Laboratory Characterization of Talley Brick
2011-08-01
specimen’s wet, bulk, or “as-tested” density. Results from these determinations are provided in Table 1. Measurements of posttest water content1...ASTM 2005d). Based on the appropriate values of posttest water content, wet density, and an assumed grain density of 2.89 Mg/m3, values of dry... Posttest Axial P Radial P Axial S Radial S Wet Water Dry Degree of ’Wave ’Wave ’Wave \\Vave Test Density Conte-nt, Density, Porosity, Saturation
Dehydration of seabird prey during transport to the colony: Effects on wet weight energy densities
Montevecchi, W.A.; Piatt, John F.
1987-01-01
We present evidence to indicate that dehydration of prey transported by seabirds from capture sites at sea to chicks at colonies inflates estimates of wet weight energy densities. These findings and a comparison of wet and dry weight energy densities reported in the literature emphasize the importance of (i) accurate measurement of the fresh weight and water content of prey, (ii) use of dry weight energy densities in comparisons among species, seasons, and regions, and (iii) cautious interpretation and extrapolation of existing data sets.
Wang, Rui; Shi, Lu
2012-06-30
In recent years supermarkets and fast food restaurants have been replacing those "wet markets" of independent vendors as the major food sources in urban China. Yet how these food outlets relate to children's nutritional intake remains largely unexplored. Using a longitudinal survey of households and communities in China, this study examines the effect of the urban built food environment (density of wet markets, density of supermarkets, and density of fast food restaurants) on children's nutritional intake (daily caloric intake, daily carbohydrate intake, daily protein intake, and daily fat intake). Children aged 6-18 (n = 185) living in cities were followed from 2004 to 2006, and difference-in-difference models are used to address the potential issue of omitted variable bias. Results suggest that the density of wet markets, rather than that of supermarkets, positively predicts children's four dimensions of nutritional intake. In the caloric intake model and the fat intake model, the positive effect of neighborhood wet market density on children's nutritional intake is stronger with children from households of lower income. With their cheaper prices and/or fresher food supply, wet markets are likely to contribute a substantial amount of nutritional intake for children living nearby, especially those in households with lower socioeconomic status. For health officials and urban planners, this study signals a sign of warning as wet markets are disappearing from urban China's food environment.
Moral, Juan; Jurado-Bello, José; Sánchez, M Isabel; de Oliveira, Rodrígues; Trapero, Antonio
2012-10-01
The influence of temperature, wetness duration, and planting density on infection of olive fruit by Colletotrichum acutatum and C. simmondsii was examined in laboratory and field experiments. Detached olive fruit of 'Arbequina', 'Hojiblanca', and 'Picual' were inoculated with conidia of several isolates of the pathogen and kept at constant temperatures of 5 to 35°C in humid chambers. Similarly, potted plants and stem cuttings with fruit were inoculated and subjected to wetness periods of 0 to 48 h. Infection occurred at 10 to 25°C, and disease severity was greater and the mean latent period was shorter at 17 to 20°C. Overall, C. acutatum was more virulent than C. simmondsii at temperatures <25°C. When temperature was not a limiting factor, disease severity increased with the wetness period from 0 to 48 h. Disease severity was modeled as a function of temperature and wetness duration; two critical fruit incidence thresholds were defined as 5 and 20%, with wetness durations of 1.0 and 12.2 h at the optimum temperature. In the field, anthracnose epidemics progressed faster in a super-high-density planting (1,904 olive trees/ha) than in the high-density plantings (204 to 816 olive trees/ha) and caused severe epidemics in the super-high-density planting even with the moderately resistant Arbequina. Data in this study will be useful for the development of a forecasting system for olive anthracnose epidemics.
NASA Astrophysics Data System (ADS)
Varade, D. M.; Dikshit, O.
2017-12-01
Modeling and forecasting of snowmelt runoff are significant for understanding the hydrological processes in the cryosphere which requires timely information regarding snow physical properties such as liquid water content and density of snow in the topmost layer of the snowpack. Both the seasonal runoffs and avalanche forecasting are vastly dependent on the inherent physical characteristics of the snowpack which are conventionally measured by field surveys in difficult terrains at larger impending costs and manpower. With advances in remote sensing technology and the increase in the availability of satellite data, the frequency and extent of these surveys could see a declining trend in future. In this study, we present a novel approach for estimating snow wetness and snow density using visible and infrared bands that are available with most multi-spectral sensors. We define a trapezoidal feature space based on the spectral reflectance in the near infrared band and the Normalized Differenced Snow Index (NDSI), referred to as NIR-NDSI space, where dry snow and wet snow are observed in the left diagonal upper and lower right corners, respectively. The corresponding pixels are extracted by approximating the dry and wet edges which are used to develop a linear physical model to estimate snow wetness. Snow density is then estimated using the modeled snow wetness. Although the proposed approach has used Sentinel-2 data, it can be extended to incorporate data from other multi-spectral sensors. The estimated values for snow wetness and snow density show a high correlation with respect to in-situ measurements. The proposed model opens a new avenue for remote sensing of snow physical properties using multi-spectral data, which were limited in the literature.
John F. Hunt; Weiqi Leng; Mehdi Tajvidi
2017-01-01
In this study, the effects of cellulose nanofibrils (CNFs) ratio, press program, particle size, and density on the vertical density profile (VDP) and internal bond (IB) strength of the wet-formed particleboard were investigated. Results revealed that the VDP was significantly influenced by the press program. Pressing using a constant pressure (CP) press program...
Numerical analysis of wet separation of particles by density differences
NASA Astrophysics Data System (ADS)
Markauskas, D.; Kruggel-Emden, H.
2017-07-01
Wet particle separation is widely used in mineral processing and plastic recycling to separate mixtures of particulate materials into further usable fractions due to density differences. This work presents efforts aiming to numerically analyze the wet separation of particles with different densities. In the current study the discrete element method (DEM) is used for the solid phase while the smoothed particle hydrodynamics (SPH) is used for modeling of the liquid phase. The two phases are coupled by the use of a volume averaging technique. In the current study, simulations of spherical particle separation were performed. In these simulations, a set of generated particles with two different densities is dropped into a rectangular container filled with liquid. The results of simulations with two different mixtures of particles demonstrated how separation depends on the densities of particles.
Tactical Wheeled Vehicle Survivability: Results of Experiments to Quantify Aboveground Impulse
2010-03-01
in each testbed are pre- sented in Table 4.7. For all the clay soil experiments, the mean value of wet density was 121.2 lb/ft3, and the mean value...4.7. Summary of clay soil test series. Experiment Number Charge Position Avg Wet Density , lb/ft3 Avg Dry Density , lb/ft3 Avg Water... Clay soil ................................................................................................................................... 81
Weiqi Leng; John F. Hunt; Mehdi Tajvidi
2017-01-01
Wet-formed particleboard bonded with cellulose nanofibrils (CNF) was prepared in this work. The effects of density, CNF addition ratio, pressing method, and particle size on the bending strength were evaluated. The results showed that density had the most important effect on the modulus of elasticity (MOE), while the CNF addition ratio had the most important effect on...
Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics
NASA Astrophysics Data System (ADS)
Kou, Liang; Huang, Tieqi; Zheng, Bingna; Han, Yi; Zhao, Xiaoli; Gopalsamy, Karthikeyan; Sun, Haiyan; Gao, Chao
2014-05-01
Yarn supercapacitors have great potential in future portable and wearable electronics because of their tiny volume, flexibility and weavability. However, low-energy density limits their development in the area of wearable high-energy density devices. How to enhance their energy densities while retaining their high-power densities is a critical challenge for yarn supercapacitor development. Here we propose a coaxial wet-spinning assembly approach to continuously spin polyelectrolyte-wrapped graphene/carbon nanotube core-sheath fibres, which are used directly as safe electrodes to assembly two-ply yarn supercapacitors. The yarn supercapacitors using liquid and solid electrolytes show ultra-high capacitances of 269 and 177 mF cm-2 and energy densities of 5.91 and 3.84 μWh cm-2, respectively. A cloth supercapacitor superior to commercial capacitor is further interwoven from two individual 40-cm-long coaxial fibres. The combination of scalable coaxial wet-spinning technology and excellent performance of yarn supercapacitors paves the way to wearable and safe electronics.
Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics
Kou, Liang; Huang, Tieqi; Zheng, Bingna; Han, Yi; Zhao, Xiaoli; Gopalsamy, Karthikeyan; Sun, Haiyan; Gao, Chao
2014-01-01
Yarn supercapacitors have great potential in future portable and wearable electronics because of their tiny volume, flexibility and weavability. However, low-energy density limits their development in the area of wearable high-energy density devices. How to enhance their energy densities while retaining their high-power densities is a critical challenge for yarn supercapacitor development. Here we propose a coaxial wet-spinning assembly approach to continuously spin polyelectrolyte-wrapped graphene/carbon nanotube core-sheath fibres, which are used directly as safe electrodes to assembly two-ply yarn supercapacitors. The yarn supercapacitors using liquid and solid electrolytes show ultra-high capacitances of 269 and 177 mF cm−2 and energy densities of 5.91 and 3.84 μWh cm−2, respectively. A cloth supercapacitor superior to commercial capacitor is further interwoven from two individual 40-cm-long coaxial fibres. The combination of scalable coaxial wet-spinning technology and excellent performance of yarn supercapacitors paves the way to wearable and safe electronics. PMID:24786366
Murakami, H; Yoneyama, T; Nakajima, K; Kobayashi, M
2001-03-23
The objectives of this study were to prepare the lactose granules by various granulation methods using polyethylene glycol 6000 (PEG 6000) as a binder and to evaluate the effects of granulation methods on the compressibility and compactibility of granules in tabletting. Lactose was granulated by seven granulation methods -- four wet granulations including wet massing granulation, wet high-speed mixer granulation, wet fluidized bed granulation and wet tumbling fluidized bed granulation; and three melt granulations including melt high-speed mixer granulation, melt fluidized bed granulation and melt tumbling fluidized bed granulation. The loose density, angle of repose, granule size distribution, mean diameter of granules, and the tensile strength and porosity of tablets were evaluated. The compactibilities of granules were varied by the granulation methods. However, the difference in compactibility of granules could not be explained due to the difference in compressibility, since there was no difference in Heckel plots due to granulation methods. Among their granule properties, the loose density of granules seemed to have a correlation with the tablet strength regardless of the granulation methods.
Microscopic aspects of wetting using classical density functional theory
NASA Astrophysics Data System (ADS)
Yatsyshin, P.; Durán-Olivencia, M.-A.; Kalliadasis, S.
2018-07-01
Wetting is a rather efficient mechanism for nucleation of a phase (typically liquid) on the interface between two other phases (typically solid and gas). In many experimentally accessible cases of wetting, the interplay between the substrate structure, and the fluid–fluid and fluid–substrate intermolecular interactions brings about an entire ‘zoo’ of possible fluid configurations, such as liquid films with a thickness of a few nanometers, liquid nanodrops and liquid bridges. These fluid configurations are often associated with phase transitions occurring at the solid–gas interface and at lengths of just several molecular diameters away from the substrate. In this special issue article, we demonstrate how a fully microscopic classical density-functional framework can be applied to the efficient, rational and systematic exploration of the rich phase space of wetting phenomena. We consider a number of model prototype systems such as wetting on a planar wall, a chemically patterned wall and a wedge. Through density-functional computations we demonstrate that for these simply structured substrates the behaviour of the solid–gas interface is already highly complex and non-trivial.
Kim, D.H.; Newton, W.E.; Lingle, G.R.; Chavez-Ramirez, F.
2008-01-01
We investigated the relationship between grassland breeding bird densities and both grazing and available moisture in the central Platte River Valley. Nebraska between 1980 and 1996. We also compared species richness and community similarity of breeding birds in sedge (Carex spp.) meadows and mesic grasslands. Densities of two species had a significant relationship with grazing and six of seven focal species had a significant relationship with available moisture. Bobolink (Dolichonyx oryzivorus) and Brown-headed Cowbird (Molothrus ater) densities were lower in grazed plots compared to ungrazed plots, whereas Red-winged Blackbird (Agelaius phoeniceus) densities were greater in sedge-meadow plots compared to mesic grassland plots. Bobolink, Dickcissel (Spiza americana). and Brown-headed Cowbird were negatively associated with available moisture with breeding densities peaking during the driest conditions. Our results suggest that wet conditions increase species richness for the community through addition of wetland-dependant and wetland-associated birds, but decrease densities of ground-nesting grassland birds in wet-meadow habitats, whereas dry conditions reduce species richness but increase the density of the avian assemblage. We propose that wet-meadow habitats serve as local refugia for grassland-nesting birds during local or regional droughts.
The effects of wetland habitat structure on Florida apple snail density
Karunaratne, L.B.; Darby, P.C.; Bennetts, R.E.
2006-01-01
Wetlands often support a variety of juxtaposed habitat patches (e.g., grass-, shrub- or tree-dominated) differentially suited to support the inhabiting fauna. The proportion of available habitat types has been affected by human activity and consequently has contributed to degrading habitat quality for some species. The Florida apple snail (Pomacea paludosa) has drawn attention as a critical prey item for wetlands wildlife and as an indicator of wetlands restoration success in peninsular Florida, USA. An apparent contradiction has evolved wherein this species appears intolerant of drying events, but these disturbances may be necessary to maintain suitable habitat structure for apple snails. We recently reported that assertions regarding intolerance to dry downs in this species were inaccurate. Here, we compared snail density in habitats with (wet prairie) and without (slough) emergent macrophytes, as well as evaluating the effects of structural attributes within the broad wet prairie habitat type. Snail densities were greater in prairies relative to sloughs (??2= 12.90, df=1, P=0.0003), often by a factor of two to three. Within wet prairie habitats, we found greater snail densities in Panicum hemitomon as compared to Eleocharis cellulosa (??2=31.45, df=1, P=0.0001). Significantly fewer snails were found in dense E. cellulosa as compared to habitats with lower stem density (??2= 10.73, df=1, P=0.011). Our results indicate that wet prairie habitat supports greater snail densities than nymphaea-dominatd slough. Our results have implications for wetlands water management in that continuous inundation has been shown to convert wet prairie to slough habitat, and we suggest this should be avoided in support of apple snails and their predators. ?? 2006, The Society of Wetland Scientists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Richard C. Y.; Abraham, Roberto G.; Bridge, Carrie R., E-mail: chou@astro.utoronto.ca, E-mail: abraham@astro.utoronto.ca, E-mail: bridge@astro.caltech.edu
2011-03-15
We analyze 1298 merging galaxies with redshifts up to z = 0.7 from the Canada-France-Hawaii Telescope Legacy Survey, taken from the catalog presented in the work of Bridge et al. By analyzing the internal colors of these systems, we show that the so-called wet and dry mergers evolve in different senses, and quantify the space densities of these systems. The local space density of wet mergers is essentially identical to the local space density of dry mergers. The evolution in the total merger rate is modest out to z {approx} 0.7, although the wet and dry populations have different evolutionarymore » trends. At higher redshifts, dry mergers make a smaller contribution to the total merging galaxy population, but this is offset by a roughly equivalent increase in the contribution from wet mergers. By comparing the mass density function of early-type galaxies to the corresponding mass density function for merging systems, we show that not all the major mergers with the highest masses (M{sub stellar}>10{sup 11} M{sub sun}) will end up with the most massive early-type galaxies, unless the merging timescale is dramatically longer than that usually assumed. On the other hand, the usually assumed merging timescale of {approx}0.5-1 Gyr is quite consistent with the data if we suppose that only less massive early-type galaxies form via mergers. Since low-intermediate-mass ellipticals are 10-100 times more common than their most massive counterparts, the hierarchical explanation for the origin of early-type galaxies may be correct for the vast majority of early types, even if incorrect for the most massive ones.« less
Statistical mechanics study on wetting behaviors of Ne on Mg surface
NASA Astrophysics Data System (ADS)
Zhou, S.; Zhang, M.
2017-04-01
Wetting behavior of Ne adsorbed on a Mg surface, first investigated by means of a grand canonical Monte Carlo method in a previous publication (M. J. Bojan, G. Stan, S. Curtarolo, W. A. Steele, and M. W. Cole, Phys. Rev. E, 1999, 59, 864), is again studied by means of classical density functional theory. The Ne-Ne interaction is taken to be of the Lennard-Jones form, while the Ne-surface interaction is derived from an electronic density functional theory. The wetting phase diagram is calculated, and the isotherm shapes, energy and structural properties of the adsorbed films are examined. The present calculations indicate that the system exhibits first-order pre-wetting transition at temperatures above a wetting temperature of Tw≈24 K, and below a critical pre-wetting temperature of Tpwc≈25.09 K. The present findings include (i) in the pre-wetting temperature region, the pre-wetting transition is mixed with many layering transitions; after pre-wetting, the film thickness discontinuously increases (due to frequent occurrences of the layering transitions) and eventually diverges as the chemical potential approaches and eventually equals the saturation value. (ii) Occurrence of the layering transition remains above Tpwc, and the increase of the film thickness with the chemical potential is discontinuous. (iii) Below the wetting temperature, the layering transitions frequently occur and tend to gather together more closely as the saturation is approached.
Wetting of heterogeneous substrates. A classical density-functional-theory approach
NASA Astrophysics Data System (ADS)
Yatsyshin, Peter; Parry, Andrew O.; Rascón, Carlos; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim
2017-11-01
Wetting is a nucleation of a third phase (liquid) on the interface between two different phases (solid and gas). In many experimentally accessible cases of wetting, the interplay between the substrate structure, and the fluid-fluid and fluid-substrate intermolecular interactions leads to the appearance of a whole ``zoo'' of exciting interface phase transitions, associated with the formation of nano-droplets/bubbles, and thin films. Practical applications of wetting at small scales are numerous and include the design of lab-on-a-chip devices and superhydrophobic surfaces. In this talk, we will use a fully microscopic approach to explore the phase space of a planar wall, decorated with patches of different hydrophobicity, and demonstrate the highly non-trivial behaviour of the liquid-gas interface near the substrate. We will present fluid density profiles, adsorption isotherms and wetting phase diagrams. Our analysis is based on a formulation of statistical mechanics, commonly known as classical density-functional theory. It provides a computationally-friendly and rigorous framework, suitable for probing small-scale physics of classical fluids and other soft-matter systems. EPSRC Grants No. EP/L027186,EP/K503733;ERC Advanced Grant No. 247031.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Lihwai; Cooper, Michael C.; Willmer, Christopher N. A.
2010-08-01
We study the environments of wet, dry, and mixed galaxy mergers at 0.75 < z < 1.2 using close pairs in the DEEP2 Galaxy Redshift Survey. We find that the typical environment of dry and mixed merger candidates is denser than that of wet mergers, mostly due to the color-density relation. While the galaxy companion rate (N{sub c}) is observed to increase with overdensity, using N-body simulations, we find that the fraction of pairs that will eventually merge decreases with the local density, predominantly because interlopers are more common in dense environments. After taking into account the merger probability ofmore » pairs as a function of local density, we find only marginal environment dependence of the galaxy merger rate for wet mergers. On the other hand, the dry and mixed merger rates increase rapidly with local density due to the increased population of red galaxies in dense environments, implying that the dry and mixed mergers are most effective in overdense regions. We also find that the environment distribution of K+A galaxies is similar to that of wet mergers alone and of wet+mixed mergers, suggesting a possible connection between K+A galaxies and wet and/or wet+mixed mergers. Based on our results, we therefore expect that the properties, including structures and masses, of red-sequence galaxies should be different between those in underdense regions and those in overdense regions since the dry mergers are significantly more important in dense environments. We conclude that, as early as z {approx} 1, high-density regions are the preferred environment in which dry mergers occur, and that present-day red-sequence galaxies in overdense environments have, on average, undergone 1.2 {+-} 0.3 dry mergers since this time, accounting for (38 {+-} 10)% of their mass accretion in the last 8 billion years. The main uncertainty in this finding is the conversion from the pair fraction to the galaxy merger rate, which is possibly as large as a factor of 2. Our findings suggest that dry mergers are crucial in the mass assembly of massive red galaxies in dense environments, such as brightest cluster galaxies in galaxy groups and clusters.« less
Weghorst, Jennifer A
2007-04-01
The main objective of this study was to estimate the population density and demographic structure of spider monkeys living in wet forest in the vicinity of Sirena Biological Station, Corcovado National Park, Costa Rica. Results of a 14-month line-transect survey showed that spider monkeys of Sirena have one of the highest population densities ever recorded for this genus. Density estimates varied, however, depending on the method chosen to estimate transect width. Data from behavioral monitoring were available to compare density estimates derived from the survey, providing a check of the survey's accuracy. A combination of factors has most probably contributed to the high density of Ateles, including habitat protection within a national park and high diversity of trees of the fig family, Moraceae. Although natural densities of spider monkeys at Sirena are substantially higher than those recorded at most other sites and in previous studies at this site, mean subgroup size and age ratios were similar to those determined in previous studies. Sex ratios were similar to those of other sites with high productivity. Although high densities of preferred fruit trees in the wet, productive forests of Sirena may support a dense population of spider monkeys, other demographic traits recorded at Sirena fall well within the range of values recorded elsewhere for the species.
Mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogels
Worsley, Marcus A; Baumann, Theodore F; Satcher, Jr., Joe H
2014-04-01
A method of making a mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel, including the steps of dispersing nanotubes in an aqueous media or other media to form a suspension, adding reactants and catalyst to the suspension to create a reaction mixture, curing the reaction mixture to form a wet gel, drying the wet gel to produce a dry gel, and pyrolyzing the dry gel to produce the mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel. The aerogel is mechanically robust, electrically conductive, and ultralow-density, and is made of a porous carbon material having 5 to 95% by weight carbon nanotubes and 5 to 95% carbon binder.
Mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogels
Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr, Joe H.
2016-07-05
A method of making a mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel, including the steps of dispersing nanotubes in an aqueous media or other media to form a suspension, adding reactants and catalyst to the suspension to create a reaction mixture, curing the reaction mixture to form a wet gel, drying the wet gel to produce a dry gel, and pyrolyzing the dry gel to produce the mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel. The aerogel is mechanically robust, electrically conductive, and ultralow-density, and is made of a porous carbon material having 5 to 95% by weight carbon nanotubes and 5 to 95% carbon binder.
1976-01-01
the "weight In water -weight In air" method. The compact Is first weighed dry and then weighed while Immersed completely In water . The density was...calculated from the following: (Wdry) ^ compact W. - W dry wet (1) where P^-o ^8 ’^ density of water corrected for temperature. The weight wet...PPh9) ’"NXV 2 (4) ’ X CH20TS + EtO e These bonds are easily cleaved by water and alcohols . Thererore, it should be possible to
Drying and wetting transitions of a Lennard-Jones fluid: Simulations and density functional theory
NASA Astrophysics Data System (ADS)
Evans, Robert; Stewart, Maria C.; Wilding, Nigel B.
2017-07-01
We report a theoretical and simulation study of the drying and wetting phase transitions of a truncated Lennard-Jones fluid at a flat structureless wall. Binding potential calculations predict that the nature of these transitions depends on whether the wall-fluid attraction has a long ranged (LR) power law decay or is instead truncated, rendering it short ranged (SR). Using grand canonical Monte Carlo simulation and classical density functional theory, we examine both cases in detail. We find that for the LR case wetting is first order, while drying is continuous (critical) and occurs exactly at zero attractive wall strength, i.e., in the limit of a hard wall. In the SR case, drying is also critical but the order of the wetting transition depends on the truncation range of the wall-fluid potential. We characterize the approach to critical drying and wetting in terms of the density and local compressibility profiles and via the finite-size scaling properties of the probability distribution of the overall density. For the LR case, where the drying point is known exactly, this analysis allows us to estimate the exponent ν∥, which controls the parallel correlation length, i.e., the extent of vapor bubbles at the wall. Surprisingly, the value we obtain is over twice that predicted by mean field and renormalization group calculations, despite the fact that our three dimensional system is at the upper critical dimension where mean field theory for critical exponents is expected to hold. Possible reasons for this discrepancy are discussed in the light of fresh insights into the nature of near critical finite-size effects.
Drying and wetting transitions of a Lennard-Jones fluid: Simulations and density functional theory.
Evans, Robert; Stewart, Maria C; Wilding, Nigel B
2017-07-28
We report a theoretical and simulation study of the drying and wetting phase transitions of a truncated Lennard-Jones fluid at a flat structureless wall. Binding potential calculations predict that the nature of these transitions depends on whether the wall-fluid attraction has a long ranged (LR) power law decay or is instead truncated, rendering it short ranged (SR). Using grand canonical Monte Carlo simulation and classical density functional theory, we examine both cases in detail. We find that for the LR case wetting is first order, while drying is continuous (critical) and occurs exactly at zero attractive wall strength, i.e., in the limit of a hard wall. In the SR case, drying is also critical but the order of the wetting transition depends on the truncation range of the wall-fluid potential. We characterize the approach to critical drying and wetting in terms of the density and local compressibility profiles and via the finite-size scaling properties of the probability distribution of the overall density. For the LR case, where the drying point is known exactly, this analysis allows us to estimate the exponent ν ∥ , which controls the parallel correlation length, i.e., the extent of vapor bubbles at the wall. Surprisingly, the value we obtain is over twice that predicted by mean field and renormalization group calculations, despite the fact that our three dimensional system is at the upper critical dimension where mean field theory for critical exponents is expected to hold. Possible reasons for this discrepancy are discussed in the light of fresh insights into the nature of near critical finite-size effects.
Aparecido, Luiza M T; Miller, Gretchen R; Cahill, Anthony T; Moore, Georgianne W
2017-10-01
While it is reasonable to predict that photosynthetic rates are inhibited while leaves are wet, leaf gas exchange measurements during wet conditions are challenging to obtain due to equipment limitations and the complexity of canopy-atmosphere interactions in forested environments. Thus, the objective of this study was to evaluate responses of seven tropical and three semiarid savanna plant species to simulated leaf wetness and test the hypotheses that (i) leaf wetness reduces photosynthetic rates (Anet), (ii) leaf traits explain different responses among species and (iii) leaves from wet environments are better adapted for wet leaf conditions than those from drier environments. The two sites were a tropical rainforest in northern Costa Rica with ~4200 mm annual rainfall and a savanna in central Texas with ~1100 mm. Gas exchange measurements were collected under dry and wet conditions on five sun-exposed leaf replicates from each species. Additional measurements included leaf wetness duration and stomatal density. We found that Anet responses varied greatly among species, but all plants maintained a baseline of activity under wet leaf conditions, suggesting that abaxial leaf Anet was a significant percentage of total leaf Anet for amphistomatous species. Among tropical species, Anet responses immediately after wetting ranged from -31% (Senna alata (L.) Roxb.) to +21% (Zamia skinneri Warsz. Ex. A. Dietr.), while all savanna species declined (up to -48%). After 10 min of drying, most species recovered Anet towards the observed status prior to wetting or surpassed it, with the exception of Quercus stellata Wangenh., a savanna species, which remained 13% below Anet dry. The combination of leaf wetness duration and leaf traits, such as stomatal density, trichomes or wax, most likely influenced Anet responses positively or negatively. There was also overlap between leaf traits and Anet responses of savanna and tropical plants. It is possible that these species converge on a relatively conservative response to wetness, each for divergent purposes (cooling, avoiding stomatal occlusion, or by several unique means of rapid drying). A better understanding of leaf wetness inhibiting photosynthesis is vital for accurate modeling of growth in forested environments; however, species adapted for wet environments may possess compensatory traits that mitigate these effects. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sun, Z W; Fan, Q H; Wang, X X; Guo, Y M; Wang, H J; Dong, X
2017-06-01
Responses to stocking density (SD), dietary biotin concentration and litter condition were evaluated on 2016 Ross 308 male broilers in the fattening period (day 22-day 42). The birds were placed in 48 pens with either dry or wet litter to simulate the final stocking density of 30 kg (12 broilers/m 2 ; normal stocking density, NSD) and 40 kg (16 broilers/m 2 ; high stocking density, HSD) of body weight (BW)/m 2 floor space. A corn-soybean meal-based diet was supplemented with biotin to provide a normal (NB; 155 μg/kg) or high (HB, 1521 μg/kg) level of dietary biotin. There were six repetitions per treatment. The inappropriate moisture content of litter associated with HSD was avoided (p < 0.05) by good management (SD difference: dry litter, 6.65% vs. wet litter, 13.23%; 42 days), which made it advantageous (p < 0.01) for footpad (SD difference: dry litter, 0.118 vs. wet litter, 0.312; weekly average value) and hock health (SD difference: dry litter, 0.090 vs. wet litter, 0.303; weekly average value) of HSD birds, but not (p > 0.05) for growth and processing yield. In HSD, the biotin effect (gains, FCR) was significantly higher (p < 0.01) than in NSD. The similar response of HSD birds to supplemental biotin was observed (p < 0.05) for lesion scores of footpad and hock in particularly finishing chickens, and a significant interaction (p < 0.01) among stocking density, biotin supplementation and litter condition existed from 35 to 42 days of age. Taken together, increasing dietary biotin improves the performance and well-being of broiler chickens stocked at high densities in litter-independent and litter-dependent manners respectively. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
Density-wave fronts on the brink of wet granular condensation
NASA Astrophysics Data System (ADS)
Huang, Kai; Zippelius, Andreas; Sand lab @ University of Bayreuth Team
2017-11-01
From sand dunes to Faraday heaping, driven granular matter, i.e., large agglomeration of macroscopic particles, is rich pattern forming system. When a granular material is partially wet (e.g., wet sand on the beach), a different pattern forming scenario arises due to the cohesive particle-particle interactions. Here, we focus on the formation of density-wave fronts in an oscillated wet granular layer undergoing a gas-liquid-like transition. The threshold of the instability is governed by the amplitude of the vertical vibrations. Fronts, which are curved into a spiral shape, propagate coherently along the circular rim of the container with leading edges. They are stable beyond a critical distance from the container center. Based on the measurement of the critical distance and the rotation frequency, we propose a model for the pattern formation by considering the competition between the time scale for the collapse of cohesive particles and that of the energy injection resisting this process. Deutsche Forschungsgemeinschaft (Grant No. HU1939 4-1).
High-density 3D graphene-based monolith and related materials, methods, and devices
Worsley, Marcus A.; Baumann, Theodore F.; Biener, Juergen; Charnvanichborikarn, Supakit; Kucheyev, Sergei; Montalvo, Elizabeth; Shin, Swanee; Tylski, Elijah
2017-03-21
A composition comprising at least one high-density graphene-based monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds and having a density of at least 0.1 g/cm.sup.3. Also provided is a method comprising: preparing a reaction mixture comprising a suspension and at least one catalyst, said suspension selected from a graphene oxide (GO) suspension and a carbon nanotube suspension; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel, said drying step is substantially free of supercritical drying and freeze drying; and pyrolyzing the dry gel to produce a high-density graphene-based monolith. Exceptional combinations of properties are achieved including high conductive and mechanical properties.
Self assembly of magnetic nanoparticles at silicon surfaces.
Theis-Bröhl, Katharina; Gutfreund, Philipp; Vorobiev, Alexei; Wolff, Max; Toperverg, Boris P; Dura, Joseph A; Borchers, Julie A
2015-06-21
Neutron reflectometry was used to study the assembly of magnetite nanoparticles in a water-based ferrofluid close to a silicon surface. Under three conditions, static, under shear and with a magnetic field, the depth profile is extracted. The particles have an average diameter of 11 nm and a volume density of 5% in a D2O-H2O mixture. They are surrounded by a 4 nm thick bilayer of carboxylic acid for steric repulsion. The reflectivity data were fitted to a model using a least square routine based on the Parratt formalism. From the scattering length density depth profiles the following behavior is concluded: the fits indicate that excess carboxylic acid covers the silicon surface and almost eliminates the water in the densely packed wetting layer that forms close to the silicon surface. Under constant shear the wetting layer persists but a depletion layer forms between the wetting layer and the moving ferrofluid. Once the flow is stopped, the wetting layer becomes more pronounced with dense packing and is accompanied by a looser packed second layer. In the case of an applied magnetic field the prolate particles experience a torque and align with their long axes along the silicon surface which leads to a higher particle density.
Faith Inman-Narahari; Rebecca Ostertag; Stephen P. Hubbell; Christian P. Giardina; Susan Cordell; Lawren Sack; Andrew MacDougall
2016-01-01
Conspecific density may contribute to patterns of species assembly through negative density dependence (NDD) as predicted by the Janzen-Connell hypothesis, or through facilitation (positive density dependence; PDD). Conspecific density effects are expected to be more negative in darker and wetter environments due to higher pathogen abundance and...
Variability of E. coli density and sources in an urban watershed.
Wu, J; Rees, P; Dorner, S
2011-03-01
The objective of this study was to characterize the variability of Escherichia coli density and sources in an urban watershed, particularly to focus on the influences of weather and land use. E. coli as a microbial indicator was measured at fourteen sites in four wet weather events and four dry weather conditions in the upper Blackstone River watershed. The sources of E. coli were identified by ribotyping. The results showed that wet weather led to sharp increases of E. coli densities. Interestingly, an intense storm of short duration led to a higher E. coli density than a moderate storm of long duration (p<0.01). The ribotyping patterns revealed microbial sources were mainly attributed to humans and wildlife, but varied in different weather conditions and were associated with the patterns of land use. Human sources accounted for 24.43% in wet weather but only 9.09% in dry weather. In addition, human sources were more frequently observed in residential zones (>30% of the total sources), while wildlife sources were dominant in open land and forest zones (54%). The findings provide useful information for developing optimal management strategies aimed at reducing the level of pathogens in urban watersheds.
Methyl alcohol used as penetrant inspection medium for porous materials
NASA Technical Reports Server (NTRS)
Hendron, J. A.
1971-01-01
Porous material thoroughly wetted with alcohol shows persistent wet line or area at locations of cracks or porosity. Inspection is qualitative and repeatable, but is used quantitatively with select samples to grade density variations in graphite blocks. Photography is employed to achieve permanent record of results.
NASA Astrophysics Data System (ADS)
Kim, Jungho; Yu, Bong-Ahn
2015-03-01
We numerically investigate the effect of the wetting-layer (WL) density of states on the gain and phase recovery dynamics of quantum-dot semiconductor optical amplifiers in both electrical and optical pumping schemes by solving 1088 coupled rate equations. The temporal variations of the ultrafast gain and phase recovery responses at the ground state (GS) are calculated as a function of the WL density of states. The ultrafast gain recovery responses do not significantly depend on the WL density of states in the electrical pumping scheme and the three optical pumping schemes such as the optical pumping to the WL, the optical pumping to the excited state ensemble, and the optical pumping to the GS ensemble. The ultrafast phase recovery responses are also not significantly affected by the WL density of states except the optical pumping to the WL, where the phase recovery component caused by the WL becomes slowed down as the WL density of states increases.
NASA Astrophysics Data System (ADS)
Yin, Ruiyuan; Li, Yue; Sun, Yu; Wen, Cheng P.; Hao, Yilong; Wang, Maojun
2018-06-01
We report the effect of the gate recess process and the surface of as-etched GaN on the gate oxide quality and first reveal the correlation between border traps and exposed surface properties in normally-off Al2O3/GaN MOSFET. The inductively coupled plasma (ICP) dry etching gate recess with large damage presents a rough and active surface that is prone to form detrimental GaxO validated by atomic force microscopy and X-ray photoelectron spectroscopy. Lower drain current noise spectral density of the 1/f form and less dispersive ac transconductance are observed in GaN MOSFETs fabricated with oxygen assisted wet etching compared with devices based on ICP dry etching. One decade lower density of border traps is extracted in devices with wet etching according to the carrier number fluctuation model, which is consistent with the result from the ac transconductance method. Both methods show that the density of border traps is skewed towards the interface, indicating that GaxO is of higher trap density than the bulk gate oxide. GaxO located close to the interface is the major location of border traps. The damage-free oxidation assisted wet etching gate recess technique presents a relatively smooth and stable surface, resulting in lower border trap density, which would lead to better MOS channel quality and improved device reliability.
Evaluation of potential site for mineral processing plant
NASA Astrophysics Data System (ADS)
Izwan Ishak, Muhamad Noor; Sipaun, Susan Maria; Mustapha, Ismail; Fahmi Engku Chik, Engku Mohd; Abdullah, Nurliyana; Affandi Mahmood, Airwan
2018-01-01
Nuclear moisture-density gauge is a type of instrument for measuring density and moisture of the material in a relatively thin zone beneath a surface of the material by using low activity of neutron and gamma radiation source. Density and moisture content data of the compacted layers are needed to determine the degree of compaction of soils, aggregate, concrete, asphalt or other materials used in civil engineering works. A gamma radiation source is mounted inside gauge housing with the source rod vertically extended to various depth positions. Direct transmission gamma radiation technique is used to obtain the count reading for the number of photons emitted before it is converted into density reading by microprocessor. This paper presents the inspection technique and results for the measurement of soil moisture and density carried out at potential site for mineral processing plant, Malaysian Nuclear Agency. Primarily, the experiment was conducted to ensure the compaction of ground is suitable for the plant construction. From the calculation, the percentages of soil wet density compaction (%WD Compact) are within acceptable limits with respect to the standard compacted wet soil density measured in the laboratory.
DOT National Transportation Integrated Search
1984-01-01
This report presents the results of an investigation of the comparison of percent density determinations between dry, 4 in. square sawed samples and 4 in. wet cores measured in both the field and the lab. Recommendations are given concerning the rela...
Prevalence and quantification of Vibrio parahaemolyticus in raw salad vegetables at retail level.
Tunung, Robin; Margaret, Selina; Jeyaletchumi, Ponniah; Chai, Lay C; Tuan Zainazor, Tuan C; Ghazali, Farinazleen M; Nakaguchi, Yoshitsugu; Nishibuchi, Mitsuaki; Son, Radu
2010-02-01
The purpose of this study was to investigate the biosafety of Vibrio parahaemolyticus in raw salad vegetables at wet market and supermarket in Malaysia. A combination of Most Probable Number - Polymerase Chain Reaction (MPN-PCR) method was applied to detect the presence of V. parahaemolyticus and to enumerate their density in the food samples. The study analyzed 276 samples of common vegetables eaten raw in Malaysia (Wild cosmos = 8; Japanese parsley = 21; Cabbage = 30; Lettuce = 16; Indian pennywort = 17; Carrot = 31; Sweet potato = 29; Tomato = 38; Cucumber = 28; Four winged bean = 26; Long bean = 32). The samples were purchased from two supermarkets (A and B) and two wet markets (C and D). The occurrence of V. parahaemolyticus detected was 20.65%, with higher frequency of V. parahaemolyticus in vegetables obtained from wet markets (Wet market C = 27.27%Wet Market D = 32.05%) compared to supermarkets (Supermarket A = 1.64%; Supermarket B = 16.67%). V. parahaemolyticus was most prevalent in Indian pennywort (41.18%). The density of V. parahaemolyticus in all the samples ranged from <3 up to >2400 MPN/g, mostly <3 MPN/g concentration. Raw vegetables from wet markets contained higher levels of V. parahaemolyticus compared to supermarkets. V. parahaemolyticus were present in raw vegetables although in low numbers. The results suggest that raw vegetables act as a transmission route for V. parahaemolyticus. This study will be the first biosafety assessment of V. parahaemolyticus in raw vegetables in Malaysia.
Wetting of silicone oil onto a cell-seeded substrate
NASA Astrophysics Data System (ADS)
Lu, Yongjie; Chan, Yau Kei; Chao, Youchuang; Shum, Ho Cheung
2017-11-01
Wetting behavior of solid substrates in three-phase systems containing two immiscible liquids are widely studied. There exist many three-phase systems in biological environments, such as droplet-based microfluidics or tamponade of silicone oil for eye surgery. However, few studies focus on wetting behavior of biological surfaces with cells. Here we investigate wetting of silicone oil onto cell-seeded PMMA sheet immersed in water. Using a simple parallel-plate cell, we show the effect of cell density, viscosity of silicone oil, morphology of silicone oil drops and interfacial tension on the wetting phenomenon. The dynamics of wetting is also observed by squeezing silicone oil drop using two parallel plates. Experimental results are explained based on disjoining pressure which is dependent on the interaction of biological surfaces and liquid used. These findings are useful for explaining emulsification of silicone oil in ophthalmological applications.
J. F. Hunt; C. B. Vick
1999-01-01
Recycled paper fiber recovered from our municipal solid waste stream could potentially be used in structural hardboard products. This study compares strength properties and processing variables of wet-formed high-density hardboard panels made from recycled old corrugated container (OCC) fibers and virgin hardboard fibers using continuous pressure during drying. The...
Electrochemical Method of Making Porous Particles Using a Constant Current Density
NASA Technical Reports Server (NTRS)
Ferrari, Mauro (Inventor); Cheng, Ming-Cheng (Inventor); Liu, Xuewu (Inventor)
2014-01-01
Provided is a particle that includes a first porous region and a second porous region that differs from the first porous region. Also provided is a particle that has a wet etched porous region and that does have a nucleation layer associated with wet etching. Methods of making porous particles are also provided.
Laboratory Characterization of Gray Masonry Concrete
2007-08-01
Based on the appropriate values of posttest water content, wet density, and an assumed grain density of 2.61 Mg/m3, values of dry density, porosity...velocity measurements were performed on each specimen. The TXC tests exhibited a continuous increase in maximum principal stress difference with...14 Figure 3. Spring-arm lateral deformeter mounted on test
NASA Astrophysics Data System (ADS)
Hyhlík, Tomáš
2018-06-01
The article deals with the development of incompressible ideal gas like model, which can be used as a part of mathematical model describing natural draft wet-cooling tower flow, heat and mass transfer. It is shown, based on the results of a complex mathematical model of natural draft wet-cooling tower flow, that behaviour of pressure, temperature and density is very similar to the case of hydrostatics of moist air, where heat and mass transfer in the fill zone must be taken into account. The behaviour inside the cooling tower is documented using density, pressure and temperature distributions. The proposed equation for the density is based on the same idea like the incompressible ideal gas model, which is only dependent on temperature, specific humidity and in this case on elevation. It is shown that normalized density difference of the density based on proposed model and density based on the nonsimplified model is in the order of 10-4. The classical incompressible ideal gas model, Boussinesq model and generalised Boussinesq model are also tested. These models show deviation in percentages.
Kayen, R.E.; Edwards, B.D.; Lee, H.J.
1999-01-01
High-resolution automated measurement of the geotechnical and geoacoustic properties of soil at the U.S. Geological Survey (USGS) is performed with a state-of-the-art multi-sensor whole-core logging device. The device takes measurements, directly through intact sample-tube wall, of p-wave acoustic velocity, of soil wet bulk density, and magnetic susceptibility. This paper summarizes our methodology for determining soil-sound speed and wet-bulk density for material encased in an unsplit liner. Our methodology for nondestructive measurement allows for rapid, accurate, and high-resolution (1 cm-spaced) mapping of the mass physical properties of soil prior to sample extrusion.
NASA Astrophysics Data System (ADS)
Shiomi, Hiromu; Kitai, Hidenori; Tsujimura, Masatoshi; Kiuchi, Yuji; Nakata, Daisuke; Ono, Shuichi; Kojima, Kazutoshi; Fukuda, Kenji; Sakamoto, Kunihiro; Yamasaki, Kimiyohi; Okumura, Hajime
2016-04-01
The effects of oxynitridation and wet oxidation at the interface of SiO2/4H-SiC(0001) and (000\\bar{1}) were investigated using both electrical and physical characterization methods. Hall measurements and split capacitance-voltage (C-V) measurements revealed that the difference in field-effect mobility between wet oxide and dry oxynitride interfaces was mainly attributed to the ratio of the mobile electron density to the total induced electron density. The surface states close to the conduction band edge causing a significant trapping of inversion carriers were also evaluated. High-resolution Rutherford backscattering spectroscopy (HR-RBS) analysis and high-resolution elastic recoil detection analysis (HR-ERDA) were employed to show the nanometer-scale compositional profile of the SiC-MOS interfaces for the first time. These analyses, together with cathode luminescence (CL) spectroscopy and transmission electron microscopy (TEM), suggested that the deviations of stoichiometry and roughness at the interface defined the effects of oxynitridation and wet oxidation at the interface of SiO2/4H-SiC(0001) and (000\\bar{1}).
NASA Astrophysics Data System (ADS)
Ohta, Akio; Truyen, Nguyen Xuan; Fujimura, Nobuyuki; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi
2018-06-01
The energy distribution of the electronic state density of wet-cleaned epitaxial GaN surfaces and SiO2/GaN structures has been studied by total photoelectron yield spectroscopy (PYS). By X-ray photoelectron spectroscopy (XPS) analysis, the energy band diagram for a wet-cleaned epitaxial GaN surface such as the energy level of the valence band top and electron affinity has been determined to obtain a better understanding of the measured PYS signals. The electronic state density of GaN surface with different carrier concentrations in the energy region corresponding to the GaN bandgap has been evaluated. Also, the interface defect state density of SiO2/GaN structures was also estimated by not only PYS analysis but also capacitance–voltage (C–V) characteristics. We have demonstrated that PYS analysis enables the evaluation of defect state density filled with electrons at the SiO2/GaN interface in the energy region corresponding to the GaN midgap, which is difficult to estimate by C–V measurement of MOS capacitors.
Plasma treatment switches the regime of wetting and floating of pepper seeds.
Shapira, Yekaterina; Multanen, Victor; Whyman, Gene; Bormashenko, Yelena; Chaniel, Gilad; Barkay, Zahava; Bormashenko, Edward
2017-09-01
Cold radiofrequency plasma treatment modified wetting and floating regimes of pepper seeds. The wetting regime of plasma-treated seeds was switched from the Wenzel-like partial wetting to the complete wetting. No hydrophobic recovery following the plasma treatment was registered. Environmental scanning electron microscopy of the fine structure of the (three-phase) triple line observed with virgin and plasma-treated seeds is reported. Plasma treatment promoted rapid sinking of pepper seeds placed on the water/air interface. Plasma treatment did not influence the surface topography of pepper seeds, while charged them electrically. Electrostatic repulsion of floating plasma-treated seeds was observed. The surface charge density was estimated from the data extracted from floating of charged seeds and independently with the electrostatic pendulum as σ≈1-2μC/m 2 . Copyright © 2017 Elsevier B.V. All rights reserved.
Naupaka Zimmerman; Flint 1 Hughes; Patrick Hart; Heather Kalei Chang; David Perez; Ryan Kaipoalohaakala Like; Rebecca Ostertag
2008-01-01
The majority of Hawaii's lowland wet forests no longer exist, with many of the last remaining patches found on the eastern, windward sides of the largest islands. To better understand successional patterns and invasion in these native systems, we quantified basal area (BA) and densities of woody species and understory cover at nine sites in the Puna district on...
Modeling infection of spring onion by Puccinia allii in response to temperature and leaf wetness.
Furuya, Hiromitsu; Takanashi, Hiroyuki; Fuji, Shin-Ichi; Nagai, Yoshio; Naito, Hideki
2009-08-01
The influence of temperature and leaf wetness duration on infection of spring onion (Japanese bunching onion) leaves by Puccinia allii was examined in controlled-environment experiments. Leaves of potted spring onion plants (Allium fistulosum cv. Yoshikura) were inoculated with urediniospores and exposed to 6.5, 10, 15, 22, or 27 h of wetness at 5, 10, 15, 20, or 25 degrees C. The lesion that developed increased in density with increasing wetness duration. Relative infection was modeled as a function of both temperature and wetness duration using the modified version of Weibull's cumulative distribution function (R(2) = 0.9369). Infection occurred between 6.5 and 27 h of leaf wetness duration at 10, 15, 20, and 25 degrees C and between 10 and 27 h at 5 degrees C, and increased rapidly between 6.5 and 15 h of wetness at 10, 15, and 20 degrees C. At 25 degrees C, few uredinia developed regardless of the wetness duration. Parameter H, one of eight parameters used in the equation and which controls the asymmetry in the response curve, varied markedly according to the temperature, so that the model could be improved by representing H as a function of wetness duration (R(2) = 0.9501).
Some physical properties of ginkgo nuts and kernels
NASA Astrophysics Data System (ADS)
Ch'ng, P. E.; Abdullah, M. H. R. O.; Mathai, E. J.; Yunus, N. A.
2013-12-01
Some data of the physical properties of ginkgo nuts at a moisture content of 45.53% (±2.07) (wet basis) and of their kernels at 60.13% (± 2.00) (wet basis) are presented in this paper. It consists of the estimation of the mean length, width, thickness, the geometric mean diameter, sphericity, aspect ratio, unit mass, surface area, volume, true density, bulk density, and porosity measures. The coefficient of static friction for nuts and kernels was determined by using plywood, glass, rubber, and galvanized steel sheet. The data are essential in the field of food engineering especially dealing with design and development of machines, and equipment for processing and handling agriculture products.
Additives affecting properties of β-Li2TiO3 pebbles in a modified indirect wet chemistry process
NASA Astrophysics Data System (ADS)
Yu, Cheng-Long; Liu, Wei; Yang, Long-Tao; Wang, Dao-Yi; Wu, Kang; Zhang, Zeng-Ping; Wang, Xiu-Feng; Yanagisawa, Kazumichi
2016-11-01
Lithium metatitanate (β-Li2TiO3) pebbles were fabricated via the modified indirect wet chemistry method. Effect of varied additives, as polyvinyl alcohol, glycerol, and agar on the properties evolution was investigated. The highest density is obtained by adding 2 wt% (weight percent) polyvinyl alcohol, 3 wt% glycerol, and 3 wt% agar, respectively. β-Li2TiO3 pebbles with relative sintered density of 92.4%T.D. (Theoretical Density), the ratio of the intensity of diffraction peak (002) to that of (-133) of about 2.93, about 1.58 mm in diameter, a better sphericity of 1.02, the particle size of 5-6 μm, and the well-developed surface layered structure are successfully fabricated with 3 wt% glycerol. Glycerol is beneficial to improving the properties by other fabrication method as well.
