coast Mountains magmatism at ca. 50 Ma due to cessation of subduction, (4) primitive mafic magmatism in the Coast Mountains and Cascade Range just after 50 Ma, related to slab-window magmatism, (5) birth of the Queen Charlotte transform margin at ca. 50 Ma, (6) extensional exhumation of high-grade metamorphic terranes and development of core complexes in British Columbia, Idaho, and Washington, and extensional collapse of the Cordilleran foreland fold-and-thrust belt in Alberta, Montana, and Idaho after 50 Ma related to initiation of the transform margin, (7) enigmatic 53-45 Ma magmatism associated with extension from Montana to the Yukon Territory as related to slab breakup and the formation of a slab window, (8) right-lateral margin-parallel strike-slip faulting in southern and western Alaska during Late Cretaceous and Paleocene time, which cannot be explained by Farallon convergence vectors, and (9) simultaneous changes in Pacific-Farallon and Pacific-Kula plate motions concurrent with demise of the Kula-Resurrection Ridge.
Influence of the Iceland mantle plume on North Atlantic continental margins
NASA Astrophysics Data System (ADS)
White, R. S.; Isimm Team
2003-04-01
Early Tertiary breakup of the North Atlantic was accompanied by widespread magmatism. The histories of the Iceland mantle plume, of rifting and of magmatism are intimately related. The magmatism provides a challenge both to imaging structure, and to modelling the subsidence and development of the continental margins. We report new work which integrates state-of-the-art seismic imaging and new acquisition on the Atlantic volcanic margins with new techniques for modelling their evolution. We discuss the distribution of igneous rocks along the North Atlantic margins and discuss the temporal and spatial variations in the Iceland mantle plume in the early Tertiary, which have largely controlled this pattern of magmatism. Igneous rocks are added to the crust on rifted margins as extrusive lavas, as sills intruded into the sub-surface and as lower crustal intrusions or underplate. Each provide different, but tractable problems to seismic imaging. We show that many of these difficulties can be surmounted by using very long offsets (long streamers or two-ship methods) with a broad-band, low-frequency source, and by using fixed ocean bottom receivers. We report results from surveys on the North Atlantic continental margins using these methods. Imaging results are shown from the recent FLARE project and from the iSIMM project, which recorded new seismic data recorded in summer 2002. The iSIMM project acquired two seismic surveys, using 85 4-component ocean bottom seismometers with long streamers for wide-angle data, and vertical arrays for far-field source signature recording. One survey crosses the Faroes Shelf and adjacent continental margin, and a second the Hatton-Rockall Basin, Hatton Bank and adjacent oceanic crust. The Faroes wide-angle profiles were overshot by WesternGeco's Topaz using three single-sensor, Q-Marine streamers, 12km plus two 4km. We designed deep-towed, broad-band low-frequency sources tuned to enhance the bubble pulses, with peak frequencies at 8-11 Hz. The OBS survey used a 14-gun, 6,300 cu. in. array towed at 20 m depth, and the Q-marine survey used a 48-gun, 10,170 cu. in. array, with shot-by-shot signature recording. They provided excellent arrivals to ranges beyond 120 km, with penetration through the basalts and well into the upper mantle. iSIMM investigators are R.S. White, N.J. Kusznir, P.A.F. Christie, A.M. Roberts, N. Hurst, Z.C. Lunnon, C.J. Parkin, A.W. Roberts, L.K. Smith, R. Spitzer , V. Tymms, A. Davies and A. Surendra, with funding from NERC, DTI, Agip UK, BP, Amerada Hess Ltd., Anadarko, Conoco, Phillips, Shell, Statoil, and WesternGeco
NASA Astrophysics Data System (ADS)
Bonnet, Nicolas; Arnaud, Nicolas; Beauvais, Anicet; Chardon, Dominique
2013-04-01
The high-elevation passive margin of Southwest India is marked by the Western Ghats escarpment, which separates the coastal domain from the low-relief East-dipping Mysore plateau. The escarpment has evolved from the Seychelles rifting at ~ 63 Ma following the Deccan traps volcanic event at ~ 65-63 Ma. This escarpment results from differential erosion processes across the passive margin, the rate and timing of which depend upon whether the margin has evolved according to a model of downwarped or rising flank topography. We explore the post-rift evolution of the South Indian passive margin through the characterisation of stepped relicts of lateritic paleosurfaces across that margin, and notably by 40Ar-39Ar dating of in-situ formed K-Mn oxides in supergene Mn-ore deposits carried by these paleosurfaces. The genesis and maturation of Mn-ore deposits are generally linked to progressive weathering processes of the paleosurfaces, which expose them. Dating of K-Mn oxides thus document the timing of these processes [1], and potentially the ages of the altered paleosurface. Moreover, the elevation differences between successive lateritic paleosurfaces of different ages may provide denudation rates for the considered time spans. Previous work (e.g., [2]) and our own field investigations, allow identifying three main lateritic paleosurfaces on the plateau at altitude ranges of 1000-900 m (S2), 900-800 m (S3) and 800-700 m (S3d), and a lower paleosurface in the coastal domain at 150-50 m (S4). K-Mn oxides (cryptomelane) were sampled in Mn ore deposits from different paleosurfaces, particularly in the coastal area around Goa on S4 and in Sandur and Shimoga Mn-ore deposits exposed on S2 and S3. The 40Ar-39Ar ages obtained from carefully characterised mineralogical assemblages range from ~ 26 to ~ 36 Ma in the Sandur Mn-ore deposit indicating intense lateritic weathering processes at the Eocene-Oligocene transition underneath paleosurface S2. Similar ages of ~ 24 and ~ 32 Ma are obtained in two Shimoga Mn ore deposits carried by S3 and S2, respectively. A younger age (~ 21 Ma) is also obtained in a Goa deposit carried by S4. These first results suggest that the Western Ghats passive margin escarpment was established at the latest by early Miocene and that at least part of the inland Mysore plateau morphogenesis was achieved at that time. [1] Beauvais A. et al., Journal of Geophysical Research 113, F04007, 2008. [2] Gunnell, Y., Basin Research 10, 281-310, 1998.