Kirsch, E.M.; Gray, B.R.; Fox, T.J.; Thogmartin, W.E.
2007-01-01
Invasive plants are a growing concern worldwide for conservation of native habitats. In endangered wet meadow habitat in the Upper Midwestern United States, reed canary grass (Phalaris arundinacea) is a recognized problem and its prevalence is more widespread than the better-known invasive wetland plant purple loosestrife (Lythrum salicaria). Although resource managers are concerned about the effect of reed canary grass on birds, this is the first study to report how common wet meadow birds use habitat in relation to reed canary grass cover and dominance. We examined three response variables: territory placement, size of territories, and numbers of territories per plot in relation to cover of reed canary grass. Territory locations for Sedge Wren (Cistothorus platensis) and Song Sparrow (Melospiza melodia) were positively associated with reed canary grass cover, while those for Common Yellowthroat (Geothlypis trichas) were not. Only Swamp Sparrow (M. georgiana) territory locations were negatively associated with reed canary grass cover and dominance (which indicated a tendency to place territories where there was no reed canary grass or where many plant species occurred with reed canary grass). Swamp Sparrow territories were positively associated with vegetation height density and litter depth. Common Yellowthroat territories were positively associated with vegetation height density and shrub cover. Song Sparrow territories were negatively associated with litter depth. Reed canary grass cover within territories was not associated with territory size for any of these four bird species. Territory density per plot was not associated with average reed canary grass cover of plots for all four species. Sedge Wrens and Song Sparrows may not respond negatively to reed canary grass because this grass is native to wet meadows of North America, and in the study area it merely replaces other tall lush plants. Avoidance of reed canary grass by Swamp Sparrows may be mediated through their preference for wet areas where reed canary grass typically does not dominate. ?? 2007, The Society of Wetland Scientists.
We used computer-aided tomography (CT) to quantify the wet mass, abundance, and diameter of coarse roots and rhizomes as well as the wet mass and particle density of marsh peat in 7-year fertilized and control creeks in Plum Island (MA). In shallow soils (0 – 10 cm) and at dep...
The magnetic properties and microstructure of Co-Pt thin films using wet etching process.
Lee, Chang-Hyoung; Cho, Young-Lae; Lee, Won-Pyo; Suh, Su-Jeong
2014-11-01
Perpendicular magnetic recording (PMR) is a promising candidate for high density magnetic recording and has already been applied to hard disk drive (HDD) systems. However, media noise still limits the recording density. To reduce the media noise and achieve a high signal-to-noise ratio (SNR) in hard disk media, the grains of the magnetic layer must be magnetically isolated from each other. This study examined whether sputter-deposited Co-Pt thin films can have adjacent grains that are physically isolated. To accomplish this, the effects of the sputtering conditions and wet etching process on magnetic properties and the microstructure of the films were investigated. The film structure was Co-Pt (30 nm)/Ru (30 nm)/NiFe (10 nm)/Ta (5 nm). The composition of the Co-Pt thin films was Co-30.7 at.% Pt. The Co-Pt thin films were deposited in Ar gas at 5, 10, 12.5, and 15 mTorr. Wet etching process was performed using 7% nitric acid solution at room temperature. These films had high out-of-plane coercivity of up to 7032 Oe, which is twice that of the as-deposited film. These results suggest that wet etched Co-Pt thin films have weaker exchange coupling and enhanced out-of-plane coercivity, which would reduce the medium noise.
Modeling the influence of snow cover temperature and water content on wet-snow avalanche runout
NASA Astrophysics Data System (ADS)
Valero, Cesar Vera; Wever, Nander; Christen, Marc; Bartelt, Perry
2018-03-01
Snow avalanche motion is strongly dependent on the temperature and water content of the snow cover. In this paper we use a snow cover model, driven by measured meteorological data, to set the initial and boundary conditions for wet-snow avalanche calculations. The snow cover model provides estimates of snow height, density, temperature and liquid water content. This information is used to prescribe fracture heights and erosion heights for an avalanche dynamics model. We compare simulated runout distances with observed avalanche deposition fields using a contingency table analysis. Our analysis of the simulations reveals a large variability in predicted runout for tracks with flat terraces and gradual slope transitions to the runout zone. Reliable estimates of avalanche mass (height and density) in the release and erosion zones are identified to be more important than an exact specification of temperature and water content. For wet-snow avalanches, this implies that the layers where meltwater accumulates in the release zone must be identified accurately as this defines the height of the fracture slab and therefore the release mass. Advanced thermomechanical models appear to be better suited to simulate wet-snow avalanche inundation areas than existing guideline procedures if and only if accurate snow cover information is available.
Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests.
Ostertag, Rebecca; Inman-Narahari, Faith; Cordell, Susan; Giardina, Christian P; Sack, Lawren
2014-01-01
The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species) and stem density (3078 vs. 3486/ha). While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species), six-fold variation in mean annual rainfall (835-5272 mm yr(-1)) and 1.8-fold variation in mean annual temperature (16.0-28.4°C). Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological theory for links among species diversity, environmental variation and ecosystem function.
Forest Structure in Low-Diversity Tropical Forests: A Study of Hawaiian Wet and Dry Forests
Ostertag, Rebecca; Inman-Narahari, Faith; Cordell, Susan; Giardina, Christian P.; Sack, Lawren
2014-01-01
The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai‘i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai‘i forests were characterized by low species richness and very high relative dominance. The two Hawai‘i forests were floristically distinct, yet similar in species richness (15 vs. 21 species) and stem density (3078 vs. 3486/ha). While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5–>50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai‘i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15–1182 species), six-fold variation in mean annual rainfall (835–5272 mm yr−1) and 1.8-fold variation in mean annual temperature (16.0–28.4°C). Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological theory for links among species diversity, environmental variation and ecosystem function. PMID:25162731
NASA Astrophysics Data System (ADS)
Chung, Juyeon; Hagishima, Aya; Ikegaya, Naoki; Tanimoto, Jun
2015-11-01
We report the result of a wind-tunnel experiment to measure the scalar transfer efficiency of three types of surfaces, wet street surfaces of cube arrays, wet smooth surfaces with dry patches, and fully wet smooth surfaces, to examine the effects of roughness topography and scalar source allocation. Scalar transfer coefficients defined by the source area {C}_{E wet} for an underlying wet street surface of dry block arrays show a convex trend against the block density λ _p. Comparison with past data, and results for wet smooth surfaces including dry patches, reveal that the positive peak of {C}_{E wet} with increasing λ _p is caused by reduced horizontal advection due to block roughness and enhanced evaporation due to a heterogeneous scalar source distribution. In contrast, scalar transfer coefficients defined by a lot-area including wet and dry areas {C}_{E lot} for smooth surfaces with dry patches indicate enhanced evaporation compared to the fully wet smooth surface (the oasis effect) for all three conditions of dry plan-area ratio up to 31 %. Relationships between the local Sherwood and Reynolds numbers derived from experimental data suggest that attenuation of {C}_{E wet} for a wet street of cube arrays against streamwise distance is weaker than for a wet smooth surface because of canopy flow around the blocks. Relevant parameters of ratio of roughness length for momentum to scalar {B}^{-1} were calculated from observational data. The result implies that {B}^{-1} possibly increases with block roughness, and decreases with the partitioning of the scalar boundary layer because of dry patches.
Ternary Free-Energy Entropic Lattice Boltzmann Model with a High Density Ratio
NASA Astrophysics Data System (ADS)
Wöhrwag, M.; Semprebon, C.; Mazloomi Moqaddam, A.; Karlin, I.; Kusumaatmaja, H.
2018-06-01
A thermodynamically consistent free energy model for fluid flows comprised of one gas and two liquid components is presented and implemented using the entropic lattice Boltzmann scheme. The model allows a high density ratio, up to the order of O (103), between the liquid and gas phases, and a broad range of surface tension ratios, covering partial wetting states where Neumann triangles are formed, and full wetting states where complete encapsulation of one of the fluid components is observed. We further demonstrate that we can capture the bouncing, adhesive, and insertive regimes for the binary collisions between immiscible droplets suspended in air. Our approach opens up a vast range of multiphase flow applications involving one gas and several liquid components.
Non-lead, environmentally safe projectiles and explosives containers
Lowden, Richard A.; McCoig, Thomas M.; Dooley, Joseph B.; Smith, Cyrus M.
2001-01-16
A solid object having controlled frangibility, such as a bullet or a container for explosives, is made by combining two different metals in proportions calculated to achieve a desired density, without using lead. A wetting material is deposited on the base constituent which is made of a relative dense, hard material. The wetting material enhances the wettability of the base constituent with the binder constituent, which is lighter and softer than the base constituent.
Non-lead environmentally safe projectiles and explosive container
Lowden, Richard A.; McCoig, Thomas M.; Dooley, Joseph B.; Smith, Cyrus M.
1999-06-15
A solid object having controlled frangibility, such as a bullet or a container for explosives, is made by combining two different metals in proportions calculated to achieve a desired density, without using lead. A wetting material is deposited on the base constituent which is made of a relative dense, hard material. The wetting material enhances the wettability of the base constituent with the binder constituent, which is lighter and softer than the base constituent.
Dielectric properties-based method for rapid and nondestructive moisture sensing in almonds
USDA-ARS?s Scientific Manuscript database
A dielectric-based method is presented for moisture determination in almonds independent of bulk density. The dielectric properties of almond were measured between 5 and 15 GHz, with a 1-GHz increments, for samples with moisture contents ranging from 4.8% to 16.5%, wet basis, bulk densities ranging ...
Ssang Yong 2014 Remote Sensing Experiment
2016-05-25
determination of the wet field density of soil. Dry density is calculated after the laboratory measurement of the field moisture content...28 Figure 5-9. Drying ovens used in field laboratory established...seasons. Winters are usually long, cold, and dry . Summers are generally short, hot, and humid. Spring and autumn are pleasant but short in duration
Gabbott, Ian P; Al Husban, Farhan; Reynolds, Gavin K
2016-09-01
A pharmaceutical compound was used to study the effect of batch wet granulation process parameters in combination with the residual moisture content remaining after drying on granule and tablet quality attributes. The effect of three batch wet granulation process parameters was evaluated using a multivariate experimental design, with a novel constrained design space. Batches were characterised for moisture content, granule density, crushing strength, porosity, disintegration time and dissolution. Mechanisms of the effect of the process parameters on the granule and tablet quality attributes are proposed. Water quantity added during granulation showed a significant effect on granule density and tablet dissolution rate. Mixing time showed a significant effect on tablet crushing strength, and mixing speed showed a significant effect on the distribution of tablet crushing strengths obtained. The residual moisture content remaining after granule drying showed a significant effect on tablet crushing strength. The effect of moisture on tablet tensile strength has been reported before, but not in combination with granulation parameters and granule properties, and the impact on tablet dissolution was not assessed. Correlations between the energy input during granulation, the density of granules produced, and the quality attributes of the final tablets were also identified. Understanding the impact of the granulation and drying process parameters on granule and tablet properties provides a basis for process optimisation and scaling. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sebayang, Perdamean; Sari, Ayu Yuswita; Ginting, Delovita; Allan, Yola; Nasruddin M., N.; Sebayang, Kerista
2016-02-01
The objective of present work is to investigate the characteristic of BaFe12O19, B2O3-BaFe12O19 and Fe-BaFe12O19 magnets fabricated at different milling time and sintering temperature. The characteristic of perrmanen magnet BaFe12O19 with different content of B2O3 and Fe which was fabricated at different milling time and sintering temperature were investigated. The powder mixtures were prepared by dry and wet milling at various milling time. The powder were mixtured and prepared by dry and wet milling at various milling time. The mixture powder was then compacted by anisotropic with compressive pressure of 50 N/cm2. The green bodies were sinter at 1050, 1100, 1150 and 1200°C and hold for 1 h, separately. The density, magnetic flux density and B-H curve were measured by Archimedes principle, Gauss meter and Permagraph, respectively. The microstructure and phase composition characterization were performed by SEM and XRD. The results of this study are presented in this paper. It shows that addition of Fe (in wet milling) and B2O3 (in dry milling) respectively give a potential benefit to reduce the sintering temperature and improve the magnetic flux density of barium hexaferrite.
Non-lead environmentally safe projectiles and explosive container
Lowden, R.A.; McCoig, T.M.; Dooley, J.B.; Smith, C.M.
1999-06-15
A solid object having controlled frangibility, such as a bullet or a container for explosives, is made by combining two different metals in proportions calculated to achieve a desired density, without using lead. A wetting material is deposited on the base constituent which is made of a relative dense, hard material. The wetting material enhances the wettability of the base constituent with the binder constituent, which is lighter and softer than the base constituent. 10 figs.
Narang, Ajit S; Sheverev, Valery; Freeman, Tim; Both, Douglas; Stepaniuk, Vadim; Delancy, Michael; Millington-Smith, Doug; Macias, Kevin; Subramanian, Ganeshkumar
2016-01-01
Drag flow force (DFF) sensor that measures the force exerted by wet mass in a granulator on a thin cylindrical probe was shown as a promising process analytical technology for real-time in-line high-resolution monitoring of wet mass consistency during high shear wet granulation. Our previous studies indicated that this process analytical technology tool could be correlated to granulation end point established independently through drug product critical quality attributes. In this study, the measurements of flow force by a DFF sensor, taken during wet granulation of 3 placebo formulations with different binder content, are compared with concurrent at line FT4 Powder Rheometer characterization of wet granules collected at different time points of the processing. The wet mass consistency measured by the DFF sensor correlated well with the granulation's resistance to flow and interparticulate interactions as measured by FT4 Powder Rheometer. This indicated that the force pulse magnitude measured by the DFF sensor was indicative of fundamental material properties (e.g., shear viscosity and granule size/density), as they were changing during the granulation process. These studies indicate that DFF sensor can be a valuable tool for wet granulation formulation and process development and scale up, as well as for routine monitoring and control during manufacturing. Copyright © 2016. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Zhou, Shiqi
2017-11-01
A new scheme is put forward to determine the wetting temperature (Tw) by utilizing the adaptation of arc-length continuation algorithm to classical density functional theory (DFT) used originally by Frink and Salinger, and its advantages are summarized into four points: (i) the new scheme is applicable whether the wetting occurs near a planar or a non-planar surface, whereas a zero contact angle method is considered only applicable to a perfectly flat solid surface, as demonstrated previously and in this work, and essentially not fit for non-planar surface. (ii) The new scheme is devoid of an uncertainty, which plagues a pre-wetting extrapolation method and originates from an unattainability of the infinitely thick film in the theoretical calculation. (iii) The new scheme can be similarly and easily applied to extreme instances characterized by lower temperatures and/or higher surface attraction force field, which, however, can not be dealt with by the pre-wetting extrapolation method because of the pre-wetting transition being mixed with many layering transitions and the difficulty in differentiating varieties of the surface phase transitions. (iv) The new scheme still works in instance wherein the wetting transition occurs close to the bulk critical temperature; however, this case completely can not be managed by the pre-wetting extrapolation method because near the bulk critical temperature the pre-wetting region is extremely narrow, and no enough pre-wetting data are available for use of the extrapolation procedure.
NASA Astrophysics Data System (ADS)
Saboori, Abdollah; Pavese, Matteo; Badini, Claudio; Fino, Paolo
2018-01-01
Copper/graphene nanoplatelet (GNP) nanocomposites were produced by a wet mixing method followed by a classical powder metallurgy technique. A qualitative evaluation of the structure of graphene after mixing indicated that wet mixing is an appropriate dispersion method. Thereafter, the effects of two post-processing techniques such as repressing-annealing and hot isostatic pressing (HIP) on density, interfacial bonding, hardness, and thermal and electrical conductivity of the nanocomposites were analyzed. Density evaluations showed that the relative density of specimens increased after the post-processing steps so that after HIPing almost full densification was achieved. The Vickers hardness of specimens increased considerably after the post-processing techniques. The thermal conductivity of pure copper was very low in the case of the as-sintered samples containing 2 to 3 pct porosity and increased considerably to a maximum value in the case of HIPed samples which contained only 0.1 to 0.2 pct porosity. Electrical conductivity measurements showed that by increasing the graphene content electrical conductivity decreased.
Wet oxidation of GeSi strained layers by rapid thermal processing
NASA Astrophysics Data System (ADS)
Nayak, D. K.; Kamjoo, K.; Park, J. S.; Woo, J. C. S.; Wang, K. L.
1990-07-01
A cold-wall rapid thermal processor is used for the wet oxidation of the commensurately grown GexSi1-x layers on Si substrates. The rate of oxidation of the GexSi1-x layer is found to be significantly higher than that of pure Si, and the oxidation rate increases with the increase in the Ge content in GexSi1-x layer. The oxidation rate of GexSi1-x appears to decrease with increasing oxidation time for the time-temperature cycles considered here. Employing high-frequency and quasi-static capacitance-voltage measurements, it is found that a fixed negative oxide charge density in the range of 1011- 1012/cm2 and the interface trap level density (in the mid-gap region) of about 1012/cm2 eV are present. Further, the density of this fixed interface charge at the SiO2/GeSi interface is found to increase with the Ge concentration in the commensurately grown GeSi layers.
Method development estimating ambient mercury concentration from monitored mercury wet deposition
NASA Astrophysics Data System (ADS)
Chen, S. M.; Qiu, X.; Zhang, L.; Yang, F.; Blanchard, P.
2013-05-01
Speciated atmospheric mercury data have recently been monitored at multiple locations in North America; but the spatial coverage is far less than the long-established mercury wet deposition network. The present study describes a first attempt linking ambient concentration with wet deposition using Beta distribution fitting of a ratio estimate. The mean, median, mode, standard deviation, and skewness of the fitted Beta distribution parameters were generated using data collected in 2009 at 11 monitoring stations. Comparing the normalized histogram and the fitted density function, the empirical and fitted Beta distribution of the ratio shows a close fit. The estimated ambient mercury concentration was further partitioned into reactive gaseous mercury and particulate bound mercury using linear regression model developed by Amos et al. (2012). The method presented here can be used to roughly estimate mercury ambient concentration at locations and/or times where such measurement is not available but where wet deposition is monitored.
Mechanism of growth of the Ge wetting layer upon exposure of Si(100)-2 x 1 to GeH4.
Liu, Chie-Sheng; Chou, Li-Wei; Hong, Lu-Sheng; Jiang, Jyh-Chiang
2008-04-23
This paper describes the initial reaction kinetics of Ge deposition after exposure of Si(100)-2 x 1 to GeH4 in a UHV-CVD system. The rate of Ge growth, especially at the wetting layer stage, was investigated using in situ X-ray photoelectron spectroscopy to measure the Ge signal at the onset of deposition. A kinetic analysis of the initial growth of the Ge wetting layer at temperatures ranging from 698 to 823 K revealed an activation energy of 30.7 kcal/mol. Density functional theory calculations suggested that opening of the Si dimer--with a closely matching energy barrier of 29.7 kcal/mol, following hydrogen atom migration--was the rate controlling step for the incorporation of a GeH2 unit into the lattice to complete the growth of the Ge wetting layer after dissociative adsorption of GeH4.
To determine the end point of wet granulation by measuring powder energies and thermal properties.
Dave, Rutesh H; Wu, Stephen H; Contractor, Labdhi D
2012-04-01
Wet granulation has been widely used in pharmaceutical industry as a tablet manufacturing process. However, end-point determination of wet granulation process has always remained a challenge. Many traditional methods are available for end-point determination, yet accuracy and reproducibility still remain a challenge. Microcrystalline cellulose, widely used as an excipient in pharmaceutical industry, was granulated using water. Wet mass was passed through sieve # 12 and dried till constant percentage loss on drying was obtained and dried granules were obtained. Wet and dried granules collected were subjected to basic flow energy, specific energy, bulk density, pressure drop, differential scanning calorimetry and effusivity measurements. Analysis of data revealed various stages of granule growth from initial seed formation by adding 200-400 g of water, granule growth was observed by adding 600-800 g of water and over wetting was observed at 1155 g of water. In this work, we have justified our work to properly identify and utilize this technique for practical purpose to correctly identify the end-point determination of microcrystalline cellulose and explain various principles underlying energies associated with powder and thermal measurements.
Soil chemical factors and grassland species density in Emas National Park (central Brazil).
Amorim, P K; Batalha, M A
2008-05-01
Studies of grasslands on specific soil types suggest that different nutrients can limit biomass production and, hence, species composition and number. The Brazilian cerrado is the major savanna region in America and once covered about 2 million km(2), mainly in the Brazilian Central Plateau, under seasonal climate, with wet summer and dry winter. In view of the importance of soil chemical factors in the distribution of the vegetation forms within the Cerrado domain and which may influence the number of species, we analyzed some soil characteristics in three herbaceous vegetation forms -- hyperseasonal cerrado, seasonal cerrado, and wet grassland -- in Emas National Park, a core cerrado site, to investigate the relationship between number of species and soil characteristics. We collected vegetation and soil samples in these three vegetation forms and submitted the obtained data to multiple linear regression. We found out that aluminum and pH were the best predictors of species density, the former positively related to species density and the latter negatively related. Since the predictable variation in species density is important in determining areas of conservation, we can postulate that these two soil factors are indicators of high species density areas in tropical grasslands, which could be used in selecting priority sites for conservation.
Bacakova, Marketa; Lopot, Frantisek; Hadraba, Daniel; Varga, Marian; Zaloudkova, Margit; Stranska, Denisa; Suchy, Tomas; Bacakova, Lucie
2015-01-01
It may be possible to regulate the cell colonization of biodegradable polymer nanofibrous membranes by plasma treatment and by the density of the fibers. To test this hypothesis, nanofibrous membranes of different fiber densities were treated by oxygen plasma with a range of plasma power and exposure times. Scanning electron microscopy and mechanical tests showed significant modification of nanofibers after plasma treatment. The intensity of the fiber modification increased with plasma power and exposure time. The exposure time seemed to have a stronger effect on modifying the fiber. The mechanical behavior of the membranes was influenced by the plasma treatment, the fiber density, and their dry or wet state. Plasma treatment increased the membrane stiffness; however, the membranes became more brittle. Wet membranes displayed significantly lower stiffness than dry membranes. X-ray photoelectron spectroscopy (XPS) analysis showed a slight increase in oxygen-containing groups on the membrane surface after plasma treatment. Plasma treatment enhanced the adhesion and growth of HaCaT keratinocytes on nanofibrous membranes. The cells adhered and grew preferentially on membranes of lower fiber densities, probably due to the larger area of void spaces between the fibers. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Effects of traffic-induced soil compaction on crop growth and soil properties
NASA Astrophysics Data System (ADS)
Baibay, Amélia; Ren, Lidong; D'Hose, Tommy; De Pue, Jan; Ruysschaert, Greet; Cornelis, Wim
2017-04-01
Traffic-induced soil compaction on arable soils constitutes a major threat for agricultural productivity and the environmental quality of the soil, water and atmosphere. The objective of this work is to evaluate a set of prevention strategies for agricultural traffic under real farming conditions. To that end, a one-pass traffic experiment was conducted near Ghent, Belgium in winter 2015 on a sandy loam (haplic Luvisol; 43% sand, 47% silt, 10% clay). Winter rye (Secale cereale L.), which promotes the removal of residual soil nitrogen and thus reduces the potential for nitrogen leaching, was sown as cover crop using different tractor and weather settings on different field lanes: dry (D, 0.16 m3 m-3) or wet (W, 0.20-0.23 m3 m-3) conditions, normal (N, 65 cm width, axle load 8520 kg) or wide (W, 90 cm width, axle load 8520 kg) tires and high (HP, 1.4 bars for N, 1.0 bar for W) or low (LP, 1.0 bar for N, 0.5 bar for W) inflation pressure. Subsequently, crop biomass, root density and a set of hydrophysical properties (penetration resistance, saturated hydraulic conductivity and water retention at 15, 35 and 55 cm depth) were measured. Bulk density, soil quality indicators (such as air capacity) and the pore size distribution were also calculated. Results showed significant biomass reduction (p < 0.01) for trafficked plots compared to their control (un-trafficked): 40% reduction under dry conditions and ˜80% under wet conditions. However, no differences were found between traffic treatments. A similar trend was observed for root density, though less significant. Under wet conditions, the rooting depth was also reduced (10 cm instead of 30 cm), and densities were very small. These results suggest a negative effect of compaction on crop growth, worse under wet conditions, but the choice of tires did not prove to have an effect. Observations on the hydrophysical properties were more mitigated, as expected: distinct differences are primarily found under controlled lab conditions or after several passes. Moreover, high moisture conditions could not be obtained for the wet experiment, which never exceeded field capacity, conceived as threshold. Nevertheless, penetration resistance profiles indicated a plough pan about 40 cm depth, witness of previous agricultural operations on the field, and high values (3.5 to 4 MPa) were found in the subsoil too. Moreover, bulk densities were higher for all treatments (up to 1.8 Mg m-3) compared to the controls (˜1.55 Mg m-3). Saturated hydraulic conductivities were very small (<< 10 cm/d), especially for the treatments. The dry treatment also showed better values than the wet ones at 15 cm. Water retention curves tended to show decreased water content at low suctions for the treatments (mainly at 15 cm), which could reflect on a reduction of macropores and their continuity. Soil quality parameters also showed better values in the control plots. These observations support an overall compacted state and loss of structural quality, though no significant impact of the traffic experiment or prevention strategies could be drawn.
Monte Carlo Simulations for VLBI2010
NASA Astrophysics Data System (ADS)
Wresnik, J.; Böhm, J.; Schuh, H.
2007-07-01
Monte Carlo simulations are carried out at the Institute of Geodesy and Geophysics (IGG), Vienna, and at Goddard Space Flight Center (GSFC), Greenbelt (USA), with the goal to design a new geodetic Very Long Baseline Interferometry (VLBI) system. Influences of the schedule, the network geometry and the main stochastic processes on the geodetic results are investigated. Therefore schedules are prepared with the software package SKED (Vandenberg 1999), and different strategies are applied to produce temporally very dense schedules which are compared in terms of baseline length repeatabilities. For the simulation of VLBI observations a Monte Carlo Simulator was set up which creates artificial observations by randomly simulating wet zenith delay and clock values as well as additive white noise representing the antenna errors. For the simulation at IGG the VLBI analysis software OCCAM (Titov et al. 2004) was adapted. Random walk processes with power spectrum densities of 0.7 and 0.1 psec2/sec are used for the simulation of wet zenith delays. The clocks are simulated with Allan Standard Deviations of 1*10^-14 @ 50 min and 2*10^-15 @ 15 min and three levels of white noise, 4 psec, 8 psec and, 16 psec, are added to the artificial observations. The variations of the power spectrum densities of the clocks and wet zenith delays, and the application of different white noise levels show clearly that the wet delay is the critical factor for the improvement of the geodetic VLBI system. At GSFC the software CalcSolve is used for the VLBI analysis, therefore a comparison between the software packages OCCAM and CalcSolve was done with simulated data. For further simulations the wet zenith delay was modeled by a turbulence model. This data was provided by Nilsson T. and was added to the simulation work. Different schedules have been run.
Liston, S.E.; Trexler, J.C.
2005-01-01
Calcareous floating periphyton mats in the southern Everglades provide habitat for a diverse macroinvertebrate community that has not been well characterized. Our study described this community in an oligotrophic marsh, compared it with the macroinvertebrate community associated with adjacent epiphytic algae attached to macrophytes in the water column, and detected spatial patterns in density and community structure. The floating periphyton mat (floating mat) and epiphytic algae in the water column (submerged epiphyton) were sampled at 4 sites (???1 km apart) in northern Shark River Slough, Everglades National Park (ENP), in the early (July) and late (November) wet season. Two perpendicular 90-m transects were established at each site and ???100 samples were taken in a nested design. Sites were located in wet-prairie spikerush-dominated sloughs with similar water depths and emergent macrophyte communities. Floating mats were sampled by taking cores (6-cm diameter) that were sorted under magnification to enumerate infauna retained on a 250-??m-mesh sieve and with a maximum dimension >1 mm. Our results showed that floating mats provide habitat for a macroinvertebrate community with higher densities (no. animals/g ash-free dry mass) of Hyalella azteca, Dasyhelea spp., and Cladocera, and lower densities of Chironomidae and Planorbella spp. than communities associated with submerged epiphyton. Densities of the most common taxa increased 3x to 15x from early to late wet season, and community differences between the 2 habitat types became more pronounced. Floating-mat coverage and estimated floating-mat biomass increased 20 to 30%, and 30 to 110%, respectively, at most sites in the late wet season. Some intersite variation was observed in individual taxa, but no consistent spatial pattern in any taxon was detected at any scale (from 0.2 m to 3 km). Floating mats and their resident macroinvertebrate communities are important components in the Everglades food web. This community should be included in environmental monitoring programs because degradation and eventual loss of the calcareous periphyton mat is associated with P enrichment in this ecosystem. ?? 2005 by The North American Benthological Society.
Hadidi, Pasha; Yeh, Timothy C.; Hu, Jerry C.; Athanasiou, Kyriacos A.
2014-01-01
A recent development in the field of tissue engineering is the rise of all-biologic, scaffold-free engineered tissues. Since these biomaterials rely primarily upon cells, investigation of initial seeding densities constitutes a particularly relevant aim for tissue engineers. In this study, a scaffold-free method was used to create fibrocartilage in the shape of the rabbit knee meniscus. The objectives of this study were: (i) to determine the minimum seeding density, normalized by an area of 44 mm2, necessary for the self-assembling process of fibrocartilage to occur, (ii) examine relevant biomechanical properties of engineered fibrocartilage, such as tensile and compressive stiffness and strength, and their relationship to seeding density, and (iii) identify a reduced, or optimal, number of cells needed to produce this biomaterial. It was found that a decreased initial seeding density, normalized by the area of the construct, produced superior mechanical and biochemical properties. Collagen per wet weight, glycosaminoglycans per wet weight, tensile properties, and compressive properties were all significantly greater in the 5 million cells per construct group as compared to the historical 20 million cells per construct group. Scanning electron microscopy demonstrated that a lower seeding density results in a denser tissue. Additionally, the translational potential of the self-assembling process for tissue engineering was improved though this investigation, as fewer cells may be used in the future. The results of this study underscore the potential for critical seeding densities to be investigated when researching scaffold-free engineered tissues. PMID:25234157
Wang, Lina; Xu, Lin; Liu, Binyuan; Shi, Tongfei; Jiang, Shichun; An, Lijia
2017-05-03
The dewetting behavior of ring polystyrene (RPS) film and linear polystyrene (LPS) film on silanized Si substrates with different grafting densities and PDMS substrate was investigated. Results showed that polymer architectures greatly influenced the dewetting behavior of the thin polymer film. On the silanized Si substrate with 69% grafting density, RPS chains exhibited stronger adsorption compared with LPS chains, and as a result the wetting layer formed more easily. For LPS films, with a decreased annealing temperature, the stability of the polymer film changed from non-slip dewetting via apparent slip dewetting to apparently stable. However, for RPS films, the polymer film stability switched from apparent slip dewetting to apparently stable. On the silanized Si substrate with 94% grafting density, the chain adsorption became weaker and the dewetting processes were faster than that on the substrate with 69% grafting density at the same experimental temperature for both the LPS and RPS films. Moreover, on the PDMS substrate, LPS films always showed non-slip dewetting, while the dewetting kinetics of RPS films switched from non-slip dewetting to slip dewetting behaviour. Forming the wetting layer strongly influenced the stability and dewetting behavior of the thin polymer films.
Xu Zhou, K; Wisnivesky, F; Wilson, D I; Christie, G
2017-07-01
The influence of variable culture conditions on the size and wet density of spores of Bacillus cereus and Bacillus megaterium were examined in this work. Culture temperature and initial pH was shown to have a significant impact on the size of both species, with increasingly alkaline culture media and elevated culture temperatures resulting in spores that were, on average, up to 25% reduced in volume. Increasing concentrations of inorganic salts in sporulation media exerted differing effects on each species; whereas a fivefold increase in the concentration of all salts resulted in only minor differences to the dimensions of B. cereus spores, B. megaterium spores became more elongated, displaying an average increase in volume of almost 30%. Similarly, as the spore elongated to yield aspect ratios larger than 1·4, their shape changed from typical prolate spheroids to cylinders with hemispherical ends. In contrast with previous studies, culture conditions employed in this study exerted no discernible impact on the wet density of B. cereus or B. megaterium spores. Bacterial spores of the genera Bacillus and Clostridium represent nature's most durable cells in terms of their extreme resistance to a variety of deleterious environments. As a result, they are of concern in the food processing, healthcare and other sectors, and are of increasing biotechnological interest. Improved understanding of variance in spore size, morphology and density may aid the development of certain spore-associated applications (e.g. spore surface display) while contributing to active areas of research such as spore adhesion and resistance to heat. © 2017 The Authors. Letters in Applied Microbiology published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.
Dewetting and spreading transitions for active matter on random pinning substrates.
Sándor, Cs; Libál, A; Reichhardt, C; Olson Reichhardt, C J
2017-05-28
We show that sterically interacting self-propelled disks in the presence of random pinning substrates exhibit transitions among a variety of different states. In particular, from a phase separated cluster state, the disks can spread out and homogeneously cover the substrate in what can be viewed as an example of an active matter wetting transition. We map the location of this transition as a function of activity, disk density, and substrate strength, and we also identify other phases including a cluster state, coexistence between a cluster and a labyrinth wetted phase, and a pinned liquid. Convenient measures of these phases include the cluster size, which dips at the wetting-dewetting transition, and the fraction of sixfold coordinated particles, which drops when dewetting occurs.
The influence of the surrounding gas on drop impact onto a wet substrate
NASA Astrophysics Data System (ADS)
Deegan, Robert; Zhang, Li; Toole, Jameson
2011-11-01
The impact of a droplet with a wet or solid substrate creates a spray of secondary droplets. The effect of the surrounding gas on this process was widely neglected prior to the work of Xu, Zhang, & Nagel which showed that lowering the gas pressure suppresses splashing for impact with a dry solid substrate. Here we present the results of our experimental investigation of the effect of the surrounding gas on the evolution of splashes from a wet substrate. We varied the density and pressure of the surrounding gas. We find quantitative changes to the onset thresholds of splashing and on the size distribution of, but no qualitative changes. The effects are most pronounced on the evolution of the ejecta sheet.
Barbour, M M; Hunt, J E; Walcroft, A S; Rogers, G N D; McSeveny, T M; Whitehead, D
2005-02-01
Here we develop and test a method to scale sap velocity measurements from individual trees to canopy transpiration (E(c)) in a low-productivity, old-growth rainforest dominated by the conifer Dacrydium cupressinum. Further, E(c) as a component of the ecosystem water balance is quantified in relation to forest floor evaporation rates and measurements of ecosystem evaporation using eddy covariance (E(eco)) in conditions when the canopy was dry and partly wet. Thermal dissipation probes were used to measure sap velocity of individual trees, and scaled to transpiration at the canopy level by dividing trees into classes based on sapwood density and canopy position (sheltered or exposed). When compared with ecosystem eddy covariance measurements, E(c) accounted for 51% of E(eco) on dry days, and 22% of E(eco) on wet days. Low transpiration rates, and significant contributions to E(eco) from wet canopy evaporation and understorey transpiration (35%) and forest floor evaporation (25%), were attributable to the unique characteristics of the forest: in particular, high rainfall, low leaf area index, low stomatal conductance and low productivity associated with severe nutrient limitation.
Wet self-cleaning of superhydrophobic microfiber adhesives formed from high density polyethylene.
Lee, Jongho; Fearing, Ronald S
2012-10-30
Biologically inspired adhesives developed for switchable and controllable adhesion often require repetitive uses in general, dirty, environments. Superhydrophobic microstructures on the lotus leaf lead to exceptional self-cleaning of dirt particles on nonadhesive surfaces with water droplets. This paper describes the self-cleaning properties of a hard-polymer-based adhesive formed with high-aspect-ratio microfibers from high-density polyethylene (HDPE). The microfiber adhesive shows almost complete wet self-cleaning of dirt particles with water droplets, recovering 98% of the adhesion of the pristine microfiber adhesives. The low contact angle hysteresis indicates that the surface of microfiber adhesives is superhydrophobic. Theoretical and experimental studies reveal a design parameter, length, which can control the adhesion without affecting the superhydrophobicity. The results suggest some properties of biologically inspired adhesives can be controlled independently by adjusting design parameters.
The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review
Pan, Yunlu; Zhao, Xuezeng
2014-01-01
Summary The drag of fluid flow at the solid–liquid interface in the micro/nanoscale is an important issue in micro/nanofluidic systems. Drag depends on the surface wetting, nanobubbles, surface charge and boundary slip. Some researchers have focused on the relationship between these interface properties. In this review, the influence of an applied voltage on the surface wettability, nanobubbles, surface charge density and slip length are discussed. The contact angle (CA) and contact angle hysteresis (CAH) of a droplet of deionized (DI) water on a hydrophobic polystyrene (PS) surface were measured with applied direct current (DC) and alternating current (AC) voltages. The nanobubbles in DI water and three kinds of saline solution on a PS surface were imaged when a voltage was applied. The influence of the surface charge density on the nanobubbles was analyzed. Then the slip length and the electrostatic force on the probe were measured on an octadecyltrichlorosilane (OTS) surface with applied voltage. The influence of the surface charge on the boundary slip and drag of fluid flow has been discussed. Finally, the influence of the applied voltage on the surface wetting, nanobubbles, surface charge, boundary slip and the drag of liquid flow are summarized. With a smaller surface charge density which could be achieved by applying a voltage on the surface, larger and fewer nanobubbles, a larger slip length and a smaller drag of liquid flow could be found. PMID:25161839
The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review.
Pan, Yunlu; Bhushan, Bharat; Zhao, Xuezeng
2014-01-01
The drag of fluid flow at the solid-liquid interface in the micro/nanoscale is an important issue in micro/nanofluidic systems. Drag depends on the surface wetting, nanobubbles, surface charge and boundary slip. Some researchers have focused on the relationship between these interface properties. In this review, the influence of an applied voltage on the surface wettability, nanobubbles, surface charge density and slip length are discussed. The contact angle (CA) and contact angle hysteresis (CAH) of a droplet of deionized (DI) water on a hydrophobic polystyrene (PS) surface were measured with applied direct current (DC) and alternating current (AC) voltages. The nanobubbles in DI water and three kinds of saline solution on a PS surface were imaged when a voltage was applied. The influence of the surface charge density on the nanobubbles was analyzed. Then the slip length and the electrostatic force on the probe were measured on an octadecyltrichlorosilane (OTS) surface with applied voltage. The influence of the surface charge on the boundary slip and drag of fluid flow has been discussed. Finally, the influence of the applied voltage on the surface wetting, nanobubbles, surface charge, boundary slip and the drag of liquid flow are summarized. With a smaller surface charge density which could be achieved by applying a voltage on the surface, larger and fewer nanobubbles, a larger slip length and a smaller drag of liquid flow could be found.
Kaemingk, Mark A.; Jolley, Jeff C.; Willis, David W.; Chipps, Steven R.
2012-01-01
1. When available, Daphnia spp. are often preferred by age-0 yellow perch and bluegill sunfish because of energetic profitability. We hypothesised that predation by age-0 yellow perch could lead to a midsummer decline (MSD) of Daphnia spp. and that priority effects may favour yellow perch because they hatch before bluegill, allowing them to capitalise on Daphnia spp. prior to bluegill emergence.2. Data were collected from 2004 to 2010 in Pelican Lake, Nebraska, U.S.A. The lake experienced a prolonged MSD in all but 1 year (2005), generally occurring within the first 2 weeks of June except in 2008 and 2010 when it occurred at the end of June. MSD timing is not solely related to seasonal patterns of age-0 yellow perch consumption. Nevertheless, when Daphnia spp. biomass was low during 2004 and 2006–2010 (<4 mg wet weight L−1), predation by age-0 yellow perch seems to have suppressed Daphnia spp. biomass (i.e. <1.0 mg wet weight L−1). The exception was 2005 when age-0 yellow perch were absent.3. Growth of age-0 bluegill was significantly faster in 2005, when Daphnia spp. were available in greater densities (>4 mg wet weight L−1) compared with the other years (<0.2 mg wet weight L−1).4. We conclude that age-0 yellow perch are capable of reducing Daphnia biomass prior to the arrival of age-0 bluegill, ultimately slowing bluegill growth. Thus, priority effects favour age-0 yellow perch when competing with age-0 bluegill for Daphnia. However, these effects may be minimised if there is a shorter time between hatching of the two species, higher Daphnia spp. densities or lower age-0 yellow perch densities.
The Impact of Granule Density on Tabletting and Pharmaceutical Product Performance.
van den Ban, Sander; Goodwin, Daniel J
2017-05-01
The impact of granule densification in high-shear wet granulation on tabletting and product performance was investigated, at pharmaceutical production scale. Product performance criteria need to be balanced with the need to deliver manufacturability criteria to assure robust industrial scale tablet manufacturing processes. A Quality by Design approach was used to determine in-process control specifications for tabletting, propose a design space for disintegration and dissolution, and to understand the permitted operating limits and required controls for an industrial tabletting process. Granules of varying density (filling density) were made by varying water amount added, spray rate, and wet massing time in a design of experiment (DoE) approach. Granules were compressed into tablets to a range of thicknesses to obtain tablets of varying breaking force. Disintegration and dissolution performance was evaluated for the tablets made. The impact of granule filling density on tabletting was rationalised with compressibility, tabletability and compactibility. Tabletting and product performance criteria provided competing requirements for porosity. An increase in granule filling density impacted tabletability and compactability and limited the ability to achieve tablets of adequate mechanical strength. An increase in tablet solid fraction (decreased porosity) impacted disintegration and dissolution. An attribute-based design space for disintegration and dissolution was specified to achieve both product performance and manufacturability. The method of granulation and resulting granule filling density is a key design consideration to achieve both product performance and manufacturability required for modern industrial scale pharmaceutical product manufacture and distribution.
NASA Astrophysics Data System (ADS)
Fridrich, Jessica; Goljan, Miroslav; Lisonek, Petr; Soukal, David
2005-03-01
In this paper, we show that the communication channel known as writing in memory with defective cells is a relevant information-theoretical model for a specific case of passive warden steganography when the sender embeds a secret message into a subset C of the cover object X without sharing the selection channel C with the recipient. The set C could be arbitrary, determined by the sender from the cover object using a deterministic, pseudo-random, or a truly random process. We call this steganography "writing on wet paper" and realize it using low-density random linear codes with the encoding step based on the LT process. The importance of writing on wet paper for covert communication is discussed within the context of adaptive steganography and perturbed quantization steganography. Heuristic arguments supported by tests using blind steganalysis indicate that the wet paper steganography provides improved steganographic security for embedding in JPEG images and is less vulnerable to attacks when compared to existing methods with shared selection channels.
Wetting hysteresis induced by nanodefects
Giacomello, Alberto; Schimmele, Lothar; Dietrich, Siegfried
2016-01-01
Wetting of actual surfaces involves diverse hysteretic phenomena stemming from ever-present imperfections. Here, we clarify the origin of wetting hysteresis for a liquid front advancing or receding across an isolated defect of nanometric size. Various kinds of chemical and topographical nanodefects, which represent salient features of actual heterogeneous surfaces, are investigated. The most probable wetting path across surface heterogeneities is identified by combining, within an innovative approach, microscopic classical density functional theory and the string method devised for the study of rare events. The computed rugged free-energy landscape demonstrates that hysteresis emerges as a consequence of metastable pinning of the liquid front at the defects; the barriers for thermally activated defect crossing, the pinning force, and hysteresis are quantified and related to the geometry and chemistry of the defects allowing for the occurrence of nanoscopic effects. The main result of our calculations is that even weak nanoscale defects, which are difficult to characterize in generic microfluidic experiments, can be the source of a plethora of hysteretical phenomena, including the pinning of nanobubbles. PMID:26721395
Liu, Jian; Wang, Chunlei; Guo, Pan; Shi, Guosheng; Fang, Haiping
2013-12-21
Using molecular dynamics simulations, we show a fine linear relationship between surface energies and microscopic Lennard-Jones parameters of super-hydrophilic surfaces. The linear slope of the super-hydrophilic surfaces is consistent with the linear slope of the super-hydrophobic, hydrophobic, and hydrophilic surfaces where stable water droplets can stand, indicating that there is a universal linear behavior of the surface energies with the water-surface van der Waals interaction that extends from the super-hydrophobic to super-hydrophilic surfaces. Moreover, we find that the linear relationship exists for various substrate types, and the linear slopes of these different types of substrates are dependent on the surface atom density, i.e., higher surface atom densities correspond to larger linear slopes. These results enrich our understanding of water behavior on solid surfaces, especially the water wetting behaviors on uncharged super-hydrophilic metal surfaces.
NASA Astrophysics Data System (ADS)
You, Jiangfeng; Xin, Ling; Yu, Xiao; Zhou, Xiang; Liu, Yong
2018-03-01
Homogeneous CaMoO4 microspheres with interesting nanopit morphology were prepared by a simple one-step hydrothermal method. These microspheres had a very promising alternative structure for application in Li-ion batteries (LIBs), because they combined the advantages of both the primary nanosized and secondary microsized structures. The nanopits distributed on CaMoO4 material can accommodate volume change, increase their contacting surface and wetting property with electrolyte, and improve wetting contact between CaMoO4 material and electrolyte, leading to enhanced cycling stability and electrochemical performance. Meanwhile, the robust microsphere structure can both prevent aggregation and provide high tap density. When used as an anode in LIBs, the electrodes delivered a high discharge capacity of 434 mAh/g after 50 charge-discharge cycles at a current density of 200 mA/g, showing good cycling performance.
Capillary Contact Angle in a Completely Wet Groove
NASA Astrophysics Data System (ADS)
Parry, A. O.; Malijevský, A.; Rascón, C.
2014-10-01
We consider the phase equilibria of a fluid confined in a deep capillary groove of width L with identical side walls and a bottom made of a different material. All walls are completely wet by the liquid. Using density functional theory and interfacial models, we show that the meniscus separating liquid and gas phases at two phase capillary coexistence meets the bottom capped end of the groove at a capillary contact angle θcap(L) which depends on the difference between the Hamaker constants. If the bottom wall has a weaker wall-fluid attraction than the side walls, then θcap>0 even though all the isolated walls are themselves completely wet. This alters the capillary condensation transition which is now first order; this would be continuous in a capped capillary made wholly of either type of material. We show that the capillary contact angle θcap(L) vanishes in two limits, corresponding to different capillary wetting transitions. These occur as the width (i) becomes macroscopically large, and (ii) is reduced to a microscopic value determined by the difference in Hamaker constants. This second wetting transition is characterized by large scale fluctuations and essential critical singularities arising from marginal interfacial interactions.
Valleys and Hillslopes: A Geomorphic Foundation for Landscape Ecology
NASA Astrophysics Data System (ADS)
Martin, Y. E.; Johnson, E. A.
2004-12-01
Moisture-nutrient gradients have been found to be the most important environmental gradients determining the distribution and composition of plant communities. Landscapes on which plant communities exist are composed of valleys and ridgelines, with hillslopes in between them. Since water flow paths are directed down slopes, processes determining hillslope morphology and arrangement play an essential role in plant community organization and dynamics. Hillslope morphology, substrate characteristics and climate determine flow routing and water budgets along slopes. Wetness is a function of transmissivity, contributing area and slope gradient. Movement of nutrients along hillslopes generally follows wetness values, and is affected by soil type. Plant species have different tolerances to wetness and nutrients; hillslope length and slope angle determine the moisture-nutrient gradient, and in turn the shape of plant tolerance curves. Temporal scales required for significant topographic change along hillslopes may often be long compared to those for plant community dynamics. When considered in landscape ecology, hillslope shape and arrangement are thus often considered constants. Although landscape morphology may change over time and among different regions (with tectonic, geomorphic and climatic processes leaving their imprints on landscapes), an attempt has been made in the literature to put forth robust topographic scaling relations. This paper, using a series of examples, explores connections between landscape structure and plant communities. For example, Hack's law states that drainage basins become more elongate as area increases. This implies that basins should have approximately the same proportion of landscape in each hillslope position, suggesting some constancy in contributing area patterns for hillslopes in different-sized basins. Distributions of wetness values and plant population tolerance curves seem to confirm this for smaller basins. Hillslope length and steepness are related to drainage density and relative relief. Various studies have sought relations between drainage density and slope gradient; the latter is a determinant of wetness values. Studies have found both negative and positive correlations between drainage density and slope gradient. The nature of hillslope processes (e.g., overland flow vs. mass wasting dominated, or quickly eroding vs. slowly eroding landscapes) has been used to explain the correlation. It has also been suggested that the degree of channelization may be important in determining slope steepness. Plant species respond to steeper slopes by having narrower tolerance curves and less overlap with other species. This has important implications for biodiversity and plant community organization.
Laboratory Characterization of Type N Mortar
2009-03-01
and test results are documented in Chapter 2. Comparative plots and anal- yses of the experimental results are presented in Chapter 3. A summary is...determinations are provided in Table 1. Measurements of posttest water content1 were conducted in accordance with procedures given in American Society for...Testing and Materials (ASTM) D 2216 (ASTM 2005d). Based on the appropriate values of posttest water content, wet density, and an assumed grain density
Fiberboard bending properties as a function of density, thickness, resin, and moisture content
John F. Hunt; Jane O' Dell; Chris Turk
2008-01-01
Fibers from treetop residues of lodgepole pine (Pinus contorta) and recycled old corrugated containers were used to fabricate wet-formed fiberboard panels over a range of densities from 300 to 1100 kg m-3, a thickness range from 1.3 to 4.8 mm, and phenolic resin contents from 0% to 4.5%. The panels were then tested after conditioning in 50% and 90% relative humidity (...
Vanderhoof, Melanie; Alexander, Laurie C.; Todd, Jason
2016-01-01
Context. Quantifying variability in landscape-scale surface water connectivity can help improve our understanding of the multiple effects of wetlands on downstream waterways. Objectives. We examined how wetland merging and the coalescence of wetlands with streams varied both spatially (among ecoregions) and interannually (from drought to deluge) across parts of the Prairie Pothole Region. Methods. Wetland extent was derived over a time series (1990-2011) using Landsat imagery. Changes in landscape-scale connectivity, generated by the physical coalescence of wetlands with other surface water features, were quantified by fusing static wetland and stream datasets with Landsat-derived wetland extent maps, and related to multiple wetness indices. The usage of Landsat allows for decadal-scale analysis, but limits the types of surface water connections that can be detected. Results. Wetland extent correlated positively with the merging of wetlands and wetlands with streams. Wetness conditions, as defined by drought indices and runoff, were positively correlated with wetland extent, but less consistently correlated with measures of surface water connectivity. The degree of wetland-wetland merging was found to depend less on total wetland area or density, and more on climate conditions, as well as the threshold for how wetland/upland was defined. In contrast, the merging of wetlands with streams was positively correlated with stream density, and inversely related to wetland density. Conclusions. Characterizing the degree of surface water connectivity within the Prairie Pothole Region in North America requires consideration of 1) climate-driven variation in wetness conditions and 2) within-region variation in wetland and stream spatial arrangements.
Cui, Xiang-Long; Xu, Bing; Sun, Fei; Dai, Sheng-Yun; Shi, Xin-Yuan; Qiao, Yan-Jiang
2017-03-01
In this paper, under the guidance of quality by design (QbD) concept, the control strategy of the high shear wet granulation process of the ginkgo leaf tablet based on the design space was established to improve the process controllability and product quality consistency. The median granule size (D50) and bulk density (Da) of granules were identified as critical quality attributes (CQAs) and potential critical process parameters (pCPPs) were determined by the failure modes and effect analysis (FMEA). The Plackeet-Burmann experimental design was used to screen pCPPs and the results demonstrated that the binder amount, the wet massing time and the wet mixing impeller speed were critical process parameters (CPPs). The design space of the high shear wet granulation process was developed within pCPPs range based on the Box-Behnken design and quadratic polynomial regression models. ANOVA analysis showed that the P-values of model were less than 0.05 and the values of lack of fit test were more than 0.1, indicating that the relationship between CQAs and CPPs could be well described by the mathematical models. D₅₀ could be controlled within 170 to 500 μm, and the bulk density could be controlled within 0.30 to 0.44 g•cm⁻³ by using any CPPs combination within the scope of design space. Besides, granules produced by process parameters within the design space region could also meet the requirement of tensile strength of the ginkgo leaf tablet.. Copyright© by the Chinese Pharmaceutical Association.
NASA Astrophysics Data System (ADS)
Lamorski, Krzysztof; Šimūnek, Jiří; Sławiński, Cezary; Lamorska, Joanna
2017-02-01
In this paper, we estimated using the machine learning methodology the main wetting branch of the soil water retention curve based on the knowledge of the main drying branch and other, optional, basic soil characteristics (particle size distribution, bulk density, organic matter content, or soil specific surface). The support vector machine algorithm was used for the models' development. The data needed by this algorithm for model training and validation consisted of 104 different undisturbed soil core samples collected from the topsoil layer (A horizon) of different soil profiles in Poland. The main wetting and drying branches of SWRC, as well as other basic soil physical characteristics, were determined for all soil samples. Models relying on different sets of input parameters were developed and validated. The analysis showed that taking into account other input parameters (i.e., particle size distribution, bulk density, organic matter content, or soil specific surface) than information about the drying branch of the SWRC has essentially no impact on the models' estimations. Developed models are validated and compared with well-known models that can be used for the same purpose, such as the Mualem (1977) (M77) and Kool and Parker (1987) (KP87) models. The developed models estimate the main wetting SWRC branch with estimation errors (RMSE = 0.018 m3/m3) that are significantly lower than those for the M77 (RMSE = 0.025 m3/m3) or KP87 (RMSE = 0. 047 m3/m3) models.
Zhu, Yi; Liang, Liang; Qian, Dan; Yu, Hongsong; Yang, Peizeng; Lei, Bo
2013-01-01
Purpose To investigate Toll-like receptor (TLR) expression and reactivity in patients with the wet form age-related macular degeneration (AMD). Methods Blood samples were collected from 25 patients with wet AMD and 25 age-matched healthy controls. Peripheral blood mononuclear cells (PBMCs) were isolated with Ficoll-Hypaque density gradient centrifugation. Expression of TLR1 to TLR10 mRNAs in PBMCs from 15 patients with wet AMD and 15 controls was assessed with real-time PCR. TLR2 and TLR3 protein levels in PBMCs from six patients with wet AMD and six controls were measured with flow cytometry. After PBMCs were stimulated with peptidoglycan (PGN) and poly(I:C), the specific ligands of TLR2 and TLR3, cytokines interleukin-6 (IL-6), IL-8, VEGF, and monocyte chemoattractant protein-1 (MCP-1) production in 11 patients with wet AMD and 11 controls were assessed. Results TLR2 and TLR3 mRNA and protein expression in the PBMCs of the patients with wet AMD was significantly higher than that in the controls. However, the difference in TLR1 and TLR4–10 mRNA expression between the two groups was not significant. The PBMCs of the patients with wet AMD produced more IL-6 and IL-8 proteins than the controls in response to PGN, a ligand for TLR2, and more IL-6 protein than the controls in response to poly(I:C), the ligand for TLR3. However, there was no significant difference in vascular endothelial growth factor and monocyte chemoattractant protein-1 production between the wet AMD group and the control group when the PBMCs were stimulated with PGN or poly(I:C). Conclusions Our data suggested that upregulation of TLR2 and TLR3 may be associated with the pathogenesis of wet AMD. PMID:23946637
Ozyurt, Ayhan; Kocak, Nilufer; Akan, Pınar; Calan, Ozlem Gursoy; Ozturk, Taylan; Kaya, Mahmut; Karahan, Eyup; Kaynak, Suleyman
2017-06-01
The aim of the study was to evaluate the macular pigment optical density (MPOD) levels in patients with wet age-related macular degeneration (AMD), dry AMD, and also in healthy controls. This study was conducted at Department of Ophthalmology, and the study design was a prospective study. Forty-eight patients with wet AMD, 51 patients with dry AMD, and 50 controls were included in the study. All patients were naive to both previous lutein or zeaxanthin administration and any previous intravitreal injections. Fundus reflectance (VISUCAM 500, reflectance of a single 460 nm wavelength) was used to measure the MPOD levels. Three groups were compared regarding age, gender, serum lutein, and zeaxanthin concentrations as well as MPOD levels. Serum lutein and zeaxanthin levels were significantly higher in control group when compared with wet AMD (Group 1) and dry AMD (Group 2) (P = 0.001 and P< 0.001, respectively). Mean MPOD was found to be similar in all of the three study subgroups (P = 0.630). However, maximum MPOD was significantly higher in control group when compared with Group 1 and 2 (P = 0.003). There was no correlation between serum lutein or zeaxanthin concentrations and mean MPOD levels (P = 0.815, r = 0.014 and P = 0.461, r = 0.043, respectively), but there was a weak correlation between serum zeaxanthin concentration and maximum MPOD level (P = 0.042, r = 0.124). Maximum MPOD level was found to be correlated with the level of AMD (Group 1, 2, and 3; r = 0.184, P = 0.041). Maximum MPOD level was found to be lower in patients with AMD when compared with control cases. Mean MPOD and maximum MPOD levels were similar in wet and dry AMD Groups. These results can be applied clinically keeping in mind that MPOD measurements with one wavelength reflectometry may not be completely reliable.
Enhanced mobility of non aqueous phase liquid (NAPL) during drying of wet sand
NASA Astrophysics Data System (ADS)
Govindarajan, Dhivakar; Deshpande, Abhijit P.; Raghunathan, Ravikrishna
2018-02-01
Enhanced upward mobility of a non aqueous phase liquid (NAPL) present in wet sand during natural drying, and in the absence of any external pressure gradients, is reported for the first time. This mobility was significantly higher than that expected from capillary rise. Experiments were performed in a glass column with a small layer of NAPL-saturated sand trapped between two layers of water-saturated sand. Drying of the wet sand was induced by flow of air across the top surface of the wet sand. The upward movement of the NAPL, in the direction of water transport, commenced when the drying effect reached the location of the NAPL and continued as long as there was significant water evaporation in the vicinity of NAPL, indicating a clear correlation between the NAPL rise and water evaporation. The magnitude and the rate of NAPL rise was measured at different water evaporation rates, different initial locations of the NAPL, different grain size of the sand and the type of NAPL (on the basis of different NAPL-glass contact angle, viscosity and density). A positive correlation was observed between average rate of NAPL rise and the water evaporation while a negative correlation was obtained between the average NAPL rise rate and the NAPL properties of contact angle, viscosity and density. There was no significant correlation of average NAPL rise rate with variation of sand grain size between 0.1 to 0.5 mm. Based on these observations and on previous studies reported in the literature, two possible mechanisms are hypothesized -a) the effect of the spreading coefficient resulting in the wetting of NAPL on the water films created and b) a moving water film due to evaporation that "drags" the NAPL upwards. The NAPL rise reported in this paper has implications in fate and transport of chemicals in NAPL contaminated porous media such as soils and exposed dredged sediment material, which are subjected to varying water saturation levels due to drying and rewetting.
Stephen S. Kelley; Thomas Elder; Leslie H. Groom
2005-01-01
Loblolly pine wood between the ages of 5-35 was refined into medium density fiberboard furnish at steam pressures from 2 to 18 bar, The effect of age and processing conditions on the properties of the fibers was assessed by wet chemical analyses, Near Infared Spectroscopy (NIR) and powder X-ray diffraction (XRD).In general ,the percentages of extractives and glucose...
Electronic properties of long DNA nanowires in dry and wet conditions
NASA Astrophysics Data System (ADS)
Mousavi, Hamze; Khodadadi, Jabbar; Grabowski, Marek
2015-11-01
The electronic behavior of the long disordered DNA nanowires in both dry and wet conditions is investigated through the band structure and density of states of a tight-binding Hamiltonian model for π-electrons of the backbone, using Green's functions approach. For a chosen set of parameters in the dry case, semiconducting behavior is reproduced. It is also shown that for sufficiently long strands, the order of the base pairs has no noticeable effect on the energy band-gap. Moreover, this semiconducting duplex shows metallic tendencies when interacting with the environment of polar molecules.
Force Transmission Modes of Non-Cohesive and Cohesive Materials at the Critical State.
Wang, Ji-Peng
2017-08-31
This paper investigates the force transmission modes, mainly described by probability density distributions, in non-cohesive dry and cohesive wet granular materials by discrete element modeling. The critical state force transmission patterns are focused on with the contact model effect being analyzed. By shearing relatively dense and loose dry specimens to the critical state in the conventional triaxial loading path, it is observed that there is a unique critical state force transmission mode. There is a universe critical state force distribution pattern for both the normal contact forces and tangential contact forces. Furthermore, it is found that using either the linear Hooke or the non-linear Hertz model does not affect the universe force transmission mode, and it is only related to the grain size distribution. Wet granular materials are also simulated by incorporating a water bridge model. Dense and loose wet granular materials are tested, and the critical state behavior for the wet material is also observed. The critical state strength and void ratio of wet granular materials are higher than those of a non-cohesive material. The critical state inter-particle distribution is altered from that of a non-cohesive material with higher probability in relatively weak forces. Grains in non-cohesive materials are under compressive stresses, and their principal directions are mainly in the axial loading direction. However, for cohesive wet granular materials, some particles are in tension, and the tensile stresses are in the horizontal direction on which the confinement is applied. The additional confinement by the tensile stress explains the macro strength and dilatancy increase in wet samples.
Force Transmission Modes of Non-Cohesive and Cohesive Materials at the Critical State
2017-01-01
This paper investigates the force transmission modes, mainly described by probability density distributions, in non-cohesive dry and cohesive wet granular materials by discrete element modeling. The critical state force transmission patterns are focused on with the contact model effect being analyzed. By shearing relatively dense and loose dry specimens to the critical state in the conventional triaxial loading path, it is observed that there is a unique critical state force transmission mode. There is a universe critical state force distribution pattern for both the normal contact forces and tangential contact forces. Furthermore, it is found that using either the linear Hooke or the non-linear Hertz model does not affect the universe force transmission mode, and it is only related to the grain size distribution. Wet granular materials are also simulated by incorporating a water bridge model. Dense and loose wet granular materials are tested, and the critical state behavior for the wet material is also observed. The critical state strength and void ratio of wet granular materials are higher than those of a non-cohesive material. The critical state inter-particle distribution is altered from that of a non-cohesive material with higher probability in relatively weak forces. Grains in non-cohesive materials are under compressive stresses, and their principal directions are mainly in the axial loading direction. However, for cohesive wet granular materials, some particles are in tension, and the tensile stresses are in the horizontal direction on which the confinement is applied. The additional confinement by the tensile stress explains the macro strength and dilatancy increase in wet samples. PMID:28858238
Nanoparticle stability in semidilute and concentrated polymer solutions.
Dutta, Nupur; Green, David
2008-05-20
The wetting of PDMS-grafted silica spheres (PDMS- g-silica) is connected to their depletion restabilization in semidilute and concentrated PDMS/cyohexane polymer solutions. Specifically, we found that a wetting diagram of chemically identical graft and free homopolymers predicts stability of hard, semisoft, and soft spheres as a function of the bulk free polymer volume fraction, graft density, and the graft and free polymer chain lengths. The transition between stable and aggregated regions is determined optically and with dynamic light scattering. The point of demarcation between the regions occurs when the graft and free polymer chains are equal in length. When graft chains are longer than free chains, the particles are stable; in contrast, the particles are unstable when the opposite is true. The regions of particle stability and instability are corroborated with theoretical self-consistent mean-field calculations, which not only show that the grafted brush is responsible for particle dispersion in the complete wetting region but also aggregation in the incomplete wetting region. Ultimately, our results indicate that depletion restabilization depends on the interfacial properties of the nanoparticles in semidilute and concentrated polymer solutions.
Design and Development of the Liquid Lithium Limiter (L3) for CDX-U
NASA Astrophysics Data System (ADS)
Seraydarian, R. P.; Chousal, L.; Doerner, R. P.; Luckhardt, S. C.; Lynch, T.
2000-10-01
--- This poster describes experiments with liquid Li that informed the design of a Liquid Lithium Limter (L3) built by UCSD for installation on the CDX-U spherical torus at PPPL. It was necessary to resort to wetting liquid Li to textured structures in order for the limiter to intercept 2-3 density e-folding lengths of the scrape off layer (3 cm) of the CDX-U plasma. Since Li is chemically active and corrodes rapidly in all but the driest air, we carried out wetting experiments in vacuum (10-7 - 10-8 torr) and also in Ar at near atmospheric pressure. Wetting of steel occurred reliably at substrate temperatures near 500 ^oC under all conditions, but this high temperature presented special problems of rapid material loss through evaporation, especially under vacuum. Once the surface is wetted, however, lost Li can be replenished at ~ 200 ^oC (just above the melting temperature) where evaporation is negligible. A wetted limiter can even be cooled to room temperature and then reheated many hours later as long as clean conditions are maintained. Surface textures, heating techniques, effective seal materials for piston-driven liquid Li reservoirs, and other aspects of the limiter system design will be presented. Work supported by US DOE grant DE-FG03-95ER54301
Merschel, Andrew G; Spies, Thomas A; Heyerdahl, Emily K
Twentieth-century land management has altered the structure and composition of mixed-conifer forests and decreased their resilience to fire, drought, and insects in many parts of the Interior West. These forests occur across a wide range of environmental settings and historical disturbance regimes, so their response to land management is likely to vary across landscapes and among ecoregions. However, this variation has not been well characterized and hampers the development of appropriate management and restoration plans. We identified mixed-conifer types in central Oregon based on historical structure and composition, and successional trajectories following recent changes in land use, and evaluated how these types were distributed across environmental gradients. We used field data from 171 sites sampled across a range of environmental settings in two subregions: the eastern Cascades and the Ochoco Mountains. We identified four forest types in the eastern Cascades and four analogous types with lower densities in the Ochoco Mountains. All types historically contained ponderosa pine, but differed in the historical and modern proportions of shade-tolerant vs. shade-intolerant tree species. The Persistent Ponderosa Pine and Recent Douglas-fir types occupied relatively hot–dry environments compared to Recent Grand Fir and Persistent Shade Tolerant sites, which occupied warm–moist and cold–wet environments, respectively. Twentieth-century selective harvesting halved the density of large trees, with some variation among forest types. In contrast, the density of small trees doubled or tripled early in the 20th century, probably due to land-use change and a relatively cool, wet climate. Contrary to the common perception that dry ponderosa pine forests are the most highly departed from historical conditions, we found a greater departure in the modern composition of small trees in warm–moist environments than in either hot–dry or cold–wet environments. Furthermore, shade-tolerant trees began infilling earlier in cold–wet than in hot–dry environments and also in topographically shaded sites in the Ochoco Mountains. Our new classification could be used to prioritize management that seeks to restore structure and composition or create resilience in mixed-conifer forests of the region.
SU-E-T-489: Incorporating Skin Flash Into VMAT WBI: Impacts On Surface Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buele, A Bejarano; Tanny, S; Warrell, G
Purpose: Increased use of inverse planning limits the amount of skin flash in whole breast irradiation (WBI). Strategies to incorporate flash into inverse-planned treatments involve overriding air to the density of water or tissue. This introduces uncertainties to the superficial dose distribution, potentially degrading the coverage at the skin-bolus interface. We investigate the accuracy of various commonly used bolus materials to incorporate flash in VMAT WBI plans while minimizing the perturbation near the skin. Methods: We obtained a CT-simulation of an anthropomorphic phantom with a breast attachment. Three VMAT plans were created with different boluses: 1 cm of 1 g/cm{supmore » 3} bolus (Superflab), 1 cm of 0.65 g/cm{sup 3} bolus (wet towels), and 1 cm of g/cm{sup 3} bolus with 2 dose levels accounting for the difference between bolus and tissue density. The PTV was extended into the bolus, outside the patient body contour to incorporate flash. OSLDs were used to obtain surface doses at the medial, lateral and tip sites of the breast. Each plan was irradiated four times using CBCT for positioning and dosimeter localization. Results: The average thickness of the wet-towel bolus on delivery was 8 mm with a CBCT-measured density of 0.6 g/cm{sup 3}. OSLD measurements demonstrated good agreement with predicted doses from Pinnacle. Average deviations were −5.7%, −2.5%, and −2.6% for plans 1, 2, and 3, respectively. OSLDs placed at the medial and lateral portions of the breast showed the largest average deviations. The maximum recorded deviation from planned values was −8.6%. The largest dose fluctuations occurred near areas where the bolus failed to properly conform to the breast contour. Conclusion: Use of wet-towel bolus improved dose delivery accuracy compared to standard Superflab bolus. Areas of poor bolus conformity adversely affected dose delivery. We recommend the use of wet-towel bolus over Superflab bolus for VMAT WBI.« less
Pressure effects on collective density fluctuations in water and protein solutions
Russo, Daniela; Laloni, Alessio; Filabozzi, Alessandra; Heyden, Matthias
2017-01-01
Neutron Brillouin scattering and molecular dynamics simulations have been used to investigate protein hydration water density fluctuations as a function of pressure. Our results show significant differences between the pressure and density dependence of collective dynamics in bulk water and in concentrated protein solutions. Pressure-induced changes in the tetrahedral order of the water HB network have direct consequences for the high-frequency sound velocity and damping coefficients, which we find to be a sensitive probe for changes in the HB network structure as well as the wetting of biomolecular surfaces. PMID:29073065
Inaba, Nobuharu; Trainer, Vera L; Onishi, Yuka; Ishii, Ken-Ichiro; Wyllie-Echeverria, Sandy; Imai, Ichiro
2017-02-01
The algicidal and growth-inhibiting bacteria associated with seagrasses and macroalgae were characterized during the summer of 2012 and 2013 throughout Puget Sound, WA, USA. In 2012, Heterosigma akashiwo-killing bacteria were observed in concentrations of 2.8×10 6 CFUg -1 wet in the outer organic layer (biofilm) on the common eelgrass (Zostera marina) in north Padilla Bay. Bacteria that inhibited the growth of Alexandrium tamarense were detected within the biofilm formed on the eelgrass canopy at Dumas Bay and North Bay at densities of ∼10 8 CFUg -1 wet weight. Additionally, up to 4100CFUmL -1 of algicidal and growth-inhibiting bacteria affecting both A. tamarense and H. akashiwo were detected in seawater adjacent to seven different eelgrass beds. In 2013, H. akashiwo-killing bacteria were found on Z. marina and Ulva lactuca with the highest densities of ∼10 8 CFUg -1 wet weight at Shallow Bay, Sucia Island. Bacteria that inhibited the growth of H. akashiwo and A. tamarense were also detected on Z. marina and Z. japonica at central Padilla Bay. Heterosigma akashiwo cysts were detected at a concentration of 3400cystsg -1 wet weight in the sediment from Westcott Bay (northern San Juan Island), a location where eelgrass disappeared in 2002. These findings provide new insights on the ecology of algicidal and growth-inhibiting bacteria, and suggest that seagrass and macroalgae provide an environment that may influence the abundance of harmful algae in this region. This work highlights the importance of protection and restoration of native seagrasses and macroalgae in nearshore environments, in particular those regions where shellfish restoration initiatives are in place to satisfy a growing demand for seafood. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Quintero, Yenny Cardona; Nagarajan, Ramanathan
2018-09-01
Titania, among the metal oxides, has shown promising characteristics for the adsorption and decontamination of chemical warfare nerve agents, due to its high stability and rapid decomposition rates. In this study, the adsorption energy and geometry of the nerve agents Sarin and Soman, and their simulant dimethyl methyl phosphonate (DMMP) on TiO2 rutile (110) surface were calculated using density functional theory. The molecular and dissociative adsorption of the agents and simulant on dry as well as wet metal oxide surfaces were considered. For the wet system, computations were done for the cases of both molecularly adsorbed water (hydrated conformation) and dissociatively adsorbed water (hydroxylated conformation). DFT calculations show that dissociative adsorption of the agents and simulant is preferred over molecular adsorption for both dry and wet TiO2. The dissociative adsorption on hydrated TiO2 shows higher stability among the different configurations considered. The dissociative structure of DMMP on hydrated TiO2 (the most stable one) was identified as the dissociation of a methyl group and its adsorption on the TiO2 surface. For the nerve agents Sarin and Soman on hydrated TiO2 the dissociative structure was by the dissociation of the F atom from the molecule and its interaction with a Ti atom from the surface, which could indicate a reduction in the toxicity of the products. This study shows the relevance of water adsorption on the metal oxide surface for the stability and dissociation of the simulant DMMP and the nerve agents Sarin and Soman on TiO2.
Thermal effects on electronic properties of CO/Pt(111) in water.
Duan, Sai; Xu, Xin; Luo, Yi; Hermansson, Kersti; Tian, Zhong-Qun
2013-08-28
Structure and adsorption energy of carbon monoxide molecules adsorbed on the Pt(111) surfaces with various CO coverages in water as well as work function of the whole systems at room temperature of 298 K were studied by means of a hybrid method that combines classical molecular dynamics and density functional theory. We found that when the coverage of CO is around half monolayer, i.e. 50%, there is no obvious peak of the oxygen density profile appearing in the first water layer. This result reveals that, in this case, the external force applied to water molecules from the CO/Pt(111) surface almost vanishes as a result of the competitive adsorption between CO and water molecules on the Pt(111) surface. This coverage is also the critical point of the wetting/non-wetting conditions for the CO/Pt(111) surface. Averaged work function and adsorption energy from current simulations are consistent with those of previous studies, which show that thermal average is required for direct comparisons between theoretical predictions and experimental measurements. Meanwhile, the statistical behaviors of work function and adsorption energy at room temperature have also been calculated. The standard errors of the calculated work function for the water-CO/Pt(111) interfaces are around 0.6 eV at all CO coverages, while the standard error decreases from 1.29 to 0.05 eV as the CO coverage increases from 4% to 100% for the calculated adsorption energy. Moreover, the critical points for these electronic properties are the same as those for the wetting/non-wetting conditions. These findings provide a better understanding about the interfacial structure under specific adsorption conditions, which can have important applications on the structure of electric double layers and therefore offer a useful perspective for the design of the electrochemical catalysts.
Morphology and conductivity study of solid electrolyte Li{sub 3}PO{sub 4}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prayogi, Lugas Dwi, E-mail: ldprayodi@gmail.com; Faisal, Muhamad; Kartini, Evvy, E-mail: kartini@batan.go.id
2016-02-08
The comparison between two different methods of synthesize of solid electrolyte Li{sub 3}PO{sub 4} as precursor material for developing lithium ion battery, has been performed. The first method is to synthesize Li{sub 3}PO{sub 4} prepared by wet chemical reaction from LiOH and H{sub 3}PO{sub 4} which provide facile, abundant available resource, low cost, and low toxicity. The second method is solid state reaction prepared by Li{sub 2}CO{sub 3} and NH{sub 4}H{sub 2}PO{sub 4.} In addition, the possible morphology identification of comparison between two different methods will also be discussed. The composition, morphology, and additional identification phase and another compound ofmore » Li{sub 3}PO{sub 4} powder products from two different reaction are characterized by SEM, EDS, and EIS. The Li{sub 3}PO{sub 4} powder produced from wet reaction and solid state reaction have an average diameter of 0.834 – 7.81 µm and 2.15 – 17.3 µm, respectively. The density of Li{sub 3}PO{sub 4} prepared by wet chemical reaction is 2.238 gr/cm{sup 3}, little bit lower than the sample prepared by solid state reaction which density is 2.3560 gr/cm{sup 3}. The EIS measurement result shows that the conductivity of Li{sub 3}PO{sub 4} is 1.7 x 10{sup −9} S.cm{sup −1} for wet chemical reaction and 1.8 x 10{sup −10} S.cm{sup −1} for solid state reaction. The conductivity of Li{sub 3}PO{sub 4} is not quite different between those two samples even though they were prepared by different method of synthesize.« less
Seasonal changes in the assembly mechanisms structuring tropical fish communities.
Fitzgerald, Daniel B; Winemiller, Kirk O; Sabaj Pérez, Mark H; Sousa, Leandro M
2017-01-01
Despite growing interest in trait-based approaches to community assembly, little attention has been given to seasonal variation in trait distribution patterns. Mobile animals can rapidly mediate influences of environmental factors and species interactions through dispersal, suggesting that the relative importance of different assembly mechanisms can vary over short time scales. This study analyzes seasonal changes in functional trait distributions of tropical fishes in the Xingu River, a major tributary of the Amazon with large predictable temporal variation in hydrologic conditions and species density. Comparison of observed functional diversity revealed that species within wet-season assemblages were more functionally similar than those in dry-season assemblages. Further, species within wet-season assemblages were more similar than random expectations based on null model predictions. Higher functional richness within dry season communities is consistent with increased niche complementarity during the period when fish densities are highest and biotic interactions should be stronger; however, null model tests suggest that stochastic factors or a combination of assembly mechanisms influence dry-season assemblages. These results demonstrate that the relative influence of community assembly mechanisms can vary seasonally in response to changing abiotic conditions, and suggest that studies attempting to infer a single dominant mechanism from functional patterns may overlook important aspects of the assembly process. During the prolonged flood pulse of the wet season, expanded habitat and lower densities of aquatic organisms likely reduce the influence of competition and predation. This temporal shift in the influence of different assembly mechanisms, rather than any single mechanism, may play a large role in maintaining the structure and diversity of tropical rivers and perhaps other dynamic and biodiverse systems. © 2016 by the Ecological Society of America.
ERIC Educational Resources Information Center
School Science Review, 1973
1973-01-01
Ideas for elementary school teachers are proposed. Demonstration experiments include thermal conductivity of gases, wetting power of detergents, external pressure effects on boiling point of water, frequency-wavelength relations, density of hot and cold water. Other useful tips are given for protecting wall charts and making descriptive labels.…
Biological properties of disturbed and undisturbed Cerrado sensu stricto from Northeast Brazil.
Araújo, A S F; Magalhaes, L B; Santos, V M; Nunes, L A P L; Dias, C T S
2017-03-01
The aim of this study was to measure soil microbial biomass and soil surface fauna in undisturbed and disturbed Cerrado sensu stricto (Css) from Sete Cidades National Park, Northeast Brazil. The following sites were sampled under Cerrado sensu stricto (Css) at the park: undisturbed and disturbed Css (slash-and-burn agricultural practices). Total organic and microbial biomass C were higher in undisturbed than in disturbed sites in both seasons. However, microbial biomass C was higher in the wet than in the dry season. Soil respiration did not vary among sites but was higher in the wet than in the dry season. The densities of Araneae, Coleoptera, and Orthoptera were higher in the undisturbed site, whereas the densities of Formicidae were higher in the disturbed site. Non-metric multidimensional scaling analysis separated undisturbed from disturbed sites according to soil biological properties. Disturbance by agricultural practices, such as slash-and-burn, probably resulted in the deterioration of the biological properties of soil under native Cerrado sensu stricto in the Sete Cidades National Park.
Pietz, Pamela J.; Krapu, Gary L.; Buhl, Deborah A.; Brandt, David A.
2000-01-01
We examined the relationship between local water conditions (measured as the percent of total area of basins that was covered by water) and clutch size, egg volume, and hatchling mass of Mallards (Anas platyrhynchos) and Gadwalls (A. strepera) on four study sites in the Prairie Pothole Region of North Dakota and Minnesota, 1988-1994. We also examined the relationship between pond density and clutch size of Mallards and Gadwalls, using data collected at another North Dakota site, 1966-1981. For Mallards, we found no relationships to be significant. For Gadwalls, clutch size increased with percent basin area wet and pond density; hatchling mass marginally increased with percent basin area wet. These species differences may reflect, in part, that Mallards acquire lipid reserves used to produce early clutches before they reach the breeding grounds, whereas Gadwalls acquire lipid reserves locally; thus Gadwall clutches are more likely to be influenced by local food resources.
Santacruz, Stalin
2014-06-15
The properties of a paper sheet depend on the absorption together with the physico-chemical properties of additives used in the paper processing. The effect of ionic strength and degree of substitution of cationic potato starch on the elution pattern of asymmetrical flow field-flow fractionation was analysed. The effect of starch derivatisation, in either dry or wet phase, was also investigated. Average molar mass showed no difference between the starches obtained from the two derivatisation processes. Apparent densities showed that dry cationic starch had higher density than wet cationic starch for a hydrodynamic radius between 50 and 100 nm. Elution times of native and three cationic starches increased when the ionic strength increased from 50 to 100mM. No differences in the molar mass among cationic starches with different degree of substitution suggested no degradation due to a derivatisation process. Large sample loads can be used at 100mM without overloading. Copyright © 2014 Elsevier Ltd. All rights reserved.
The value of agricultural wetlands as invertebrate resources for wintering shorebirds
Taft, Oriane W.; Haig, Susan M.
2005-01-01
Agricultural landscapes have received little recognition for the food resources they provide to wintering waterbirds. In the Willamette Valley of Oregon, modest yet significant populations of wintering shorebirds (Charadriiformes) regularly use hundreds of dispersed wetlands on agricultural lands. Benthic invertebrates are a critical resource for the survival of overwintering shorebirds, yet the abundance of invertebrate resources in agricultural wetlands such as these has not been quantified. To evaluate the importance of agricultural wetlands to a population of wintering shorebirds, the density, biomass, and general community composition of invertebrates available to birds were quantified at a sample of Willamette Valley sites during a wet (1999–2000) and a dry winter (2000–2001). Invertebrate densities ranged among wetlands from 173 to 1925 (mean ± S.E.: 936 ± 106) individuals/m2 in the wet winter, and from 214 to 3484 (1028 ± 155) individuals/m2 in the dry winter. Total invertebrate estimated biomass among wetlands ranged from 35 to 652 (mean ± S.E.: 364 ± 35) mg/m2 in the wet winter, and from 85 to 1405 (437 ± 62) mg/m2 in the dry winter. These estimates for food abundance were comparable to that observed in some other important freshwater wintering regions in North America.
Gong, Chenhao; Zhang, Zhongguo; Li, Haitao; Li, Duo; Wu, Baichun; Sun, Yuwei; Cheng, Yanjun
2014-06-15
The electrocoagulation (EC) process was used to pretreat wastewater from the manufacture of wet-spun acrylic fibers, and the effects of varying the operating parameters, including the electrode area/wastewater volume (A/V) ratio, current density, interelectrode distance and pH, on the EC treatment process were investigated. About 44% of the total organic carbon was removed using the optimal conditions in a 100 min procedure. The optimal conditions were a current density of 35.7 mA cm(-2), an A/V ratio of 0.28 cm(-1), a pH of 5, and an interelectrode distance of 0.8 cm. The biodegradability of the contaminants in the treated water was improved by the EC treatment (using the optimal conditions), increasing the five-day biological oxygen demand/chemical oxygen demand ratio to 0.35, which could improve the effectiveness of subsequent biological treatments. The improvement in the biodegradability of the contaminants in the wastewater was attributed to the removal and degradation of aromatic organic compounds, straight-chain paraffins, and other organic compounds, which we identified using gas chromatography-mass spectrometry and Fourier transform infrared spectroscopy. The EC process was proven to be an effective alternative pretreatment for wastewater from the manufacture of wet-spun acrylic fibers, prior to biological treatments. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Brandt, Erik G.; Agosta, Lorenzo; Lyubartsev, Alexander P.
2016-07-01
Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity.Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity. Electronic supplementary information (ESI) available: Simulation data on equilibration of energies and structures (root-mean-square-deviations and coordination numbers); radial distribution functions for all O-Ti pairs over the entire data domain; comparison of coordination number distributions for dry and wet nanoparticles; dynamics of water reactivity; high-resolution electron density for the rutile NP. A movie of the simulation trajectory for the rutile (TiO2)24.30H2O system. See DOI: 10.1039/C6NR02791A
Airborne bacterial contaminations in typical Chinese wet market with live poultry trade.
Gao, Xin-Lei; Shao, Ming-Fei; Luo, Yi; Dong, Yu-Fang; Ouyang, Feng; Dong, Wen-Yi; Li, Ji
2016-12-01
Chinese wet markets with live poultry trade have been considered as major sources of pathogen dissemination, and sites for horizontal transfer of bacterial and viral pathogens. In this study, the pathogenic bacteria and antibiotic resistant genes (ARGs) in air samples collected at a typical Chinese wet market had been analysis and quantified. Corynebacterium minutissimum and other pathogenic bacteria accounted for 0.81-8.02% of the whole microbial community in different air samples. The four ARGs quantified in this study showed a comparable relative concentration (copies/ng_DNA) with municipal wastewater. Poultry manures were demonstrated to be important microbial contamination source in wet market, which was supported by both microbial composition based source tracking and the quantification of airborne microbial density. A series of Firmicutes and Bacteroidetes indicators of poultry area contamination were successfully screened, which will be useful for the more convenient monitoring of airborne poultry area contamination. Our results indicate bioaerosols acted as important route for the transmissions of pathogens and ARGs. Continued surveillance of airborne microbial contamination is required in poultry trade wet market. Urban live poultry markets are important sources of pathogen dissemination, and sites for horizontal transfer of viral and bacterial pathogens. In the present field-study, pathogenic bacteria and antibiotic resistance genes were focused to provide quantitative information on the levels of microbial contaminations at the indoor air of wet markets. Results demonstrated that poultry manures were important microbial contamination source in wet market, and in the meanwhile bioaerosols were identified as important route for the transmissions of microbial contaminants. A series of Firmicutes and Bacteroidetes indicators of poultry area contamination were successfully screened, which will be useful for the more convenient monitoring of airborne poultry area contamination. Copyright © 2016 Elsevier B.V. All rights reserved.
MineWolf Tiller Test and Evaluation
2007-11-01
scale. Reheat and reweigh until no change in mass is recorded. Soil is then dry. Calculations The moisture content of a soil is expressed as a... MOISTURE % WET DENSITY KG/M³ DRY DENSITY KG/M³ 1 07-Sep-06 gravel 10cm 4 2731 2621 2 07-Sep-06 gravel 10cm 4 2653 2541 3 07-Sep-06 gravel 10cm 3...each soil condition. This table also indicates the number of untriggered fuzes which were found separated from their main charges. The notes
New Ultra Low Permittivity Composites for Use in Ceramic Packaging of Ga:As Integrated Circuits.
1985-09-18
detectable Si compound . 4.2.1.3 Density. Densities were obtained by pycnometry using a non-wetting liquid (kerosene) and measuring the volume...controlling gel formation and densification. Of particular interest is the possibility of using photopolymerizable resins or gels as a means of...successful process. If feasibility can be demonstrated, intentions would be to use a compound such as A1BN, i.e. 2,2’-Azobis(2-methylpropionitrile), as a
2008-11-01
consisted of eight fundamental tasks. Boeing (1) pro - vided software allowing the selection of OLS locations using satellite im- agery, (2) provided a...IOP1 to determine the stratigraphy of the soil horizons, collect samples to determine the soil texture, and collect pro - file measurements of the soil...However, using the wet density value from the gauge with an oven-dry moisture con - tent from a sample collected at the same location where the density
Planning applications in east central Florida. [St. Johns National Wildlife Refuge
NASA Technical Reports Server (NTRS)
Hannah, J. W.; Thomas, G. L.; Esparza, F. (Principal Investigator); Millard, J. J.
1975-01-01
The author has identified the following significant results. St. Johns National Wildlife Refuge, a 4000 acre marsh, was established primarily to protect the Dusky Seaside Sparrow. A vegetation map of the refuge based on ground observations and color infrared photography was made. The preferred habitat of this sparrow is high-to-medium density spartina (a marsh grass) with no trees nearby. An increase in spartina density corresponds to an increase in marsh wetness. A thematic map shows the birds habitat preferences.
Estimation of roughness coefficients for natural stream channels with vegetated banks
Coon, William F.
1998-01-01
Roughness coefficients for 21 stream sites in New York state are presented. The site-specific relation between roughness coefficent and flow depth varies in a predictable manner, depending on energy gradient, relative smoothness (Rd50), and channel-vegetation density. The percentage of wetted perimeter that is vegetated is a useful indicator of when streambank vegetation can affect the roughness coefficient. To estimate the magnitude of this effect requires evaluation of the density and percent of submergence of vegetation.
Evans, Paul N.; Hinds, Lyn A.; Sly, Lindsay I.; McSweeney, Christopher S.; Morrison, Mark; Wright, André-Denis G.
2009-01-01
The composition of the methanogenic archaeal community in the foregut contents of Tammar wallabies (Macropus eugenii) was studied using 16S rRNA and methyl coenzyme reductase subunit A (mcrA) gene clone libraries. Methanogens belonging to the Methanobacteriales and a well-supported cluster of uncultivated archaeon sequences previously observed in the ovine and bovine rumens were found. Methanogen densities ranged from 7.0 × 105 and 3.9 × 106 cells per gram of wet weight. PMID:19218421
Smout, Felicity A; Skerratt, Lee F; Butler, James R A; Johnson, Christopher N; Congdon, Bradley C
2016-01-15
Heartworm (Dirofilaria immitis) is a parasitic nematode responsible for canine and feline cardiopulmonary dirofilariasis and human zoonotic filariosis in both tropical and temperate regions throughout the world. Importantly, this study in the Wet Tropics of Far North Queensland found D. immitis remains at high prevalence (72.7%) in wild dingoes in low density housing areas in Australia. This prevalence is equivalent to the highest levels seen in wild dogs in Australia and represents an ongoing risk to domestic dogs, cats and humans. In contrast, in higher density residential areas prevalence was significantly lower (16.7%, p=0.001). It is possible that chemotherapeutic heartworm (HW) prevention in domestic dogs in these higher density housing areas is helping to control infection in the resident dingo population. Five dingoes killed in council control operations around Atherton, a non-endemic HW region in the Wet Tropics, were all negative for HW likely due to the colder climate of the region restricting transmission of the disease. This survey highlights the importance of dingoes as reservoir hosts of HW disease and that the subsequent risk of infection to companion animals and humans depends on local factors such as housing density, possibly linked to chemotherapeutic HW control in domestic dogs and climate. Our findings show that veterinary clinicians need to ensure that pet owners are aware of HW disease and do not become complacent about HW chemoprohylaxis in areas which support dingo populations. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Moran, J. M.; Rosen, B. R.
1980-01-01
The uncertainity in propagation delay estimates is due primarily to tropospheric water, the total amount and vertical distribution of which is variable. Because water vapor both delays and attenuates microwave signals, the propagation delay, or wet path length, can be estimated from the microwave brightness temperature near the 22.235 GHz transition of water vapor. The data from a total of 240 radiosonde launches taken simultaneously were analyzed. Estimates of brightness temperature at 19 and 22 GHz and wet path length were made from these data. The wet path length in the zenith direction could be estimated from the surface water vapor density to an accuracy of 5 cm for the summer data and 2 cm for winter data. Using the brightness temperatures, the wet path could be estimated to an accuracy of 0.3 cm. Two dual frequency radiometers were refurbished in order to test these techniques. These radiometers were capable of measuring the difference in the brightness temperature at 30 deg elevation angle and at the zenith to an accuracy of about 1 K. In August 1975, 45 radiosondes were launched over an 11 day period. Brightness temperature measurements were made simultaneously at 19 and 22 GHz with the radiometers. The rms error for the estimation of wet path length from surface meteorological parameters was 3.2 cm, and from the radiometer brightness temperatures, 1.5 cm.
Aphanomyces root rot of alfalfa: Widespread distribution of race 2 in Minnesota
USDA-ARS?s Scientific Manuscript database
Strong seedling establishment in alfalfa is important to achieve the plant density needed to out-compete weeds and produce high biomass yields. Establishing alfalfa can be challenging because alfalfa seeds and seedlings are vulnerable to several pathogens present in soil. Wet soil conditions favor t...
Association of Phytophthora cinnamomi with white oak decline in southern Ohio
Annemarie M. Nagle; Robert P. Long; Laurence V. Madden; Pierluigi. Bonello
2010-01-01
A decline syndrome and widespread mortality of mature white oak tree (Quercus alba) associated with wet and low-lying areas has been recently observed in southern Ohio forests. Previous studies have isolated Phytophthora cinnamomi from white oak rhizospheres. In 2008 and 2009, P. cinnamomi population densities in...
USDA-ARS?s Scientific Manuscript database
Researchers report that manure-derived biochar has considerable potential both for improving soil quality and reducing water pollution. One of obstacles in obtaining manure biochar is its high energy requirement for pyrolyzing wet and low-energy-density animal manures. The combustible gas produced f...
Population estimate of Chinese mystery snail (Bellamya chinensis) in a Nebraska reservoir
Chaine, Noelle M.; Allen, Craig R.; Fricke, Kent A.; Haak, Danielle M.; Hellman, Michelle L.; Kill, Robert A.; Nemec, Kristine T.; Pope, Kevin L.; Smeenk, Nicholas A.; Stephen, Bruce J.; Uden, Daniel R.; Unstad, Kody M.; VanderHam, Ashley E.
2012-01-01
The Chinese mystery snail (Bellamya chinensis) is an aquatic invasive species in North America. Little is known regarding this species' impacts on freshwater ecosystems. It is be lieved that population densities can be high, yet no population estimates have been reported. We utilized a mark-recapture approach to generate a population estimate for Chinese mystery snail in Wild Plum Lake, a 6.47-ha reservoir in southeast Nebraska. We calculated, using bias-adjusted Lincoln-Petersen estimation, that there were approximately 664 adult snails within a 127 m2 transect (5.2 snails/m2). If this density was consistent throughout the littoral zone (<3 m in depth) of the reservoir, then the total adult population in this impoundment is estimated to be 253,570 snails, and the total Chinese mystery snail wet biomass is estimated to be 3,119 kg (643 kg/ha). If this density is confined to the depth sampled in this study (1.46 m), then the adult population is estimated to be 169,400 snails, and wet biomass is estimated to be 2,084 kg (643 kg/ha). Additional research is warranted to further test the utility of mark-recapture methods for aquatic snails and to better understand Chinese mystery snail distributions within reservoirs.
Comparison of separation performance of laser-ablated and wet-etched microfluidic devices
Baker, Christopher A.; Bulloch, Rayford; Roper, Michael G.
2010-01-01
Laser ablation of glass allows for production of microfluidic devices without the need of hydrofluoric acid and photolithography. The goal of this study was to compare the separation performance of microfluidic devices produced using a low-cost laser ablation system and conventional wet etching. During laser ablation, cracking of the glass substrate was prevented by heating the glass to 300°C. A range of laser energy densities was found to produce channel depths ranging from 4 – 35 μm and channel widths from 118 – 162 μm. The electroosmotic flow velocity was lower in laser-ablated devices, 0.110 ± 0.005 cm s−1, as compared to wet-etched microfluidic chips, 0.126 ± 0.003 cm s−1. Separations of both small and large molecules performed on both wet- and laser-ablated devices were compared by examining limits of detection, theoretical plate count, and peak asymmetry. Laser-induced fluorescence detection limits were 10 pM fluorescein for both types of devices. Laser-ablated and wet-etched microfluidic chips had reproducible migration times with ≤ 2.8% RSD and peak asymmetries ranging from 1.0 – 1.8. Numbers of theoretical plates were between 2.8- and 6.2-fold higher on the wet-etched devices compared to laser-ablated devices. Nevertheless, resolution between small and large analytes was accomplished, which indicates that laser ablation may find an application in pedagogical studies of electrophoresis or microfluidic devices, or in settings where hydrofluoric acid cannot be used. PMID:20827468
NASA Astrophysics Data System (ADS)
Huo, Hanyu; Zhao, Ning; Sun, Jiyang; Du, Fuming; Li, Yiqiu; Guo, Xiangxin
2017-12-01
Paramount attention has been paid on solid polymer electrolytes due to their potential in enhancement of energy density as well as improvement of safety. Herein, the composite electrolytes consisting of Li-salt-free polyethylene oxides and 200 nm-sized Li6.4La3Zr1.4Ta0.6O12 particles interfacially wetted by [BMIM]TF2N of 1.8 μL cm-2 have been prepared. Such wetted ionic liquid remains the solid state of membrane electrolytes and decreases the interface impedance between the electrodes and the electrolytes. There is no release of the liquid phase from the PEO matrix when the pressure of 5.0 × 104 Pa being applied for 24 h. The interfacially wetted membrane electrolytes show the conductivity of 2.2 × 10-4 S cm-1 at 20 °C, which is one order of magnitude greater than that of the membranes without the wetted ionic liquids. The conduction mechanism is related to a large number of lithium ions releasing from Li6.4La3Zr1.4Ta0.6O12 particles and the improved conductive paths along the ion-liquid-wetted interfaces between the polymer matrix and ceramic grains. When the membranes being used in the solid-state LiFePO4/Li and LiFe0.15Mn0.85PO4/Li cells at 25 °C, the excellent rate capability and superior cycle stability has been shown. The results provide a new prospect for solid polymer electrolytes used for room-temperature solid-state lithium batteries.
Surface tension and wetting properties of rapeseed oil to biofuel conversion by-products
NASA Astrophysics Data System (ADS)
Muszyński, Siemowit; Sujak, Agnieszka; Stępniewski, Andrzej; Kornarzyński, Krzysztof; Ejtel, Marta; Kowal, Natalia; Tomczyk-Warunek, Agnieszka; Szcześniak, Emil; Tomczyńska-Mleko, Marta; Mleko, Stanisław
2018-04-01
This work presents a study on the surface tension, density and wetting behaviour of distilled glycerol, technical grade glycerol and the matter organic non-glycerin fraction. The research was conducted to expand the knowledge about the physical properties of wastes from the rapeseed oil biofuel production. The results show that the densities of technical grade glycerol (1.300 g cm-3) and distilled glycerol (1.267 g cm-3) did not differ and were significantly lower than the density of the matter organic non-glycerin fraction (1.579 g cm-3). Furthermore, the surface tension of distilled glycerol (49.6 mN m-1) was significantly higher than the matter organic non-glycerin fraction (32.7 mN m-1) and technical grade glycerol (29.5 mN m-1). As a result, both technical grade glycerol and the matter organic non-glycerin fraction had lower contact angles than distilled glycerol. The examined physical properties of distilled glycerol were found to be very close to that of the commercially available pure glycerol. The results suggest that technical grade glycerol may have potential application in the production of glycerol/fuel blends or biosurfactants. The presented results indicate that surface tension measurements are more useful when examining the quality of biofuel wastes than is density determination, as they allow for a more accurate analysis of the effects of impurities on the physical properties of the biofuel by-products.