Nelson, C.H.; Maldonado, A.
1990-01-01
The Ebro continental margin sedimentation system originated with a Messinian fluvial system. This system eroded both a major subaerial canyon cutting the margin southeastward from the present Ebro Delta and an axial valley that drained northeastward down Valencia Trough. Post-Messinian submergence of this topography and the Pliocene regime of high sea levels resulted in a marine hemipelagic drape over the margin. Late Pliocene to Pleistocene glacial climatic cycles, drainagebasin deforestation, and sea-level lowstands combined to increase sediment supply, cause the margin to prograde, and create a regime of lowstand sediment-gravity flows in the deeper margin. The depositional patterns of regressive, transgressive and highstand sea-level regimes suggest that location of the sediment source near the present Ebro Delta throughout the late Cenozoic, southward current advection of sediment, and greater subsidence in the southern margin combined to cause generally asymmetric progradation of the margin to the southeast. Thicker, less stable deposits filling the Messinian subaerial canyon underwent multiple retrograde failures, eroded wide gullied canyons and formed unchanneled base-of-slope sediment aprons in the central margin area; other margin areas to the north and south developed a series of channel-levee complexes. On the basin floor, the formation of Valencia Valley over the Messinian subaerial valley and earlier faults led to draining of about 20% of the Ebro Pleistocene sediment from channel-levee complexes through the valley to prograde Valencia Fan as much as 500 km northeast of the margin. Thus, the Ebro margin has two growth directions, mainly southeastward during higher sea levels, and eastward to northeastward during lower sea levels. The northeastward draining of turbidity currents has produced unusually thin and widely dispersed turbidite systems compared to those on ponded basin floors. During the past few centuries, man's impact has exceeded natural controls on Ebro margin growth. Deforestation of the drainage basin more than doubled the normal Holocene sediment supply, and construction of dams then reduced the supply by 95%. This reduction of the past 50 years has caused erosion of the delta and contamination of bottom sediment because normal Holocene sediment discharge is not available to prograde the delta or help dilute pollutants. ?? 1990.
NASA Astrophysics Data System (ADS)
Motoki, A.; Motoki, K. F.; Sichel, S. E.; Souza, K.; Bueno, G. V.; Poseidon
2013-05-01
The authors present gravimetric and geomorphologic analyses for the Vitória-Trindade volcanic seamount chain, State of Espírito Santo, Brazil. The seamounts are generally of 30 km in base diameter, 10 km in flat-top diameter, and 2500 to 4000 m in relative height. The flat-tops are constant in depth, without evidence of basement subsidence. The western half of the chain shows basement elevation of 2000 m, which took place before the eruptions. The size and frequency of the seamounts become smaller to the east. Most of them have conical form of central eruptions, and some large ones are of elongated form of fissure eruptions. The volcanic seamounts usually have Bouguer anomaly about 100 mGal lower than the adjacent area, showing funnel-shaped Bouguer depression. Large volcanoes show ring-like Bouguer structure composed of the central high and the marginal low. The marginal low is about 100 mGal lower than the adjacent abyssal plane and the central high is about 80 mGal higher than the marginal low. Very large volcanoes have bull's eye-like low Bouguer sites along the marginal low. On the foot of the volcanoes, there is the area with Bouguer anomaly 20 to 40 mGal higher, called peripheral high. These observations suggest the following growth history of the volcanic seamounts. At the initial stage, repeated central eruptions of lava flow construct the volcanic edifice. The weight of the volcano is sustained by mechanical firmness of the basement. The Bouguer anomaly is characterized by funnel-shaped depression. At the advanced stage, gabbroic radial dyke intrusion occurs along the central conduit in the upper level of the volcanic edifice, which is evidenced by the central Bouguer high. The seamount is supported mainly by mechanical firmness and partially by isostatic compensation of crustal down-buckling. At the highly advanced stage, the intrusion takes place into the lower level of the main volcanic edifice resulting lateral eruptions along its foot, which is shown by the bull's eye-like Bouguer lows. The crustal down-buckling and consequent isostatic compensation become relevant. The peripheral Bouguer high could be the rebound of the crustal down-buckling. The regional Bouguer anomaly suggests lithosphere thinning along the Vitória-Trindade Chain, which is relevant at the western end of the chain and becomes weak to east. The magmatism and tectonism of are strong at the western end of the chain and become less intense to the east.
Ring-slope interactions and the formation of the western boundary current in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Vidal, VíCtor M. V.; Vidal, Francisco V.; Meza, Eustorgio; Portilla, Josué; Zambrano, Lorenzo; Jaimes, BenjamíN.
1999-09-01
Hydrographic data from the Gulf of Mexico (gulf) provide evidence that a western boundary current was set up by the interaction of an anticyclonic Loop Current (LC) ring with the continental margin of the western gulf during March-August 1985. The March 1985 geostrophic circulation reveals a remnant anticyclonic ring colliding with the slope. During this collision, two cyclonic rings were shed as the anticyclone transferred vorticity to the surrounding slope water. During July-August 1985, the ring triad weakened and evolved into a ˜900-km-long, north flowing, along-slope, western boundary current and cyclonic-anticyclonic ring pairs distributed throughout the central and western gulf. This western boundary current attained maximum northward flow speeds of 25 cm s-1 and an 8.3-Sv mass transport between 94°-96°W at 25°N. Our March-August 1985 observations reveal that the residence time and decay period of LC anticyclones in the western gulf may exceed 150 days. Within this time period the western gulf's cyclonic-anticyclonic vorticity field decayed ˜50%. Thus the western boundary current's evolutionary period, from its gestation to its absolute decay, is estimated to be of the order of 300 days. Although the presence of a western boundary current in the gulf has been attributed to the annual wind stress curl cycle [Sturges, 1993], our analyses of the western gulf March and July-August 1985 ring-driven geostrophic circulation and corresponding (January, February and May, June 1985) monthly mean synoptic wind stress curl distributions reveal that these constitute competing forcing mechanisms for the gulf's regional circulation. However, when very strong local forcing such as large eddies are present, the wind-driven background circulation is overwhelmed by such eddy forcing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCrory, P.A.; Arends, R.G.; Ingle, J.C. Jr.
1991-02-01
The Santa Maria basin of central California is a geologically complex area located along the tectonically active California continental margin. The record of Cenozoic tectonism preserved in Santa Maria strata provides an opportunity to compare the evolution of the region with plate tectonic models for Cenozoic interactions along the margin. Geohistory analysis of Neogene Santa Maria basin strata provides important constraints for hypotheses of the tectonic evolution of the central California margin during its transition from a convergent to a transform plate boundary. Preliminary analyses suggest that the tectonic evolution of the Santa Maria area was dominated by coupling betweenmore » adjacent oceanic plates and the continental margin. This coupling is reflected in the timing of major hiatuses within the basin sedimentary sequence and margin subsidence and uplift which occurred during periods of tectonic plate adjustment. Stratigraphic evidence indicates that the Santa Maria basin originated on the continental shelf in early Miocene time. A component of margin subsidence is postulated to have been caused by cessation of spreading on adjacent offshore microplates approximately 19-18 ma. A sharp reduction in rate of tectonic subsidence in middle Miocene time, observed in the Santa Maria basin both onshore and offshore, was coeval with rotation of crustal blocks as major shearing shifts shoreward. Tectonic uplift of two eastern sites, offshore Point Arguello and near Point Sal, in the late Miocene may have been related to a change to transpressional motion between the Pacific and North American plates, as well as to rotation of the western Transverse Ranges in a restraining geometry.« less
The Rovuma Transform Margin: the enigmatic continent-ocean boundary of East Africa
NASA Astrophysics Data System (ADS)
Phethean, Jordan; Kalnins, Lara; van Hunen, Jeroen; McCaffrey, Ken; Davies, Richard
2017-04-01
The N-S trending Davie Fracture Zone (DFZ) is often assumed to form the continent-ocean transform margin (COTM) of the Western Somali Basin. However, multiple plate tectonic reconstructions favour a pre-breakup location for Madagascar that crosses the DFZ, incompatible with its interpretation as the COTM (e.g., Lottes & Rowley, 1990; Reeves, 2014; Phethean et al., 2016). For the first time, we have identified classic COTM features in seismic reflection data from the Southern Rovuma Basin, to the west and inboard of the DFZ. These suggest a NNW trend to the margin, consistent with the tectonic reconstructions. 2D gravity models, with the seabed and top basement constrained by seismic data, are used to investigate the Moho structure across the Rovuma margin and are best fit using steep 'transform style' geometries, confirming the nature of the margin. We thus model generic COTM geometries elsewhere along the East African and Madagascan transform margins to locate best-fitting positions for these conjugate COTMs. This analysis confirms that the COTMs follow a NNW trend along the Rovuma Basin and Southern Madagascar, respectively, and allows a restoration of the conjugate COTMs. This restoration is used alongside geological maps and satellite imagery from Madagascar and East Africa to refine early plate motions and further constrain the precise origin of Madagascar within Gondwana. Our refined plate tectonic model independently predicts major observations made from seismic reflection and gravity data across the basin, including: regions of major transpression/transtension along the DFZ, merging of fracture zones to form the DFZ, oceanic crust on either side of the DFZ and within the Tanzania coastal basin, and the location of an abandoned MOR within the Tanzania coastal basin. We believe that this study finally provides conclusive evidence that Madagascar originated from within the Tanzania Coastal Basin, inboard of the DFZ, after some 30 years of debate regarding this matter. Lottes, A.L., Rowley, D.B., 1990. Reconstruction of the Laurasian and Gondwanan segments of Permian Pangea. Geol. Soc. London Mem., 12, 383-395. Reeves, C., 2014. The position of Madagascar within Gondwana and its movements during Gondwana dispersal. J. Afr. Earth Sci., 94, 45-57. Phethean, J.J.J., Kalnins, L.M., van Hunen, J.,Biffi, P.G., Davies, R.J., McCaffrey, K.J.W., 2016. Madagascar's escape from Africa: A high-resolution plate reconstruction for the Western Somali Basin and implications for supercontinent dispersal. Geochem. Geophys. Geosyst., 17, doi:10.1002/2016GC006624.