Hassan, Ammar Ali; Sandanger, Torkjel M; Brustad, Magritt
2012-07-01
Meat samples (n = 100) were collected from semi-domesticated reindeer originating from 10 grazing districts in Norway. We aimed at studying concentrations, correlations, geographical variations and the effect of animal population density on vitamins A, B3, B7, B12 and E, and calcium, iron, zinc, selenium, chromium and cobalt. Mean concentrations of vitamins A, B3, B7; B12 and E were <5 µg, 6.6 mg, <0.5 µg, 4.7 µg and 0.5 mg/100 g wet weight, respectively. Concentrations of calcium, iron, zinc, selenium, chromium and cobalt were 4.7 mg, 2.8 mg, 6.4 mg, 19.4 µg, 1.7 µg and 0.5 µg/100 g wet weight, respectively. Vitamin E and selenium were the nutrients that exhibited the largest geographical variations (p < 0.05), although no geographical gradient was observed for any of the studied nutrients. Age had a significant effect on zinc and selenium concentrations. Iron was significantly positive correlated with calcium (r = 0.3416, p < 0.01) and vitamin B12 with zinc (r = 0.35, p < 0.05). Reindeer from districts with low animal population density had significantly higher selenium concentration than those from districts with medium and high population densities (p < 0.01). Reindeer meat contained higher vitamin B12, iron, zinc and selenium concentrations when compared to Norwegian beef, lamb, mutton, pork and chicken meat.
Hassan, Ammar Ali; Sandanger, Torkjel M.; Brustad, Magritt
2012-01-01
Meat samples (n = 100) were collected from semi-domesticated reindeer originating from 10 grazing districts in Norway. We aimed at studying concentrations, correlations, geographical variations and the effect of animal population density on vitamins A, B3, B7, B12 and E, and calcium, iron, zinc, selenium, chromium and cobalt. Mean concentrations of vitamins A, B3, B7; B12 and E were <5 µg, 6.6 mg, <0.5 µg, 4.7 µg and 0.5 mg/100 g wet weight, respectively. Concentrations of calcium, iron, zinc, selenium, chromium and cobalt were 4.7 mg, 2.8 mg, 6.4 mg, 19.4 µg, 1.7 µg and 0.5 µg/100 g wet weight, respectively. Vitamin E and selenium were the nutrients that exhibited the largest geographical variations (p < 0.05), although no geographical gradient was observed for any of the studied nutrients. Age had a significant effect on zinc and selenium concentrations. Iron was significantly positive correlated with calcium (r = 0.3416, p < 0.01) and vitamin B12 with zinc (r = 0.35, p < 0.05). Reindeer from districts with low animal population density had significantly higher selenium concentration than those from districts with medium and high population densities (p < 0.01). Reindeer meat contained higher vitamin B12, iron, zinc and selenium concentrations when compared to Norwegian beef, lamb, mutton, pork and chicken meat. PMID:22852060
Makundi, Rhodes H; Massawe, Apia W; Mulungu, Loth S
2007-12-01
The multimammate rat, Mastomys natalensis Smith 1834, is a dominant species in agro-ecosystems in Sub-Saharan Africa, but adapts quickly to changes in non-agricultural landscape, particularly woodlands and forests. In this study we report on reproduction and population dynamics of M. natalensis in deforested high elevation localities in the Usambara Mountains, north-east Tanzania. We conducted Capture-Mark-Recapture studies in 2002-2004, and established that reproduction of M. natalensis takes place in the extended wet season between February and June, and the population density peaks in June-August. Reproduction cease in July to January and population density drops from July onwards. Reproduction and population density fluctuations are linked to the duration and amount of rainfall. In years when rainfall was below average and the wet season was short, the population density was significantly lower (below 10 animals/ha and 60 animals/ha in 2003 and 2004 respectively, compared to >100 animals/ha in 2002 when rainfall was above the seasonal average) (F(df 2,13)= 9.092, p < 0.01 for in between years variations and F(df 12,15)= 5.389, p < 0.01 for effect of cumulative annual rainfall on population density). These densities were much lower than in the lowland savannah habitats in central and southwest Tanzania. A comparison between the farmland/fallow mosaic fields and agro-forestry areas showed higher population densities in the former, which have similarities to the preferred habitats in the lowland savannahs. The increasing abundance of M. natalensis in the Usambara could have some consequences: M. natalensis is major pest and is involved in the plague cycle in the western Usambara Mountains. Mastomys natalensis is also a strong competitor and the impact on endemic rodent species, e.g. Lophuromys flavopunctatus and Praomys delectorum is unknown.
Comparative surface studies on wet and dry sacrificial thermal oxidation on silicon carbide
NASA Astrophysics Data System (ADS)
Koh, A.; Kestle, A.; Wright, C.; Wilks, S. P.; Mawby, P. A.; Bowen, W. R.
2001-04-01
A comparative study on the effect of wet and dry thermal oxidation on 4H-silicon carbide (SiC) and on sacrificial silicon (Si) thermal oxidation on 4H-SiC surface has been conducted using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The AFM images show the formation of 'nano-islands' of varying density on the SiC surface after the removal of thermal oxide using hydrofluoric (HF) acid etch. These nano-islands are resistant to HF acid and have been previously linked to residual carbon [1-3] resulting from the oxidation process. This paper presents the use of a sacrificial silicon oxidation (SSO) step as a form of surface preparation that gives a reproducible clean SiC surface. XPS results show a slight electrical shift in binding energy between the wet and dry thermal oxidation on the standard SiC surface, while the surface produced by the SSO technique shows a minimal shift.
NASA Astrophysics Data System (ADS)
Akai, Takashi; Bijeljic, Branko; Blunt, Martin J.
2018-06-01
In the color gradient lattice Boltzmann model (CG-LBM), a fictitious-density wetting boundary condition has been widely used because of its ease of implementation. However, as we show, this may lead to inaccurate results in some cases. In this paper, a new scheme for the wetting boundary condition is proposed which can handle complicated 3D geometries. The validity of our method for static problems is demonstrated by comparing the simulated results to analytical solutions in 2D and 3D geometries with curved boundaries. Then, capillary rise simulations are performed to study dynamic problems where the three-phase contact line moves. The results are compared to experimental results in the literature (Heshmati and Piri, 2014). If a constant contact angle is assumed, the simulations agree with the analytical solution based on the Lucas-Washburn equation. However, to match the experiments, we need to implement a dynamic contact angle that varies with the flow rate.
Development of wet process with substitution reaction for the mass production of Li 2TiO 3 pebbles
NASA Astrophysics Data System (ADS)
Tsuchiya, Kunihiko; Kawamura, Hiroshi
2000-12-01
Recently, lithium titanate (Li 2TiO 3) has attracted the attention of many researchers from the point of good tritium recovery at low temperature, chemical stability, etc. As the shape of Li 2TiO 3, a small pebble was selected as the Japanese design for a fusion reactor blanket. On the other hand, as the fabrication method of Li 2TiO 3 pebbles, the wet process is the most advantageous from the viewpoint of mass production, etc. In this study, fabrication of small Li 2TiO 3 pebbles less than ∅0.5 mm was performed by the wet process with substitution reaction, and the characteristics of Li 2TiO 3 pebbles fabricated by this process were evaluated. From the results of the fabrication tests, excellent prospects were obtained concerning mass production of Li 2TiO 3 pebbles with the target density (80-85% T.D.) and target diameter (less than ∅0.5 mm).
Morphology modulating the wettability of a diamond film.
Tian, Shibing; Sun, Weijie; Hu, Zhaosheng; Quan, Baogang; Xia, Xiaoxiang; Li, Yunlong; Han, Dong; Li, Junjie; Gu, Changzhi
2014-10-28
Control of the wetting property of diamond surface has been a challenge because of its maximal hardness and good chemical inertness. In this work, the micro/nanoarray structures etched into diamond film surfaces by a maskless plasma method are shown to fix a surface's wettability characteristics, and this means that the change in morphology is able to modulate the wettability of a diamond film from weakly hydrophilic to either superhydrophilic or superhydrophobic. It can be seen that the etched diamond surface with a mushroom-shaped array is superhydrophobic following the Cassie mode, whereas the etched surface with nanocone arrays is superhydrophilic in accordance with the hemiwicking mechnism. In addition, the difference in cone densities of superhydrophilic nanocone surfaces has a significant effect on water spreading, which is mainly derived from different driving forces. This low-cost and convenient means of altering the wetting properties of diamond surfaces can be further applied to underlying wetting phenomena and expand the applications of diamond in various fields.
Herzog, Mark; Ackerman, Joshua T.; Eagles-Smith, Collin A.; Hartman, Christopher
2016-01-01
In egg contaminant studies, it is necessary to calculate egg contaminant concentrations on a fresh wet weight basis and this requires accurate estimates of egg density and egg volume. We show that the inclusion or exclusion of the eggshell can influence egg contaminant concentrations, and we provide estimates of egg density (both with and without the eggshell) and egg-shape coefficients (used to estimate egg volume from egg morphometrics) for American avocet (Recurvirostra americana), black-necked stilt (Himantopus mexicanus), and Forster’s tern (Sterna forsteri). Egg densities (g/cm3) estimated for whole eggs (1.056 ± 0.003) were higher than egg densities estimated for egg contents (1.024 ± 0.001), and were 1.059 ± 0.001 and 1.025 ± 0.001 for avocets, 1.056 ± 0.001 and 1.023 ± 0.001 for stilts, and 1.053 ± 0.002 and 1.025 ± 0.002 for terns. The egg-shape coefficients for egg volume (K v ) and egg mass (K w ) also differed depending on whether the eggshell was included (K v = 0.491 ± 0.001; K w = 0.518 ± 0.001) or excluded (K v = 0.493 ± 0.001; K w = 0.505 ± 0.001), and varied among species. Although egg contaminant concentrations are rarely meant to include the eggshell, we show that the typical inclusion of the eggshell in egg density and egg volume estimates results in egg contaminant concentrations being underestimated by 6–13 %. Our results demonstrate that the inclusion of the eggshell significantly influences estimates of egg density, egg volume, and fresh egg mass, which leads to egg contaminant concentrations that are biased low. We suggest that egg contaminant concentrations be calculated on a fresh wet weight basis using only internal egg-content densities, volumes, and masses appropriate for the species. For the three waterbirds in our study, these corrected coefficients are 1.024 ± 0.001 for egg density, 0.493 ± 0.001 for K v , and 0.505 ± 0.001 for K w .
Mendivelso, Hooz A; Camarero, J Julio; Royo Obregón, Oriol; Gutiérrez, Emilia; Toledo, Marisol
2013-01-01
A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.
Mendivelso, Hooz A.; Camarero, J. Julio; Royo Obregón, Oriol; Gutiérrez, Emilia; Toledo, Marisol
2013-01-01
A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability. PMID:24116001
Laboratory Characterization of Solid Grade SW Brick
2007-08-01
Society for Testing and Materials (ASTM) D 2216 (ASTM 2002e). Based on the appropriate values of posttest water content, wet density, and an assumed...strain path (UX/SP) tests. In addition to the mechanical property tests, nondestructive pulse-velocity measurements were performed on each specimen...Figure 3. Spring-arm lateral deformeter mounted on test specimen
Computed tomography (CT) imaging has been used to describe and quantify subtidal, benthic animals such as polychaetes, amphipods, and shrimp. Here, for the first time, CT imaging is used to successfully quantify wet mass of coarse roots, rhizomes, and peat in cores collected from...
Computer-aided Tomography (CT) imaging was utilized to quantify wet mass of coarse roots, rhizomes, and peat in cores collected from organic-rich (Jamaica Bay, NY) and mineral (North Inlet, SC) Spartina alterniflora soils. Calibration rods composed of materials with standard dens...
High frequency capacitance-voltage characteristics of thermally grown SiO2 films on beta-SiC
NASA Technical Reports Server (NTRS)
Tang, S. M.; Berry, W. B.; Kwor, R.; Zeller, M. V.; Matus, L. G.
1990-01-01
Silicon dioxide films grown under dry and wet oxidation environment on beta-SiC films have been studied. The beta-SiC films had been heteroepitaxially grown on both on-axis and 2-deg off-axis (001) Si substrates. Capacitance-voltage and conductance-voltage characteristics of metal-oxide-semiconductor structures were measured in a frequency range of 10 kHz to 1 MHz. From these measurements, the interface trap density and the effective fixed oxide charge density were observed to be generally lower for off-axis samples.
Density functional simulations as a tool to probe molecular interactions in wet supercritical CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glezakou, Vassiliki Alexandra; McGrail, B. Peter
2013-06-03
Recent advances in mixed Gaussian and plane wave algorithms have made possible the effective use of density functional theory (DFT) in ab initio molecular dynamics (AIMD) simulations for large and chemically complex models of condensed phase materials. In this chapter, we are reviewing recent progress on the modeling and characterization of co-sequestration processes and reactivity in wet supercritical CO2 (sc-CO2). We examine the molecular transformations of mineral and metal components of a sequestration system in contact with water-bearing scCO2 media and aim to establish a reliable correspondence between experimental observations and theory models with predictive ability and transferability of resultsmore » in large scale geomechanical simulators. This work is funded by the Department of Energy, Office of Fossil Energy. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. The Pacific Norhtwest National Laboratory (PNNL) is operated by Battelle for DOE under contract DE-AC06-76RL01830.« less
NASA Astrophysics Data System (ADS)
Herden, Susanne; Riewald, Felix; Hirschfeld, Julian A.; Perchthaler, Markus
2017-07-01
Within the active area of a fuel cell inhomogeneous operating conditions occur, however, state of the art electrodes are homogenous over the complete active area. This study uses current density distribution measurements to analyze which ionomer equivalent weight (EW) shows locally the highest current densities. With this information a segmented cathode electrode is manufactured by decal transfer. The segmented electrode shows better performance especially at high current densities compared to homogenous electrodes. Furthermore this segmented catalyst coated membrane (CCM) performs optimal in wet as well as dry conditions, both operating conditions arise in automotive fuel cell applications. Thus, cathode electrodes with an optimized ionomer EW distribution might have a significant impact on future automotive fuel cell development.
NASA Astrophysics Data System (ADS)
Vollet, D. R.; Torres, R. R.; Donatti, D. A.; Ibañez Ruiz, A.
2005-11-01
Silica gels were preparated from fixed proportion mixtures of tetraethoxysilane, water and hydrocloric acid, using either ultrasound stimulation (US) or conventional method (CO) in the hydrolysis step of the process. Wet gels were obtained with the same silica volume concentration and density. According to small-angle X-ray scattering, the structure of the wet gels can be described as mass fractal structures with mass fractal dimension D = 2.20 in a length scale = 7.9 nm, in the case of wet gels US, and D = 2.26 in a length scale = 6.9 nm, in the case of wet gels CO. The mass fractal characteristics of the wet gels US and CO account for the different structures evolved in the drying of the gels US and CO in the obtaining of xerogels and aerogels. The pore structure of the dried gels was studied by nitrogen adsorption as a function of the temperature. Aerogels (US and CO) present high porosity with pore size distribution (PSD) curves in the mesopore region while xerogels (US and CO) present minor porosity with PSD curves mainly in the micropore region. The dried gels US (aerogels and xerogels) generally present pore volume and specific surface area greater than the dried gels CO. The mass fractal structure of the aerogels has been studied from an approach based on the PSD curves exclusively.
Three-Tone Chemical Patterns for Block Copolymer Directed Self-Assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, Lance D.; Seidel, Robert N.; Chen, Xuanxuan
Chemical patterns for directed self-assembly (DSA) of lamellaeforming block copolymers (BCP) with density multiplication can be fabricated by patterning resist on a cross-linked polystyrene layer, etching to create guide stripes, and depositing end-grafted brushes in between the stripes as background. To date, two-tone chemical patterns have been targeted with the guide stripes preferentially wet by one block of the copolymer and the background chemistry weakly preferentially wet by the other block. In the course of fabricating chemical patterns in an all-track process using 300 mm wafers, it was discovered that the etching process followed by brush grafting could produce amore » three-tone pattern. We characterized the three regions of the chemical patterns with a combination of SEM, grazing-incidence small-angle X-ray scattering (GISAXS), and assessment of BCP-wetting behavior, and evaluated the DSA behavior on patterns over a range of guide stripe widths. In its best form, the three-tone pattern consists of guide stripes preferentially wet by one block of the copolymer, each flanked by two additional stripes that wet the other block of the copolymer, with a third chemistry as the background. Three-tone patterns guide three times as many BCP domains as two-tone patterns and thus have the potential to provide a larger driving force for the system to assemble into the desired architecture with fewer defects in shorter time and over a larger process window.« less
NASA Astrophysics Data System (ADS)
Wallis, D.; Hansen, L. N.; Tasaka, M.; Kumamoto, K. M.; Lloyd, G. E.; Parsons, A. J.; Kohlstedt, D. L.; Wilkinson, A. J.
2016-12-01
Changes in concentration of H+ ions in olivine have impacts on its rheological behaviour and therefore on tectonic processes involving mantle deformation. Deformation experiments on aggregates of wet olivine exhibit different evolution of crystal preferred orientations (CPO) and substructure from experiments on dry olivine, suggesting that elevated H+ concentrations impact activity of dislocation slip-systems. We use high angular-resolution electron backscatter diffraction (HR-EBSD) to map densities of different types of geometrically necessary dislocations (GND) in polycrystalline olivine deformed experimentally under wet and dry conditions and also in nature. HR-EBSD provides unprecedented angular resolution, resolving misorientations < 0.01°. We also employ visco-plastic self-consistent (VPSC) simulations to investigate changes in slip-system activity. HR-EBSD maps from experimental samples demonstrate that olivine deformed under hydrous conditions contains higher proportions of (001)[100] and (100)[001] edge dislocations than olivine deformed under anhydrous conditions. Furthermore, maps of wet olivine exhibit more polygonal subgrain boundaries indicative of enhanced recovery by dislocation climb. VPSC simulations with low critical resolved shear stresses for the (001)[100] and (100)[001] slip systems reproduce an unusual CPO with bimodal maxima of both [100] and [001] observed in wet olivine aggregates. Analysis of a mylonitic lherzolite xenolith from Lesotho reveals the same unusual CPO and similar proportions of dislocation types to `wet' experimental samples, supporting the applicability of these findings to natural deformation conditions. These results support suggestions that H+ impacts the flow properties of olivine by altering dislocation activity and climb, while also providing full quantification of GND content. In particular, the relative proportions of dislocation types may provide a basis for identifying olivine deformed under wet and dry conditions.
Wet plume atop of the flattening slab: Insight into intraplate volcanism in East Asia
NASA Astrophysics Data System (ADS)
He, Lijuan
2017-08-01
Geophysical observations imply the intraplate volcanism in East Asia is related to dehydration of slab stagnating in the transition zone. To better understand the dynamics of such process, a thermochemical mantle convection model is constructed to simulate numerically the thermal evolution of slab and the transportation of water in the process of slab downgoing, flattening and stagnation. Equation of water transfer is included, and water effects on density and viscosity are considered. Model results indicate the warming of slab by surrounding mantle is rather slow. Water could be successfully dragged into the transition zone if the reference viscosity of the hydrous layer (with initial water of 2 wt%) is higher than 1017 Pa s and that of mantle is 1021 Pa s. Wet plumes could then originate in the flat-lying part of the slab, relatively far from the trench. Generally, the viscosity of the hydrous layer governs the initiation of wet plume, whereas the viscosity of the overlying mantle wedge controls the activity of the ascending wet plumes - they are more active in the weaker wedge. The complex fluid flow superposed by corner flow and free thermal convection influences greatly the water transport pattern in the upper mantle. Modeling results together with previous modeling infer three stages of water circulation in the big mantle wedge: 1) water is brought into the mantle transition zone by downward subducting slab under some specific thermo-rheological conditions, otherwise water is released at shallow depth near wedge tip; 2) wet plume generates from surface of the flattening slab warmed by surrounding mantle, and 3) water spreads over the big mantle wedge. Wet plume from the flattening Pacific Plate arrives at the lithospheric base and induces melting, which can explain the intraplate Cenozoic volcanoes in East Asia.
Radical re-appraisal of water structure in hydrophilic confinement.
Soper, Alan K
2013-12-18
The structure of water confined in MCM41 silica cylindrical pores is studied to determine whether confined water is simply a version of the bulk liquid which can be substantially supercooled without crystallisation. A combination of total neutron scattering from the porous silica, both wet and dry, and computer simulation using a realistic model of the scattering substrate is used. The water in the pore is divided into three regions: core, interfacial and overlap. The average local densities of water in these simulations are found to be about 20% lower than bulk water density, while the density in the core region is below, but closer to, the bulk density. There is a decrease in both local and core densities when the temperature is lowered from 298 K to 210 K. The radical proposal is made here that water in hydrophilic confinement is under significant tension, around -100 MPa, inside the pore.
NASA Astrophysics Data System (ADS)
He, L.
2016-12-01
Geophysical observations imply the intraplate volcanism in East Asia is related to dehydration of slab stagnating in the transition zone. To better understand the dynamics of such process, a thermochemical mantle convection model is constructed to simulate numerically the thermal evolution of slab and the transportation of water in the process of subduction. Equation of water transfer is explicitly included, and water effects on density and viscosity are considered. Modeling results indicate that behavior of water transport relates closely to the transient thermal state and viscosities both of the slab and the surrounding mantle. Generally, initiation of wet plume is mainly influenced by the viscosity of the wet layer in the uppermost slab, whereas the horizontal distance of water transport and its ascending rate is affected strongly by the viscosity of the big mantle wedge. Whether water can be carried successfully by slab into the mantle transition zone and trigger wet plume at the surface of flattening slab depends on the viscosity contrast between wet layer and surrounding mantle. The complex fluid flow superposed by corner flow and free thermal convection controls the water transport pattern in the upper mantle. Modeling results together with previous modeling infer three stages of water circulation in the big mantle wedge: 1) water is brought into the mantle transition zone by downward subducting slab when water layer viscosity is much higher than the wedge viscosity, otherwise water is released at shallow depth near wedge tip; 2) wet plume generates from surface of warm flattening slab if containing water, which arrives at the lithospheric base and induces melting; and 3) water spreads all over the big mantle wedge, mantle convection within the big mantle wedge becomes more active, leading to upwelling of asthenosphere and erosion of the overriding continental lithosphere. Wet plume from the flattening Pacific Plate can explain the intraplate Cenozoic volcanoes in East Asia.
Digital Rock Simulation of Flow in Carbonate Samples
NASA Astrophysics Data System (ADS)
Klemin, D.; Andersen, M.
2014-12-01
Reservoir engineering has becomes more complex to deal with current challenges, so core analysts must understand and model pore geometries and fluid behaviors at pores scales more rapidly and realistically. We introduce an industry-unique direct hydrodynamic pore flow simulator that operates on pore geometries from digital rock models obtained using microCT or 3D scanning electron microscope (SEM) images. The PVT and rheological models used in the simulator represent real reservoir fluids. Fluid-solid interactions are introduced using distributed micro-scale wetting properties. The simulator uses density functional approach applied for hydrodynamics of complex systems. This talk covers selected applications of the simulator. We performed microCT scanning of six different carbonate rock samples from homogeneous limestones to vuggy carbonates. From these, we constructed digital rock models representing pore geometries for the simulator. We simulated nonreactive tracer flow in all six digital models using a digital fluid description that included a passive tracer solution. During the simulation, we evaluated the composition of the effluent. Results of tracer flow simulations corresponded well with experimental data of nonreactive tracer floods for the same carbonate rock types. This simulation data of the non-reactive tracer flow can be used to calculate the volume of the rock accessible by the fluid, which can be further used to predict response of a porous medium to a reactive fluid. The described digital core analysis workflow provides a basis for a wide variety of activities, including input to design acidizing jobs and evaluating treatment efficiency and EOR economics. Digital rock multiphase flow simulations of a scanned carbonate rock evaluated the effect of wettability on flow properties. Various wetting properties were tested: slightly oil wet, slightly water wet, and water wet. Steady-state relative permeability simulations yielded curves for all three ranges of wetting properties. The wetting variation affected phase mobility and residual phase saturations for primary oil flood and floods with varying ratios of oil and water.
Giusto, Gessica; Tramuta, Clara; Caramello, Vittorio; Comino, Francesco; Nebbia, Patrizia; Robino, Patrizia; Singer, Ellen; Grego, Elena; Gandini, Marco
2017-01-01
The objective of this study was to investigate whether cleaning surgical materials used to close pelvic flexure enterotomies with a wet sterile gauze will reduce contamination and whether the use of a full thickness appositional suture pattern (F) or a partial thickness inverting (or Cushing) suture pattern (C) would make a difference in the level of contamination. Large colon specimens were assigned to group F or C and divided into subgroups N and G. In group G, a wet sterile gauze was passed over the suture material, another over the instruments, and another over the gloves. In group N, no treatment was applied. The bacterial concentration was measured by optical density (OD) at 24 h. The OD of subgroup CG was lower than that of subgroup CN ( P = 0.019). The OD of subgroup FG was lower than that of subgroup FN ( P = 0.02). The OD of subgroups CG, CN, FG, and FN was lower than that of the negative control ( P < 0.003, P < 0.001, P < 0.001, and P < 0.00). The use of a sterile wet gauze significantly reduced contamination of suture materials. A partial thickness inverting suture pattern did not produce less contamination than a full thickness appositional suture pattern.
NASA Astrophysics Data System (ADS)
Zhang, Rui; Newhauser, Wayne D.
2009-03-01
In proton therapy, the radiological thickness of a material is commonly expressed in terms of water equivalent thickness (WET) or water equivalent ratio (WER). However, the WET calculations required either iterative numerical methods or approximate methods of unknown accuracy. The objective of this study was to develop a simple deterministic formula to calculate WET values with an accuracy of 1 mm for materials commonly used in proton radiation therapy. Several alternative formulas were derived in which the energy loss was calculated based on the Bragg-Kleeman rule (BK), the Bethe-Bloch equation (BB) or an empirical version of the Bethe-Bloch equation (EBB). Alternative approaches were developed for targets that were 'radiologically thin' or 'thick'. The accuracy of these methods was assessed by comparison to values from an iterative numerical method that utilized evaluated stopping power tables. In addition, we also tested the approximate formula given in the International Atomic Energy Agency's dosimetry code of practice (Technical Report Series No 398, 2000, IAEA, Vienna) and stopping power ratio approximation. The results of these comparisons revealed that most methods were accurate for cases involving thin or low-Z targets. However, only the thick-target formulas provided accurate WET values for targets that were radiologically thick and contained high-Z material.
Pinto, K C; Hachich, E M; Sato, M I Z; Di Bari, M; Coelho, M C L S; Matté, M H; Lamparelli, C C; Razzolini, M T P
2012-01-01
This study aimed to assess the sanitary quality of water, and wet and dry sand from three beaches located in the South Coast region of São Paulo State, Brazil, selected taking into account the frequency of tourists and the water quality (good, fair and poor). Thirty-six water samples each of wet and dry sand and seawater were collected monthly over a period of one year and analyzed for fecal indicator bacteria (FIB: thermotolerant coliforms, Escherichia coli, and enterococci), presumptive Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and dermatophytes. The results revealed FIB concentrations more elevated in dry sand followed by wet sand and water. P. aeruginosa and presumptive S. aureus were detected with a similar frequency in water and sand samples, but maximum concentrations and geometric means were higher in dry sand. C. albicans was detected only in water samples whereas the dermatophyte Microsporum sp. was isolated exclusively from dry and wet sand samples. This evaluation showed also that the environment had a significant influence on P. aeruginosa but not on presumptive S. aureus concentrations. According to threshold values proposed in the literature for E. coli and enterococci dry sand densities, none of the beaches would be considered of sufficient quality for recreational activities.
Kuo, J; Shi, C; Cisewski, S; Zhang, L; Kern, M J; Yao, H
2011-07-01
To determine the regional cell density distribution and basal oxygen consumption rates (based on tissue volume and cell number) of temporomandibular joint (TMJ) discs and further examine the impact of oxygen tension on these rates. TMJ discs from pigs aged 6-8 months were divided into five regions: anterior, intermediate, posterior, lateral and medial. The cell density was determined using confocal laser scanning microscopy. The change in oxygen tension was recorded while TMJ disc explants were cultured in sealed metabolism chambers. The volume based oxygen consumption rate of explants was determined by theoretical curve-fitting of the recorded oxygen tension data with the Michaelis-Menten equation. The rate on a per-cell basis was calculated based on the cell density measurements and volume based rate measured in another group of discs. The overall cell density [mean, 95% confidence interval (CI)] was 51.3 (21.3-81.3) × 10(6) cells/mL wet tissue. Along the anteroposterior axis, the anterior band had 25.5% higher cell density than the intermediate zone (P<0.02) and 29.1% higher than the posterior band (P<0.008). Along the mediolateral axes, the medial region had 26.2% higher cell density than the intermediate zone (P<0.04) and 25.4% higher than the lateral region (P<0.045). The overall volume and cell based maximum oxygen consumption rates were 1.44 (0.44-2.44) μmol/mL wet tissue/h and 28.7 (12.2-45.2)nmol/10(6)cells/h, respectively. The central regions (intermediate, lateral, and medial) had significantly higher volume based (P<0.02) and cell based (P<0.005) oxygen consumption rates than the anterior and posterior bands. At high oxygen tension, the oxygen consumption rate remained constant, but dropped as oxygen tension fell below 5%. The TMJ disc had higher cell density and oxygen consumption rates than articular cartilage reported in the literature. These results suggest that a steeper oxygen gradient may exist in the TMJ disc and may be vulnerable to pathological events that impede nutrient supply. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Kuo, Jonathan; Shi, Changcheng; Cisewski, Sarah; Zhang, Lixia; Kern, Michael J.; Yao, Hai
2011-01-01
Objective To determine the regional cell density distribution and basal oxygen consumption rates (based on tissue volume and cell number) of temporomandibular joint (TMJ) discs and further examine the impact of oxygen tension on these rates. Design TMJ discs from pigs aged 6–8 months were divided into five regions: anterior, intermediate, posterior, lateral and medial. The cell density was determined using confocal laser scanning microscopy. The change in oxygen tension was recorded while TMJ disc explants were cultured in sealed metabolism chambers. The volume based oxygen consumption rate of explants was determined by theoretical curve fitting of the recoded oxygen tension data with the Michaelis-Menten equation. The rate on a per-cell basis was calculated based on the cell density measurements and volume based rate measured in another group of discs. Results The overall cell density (mean, 95% CI) was 51.3(21.3–81.3)×106cells/mL wet tissue. Along the anteroposterior axis, the anterior band had 25.5% higher cell density than the intermediate zone (p<0.02) and 29.1% higher than the posterior band (p<0.008). Along the mediolateral axes, the medial region had 26.2% higher cell density than the intermediate zone (p<0.04) and 25.4% higher than the lateral region (p<0.045). The overall volume and cell based maximum oxygen consumption rates were 1.44(0.44–2.44) μmol/mL wet tissue/hr and 28.7(12.2–45.2) nmol/106 cells/hr, respectively. The central regions (intermediate, lateral, and medial) had significantly higher volume based (p<0.02) and cell based (p<0.005) oxygen consumption rates than the anterior and posterior bands. At high oxygen tension, the oxygen consumption rate remained constant, but dropped as oxygen tension fell below 5%. Conclusions The TMJ disc had higher cell density and oxygen consumption rates than articular cartilage reported in the literature. These results suggest that a steeper oxygen gradient may exist in the TMJ disc and may be vulnerable to pathological events that impede nutrient supply. PMID:21397032
DOE Office of Scientific and Technical Information (OSTI.GOV)
Provine, J., E-mail: jprovine@stanford.edu; Schindler, Peter; Kim, Yongmin
2016-06-15
The continued scaling in transistors and memory elements has necessitated the development of atomic layer deposition (ALD) of silicon nitride (SiN{sub x}), particularly for use a low k dielectric spacer. One of the key material properties needed for SiN{sub x} films is a low wet etch rate (WER) in hydrofluoric (HF) acid. In this work, we report on the evaluation of multiple precursors for plasma enhanced atomic layer deposition (PEALD) of SiN{sub x} and evaluate the film’s WER in 100:1 dilutions of HF in H{sub 2}O. The remote plasma capability available in PEALD, enabled controlling the density of the SiN{submore » x} film. Namely, prolonged plasma exposure made films denser which corresponded to lower WER in a systematic fashion. We determined that there is a strong correlation between WER and the density of the film that extends across multiple precursors, PEALD reactors, and a variety of process conditions. Limiting all steps in the deposition to a maximum temperature of 350 °C, it was shown to be possible to achieve a WER in PEALD SiN{sub x} of 6.1 Å/min, which is similar to WER of SiN{sub x} from LPCVD reactions at 850 °C.« less
NASA Astrophysics Data System (ADS)
Liu, Wei; Zhao, Qing-he; Li, Shuan-zhu
2017-01-01
The relationship between the specific surface area (SSA) of rust and the electrochemical behavior of rusted steel under wet-dry acid corrosion conditions was investigated. The results showed that the corrosion current density first increased and then decreased with increasing SSA of the rust during the corrosion process. The structure of the rust changed from single-layer to double-layer, and the γ-FeOOH content decreased in the inner layer of the rust with increasing corrosion time; by contrast, the γ-FeOOH content in the outer layer was constant. When the SSA of the rust was lower than the critical SSA corresponding to the relative humidity during the drying period, condensed water in the micropores of the rust could evaporate, which prompted the diffusion of O2 into the rust and the following formation process of γ-FeOOH, leading to an increase of corrosion current density with increasing corrosion time. However, when the SSA of the rust reached or exceeded the critical SSA, condensate water in the micro-pores of the inner layer of the rust could not evaporate which inhibited the diffusion of O2 and decreased the γ-FeOOH content in the inner rust, leading to a decrease of corrosion current density with increasing corrosion time.
Medhurst, R. Bruce; Wipfli, Mark S.; Binckley, Chris; Polivka, Karl; Hessburg, Paul F.; Salter, R. Brion
2010-01-01
Effects of forest management on stream communities have been widely documented, but the role that climate plays in the disturbance outcomes is not understood. In order to determine whether the effect of disturbance from forest management on headwater stream communities varies by climate, we evaluated benthic macroinvertebrate communities in 24 headwater streams that differed in forest management (logged-roaded vs. unlogged-unroaded, hereafter logged and unlogged) within two ecological sub-regions (wet versus dry) within the eastern Cascade Range, Washington, USA. In both ecoregions, total macroinvertebrate density was highest at logged sites (P = 0.001) with gathering-collectors and shredders dominating. Total taxonomic richness and diversity did not differ between ecoregions or forest management types. Shredder densities were positively correlated with total deciduous and Sitka alder (Alnus sinuata) riparian cover. Further, differences in shredder density between logged and unlogged sites were greater in the wet ecoregion (logging × ecoregion interaction; P = 0.006) suggesting that differences in post-logging forest succession between ecoregions were responsible for differences in shredder abundance. Headwater stream benthic community structure was influenced by logging and regional differences in climate. Future development of ecoregional classification models at the subbasin scale, and use of functional metrics in addition to structural metrics, may allow for more accurate assessments of anthropogenic disturbances in mountainous regions where mosaics of localized differences in climate are common.
Chowdhury, Md Albarune; de Neergaard, Andreas; Jensen, Lars Stoumann
2014-01-01
Solid-liquid separation of animal slurry, with solid fractions used for composting, has gained interest recently. However, efficient composting of separated animal slurry solid fractions (SSFs) requires a better understanding of the process dynamics in terms of important physical parameters and their interacting physical relationships in the composting matrix. Here we monitored moisture content, bulk density, particle density and air-filled porosity (AFP) during composting of SSF collected from four commercially available solid-liquid separators. Composting was performed in laboratory-scale reactors for 30 days (d) under forced aeration and measurements were conducted on the solid samples at the beginning of composting and at 10-d intervals during composting. The results suggest that differences in initial physical properties of SSF influence the development of compost maximum temperatures (40-70 degreeC). Depending on SSF, total wet mass and volume losses (expressed as % of initial value) were up to 37% and 34%, respectively. After 30 d of composting, relative losses of total solids varied from 17.9% to 21.7% and of volatile solids (VS) from 21.3% to 27.5%, depending on SSF. VS losses in all composts showed different dynamics as described by the first-order kinetic equation. The estimated component particle density of 1441 kg m-3 for VS and 2625 kg m-3 for fixed solids can be used to improve estimates of AFP for SSF within the range tested. The linear relationship between wet bulk density and AFP reported by previous researchers held true for SSF.
Li, Meng; Zhang, Lu; Davé, Rajesh N; Bilgili, Ecevit
2016-04-01
As a drug-sparing approach in early development, vibratory milling has been used for the preparation of nanosuspensions of poorly water-soluble drugs. The aim of this study was to intensify this process through a systematic increase in vibration intensity and bead loading with the optimal bead size for faster production. Griseofulvin, a poorly water-soluble drug, was wet-milled using yttrium-stabilized zirconia beads with sizes ranging from 50 to 1500 μm at low power density (0.87 W/g). Then, this process was intensified with the optimal bead size by sequentially increasing vibration intensity and bead loading. Additional experiments with several bead sizes were performed at high power density (16 W/g), and the results were compared to those from wet stirred media milling. Laser diffraction, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, and dissolution tests were used for characterization. Results for the low power density indicated 800 μm as the optimal bead size which led to a median size of 545 nm with more than 10% of the drug particles greater than 1.8 μm albeit the fastest breakage. An increase in either vibration intensity or bead loading resulted in faster breakage. The most intensified process led to 90% of the particles being smaller than 300 nm. At the high power intensity, 400 μm beads were optimal, which enhanced griseofulvin dissolution significantly and signified the importance of bead size in view of the power density. Only the optimally intensified vibratory milling led to a comparable nanosuspension to that prepared by the stirred media milling.
NASA Astrophysics Data System (ADS)
Ling, Zhi Peng; Xin, Zheng; Ke, Cangming; Jammaal Buatis, Kitz; Duttagupta, Shubham; Lee, Jae Sung; Lai, Archon; Hsu, Adam; Rostan, Johannes; Stangl, Rolf
2017-08-01
Passivated contacts for solar cells can be realized using a variety of differently formed ultra-thin tunnel oxide layers. Assessing their interface properties is important for optimization purposes. In this work, we demonstrate the ability to measure the interface defect density distribution D it(E) and the fixed interface charge density Q f for ultra-thin passivation layers operating within the tunnel regime (<2 nm). Various promising tunnel layer candidates [i.e., wet chemically formed SiO x , UV photo-oxidized SiO x , and atomic layer deposited (ALD) AlO x ] are investigated for their potential application forming electron or hole selective tunnel layer passivated contacts. In particular, ALD AlO x is identified as a promising tunnel layer candidate for hole-extracting passivated contact formation, stemming from its high (negative) fixed interface charge density in the order of -6 × 1012 cm-2. This is an order of magnitude higher compared to wet chemically or UV photo-oxidized formed silicon oxide tunnel layers, while keeping the density of interface defect states D it at a similar level (in the order of ˜2 × 1012 cm-2 eV-1). This leads to additional field effect passivation and therefore to significantly higher measured effective carrier lifetimes (˜2 orders of magnitude). A surface recombination velocity of ˜40 cm/s has been achieved for a 1.5 nm thin ALD AlO x tunnel layer prior to capping by an additional hole transport material, like p-doped poly-Si or PEDOT:PSS.
Effects of the hippopotamus on the chemistry and ecology of a changing watershed.
Stears, Keenan; McCauley, Douglas J; Finlay, Jacques C; Mpemba, James; Warrington, Ian T; Mutayoba, Benezeth M; Power, Mary E; Dawson, Todd E; Brashares, Justin S
2018-05-29
Cross-boundary transfers of nutrients can profoundly shape the ecology of recipient systems. The common hippopotamus, Hippopotamus amphibius , is a significant vector of such subsidies from terrestrial to river ecosystems. We compared river pools with high and low densities of H. amphibius to determine how H. amphibius subsidies shape the chemistry and ecology of aquatic communities. Our study watershed, like many in sub-Saharan Africa, has been severely impacted by anthropogenic water abstraction reducing dry-season flow to zero. We conducted observations for multiple years over wet and dry seasons to identify how hydrological variability influences the impacts of H. amphibius During the wet season, when the river was flowing, we detected no differences in water chemistry and nutrient parameters between pools with high and low densities of H. amphibius Likewise, the diversity and abundance of fish and aquatic insect communities were indistinguishable. During the dry season, however, high-density H. amphibiu s pools differed drastically in almost all measured attributes of water chemistry and exhibited depressed fish and insect diversity and fish abundance compared with low-density H. amphibius pools. Scaled up to the entire watershed, we estimate that H. amphibius in this hydrologically altered watershed reduces dry-season fish abundance and indices of gamma-level diversity by 41% and 16%, respectively, but appears to promote aquatic invertebrate diversity. Widespread human-driven shifts in hydrology appear to redefine the role of H. amphibius , altering their influence on ecosystem diversity and functioning in a fashion that may be more severe than presently appreciated.
Ouédraogo, André Lin; Eckhoff, Philip A; Luty, Adrian J F; Roeffen, Will; Sauerwein, Robert W; Bousema, Teun; Wenger, Edward A
2018-05-01
Malaria transmission remains high in Sub-Saharan Africa despite large-scale implementation of malaria control interventions. A comprehensive understanding of the transmissibility of infections to mosquitoes may guide the design of more effective transmission reducing strategies. The impact of P. falciparum sexual stage immunity on the infectious reservoir for malaria has never been studied in natural settings. Repeated measurements were carried out at start-wet, peak-wet and dry season, and provided data on antibody responses against gametocyte/gamete antigens Pfs48/45 and Pfs230 as anti-gametocyte immunity. Data on high and low-density infections and their infectiousness to anopheline mosquitoes were obtained using quantitative molecular methods and mosquito feeding assays, respectively. An event-driven model for P. falciparum sexual stage immunity was developed and fit to data using an agent based malaria model infrastructure. We found that Pfs48/45 and Pfs230 antibody densities increased with increasing concurrent gametocyte densities; associated with 55-70% reduction in oocyst intensity and achieved up to 44% reduction in proportions of infected mosquitoes. We showed that P. falciparum sexual stage immunity significantly reduces transmission of microscopic (p < 0.001) but not submicroscopic (p = 0.937) gametocyte infections to mosquitoes and that incorporating sexual stage immunity into mathematical models had a considerable impact on the contribution of different age groups to the infectious reservoir of malaria. Human antibody responses to gametocyte antigens are likely to be dependent on recent and concurrent high-density gametocyte exposure and have a pronounced impact on the likelihood of onward transmission of microscopic gametocyte densities compared to low density infections. Our mathematical simulations indicate that anti-gametocyte immunity is an important factor for predicting and understanding the composition and dynamics of the human infectious reservoir for malaria.
Hu, Guohang; Zhao, Yuanan; Liu, Xiaofeng; Li, Dawei; Xiao, Qiling; Yi, Kui; Shao, Jianda
2013-08-01
A reliable method, combining a wet etch process and real-time damage event imaging during a raster scan laser damage test, has been developed to directly determine the most dangerous precursor inducing low-density laser damage at 355 nm in fused silica. It is revealed that ~16% of laser damage sites were initiated at the place of the scratches, ~49% initiated at the digs, and ~35% initiated at invisible defects. The morphologies of dangerous scratches and digs were compared with those of moderate ones. It is found that local sharp variation at the edge, twist, or inside of a subsurface defect is the most dangerous laser damage precursor.
Fabrication of Aligned Polyaniline Nanofiber Array via a Facile Wet Chemical Process.
Sun, Qunhui; Bi, Wu; Fuller, Thomas F; Ding, Yong; Deng, Yulin
2009-06-17
In this work, we demonstrate for the first time a template free approach to synthesize aligned polyaniline nanofiber (PN) array on a passivated gold (Au) substrate via a facile wet chemical process. The Au surface was first modified using 4-aminothiophenol (4-ATP) to afford the surface functionality, followed subsequently by an oxidation polymerization of aniline (AN) monomer in an aqueous medium using ammonium persulfate as the oxidant and tartaric acid as the doping agent. The results show that a vertically aligned PANI nanofiber array with individual fiber diameters of ca. 100 nm, heights of ca. 600 nm and a packing density of ca. 40 pieces·µm(-2) , was synthesized. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Equation of state of wet granular matter.
Fingerle, A; Herminghaus, S
2008-01-01
An expression for the near-contact pair correlation function of D -dimensional weakly polydisperse hard spheres is presented, which arises from elementary free-volume arguments. Its derivative at contact agrees very well with our simulations for D=2 . For jammed states, the expression predicts that the number of exact contacts is equal to 2D, in agreement with established simulations. When the particles are wetted, they interact by the formation and rupture of liquid capillary bridges. Since formation and rupture events of capillary bonds are well separated in configuration space, the interaction is hysteretic with a characteristic energy loss Ecb. The pair correlation is strongly affected by this capillary interaction depending on the liquid-bond status of neighboring particles. A theory is derived for the nonequilibrium probability currents of the capillary interaction which determines the pair correlation function near contact. This finally yields an analytic expression for the equation of state, P=P(N/V,T), of wet granular matter for D=2, valid in the complete density range from gas to jamming. Driven wet granular matter exhibits a van der Waals-like unstable branch at granular temperatures T
Equation of state of wet granular matter
NASA Astrophysics Data System (ADS)
Fingerle, A.; Herminghaus, S.
2008-01-01
An expression for the near-contact pair correlation function of D -dimensional weakly polydisperse hard spheres is presented, which arises from elementary free-volume arguments. Its derivative at contact agrees very well with our simulations for D=2 . For jammed states, the expression predicts that the number of exact contacts is equal to 2D, in agreement with established simulations. When the particles are wetted, they interact by the formation and rupture of liquid capillary bridges. Since formation and rupture events of capillary bonds are well separated in configuration space, the interaction is hysteretic with a characteristic energy loss Ecb . The pair correlation is strongly affected by this capillary interaction depending on the liquid-bond status of neighboring particles. A theory is derived for the nonequilibrium probability currents of the capillary interaction which determines the pair correlation function near contact. This finally yields an analytic expression for the equation of state, P=P(N/V,T) , of wet granular matter for D=2 , valid in the complete density range from gas to jamming. Driven wet granular matter exhibits a van der Waals-like unstable branch at granular temperatures T
Wu, B M; van Bruggen, A H C; Subbarao, K V; Scherm, H
2002-06-01
ABSTRACT The effect of temperature on infection of lettuce by Bremia lactucae was investigated in controlled environment studies and in the field. In controlled conditions, lettuce seedlings inoculated with B. lactucae were incubated at 15, 20, 25, or 30 degrees C during a 4-h wet period immediately after inoculation or at the same temperatures during an 8-h dry period after the 4-h postinoculation wet period at 15 degrees C. High temperatures during wet and dry periods reduced subsequent disease incidence. Historical data from field studies in 1991 and 1992, in which days with or without infection had been identified, were analyzed by comparing average air temperatures during 0600 to 1000 and 1000 to 1400 Pacific standard time (PST) between the two groups of days. Days without infection had significantly higher temperatures (mean 21.4 degrees C) than days with infection (20.3 degrees C) during 1000 to 1400 PST (P < 0.01) but not during 0600 to 1000 PST. Therefore, temperature thresholds of 20 and 22 degrees C for the 3-h wet period after sunrise and the subsequent 4-h postpenetration period, respectively, were added to a previously developed disease warning system that predicts infection when morning leaf wetness lasts >/=4 h from 0600 PST. No infection was assumed to occur if average temperature during these periods exceeded the thresholds. Based on nonlinear regression and receiver operating characteristic curve analysis, the leaf wetness threshold of the previous warning system was also modified to >/=3-h leaf wetness (>/=0900 PST). Furthermore, by comparing solar radiation on days with infection and without infection, we determined that high solar radiation during 0500 to 0600 PST in conjunction with leaf wetness ending between 0900 and 1000 PST was associated with downy mildew infection. Therefore, instead of starting at 0600 PST, the calculation of the 3-h morning leaf wetness period was modified to start after sunrise, defined as the hour when measured solar radiation exceeded 8 W m(-2) (or 41 mumol m(-2) s(-1) for photon flux density). The modified warning system was compared with the previously developed system using historical weather and downy mildew data collected in coastal California. The modified system was more conservative when disease potential was high and recommended fewer fungicide applications when conditions were not conducive to downy mildew development.
Bernardi, A; Ossó, J O; Alonso, M I; Goñi, A R; Garriga, M
2006-05-28
We have studied the epitaxial growth of self-assembled Ge quantum dots when a submonolayer of carbon is deposited on a Ge wetting layer (WL) prior to the growth of the dots. Using atomic-force microscopy combined with optical techniques like Raman and ellipsometry, we performed a systematic study of the role played by thermally activated Si interdiffusion on dot density, composition and morphology, by changing only the growth temperature T(WL) of the WL. Strikingly, we observe that higher dot densities and a narrower size distribution are achieved by increasing the deposition temperature T(WL), i.e. by enhancing Si interdiffusion from the substrate. We suggest a two-stage growth procedure for fine tuning of dot topography (density, shape and size) useful for possible optoelectronic applications.