The reactivation of the SW Iberian passive margin: a brief review
NASA Astrophysics Data System (ADS)
Duarte, Joao; Rosas, Filipe; Terrinha, Pedro; Schellart, Wouter; Almeida, Pedro; Gutscher, Marc-André; Riel, Nicolas; Ribeiro, António
2016-04-01
On the morning of the 1st of November of 1755 a major earthquake struck offshore the Southwest Iberian margin. This was the strongest earthquake ever felt in Western Europe. The shake, fire and tsunami devastated Lisbon, was felt as far as Finland and had a profound impact on the thinkers of that time, in particular on the Enlightenment philosophers such as Voltaire, Rousseau and Kant. The Great Lisbon Earthquake is considered by many as the event that marks the birth of modern geosciences; and made of this region one of the most well studied areas in the world. After the 1755 earthquake, Kant and others authors wrote several treaties dealing with the causes and dynamics of earthquakes and tsunamis and were close to identify some key elements of what we now call plate tectonics. More than two hundred years later, in the year of 1969, the region was struck by another major earthquake. This was precisely during the period in which the theory of plate tectonics was being built. Geoscientists like Fukao (1973), Purdy (1975) and Mackenzie (1977) immediately focused their attention in the area. They suggested that these events were related with "transient" subduction of Africa below Iberia, along the East-West Azores-Gibraltar plate boundary. Several years later, Ribeiro (1989) suggested that instead of Africa being subducted below Iberia, it was the West Iberian passive margin that was being reactivated, a process that may, in time, lead to the formation of a new subduction zone. In the turning of the millennium, a subducting slab was imaged bellow the Gibraltar Straits, a remanent of the Western Mediterranean arc system that according to Gutscher et al. (2002) was related with ongoing subduction. Recently, it was proposed that a causal link between the Gibraltar subduction system and the reactivation of the SW Iberian margin might exist. In addition, the large-scale Africa-Eurasia convergence is inducing compressive stresses along the West Iberian margin. The margin reactivation is expressed by the presence of several active lithospheric-scale thrust faults. In this communication, we will highlight the main moments of the journey that lead to the understanding that the Southwest Iberian is in fact being reactivated. We will present some of the data and ideas that were gathered over the years, including the most recent findings. Finally, we will see that despite the numerous endeavours and the substantial improvements in our tectonic knowledge of the region there are still many enigmas waiting to be resolved. Publication supported by project FCT UID/GEO/50019/2013 - Instituto Dom Luiz
ERIC Educational Resources Information Center
Yorimitsu, Akiko; Houghton, Stephen; Taylor, Myra
2014-01-01
The esteem historically attributed to the teaching profession in Japan is eroding, and some Japanese teachers who identify with the ideal of being a "life educator" are becoming disillusioned with teaching. While the stress and anxiety associated with teacher disillusionment have been researched from a Western perspective, little is…
ERIC Educational Resources Information Center
Levy, Daniel C.
2006-01-01
Private higher education has surged in recent decades and now forms a major part of the world's total higher education. A fourth of total enrollment might be a reasonable guess, albeit a very rough one. Only Western Europe remains mostly marginal to the global trend. Whether new or continuing, contemporary private growth is notable, especially in…
2015-11-17
The steep sided depressions in this image captured by NASA 2001 Mars Odyssey spacecraft are fault bounded tectonic features called graben. These depressions are part of a large region of graben called Sacra Fossae. Sacra Fossae is located on the western margin of Lunae Planum. Orbit Number: 60829 Latitude: 18.2961 Longitude: 287.711 Instrument: VIS Captured: 2015-08-31 10:01 http://photojournal.jpl.nasa.gov/catalog/PIA20094
NASA Astrophysics Data System (ADS)
Doubre, C.; Socquet, A.; Masson, F.; Jacques, E.; Grandin, R.; Nercessian, A.; Kassim, M.; Vergne, J.; Diament, M.; Hinderer, J.; Ayele, A.; Lewi, E.; Calais, E.; Peltzer, G.; Toussaint, R.; de Chaballier, J.; Ballu, V. S.; Luck, B.; King, G. C.; Vigny, C.; Cattin, R.; Tiberi, C.; Kidane, T.; Jalludin, M.; Maggi, A.; Dorbath, C.; Manatschal, G.; Schmittbuhl, J.; Le Moigne, N.; Deroussi, S.
2009-12-01
The DoRA project aims to conduct complementary studies in two volcano-tectonic rifts in the Afar Depression. In Northern Afar, the Wal’is Dabbahu Rift (WD, Ethiopia) is currently undergoing a major rifting episode. This event started in September 2005 with a significant seismic activity. InSAR data revealed the injection of a 65 km-long mega-dyke that opened by up to 8 m, the slip of numerous normal faults and opening of fissures, and a rhyolitic eruption. Similarly, the Asal-Ghoubbet Rift (AG, Djibouti) was affected in 1978 by a smaller episode of rifting associated with the intrusion of a 2 m wide dyke into the crust. Since then, a large catalog of geodetic data that includes recent InSAR time series reveals the importance of non-steady deformation controlling the rift dynamics. Our goal is to gain an understanding of such volcano-tectonic segments on several time scales, including the dyking period itself and the post-event period. The study of the behavior of the AG Rift during its whole post-rifting period offers an image at t+30 years of the WD segment, while keeping in mind important structural and scale differences. First, we propose to build a complete and accurate set of geodetic data (InSAR, cGPS, GPS), covering the period under study. With a narrow temporal sample window, we will precisely describe the aseismic slip affecting the normal faults of these rifts, the periods of sudden slip and/or slip acceleration but also measure the deformation associated with probable future dyke intrusion. Second, we aim to constrain the origin of these displacements and their relation with mass transfers within the crust. Series of gravity measurements will be pursue or initiated in both rifts. Third, the recording of seismic activity is essential to constrain the relative importance of seismic and aseismic deformation. This will also help to evaluate the thickness of the seismogenic layer. Together with structural data collected during a seismic survey in the AG Rift, these results will offer crucial constraints on modeling the rifting dynamics in order to test the relative influences of the rheology, the fault/dyke geometry and fluids on the rupture mechanics, the viscous relaxation, dyke intrusion/inflation and aseismic slip and their interactions. Our multidisciplinary approach should provide important new constraints on the dynamics of rifting along divergent plate boundaries, and ultimately, in other geodynamical contexts affected by aseismic fault slip transients.
NASA Astrophysics Data System (ADS)
Hochmuth, Katharina; Gohl, Karsten; Uenzelmann-Neben, Gabriele
2015-11-01
The three largest Large Igneous Provinces (LIP) of the western Pacific—Ontong Java, Manihiki, and Hikurangi Plateaus—were emplaced during the Cretaceous Normal Superchron and show strong similarities in their geochemistry and petrology. The plate tectonic relationship between those LIPs, herein referred to as Ontong Java Nui, is uncertain, but a joined emplacement was proposed by Taylor (2006). Since this hypothesis is still highly debated and struggles to explain features such as the strong differences in crustal thickness between the different plateaus, we revisited the joined emplacement of Ontong Java Nui in light of new data from the Manihiki Plateau. By evaluating seismic refraction/wide-angle reflection data along with seismic reflection records of the margins of the proposed "Super"-LIP, a detailed scenario for the emplacement and the initial phase of breakup has been developed. The LIP is a result of an interaction of the arriving plume head with the Phoenix-Pacific spreading ridge in the Early Cretaceous. The breakup of the LIP shows a complicated interplay between multiple microplates and tectonic forces such as rifting, shearing, and rotation. Our plate kinematic model of the western Pacific incorporates new evidence from the breakup margins of the LIPs, the tectonic fabric of the seafloor, as well as previously published tectonic concepts such as the rotation of the LIPs. The updated rotation poles of the western Pacific allow a detailed plate tectonic reconstruction of the region during the Cretaceous Normal Superchron and highlight the important role of LIPs in the plate tectonic framework.
Benowitz, Jeff A.; Haeussler, Peter J.; Layer, Paul W.; O'Sullivan, Paul B.; Wallace, Wes K.; Gillis, Robert J.
2012-01-01
Topographic development inboard of the continental margin is a predicted response to ridge subduction. New thermochronology results from the western Alaska Range document ridge subduction related orogenesis. K-feldspar thermochronology (KFAT) of bedrock samples from the Tordrillo Mountains in the western Alaska Range complement existing U-Pb, 40Ar/39Ar and AFT (apatite fission track) data to provide constraints on Paleocene pluton emplacement, and cooling as well as Late Eocene to Miocene vertical movements and exhumation along fault-bounded blocks. Based on the KFAT analysis we infer rapid exhumation-related cooling during the Eocene in the Tordrillo Mountains. Our KFAT cooling ages are coeval with deposition of clastic sediments in the Cook Inlet, Matanuska Valley and Tanana basins, which reflect high-energy depositional environments. The Tordrillo Mountains KFAT cooling ages are also the same as cooling ages in the Iliamna Lake region, the Kichatna Mountains of the western Alaska Range, and Mt. Logan in the Wrangell-St. Elias Mountains, thus rapid cooling at this time encompasses a broad region inboard of, and parallel to, the continental margin extending for several hundred kilometers. We infer these cooling events and deposition of clastic rocks are related to thermal effects that track the eastward passage of a slab window in Paleocene-Eocene time related to the subduction of the proposed Resurrection-Kula spreading ridge. In addition, we conclude that the reconstructed KFATmax negative age-elevation relationship is likely related to a long period of decreasing relief in the Tordrillo Mountains.
Why did Arabia separate from Africa? Insights from 3-D laboratory experiments
NASA Astrophysics Data System (ADS)
Bellahsen, N.; Faccenna, C.; Funiciello, F.; Daniel, J. M.; Jolivet, L.