Effect of composition on physical properties of food powders
NASA Astrophysics Data System (ADS)
Szulc, Karolina; Lenart, Andrzej
2016-04-01
The paper presents an influence of raw material composition and technological process applied on selected physical properties of food powders. Powdered multi-component nutrients were subjected to the process of mixing, agglomeration, coating, and drying. Wetting liquids ie water and a 15% water lactose solution, were used in agglomeration and coating. The analyzed food powders were characterized by differentiated physical properties, including especially: particle size, bulk density, wettability, and dispersibility. The raw material composition of the studied nutrients exerted a statistically significant influence on their physical properties. Agglomeration as well as coating of food powders caused a significant increase in particle size, decreased bulk density, increased apparent density and porosity, and deterioration in flowability in comparison with non-agglomerated nutrients.
Huang, Yanping; Liu, Min; Wang, Ruiqi; Khan, Saira Khalil; Gao, Dengzhou; Zhang, Yazhou
2017-10-01
The city-scale land use/land cover change derived by urbanization on the fates of PAHs is of great concerns recently. This study evaluated spatiotemporal variations and sources of PAHs from a highly urbanized river sediments in the Huangpu River, Shanghai. Results indicated that the concentrations of PAHs in the sediments varied greatly across locations and seasons. The concentration of Σ 16 PAHs in the dry season were 6 times higher than that in wet season. The mainstream and midstream of the Huangpu River were identified as the hotspots in both dry and wet seasons. However, 4-ring PAH compounds were dominated, contributing 42.41% ± 6.81% and 44.70 ± 7.73% in the dry and wet seasons, respectively. Multivariate statistical and land use analysis suggested that the main sources of PAHs derived from the cultivation, traffic and commercial activities. Buffer radii (<750 m) area with cultivated land, road/street and transportation and commercial and business facilities contributed significantly the PAHs in the sediment of the Huangpu River. Population density was also an important variable regulating the PAHs concentrations less than 750 m in the wet season. Risk assessment results revealed that the PAHs toxicity in the sediments was higher in dry season than in wet season. Overall, severe land use changes caused by rapid urbanization can contribute more amount of PAHs emission and complicated sources of PAHs, thus provide insights into the importance of land use types in indicating PAHs source. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evaluation of Dry Sensors for Neonatal EEG Recordings.
Fridman, Igor; Cordeiro, Malaika; Rais-Bahrami, Khodayar; McDonald, Neil J; Reese, James J; Massaro, An N; Conry, Joan A; Chang, Taeun; Soussou, Walid; Tsuchida, Tammy N
2016-04-01
Neonatal seizures are a common neurologic diagnosis in neonatal intensive care units, occurring in approximately 14,000 newborns annually in the United States. Although the only reliable means of detecting and treating neonatal seizures is with an electroencephalography (EEG) recording, many neonates do not receive an EEG or experience delays in getting them. Barriers to obtaining neonatal EEGs include (1) lack of skilled EEG technologists to apply conventional wet electrodes to delicate neonatal skin, (2) poor signal quality because of improper skin preparation and artifact, and (3) extensive time needed to apply electrodes. Dry sensors have the potential to overcome these obstacles but have not previously been evaluated on neonates. Sequential and simultaneous recordings with wet and dry sensors were performed for 1 hour on 27 neonates from 35 to 42.5 weeks postmenstrual age. Recordings were analyzed for correlation and amplitude and were reviewed by neurophysiologists. Performance of dry sensors on simulated vernix was examined. Analysis of dry and wet signals showed good time-domain correlation (reaching >0.8), given the nonsuperimposed sensor positions and similar power spectral density curves. Neurophysiologist reviews showed no statistically significant difference between dry and wet data on most clinically relevant EEG background and seizure patterns. There was no skin injury after 1 hour of dry sensor recordings. In contrast to wet electrodes, impedance and electrical artifact of dry sensors were largely unaffected by simulated vernix. Dry sensors evaluated in this study have the potential to provide high-quality, timely EEG recordings on neonates with less risk of skin injury.
Evaluation of Dry Sensors for Neonatal EEG recordings
Fridman, Igor; Cordeiro, Malaika; Rais-Bahrami, Khodayar; McDonald, Neil J.; Reese, James J.; Massaro, An N.; Conry, Joan A.; Chang, Taeun; Soussou, Walid; Tsuchida, Tammy N.
2015-01-01
Introduction Neonatal seizures are a common neurologic diagnosis in Neonatal Intensive Care Units (NICUs), occurring in approximately 14,000 newborns annually in the US. While the only reliable means of detecting and treating neonatal seizures is with an EEG recording, many neonates do not get an EEG or experience delays in getting them. Barriers to obtaining neonatal EEGs include: 1) lack of skilled EEG technologists to apply conventional wet electrodes to delicate neonatal skin, 2) poor signal quality due to improper skin preparation and artifact, 3) extensive time needed to apply electrodes. Dry sensors have the potential to overcome these obstacles but have not been previously evaluated on neonates. Methods Sequential and simultaneous recordings with wet and dry sensors were performed for one hour on 27 neonates from 35-42.5 weeks postmenstrual age. Recordings were analyzed for correlation and amplitude, and were reviewed by neurophysiologists. Performance of dry sensors on simulated vernix was examined. Results Analysis of dry and wet signals showed good time-domain correlation (reaching >0.8) given the non-superimposed sensor positions, and similar power spectral density curves. Neurophysiologist reviews showed no statistically significant difference between dry and wet data on most clinically-relevant EEG background and seizure patterns. There was no skin injury after 1 hr of dry sensor recordings. In contrast to wet electrodes, impedance and electrical artifact of dry sensors were largely unaffected by simulated vernix. Conclusions Dry sensors evaluated in this study have the potential to provide high-quality, timely EEG recordings on neonates with less risk of skin injury. PMID:26562208
NASA Astrophysics Data System (ADS)
Dubey, Shivangi; Subohi, Oroosa; Kurchania, Rajnish
2018-07-01
This paper reports the detailed study of the effect of different wet chemical synthesis routes (solution combustion, co-precipitation, and sol-gel route) on the microstructure, phase formation, dielectric, electrical, and ferroelectric properties of five-layered Aurivillius oxides: A2Bi4Ti5O18 (A = Ba, Pb, and Sr). Different synthesis parameters like the precursors used, synthesis temperature, and reaction time affects the morphology of the ceramics. Microstructure in turn influences the dielectric and ferroelectric properties. It was observed that the sol-gel-synthesized ceramics possess higher dielectric constant and remanent polarization, low dielectric loss due to lower conductivity in these samples as a result of higher density in these compounds as compared to those synthesized by other wet chemical synthesis routes such as solution combustion route and co-precipitation technique. The XRD data are used for phase analysis and surface morphology is studied using SEM images. Dielectric and electrical properties are investigated as a function of frequency and temperature.
C 60 -induced Devil's Staircase transformation on a Pb/Si(111) wetting layer
Wang, Lin -Lin; Johnson, Duane D.; Tringides, Michael C.
2015-12-03
Density functional theory is used to study structural energetics of Pb vacancy cluster formation on C 60/Pb/Si(111) to explain the unusually fast and error-free transformations between the “Devil's Staircase” (DS) phases on the Pb/Si(111) wetting layer at low temperature (~110K). The formation energies of vacancy clusters are calculated in C 60/Pb/Si(111) as Pb atoms are progressively ejected from the initial dense Pb wetting layer. Vacancy clusters larger than five Pb atoms are found to be stable with seven being the most stable, while vacancy clusters smaller than five are highly unstable, which agrees well with the observed ejection rate ofmore » ~5 Pb atoms per C 60. Furthermore, the high energy cost (~0.8 eV) for the small vacancy clusters to form indicates convincingly that the unusually fast transformation observed experimentally between the DS phases, upon C 60 adsorption at low temperature, cannot be the result of single-atom random walk diffusion but of correlated multi-atom processes.« less
Mattah, Precious A Dzorgbe; Futagbi, Godfred; Amekudzi, Leonard K; Mattah, Memuna M; de Souza, Dziedzorm K; Kartey-Attipoe, Worlasi D; Bimi, Langbong; Wilson, Michael D
2017-01-13
Anopheles vectors of malaria are supposedly less common in urban areas as a result of pollution, but there is increasing evidence of their adaptation to organically polluted water bodies. This study characterized the breeding habitats of Anopheles mosquitoes in the two major urban areas in southern Ghana; Accra (AMA) and Sekondi-Takoradi (STMA) Metropolitan Areas, during dry and wet seasons. Anopheles mosquito larvae were sampled using standard dipping methods to determine larval densities. The origin, nature and stability of 21 randomly selected sites were observed and recorded. Mosquito larvae were reared to adults and Anopheles species identified by both morphological and molecular means. Sixty-six percent of Anopheles habitats were permanent and 34% temporal, and 74.5% man-made while 25.5% were natural. Puddles and urban farm sites accounted for over 51% of all Anopheles mosquitoes sampled. The mean larval densities among the habitat types was highest of 13.7/dip for puddles and lowest of 2.3/dip for stream/river, and the variation between densities were significant (P = 0.002). The mean larval densities were significantly higher in the wet season than in the dry season for the two study areas combined (P = 0.0191) and AMA (P = 0.0228). Over 99% of the 5,802 morphologically identified Anopheles species were An. gambiae (s.l.) of which more than 99% of the studied 898 were An. coluzzii (62%) and An. gambiae (s.s.) (34%). Urban farms, puddles, swamps and ditches/ dugouts accounted for approximately 70% of all An. coluzzii identified. Conversely, drains, construction sites, streams/rivers and "others" contributed 80% of all An. gambiae (s.s.) sampled. The wet season had significantly higher proportion of Anopheles larvae compared to the dry season (Z = 8.3683, P < 0.0001). Also, the proportion of Anopheles mosquitoes produced by permanent breeding sites was 61.3% and that of temporary sites was 38.7%. Taken together, the data suggest that man-made and/ or permanent habitats were the main contributors to Anopheles larval populations in the cities and that regulation of the anthropogenic processes that lead to development of breeding places and proper environmental management can drastically reduce mosquito breeding sites in urban areas of Ghana.
Herzog, Mark P; Ackerman, Joshua T; Eagles-Smith, Collin A; Hartman, C Alex
2016-05-01
In egg contaminant studies, it is necessary to calculate egg contaminant concentrations on a fresh wet weight basis and this requires accurate estimates of egg density and egg volume. We show that the inclusion or exclusion of the eggshell can influence egg contaminant concentrations, and we provide estimates of egg density (both with and without the eggshell) and egg-shape coefficients (used to estimate egg volume from egg morphometrics) for American avocet (Recurvirostra americana), black-necked stilt (Himantopus mexicanus), and Forster's tern (Sterna forsteri). Egg densities (g/cm(3)) estimated for whole eggs (1.056 ± 0.003) were higher than egg densities estimated for egg contents (1.024 ± 0.001), and were 1.059 ± 0.001 and 1.025 ± 0.001 for avocets, 1.056 ± 0.001 and 1.023 ± 0.001 for stilts, and 1.053 ± 0.002 and 1.025 ± 0.002 for terns. The egg-shape coefficients for egg volume (K v ) and egg mass (K w ) also differed depending on whether the eggshell was included (K v = 0.491 ± 0.001; K w = 0.518 ± 0.001) or excluded (K v = 0.493 ± 0.001; K w = 0.505 ± 0.001), and varied among species. Although egg contaminant concentrations are rarely meant to include the eggshell, we show that the typical inclusion of the eggshell in egg density and egg volume estimates results in egg contaminant concentrations being underestimated by 6-13 %. Our results demonstrate that the inclusion of the eggshell significantly influences estimates of egg density, egg volume, and fresh egg mass, which leads to egg contaminant concentrations that are biased low. We suggest that egg contaminant concentrations be calculated on a fresh wet weight basis using only internal egg-content densities, volumes, and masses appropriate for the species. For the three waterbirds in our study, these corrected coefficients are 1.024 ± 0.001 for egg density, 0.493 ± 0.001 for K v , and 0.505 ± 0.001 for K w .
Kelly Elder; Don Cline; Glen E. Liston; Richard Armstrong
2009-01-01
A field measurement program was undertaken as part NASA's Cold Land Processes Experiment (CLPX). Extensive snowpack and soil measurements were taken at field sites in Colorado over four study periods during the two study years (2002 and 2003). Measurements included snow depth, density, temperature, grain type and size, surface wetness, surface roughness, and...
Bondability of ipê (Tabebuia spp.) wood using ambient-curing exterior wood adhesives
Daniel J. Yelle
2016-01-01
Ipê is an extremely difficult species to bond because of its high density, interlocking grain, and high volumetric swellingâshrinkage under prolonged wet conditions. Despite its difficulties, the wood is known to be extremely durable in exterior conditions because of its resistance to microbial and insect degradation. Therefore, investigating its bondability with...
Development of a bending stiffness model for wet process fiberboard
Chris Turk; John F. Hunt
2007-01-01
In traditional mechanics of materials, the stiffness of a beam or plate in bending is described by its cross-sectional shape as well as its material properties, primarily the modulus of elasticity. Previous work at the USDA Forest Products Laboratory, Madison, Wisconsin, has shown that modulus of elasticity has a strong correlation to the density of the fiberboard....
Surface soil root response to season of repeated fire in a young longleaf pine plantation
Mary Anne Sword Sayer; James D. Haywood
2012-01-01
The potential exists for interaction between naturally high soil bulk density and low soil water content to create root-growth limiting soil strengths. This problem is commonly remedied by soil structural attributes, old root channels and other perturbations, and periods of wetness during which soil strength is favorable for root elongation. Because the application and...
PREPARATION OF SPHERICAL URANIUM DIOXIDE PARTICLES
Levey, R.P. Jr.; Smith, A.E.
1963-04-30
This patent relates to the preparation of high-density, spherical UO/sub 2/ particles 80 to 150 microns in diameter. Sinterable UO/sub 2/ powder is wetted with 3 to 5 weight per cent water and tumbled for at least 48 hours. The resulting spherical particles are then sintered. The sintered particles are useful in dispersion-type fuel elements for nuclear reactors. (AEC)
Droplets and the three-phase contact line at the nano-scale. Statics and dynamics
NASA Astrophysics Data System (ADS)
Yatsyshin, Petr; Sibley, David; Savva, Nikos; Kalliadasis, Serafim
2014-11-01
Understanding the behaviour of the solid-liquid-vapour contact line at the scale of several tens of molecular diameters is important in wetting hydrodynamics with applications in micro- and nano-fluidics, including the design of lab-on-a-chip devices and surfaces with specific wetting properties. Due to the fluid inhomogeneity at the nano-scale, the application of continuum-mechanical approaches is limited, and a natural way to remedy this is to seek descriptions accounting for the non-local molecular-level interactions. Density Functional Theory (DFT) for fluids offers a statistical-mechanical framework based on expressing the free energy of the fluid-solid pair as a functional of the spatially varying fluid density. DFT allows us to investigate small drops deposited on planar substrates whilst keeping track of the microscopic structural details of the fluid. Starting from a model of intermolecular forces, we systematically obtain interfaces, surface tensions, and the microscopic contact angle. Using a dynamic extension of equilibrium DFT, we investigate the diffusion-driven evolution of the three-phase contact line to gain insight into the dynamic behaviour of the microscopic contact angle, which is still under debate.
Formulation and Evaluation of Mouth Disintegrating Tablets of Atenolol and Atorvastatin
Sarfraz, R. M.; Khan, H. U.; Mahmood, A.; Ahmad, M.; Maheen, S.; Sher, M.
2015-01-01
In this study, mouth-disintegrating tablets of atenolol and atorvastatin combination were formulated using superdisintegrants to impart fast disintegration. Fifteen formulations were prepared based on different concentrations of two superdisintegrants, croscarmellose sodium and Kyron-T134. Three different techniques such as direct compression, effervescent and sublimation were used to study the effect of manufacturing processes, nature and concentration of superdisintegrants on various features of these tablets. Five formulations were made using each method. Precompression studies like bulk density, tapped density, angle of repose, Carr's compressibility index, Hausner's ratio and compatibility studies such as Fourier transform infrared spectroscopy and differential scanning calorimetry were performed. Various features such as hardness, thickness, diameter, weight variation, friability, disintegration time, dissolution studies, wetting time, wetting volume, water absorption ratio, modified disintegration, uniformity of contents and stability were evaluated. Finally results were statistically analyzed by the application of one way ANOVA test. Formulation F13 containing Kyron-T134 (6%) and croscarmellose sodium (2%) was found to be the best among all fifteen formulations prepared in all aspects evaluated. Sublimation method is found to be the best among three methods of preparation used. PMID:25767322
Wet-preserved hemp fibreboard properties improvement with veneering
NASA Astrophysics Data System (ADS)
Kirilovs, E.; Kukle, S.; Gusovius, H.-J.
2015-03-01
The initial research describes a new type of fiber boards for the furniture interior design, developed in cooperation with ATB (Leibniz-Institute for Agricultural Engineering) by using a new method of raw materials preparation and specific production technologies of ATB. The main raw materials are aerobically aged hemp stalks. The samples are made of hemp chips with a long preservation time and fastened together with the UF glue. Specimens are 8 mm thick and correspond to a medium-density fiberboard, fitting standard EN622. Due to the fact that non-veneered material can be used only in non-load-bearing constructions, material improving technologies were studied, such as increase of board density, increase of glue percentage, partially substitution of wet-preserved hemp chips with a dry hemp and/or wooden chips to equalize moisture content of obtained mixture. The particular article describes how the new material is veneered with the oak veneer obtaining three-ply composite board with the improved mechanical properties that allows to use these boards in a load-bearing constructions. Tests are performed with the veneered material to determine such parameters as static bending strength (MOR), modulus of elasticity in static bending (MOE), swelling in thickness and hardness.
Development and evaluation of novel antihypertensive orodispersible tablets.
Khan, Hafeez Ullah; Hanif, Muhammad; Sarfraz, Rai M; Maheen, Safirah; Afzal, Samina; Sher, Muhammad; Afzal, Khurram; Mahmood, Asif; Shamim, Ayesha
2017-09-01
Objective of present study was to enhance patient compliance in pediatrics and geriatrics patients of Hypertension. To achieve this target, innovative orodispersible tablets of atenolol and atorvastatin was developed to produce instant action by rapidly disintegrating into oral cavity. Three different techniques like direct compression, effervescent and sublimation methods were used to prepare these tablets (Five batches of tablets by each method) by using two superdisintegrants like Sodium starch glycolate and pregelatinized starch alone and in combination. Pre-formulation studies including rheological analysis (Bulk density, tapped density, Angle of repose, Carr's compressibility index, Hausner's ratio), compatibility studies such as Fourier transform infrared spectrophotometry (FTIR) and Differential scanning colorimetry (DSC), Post-compression and stability studies were also performed. Finally, results were statistically evaluated by the applying one way ANOVA test and mean. It was concluded that the formulation F8 containing Sodium starch glycolate 2% and pregelatinized starch 6% found best regarding disintegration time, wetting volume, wetting time, release studies etc. The order in which drug release was quicker is Pregelatinized starch plus Sodium starch glycolate > Pregelatinized starch > Sodium starch glycolate (primojel). It was concluded that sublimation method was the best among three methods used for orodispersible tablets formulations.
The Effect of Fabric Position to the Distribution of Acoustic Pressure Field in Ultrasonic Bath
NASA Astrophysics Data System (ADS)
Gürses, B. O.; Özdemir, A. O.; Tonay, Ö.; Şener, M.; Perinçek, S.
2017-10-01
Nowadays, the use of ultrasonic energy in textile wet processes at industrial-scale is limited. It is largely due to the lack of understanding about design, operational and performance characteristics of the ultrasonic bath, suitable for textile treatments. In the context of this study, the effect of fabric position, as one of the design parameter, to the distribution of acoustic pressure field in ultrasonic bath was investigated. The ultrasonic bath in the size 20×30 cm2 with one transducer at frequency 40 kHz was used in experiments. The cotton fabric with 1 mm thickness was moved along vertical and horizontal directions of the ultrasonic bath. The acoustic field and cavitation volume density in the bath is analyzed by COMSOL Multiphysic. The cavitation volume density is calculated by comparing the pressure points in the bath with cavitation threshold pressure. Consequently, it was found that the position of the textile material in the ultrasonic bath is one of the most important factors to achieve the uniform and maximum acoustic cavitation field. So, it should be taken into consideration during the design of industrial-scale ultrasonic bath used in textile wet processes.
Mechanism of the Cassie-Wenzel transition via the atomistic and continuum string methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giacomello, Alberto, E-mail: alberto.giacomello@uniroma1.it; Casciola, Carlo Massimo; Meloni, Simone, E-mail: simone.meloni@epfl.ch
2015-03-14
The string method is a general and flexible strategy to compute the most probable transition path for an activated process (rare event). We apply here the atomistic string method in the density field to the Cassie-Wenzel transition, a central problem in the field of superhydrophobicity. We discuss in detail the mechanism of wetting of a submerged hydrophobic cavity of nanometer size and its dependence on the geometry of the cavity. Furthermore, we analyze the algorithmic analogies between the continuum “interface” string method and CREaM [Giacomello et al., Phys. Rev. Lett. 109, 226102 (2012)], a method inspired by the string thatmore » allows for a faster and simpler computation of the mechanism and of the free-energy profiles of the wetting process.« less
NASA Astrophysics Data System (ADS)
Hyhlík, Tomáš
2017-09-01
The article deals with an evaluation of moist air state above counterflow wet-cooling tower fill. The results based on Klimanek & Białecky model are compared with results of Merkel model and generalised Merkel model. Based on the numerical simulation it is shown that temperature is predicted correctly by using generalised Merkel model in the case of saturated or super-saturated air above the fill, but the temperature is underpredicted in the case of unsaturated moist air above the fill. The classical Merkel model always under predicts temperature above the fill. The density of moist air above the fill, which is calculated using generalised Merkel model, is strongly over predicted in the case of unsaturated moist air above the fill.
Jian, Fuji; Larson, Ron; Jayas, Digvir S; White, Noel D G
2012-08-01
Three-dimensional temporal and spatial distributions of adult Rhyzopertha dominica (F.) at adult densities of 1.0, 5.0, and 10.0 adults per kg grain and at 20 +/- 1, 25 +/- 1, and 30 +/- 1 degrees C were determined in 1.5 t bins filled with wheat (Triticum aestivum L.) with 11.0 +/- 0.8, 13.0 +/- 0.6, and 15.0 +/- 0.5% moisture content (wet basis) or corn (Zea mays L.) with 13.0 +/- 0.2% moisture content (wet basis). At each of five sampled locations, grain was separated into three 15-kg vertical layers, and adult numbers in each layer were counted. Inside both corn and wheat, adults did not prefer any location in the same layer except at high introduced insect density in wheat. The adults were recovered from any layer of the corn and >12, 65, and 45% of adults were recovered in the bottom layer of the corn at 20, 25, and 30 degrees C; respectively. However, <1% of adults were recovered in the bottom layer of wheat. Numbers of adults correlated with those in adjacent locations in both vertical and horizontal directions, and the temporal continuous property existed in both wheat and corn. Adults had highly clumped distribution at any grain temperature and moisture content. This aggregation behavior decreased with the increase of adult density and redistribution speed. Grain type influenced their redistribution speed, and this resulted in the different redistribution patterns inside wheat and corn bulks. These characterized distribution patterns could be used to develop sampling plans and integrated pest management programs in stored grain bins.
Spatiotemporal variation of Van der Burgh's coefficient in a salt plug estuary
NASA Astrophysics Data System (ADS)
Shaha, Dinesh Chandra; Cho, Yang-Ki; Kim, Bong Guk; Rafi Afruz Sony, M.; Rani Kundu, Sampa; Faruqul Islam, M.
2017-09-01
Salt water intrusion in estuaries is expected to become a serious global issue due to climate change. Van der Burgh's coefficient, K, is a good proxy for describing the relative contribution of tide-driven and gravitational (discharge-driven and density-driven) components of salt transport in estuaries. However, debate continues over the use of the K value for an estuary where K should be a constant, spatially varying, or time-independent factor for different river discharge conditions. In this study, we determined K during spring and neap tides in the dry (< 30 m-3 s-1) and wet (> 750 m-3 s-1) seasons in a salt plug estuary with an exponentially varying width and depth, to examine the relative contributions of tidal versus density-driven salt transport mechanisms. High-resolution salinity data were used to determine K. Discharge-driven gravitational circulation (K ˜ 0.8) was entirely dominant over tidal dispersion during spring and neap tides in the wet season, to the extent that salt transport upstream was effectively reduced, resulting in the estuary remaining in a relatively fresh state. In contrast, K increased gradually seaward (K ˜ 0.74) and landward (K ˜ 0.74) from the salt plug area (K ˜ 0.65) during the dry season, similar to an inverse and positive estuary, respectively. As a result, density-driven inverse gravitational circulation between the salt plug and the sea facilitates inverse estuarine circulation. On the other hand, positive estuarine circulation between the salt plug and the river arose due to density-driven positive gravitational circulation during the dry season, causing the upstream intrusion of high-salinity bottom water. Our results explicitly show that K varies spatially and depends on the river discharge. This result provides a better understanding of the distribution of hydrographic properties.
NASA Astrophysics Data System (ADS)
Dong, Dengpan; Vatamanu, Jenel P.; Wei, Xiaoyu; Bedrov, Dmitry
2018-05-01
Atomistic molecular dynamics simulations were conducted to study the wetting states of 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)-imide ionic liquid (IL) nanodroplets on surfaces with different strengths of van der Waals (VDW) interactions and in the presence of an electric field. By adjusting the depth of Lennard-Jones potential, the van der Waals interaction between the solid surface and ionic liquid was systematically varied. The shape of the droplets was analyzed to extract the corresponding contact angle utilized to characterize wetting states of the nanodroplets. The explored range of surface-IL interactions allowed contact angles ranging from complete IL spreading on the surface to poor wettability. The effect of the external electrical field was explored by adding point charges to the surface atoms. Systems with two charge densities (±0.002 e/atom and ±0.004 e/atom) that correspond to 1.36 V/nm and 2.72 V/nm electric fields were investigated. Asymmetrical wetting states were observed for both cases. At 1.36 V/nm electric field, contributions of IL-surface VDW interactions and Coulombic interactions to the wetting state were competitive. At 2.72 V/nm field, electrostatic interactions dominate the interaction between the nanodroplet and surface, leading to enhanced wettability on all surfaces.
Giusto, Gessica; Tramuta, Clara; Caramello, Vittorio; Comino, Francesco; Nebbia, Patrizia; Robino, Patrizia; Singer, Ellen; Grego, Elena; Gandini, Marco
2017-01-01
The objective of this study was to investigate whether cleaning surgical materials used to close pelvic flexure enterotomies with a wet sterile gauze will reduce contamination and whether the use of a full thickness appositional suture pattern (F) or a partial thickness inverting (or Cushing) suture pattern (C) would make a difference in the level of contamination. Large colon specimens were assigned to group F or C and divided into subgroups N and G. In group G, a wet sterile gauze was passed over the suture material, another over the instruments, and another over the gloves. In group N, no treatment was applied. The bacterial concentration was measured by optical density (OD) at 24 h. The OD of subgroup CG was lower than that of subgroup CN (P = 0.019). The OD of subgroup FG was lower than that of subgroup FN (P = 0.02). The OD of subgroups CG, CN, FG, and FN was lower than that of the negative control (P < 0.003, P < 0.001, P < 0.001, and P < 0.00). The use of a sterile wet gauze significantly reduced contamination of suture materials. A partial thickness inverting suture pattern did not produce less contamination than a full thickness appositional suture pattern. PMID:28154467
de Oliveira, Everton Falcão; dos Santos Fernandes, Carlos Eurico; Araújo e Silva, Elaine; Brazil, Reginaldo Peçanha; de Oliveira, Alessandra Gutierrez
2013-12-01
The life cycle of vectors and the reservoirs that participate in the chain of infectious diseases have a strong relationship with the environmental dynamics of the ecosystems in which they live. Oscillations in population abundance and seasonality of insects can be explained by factors inherent in each region and time period. Therefore, knowledge of the relationship and influence of environmental factors on the population of Lutzomyia longipalpis is necessary because of the high incidence of visceral leishmaniasis (VL) in Brazil. This study evaluates the influence of abiotic variables on the population density and seasonal behavior of L. longipalpis in an urban endemic area of VL in Brazil. The sand fly captures were performed every two months between November, 2009 and November, 2010 in the peridomicile of 13 randomly selected residences. We captured 1,367 specimens of L. longipalpis, and the ratio of male/female flies was 2.86:1. The comparison of the total male specimens in the two seasons showed a statistical difference in the wet season, but there was no significant difference when considering the total females. With respect to climatic variables, a significant negative association was observed only with wind speed. During periods of high wind speeds, the population density of this vector decreased. The presence of L. longipalpis was found in all months of the study with bimodal behavior and population peaks during the wet season. © 2013 The Society for Vector Ecology.
Spatial and temporal patterns of coexistence between competing Aedes mosquitoes in urban Florida
Juliano, S. A.
2009-01-01
Understanding mechanisms fostering coexistence between invasive and resident species is important in predicting ecological, economic, or health impacts of invasive species. The mosquito Aedes aegypti coexists at some urban sites in southeastern United States with invasive Aedes albopictus, which is often superior in interspecific competition. We tested predictions for three hypotheses of species coexistence: seasonal condition-specific competition, aggregation among individual water-filled containers, and colonization–competition tradeoff across spatially partitioned habitat patches (cemeteries) that have high densities of containers. We measured spatial and temporal patterns of abundance for both species among water-filled resident cemetery vases and experimentally positioned standard cemetery vases and ovitraps in metropolitan Tampa, Florida. Consistent with the seasonal condition-specific competition hypothesis, abundances of both species in resident and standard cemetery vases were higher early in the wet season (June) versus late in the wet season (September), but the proportional increase of A. albopictus was greater than that of A. aegypti, presumably due to higher dry-season egg mortality and strong wet-season competitive superiority of larval A. albopictus. Spatial partitioning was not evident among cemeteries, a result inconsistent with the colonization-competition tradeoff hypothesis, but both species were highly independently aggregated among standard cemetery vases and ovitraps, which is consistent with the aggregation hypothesis. Densities of A. aegypti but not A. albopictus differed among land use categories, with A. aegypti more abundant in ovitraps in residential areas compared to industrial and commercial areas. Spatial partitioning among land use types probably results from effects of land use on conditions in both terrestrial and aquatic-container environments. These results suggest that both temporal and spatial variation may contribute to local coexistence between these Aedes in urban areas. PMID:19263086
Spatial and temporal patterns of coexistence between competing Aedes mosquitoes in urban Florida.
Leisnham, Paul T; Juliano, S A
2009-05-01
Understanding mechanisms fostering coexistence between invasive and resident species is important in predicting ecological, economic, or health impacts of invasive species. The mosquito Aedes aegypti coexists at some urban sites in southeastern United States with invasive Aedes albopictus, which is often superior in interspecific competition. We tested predictions for three hypotheses of species coexistence: seasonal condition-specific competition, aggregation among individual water-filled containers, and colonization-competition tradeoff across spatially partitioned habitat patches (cemeteries) that have high densities of containers. We measured spatial and temporal patterns of abundance for both species among water-filled resident cemetery vases and experimentally positioned standard cemetery vases and ovitraps in metropolitan Tampa, Florida. Consistent with the seasonal condition-specific competition hypothesis, abundances of both species in resident and standard cemetery vases were higher early in the wet season (June) versus late in the wet season (September), but the proportional increase of A. albopictus was greater than that of A. aegypti, presumably due to higher dry-season egg mortality and strong wet-season competitive superiority of larval A. albopictus. Spatial partitioning was not evident among cemeteries, a result inconsistent with the colonization-competition tradeoff hypothesis, but both species were highly independently aggregated among standard cemetery vases and ovitraps, which is consistent with the aggregation hypothesis. Densities of A. aegypti but not A. albopictus differed among land use categories, with A. aegypti more abundant in ovitraps in residential areas compared to industrial and commercial areas. Spatial partitioning among land use types probably results from effects of land use on conditions in both terrestrial and aquatic-container environments. These results suggest that both temporal and spatial variation may contribute to local coexistence between these Aedes in urban areas.
Effect of cationic polyelectrolytes on the performance of paper diagnostics for blood typing.
McLiesh, Heather; Sharman, Scot; Garnier, Gil
2015-09-01
We investigated the effect that two common types of cationic polyelectrolytes used in papermaking might have on the performance of paper diagnostics using blood typing as an example. The results were analyzed in terms of red blood cells (RBC) retention and antibody-antigen specificity. Two questions were addressed: (1) can poly(amido-amine) epichlorohydrin (PAE) typically used for paper wet strength affect the diagnostic performance? (2) can high molecular weight cationic polyacrylamide (CPAM) employed as retention aid enhance or affect the selectivity and sensitivity of paper diagnostics? A series of paper varying in type of fibers and drying process were constructed with PAE and tested for blood typing performance. Residual PAE has no significant effect on blood typing paper diagnostics under normal conditions. Positives are unaffected with PAE, while negatives lose slight sharpness as some RBCs are unselectively retained. CPAM, the most common retention aid, can also be used to retain cells and biomolecules on paper. Paper towel was treated with CPAM solutions varying in polymer concentration and charge density and tested for blood typing. We found that CPAM dried on paper can retain RBC. CPAM affects the negative tests by retaining non-specifically individual RBC on fibers. RBC retention increases non-linearly with the CPAM charge density and concentration. As expected, wet CPAM retain RBCs at concentrations higher than 0.1wt%. As paper diagnostics are becoming a reality, more realistic papers than the Whatman filter paper will be engineered. This study provides guidance on how best use the required polymeric wet-strength and retention agents. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Wai, Khin Thet; Arunachalam, Natarajan; Tana, Susilowati; Espino, Fe; Kittayapong, Pattamaporn; Abeyewickreme, W; Hapangama, Dilini; Tyagi, Brij Kishore; Htun, Pe Than; Koyadun, Surachart; Kroeger, Axel; Sommerfeld, Johannes; Petzold, Max
2012-01-01
Background Research has shown that the classical Stegomyia indices (or “larval indices”) of the dengue vector Aedes aegypti reflect the absence or presence of the vector but do not provide accurate measures of adult mosquito density. In contrast, pupal indices as collected in pupal productivity surveys are a much better proxy indicator for adult vector abundance. However, it is unknown when it is most optimal to conduct pupal productivity surveys, in the wet or in the dry season or in both, to inform control services about the most productive water container types and if this pattern varies among different ecological settings. Methods A multi-country study in randomly selected twelve to twenty urban and peri-urban neighborhoods (“clusters”) of six Asian countries, in which all water holding containers were examined for larvae and pupae of Aedes aegypti during the dry season and the wet season and their productivity was characterized by water container types. In addition, meteorological data and information on reported dengue cases were collected. Findings The study reconfirmed the association between rainfall and dengue cases (“dengue season”) and underlined the importance of determining through pupal productivity surveys the “most productive containers types”, responsible for the majority (>70%) of adult dengue vectors. The variety of productive container types was greater during the wet than during the dry season, but included practically all container types productive in the dry season. Container types producing pupae were usually different from those infested by larvae indicating that containers with larval infestations do not necessarily foster pupal development and thus the production of adult Aedes mosquitoes. Conclusion Pupal productivity surveys conducted during the wet season will identify almost all of the most productive container types for both the dry and wet seasons and will therefore facilitate cost-effective targeted interventions. PMID:23318235
Pin oak acorn production and regeneration as affected by stand density, structure and flooding
Leon S. Minckler; Robert E. McDermott
1960-01-01
Pin oak (Quercus palustris Muench.) is an important tree species common on wet, heavy soils in the Central States region. Until recently, however, the silvics of this species has been neglected (Minckler, 1957). In an effort to provide some of the missing information, a study was begun several years ago to find our more about pin oak acorn production...
Comparison of the abundance and composition of litter fauna in tropical and subalpine forests
G. Gonzalez; T.R. Seastedt
2000-01-01
In this study, we quantify the abundance and composition of the litter fauna in dry and wet tropical forests and north- and south-facing subalpine forests. We used the same litter species contained in litterbags across study sites to standardize for substrate conditions, and a single method of fauna extraction from the litter (Tullgren method). Fauna densities were...
J. Van Haren; R.C. de Oliveira, Jr.; P.T. Beldini; P.B. de Camargo; M. Keller; S. Saleska
2013-01-01
Tropical plantations are considered a viable option to sequester carbon on abandoned agricultural lands, but implications of tree species selection for overall greenhouse gas budgets on plantations have been little studied. During three wet seasons, we investigated the influence of nine tree species on soil pH, temperature (ST), bulk density (BD), moisture content...
Rebecca E. Ibach; Roger M. Rowell; Sandra E. Lange; Rebecca L. Schumann
2002-01-01
Aspen fiber-polypropylene composites were prepared with various levels of fiber (0,30%, 40%, 50%, and 60%), polypropylene (PP) (100%, 98%, 70%, 68%, 60%, 58%, 50%, 48%, 40%, and 38%), and the compatibilizer maleated polypropylene (MAPP) (0 and 2%). Specimens were either subjected to 10 cycles of 1 week room temperature water soaking-oven drying or 2-hr. boiling...
Daniel J. Yelle; Ashley M. Stirgus
2016-01-01
Studying wood adhesive bond durability is challenging because wood is highly variable and heterogeneous at all length scales. In this study, three North American diffuse-porous hardwoods (hard maple, soft maple, and basswood) and their adhesively bonded as-semblies were exposed to wet and dry cyclic tests. Then, their den-sity differences were related to bond...
Arreyndip, Nkongho Ayuketang; Joseph, Ebobenow; David, Afungchui
2016-11-01
For the future installation of a wind farm in Cameroon, the wind energy potentials of three of Cameroon's coastal cities (Kribi, Douala and Limbe) are assessed using NASA average monthly wind data for 31 years (1983-2013) and compared through Weibull statistics. The Weibull parameters are estimated by the method of maximum likelihood, the mean power densities, the maximum energy carrying wind speeds and the most probable wind speeds are also calculated and compared over these three cities. Finally, the cumulative wind speed distributions over the wet and dry seasons are also analyzed. The results show that the shape and scale parameters for Kribi, Douala and Limbe are 2.9 and 2.8, 3.9 and 1.8 and 3.08 and 2.58, respectively. The mean power densities through Weibull analysis for Kribi, Douala and Limbe are 33.7 W/m2, 8.0 W/m2 and 25.42 W/m2, respectively. Kribi's most probable wind speed and maximum energy carrying wind speed was found to be 2.42 m/s and 3.35 m/s, 2.27 m/s and 3.03 m/s for Limbe and 1.67 m/s and 2.0 m/s for Douala, respectively. Analysis of the wind speed and hence power distribution over the wet and dry seasons shows that in the wet season, August is the windiest month for Douala and Limbe while September is the windiest month for Kribi while in the dry season, March is the windiest month for Douala and Limbe while February is the windiest month for Kribi. In terms of mean power density, most probable wind speed and wind speed carrying maximum energy, Kribi shows to be the best site for the installation of a wind farm. Generally, the wind speeds at all three locations seem quite low, average wind speeds of all the three studied locations fall below 4.0m/s which is far below the cut-in wind speed of many modern wind turbines. However we recommend the use of low cut-in speed wind turbines like the Savonius for stand alone low energy needs.
Cocoa agroforestry is less resilient to sub-optimal and extreme climate than cocoa in full sun.
Abdulai, Issaka; Vaast, Philippe; Hoffmann, Munir P; Asare, Richard; Jassogne, Laurence; Van Asten, Piet; Rötter, Reimund P; Graefe, Sophie
2018-01-01
Cocoa agroforestry is perceived as potential adaptation strategy to sub-optimal or adverse environmental conditions such as drought. We tested this strategy over wet, dry and extremely dry periods comparing cocoa in full sun with agroforestry systems: shaded by (i) a leguminous tree species, Albizia ferruginea and (ii) Antiaris toxicaria, the most common shade tree species in the region. We monitored micro-climate, sap flux density, throughfall, and soil water content from November 2014 to March 2016 at the forest-savannah transition zone of Ghana with climate and drought events during the study period serving as proxy for projected future climatic conditions in marginal cocoa cultivation areas of West Africa. Combined transpiration of cocoa and shade trees was significantly higher than cocoa in full sun during wet and dry periods. During wet period, transpiration rate of cocoa plants shaded by A. ferruginea was significantly lower than cocoa under A. toxicaria and full sun. During the extreme drought of 2015/16, all cocoa plants under A. ferruginea died. Cocoa plants under A. toxicaria suffered 77% mortality and massive stress with significantly reduced sap flux density of 115 g cm -2 day -1 , whereas cocoa in full sun maintained higher sap flux density of 170 g cm -2 day -1 . Moreover, cocoa sap flux recovery after the extreme drought was significantly higher in full sun (163 g cm -2 day -1 ) than under A. toxicaria (37 g cm -2 day -1 ). Soil water content in full sun was higher than in shaded systems suggesting that cocoa mortality in the shaded systems was linked to strong competition for soil water. The present results have major implications for cocoa cultivation under climate change. Promoting shade cocoa agroforestry as drought resilient system especially under climate change needs to be carefully reconsidered as shade tree species such as the recommended leguminous A. ferruginea constitute major risk to cocoa functioning under extended severe drought. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Ansari, Z. A.; Rivonker, C. U.; Ramani, P.; Parulekar, A. H.
1991-09-01
Macrofauna of seagrass community in the five Lakshadweep atolls were studied and compared. The associated epifaunal and infaunal taxa comprising nine major taxonomic groups, showed significant differences in the total number of individuals (1041 8411 m-2) among sites and habitats. The density of macrofauna was directly related to mean macrophytic biomass (405 895 g wet wt. m-2). The fauna was dominated by epifaunal polychaetes, amphipods and isopods in the vegetated areas. When compared with the density of nearby unvegetated areasleft( {bar x = 815{text{m }}^{ - 2} } right), seagrass meadows harbour a denser and richer macroinvertebrate assemblageleft( {bar x = 4023{text{m }}^{ - 2} } right).
NASA Astrophysics Data System (ADS)
Angermann, H.; Rappich, J.; Korte, L.; Sieber, I.; Conrad, E.; Schmidt, M.; Hübener, K.; Polte, J.; Hauschild, J.
2008-04-01
Special sequences of wet-chemical oxidation and etching steps were optimised with respect to the etching behaviour of differently oriented silicon to prepare very smooth silicon interfaces with excellent electronic properties on mono- and poly-crystalline substrates. Surface photovoltage (SPV) and photoluminescence (PL) measurements, atomic force microscopy (AFM) and scanning electron microscopy (SEM) investigations were utilised to develop wet-chemical smoothing procedures for atomically flat and structured surfaces, respectively. Hydrogen-termination as well as passivation by wet-chemical oxides were used to inhibit surface contamination and native oxidation during the technological processing. Compared to conventional pre-treatments, significantly lower micro-roughness and densities of surface states were achieved on mono-crystalline Si(100), on evenly distributed atomic steps, such as on vicinal Si(111), on silicon wafers with randomly distributed upside pyramids, and on poly-crystalline EFG ( Edge-defined Film-fed- Growth) silicon substrates. The recombination loss at a-Si:H/c-Si interfaces prepared on c-Si substrates with randomly distributed upside pyramids was markedly reduced by an optimised wet-chemical smoothing procedure, as determined by PL measurements. For amorphous-crystalline hetero-junction solar cells (ZnO/a-Si:H(n)/c-Si(p)/Al) with textured c-Si substrates the smoothening procedure results in a significant increase of short circuit current Isc, fill factor and efficiency η. The scatter in the cell parameters for measurements on different cells is much narrower, as compared to conventional pre-treatments, indicating more well-defined and reproducible surface conditions prior to a-Si:H emitter deposition and/or a higher stability of the c-Si surface against variations in the a-Si:H deposition conditions.
Haines, Brian M.; Yi, S. A.; Olson, R. E.; ...
2017-07-10
The wetted foam capsule design for inertial confinement fusion capsules, which includes a foam layer wetted with deuterium-tritium liquid, enables layered capsule implosions with a wide range of hot-spot convergence ratios (CR) on the National Ignition Facility. In this paper, we present a full-scale wetted foam capsule design that demonstrates high gain in one-dimensional simulations. In these simulations, increasing the convergence ratio leads to an improved capsule yield due to higher hot-spot temperatures and increased fuel areal density. High-resolution two-dimensional simulations of this design are presented with detailed and well resolved models for the capsule fill tube, support tent, surfacemore » roughness, and predicted asymmetries in the x-ray drive. Our modeling of these asymmetries is validated by comparisons with available experimental data. In 2D simulations of the full-scale wetted foam capsule design, jetting caused by the fill tube is prevented by the expansion of the tungsten-doped shell layer due to preheat. While the impacts of surface roughness and predicted asymmetries in the x-ray drive are enhanced by convergence effects, likely underpredicted in 2D at high CR, simulations predict that the capsule is robust to these features. Nevertheless, the design is highly susceptible to the effects of the capsule support tent, which negates all of the one-dimensional benefits of increasing the convergence ratio. Indeed, when the support tent is included in simulations, the yield decreases as the convergence ratio is increased for CR > 20. Finally and nevertheless, the results suggest that the full-scale wetted foam design has the potential to outperform ice layer capsules given currently achievable levels of asymmetries when fielded at low convergence ratios (CR < 20).« less
Reddy, Mallampati Srinivasa; Okuda, Tetsuji; Nakai, Satoshi; Nishijima, Wataru; Okada, Mitsumasa
2011-08-01
Wet gravity separation technique has been regularly practiced to separate the polypropylene (PP) and polyethylene (PE) (light plastic films) from chlorinated plastic films (CP films) (heavy plastic films). The CP films including poly vinyl chloride (PVC) and poly vinylidene chloride (PVDC) would float in water even though its density is more than 1.0g/cm(3). This is because films are twisted in which air is sometimes entrapped inside the twisted CP films in real existing recycling plant. The present research improves the current process in separating the PP and PE from plastic packaging waste (PPW), by reducing entrapped air and by increasing the hydrophilicity of the CP films surface with ozonation. The present research also measures the hydrophilicity of the CP films. In ozonation process mixing of artificial films up to 10min reduces the contact angle from 78° to 62°, and also increases the hydrophilicity of CP films. The previous studies also performed show that the artificial PVDC films easily settle down by the same. The effect of ozonation after the wet gravity separation on light PPW films obtained from an actual PPW recycling plant was also evaluated. Although actual light PPW films contained 1.3% of CP films however in present case all the CP films were removed from the PPW films as a settled fraction in the combination process of ozonation and wet gravity separation. The combination process of ozonation and wet gravity separation is the more beneficial process in recovering of high purity PP and PE films from the PPW films. Copyright © 2011 Elsevier Ltd. All rights reserved.
Light-trapping optimization in wet-etched silicon photonic crystal solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eyderman, Sergey, E-mail: sergey.eyderman@utoronto.ca; John, Sajeev; Department of Physics, King Abdul-Aziz University, Jeddah
2015-07-14
We demonstrate, by numerical solution of Maxwell's equations, near-perfect solar light-trapping and absorption over the 300–1100 nm wavelength band in silicon photonic crystal (PhC) architectures, amenable to fabrication by wet-etching and requiring less than 10 μm (equivalent bulk thickness) of crystalline silicon. These PhC's consist of square lattices of inverted pyramids with sides comprised of various (111) silicon facets and pyramid center-to-center spacing in the range of 1.3–2.5 μm. For a wet-etched slab with overall height H = 10 μm and lattice constant a = 2.5 μm, we find a maximum achievable photo-current density (MAPD) of 42.5 mA/cm{sup 2}, falling not far from 43.5 mA/cm{sup 2}, correspondingmore » to 100% solar absorption in the range of 300–1100 nm. We also demonstrate a MAPD of 37.8 mA/cm{sup 2} for a thinner silicon PhC slab of overall height H = 5 μm and lattice constant a = 1.9 μm. When H is further reduced to 3 μm, the optimal lattice constant for inverted pyramids reduces to a = 1.3 μm and provides the MAPD of 35.5 mA/cm{sup 2}. These wet-etched structures require more than double the volume of silicon, in comparison to the overall mathematically optimum PhC structure (consisting of slanted conical pores), to achieve the same degree of solar absorption. It is suggested these 3–10 μm thick structures are valuable alternatives to currently utilized 300 μm-thick textured solar cells and are suitable for large-scale fabrication by wet-etching.« less
Eads, David A.; Biggins, Dean E.; Xu, Lei; Liu, Qiyong
2016-01-01
Plague, a rodent-associated, flea-borne zoonosis, is one of the most notorious diseases in history. Rates of plague transmission can increase when fleas are abundant. Fleas commonly desiccate and die when reared under dry conditions in laboratories, suggesting fleas will be suppressed during droughts in the wild, thus reducing the rate at which plague spreads among hosts. In contrast, fleas might increase in abundance when precipitation is plentiful, producing epizootic outbreaks during wet years. We tested these hypotheses using a 27-yr data set from two rodents in Inner Mongolia, China: Mongolian gerbils (Meriones unguiculatus) and Daurian ground squirrels (Spermophilus dauricus). For both species of rodents, fleas were most abundant during years preceded by dry growing seasons. For gerbils, the prevalence of plague increased during wet years preceded by dry growing seasons. If precipitation is scarce during the primary growing season, succulent plants decline in abundance and, consequently, herbivorous rodents can suffer declines in body condition. Fleas produce more offspring and better survive when parasitizing food-limited hosts, because starving animals tend to exhibit inefficient behavioral and immunological defenses against fleas. Further, rodent burrows might buffer fleas from xeric conditions aboveground during dry years. After a dry year, fleas might be abundant due to the preceding drought, and if precipitation and succulent plants become more plentiful, rodents could increase in density, thereby creating connectivity that facilitates the spread of plague. Moreover, in wet years, mild temperatures might increase the efficiency at which fleas transmit the plague bacterium, while also helping fleas to survive as they quest among hosts. In this way, dry years could provide context for epizootics of plague in wet years.