2003-11-01
We have performed 3-D scaled lithospheric experiments to investigate the role of the gravitational force exerted by a subducting slab on the deformation of the subducting plate itself. Experiments have been constructed using a dense silicone putty plate, to simulate a thin viscous lithosphere, floating in the middle of a large box filled with glucose syrup, simulating the upper mantle. We examine three different plate configurations: (i) subduction of a uniform oceanic plate, (ii) subduction of an oceanic-continental plate system and, (iii) subduction of a more complex oceanic-continental system simulating the asymmetric Africa-Eurasia system. Each model has been performed with and without the presence of a circular weak zone inside the subducting plate to test the near-surface weakening effect of a plume activity. Our results show that a subducting plate can deform in its interior only if the force distribution varies laterally along the subduction zone, i.e. by the asymmetrical entrance of continental material along the trench. In particular, extensional deformation of the plate occurs when a portion of the subduction zone is locked by the collisional process. The results of this study can be used to analyze the formation of the Arabian plate. We found that intraplate stresses, similar to those that generated the Africa-Arabia break-up, can be related to the Neogene evolution of the northern convergent margin of the African plate, where a lateral change from collision (Mediterranean and Bitlis) to active subduction (Makran) has been described. Second, intraplate stress and strain localization are favored by the presence of a weakness zone, such as the one generated by the Afar plume, producing a pattern of extensional deformation belts resembling the Red Sea-Gulf of Aden rift system.
Pliocene bats (Chiroptera) from Kanapoi, Turkana Basin, Kenya.
Gunnell, Gregg F; Manthi, Fredrick K
2018-04-05
Fossil bats from the Pliocene of Africa are extremely rare, especially in East Africa where meager records have been reported only from two localities in the Omo River Basin Shungura Formation and from a scattering of localities in the Afar Depression, both in Ethiopia. Here we report on a diverse assemblage of bats from Kanapoi in the Turkana Basin that date to approximately 4.19 million years ago. The Kanapoi bat community consists of four different species of fruit bats including a new genus and two new species as well as five species of echolocating bats, the most common of which are two new species of the molossid genus Mops. Additionally, among the echolocating bats, a new species of the emballonurid Saccolaimus is documented at Kanapoi along with an additional Saccolaimus species and a potentially new species of the nycterid Nycteris. Compared to other East African Pliocene bat assemblages, the Kanapoi bat community is unique in preserving molossids and curiously lacks any evidence of cave dwelling bats like rhinolophids or hipposiderids, which are both common at other East African sites. The bats making up the Kanapoi community all typically roost in trees, with some preferring deeper forests and larger trees (molossids), while the others (pteropodids, nycterids and emballonurids) roost in trees near open areas. Living fruit bats that are related to Kanapoi species typically forage for fruits along the margins of forests and in open savannah. The echolocating forms from Kanapoi consist of groups that aerially hawk for insects in open areas between patches of forest and along water courses. The habitats preferred by living relatives of the Kanapoi bats are in agreement with those constructed for Kanapoi based on other lines of evidence. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Melle, Webjørn; Runge, Jeffrey; Head, Erica; Plourde, Stéphane; Castellani, Claudia; Licandro, Priscilla; Pierson, James; Jonasdottir, Sigrun; Johnson, Catherine; Broms, Cecilie; Debes, Høgni; Falkenhaug, Tone; Gaard, Eilif; Gislason, Astthor; Heath, Michael; Niehoff, Barbara; Nielsen, Torkel Gissel; Pepin, Pierre; Stenevik, Erling Kaare; Chust, Guillem
2014-12-01
Here we present a new, pan-Atlantic compilation and analysis of data on Calanus finmarchicus abundance, demography, dormancy, egg production and mortality in relation to basin-scale patterns of temperature, phytoplankton biomass, circulation and other environmental characteristics in the context of understanding factors determining the distribution and abundance of C. finmarchicus across its North Atlantic habitat. A number of themes emerge: (1) the south-to-north transport of plankton in the northeast Atlantic contrasts with north-to-south transport in the western North Atlantic, which has implications for understanding population responses of C. finmarchicus to climate forcing, (2) recruitment to the youngest copepodite stages occurs during or just after the phytoplankton bloom in the east whereas it occurs after the bloom at many western sites, with up to 3.5 months difference in recruitment timing, (3) the deep basin and gyre of the southern Norwegian Sea is the centre of production and overwintering of C. finmarchicus, upon which the surrounding waters depend, whereas, in the Labrador/Irminger Seas production mainly occurs along the margins, such that the deep basins serve as collection areas and refugia for the overwintering populations, rather than as centres of production, (4) the western North Atlantic marginal seas have an important role in sustaining high C. finmarchicus abundance on the nearby coastal shelves, (5) differences in mean temperature and chlorophyll concentration between the western and eastern North Atlantic are reflected in regional differences in female body size and egg production, (6) regional differences in functional responses of egg production rate may reflect genetic differences between western and eastern populations, (7) dormancy duration is generally shorter in the deep waters adjacent to the lower latitude western North Atlantic shelves than in the east, (8) there are differences in stage-specific daily mortality rates between eastern and western shelves and basins, but the survival trajectories for cohort development from CI to CV are similar, and (9) early life stage survival is much lower in regions where C. finmarchicus is found with its congeners, C. glacialis and/or C. hyperboreus. This compilation and analysis provides new knowledge for evaluation and parameterisation of population models of C. finmarchicus and their responses to climate change in the North Atlantic. The strengths and weaknesses of modeling approaches, including a statistical approach based on ecological niche theory and a dynamical approach based on knowledge of spatial population dynamics and life history, are discussed, as well as needs for further research.
Western Pacific Air-Sea Interaction Study (W-PASS), Introduction and Highlights (Invited)
NASA Astrophysics Data System (ADS)
Tsuda, A.
2010-12-01
Western Pacific Air-Sea Interaction Study (W-PASS), Introduction and Highlights Atsushi Tsuda Atmosphere and Ocean Research Institute, The University of Tokyo In the western Pacific (WESTPAC) region, dust originating from Asian and Australian arid regions to the North and South Pacific, biomass burning emissions from the Southeast Asia to sub-tropical Pacific, and other anthropogenic substances are transported regionally and globally to affect cloud and rainfall patterns, air quality, and radiative budgets downwind. Deposition of these compounds into the Asian marginal seas and onto the Pacific Ocean influence surface primary productivity and species composition. In the WESTPAC region, subarctic, subtropical oceans and marginal seas are located relatively narrow latitudinal range and these areas are influenced by the dust and anthropogenic inputs. Moreover, anthropogenic emission areas are located between the arid region and the oceans. The W-PASS (Western Pacific Air-Sea interaction Study) project has been funded for 5 years as a part of SOLAS-Japan activity in the summer of 2006. We aim to resolve air-sea interaction through field observation studies mainly using research vessels and island observatories over the western Pacific. We have carried out 5 cruises to the western North Pacific focusing on air-sea interactions. Also, an intensive marine atmospheric observation including direct atmospheric deposition measurement was accomplished by a dozen W-PASS research groups at the NIES Atmospheric and Aerosol Monitoring Station of Cape Hedo in the northernmost tip of the Okinawa main Island facing the East China Sea in the spring 2008. A few weak Kosa (dust) events, anthropogenic air outflows, typical local air and occupation of marine background air were identified during the campaign period. The W-PASS has four research groups mainly focusing on VOC emissions, air-sea gas exchange processes, biogeochemical responses to dust depositions and its modeling. We also established interdisciplinary working groups on typhoon impact, long term trend of DMS emission, Cape Hedo Campaign, and eddy-covariance technique. I would like to introduce some of the highlights from the project. 1. Nano-mole level nutrients distribution in relation to dust input and nitrogen fixation. 2. High resolution measurement of VOCs with PTR-Mass spectrometry. 3. Chemical modification of iron by anthropogenic substances and it’s bioavailability, and relative importance of dust and regenerated iron in the western subarctic Pacific. 4. Typhoon disturbance as one of major processes of new production in the subtropical Pacific.
Brenner, Richard L.; Ludvigson, Greg A.; Witzke, B.J.; Zawistoski, A.N.; Kvale, E.P.; Ravn, R.L.; Joeckel, R.M.
2000-01-01
An integrated geochemical-sedimentological project is studying the paleoclimatic and paleogeographic characteristics of the mid-Cretaceous greenhouse world of western North America. A critical part of this project, required to establish a temporal framework, is a stratigraphie study of depositional relationships between the AlbianCenomanian Dakota and the Upper Albian Kiowa formations of the eastern margin of the Western Interior Seaway (WIS). Palynostratigraphic and sedimentologic analyses provide criteria for the Dakota Formation to be divided into three sedimentary sequences bounded by unconformities (D0, D1, and D2) that are recognized from western Iowa to westernmost Kansas. The lowest of these sequences, defined by unconformities D0 and D1, is entirely Upper Albian, and includes the largely nonmarine basal Dakota (lower part of the Nishnabotna Member) strata in western Iowa and eastern Nebraska and the marine Kiowa Formation to the southwest in Kansas. The gravel-rich fluvial deposits of the basal part of the Nishnabotna Member of the Dakota Formation correlate with transgressive marine shales of the Kiowa Formation. This is a critical relationship to establish because of the need to correlate between marine and nonmarine strata that contain both geochronologic and paleoclimatic proxy data. The basal gravel facies (up to 40 m thick in western Iowa) aggraded in incised valleys during the Late Albian Kiowa-Skull Creek marine transgression. In southeastern Nebraska, basal gravels intertongue with carbonaceous mudrocks that contain diverse assemblages of Late Albian palynomorphs, including marine dinoflagellates and acritarchs. This palynomorph assemblage is characterized by occurrences of palynomorph taxa not known to range above the Albian Kiowa-Skull Creek depositional cycle elsewhere in the Western Interior, and correlates to the lowest of four generalized palynostratographic units that are comparable to other palynological sequences elsewhere in North America. Tidal rhythmites in mudrocks at the Ash Grove Cement Quarry in Louisville (Cass County), Nebraska record well-developed diurnal and semimonthly tidal cycles, and moderately well developed semiannual cycles. These tidal rhythmites are interpreted to have accumulated during rising sea level at the head of a paleoestuary that experienced at least occasional mesotidal conditions. This scenario places the gravelbearing lower part of the Nishnabotna Member of the Dakota Formation in the mouth of an incised valley of an Upper Albian transgressive systems tract deposited along a tidally influenced coast. Furthermore, it provides a depositional setting consistent with the biostratigraphic correlation of the lower part of the Nishnabotna Member of the Dakota Formation to the marine Kiowa Formation of Kansas. Copyright ??2000, SEPM (Society for Sedimentary Geology).