NASA Astrophysics Data System (ADS)
Haines, Brian M.; Yi, S. A.; Olson, R. E.; Khan, S. F.; Kyrala, G. A.; Zylstra, A. B.; Bradley, P. A.; Peterson, R. R.; Kline, J. L.; Leeper, R. J.; Shah, R. C.
2017-07-01
The wetted foam capsule design for inertial confinement fusion capsules, which includes a foam layer wetted with deuterium-tritium liquid, enables layered capsule implosions with a wide range of hot-spot convergence ratios (CR) on the National Ignition Facility. We present a full-scale wetted foam capsule design that demonstrates high gain in one-dimensional simulations. In these simulations, increasing the convergence ratio leads to an improved capsule yield due to higher hot-spot temperatures and increased fuel areal density. High-resolution two-dimensional simulations of this design are presented with detailed and well resolved models for the capsule fill tube, support tent, surface roughness, and predicted asymmetries in the x-ray drive. Our modeling of these asymmetries is validated by comparisons with available experimental data. In 2D simulations of the full-scale wetted foam capsule design, jetting caused by the fill tube is prevented by the expansion of the tungsten-doped shell layer due to preheat. While the impacts of surface roughness and predicted asymmetries in the x-ray drive are enhanced by convergence effects, likely underpredicted in 2D at high CR, simulations predict that the capsule is robust to these features. Nevertheless, the design is highly susceptible to the effects of the capsule support tent, which negates all of the one-dimensional benefits of increasing the convergence ratio. Indeed, when the support tent is included in simulations, the yield decreases as the convergence ratio is increased for CR > 20. Nevertheless, the results suggest that the full-scale wetted foam design has the potential to outperform ice layer capsules given currently achievable levels of asymmetries when fielded at low convergence ratios (CR < 20).
NASA Astrophysics Data System (ADS)
Smits, K. M.; Sakaki, T.; Limsuwat, A.; Illangasekare, T. H.
2009-05-01
It is widely recognized that liquid water, water vapor and temperature movement in the subsurface near the land/atmosphere interface are strongly coupled, influencing many agricultural, biological and engineering applications such as irrigation practices, the assessment of contaminant transport and the detection of buried landmines. In these systems, a clear understanding of how variations in water content, soil drainage/wetting history, porosity conditions and grain size affect the soil's thermal behavior is needed, however, the consideration of all factors is rare as very few experimental data showing the effects of these variations are available. In this study, the effect of soil moisture, drainage/wetting history, and porosity on the thermal conductivity of sandy soils with different grain sizes was investigated. For this experimental investigation, several recent sensor based technologies were compiled into a Tempe cell modified to have a network of sampling ports, continuously monitoring water saturation, capillary pressure, temperature, and soil thermal properties. The water table was established at mid elevation of the cell and then lowered slowly. The initially saturated soil sample was subjected to slow drainage, wetting, and secondary drainage cycles. After liquid water drainage ceased, evaporation was induced at the surface to remove soil moisture from the sample to obtain thermal conductivity data below the residual saturation. For the test soils studied, thermal conductivity increased with increasing moisture content, soil density and grain size while thermal conductivity values were similar for soil drying/wetting behavior. Thermal properties measured in this study were then compared with independent estimates made using empirical models from literature. These soils will be used in a proposed set of experiments in intermediate scale test tanks to obtain data to validate methods and modeling tools used for landmine detection.
CO2-Water-Rock Wettability: Variability, Influencing Factors, and Implications for CO2 Geostorage.
Iglauer, Stefan
2017-05-16
Carbon geosequestration (CGS) has been identified as a key technology to reduce anthropogenic greenhouse gas emissions and thus significantly mitigate climate change. In CGS, CO 2 is captured from large point-source emitters (e.g., coal fired power stations), purified, and injected deep underground into geological formations for disposal. However, the CO 2 has a lower density than the resident formation brine and thus migrates upward due to buoyancy forces. To prevent the CO 2 from leaking back to the surface, four trapping mechanisms are used: (1) structural trapping (where a tight caprock acts as a seal barrier through which the CO 2 cannot percolate), (2) residual trapping (where the CO 2 plume is split into many micrometer-sized bubbles, which are immobilized by capillary forces in the pore network of the rock), (3) dissolution trapping (where CO 2 dissolves in the formation brine and sinks deep into the reservoir due to a slight increase in brine density), and (4) mineral trapping (where the CO 2 introduced into the subsurface chemically reacts with the formation brine or reservoir rock or both to form solid precipitates). The efficiency of these trapping mechanisms and the movement of CO 2 through the rock are strongly influenced by the CO 2 -brine-rock wettability (mainly due to the small capillary-like pores in the rock which form a complex network), and it is thus of key importance to rigorously understand CO 2 -wettability. In this context, a substantial number of experiments have been conducted from which several conclusions can be drawn: of prime importance is the rock surface chemistry, and hydrophilic surfaces are water-wet while hydrophobic surfaces are CO 2 -wet. Note that CO 2 -wet surfaces dramatically reduce CO 2 storage capacities. Furthermore, increasing pressure, salinity, or dissolved ion valency increases CO 2 -wettability, while the effect of temperature is not well understood. Indeed theoretical understanding of CO 2 -wettability and the ability to quantitatively predict it are currently limited although recent advances have been made. Moreover, data for real storage rock and real injection gas (which contains impurities) is scarce and it is an open question how realistic subsurface conditions can be reproduced in laboratory experiments. In conclusion, however, it is clear that in principal CO 2 -wettability can vary drastically from completely water-wet to almost completely CO 2 -wet, and this possible variation introduces a large uncertainty into trapping capacity and containment security predictions.
Kinetics of wet sodium vapor complex plasma
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Sodha, M. S.
2014-04-01
In this paper, we have investigated the kinetics of wet (partially condensed) Sodium vapor, which comprises of electrons, ions, neutral atoms, and Sodium droplets (i) in thermal equilibrium and (ii) when irradiated by light. The formulation includes the balance of charge over the droplets, number balance of the plasma constituents, and energy balance of the electrons. In order to evaluate the droplet charge, a phenomenon for de-charging of the droplets, viz., evaporation of positive Sodium ions from the surface has been considered in addition to electron emission and electron/ion accretion. The analysis has been utilized to evaluate the steady state parameters of such complex plasmas (i) in thermal equilibrium and (ii) when irradiated; the results have been graphically illustrated. As a significant outcome irradiated, Sodium droplets are seen to acquire large positive potential, with consequent enhancement in the electron density.
Platinum adlayered ruthenium nanoparticles, method for preparing, and uses thereof
Tong, YuYe; Du, Bingchen
2015-08-11
A superior, industrially scalable one-pot ethylene glycol-based wet chemistry method to prepare platinum-adlayered ruthenium nanoparticles has been developed that offers an exquisite control of the platinum packing density of the adlayers and effectively prevents sintering of the nanoparticles during the deposition process. The wet chemistry based method for the controlled deposition of submonolayer platinum is advantageous in terms of processing and maximizing the use of platinum and can, in principle, be scaled up straightforwardly to an industrial level. The reactivity of the Pt(31)-Ru sample was about 150% higher than that of the industrial benchmark PtRu (1:1) alloy sample but with 3.5 times less platinum loading. Using the Pt(31)-Ru nanoparticles would lower the electrode material cost compared to using the industrial benchmark alloy nanoparticles for direct methanol fuel cell applications.
Egler, M; Buss, D F; Moreira, J C; Baptista, D F
2012-08-01
Land-use alterations and pesticide run-offs are among the main causes for impairment in agricultural areas. We evaluated the influence of different land-uses (forest, pasture and intensive agriculture) on the water quality and on benthic macroinvertebrate assemblages on three occasions: in the dry season, wet season and at the end of the wet season. Macroinvertebrates responded to this gradient of impairment: agricultural sites had significantly lower richness numbers than forested and pasture sites, and all major invertebrate groups were significantly affected. Most taxa found in forested sites were found in pasture sites, but often with lower densities. In this case, the loss of habitats due to sedimentation and the lower complexity of substrates seem to be the disruptive force for the macroinvertebrate fauna.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, D.; Sankaranarayanan, S.; Khachariya, D.
We demonstrate a method for nanowire formation by natural selection during wet anisotropic chemical etching in boiling phosphoric acid. Nanowires of sub-10 nm lateral dimensions and lengths of 700 nm or more are naturally formed during the wet etching due to the convergence of the nearby crystallographic hexagonal etch pits. These nanowires are site controlled when formed in augmentation with dry etching. Temperature and power dependent photoluminescence characterizations confirm excitonic transitions up to room temperature. The exciton confinement is enhanced by using two-dimensional confinement whereby enforcing greater overlap of the electron-hole wave-functions. The surviving nanowires have less defects and a small temperaturemore » variation of the output electroluminescent light. We have observed superluminescent behaviour of the light emitting diodes formed on these nanowires. There is no observable efficiency roll off for current densities up to 400 A/cm{sup 2}.« less
Carboxymethylated glucomannan as paper strengthening agent.
Wang, Meng; He, Weitao; Wang, Shun; Song, Xianliang
2015-07-10
Strength additives play an important role in allowing the papermaking industry to achieve its objectives. In this study, a new kind of paper strengthening agent based on glucomannan was developed by treating it with sodium chloroacetate under alkaline conditions, and the effects on paper properties were evaluated. Results indicated that carboxymethylated glucomannan could significantly improve the paper properties. Compared to the untreated paper, the density, burst index, tensile index, and folding endurance were increased by 15.2%, 22.8%, 34.6%, 179.0%, respectively, when 0.9% carboxymethylated glucomannan was used. Polyamide-epichlorohydrin (PAE) was used to improve the wet strength of the paper. When 0.6% PAE and 0.6% carboxymethylated glucomannan were used, the burst index, dry tensile index, wet tensile index of paper were increased by 14.1%, 25%, 34.3%, respectively, as compared to that of the control, while the folding endurance decreased slightly. In addition, dry tensile index and wet tensile index were increased with increasing the carboxymethylation time of glucomannan. The results demonstrated that PAE and carboxymethylated glucomannan displayed a synergistic effect. SEM analysis illustrated that paper strengthening agent could increase the combination of fibers in paper. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Che, L.; Halvorsen, E.; Chen, X.
2011-10-01
The existence of insoluble residues as intermediate products produced during the wet etching process is the main quality-reducing and structure-patterning issue for lead zirconate titanate (PZT) thin films. A one-step wet etching process using the solutions of buffered HF (BHF) and HNO3 acid was developed for patterning PZT thin films for microelectomechanical system (MEMS) applications. PZT thin films with 1 µm thickness were prepared on the Pt/Ti/SiO2/Si substrate by the sol-gel process for compatibility with Si micromachining. Various compositions of the etchant were investigated and the patterns were examined to optimize the etching process. The optimal result is demonstrated by a high etch rate (3.3 µm min-1) and low undercutting (1.1: 1). The patterned PZT thin film exhibits a remnant polarization of 24 µC cm-2, a coercive field of 53 kV cm-1, a leakage current density of 4.7 × 10-8 A cm-2 at 320 kV cm-1 and a dielectric constant of 1100 at 1 KHz.
A computational DFT study of structural transitions in textured solid-fluid interfaces
NASA Astrophysics Data System (ADS)
Yatsyshin, Petr; Parry, Andrew O.; Kalliadasis, Serafim
2015-11-01
Fluids adsorbed at walls, in capillary pores and slits, and in more exotic, sculpted geometries such as grooves and wedges can exhibit many new phase transitions, including wetting, pre-wetting, capillary-condensation and filling, compared to their bulk counterparts. As well as being of fundamental interest to the modern statistical mechanical theory of inhomogeneous fluids, these are also relevant to nanofluidics, chemical- and bioengineering. In this talk we will show using a microscopic Density Functional Theory (DFT) for fluids how novel, continuous, interfacial transitions associated with the first-order prewetting line, can occur on steps, in grooves and in wedges, that are sensitive to both the range of the intermolecular forces and interfacial fluctuation effects. These transitions compete with wetting, filling and condensation producing very rich phase diagrams even for relatively simple geometries. We will also discuss practical aspects of DFT calculations, and demonstrate how this statistical-mechanical framework is capable of yielding complex fluid structure, interfacial tensions, and regions of thermodynamic stability of various fluid configurations. As a side note, this demonstrates that DFT is an excellent tool for the investigations of complex multiphase systems. We acknowledge financial support from the European Research Council via Advanced Grant No. 247031.
Waldo-Mendoza, Miguel A; Quiñones-Jurado, Zoe V; Pérez-Medina, Juan C; Yañez-Soto, Bernardo; Ramírez-González, Pedro E
2017-02-22
The transformation of fog at a non-visible water layer on a membrane of low-density polyethylene (LDPE) and ethylene-vinyl acetate (EVA) was evaluated. Nonionic surfactants of major demand in the polyolefin industry were studied. A kinetic study using a hot fog chamber showed that condensation is controlled by both the diffusion and permanency of the surfactant more than by the change of the surface energy developed by the wetting agents. The greatest permanency of the anti-fog effect of the LDPE/EVA surface was close to 3000 h. The contact angle results demonstrated the ability of the wetting agent to spread out to the surface. Complementarily, the migration of nonionic surfactants from the inside of the polymeric matrix to the surface was analyzed by Fourier transform infrared (FTIR) microscopy. Additionally, electrical measurement on the anti-fogging membrane at alternating currents and at a sweep frequency was proposed to test the conductivity and wetting ability of nonionic surfactants. We proved that the amphiphilic molecules had the ability to increase the conductivity in the polyolefin membrane. A correlation between the bulk electrical conductivity and the permanency of the fogging control on the LDPE/EVA coextruded film was found.
Waldo-Mendoza, Miguel A.; Quiñones-Jurado, Zoe V.; Pérez-Medina, Juan C.; Yañez-Soto, Bernardo; Ramírez-González, Pedro E.
2017-01-01
The transformation of fog at a non-visible water layer on a membrane of low-density polyethylene (LDPE) and ethylene-vinyl acetate (EVA) was evaluated. Nonionic surfactants of major demand in the polyolefin industry were studied. A kinetic study using a hot fog chamber showed that condensation is controlled by both the diffusion and permanency of the surfactant more than by the change of the surface energy developed by the wetting agents. The greatest permanency of the anti-fog effect of the LDPE/EVA surface was close to 3000 h. The contact angle results demonstrated the ability of the wetting agent to spread out to the surface. Complementarily, the migration of nonionic surfactants from the inside of the polymeric matrix to the surface was analyzed by Fourier transform infrared (FTIR) microscopy. Additionally, electrical measurement on the anti-fogging membrane at alternating currents and at a sweep frequency was proposed to test the conductivity and wetting ability of nonionic surfactants. We proved that the amphiphilic molecules had the ability to increase the conductivity in the polyolefin membrane. A correlation between the bulk electrical conductivity and the permanency of the fogging control on the LDPE/EVA coextruded film was found. PMID:28241433
Hereford, R.; Webb, R.H.; Longpre, C.I.
2006-01-01
Precipitation varied substantially in the Mojave Desert through the 20th century in a manner broadly similar to the other warm North American deserts. Episodes of drought and prolonged dry conditions (1893-1904, ca. 1942-1975, and 1999-present) alternated with relatively wet periods (1905-ca. 1941 and ca. 1976-1998), probably because of global-scale climate fluctuations. These are the El Nin??o-Southern Oscillation that affects interannual climate and the Pacific Decadal Oscillation that evidently causes decadal-scale variability such as prolonged dry and wet episodes. Studies done in the late 20th century demonstrate that precipitation fluctuations affected populations of perennial vegetation, annuals, and small herbivores. Landscape rephotography reveals that several species, particularly creosote bush, increased in size and density during the ca. 1976-1998 wet period. A brief, intense drought from 1989 to 1991 and the ongoing drought caused widespread mortality of certain species; for example, chenopods and perennial grasses suffered up to 100% mortality. Drought pruning, the shedding of above-ground biomass to reduce carbon allocation, increased substantially during drought. Overall, drought had the greatest influence on the Mojave Desert ecosystem. ?? 2006.
Dendrite-Suppressed Lithium Plating from a Liquid Electrolyte via Wetting of Li 3N
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Kyusung; Goodenough, John B.
Lithium metal is an ultimate anode material to provide the highest energy density for a given cathode by providing a higher capacity and cell voltage. However, lithium is not used as the anode in commercial lithium-ion batteries because electrochemical dendrite formation and growth during charge can induce a cell short circuit that ignites the flammable liquid electrolyte. Plating of lithium through a bed of Li 3N particles is shown to transform dendrite growth into a 3D lithium network formed by wetting the particle surfaces; plating through a Li 3N particle is without dendrite nucleation. The Li 3N particles create amore » higher overpotential during Li deposition than that with dendrite growth in galvanostatic charge/discharge tests. The characteristic overpotential increase is correlated with the morphological changes and a more isotropic growth behavior. The Li 3N-modified Li electrode shows a stable cycling performance at 0.5 and 1.0 mA cm -2 for more than 100 cycles. In this paper, the origin of the bonding responsible for wetting of the Li 3N particles by lithium and for plating through a Li 3N particle is discussed.« less
Dendrite-Suppressed Lithium Plating from a Liquid Electrolyte via Wetting of Li 3N
Park, Kyusung; Goodenough, John B.
2017-07-10
Lithium metal is an ultimate anode material to provide the highest energy density for a given cathode by providing a higher capacity and cell voltage. However, lithium is not used as the anode in commercial lithium-ion batteries because electrochemical dendrite formation and growth during charge can induce a cell short circuit that ignites the flammable liquid electrolyte. Plating of lithium through a bed of Li 3N particles is shown to transform dendrite growth into a 3D lithium network formed by wetting the particle surfaces; plating through a Li 3N particle is without dendrite nucleation. The Li 3N particles create amore » higher overpotential during Li deposition than that with dendrite growth in galvanostatic charge/discharge tests. The characteristic overpotential increase is correlated with the morphological changes and a more isotropic growth behavior. The Li 3N-modified Li electrode shows a stable cycling performance at 0.5 and 1.0 mA cm -2 for more than 100 cycles. In this paper, the origin of the bonding responsible for wetting of the Li 3N particles by lithium and for plating through a Li 3N particle is discussed.« less
Root density of cherry trees grafted on prunus mahaleb in a semi-arid region
NASA Astrophysics Data System (ADS)
Paltineanu, Cristian; Septar, Leinar; Gavat, Corina; Chitu, Emil; Oprita, Alexandru; Moale, Cristina; Lamureanu, Gheorghe; Vrinceanu, Andrei
2016-07-01
Root density was investigated using the trench method in a cherry (Prunus avium grafted on Prunus mahaleb) orchard with clean cultivation in inter-rows and in-row. Trenches of 1 m width and 1.2 m depth were dug up between neighbouring trees. The objectives of the paper were to clarify the spatial distribution of root density of cherry trees under the soil and climate conditions of the region to expand knowledge of optimum planting distance and orchard management for a broad area of chernozems. Some soil physical properties were significantly worsened in inter-rows versus in-row, mainly due to soil compaction, and there were higher root density values in in-row versus inter-rows. Root density decreased more intensely with soil depth than with distance from trees. The pattern of root density suggests that the cherry tree density and fruit yield could be increased. However, other factors concerning orchard management and fruit yield should also be considered. The results obtained have a potential impact to improve irrigation and fertilizer application by various methods, considering the soil depth and distance from trees to wet soil, in accordance with root development.
NASA Technical Reports Server (NTRS)
Gong, Gavin; Entekhabi, Dara; Salvucci, Guido D.
1994-01-01
Simulated climates using numerical atmospheric general circulation models (GCMs) have been shown to be highly sensitive to the fraction of GCM grid area assumed to be wetted during rain events. The model hydrologic cycle and land-surface water and energy balance are influenced by the parameter bar-kappa, which is the dimensionless fractional wetted area for GCM grids. Hourly precipitation records for over 1700 precipitation stations within the contiguous United States are used to obtain observation-based estimates of fractional wetting that exhibit regional and seasonal variations. The spatial parameter bar-kappa is estimated from the temporal raingauge data using conditional probability relations. Monthly bar-kappa values are estimated for rectangular grid areas over the contiguous United States as defined by the Goddard Institute for Space Studies 4 deg x 5 deg GCM. A bias in the estimates is evident due to the unavoidably sparse raingauge network density, which causes some storms to go undetected by the network. This bias is corrected by deriving the probability of a storm escaping detection by the network. A Monte Carlo simulation study is also conducted that consists of synthetically generated storm arrivals over an artificial grid area. It is used to confirm the bar-kappa estimation procedure and to test the nature of the bias and its correction. These monthly fractional wetting estimates, based on the analysis of station precipitation data, provide an observational basis for assigning the influential parameter bar-kappa in GCM land-surface hydrology parameterizations.
Enabling Highly Effective Boiling from Superhydrophobic Surfaces
NASA Astrophysics Data System (ADS)
Allred, Taylor P.; Weibel, Justin A.; Garimella, Suresh V.
2018-04-01
A variety of industrial applications such as power generation, water distillation, and high-density cooling rely on heat transfer processes involving boiling. Enhancements to the boiling process can improve the energy efficiency and performance across multiple industries. Highly wetting textured surfaces have shown promise in boiling applications since capillary wicking increases the maximum heat flux that can be dissipated. Conversely, highly nonwetting textured (superhydrophobic) surfaces have been largely dismissed for these applications as they have been shown to promote formation of an insulating vapor film that greatly diminishes heat transfer efficiency. The current Letter shows that boiling from a superhydrophobic surface in an initial Wenzel state, in which the surface texture is infiltrated with liquid, results in remarkably low surface superheat with nucleate boiling sustained up to a critical heat flux typical of hydrophilic wetting surfaces, and thus upends this conventional wisdom. Two distinct boiling behaviors are demonstrated on both micro- and nanostructured superhydrophobic surfaces based on the initial wetting state. For an initial surface condition in which vapor occupies the interstices of the surface texture (Cassie-Baxter state), premature film boiling occurs, as has been commonly observed in the literature. However, if the surface texture is infiltrated with liquid (Wenzel state) prior to boiling, drastically improved thermal performance is observed; in this wetting state, the three-phase contact line is pinned during vapor bubble growth, which prevents the development of a vapor film over the surface and maintains efficient nucleate boiling behavior.
Lateral Mixing DRI Analysis: Submesoscale Water-Mass Spectra
2013-09-30
program to determine submesoscale variability in the Sargasso Sea under weak-to-moderate mesoscale conditions. Two sites were examined, a quiet site...anomalies and dye streaks. Hammerhead carries finescale Sea -Bird sensors for temperature, conductivity and pressure as well as Chelsea and WetLab...m of dye-injection target densities. They were embedded in 35-km towyo grid surveys by Craig Lee’s Triaxus and 15-km butterfly surveys by Jody
Christina M. Murphy; Grizelle Gonzalez; Juliana Belén
2008-01-01
Millipedes, among other soil fauna, are important components of ecosystems because of their role in nutrient cycling. In this study, we quantified the density, biomass, and richness (in terms of order) of millipedes along a toposequence (ridges, slopes, and valleys) and different ground layers (litter, humus, 0-5 cm soil depth, and 5-10 cm soil depth) in a subtropical...
Drying southern pine at 240°F. -- effects of air velocity and humidity, board thickness and density
Peter Koch
1972-01-01
Kiln time to each 10 percent moisture content was shortened by circulating air at high velocity, but was little affected by board specific gravity. A wet-bulb depression of 80oF. provided faster drying than depressions of 40 or 115oF. At 80 depression and with air circulated at 930 f.p.m., kiln time was directly...
Wet-Spun Superelastic Graphene Aerogel Millispheres with Group Effect.
Zhao, Xiaoli; Yao, Weiquan; Gao, Weiwei; Chen, Hao; Gao, Chao
2017-09-01
Graphene aerogel has attracted great attention due to its unique properties, such as ultralow density, superelasticity, and high specific surface area. It shows huge potential in energy devices, high-performance pressure sensors, contaminates adsorbents, and electromagnetic wave absorbing materials. However, there still remain some challenges to further promote the development and real application of graphene aerogel including cost-effective scalable fabrication and miniaturization with group effect. This study shows millimeter-scale superelastic graphene aerogel spheres (GSs) with group effect and multifunctionality. The GSs are continuously fabricated on a large scale by wet spinning of graphene oxide liquid crystals followed by facile drying and thermal annealing. Such GS has an unusual core-shell structure with excellent elasticity and specific strength. Significantly, both horizontally and vertically grouped spheres exhibit superelasticity comparable to individual spheres, enabling it to fully recover at 95% strain, and even after 1000 compressive cycles at 70% strain, paving the way to wide applications such as pressure-elastic and adsorbing materials. The GS shows a press-fly behavior with an extremely high jump velocity up to 1.2 m s -1 . For the first time, both free and oil-adsorbed GSs are remotely manipulated on water by electrostatic charge due to their ultralow density and hydrophobic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Viability of fungal and actinomycetal spores after microwave radiation of building materials.
Górny, Rafał L; Mainelis, Gediminas; Wlazło, Agnieszka; Niesler, Anna; Lis, Danuta O; Marzec, Stanisław; Siwińska, Ewa; Łudzeń-Izbińska, Beata; Harkawy, Aleksander; Kasznia-Kocot, Joanna
2007-01-01
The effects of microwave radiation on viability of fungal and actinomycetal spores growing on agar (medium optimal for growth) as well as on wooden panel and drywall (common building construction/finishing materials) were studied. All materials were incubated at high (97-99%) and low (32-33%) relative humidity to mimic "wet" and "dry" environmental conditions. Two microwave power densities (10 and 60 mW/cm2) and three times of exposure (5, 30, and 60 min) were tested to find the most effective parameters of radiation which could be applied to non-invasive reduction or cleaning of building materials from microbial contaminants. Additionally, a control of the surface temperature during the experiments allowed differentiation between thermal and microwave effect of such radiation. The results showed that the viability of studied microorganisms differed depending on their strains, growth conditions, power density of microwave radiation, time of exposure, and varied according to the applied combination of the two latter elements. The effect of radiation resulting in a decrease of spore viability on "wet" wooden panel and drywall was generally observed at 60 min exposure. Shorter exposure times decreased the viability of fungal spores only, while in actinomycetes colonizing the studied building materials, such radiation caused an opposite (supporting growth) effect.
Absolute Hugoniot measurements for CH foams in the 1.5-8 Mbar range
NASA Astrophysics Data System (ADS)
Aglitskiy, Y.; Velikovich, A. L.; Schmitt, A. J.; Karasik, M.; Serlin, V.; Weaver, J. L.; Oh, J.; Obenschain, S. P.
2016-10-01
We report the absolute Hugoniot measurements for dry CH foams at 10% of solid polystyrene density. The 400 μm thick, 500 μm wide planar foam slabs covered with a 10 μm solid plastic ablator were driven with 4 ns long Nike KrF laser pulses whose intensity was varied between 10 and 50 TW/cm2. The trajectories of the shock front and the ablative piston, as well as the rarefaction fan emerging after the shock breakout from the rear surface of the target were clearly observed using the side-on monochromatic x-ray imaging radiography. From these measurements the shock density compression ratio and the shock pressure are evaluated directly. The observed compression ratios varied between 4 and 8, and the corresponding shock pressures - between 1.5 and 8 Mbar. The data was simulated with the FASTRAD3D hydrocode, using standard models of inverse bremsstrahlung absorption, flux-limited thermal conduction, and multi-group radiation diffusion. The demonstrated diagnostics technique applied in a cryo experiment would make it possible to make the first absolute Hugoniot measurements for liquid deuterium or DT-wetted CH foams, which is relevant for designing the wetted-foam indirect-drive ignition targets for NIF. This work was supported by the US DOE/NNSA.
3D-fabrication of tunable and high-density arrays of crystalline silicon nanostructures
NASA Astrophysics Data System (ADS)
Wilbers, J. G. E.; Berenschot, J. W.; Tiggelaar, R. M.; Dogan, T.; Sugimura, K.; van der Wiel, W. G.; Gardeniers, J. G. E.; Tas, N. R.
2018-04-01
In this report, a procedure for the 3D-nanofabrication of ordered, high-density arrays of crystalline silicon nanostructures is described. Two nanolithography methods were utilized for the fabrication of the nanostructure array, viz. displacement Talbot lithography (DTL) and edge lithography (EL). DTL is employed to perform two (orthogonal) resist-patterning steps to pattern a thin Si3N4 layer. The resulting patterned double layer serves as an etch mask for all further etching steps for the fabrication of ordered arrays of silicon nanostructures. The arrays are made by means of anisotropic wet etching of silicon in combination with an isotropic retraction etch step of the etch mask, i.e. EL. The procedure enables fabrication of nanostructures with dimensions below 15 nm and a potential density of 1010 crystals cm-2.
Trexler, J.C.; Loftus, W.F.; Jordan, F.; Lorenz, J.J.; Chick, J.H.; Kobza, Robert M.
2000-01-01
We summarized data from eight quantitative fish surveys conducted in southern Florida to evaluate the distribution and relative abundance of introduced fishes across a variety of habitats. These surveys encompassed marsh and canal habitats throughout most of the Everglades region, including the mangrove fringe of Florida Bay. Two studies provided systematically collected density information over a 20-year period, and documented the first local appearance of four introduced fishes based on their repeated absence in prior surveys. Those species displayed a pattern of rapid population growth followed by decline, then persistence at lower densities. Estuarine areas in the southern Everglades, characterized by natural tidal creeks surrounded by mangrove-dominated marshes, and canals held the largest introduced-fish populations. Introduced fishes were also common, at times exceeding 50% of the fish community, in solution holes that serve as dry-season refuges in short-hydroperiod rockland habitats of the eastern Everglades. Wet prairies and alligator ponds distant from canals generally held few individuals of introduced fishes. These patterns suggest that the introduced fishes in southern Florida at present may not be well-adapted to persist in freshwater marshes of the Everglades, possibly because of an interaction of periodic cold-temperature stress and hydrologic fluctuation. Our analyses indicated low densities of these fishes in central or northern Everglades wet-prairie communities, and, in the absence of experimental data, little evidence of biotic effects in this spatially extensive habitat. There is no guarantee that this condition will be maintained, especially under the cumulative effects of future invasions or environmental change.
Nano-textured fluidic biochip as biological filter for selective survival of neuronal cells.
Han, Hsieh-Cheng; Lo, Hung-Chun; Wu, Chia-Yu; Chen, Kuei-Hsien; Chen, Li-Chyong; Ou, Keng-Liang; Hosseinkhani, Hossein
2015-06-01
This is an innovative study to engineer biological filter to evaluate the effect of template surface structure and physiochemical properties that can be used for wide variety of applications in biological, health care as well as environmental protection. Specifically, planar silicon (Si) wafer and arrayed Si nano-tips (SiNT) templates were fabricated and coated with gold for various lengths of time to study the effect of surface charge, surface roughness, and hydrophilicity on biological activity of rat pheochromocytoma cell lines PC12. The initial growth and proliferation of PC12 cells on Si and SiNT templates showed an antipathy for the ultra-sharp SiNTs templates. In contrast, the same cells demonstrated a preferable adherence to and proliferation on planar Si templates, resulting in higher cell densities by three orders of magnitude than those on SiNT templates. It is hypothesized that SiNTs array does generate nano-fluidic effect such that the effective contact region for aqueous solution on SiNTs is lower than that on planar Si templates, thus decreasing adsorbable area for cell viability and survival. Moreover, the effect of the gold coating on cell number density was analyzed in terms of the surface roughness, zeta potential and wetting properties of the templates. It was determined that surface charge, as measured by the zeta potential, strongly correlated with the trend observed in the surface cell density, whereas no such correlation was observed for surface roughness or wetting properties in the ranges of our experiment conditions. © 2014 Wiley Periodicals, Inc.
Mechanical properties of geopolymer lightweight brick with styrofoam pellet
NASA Astrophysics Data System (ADS)
Abdullah, Mohd Mustafa Al Bakri; Tahir, Muhammad Faheem Mohd; Kadir, Aeslina Abdul; Hussin, Kamarudin; Samson, W. Saiful Iskandar W.
2017-09-01
The utilization of fly ash in brick as partial replacement of cement is gaining immense importance today, mainly on account of the improvement in the long-term durability of brick combined with ecological benefits. In this research, the lightweight brick was produced by using fly ash (class F) as a main material to replace Ordinary Portland Cement (OPC) in the composition of brick. Class F Fly Ash was mixed with an alkaline activator solution (a mixture of sodium silicate and NaOH), and styrofoam pellet was added to the geopolymer mixture to produce lightweight brick. The brick was prepared in two methods that is wet method and dry method due to different brick composition which is dry method for composition with sand and wet method for composition without sand. The bricks were cured in room temperature at 7 aging days. After 7 days, the compressive strength, water absorption, and density of the brick were investigated, where the optimum ratio for the best bricks has been determined from the lightweight density and has compressive strength more than minimum standard requirement. The best bricks are further produce for curing at 60°C in oven at 28 aging days. Those bricks also were characterized using optical microscope to measure the distribution of styrofoam in brick structure. From the result obtained, the brick that cured at 60°C in oven at 28 aging days has high strength compare to brick that cured in room temperature and at 7 day cured. The water absorption is decreasing as the curing temperature and aging days increased whereas density is increasing.
NASA Astrophysics Data System (ADS)
Sanchez-Mejia, Z. M.; Papuga, S. A.
2012-12-01
Water limited ecosystems in arid and semiarid regions are characterized by sparse vegetation and a relatively large fraction of bare soil. Importantly, the land surface in these dryland regions is highly sensitive to pulses of moisture that affect the vegetation canopy in density and color, as well as the soil color. Changes in surface conditions due to these pulses have been shown to affect the surface energy fluxes and atmospheric processes in these regions. For instance, previous studies have shown that shallow soil moisture ( < 20 cm below the surface) significantly changes surface albedo (a= SWup/ SWin). Recent studies have highlighted the importance of deep soil moisture ( > 20 cm below the surface) for vegetation dynamics in these regions. We hypothesize that deep soil moisture will change vegetation canopy density and color enough that changes in albedo will be observable at the surface, therefore linking deep soil moisture and albedo. We adopt a conceptual framework to address this hypothesis, where at any point in time the soil profile falls into one of four cases: (1) dry shallow soil and dry deep soil; (2) wet shallow soil and dry deep soil; (3) wet shallow soil and wet deep soil; and (4) dry shallow soil and wet deep soil. At a creosotebush dominated ecosystem of the Santa Rita Experimental Range, southern Arizona during summers of 2011 and 2012, we took albedo measurements during these cases at multiple bare and vegetated patches within the footprint of an eddy covariance tower. We found that when the soil is completely dry (Case 1) albedo is highest in both bare and vegetated patches. Likewise, when the soil is wet in both the shallow and deep regions (Case 3), albedo is lowest in both bare and vegetated patches. Interestingly, we also found that albedo is significantly lower for vegetated patches when the deep soil is wet and shallow soil is dry (Case 4). These results imply that deep soil moisture can be important in altering ecosystem level albedo. We note that ecosystems with higher percent vegetative cover are likely to be more sensitive to deep soil moisture driven changes in albedo. To quantify the influence of percent cover on ecosystem albedo, we populate a 100 x 100 cell grid randomly with bare and vegetated cells. For each case, we assign an albedo value to each cell based on probability distribution functions (PDFs) of soil moisture and albedo created from our field campaign data. Using this technique we can identify for each soil moisture case at which point the percent vegetative cover will significantly influence ecosystem albedo. Quantitative analyses of these ecosystem interactions help identify the unique role of deep soil moisture in land surface - atmosphere interactions.
Study of critical defects in ablative heat shield systems for the space shuttle
NASA Technical Reports Server (NTRS)
Miller, C. C.; Rummel, W. D.
1974-01-01
Experimental results are presented for a program conducted to determine the effects of fabrication-induced defects on the performance of an ablative heat shield material. Exposures representing a variety of space shuttle orbiter mission environments-humidity acoustics, hot vacuum and cold vacuum-culuminating in entry heating and transonic acoustics, were simulated on large panels containing intentional defects. Nondestructive methods for detecting the defects, were investigated. The baseline materials were two honeycomb-reinforced low density, silicone ablators, MG-36 and SS-41. Principal manufacturing-induced defects displaying a critical potential included: off-curing of the ablator, extreme low density, undercut (or crushed) honeycomb reinforcements, and poor wet-coating of honeycomb.
Application of densification process in organic waste management.
Zafari, Abedin; Kianmehr, Mohammad Hossein
2013-07-01
Densification of biomass material that usually has a low density is good way of increasing density, reducing the cost of transportation, and simplifying the storage and distribution of this material. The current study was conducted to investigate the influence of raw material parameters (moisture content and particle size), and densification process parameters (piston speed and die length) on the density and durability of pellets from compost manure. A hydraulic press and a single pelleter were used to produce pellets in controlled conditions. Ground biomass samples were compressed with three levels of moisture content [35%, 40% and 45% (wet basis)], piston speed (2, 6 and 10 mm/s), die length (8, 10 and 12 mm) and particle size (0.3., 0.9 and 1.5 mm) to establish density and durability of pellets. A response surface methodology based on the Box Behnken design was used to study the responses pattern and to understand the influence of parameters. The results revealed that all independent variables have significant (P < 0.01) effects on studied responses in this research.
Kuan, Chee Hao; Wong, Woan Chwen; Pui, Chai Fung; Mahyudin, Nor Ainy; Tang, John Yew Huat; Nishibuchi, Mitsuaki; Radu, Son
2013-12-01
A total of 63 beef offal samples (beef liver = 16; beef lung = 14; beef intestine = 9; beef tripe = 15; beef spleen = 9) from three wet markets (A, B, and C) in Selangor, Malaysia were examined for the prevalence and microbial load of Listeria monocytogenes. A combination of the most probable number and polymerase chain reaction (MPN-PCR) method was employed in this study. It was found that L. monocytogenes detected in 33.33% of the beef offal samples. The prevalence of L. monocytogenes in beef offal purchased from wet markets A, B, and C were 22.73%, 37.50% and 41.18% respectively. The density of L. monocytogenes in all the samples ranged from < 3 up to > 2,400 MPN/g. The findings in this study indicate that beef offal can be a potential vehicle of foodborne listeriosis.
Development of aerogel-lined targets for inertial confinement fusion experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braun, Tom
2013-03-28
This thesis explores the formation of ICF compatible foam layers inside of an ablator shell used for inertial confinement fusion experiments at the National Ignition Facility. In particular, the capability of p- DCPD polymer aerogels to serve as a scaffold for the deuterium-tritium mix was analyzed. Four different factors were evaluated: the dependency of different factors such as thickness or composition of a precursor solution on the uniformity of the aerogel layer, how to bring the optimal composition inside of the ablator shell, the mechanical stability of ultra-low density p-DCPD aerogel bulk pieces during wetting and freezing with hydrogen, andmore » the wetting behavior of thin polymer foam layers in HDC carbon ablator shells with liquid deuterium. The research for thesis was done at Lawrence Livermore National Laboratory in cooperation with the Technical University Munich.« less
Cell adhesion on nanotextured slippery superhydrophobic substrates.
Di Mundo, Rosa; Nardulli, Marina; Milella, Antonella; Favia, Pietro; d'Agostino, Riccardo; Gristina, Roberto
2011-04-19
In this work, the response of Saos2 cells to polymeric surfaces with different roughness/density of nanometric dots produced by a tailored plasma-etching process has been studied. Topographical features have been evaluated by atomic force microscopy, while wetting behavior, in terms of water-surface adhesion energy, has been evaluated by measurements of drop sliding angle. Saos2 cytocompatibility has been investigated by scanning electron microscopy, fluorescent microscopy, and optical microscopy. The similarity in outer chemical composition has allowed isolation of the impact of the topographical features on cellular behavior. The results indicate that Saos2 cells respond differently to surfaces with different nanoscale topographical features, clearly showing a certain inhibition in cell adhesion when the nanoscale is particularly small. This effect appears to be attenuated in surfaces with relatively bigger nanofeatures, though these express a more pronounced slippery/dry wetting character. © 2011 American Chemical Society
Control of the probe influence on the flow field in LP steam turbine
NASA Astrophysics Data System (ADS)
Kolovratník, Michal; Yun, Kukchol; Bartoš, Ondřej
For measuring the fine droplets properties in the wet steam expanding in the steam turbines the light extinction probes are usually used. The paper presents CFD modelling of the extinction probe influence on the wet steam flow field at the measurement position. The aim is to get a basic information about the influence of the flow field deviation on the measured data, in other words, of necessity to correct the measured data. The basic modelling procedure is described, as well as the supposed simplifications and the factor considering the change in the steam density in the measuring slot of the probe. The model is based on the experimental data that were achieved during the developmental measurements in the steam turbine 1090 MW in the power station Temelín. The experimental measurement was done in the cooperation with the Doosan Škoda Power s.r.o.
NASA Astrophysics Data System (ADS)
Kim, Jungho
2013-11-01
We theoretically investigate the phase recovery acceleration of quantum-dot (QD) semiconductor optical amplifiers (SOAs) by means of the optical pump injection to the quantum-well (QW) wetting layer (WL). We compare the ultrafast gain and phase recovery responses of QD SOAs in either the electrical or the optical pumping scheme by numerically solving 1088 coupled rate equations. The ultrafast gain recovery responses on the order of sub-picosecond are nearly the same for the two pumping schemes. The ultrafast phase recovery is not significantly accelerated by increasing the electrical current density, but greatly improved by increasing the optical pumping power to the QW WL. Because the phase recovery time of QD SOAs with the optical pumping scheme can be reduced down to several picoseconds, the complete phase recovery can be achieved when consecutive pulse signals with a repetition rate of 100 GHz is injected.
Kuan, Chee Hao; Wong, Woan Chwen; Pui, Chai Fung; Mahyudin, Nor Ainy; Tang, John Yew Huat; Nishibuchi, Mitsuaki; Radu, Son
2013-01-01
A total of 63 beef offal samples (beef liver = 16; beef lung = 14; beef intestine = 9; beef tripe = 15; beef spleen = 9) from three wet markets (A, B, and C) in Selangor, Malaysia were examined for the prevalence and microbial load of Listeria monocytogenes. A combination of the most probable number and polymerase chain reaction (MPN-PCR) method was employed in this study. It was found that L. monocytogenes detected in 33.33% of the beef offal samples. The prevalence of L. monocytogenes in beef offal purchased from wet markets A, B, and C were 22.73%, 37.50% and 41.18% respectively. The density of L. monocytogenes in all the samples ranged from < 3 up to > 2,400 MPN/g. The findings in this study indicate that beef offal can be a potential vehicle of foodborne listeriosis. PMID:24688507
Laser photolysis study of the exciplex between triplet benzil and triethylamine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Encinas, M.V.; Scaiano, J.C.
1979-12-19
Nanosecond laser flash photolysis techniques have been used to examine the triplet decay and radical-ion formation in the triethylamine (TEA) - benzil system in wet acetonitrile. Under conditions of high TEA concentrations yielding short triplet lifetime, the formation of the benzil radical anion was found to be considerably slower than the decay of the triplet state. This effect is attributed to the intermediacy of a relatively stable exciplex whose properties are reported here. Results of a study of optical density of the system with time following laser excitation led to the assignment of a lifetime of 55ns to the exciplexmore » formed between the triplet benzil and TEA. A structure is suggested for the exciplex. Results of experiments with the non-polar medium n-heptane indicated a shorter lifetime exciplex or one with very different properties from the species identified in the polar medium, wet acetonitrile. (BLM)« less
Manning, D P; Jones, C
2001-04-01
Research over a period of about 18 years has shown that a microcellular polyurethane known as AP66033 is the most slip-resistant safety footwear soling material on oily and wet surfaces. In recent years it has been replaced in commercially available footwear by a dual density polyurethane (DDP) which has a dense outer layer and a soft microcellular backing. This research programme has compared the slip resistance of AP66033 with DDP and some rubber solings. In addition, data were obtained on the effects of soling and floor roughness, and floor polish on slip resistance. Some data were also obtained for walking on ice. The coefficient of friction (CoF) of the solings was measured on 19 water wet surfaces in three conditions: (I) when the solings were new, (II) following abrasion to create maximum roughness and (III) after polishing. The CoF was measured on four oily surfaces after each of 11 abrasion or polishing treatments. The profound effects of the roughening of all soles and of floor roughness on the CoF were demonstrated for both wet and oily surfaces. The superior slip resistance of AP66033 was confirmed for oily and wet conditions; however, some rubbers not suitable for safety footwear achieved higher CoF values on wet floors. All of the floor polishes reduced the CoF of all floors when contaminated with water. The mean CoF of DDP solings was lower than the mean for AP66033 on wet and oily surfaces. No safety footwear soling provided adequate grip on dry ice and the CoF was reduced by water on the ice. A rubber used for rock climbing footwear was one of the most slip-resistant solings on wet surfaces in the laboratory but recorded the lowest CoF on ice. It is concluded that the incidence of occupational injuries caused by slipping could be reduced by the following: (A) returning to safety footwear soled with the microcellular polyurethane AP66033; (B) abrading all new and smooth footwear solings with a belt sanding machine coated with P100 grit; (C) avoiding the use of floor polish; (D) informing the general public about the poor slip resistance of ordinary footwear on ice and the lowering of slip resistance in cold weather.
Gastrointestinal effects of water reuse for public park irrigation.
Durand, R; Schwebach, G
1989-01-01
To investigate the gastrointestinal effects of employing recycled water as an irrigation source for urban public parks, we studied subjects active in parks irrigated with potable water, nonpotable water of wastewater origin, and nonpotable water of runoff origin. Wet grass conditions during activity and elevated densities of common indicator bacteria, but not exposure to nonpotable irrigation water per se, were found associated with an increased rate of gastrointestinal illness. PMID:2817197
Nondestructive Biophysical Probes of the Basis and Mechanism of Resistance in Microbial Spores.
1983-05-10
correlated with their water content, wet density, and protoplast/sporoplast volume ratio; (2) photometric immersion refractometry was used to show that the...immersion refractometry was used to determine if dehydration of the protoplast accounts for sporal resistance to heat. These and other approaches...in above). c. Gerhardt, P., T.C. Beaman, T.R. Corner, J.T. Greenamayer and L.S. Tisa. 1981. Photometric immersion Refractometry of Bacterial Spores
Development of Defoamers for Confinenment Foam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, D M; Mitchell, A R
Aqueous foam concentrate (AFC) 380 foam was developed by Sandia National Laboratory as a blast mitigation foam for unexploded ordnance (UXO) and its ''engineered foam structure'' is reported to be able to ''envelop chemical or biological aerosols'' [1]. It is similar to commercial fire-fighting foams, consisting mostly of water with small amounts of two alcohols, an ether and surfactant. It also contains xanthan gum, probably, to strengthen the foam film and delay drainage. The concentrate is normally diluted in a 6:94 ratio with water for foaming applications. The diluted solution is normally foamed with air to an expansion factor ofmore » about 100 (density 0.01 g/cc), which is called ''dry'' foam. Higher density foam (0.18 > {rho} > 0.03 g/cc) was discovered which had quite different characteristics from ''dry'' foam and was called ''wet'' foam. Some characterization of these foams has also been carried out, but the major effort described in this document is the evaluation, at the small and medium scale, of chemical, mechanical and thermal approaches to defoaming AFC 380 foam. Several chemical approaches to defoaming were evaluated including oxidation and precipitation of the xanthan, use of commercial oil-emulsion or suspension defoamers, pH modification, and cation exchange with the surfactant. Of these the commercial defoamers were most effective. Two mechanical approaches to defoaming were evaluated: pressure and foam rupture with very fine particles. Pressure and vacuum techniques were considered too difficult for field applications but high surface area silica particles worked very well on dry foam. Finally simple thermal techniques were evaluated. An order-disorder transition occurs in xanthan solutions at about 60 C, which may be responsible for the effectiveness of hot air as a defoamer. During defoaming of 55 gallons of foam with hot air, after about 70% of the AFC 380 foam had been defoamed, the effectiveness of hot air was dramatically reduced. Approximately 15 gal of residual foam containing mostly small bubbles was resistant to further defoaming by methods that had been effective on the original, dry foam. In this paper the residual foam is referred to as ''wet'' and the original foam is referred to as ''dry''. Methods for generating ''wet'' foam in small to moderate quantities for defoaming experiments have been developed. Methods for defoaming wet foam are currently under study.« less
Density of ocular components of the bovine eye.
Su, Xiao; Vesco, Christina; Fleming, Jacquelyn; Choh, Vivian
2009-10-01
Density is essential for acoustic characterization of tissues and provides a basic input for ultrasound backscatter and absorption models. Despite the existence of extensive compilations of acoustic properties, neither unified data on ocular density nor comparisons of the densities between all ocular components can be found. This study was undertaken to determine the mass density of all the ocular components of the bovine eye. Liquid components were measured through mass/volume ratio, whereas solid tissues were measured with two different densitometry techniques based on Archimedes Principle. The first method determines the density by measuring dry and wet weight of the tissues. The second method consists of immersing the tissues in sucrose solutions of varying densities and observing their buoyancy. Although the mean densities for all tissues were found to be within 0.02 g/cm by both methods, only the sucrose solution method offered a consistent relative order for all measured ocular components, as well as a considerably smaller standard deviation (a maximum standard deviation of 0.004 g/cm for cornea). The lens was found to be the densest component, followed by the sclera, cornea, choroid, retina, aqueous, and vitreous humors. The consistent results of the sucrose solution tests suggest that the ocular mass density is a physical property that is more dependent on the compositional and structural characteristics of the tissue and than on population variability.