Serruys, Mélanie; Van Dyck, Hans
2014-10-01
Habitats selected for development may have important fitness consequences. This is relevant within the framework of niche shifts in human-dominated landscapes. Currently, the peacock butterfly (Aglais io) occurs ubiquitously, covering many habitat types, whereas its distribution used to be much more restricted. Indeed, its host plant (stinging nettle Urtica dioica) was limited to natural forest gaps on relatively nitrogen-rich soil, but due to land use changes and eutrophication, host plants are now quasi-omnipresent in Western Europe. In order to assess the impact of specific anthropogenic habitat types on host plant quality and environmental conditions for phenotypic trait values, an experiment was conducted in woodlands, field margins, and urban gardens. Larval development was studied in field enclosures, and adult traits were analyzed to test predicted effects of warmer and more nitrogen-rich conditions in field margins compared to woodlands and urban gardens. Survival to the adult stage was highest in woodlands and lowest in field margins, and whilst development time did not differ amongst habitat types, butterflies that developed in field margins were larger and had higher lipid content and wing loadings than conspecifics from woodlands and urban gardens. Nettles in field margins provided warmer microclimates. However, and contrary to predictions, the nitrogen level within host plant leaves was highest in woodlands. Hence, anthropogenic landscapes may pose a conflict for choosing what is ultimately the best breeding habitat, as survival was highest in woodlands (followed by urban gardens), but adults with highest fitness predictions were produced in field margins (and secondarily urban gardens).
Tamayao, Mili-Ann M; Michalek, Jeremy J; Hendrickson, Chris; Azevedo, Inês M L
2015-07-21
We characterize regionally specific life cycle CO2 emissions per mile traveled for plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) across the United States under alternative assumptions for regional electricity emission factors, regional boundaries, and charging schemes. We find that estimates based on marginal vs average grid emission factors differ by as much as 50% (using National Electricity Reliability Commission (NERC) regional boundaries). Use of state boundaries versus NERC region boundaries results in estimates that differ by as much as 120% for the same location (using average emission factors). We argue that consumption-based marginal emission factors are conceptually appropriate for evaluating the emissions implications of policies that increase electric vehicle sales or use in a region. We also examine generation-based marginal emission factors to assess robustness. Using these two estimates of NERC region marginal emission factors, we find the following: (1) delayed charging (i.e., starting at midnight) leads to higher emissions in most cases due largely to increased coal in the marginal generation mix at night; (2) the Chevrolet Volt has higher expected life cycle emissions than the Toyota Prius hybrid electric vehicle (the most efficient U.S. gasoline vehicle) across the U.S. in nearly all scenarios; (3) the Nissan Leaf BEV has lower life cycle emissions than the Prius in the western U.S. and in Texas, but the Prius has lower emissions in the northern Midwest regardless of assumed charging scheme and marginal emissions estimation method; (4) in other regions the lowest emitting vehicle depends on charge timing and emission factor estimation assumptions.
Eocene Unification of Peruvian and Bolivian Altiplano Basin Depocenters
NASA Astrophysics Data System (ADS)
Saylor, J.; Sundell, K. E.; Perez, N.; Karsky, N.; Lapen, T. J.; Cárdenas, J.
2017-12-01
Paleogene evolution of the Altiplano basin has been characterized as a flexural foreland basin which developed in response to magmatic and thrust loading along its western margin. Research focused in southern Peru and Bolivia points to broadly synchronous foredeep deposition in a basin assumed to be have been contiguous from at least 14°-23°S. We investigated Paleogene strata exposed on the southwestern margin of Lake Titicaca near the Peru/Bolivia border in order to establish sediment dispersal systems, sediment sources, and the chronology of deposition. A data set of >1,000 paleocurrent measurements throughout the section consistently indicates a western sediment source. The results of detrital zircon mixture modeling are consistent with derivation from Cretaceous volcanic sources, and Cretaceous and Ordovician sedimentary strata exposed in the Western Cordillera. These results confirm previous models in which sedimentary sources for the Altiplano basin are dominated by the Western Cordillera throughout the Paleogene. The detrital zircon signatures from strata in this stratigraphic section where paleocurrent orientation is well constrained provide a benchmark for future research seeking to determine sediment sources for the Altiplano basin. However, refined chronologies based on detrital zircon U-Pb maximum depositional ages (MDAs) point to development of at least two Paleocene depocenters in Peru and Bolivia separated by a zone of nondeposition or erosion in southern Peru. The basal Muñani Formation in southern Peru yields MDAs of 36.9-40.2 Ma, which requires revision of the previously determined middle Paleocene onset of deposition. The Muñani Formation overlies the Vilquechico Group which has been biostratigraphically determined to range from Campanian-Maastrichtian (or possibly Paleocene, 60 Ma). The revised chronology for the Muñani Formation requires a disconformity of at least 20 Myr during which deposition continued in both the Peruvian and Bolivian depocenters of the Paleogene Altiplano foreland basin. This requires that the Altiplano basin initiated as separate basins, and only unified at 36-40 Ma.