NASA Astrophysics Data System (ADS)
Carrasco, Nicola K.; Perissinotto, Renzo
2015-12-01
Lake St Lucia is among the most important shallow ecosystems globally and Africa's largest estuarine lake. It has long been regarded as a resilient system, oscillating through periods of hypersalinity and freshwater conditions, depending on the prevailing climate. The alteration of the system's catchment involving the diversion of the Mfolozi River away from Lake St Lucia, however, challenged the resilience of the system, particularly during the most recent drought (2002-2011), sacrificing much of its biodiversity. This study reports on the transition of the St Lucia zooplankton community from a dry hypersaline state to a new wet phase. Sampling was undertaken during routine quarterly surveys at five representative stations along the lake system from February 2011 to November 2013. A total of 54 taxa were recorded during the study period. The zooplankton community was numerically dominated by the calanoid copepods Acartiella natalensis and Pseudodiaptomus stuhlmanni and the cyclopoid copepod Oithona brevicornis. While the mysid Mesopodopsis africana was still present in the system during the wet phase, it was not found in the swarming densities that were recorded during the previous dry phase, possibly due to increased predation pressure, competition with other taxa and or the reconnection with the Mfolozi River via a beach spillway. The increase in zooplankton species richness recorded during the present study shows that the system has undergone a transition to wet state, with the zooplankton community structure reflecting that recorded during the past. It is likely, though, that only a full restoration of natural mouth functioning will result in further diversity increases.
NASA Astrophysics Data System (ADS)
De la Fuente, Maria; Vaunat, Jean; Pedone, Giuseppe; Cotecchia, Federica; Sollecito, Francesca; Casini, Francesca
2015-04-01
Tectonized clays are complex materials characterized by several levels of structures that may evolve during load and wetting/drying processes. Some microstructural patterns, as microfissures, have a particular influence on the value of permeability which is one of the main factors controlling pore pressure regime in slopes. In this work, the pore pressure regime measured in a real slope of tectonized clay in Southern Italy is analyzed by a numerical model that considers changes in permeability induced by microfissure closure and opening during the wetting and drying processes resulting from climatic actions. Permeability model accounts for the changes in Pore Size Distribution observed by Microscopy Intrusion Porosimetry. MIP tests are performed on representative samples of ground in initial conditions ("in situ" conditions) and final conditions (deformed sample after applying a wetting path that aims to reproduce the saturation of the soil under heavy rains). The resulting measurements allow for the characterization at microstructural level of the soil, identifying the distribution of dominant families pores in the sample and its evolution under external actions. Moreover, comparison of pore size density functions allows defining a microstructural parameter that depends on void ratio and degree of saturation and controls the variation of permeability. Model has been implemented in a thermo-hydro-mechanical code provided with a special boundary condition for climatic actions. Tool is used to analyze pore pressure measurements obtained in the tectonized clay slope. Results are analyzed at the light of the effect that permeability changes during wetting and drying have on the pore pressure regime.
NASA Astrophysics Data System (ADS)
Szymczak, Sonja; Hetzer, Timo; Bräuning, Achim; Joachimski, Michael M.; Leuschner, Hanns-Hubert; Kuhlemann, Joachim
2014-10-01
We present a new multi-parameter dataset from Corsican black pine growing on the island of Corsica in the Western Mediterranean basin covering the period AD 1410-2008. Wood parameters measured include tree-ring width, latewood width, earlywood width, cell lumen area, cell width, cell wall thickness, modelled wood density, as well as stable carbon and oxygen isotopes. We evaluated the relationships between different parameters and determined the value of the dataset for climate reconstructions. Correlation analyses revealed that carbon isotope ratios are influenced by cell parameters determining cell size, whereas oxygen isotope ratios are influenced by cell parameters determining the amount of transportable water in the xylem. A summer (June to August) precipitation reconstruction dating back to AD 1185 was established based on tree-ring width. No long-term trends or pronounced periods with extreme high/low precipitation are recorded in our reconstruction, indicating relatively stable moisture conditions over the entire time period. By comparing the precipitation reconstruction with a summer temperature reconstruction derived from the carbon isotope chronologies, we identified summers with extreme climate conditions, i.e. warm-dry, warm-wet, cold-dry and cold-wet. Extreme climate conditions during summer months were found to influence cell parameter characteristics. Cold-wet summers promote the production of broad latewood composed of wide and thin-walled tracheids, while warm-wet summers promote the production of latewood with small thick-walled cells. The presented dataset emphasizes the potential of multi-parameter wood analysis from one tree species over long time scales.
NASA Astrophysics Data System (ADS)
Li, Dongdong; Luo, Peiyu; Yang, Jinfeng
2017-12-01
This study aims to explore changes of long-term fertilization on spore density and colonization of AMF (Arbuscular mycorrhizal fungi) under a 38-y long-term fertilization in a brown soil. Soil samples (0-20 cm,20-40cm,40-60cm)were taken from the six treatments of the long-term fertilization trial in October 2016:no fertilizer (CK), N1(mineral nitrogen fertilizer), N1P (mineral nitrogen and phosphate fertilizer), N1PK (mineral nitrogen, phosphate and potassic fertilizer), pig manure (M2), M2N1P (pig manure, mineral nitrogen andphosphate fertilizer).Spores were isolated from soils by wet sieving and sucrose density gradient centrifugation; mycorrhizal colonization levels were determined by the gridline intersect. The spore density was highest in the topsoils (0-20 cm), and was decreased with increasing of soil depth in each treatment. The spores density of M2N1P treatment was significantly higher than that of other treatments in each soil layer. Application of inorganic fertilizer (especially inorganic with organic fertilizer) can greatly improve the level of colonization. Our results suggested that long-term fertilization significantly affects spore density and colonization of AMF, however, spore density is not related to colonization rate.
Impact of Ti Incorporation on Hydroxylation and Wetting of Fe 3 O 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoerzinger, Kelsey A.; Pearce, Carolyn I.; Droubay, Timothy C.
2017-08-24
Understanding the interaction of water with compositionally tuned metal oxides is central to exploiting their unique catalytic and magnetic properties. However, processes such as hydroxylation, wetting, and resulting changes in electronic structure at ambient conditions are challenging to probe in situ. Here, we examine the hydroxylation and wetting of Fe(3-x)TixO4 epitaxial films directly using ambient pressure X-ray photoelectron spectroscopy under controlled relative humidity. Fe2+ formation promoted by Ti4+ substitution for Fe3+ increases with hydroxylation, commensurate with a decrease in the surface work function or change in the surface dipole. The incorporation of small amounts of Ti (x=0.25) as a bulkmore » dopant dramatically impacts hydroxylation, in part due to surface segregation, leading to coverages closer to that of TiO2 than Fe3O4. However, the Fe(3-x)TixO4 compositional series shows a similar affinity for water physisorption, which begins at notably lower relative humidity than on TiO2. The findings suggest that relative humidity rather than surface hydroxyl density controls wettability. Studies of this kind directly relate to rational design of doped magnetite into more active catalysts for UV/Fenton degradation, the adsorption of contaminants, and the development of spin filters.« less
Yang, M; Sun, Y; Xu, A H; Lu, X Y; Du, H Z; Sun, C L; Li, C
2007-07-01
Catalytic wet air of coke-plant wastewater was studied in a bubbling bed reactor. Two types of supported Ru-based catalysts, eggshell and uniform catalysts, were employed. Compared with the results in the wet air oxidation of coke-plant wastewater, supported Ru uniform catalysts showed high activity for chemical oxygen demand (COD) and ammonia/ammonium compounds (NH3-N) removal at temperature of 250 degrees C and pressure of 4.8 MPa, and it has been demonstrated that the catalytic activity of uniform catalyst depended strongly on the distribution of active sites of Ru on catalyst. Compared to the corresponding uniform catalysts with the same Ru loading (0.25 wt.% and 0.1 wt.%, respectively), the eggshell catalysts showed higher activities for CODcr removal and much higher activities for NH3-N degradation. The high activity of eggshell catalyst for treatment of coke-plant wastewater can be attributed to the higher density of active Ru sites in the shell layer than that of the corresponding uniform catalyst with the same Ru loading. It has been also evidenced that the active Ru sites in the internal core of uniform catalyst have very little or no contribution to CODcr and NH3-N removal in the total oxidation of coke-plant wastewater.
NASA Astrophysics Data System (ADS)
Kim, Byoungsu; Hillman, Febrian; Ariyoshi, Miho; Fujikawa, Shigenori; Kenis, Paul J. A.
2016-04-01
With the development of better catalysts, mass transport limitations are becoming a challenge to high throughput electrochemical reduction of CO2 to CO. In contrast to optimization of electrodes for fuel cells, optimization of gas diffusion electrodes (GDE) - consisting of a carbon fiber substrate (CFS), a micro porous layer (MPL), and a catalyst layer (CL) - for CO2 reduction has not received a lot of attention. Here, we studied the effect of the MPL and CFS composition on cathode performance in electroreduction of CO2 to CO. In a flow reactor, optimized GDEs exhibited a higher partial current density for CO production than Sigracet 35BC, a commercially available GDE. By performing electrochemical impedance spectroscopy in a CO2 flow reactor we determined that a loading of 20 wt% PTFE in the MPL resulted in the best performance. We also investigated the influence of the thickness and wet proof level of CFS with two different feeds, 100% CO2 and the mixture of 50% CO2 and N2, determining that thinner and lower wet proofing of the CFS yields better cathode performance than when using a thicker and higher wet proof level of CFS.
Castro, D M P; Hughes, R M; Callisto, M
2013-11-01
Successive daily peak flows from hydropower plants can disrupt aquatic ecosystems and alter the composition and structure of macroinvertebrates downstream. We evaluated the influence of peak flow changes on macroinvertebrate drift downstream of a hydroelectric plant as a basis for determining ecological flows that might reduce the disturbance of aquatic biota. The aim of this study was to assess the influence of flow fluctuations on the seasonal and daily drift patterns of macroinvertebrates. We collected macroinvertebrates during fixed flow rates (323 m3.s-1 in the wet season and 111 m3.s-1 in the dry season) and when peak flows fluctuated (378 to 481 m3.s-1 in the wet season, and 109 to 173 m3.s-1 in the dry season) in 2010. We collected 31,924 organisms belonging to 46 taxa in the four sampling periods. Taxonomic composition and densities of drifting invertebrates differed between fixed and fluctuating flows, in both wet and dry seasons, but family richness varied insignificantly. We conclude that macroinvertebrate assemblages downstream of dams are influenced by daily peak flow fluctuations. When making environmental flow decisions for dams, it would be wise to consider drifting macroinvertebrates because they reflect ecological changes in downstream biological assemblages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altshuler, Gennady; Manor, Ofer, E-mail: manoro@technion.ac.il
A MHz vibration, or an acoustic wave, propagating in a solid substrate may support the convective spreading of a liquid film. Previous studies uncovered this ability for fully wetting silicon oil films under the excitation of a MHz Rayleigh surface acoustic wave (SAW), propagating in a lithium niobate substrate. Partially wetting de-ionized water films, however, appeared immune to this spreading mechanism. Here, we use both theory and experiment to reconsider this situation and show partially wetting water films may spread under the influence of a propagating MHz vibration. We demonstrate distinct capillary and convective (vibrational/acoustic) spreading regimes that are governedmore » by a balance between convective and capillary mechanisms, manifested in the non-dimensional number θ{sup 3}/We, where θ is the three phase contact angle of the liquid with the solid substrate and We ≡ ρU{sup 2}H/γ; ρ, γ, H, and U are the liquid density, liquid/vapour surface tension, characteristic film thickness, and the characteristic velocity amplitude of the propagating vibration on the solid surface, respectively. Our main finding is that the vibration will support a continuous spreading motion of the liquid film out of a large reservoir if the convective mechanism prevails (θ{sup 3}/We < 1); otherwise (θ{sup 3}/We > 1), the dynamics of the film is governed by the capillary mechanism.« less
Reaction mechanisms at 4H-SiC/SiO2 interface during wet SiC oxidation
NASA Astrophysics Data System (ADS)
Akiyama, Toru; Hori, Shinsuke; Nakamura, Kohji; Ito, Tomonori; Kageshima, Hiroyuki; Uematsu, Masashi; Shiraishi, Kenji
2018-04-01
The reaction processes at the interface between SiC with 4H structure (4H-SiC) and SiO2 during wet oxidation are investigated by electronic structure calculations within the density functional theory. Our calculations for 4H-SiC/SiO2 interfaces with various orientations demonstrate characteristic features of the reaction depending on the crystal orientation of SiC: On the Si-face, the H2O molecule is stable in SiO2 and hardly reacts with the SiC substrate, while the O atom of H2O can form Si-O bonds at the C-face interface. Two OH groups are found to be at least necessary for forming new Si-O bonds at the Si-face interface, indicating that the oxidation rate on the Si-face is very low compared with that on the C-face. On the other hand, both the H2O molecule and the OH group are incorporated into the C-face interface, and the energy barrier for OH is similar to that for H2O. By comparing the calculated energy barriers for these reactants with the activation energies of oxide growth rate, we suggest the orientation-dependent rate-limiting processes during wet SiC oxidation.
Growth and surface analysis of SiO2 on 4H-SiC for MOS devices
NASA Astrophysics Data System (ADS)
Kodigala, Subba Ramaiah; Chattopadhyay, Somnath; Overton, Charles; Ardoin, Ira; Gordon, B. J.; Johnstone, D.; Roy, D.; Barone, D.
2015-03-01
The SiO2 layers have been grown onto C-face and Si-face 4H-SiC substrates by two different techniques such as wet thermal oxidize process and sputtering. The deposition recipes of these techniques are carefully optimized by trails and error method. The growth effects of SiO2 on the C-face and Si-face 4H-SiC substrates are thoroughly investigated by AFM analysis. The growth mechanism of different species involved in the growth process of SiO2 by wet thermal oxide is now proposed by adopting two body classical projectile scattering. This mechanism drives to determine growth of secondary phases such as α-CH nano-islands in the grown SiO2 layer. The effect of HF etchings on the SiO2 layers grown by both techniques and on both the C-face and Si-face substrates are legitimately studied. The thicknesses of the layers determined by AFM and ellipsometry techniques are widely promulgated. The MOS capacitors are made on the Si-face 4H-SiC wafers by wet oxidation and sputtering processes, which are studied by capacitance versus voltage (CV) technique. From CV measurements, the density of trap states with variation of trap level for MOS devices is estimated.
Prospects for reducing the processing cost of lithium ion batteries
Wood III, David L.; Li, Jianlin; Daniel, Claus
2014-11-06
A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; doubling the thicknesses of the anode and cathode to raise energy density; and, reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and amore » standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).« less
Cao, Junhua; Liu, Yang; Ning, Xiao-Shan
2018-05-11
A successful application of a hot dip coating process that coats aluminum (Al) on aluminum nitride (AlN) ceramics, revealed that Al had a perfect wettability to the ceramics under specific circumstances, which was different from previous reports. In order to elucidate the mechanism that controlled the supernormal wetting phenomenon during the dip coating, a first-principle calculation of an Al(111)/AlN(0001) interface, based on the density functional theory (DFT), was employed. The wettability of the Al melt on the AlN(0001) surface, as well as the effect that the surface reconstruction of AlN and the oxygen adsorption had on Al for the adhesion and the wettability of the Al/AlN system, were studied. The results revealed that a LCM (laterally contracted monolayer) reconstruction could improve the adhesion and wettability of the system. Oxygen adsorption on the free surface of Al decreased the contact angle, because the adsorption reduced of the surface tension of Al. A prefect wetting was obtained only after some of the oxygen atoms adsorbed on the free surface of Al. The supernormal wetting phenomenon came from the surface reconstruction of the AlN and the adsorption of oxygen atoms on the Al melt surface.
Capillary Flow of Liquid Metals in Brazing
NASA Astrophysics Data System (ADS)
Dehsara, Mohammad
Capillary flow is driven or controlled by capillary forces, exerted at the triple line where the fluid phases meet the solid boundary. Phase field (PF) models naturally accommodate diffusive triple line motion with variable contact angle, thus allowing for the no-slip boundary condition without the stress singularities. Moreover, they are uniquely suited for modeling of topological discontinuities which often arise during capillary flows. In this study, we consider diffusive triple line motion within two PF models: the compositionally compressible (CC) and the incompressible (IC) models. We derive the IC model as a systematic approximation to the CC model, based on a suitable choice of continuum velocity field. The CC model, applied to the fluids of dissimilar mass densities, exhibits a computational instability at the triple line. The IC model perfectly represents the analytic equilibria. We develop the parameter identification procedure and show that the triple line kinetics can be well represented by the IC model's diffusive boundary condition. The IC model is first tested by benchmarking the phase-field and experimental kinetics of water, and silicone oil spreading over the glass plates in which two systems do not interact with the substrate. Then, two high-temperature physical settings involving spreading of the molten Al-Si alloy: one over a rough wetting substrate, the other over a non-wetting substrate are modeled in a T-joint structure which is a typical geometric configuration for many brazing and soldering applications. Surface roughness directly influences the spreading of the molten metal by causing break-ups of the liquid film and trapping the liquid away from the joint. In the early stages of capillary flow over non-wetting surface, the melting and flow are concurrent, so that the kinetics of wetting is strongly affected by the variations in effective viscosity of the partially molten metal. We define adequate time-dependent functions for the variations of Al-Si alloy viscosity and triple line mobility to describe the wetting kinetics.
Gao, Yang; Couwenberg, John
2015-02-01
Ice-wedge polygon peatlands contain a substantial part of the carbon stored in permafrost soils. However, little is known about their long-term carbon accumulation rates (CAR) in relation to shifts in vegetation and climate. We collected four peat profiles from one single polygon in NE Yakutia and cut them into contiguous 0.5 cm slices. Pollen density interpolation between AMS (14)C dated levels provided the time span contained in each of the sample slices, which--in combination with the volumetric carbon content--allowed for the reconstruction of CAR over decadal and centennial timescales. Vegetation representing dry palaeo-ridges and wet depressions was reconstructed with detailed micro- and macrofossil analysis. We found repeated shifts between wet and dry conditions during the past millennium. Dry ridges with associated permafrost growth originated during phases of (relatively) warm summer temperature and collapsed during relatively cold phases, illustrating the important role of vegetation and peat as intermediaries between ambient air temperature and the permafrost. The average long-term CAR across the four profiles was 10.6 ± 5.5 g C m(-2) yr(-1). Time-weighted mean CAR did not differ significantly between wet depression and dry ridge/hummock phases (10.6 ± 5.2 g C m(-2) yr(-1) and 10.3 ± 5.7 g C m(-2) yr(-1), respectively). Although we observed increased CAR in relation to warm shifts, we also found changes in the opposite direction and the highest CAR actually occurred during the Little Ice Age. In fact, CAR rather seems to be governed by strong internal feedback mechanisms and has roughly remained stable on centennial time scales. The absence of significant differences in CAR between dry ridge and wet depression phases suggests that recent warming and associated expansion of shrubs will not affect long-term rates of carbon burial in ice-wedge polygon peatlands. © 2014 John Wiley & Sons Ltd.
Migration And Entrapment Of Mercury In The Subsurface
NASA Astrophysics Data System (ADS)
M, D.; Nambi, I. M.
2009-12-01
Elemental mercury is an immiscible liquid with high density and high surface tension. The movement of mercury in the saturated subsurface region is therefore considered a case of two phase flow involving mercury and water and is expected to be governed by gravity, viscous and capillary forces. Fundamental investigation into the migration and capillary entrapment of mercury in the subsurface was done by controlled laboratory capillary pressure saturation experiments using mercury and water as non wetting and wetting fluid respectively. Residual mercury saturation and van Genuchten’s capillary entrapment parameters were determined independently for different sizes of porous media. Based on the experimental data, theoretical investigations were done on the role of the three predominant forces and their influence on mercury migration and entrapment. The effects of fluid density and interfacial tension and the influence of Capillary and Bond number on mercury entrapment were analyzed with the help of similar capillary pressure - saturation experiments using Tetrachloroethylene (PCE)-water fluid pair. Mercury-water systems exhibited a low residual saturation of 0.02 and 0.07 as compared to 0.16 and 0.27 for PCE-water systems. Less residual mercury saturation, lack of apparent hysteresis in capillary pressure saturation curves and large variation in van Genuchten’s parameters 'α'(inverse of displacement pressure) and ‘n’ (pore size distribution index) for mercury-water systems compared to PCE-water systems were observed. These anomalies between the two systems elucidate that the capillary trapping is equally dependent on the fluid characteristics especially for high density immiscible fluids. Gravity force nevertheless a predominant controlling factor in the migration of highly dense mercury, is counteracted by not less trivial capillary force which was 1.22x104 times higher than gravity force. The capillary forces thus surmount the gravity forces and cause entrapment of mercury in the soil pores even in homogeneous porous medium system. Bond number (Bond number relates gravity and capillary forces) for mercury-water system was found to 2.5 times higher than PCE-water systems. Large density differences between mercury and water lead to high Bond number and thus less residual saturation. Capillary number (Capillary number relates viscous and capillary forces) was found to be less for mercury-water systems. Literature review unveils that low Capillary number does not influence non wetting residual saturation. But for high density mercury with natural infiltration, even low Capillary number influences residual saturation. With the alarming increase in number of mercury spill sites, results of this study showed a better understanding of the capillary entrapment phenomena and the extent of influence of each predominant force during displacement of highly dense mercury. The fundamental inputs to NAPL entrapment models were generated in this study for mercury for the first time. This data will be used to assess the distribution of mercury in contaminated sites and design suitable remedial alternatives.
Seismic peak amplitude as a predictor of TOC content in shallow marine sediments
NASA Astrophysics Data System (ADS)
Neto, Arthur Ayres; Mota, Bruno Bourguignon; Belem, André Luiz; Albuquerque, Ana Luiza; Capilla, Ramsés
2016-10-01
Acoustic remote sensing is a highly effective tool for exploring the seafloor of both deep and shallow marine settings. Indeed, the acoustic response depends on several physicochemical factors such as sediment grain size, bulk density, water content, and mineralogy. The objective of the present study is to assess the suitability of seismic peak amplitude as a predictor of total organic carbon (TOC) content in shallow marine sediments, based on data collected in the Cabo Frio mud belt in an upwelling zone off southeastern Brazil. These comprise records of P-wave velocity ( V P) along 680 km of high-resolution single-channel seismic surveys, combined with analyses of grain size, wet bulk density, absolute water content and TOC content for four piston-cores. TOC contents of sediments from 13 box-cores served to validate the methodology. The results show well-defined positive correlations between TOC content and mean grain size (phi scale) as well as absolute water content, and negative correlations with V P, wet bulk density, and acoustic impedance. These relationships yield a regression equation by which TOC content can be satisfactorily predicted on the basis of acoustic impedance for this region: y = - 4.84 ln( x) + 40.04. Indeed, the derived TOC contents differ by only 5% from those determined by geochemical analysis. After appropriate calibration, acoustic impedance can thus be conveniently used as a predictor of large-scale spatial distributions of organic carbon enrichment in marine sediments. This not only contributes to optimizing scientific project objectives, but also enhances the cost-effectiveness of marine surveys by greatly reducing the ship time commonly required for grid sampling.
Shinde, N M; Xia, Qi Xun; Yun, Je Moon; Singh, Saurabh; Mane, Rajaram S; Kim, Kwang-Ho
2017-05-23
The present study involves the synthesis of a bismuth oxide (Bi 2 O 3 ) electrode consisting of an arranged nano-platelets for evolving a flower-type surface appearance on nickel-foam (Bi 2 O 3 -Ni-F) by a simple, inexpensive, binder-free and one-step chemical bath deposition (CBD) method, popularly known as a wet chemical method. The as-prepared Bi 2 O 3 on Ni-foam, as an electrode material, demonstrates 557 F g -1 specific capacitance (SC, at 1 mA cm -2 ), of which 85% is retained even after 2000 cycles. With specific power density of 500 kW kg -1 , the Bi 2 O 3 -Ni-F electrode documents a specific energy density of 80 Wh kg -1 . Furthermore, a portable asymmetric supercapacitor device, i.e. a pencil-type cell consisting of Bi 2 O 3 -Ni-F as an anode and graphite as a cathode in 6 M KOH aqueous electrolyte solution, confirms 11 Wh kg -1 and 720 kW kg -1 specific energy and specific power densities, respectively. An easy and a simple synthesis approach for manufacturing a portable laboratory scale pencil-type supercapacitor device is a major outcome of this study, which can also be applied for ternary and quaternary metal oxides for recording an enhanced performance. In addition, we presented a demonstration of lighting a light emitting diode (LED) using a home-made pencil-type supercapacitor device which, finally, has confirmed the scaling and technical potentiality of Bi 2 O 3 -Ni-F in energy storage devices.
The effects of timing of grazing on plant and arthropod communities in high-elevation grasslands.
Davis, Stacy C; Burkle, Laura A; Cross, Wyatt F; Cutting, Kyle A
2014-01-01
Livestock grazing can be used as a key management tool for maintaining healthy ecosystems. However, the effectiveness of using grazing to modify habitat for species of conservation concern depends on how the grazing regime is implemented. Timing of grazing is one grazing regime component that is less understood than grazing intensity and grazer identity, but is predicted to have important implications for plant and higher trophic level responses. We experimentally assessed how timing of cattle grazing affected plant and arthropod communities in high-elevation grasslands of southwest Montana to better evaluate its use as a tool for multi-trophic level management. We manipulated timing of grazing, with one grazing treatment beginning in mid-June and the other in mid-July, in two experiments conducted in different grassland habitat types (i.e., wet meadow and upland) in 2011 and 2012. In the upland grassland experiment, we found that both early and late grazing treatments reduced forb biomass, whereas graminoid biomass was only reduced with late grazing. Grazing earlier in the growing season versus later did not result in greater recovery of graminoid or forb biomass as expected. In addition, the density of the most ubiquitous grassland arthropod order (Hemiptera) was reduced by both grazing treatments in upland grasslands. A comparison of end-of-season plant responses to grazing in upland versus wet meadow grasslands revealed that grazing reduced graminoid biomass in the wet meadow and forb biomass in the upland, irrespective of timing of grazing. Both grazing treatments also reduced end-of-season total arthropod and Hemiptera densities and Hemiptera biomass in both grassland habitat types. Our results indicate that both early and late season herbivory affect many plant and arthropod characteristics in a similar manner, but grazing earlier may negatively impact species of conservation concern requiring forage earlier in the growing season.
NASA Astrophysics Data System (ADS)
Maeno, Fukashi; Nakada, Setsuya; Oikawa, Teruki; Yoshimoto, Mitsuhiro; Komori, Jiro; Ishizuka, Yoshihiro; Takeshita, Yoshihiro; Shimano, Taketo; Kaneko, Takayuki; Nagai, Masashi
2016-05-01
The phreatic eruption at Ontake volcano on 27 September 2014, which caused the worst volcanic disaster in the past half-century in Japan, was reconstructed based on observations of the proximal pyroclastic density current (PDC) and fallout deposits. Witness observations were also used to clarify the eruption process. The deposits are divided into three major depositional units (Units A, B, and C) which are characterized by massive, extremely poorly sorted, and multimodal grain-size distribution with 30-50 wt% of fine ash (silt-clay component). The depositional condition was initially dry but eventually changed to wet. Unit A originated from gravity-driven turbulent PDCs in the relatively dry, vent-opening phase. Unit B was then produced mainly by fallout from a vigorous moist plume during vent development. Unit C was derived from wet ash fall in the declining stage. Ballistic ejecta continuously occurred during vent opening and development. As observed in the finest population of the grain-size distribution, aggregate particles were formed throughout the eruption, and the effect of water in the plume on the aggregation increased with time and distance. Based on the deposit thickness, duration, and grain-size data, and by applying a scaling analysis using a depth-averaged model of turbulent gravity currents, the particle concentration and initial flow speed of the PDC at the summit area were estimated as 2 × 10-4-2 × 10-3 and 24-28 m/s, respectively. The tephra thinning trend in the proximal area shows a steeper slope than in similar-sized magmatic eruptions, indicating a large tephra volume deposited over a short distance owing to the wet dispersal conditions. The Ontake eruption provided an opportunity to examine the deposits from a phreatic eruption with a complex eruption sequence that reflects the effect of external water on the eruption dynamics.
Results from the FIN-2 formal comparison
NASA Astrophysics Data System (ADS)
Connolly, Paul; Hoose, Corinna; Liu, Xiaohong; Moehler, Ottmar; Cziczo, Daniel; DeMott, Paul
2017-04-01
During the Fifth International Ice Nucleation Workshop (FIN-2) at the AIDA Ice Nucleation facility in Karlsruhe, Germany in March 2015, a formal comparison of ice nucleation measurement methods was conducted. During the experiments the samples of ice nucleating particles were not revealed to the instrument scientists, hence this was referred to as a "blind comparison". The two samples used were later revealed to be Arizona Test Dust and an Argentina soil sample. For these two samples seven mobile ice nucleating particle counters sampled directly from the AIDA chamber or from the aerosol preparation chamber at specified temperatures, whereas filter samples were taken for two offline deposition nucleation instruments. Wet suspension methods for determining IN concentrations were also used with 10 different methods employed. For the wet suspension methods experiments were conducted using INPs collected from the air inside the chambers (impinger sampling) and INPs taken from the bulk samples (vial sampling). Direct comparisons of the ice nucleating particle concentrations are reported as well as derived ice nucleation active site densities. The study highlights the difficulties in performing such analyses, but generally indicates that there is reasonable agreement between the wet suspension techniques. It is noted that ice nucleation efficiency derived from the AIDA chamber (quantified using the ice active surface site density approach) is higher than that for the cold stage techniques. This is both true for the Argentina soil sample and, to a lesser extent, for the Arizona Test Dust sample too. Other interesting effects were noted: for the ATD the impinger sampling demonstrated higher INP efficiency at higher temperatures (>255 K) than the vial sampling, but agreed at the lower temperatures (<255K), whereas the opposite was true for the Argentina soil sample. The results are analysed to better understand the performance of the various techniques and to address any size-sorting effects and / or sampling line loses.
A generalized model for estimating the energy density of invertebrates
James, Daniel A.; Csargo, Isak J.; Von Eschen, Aaron; Thul, Megan D.; Baker, James M.; Hayer, Cari-Ann; Howell, Jessica; Krause, Jacob; Letvin, Alex; Chipps, Steven R.
2012-01-01
Invertebrate energy density (ED) values are traditionally measured using bomb calorimetry. However, many researchers rely on a few published literature sources to obtain ED values because of time and sampling constraints on measuring ED with bomb calorimetry. Literature values often do not account for spatial or temporal variability associated with invertebrate ED. Thus, these values can be unreliable for use in models and other ecological applications. We evaluated the generality of the relationship between invertebrate ED and proportion of dry-to-wet mass (pDM). We then developed and tested a regression model to predict ED from pDM based on a taxonomically, spatially, and temporally diverse sample of invertebrates representing 28 orders in aquatic (freshwater, estuarine, and marine) and terrestrial (temperate and arid) habitats from 4 continents and 2 oceans. Samples included invertebrates collected in all seasons over the last 19 y. Evaluation of these data revealed a significant relationship between ED and pDM (r2 = 0.96, p < 0.0001), where ED (as J/g wet mass) was estimated from pDM as ED = 22,960pDM − 174.2. Model evaluation showed that nearly all (98.8%) of the variability between observed and predicted values for invertebrate ED could be attributed to residual error in the model. Regression of observed on predicted values revealed that the 97.5% joint confidence region included the intercept of 0 (−103.0 ± 707.9) and slope of 1 (1.01 ± 0.12). Use of this model requires that only dry and wet mass measurements be obtained, resulting in significant time, sample size, and cost savings compared to traditional bomb calorimetry approaches. This model should prove useful for a wide range of ecological studies because it is unaffected by taxonomic, seasonal, or spatial variability.
LeBrun, Edward G; Plowes, Robert M; Gilbert, Lawrence E
2012-07-01
1. Habitat disturbance and species invasions interact in natural systems, making it difficult to isolate the primary cause of ecosystem degradation. A general understanding requires case studies of how disturbance and invasion interact across a variety of ecosystem - invasive species combinations. 2. Dramatic losses in ant diversity followed the invasion of central Texas by red imported fire ants (Solenopsis invicta). However, recent manipulative studies in Florida revealed no effect on ant diversity following the removal of S. invicta from a disturbed pasture habitat, but moderate loss of diversity associated with their introduction into undisturbed habitat and no invasion occurred without disturbance. Thus, the importance of S. invicta in driving diversity loss and its ability to invade undisturbed systems is unresolved. 3. We examine the distribution and abundance of a large monogyne S. invicta population and its association with the co-occurring ant assemblage at a site in south Texas close to the aridity tolerance limit of S. invicta. 4. We document that moisture modulates S. invicta densities. Further, soil disturbing habitat manipulations greatly increase S. invicta population densities. However, S. invicta penetrates all habitats regardless of soil disturbance history. In contrast, controlled burns depress S. invicta densities. 5. In habitats where S. invicta is prevalent, it completely replaces native fire ants. However, S. invicta impacts native ants as a whole less strongly. Intriguingly, native ants responded distinctly to S. invicta in different environments. In wet, undisturbed environments, high S. invicta abundance disrupts the spatial structure of the ant assemblage by increasing clumping and is associated with reduced species density, while in dry-disturbed habitats, sites with high S. invicta abundance possess high numbers of native species. Analyses of co-occurrence indicate that reduced species density in wet-undisturbed sites arises from negative species interactions between native ants and S. invicta. However, these same data suggest that the high native species density of abundant S. invicta sites in dry-disturbed environments does not result from facilitation. 6. Monogyne S. invicta populations play different roles in different environments, driving ant diversity loss in some, but being largely symptomatic of habitat disturbance in others. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Method for making monolithic metal oxide aerogels
Droege, M.W.; Coronado, P.R.; Hair, L.M.
1995-03-07
Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels. 6 figs.
Method for making monolithic metal oxide aerogels
Droege, Michael W.; Coronado, Paul R.; Hair, Lucy M.
1995-01-01
Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels.
Defect reduction in seeded aluminum nitride crystal growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bondokov, Robert T.; Morgan, Kenneth E.; Schowalter, Leo J.
2017-04-18
Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density.ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.
Drying southern pine at 240°F-- effects of air velocity and humidity, board thickness and density
P. Koch
1972-01-01
Kiln time to reach 10 percent moisture content was shortened by circulating air at high velocity, but was little affected by board specific gravity. A wet-bulb depression of 80°F. provided faster drying than depressions of 40 or 115°F. At 80° depression and with air circulated at 930 f.p.m.. kiln time was directly proportional to board thickness. Under these optimum...
Defect reduction in seeded aluminum nitride crystal growth
Bondokov, Robert T.; Morgan, Kenneth E.; Schowalter, Leo J.; Slack, Glen A.
2017-06-06
Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density .ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.
Defect reduction in seeded aluminum nitride crystal growth
Bondokov, Robert T.; Schowalter, Leo J.; Morgan, Kenneth; Slack, Glen A; Rao, Shailaja P.; Gibb, Shawn Robert
2017-09-26
Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density.ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.
Modified Kelvin Equations for Capillary Condensation in Narrow and Wide Grooves
NASA Astrophysics Data System (ADS)
Malijevský, Alexandr; Parry, Andrew O.
2018-03-01
We consider the location and order of capillary condensation transitions occurring in deep grooves of width L and depth D . For walls that are completely wet by liquid (contact angle θ =0 ) the transition is continuous and its location is not sensitive to the depth of the groove. However, for walls that are partially wet by liquid, where the transition is first order, we show that the pressure at which it occurs is determined by a modified Kelvin equation characterized by an edge contact angle θE describing the shape of the meniscus formed at the top of the groove. The dependence of θE on the groove depth D relies, in turn, on whether corner menisci are formed at the bottom of the groove in the low density gaslike phase. While for macroscopically wide grooves these are always present when θ <45 ° we argue that their formation is inhibited in narrow grooves. This has a number of implications including that the local pinning of the meniscus and location of the condensation transition is different depending on whether the contact angle is greater or less than a universal value θ*≈31 °. Our arguments are supported by detailed microscopic density functional theory calculations that show that the modified Kelvin equation remains highly accurate even when L and D are of the order of tens of molecular diameters.
Freshwater scarcity effects on the aquatic macrofauna of a European Mediterranean-climate estuary.
González-Ortegón, Enrique; Baldó, Francisco; Arias, Alberto; Cuesta, Jose A; Fernández-Delgado, Carlos; Vilas, César; Drake, Pilar
2015-01-15
In the Mediterranean-climate zone, recurrent drought events and increasing water demand generally lead to a decrease in freshwater input to estuaries. This water scarcity may alter the proper function of estuaries as nursery areas for marine species and as permanent habitat for estuarine species. A 12-year data set of the aquatic macrofauna (fish, decapod and mysid crustaceans) in a Mediterranean estuary (Guadalquivir estuary, South Spain) was analysed to test if water scarcity favours the nursery function of regional estuaries to the detriment of permanent estuarine inhabitants. Target species typically displayed a salinity-related distribution and estuarine salinisation in dry years resulted in a general upstream community displacement. However, annual densities of marine species were neither consistently higher in dry years nor estuarine species during wet years. Exceptions included the estuarine mysid Neomysis integer and the marine shrimp Crangon crangon, which were more abundant in wet and dry years, respectively. High and persistent turbidity, a collateral effect of water scarcity, altered both the structural (salinity-related pattern) and functional (key prey species and predator density) community characteristics, chiefly after the second drought period of the analysis. The observed high inter-year environmental variability, as well as species-specific effects of water scarcity, suggests that exhaustive and long-term sampling programmes will be required for rigorously monitoring the estuarine communities of the Mediterranean-climate region. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, B.; Luo, Y.; Myung, K. H.; Liu, J. X.
2014-01-01
This study aimed to investigate the effects of storage duration and temperature on the characteristics of wet brewers grains (WBG) as feeds for ruminant animals. Four storage temperatures (5°C, 15°C, 25°C, and 35°C) and four durations (0, 1, 2, and 3 d) were arranged in a 4×4 factorial design. Surface spoilage, chemical composition and microorganism density were analyzed. An in vitro gas test was also conducted to determine the pH, ammonia-nitrogen and volatile fatty acid (VFA) concentrations after 24 h incubation. Surface spoilage was apparent at higher temperatures such as 25°C and 35°C. Nutrients contents decreased concomitantly with prolonged storage times (p<0.01) and increasing temperatures (p<0.01). The amount of yeast and mold increased (p<0.05) with increasing storage times and temperatures. As storage temperature increased, gas production, in vitro disappearance of organic matter, pH, ammonia nitrogen and total VFA from the WBG in the rumen decreased (p<0.01). Our results indicate that lower storage temperature promotes longer beneficial use period. However, when storage temperature exceeds 35°C, WBG should be used within a day to prevent impairment of rumen fermentation in the subtropics such as Southeast China, where the temperature is typically above 35°C during summer. PMID:25050021
ADDING REALISM TO NUCLEAR MATERIAL DISSOLVING ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, B.
2011-08-15
Two new criticality modeling approaches have greatly increased the efficiency of dissolver operations in H-Canyon. The first new approach takes credit for the linear, physical distribution of the mass throughout the entire length of the fuel assembly. This distribution of mass is referred to as the linear density. Crediting the linear density of the fuel bundles results in using lower fissile concentrations, which allows higher masses to be charged to the dissolver. Also, this approach takes credit for the fact that only part of the fissile mass is wetted at a time. There are multiple assemblies stacked on top ofmore » each other in a bundle. On average, only 50-75% of the mass (the bottom two or three assemblies) is wetted at a time. This means that only 50-75% (depending on operating level) of the mass is moderated and is contributing to the reactivity of the system. The second new approach takes credit for the progression of the dissolving process. Previously, dissolving analysis looked at a snapshot in time where the same fissile material existed both in the wells and in the bulk solution at the same time. The second new approach models multiple consecutive phases that simulate the fissile material moving from a high concentration in the wells to a low concentration in the bulk solution. This approach is more realistic and allows higher fissile masses to be charged to the dissolver.« less
Scanziani, Alessio; Singh, Kamaljit; Blunt, Martin J; Guadagnini, Alberto
2017-06-15
Multiphase flow in porous media is strongly influenced by the wettability of the system, which affects the arrangement of the interfaces of different phases residing in the pores. We present a method for estimating the effective contact angle, which quantifies the wettability and controls the local capillary pressure within the complex pore space of natural rock samples, based on the physical constraint of constant curvature of the interface between two fluids. This algorithm is able to extract a large number of measurements from a single rock core, resulting in a characteristic distribution of effective in situ contact angle for the system, that is modelled as a truncated Gaussian probability density distribution. The method is first validated on synthetic images, where the exact angle is known analytically; then the results obtained from measurements within the pore space of rock samples imaged at a resolution of a few microns are compared to direct manual assessment. Finally the method is applied to X-ray micro computed tomography (micro-CT) scans of two Ketton cores after waterflooding, that display water-wet and mixed-wet behaviour. The resulting distribution of in situ contact angles is characterized in terms of a mixture of truncated Gaussian densities. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kamal Chowdhury, AFM; Lockart, Natalie; Willgoose, Garry; Kuczera, George; Kiem, Anthony; Parana Manage, Nadeeka
2016-04-01
Stochastic simulation of rainfall is often required in the simulation of streamflow and reservoir levels for water security assessment. As reservoir water levels generally vary on monthly to multi-year timescales, it is important that these rainfall series accurately simulate the multi-year variability. However, the underestimation of multi-year variability is a well-known issue in daily rainfall simulation. Focusing on this issue, we developed a hierarchical Markov Chain (MC) model in a traditional two-part MC-Gamma Distribution modelling structure, but with a new parameterization technique. We used two parameters of first-order MC process (transition probabilities of wet-to-wet and dry-to-dry days) to simulate the wet and dry days, and two parameters of Gamma distribution (mean and standard deviation of wet day rainfall) to simulate wet day rainfall depths. We found that use of deterministic Gamma parameter values results in underestimation of multi-year variability of rainfall depths. Therefore, we calculated the Gamma parameters for each month of each year from the observed data. Then, for each month, we fitted a multi-variate normal distribution to the calculated Gamma parameter values. In the model, we stochastically sampled these two Gamma parameters from the multi-variate normal distribution for each month of each year and used them to generate rainfall depth in wet days using the Gamma distribution. In another study, Mehrotra and Sharma (2007) proposed a semi-parametric Markov model. They also used a first-order MC process for rainfall occurrence simulation. But, the MC parameters were modified by using an additional factor to incorporate the multi-year variability. Generally, the additional factor is analytically derived from the rainfall over a pre-specified past periods (e.g. last 30, 180, or 360 days). They used a non-parametric kernel density process to simulate the wet day rainfall depths. In this study, we have compared the performance of our hierarchical MC model with the semi-parametric model in preserving rainfall variability in daily, monthly, and multi-year scales. To calibrate the parameters of both models and assess their ability to preserve observed statistics, we have used ground based data from 15 raingauge stations around Australia, which consist a wide range of climate zones including coastal, monsoonal, and arid climate characteristics. In preliminary results, both models show comparative performances in preserving the multi-year variability of rainfall depth and occurrence. However, the semi-parametric model shows a tendency of overestimating the mean rainfall depth, while our model shows a tendency of overestimating the number of wet days. We will discuss further the relative merits of the both models for hydrology simulation in the presentation.
NASA Astrophysics Data System (ADS)
Raczkowska, Anna; Kowalczuk, Piotr; Sagan, Slawomir; Zablocka, Monika; Stedmon, Colin; Granskog, Mats
2017-04-01
Water masses exchange between the Atlantic Ocean and the Arctic Ocean occurs in Nordic Seas and this process represents a crucial component of the northern hemisphere climate system. Nordic Seas are dominated by Atlantic Waters (AW) and Polar Waters (PW) and water formed in the mixing process or local modifications like precipitation and sea-ice melt. Classification of water masses only on the basis of temperature, salinity or density not take into account different sources of fresh water in the Nordic Seas. In this study we propose that measured signal from the in situ three channel WET Star fluorometer could be a useful tool for characterization of dissolved organic matter (DOM) and refinement of water masses classification . Spectral properties of Chromophoric Dissolved Organic Matter and Fluorescent Dissolved Organic Matter (CDOM and FDOM) were characterized in different water masses along a section across the Fram Strait at 79°N as well as in the Nordic Seas in 2014 and 2015. Observations of CDOM and FDOM were carried out with use of in situ three channel WET Labs WET Star fluorometer and Excitation Emission Matrix spectra (EEMs) measured in the water samples. The WET Labs WET Star three channels in situ fluorometer was designed to measure emission of humic and protein-like FDOM fractions. Instruments output was calibrated against respective fluorescence intensity of EMMs measured with use of Aqualog fluorometer (Horiba Scientific) at excitation and emission ranges corresponding to in situ fluorometer channels. The correctness of the calibration was confirmed by empirical linear relationship between WET Star in situ fluorescence intensities and aCDOM(350) derived from water samples. Measured WET Star fluorometer signal enabled to asses distribution of different FDOM fractions in the Nordic Seas. The distribution of humic-like fluorescence intensity in the function of salinity revealed three distinct mixing curves: the first indicates mixing between surface PW diluted by sea ice melt with core of PW from East Greenland Current, the second imply transition from PW to AW, the third curve is an indicator of modification of AW by sea ice melting in the area of Western and Northern Spitsbergen Shelf. Furthermore, fluorescence intensities of humic-like DOM fraction is very low and remains practically constant in the core of AW. In the AW there is a strong subsurface maximum of chlorophyll a fluorescence which was aligned with protein-like fraction of DOM. The linear relationship between phytoplankton fluorescence and fluorescence intensity of protein-like DOM fraction proved that phytoplankton was primary source of protein like fraction of DOM in the AW.
Ordering nanoparticles with polymer brushes
NASA Astrophysics Data System (ADS)
Cheng, Shengfeng; Stevens, Mark J.; Grest, Gary S.
2017-12-01
Ordering nanoparticles into a desired super-structure is often crucial for their technological applications. We use molecular dynamics simulations to study the assembly of nanoparticles in a polymer brush randomly grafted to a planar surface as the solvent evaporates. Initially, the nanoparticles are dispersed in a solvent that wets the polymer brush. After the solvent evaporates, the nanoparticles are either inside the brush or adsorbed at the surface of the brush, depending on the strength of the nanoparticle-polymer interaction. For strong nanoparticle-polymer interactions, a 2-dimensional ordered array is only formed when the brush density is finely tuned to accommodate a single layer of nanoparticles. When the brush density is higher or lower than this optimal value, the distribution of nanoparticles shows large fluctuations in space and the packing order diminishes. For weak nanoparticle-polymer interactions, the nanoparticles order into a hexagonal array on top of the polymer brush as long as the grafting density is high enough to yield a dense brush. An interesting healing effect is observed for a low-grafting-density polymer brush that can become more uniform in the presence of weakly adsorbed nanoparticles.
NASA Astrophysics Data System (ADS)
Scrimgeour, Garry J.; Hvenegaard, Paul J.; Tchir, John
2008-12-01
We evaluated the cumulative effects of land use disturbance resulting from forest harvesting, and exploration and extraction of oil and gas resources on the occurrence and structure of stream fish assemblages in the Kakwa and Simonette watersheds in Alberta, Canada. Logistic regression models showed that the occurrence of numerically dominant species in both watersheds was related to two metrics defining industrial activity (i.e., percent disturbance and road density), in addition to stream wetted width, elevation, reach slope, and percent fines. Occurrences of bull trout, slimy sculpin, and white sucker were negatively related to percent disturbance and that of Arctic grayling, and mountain whitefish were positively related to percent disturbance and road density. Assessments of individual sites showed that 76% of the 74 and 46 test sites in the Kakwa and Simonette watersheds were possibly impaired or impaired. Impaired sites in the Kakwa Watershed supported lower densities of bull trout, mountain whitefish, and rainbow trout, but higher densities of Arctic grayling compared to appropriate reference sites. Impaired sites in the Simonette Watershed supported lower densities of bull trout, but higher densities of lake chub compared to reference sites. Our data suggest that current levels of land use disturbance alters the occurrence and structure of stream fish assemblages.
Nuclear gauge application in road industry
NASA Astrophysics Data System (ADS)
Azmi Ismail, Mohd
2017-11-01
Soil compaction is essential in road construction. The evaluation of the degree of compaction relies on the knowledge of density and moisture of the compacted layers is very important to the performance of the pavement structure. Among the various tests used for making these determinations, the sand replacement density test and the moisture content determination by oven drying are perhaps the most widely used. However, these methods are not only time consuming and need wearisome procedures to obtain the results but also destructive and the number of measurements that can be taken at any time is limited. The test can on be fed back to the construction site the next day. To solve these problems, a nuclear technique has been introduced as a quicker and easier way of measuring the density and moisture of construction materials. Nuclear moisture density gauges have been used for many years in pavement construction as a method of non-destructive density testing The technique which can determine both wet density and moisture content offers an in situ method for construction control at the work site. The simplicity, the speed, and non-destructive nature offer a great advantage for quality control. This paper provides an overview of nuclear gauge application in road construction and presents a case study of monitoring compaction status of in Sedenak - Skudai, Johor rehabilitation projects.
Method for making monolithic metal oxide aerogels
Coronado, Paul R.
1999-01-01
Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.
The Mechanics of Long Bone Fractures.
1981-01-31
r = .99) between wet density and ultimate bending strength for 37 specimens of human femoral bone. Evans (1973) studied embalmed human tibial...Work 2 2.2 Methods 6 2.2.1 Torsional Loading 6 2.2.2 The Effects of Combined Loading 10 2.2.3 Cancellous Bone Effects 11 2.3 Results 11 2.3.1...PROPERTIES 21 3.1 Previous Work 22 3.2 Methods 26 3.2.1 Cross Sectional Property Software 26 3.2.2 CT Scanning Procedure 28 3.2.3 Linear Dependency of
Dibble, Kimberly L.; Yard, Micheal D.; Ward, David L.; Yackulic, Charles B.
2017-01-01
Bioelectrical impedance analysis (BIA) is a nonlethal tool with which to estimate the physiological condition of animals that has potential value in research on endangered species. However, the effectiveness of BIA varies by species, the methodology continues to be refined, and incidental mortality rates are unknown. Under laboratory conditions we tested the value of using BIA in addition to morphological measurements such as total length and wet mass to estimate proximate composition (lipid, protein, ash, water, dry mass, energy density) in the endangered Humpback Chub Gila cypha and Bonytail G. elegans and the species of concern Roundtail Chub G. robusta and conducted separate trials to estimate the mortality rates of these sensitive species. Although Humpback and Roundtail Chub exhibited no or low mortality in response to taking BIA measurements versus handling for length and wet-mass measurements, Bonytails exhibited 14% and 47% mortality in the BIA and handling experiments, respectively, indicating that survival following stress is species specific. Derived BIA measurements were included in the best models for most proximate components; however, the added value of BIA as a predictor was marginal except in the absence of accurate wet-mass data. Bioelectrical impedance analysis improved the R2 of the best percentage-based models by no more than 4% relative to models based on morphology. Simulated field conditions indicated that BIA models became increasingly better than morphometric models at estimating proximate composition as the observation error around wet-mass measurements increased. However, since the overall proportion of variance explained by percentage-based models was low and BIA was mostly a redundant predictor, we caution against the use of BIA in field applications for these sensitive fish species.
Cai, Chun-Xiao; Liu, Hong-Yu; Li, Yu-Feng; Wang, Cong; Hou, Ming-Hang
2014-08-01
The 10 typical wetlands in Xianlin New Townof Nanjing were classified into three categories, including rural wetland, suburban wetland, and urban wetland according to the influence of urbanization as well as the characteristics of wetland and LUCC of catchment regions. RDA was used to analyse the relationships between nitrogen and phosphorus in urban wetland and various types and patterns of land use. It was found that the water quality of the urban wetlands presented to be worse than that from rural wetlands, followed by sub urban wetlands. Secondly, according to all investigated wetlands, TP and TN turned out to be higher during the wet seasons than dry seasons. In addition, significant differences of TP were observed between wet and dry seasons for rural and suburban wetlands, and it was not so obvious for urban wetlands. However, the differences of TN was opposite to that of TP. Thirdly, factors affecting the water quality of wetlands were comprised of types and patterns of land use, and thus significant positive relationships were found between the concentrations of TN and TP and the impervious land, while negative correlations for meadows, woodlands and wetlands. What's more, higher remarkable differences were found in wetlands than those from meadows and woodlands. Regarding to patterns of land use, TP, TN concentrations were negatively correlated with the average patch shape in the dry and wet seasons, whereas positively relationships were observed for patch density and diversity index; furthermore, with refer to the impact of adjacent landscape, significant relationships were found between the content of TN and the patterns of land use and thus, a negative correlation in the wet season and a positive correlation in the dry season were observed, respectively.
NASA Astrophysics Data System (ADS)
Yang, Xueliang; Liu, Wei; Chen, Jingwei; Sun, Yun
2018-04-01
Using metal oxides to form a carrier-selective interface on crystalline silicon (c-Si) has recently generated considerable interest for use with c-Si photovoltaics because of the potential to reduce cost. n-type oxides, such as MoO3, V2O5, and WO3, have been widely studied. In this work, a p-type oxide, Cu-doped NiO (NiO:Cu), is explored as a transparent hole-selective contact to n-Si. An ultrathin SiOx layer, fabricated by a wet-chemical method (wet-SiOx), is introduced at the NiO:Cu/n-Si interface to achieve a tunnelling junction solar cell. Interestingly, it was observed that the interface quality of the NiO:Cu/wet-SiOx/n-Si heterojunction was dramatically enhanced by post-deposition annealing (PDA) at a temperature of 200 °C. Our device exhibits an improved power conversion efficiency of 10.8%, which is the highest efficiency among NiO/Si heterojunction photo-electric devices to date. It is demonstrated that the 200 °C PDA treatment enhances the built-in field by a reduction in the interface density of states (Dit) but does not influence the work function of the NiO:Cu thin layer. This stable work function after the PDA treatment is in conflict with the changed built-in field according to the Schottky model. Thus, the Bardeen model is introduced for this physical insight: the enhancement of the built-in field originates from the unpinning of the Fermi levels of NiO:Cu and n-Si by the interface state reduction.
Brenes-Arguedas, T; Roddy, A B; Coley, P D; Kursar, Thomas A
2011-06-01
In tropical forests, regional differences in annual rainfall correlate with differences in plant species composition. Although water availability is clearly one factor determining species distribution, other environmental variables that covary with rainfall may contribute to distributions. One such variable is light availability in the understory, which decreases towards wetter forests due to differences in canopy density and phenology. We established common garden experiments in three sites along a rainfall gradient across the Isthmus of Panama in order to measure the differences in understory light availability, and to evaluate their influence on the performance of 24 shade-tolerant species with contrasting distributions. Within sites, the effect of understory light availability on species performance depended strongly on water availability. When water was not limiting, either naturally in the wetter site or through water supplementation in drier sites, seedling performance improved at higher light. In contrast, when water was limiting at the drier sites, seedling performance was reduced at higher light, presumably due to an increase in water stress that affected mostly wet-distribution species. Although wetter forest understories were on average darker, wet-distribution species were not more shade-tolerant than dry-distribution species. Instead, wet-distribution species had higher absolute growth rates and, when water was not limiting, were better able to take advantage of small increases in light than dry-distribution species. Our results suggest that in wet forests the ability to grow fast during temporary increases in light may be a key trait for successful recruitment. The slower growth rates of the dry-distribution species, possibly due to trade-offs associated with greater drought tolerance, may exclude these species from wetter forests.
Stronger seasonal adjustment in leaf turgor loss point in lianas than trees in an Amazonian forest.
Maréchaux, Isabelle; Bartlett, Megan K; Iribar, Amaia; Sack, Lawren; Chave, Jérôme
2017-01-01
Pan-tropically, liana density increases with decreasing rainfall and increasing seasonality. This pattern has led to the hypothesis that lianas display a growth advantage over trees under dry conditions. However, the physiological mechanisms underpinning this hypothesis remain elusive. A key trait influencing leaf and plant drought tolerance is the leaf water potential at turgor loss point (π tlp ). π tlp adjusts under drier conditions and this contributes to improved leaf drought tolerance. For co-occurring Amazonian tree (n = 247) and liana (n = 57) individuals measured during the dry and the wet seasons, lianas showed a stronger osmotic adjustment than trees. Liana leaves were less drought-tolerant than trees in the wet season, but reached similar drought tolerances during the dry season. Stronger osmotic adjustment in lianas would contribute to turgor maintenance, a critical prerequisite for carbon uptake and growth, and to the success of lianas relative to trees in growth under drier conditions. © 2017 The Author(s).
NASA Technical Reports Server (NTRS)
Choudhury, B. J.; Owe, M.; Ormsby, J. P.; Chang, A. T. C.; Wang, J. R.; Goward, S. N.; Golus, R. E.
1987-01-01
Spatial and temporal variabilities of microwave brightness temperature over the U.S. Southern Great Plains are quantified in terms of vegetation and soil wetness. The brightness temperatures (TB) are the daytime observations from April to October for five years (1979 to 1983) obtained by the Nimbus-7 Scanning Multichannel Microwave Radiometer at 6.6 GHz frequency, horizontal polarization. The spatial and temporal variabilities of vegetation are assessed using visible and near-infrared observations by the NOAA-7 Advanced Very High Resolution Radiometer (AVHRR), while an Antecedent Precipitation Index (API) model is used for soil wetness. The API model was able to account for more than 50 percent of the observed variability in TB, although linear correlations between TB and API were generally significant at the 1 percent level. The slope of the linear regression between TB and API is found to correlate linearly with an index for vegetation density derived from AVHRR data.
NASA Astrophysics Data System (ADS)
Kim, Sang-Kyun; Paik, Ungyu; Oh, Seong-Geun; Park, Yong-Kook; Katoh, Takeo; Park, Jea-Gun
2003-03-01
Ceria powders were synthesized by two different methods, solid-state displacement reaction and wet chemical precipitation, and the influence of the physical characteristics of cerium oxide on the removal rate of plasma-enhanced tetraethylorthosilicate (PETEOS) and chemical vapor deposition (CVD) nitride films in chemical mechanical planarization (CMP) was investigated. The fundamental physicochemical property and electrokinetic behavior of ceria particles in aqueous suspending media were investigated to identify the correlation between the colloidal property of ceria and the CMP performance. The surface potentials of two different ceria particles are found to have different isoelectric point (pHiep) values and differences in physical properties of ceria particles such as porosity and density were found to be the key parameters in CMP of PETEOS films. Ceria powders synthesized by the solid-state displacement reaction method yielded a higher removal rate of PETEOS and higher selectivity than powders synthesized by the wet chemical precipitation method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lin -Lin; Johnson, Duane D.; Tringides, Michael C.
Density functional theory is used to study structural energetics of Pb vacancy cluster formation on C 60/Pb/Si(111) to explain the unusually fast and error-free transformations between the “Devil's Staircase” (DS) phases on the Pb/Si(111) wetting layer at low temperature (~110K). The formation energies of vacancy clusters are calculated in C 60/Pb/Si(111) as Pb atoms are progressively ejected from the initial dense Pb wetting layer. Vacancy clusters larger than five Pb atoms are found to be stable with seven being the most stable, while vacancy clusters smaller than five are highly unstable, which agrees well with the observed ejection rate ofmore » ~5 Pb atoms per C 60. Furthermore, the high energy cost (~0.8 eV) for the small vacancy clusters to form indicates convincingly that the unusually fast transformation observed experimentally between the DS phases, upon C 60 adsorption at low temperature, cannot be the result of single-atom random walk diffusion but of correlated multi-atom processes.« less
Talbot, L M; Turton, S M; Graham, A W
2003-09-01
Controlled trampling was conducted to investigate the trampling resistance of contrasting high fertility basaltic and low fertility rhyolitic soils and their associated highland tropical rainforest vegetation in north east Australia's Wet Tropics. Although this approach has been taken in numerous studies of trampling in a variety of ecosystem types (temperate and subtropical forest, alpine shrubland, coral reef and seagrass beds), the experimental method does not appear to have been previously applied in a tropical rainforest context. Ground vegetation cover and soil penetration resistance demonstrated variable responses to trampling. Trampling, most noticeably after 200 and 500 passes reduced organic litter cover. Bulk density increased with trampling intensity, particularly on basalt soils as rhyolite soils appeared somewhat resistant to the impacts of trampling. The permeability of the basalt and rhyolite soils decreased markedly with increased trampling intensity, even after only 75 passes. These findings suggest physical and hydrological changes may occur rapidly in tropical rainforest soils following low levels of trampling, particularly on basalt soils.
NASA Astrophysics Data System (ADS)
Lanzillo, Nicholas A.; Restrepo, Oscar D.; Bhosale, Prasad S.; Cruz-Silva, Eduardo; Yang, Chih-Chao; Youp Kim, Byoung; Spooner, Terry; Standaert, Theodorus; Child, Craig; Bonilla, Griselda; Murali, Kota V. R. M.
2018-04-01
We present a combined theoretical and experimental study on the electron transport characteristics across several representative interface structures found in back-end-of-line interconnect stacks for advanced semiconductor manufacturing: Cu/Ta(N)/Co/Cu and Cu/Ta(N)/Ru/Cu. In particular, we evaluate the impact of replacing a thin TaN barrier with Ta while considering both Co and Ru as wetting layers. Both theory and experiment indicate a pronounced reduction in vertical resistance when replacing TaN with Ta, regardless of whether a Co or Ru wetting layer is used. This indicates that a significant portion of the total vertical resistance is determined by electron scattering at the Cu/Ta(N) interface. The electronic structure of these nano-sized interconnects is analyzed in terms of the atom-resolved projected density of states and k-resolved transmission spectra at the Fermi level. This work further develops a fundamental understanding of electron transport and material characteristics in nano-sized interconnects.
Geometry-induced phase transition in fluids: Capillary prewetting
NASA Astrophysics Data System (ADS)
Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim
2013-02-01
We report a new first-order phase transition preceding capillary condensation and corresponding to the discontinuous formation of a curved liquid meniscus. Using a mean-field microscopic approach based on the density functional theory we compute the complete phase diagram of a prototypical two-dimensional system exhibiting capillary condensation, namely that of a fluid with long-ranged dispersion intermolecular forces which is spatially confined by a substrate forming a semi-infinite rectangular pore exerting long-ranged dispersion forces on the fluid. In the T-μ plane the phase line of the new transition is tangential to the capillary condensation line at the capillary wetting temperature Tcw. The surface phase behavior of the system maps to planar wetting with the phase line of the new transition, termed capillary prewetting, mapping to the planar prewetting line. If capillary condensation is approached isothermally with T>Tcw, the meniscus forms at the capping wall and unbinds continuously, making capillary condensation a second-order phenomenon. We compute the corresponding critical exponent for the divergence of adsorption.
Boelman, Natalie T; Stieglitz, Marc; Rueth, Heather M; Sommerkorn, Martin; Griffin, Kevin L; Shaver, Gaius R; Gamon, John A
2003-05-01
This study explores the relationship between the normalized difference vegetation index (NDVI), aboveground plant biomass, and ecosystem C fluxes including gross ecosystem production (GEP), ecosystem respiration (ER) and net ecosystem production. We measured NDVI across long-term experimental treatments in wet sedge tundra at the Toolik Lake LTER site, in northern Alaska. Over 13 years, N and P were applied in factorial experiments (N, P and N + P), air temperature was increased using greenhouses with and without N + P fertilizer, and light intensity (photosynthetically active photon flux density) was reduced by 50% using shade cloth. Within each treatment plot, NDVI, aboveground biomass and whole-system CO(2) flux measurements were made at the same sampling points during the peak-growing season of 2001. We found that across all treatments, NDVI is correlated with aboveground biomass ( r(2)=0.84), GEP ( r(2)=0.75) and ER ( r(2)=0.71), providing a basis for linking remotely sensed NDVI to aboveground biomass and ecosystem carbon flux.
NASA Astrophysics Data System (ADS)
Cho, Lawrence; Kim, Myung Soo; Kim, Young Ha; De Cooman, Bruno C.
2014-09-01
The influence of the addition of minor alloying elements on the selective oxidation and the reactive wetting of CMnSi transformation-induced plasticity (TRIP) steels was studied by means of galvanizing simulator tests. Five TRIP steels containing small alloying additions of Cr, Ni, Ti, Cu, and Sn were investigated. After intercritical annealing (IA) at 1093 K (820 °C) in a N2 + 5 pct H2 gas atmosphere with a dew point of 213 K (-60 °C), two types of oxides were formed on the strip surface: Mn-rich xMnO·SiO2 ( x > 1.5) and Si-rich xMnO·SiO2 ( x < 0.3) oxides. The addition of the minor alloying elements changed the morphology of the Si-rich oxides from a continuous film to discrete islands and this improved the wettability by molten Zn. The improved wetting effect of the minor alloying elements was attributed to an increased area fraction of the surface where the oxides were thinner, enabling a direct unhindered reaction between Fe and the Al in the liquid Zn and the formation of the inhibition layer during the hot dip galvanizing. The addition of a small amount of Sn is shown to significantly decrease the density of Zn-coating defects on CMnSi TRIP steels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hönes, C., E-mail: christian.hoenes@de.bosch.com; Laboratory for Photovoltaics, University of Luxembourg, 41 rue du Brill, L-4422 Belvaux; Hackenberg, J.
2015-03-07
Indium sulfide thin films deposited via thermal evaporation from compound source material have been successfully utilized as a cadmium free buffer layer for Cu(In,Ga)Se{sub 2} based solar cells. However, high efficiencies are only reached after an additional annealing step. In this work, the annealing behavior of Cu(In,Ga)(S,Se){sub 2} based indium sulfide buffered solar cells is compared to the annealing behavior of similar cells, which were submitted to wet chemical treatments partly containing cadmium ions. Upon annealing a significant improvement of the initial solar cell characteristics is observed for the untreated cell and is related to the increase of activation energymore » for the carrier recombination process and a decrease of the ideality factor within the one diode model. It is shown here that this improvement can also be achieved by wet treatments of the absorber prior to buffer layer deposition. Upon annealing these treated cells still gain in collection length but lose open circuit voltage, which is explained here within a model including a highly p-doped absorber surface layer and supported by simulations showing that a decrease in doping density of such a surface layer would lead to the observed effects.« less
Tolley, S Gregory; Winstead, James T; Haynes, Lesli; Volety, Aswani K
2006-06-23
This study was conducted to examine the potential influence of salinity, a proxy for freshwater inflow, on the prevalence of the castrator parasite Loxothylacus panopaei on saltmarsh mud crabs Panopeus obesus on SW Florida oyster reefs. Spatial and seasonal patterns of the presence of potential host crabs and the prevalence of the parasite were assessed in the Caloosahatchee, Estero, and Faka Union estuaries. Lift nets (1 m2) containing 5 1 of oyster clusters were deployed on intertidal reefs at 3 sites along the salinity gradient of each estuary. Nets were deployed during 3 seasonally dry and 3 seasonally wet months for a period of 30 d. P. obesus densities tended to increase downstream in higher salinity waters, with crabs being absent from the upper station in the Caloosahatchee during both seasons and absent from the upper station of the Faka Union during wet months. Parasite prevalence was reduced upstream in each estuary during wet months compared to dry months, and for those estuaries that experienced higher relative levels of freshwater inflow. Furthermore, parasite prevalence was positively correlated with the mean salinity of capture of host crabs. Based on the distribution of P. obesus and the above patterns related to salinity, it appears that freshwater inflow and seasonal rains might regulate the prevalence of this parasite in SW Florida by creating spatiotemporal, low salinity refuges for its host.
Measuring Snow Liquid Water Content with Low-Cost GPS Receivers
Koch, Franziska; Prasch, Monika; Schmid, Lino; Schweizer, Jürg; Mauser, Wolfram
2014-01-01
The amount of liquid water in snow characterizes the wetness of a snowpack. Its temporal evolution plays an important role for wet-snow avalanche prediction, as well as the onset of meltwater release and water availability estimations within a river basin. However, it is still a challenge and a not yet satisfyingly solved issue to measure the liquid water content (LWC) in snow with conventional in situ and remote sensing techniques. We propose a new approach based on the attenuation of microwave radiation in the L-band emitted by the satellites of the Global Positioning System (GPS). For this purpose, we performed a continuous low-cost GPS measurement experiment at the Weissfluhjoch test site in Switzerland, during the snow melt period in 2013. As a measure of signal strength, we analyzed the carrier-to-noise power density ratio (C/N0) and developed a procedure to normalize these data. The bulk volumetric LWC was determined based on assumptions for attenuation, reflection and refraction of radiation in wet snow. The onset of melt, as well as daily melt-freeze cycles were clearly detected. The temporal evolution of the LWC was closely related to the meteorological and snow-hydrological data. Due to its non-destructive setup, its cost-efficiency and global availability, this approach has the potential to be implemented in distributed sensor networks for avalanche prediction or basin-wide melt onset measurements. PMID:25384007
Measuring snow liquid water content with low-cost GPS receivers.
Koch, Franziska; Prasch, Monika; Schmid, Lino; Schweizer, Jürg; Mauser, Wolfram
2014-11-06
The amount of liquid water in snow characterizes the wetness of a snowpack. Its temporal evolution plays an important role for wet-snow avalanche prediction, as well as the onset of meltwater release and water availability estimations within a river basin. However, it is still a challenge and a not yet satisfyingly solved issue to measure the liquid water content (LWC) in snow with conventional in situ and remote sensing techniques. We propose a new approach based on the attenuation of microwave radiation in the L-band emitted by the satellites of the Global Positioning System (GPS). For this purpose, we performed a continuous low-cost GPS measurement experiment at the Weissfluhjoch test site in Switzerland, during the snow melt period in 2013. As a measure of signal strength, we analyzed the carrier-to-noise power density ratio (C/N0) and developed a procedure to normalize these data. The bulk volumetric LWC was determined based on assumptions for attenuation, reflection and refraction of radiation in wet snow. The onset of melt, as well as daily melt-freeze cycles were clearly detected. The temporal evolution of the LWC was closely related to the meteorological and snow-hydrological data. Due to its non-destructive setup, its cost-efficiency and global availability, this approach has the potential to be implemented in distributed sensor networks for avalanche prediction or basin-wide melt onset measurements.
Moghimipour, Eskandar; Salimi, Anayatollah; Rezaee, Saeed; Balack, Maryam; Handali, Somayeh
2014-05-01
Nitrofurantoin is a nitrofuran antibiotic that has been used for treatment of urinary tract against positive and negative bacteria. The aim of this study was to evaluate the effect of structural vehicles and flocculating agents on physical stability and rheological behavior of nitrofurantoin suspension. To formulate the suspensions, the effect of glycerin and polysorbate 80 as wetting agents was evaluated and their particle sizes were determined using the sieve method. Then to achieve controlled flocculation, sodium citrate and aluminum chloride were added. After choosing the suitable wetting and flocculating agents, structural vehicles such as sodium carboxyl methyl cellulose and Veegum were evaluated individually and in combination. In addition, the effect of sorbitol on density of continuous phase and some physical stability parameters such as sedimentation volume, degree of flocculation and ease of redispersion of the suspensions were evaluated. After incorporation of structural vehicles, the rheological properties of formulations were also determined to find their flow behavior. According to the results, glycerin (0.2%) and sodium citrate (0.3%) had the best effect on the suspension stability as wetting and flocculating agents, respectively. Rheological properties of formulations showed pseudoplastic behavior with some degree of thixotropy. In conclusion, the suspension containing Veegum 1%, sodium carboxy methyl cellulose 1%, glycerine 0.2%, sodium citrate 0.3% and sorbitol 20 % was chosen as the most physically stable formulation.
Lennard-Jones fluids in two-dimensional nano-pores. Multi-phase coexistence and fluid structure
NASA Astrophysics Data System (ADS)
Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim
2014-03-01
We present a number of fundamental findings on the wetting behaviour of nano-pores. A popular model for fluid confinement is a one-dimensional (1D) slit pore formed by two parallel planar walls and it exhibits capillary condensation (CC): a first-order phase transition from vapour to capillary-liquid (Kelvin shift). Capping such a pore at one end by a third orthogonal wall forms a prototypical two-dimensional (2D) pore. We show that 2D pores possess a wetting temperature such that below this temperature CC remains of first order, above it becomes a continuous phase transition manifested by a slab of capillary-liquid filling the pore from the capping wall. Continuous CC exhibits hysteresis and can be preceded by a first-order capillary prewetting transition. Additionally, liquid drops can form in the corners of the 2D pore (remnant of 2D wedge prewetting). The three fluid phases, vapour, capillary-liquid slab and corner drops, can coexist at the pore triple point. Our model is based on the statistical mechanics of fluids in the density functional formulation. The fluid-fluid and fluid-substrate interactions are dispersive. We analyze in detail the microscopic fluid structure, isotherms and full phase diagrams. Our findings also suggest novel ways to control wetting of nano-pores. We are grateful to the European Research Council via Advanced Grant No. 247031 for support.
Si-compatible cleaning process for graphene using low-density inductively coupled plasma.
Lim, Yeong-Dae; Lee, Dae-Yeong; Shen, Tian-Zi; Ra, Chang-Ho; Choi, Jae-Young; Yoo, Won Jong
2012-05-22
We report a novel cleaning technique for few-layer graphene (FLG) by using inductively coupled plasma (ICP) of Ar with an extremely low plasma density of 3.5 × 10(8) cm(-3). It is known that conventional capacitively coupled plasma (CCP) treatments destroy the planar symmetry of FLG, giving rise to the generation of defects. However, ICP treatment with extremely low plasma density is able to remove polymer resist residues from FLG within 3 min at a room temperature of 300 K while retaining the carbon sp(2)-bonding of FLG. It is found that the carrier mobility and charge neutrality point of FLG are restored to their pristine defect-free state after the ICP treatment. Considering the application of graphene to silicon-based electronic devices, such a cleaning method can replace thermal vacuum annealing, electrical current annealing, and wet-chemical treatment due to its advantages of being a low-temperature, large-area, high-throughput, and Si-compatible process.
Repeated drought alters resistance of seed bank regeneration in baldcypress swamps of North America
Lei, Ting; Middleton, Beth A.
2018-01-01
Recurring drying and wetting events are likely to increase in frequency and intensity in predicted future droughts in the central USA and alter the regeneration potential of species. We explored the resistance of seed banks to successive droughts in 53 sites across the nine locations in baldcypress swamps in the southeastern USA. Along the Mississippi River Alluvial Valley and northern Gulf of Mexico, we investigated the capacity of seed banks to retain viable seeds after successive periods of drying and wetting in a greenhouse study. Mean differences in species richness and seed density were compared to examine the interactions of successive droughts, geographical location and water regime. The results showed that both species richness and total density of germinating seedlings decreased over repeated drought trials. These responses were more pronounced in geographical areas with higher annual mean temperature. In seed banks across the southeastern swamp region, most species were exhausted after Trial 2 or 3, except for semiaquatic species in Illinois and Tennessee, and aquatic species in Texas. Distinct geographical trends in seed bank resistance to drought demonstrate that climate-induced drying of baldcypress swamps could influence the regeneration of species differently across their ranges. Despite the health of adult individuals, lack of regeneration may push ecosystems into a relict status. Seed bank depletion by germination without replenishment may be a major conservation threat in a future with recurring droughts far less severe than megadrought. Nevertheless, the protection of moist refugia might aid conservation.
Edge contact angle and modified Kelvin equation for condensation in open pores.
Malijevský, Alexandr; Parry, Andrew O; Pospíšil, Martin
2017-08-01
We consider capillary condensation transitions occurring in open slits of width L and finite height H immersed in a reservoir of vapor. In this case the pressure at which condensation occurs is closer to saturation compared to that occurring in an infinite slit (H=∞) due to the presence of two menisci that are pinned near the open ends. Using macroscopic arguments, we derive a modified Kelvin equation for the pressure p_{cc}(L;H) at which condensation occurs and show that the two menisci are characterized by an edge contact angle θ_{e} that is always larger than the equilibrium contact angle θ, only equal to it in the limit of macroscopic H. For walls that are completely wet (θ=0) the edge contact angle depends only on the aspect ratio of the capillary and is well described by θ_{e}≈sqrt[πL/2H] for large H. Similar results apply for condensation in cylindrical pores of finite length. We test these predictions against numerical results obtained using a microscopic density-functional model where the presence of an edge contact angle characterizing the shape of the menisci is clearly visible from the density profiles. Below the wetting temperature T_{w} we find very good agreement for slit pores of widths of just a few tens of molecular diameters, while above T_{w} the modified Kelvin equation only becomes accurate for much larger systems.
Cross-scale interactions affect tree growth and intrinsic water ...
1. We investigated the potential of cross-scale interactions to affect the outcome of density reduction in a large-scale silvicultural experiment. 2. We measured tree growth and intrinsic water-use efficiency (iWUE) based on stable carbon isotopes (13C) to investigate the impacts of thinning across a range of progressively finer spatial scales: site, stand, hillslope position, and neighborhood position. In particular, we focused on the influence of thinning beyond the boundaries of thinned stands to include impacts on downslope and neighboring stands across sites varying in soil moisture. 3. Trees at the wet site responded to thinning with increased growth when compared with trees at the dry site. Additionally, trees in thinned stands at the dry site responded with increased iWUE while trees in thinned stands at the wet site showed no difference in iWUE compared to unthinned stands. 4. We hypothesized that water is not the primary limiting factor for growth at our sites, but that thinning released other resources, such as growing space or nutrients to drive the growth response. At progressively finer spatial scales we found that the responses of trees was not driven by hillslope location (i.e., downslope of thinning) but to changes in local neighborhood tree density. 5. The results of this study demonstrated that water can be viewed as an “agent” that allows us to investigate cross-scale interactions as it links coarse to finer spatial scales and vice ver
NASA Astrophysics Data System (ADS)
Li, Zhi; Zhang, Jiwei; Shu, Jie; Chen, Jianping; Gong, Chunhong; Guo, Jianhui; Yu, Laigui; Zhang, Jingwei
2018-03-01
One-dimensional carbon nanofibers with highly dispersed tin (Sn) and tin antimonide (SnSb) nanoparticles are prepared by electrospinning in the presence of antimony-doped tin oxide (denoted as ATO) wet gel as the precursor. The effect of ATO dosage on the microstructure and electrochemical properties of the as-fabricated Sn-SnSb/C composite nanofibers is investigated. Results indicate that ATO wet gel as the precursor can effectively improve the dispersion of Sn nanoparticles in carbon fiber and prevent them from segregation during the electrospinning and subsequent calcination processes. The as-prepared Sn-SnSb/C nanofibers as the anode materials for lithium-ion batteries exhibit high reversible capacity and stable cycle performance. Particularly, the electrode made from Sn-SnSb/C composite nanofibers obtained with 0.9 g of ATO gel has a high specific capacity of 779 mAh·g-1 and 378 mAh·g-1 at the current density of 50 mA·g-1 and 5 A·g-1, respectively, and it exhibits a capacity retention of 97% after 1200 cycles under the current density of 1 A·g-1. This is because the carbon nanofibers can form a continuous conductive network to buffer the volume change of the electrodes while Sn and Sn-SnSb nanoparticles uniformly distributed in the carbon nanofibers are free of segregation, thereby contributing to electrochemical performances of the electrodes.
Microbial risk assessment with the OAEL approach at water abstraction points in rural Kenya
NASA Astrophysics Data System (ADS)
Yillia, Paul T.; Kreuzinger, Norbert; Mathooko, Jude M.; Ndomahina, Ernest T.
US-based models for recreational water quality were applied to characterize the potential health risk (PHR) of infection with gastroenteritis (GI) and highly credible gastroenteritis (HCGI) illnesses from single exposure at several water abstraction points (WAPs) along the Njoro River in rural Kenya. Ambient geometric mean densities of Escherichia coli (EC) and intestinal enterococci (IE) were generally high (2-4 log units of cfu/100 ml) and risk levels were grossly in excess of acceptable health risk (AHR) levels for bathing and drinking. PHR was 2-3 times higher with the Cabelli (IE) model (Equation (2)) compared to the US EPA (EC) model (Equation (1)). Risk levels varied among WAPs in concomitance to the spatial and seasonal variability of ambient EC and IE densities. With the Cabelli IE model, PHR of HCGI illness on single exposure to the dry weather 95th percentile IE density for bathing was 2.5% of the exposed population at Logoman compared to 5.2% at Turkana Flats, 4.9% at Kenyatta or Nessuit and 4.6%, 4.5% and 4.2% at Treetop, Segotik and Njoro Bridge, respectively. PHR was ⩾5% on exposure to the wet weather 95th percentile IE density at all WAPs, excepting Treetop with 4.3%. Relative risk levels increased by at least 30 and 70 times for GI and HCGI illnesses, respectively, from drinking (250 ml) raw stream water, rising erratically in wet weather by >80% of the dry weather risk at Logoman, >30% at Njoro Bridge and Kenyatta and 10-15% at Segotik, Nessuit and Turkana Flats. By stipulating freshwater bathing water quality guidelines of 126 and 33 cfu/100 ml for EC and IE, respectively, US, EPA upholds maximum AHR levels at 0.7% and 1.9% for EC and IE, respectively. Hence, reducing current PHR levels at the WAPs to the US, EPA bathing AHR levels would require at least 2-4 log reductions of IE and EC densities with even further log reductions to achieve the WHO recommended drinking water AHR level of 0.1%. This would necessitate specialized treatment, in particular point-of-use treatment at the household level, as well as the implementation of comprehensive catchment management measures to protect the stream and the WAPs.
Containerless, Low-Gravity Undercooling of Ti-Ce Alloys in the MSFC Drop Tube
NASA Technical Reports Server (NTRS)
Robinson, M. B.; Rathz, T. J.; Li, D.; Williams, G.; Workman, G.
1999-01-01
Previous tests of the classical nucleation theory as applied to liquid-liquid gap miscibility systems found a discrepancy between experiment and theory in the ability to undercool one of the liquids before the L1-L2 separation occurs. To model the initial separation process in a two-phase liquid mixture, different theoretical approaches, such as free-energy gradient and density gradient theories, have been put forth. If there is a large enough interaction between the critical liquid and the crucible, both models predict a wetting temperature (T(sub w)) above which the minority liquid perfectly wets and layers the crucible interface, but only on one side of the immiscibility dome. Materials with compositions on the other side of the dome will have simple surface adsorption by the minority liquid before bulk separation occurs when the coexistence (i.e., binoidal) line in reached. If the interaction between the critical liquid and the crucible were to decrease, T(sub w) would increase, eventually approaching the critical consolute temperature (T(sub cc)). If this situation occurs, then there could be large regions of the miscibility gap where non-perfect wetting conditions prevail resulting in droplets of L1 liquid at the surface having a non-zero contact angle. The resulting bulk structure will then depend on what happens on the surface and the subsequent processing conditions. In the past several decades, many experiments in space have been performed on liquid metal binary immiscible systems for the purpose of determining the effects that different crucibles may have on the wetting and separation process of the liquids. Potard performed experiments that showed different crucible materials could cause the majority phase to preferentially wet the container and thus produce a dispersed microstructure of the minority phase. Several other studies have been performed on immiscibles in a semi-container environment using an emulsion technique. Only one previous study was performed using completely containerless processing of immiscible metals and the results of that investigation are similar to some of the emulsion studies. In all the studies, surface wetting was attributed as the cause for the similar microstructures or the asymmetry in the ability to undercool the liquid below the binoidal on one side of the immiscibility dome. By removing the container completely from the separation process, it was proposed that the loss of the crucible/liquid interaction would produce a large shift in T(sub w) and thus change the wetting characteristics at the surface. By investigating various compositions across the miscibility gap, a change in the type and amount of liquid wetting at the surface of a containerless droplet should change the surface nucleating behavior of the droplet - whether it be the liquid-liquid wetting or the liquid-to-solid transition. Undercooling of the liquid into the metastable region should produce significant differences in the separation process and the microstructure upon solidification. In this study, we attempt to measure these transitions by monitoring the temperature of the sample by optical pyrometry. Microstructural analysis will be made to correlate with the degree of undercooling and the separation mechanisms involved.
Modeling elephant-mediated cascading effects of water point closure.
Hilbers, Jelle P; Van Langevelde, Frank; Prins, Herbert H T; Grant, C C; Peel, Mike J S; Coughenour, Michael B; De Knegt, Henrik J; Slotow, Rob; Smit, Izak P J; Kiker, Greg A; De Boer, Willem F
2015-03-01
Wildlife management to reduce the impact of wildlife on their habitat can be done in several ways, among which removing animals (by either culling or translocation) is most often used. There are, however, alternative ways to control wildlife densities, such as opening or closing water points. The effects of these alternatives are poorly studied. In this paper, we focus on manipulating large herbivores through the closure of water points (WPs). Removal of artificial WPs has been suggested in order to change the distribution of African elephants, which occur in high densities in national parks in Southern Africa and are thought to have a destructive effect on the vegetation. Here, we modeled the long-term effects of different scenarios of WP closure on the spatial distribution of elephants, and consequential effects on the vegetation and other herbivores in Kruger National Park, South Africa. Using a dynamic ecosystem model, SAVANNA, scenarios were evaluated that varied in availability of artificial WPs; levels of natural water; and elephant densities. Our modeling results showed that elephants can indirectly negatively affect the distributions of meso-mixed feeders, meso-browsers, and some meso-grazers under wet conditions. The closure of artificial WPs hardly had any effect during these natural wet conditions. Under dry conditions, the spatial distribution of both elephant bulls and cows changed when the availability of artificial water was severely reduced in the model. These changes in spatial distribution triggered changes in the spatial availability of woody biomass over the simulation period of 80 years, and this led to changes in the rest of the herbivore community, resulting in increased densities of all herbivores, except for giraffe and steenbok, in areas close to rivers. The spatial distributions of elephant bulls and cows showed to be less affected by the closure of WPs than most of the other herbivore species. Our study contributes to ecologically informed decisions in wildlife management. The results from this modeling exercise imply that long-term effects of this intervention strategy should always be investigated at an ecosystem scale.
Landfill Mining - Wet mechanical treatment of fine MSW with a wet jigger.
Wanka, Sebastian; Münnich, Kai; Fricke, Klaus
2017-01-01
The motives for landfill mining are various. In the last couple of years Enhanced Landfill Mining (ELFM) has become increasingly important in academic discourse and practical implementation. The main goal of ELFM is to recover as much material as possible from deposited municipal solid waste (MSW). In most of the projects carried out so far, the main focus has been set on coarse materials such as plastics, woods, papers and metals. These fractions can be separated easily by sieving in combination with magnetic separation. In these projects most of the fine materials, which might represent as much as 60-70% of the total mass of the landfill body, had to be deposited again. A further treatment aiming at reducing the masses of these fine materials, which are still a conglomerate of soil, calorific fractions, metals, minerals and residues, usually did not take place. One topic in the framework of the landfill mining project TÖNSLM, in addition to the separation of the calorific fraction and metals has been the treatment of fine materials with the goal to re-use these e.g. for construction purposes. This paper shows the results obtained after the wet mechanical treatment of fine MSW 10-60mm with a wet jigger. The physical principle of this process is the separation of the mass flux due to the different densities of the waste constituents. As a result, three main waste fluxes are obtained: Dense inert and dense fine fraction with a high content of minerals and a lightweight fraction with a high calorific value between 16 and 20MJ/kg. An additional positive effect of wet mechanical treatment is the removal of the finest particles from the surface of the waste material, thus increasing the quality of the generated waste fluxes. The mass fluxes of the different fractions and their qualities as well as possible recovery paths are described below. An economical and ecological consideration of the treatment of the fine materials does not take place within the framework of this feasibility study. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nuopponen, Mari H; Birch, Gillian M; Sykes, Rob J; Lee, Steve J; Stewart, Derek
2006-01-11
Sitka spruce (Picea sitchensis) samples (491) from 50 different clones as well as 24 different tropical hardwoods and 20 Scots pine (Pinus sylvestris) samples were used to construct diffuse reflectance mid-infrared Fourier transform (DRIFT-MIR) based partial least squares (PLS) calibrations on lignin, cellulose, and wood resin contents and densities. Calibrations for density, lignin, and cellulose were established for all wood species combined into one data set as well as for the separate Sitka spruce data set. Relationships between wood resin and MIR data were constructed for the Sitka spruce data set as well as the combined Scots pine and Sitka spruce data sets. Calibrations containing only five wavenumbers instead of spectral ranges 4000-2800 and 1800-700 cm(-1) were also established. In addition, chemical factors contributing to wood density were studied. Chemical composition and density assessed from DRIFT-MIR calibrations had R2 and Q2 values in the ranges of 0.6-0.9 and 0.6-0.8, respectively. The PLS models gave residual mean squares error of prediction (RMSEP) values of 1.6-1.9, 2.8-3.7, and 0.4 for lignin, cellulose, and wood resin contents, respectively. Density test sets had RMSEP values ranging from 50 to 56. Reduced amount of wavenumbers can be utilized to predict the chemical composition and density of a wood, which should allow measurements of these properties using a hand-held device. MIR spectral data indicated that low-density samples had somewhat higher lignin contents than high-density samples. Correspondingly, high-density samples contained slightly more polysaccharides than low-density samples. This observation was consistent with the wet chemical data.
Zhang, Qian; Xu, Liming; Tang, Jianjun; Bai, Minge; Chen, Xin
2011-05-01
The biomass-density relationship (whereby the biomass of individual plants decreases as plant density increases) has generally been explained by competition for resources. Arbuscular mycorrhizal fungi (AMF) are able to affect plant interactions by mediating resource utilization, but whether this AMF-mediated interaction will change the biomass-density relationship is unclear. We conducted an experiment to test the hypothesis that AMF will shift the biomass-density relationship by affecting intraspecific competition. Four population densities (10, 100, 1,000, or 10,000 seedlings per square meter) of Medicago sativa L. were planted in field plots. Water application (1,435 or 327.7 mm/year) simulated precipitation in wet areas (sufficient water) and arid areas (insufficient water). The fungicide benomyl was applied to suppress AMF in some plots ("low-AMF" treatment) and not in others ("high-AMF" treatment). The effect of the AMF treatment on the biomass-density relationship depended on water conditions. High AMF enhanced the decrease of individual biomass with increasing density (the biomass-density line had a steeper slope) when water was sufficient but not when water was insufficient. AMF treatment did not affect plant survival rate or population size but did affect absolute competition intensity (ACI). When water was sufficient, ACI was significantly higher in the high-AMF treatment than in the low-AMF treatment, but ACI was unaffected by AMF treatment when water was insufficient. Our results suggest that AMF status did not impact survival rate and population size but did shift the biomass-density relationship via effects on intraspecific competition. This effect of AMF on the biomass-density relationship depended on the availability of water.
Clogging and depinning of ballistic active matter systems in disordered media
NASA Astrophysics Data System (ADS)
Reichhardt, C.; Reichhardt, C. J. O.
2018-05-01
We numerically examine ballistic active disks driven through a random obstacle array. Formation of a pinned or clogged state occurs at much lower obstacle densities for the active disks than for passive disks. As a function of obstacle density, we identify several distinct phases including a depinned fluctuating cluster state, a pinned single-cluster or jammed state, a pinned multicluster state, a pinned gel state, and a pinned disordered state. At lower active disk densities, a drifting uniform liquid forms in the absence of obstacles, but when even a small number of obstacles are introduced, the disks organize into a pinned phase-separated cluster state in which clusters nucleate around the obstacles, similar to a wetting phenomenon. We examine how the depinning threshold changes as a function of disk or obstacle density and find a crossover from a collectively pinned cluster state to a disordered plastic depinning transition as a function of increasing obstacle density. We compare this to the behavior of nonballistic active particles and show that as we vary the activity from completely passive to completely ballistic, a clogged phase-separated state appears in both the active and passive limits, while for intermediate activity, a readily flowing liquid state appears and there is an optimal activity level that maximizes the flux through the sample.
Energy density of anchovy Engraulis encrasicolus in the Bay of Biscay.
Dubreuil, J; Petitgas, P
2009-02-01
The energy density (E(D)) of anchovy Engraulis encrasicolus in the Bay of Biscay was determined by direct calorimetry and its evolution with size, age and season was investigated. The water content and energy density varied seasonally following opposite trends. The E(D) g(-1) of wet mass (M(W)) was highest at the end of the feeding season (autumn: c. 8 kJ g(-1)M(W)) and lowest in late winter (c. 6 kJ g(-1)M(W)). In winter, the fish lost mass, which was partially replaced by water, and the energy density decreased. These variations in water content and organic matter content may have implications on the buoyancy of the fish. The water content was the major driver of the energy density variations for a M(W) basis. A significant linear relationship was established between E(D) g(-1) (y) and the per cent dry mass (M(D); x): y =-4.937 + 0.411x. In the light of the current literature, this relationship seemed to be not only species specific but also ecosystem specific. Calibration and validation of fish bioenergetics models require energy content measurements on fish samples collected at sea. The present study provides a first reference for the energetics of E. encrasicolus in the Bay of Biscay.
Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge
NASA Astrophysics Data System (ADS)
Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng
2018-04-01
Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm2, the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.
Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge.
Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng
2018-04-19
Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm 2 , the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.
Vitello, Dominic J; Ripper, Richard M; Fettiplace, Michael R; Weinberg, Guy L; Vitello, Joseph M
2015-01-01
Purpose. The gravimetric method of weighing surgical sponges is used to quantify intraoperative blood loss. The dry mass minus the wet mass of the gauze equals the volume of blood lost. This method assumes that the density of blood is equivalent to water (1 gm/mL). This study's purpose was to validate the assumption that the density of blood is equivalent to water and to correlate density with hematocrit. Methods. 50 µL of whole blood was weighed from eighteen rats. A distilled water control was weighed for each blood sample. The averages of the blood and water were compared utilizing a Student's unpaired, one-tailed t-test. The masses of the blood samples and the hematocrits were compared using a linear regression. Results. The average mass of the eighteen blood samples was 0.0489 g and that of the distilled water controls was 0.0492 g. The t-test showed P = 0.2269 and R (2) = 0.03154. The hematocrit values ranged from 24% to 48%. The linear regression R (2) value was 0.1767. Conclusions. The R (2) value comparing the blood and distilled water masses suggests high correlation between the two populations. Linear regression showed the hematocrit was not proportional to the mass of the blood. The study confirmed that the measured density of blood is similar to water.
NASA Technical Reports Server (NTRS)
Vukovich, Fred M.; Toll, David L.; Kennard, Ruth L.
1989-01-01
Surface biophysical estimates were derived from analysis of NOAA Advanced Very High Spectral Resolution (AVHRR) spectral data of the Senegalese area of west Africa. The parameters derived were of solar albedo, spectral visible and near-infrared band reflectance, spectral vegetative index, and ground temperature. Wet and dry linked AVHRR scenes from 1981 through 1985 in Senegal were analyzed for a semi-wet southerly site near Tambacounda and a predominantly dry northerly site near Podor. Related problems were studied to convert satellite derived radiance to biophysical estimates of the land surface. Problems studied were associated with sensor miscalibration, atmospheric and aerosol spatial variability, surface anisotropy of reflected radiation, narrow satellite band reflectance to broad solar band conversion, and ground emissivity correction. The middle-infrared reflectance was approximated with a visible AVHRR reflectance for improving solar albedo estimates. In addition, the spectral composition of solar irradiance (direct and diffuse radiation) between major spectral regions (i.e., ultraviolet, visible, near-infrared, and middle-infrared) was found to be insensitive to changes in the clear sky atmospheric optical depth in the narrow band to solar band conversion procedure. Solar albedo derived estimates for both sites were not found to change markedly with significant antecedent precipitation events or correspondingly from increases in green leaf vegetation density. The bright soil/substrate contributed to a high albedo for the dry related scenes, whereas the high internal leaf reflectance in green vegetation canopies in the near-infrared contributed to high solar albedo for the wet related scenes. The relationship between solar albedo and ground temperature was poor, indicating the solar albedo has little control of the ground temperature. The normalized difference vegetation index (NDVI) and the derived visible reflectance were more sensitive to antecedent rainfall amounts and green vegetation changes than were near-infrared changes. The information in the NDVI related to green leaf density changes primarily was from the visible reflectance. The contribution of the near-infrared reflectance to explaining green vegetation is largely reduced when there is a bright substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradeep Rohatgi
2002-12-31
In this research, the effects of casting foundry, testing laboratory, surface conditions, and casting processes on the mechanical properties of A359-SiC composites were identified. To observe the effects, A359-SiC composites with 20 and 305 SiC particles were cast at three different foundries and tested at three different laboratories. The composites were cast in sand and permanent molds and tested as-cast and machined conditions. To identify the effect of the volume fraction and distribution of particles on the properties of the composites, particle distribution was determined using Clemex Image analysis systems, and particle volume fraction was determined using wet chemical analysismore » and Clemex Image analysis systems. The microstructure and fractured surfaces of the samples were analyzed using SEM, and EDX analysis was done to analyze chemical reaction between the particles and the matrix. The results of the tensile strengths exhibited that the tensile strengths depend on the density and porosity of the composites; in general the higher tensile strength is associated with lower porosity and higher density. In some cases, composites with lower density were higher than these with higher density. In the Al-20% SiC samples, the composites with more inclusions exhibited a lower tensile strength than the ones with fewer inclusions. This suggests that macroscopic casting defects such as micro-porosity, shrinkage porosity and inclusions appear to strongly influence the tensile strength more than the microstructure and particle distribution. The fatigue properties of A359/20 vol.% SiC composites were investigated under strain controlled conditions. Hysteresis loops obtained from strain controlled cyclic loading of 20% SiCp reinforced material did not exhibit any measurable softening or hardening. The fatigue life of Al-20% SiC heat treated alloy at a given total strain showed wide variation in fatigue life, which appeared to be related to factors such as inclusions, porosity, and particle distribution. The inclusions and porosity on the fracture surfaces seem to have a more significant influence on the fatigue life of cast Al-20% SiC as compared to other variables, including SiC particle volume percentage and its distribution. Striations were generally not visible on the fracture surface of the composites. In many specimens, SiC particle fracture was also observed. Fracture was more severe around pores and inclusions than in the matrix away from them. Inclusions and porosity seem to have a much stronger influence on fatigue behavior than the particle distribution. The analysis suggests that the enhancement of fatigue behavior of cast MMCs requires a decrease in the size of defects, porosity, and inclusions. The particle volume fraction determined using wet chemical analysis gives values of SiC vol.% which are closer to the nominal Sic % than the values of SiC% obtained by ultrasonic and Clemex Image Analysis system. In view of ALCAN's recommendation one must use wet chemical analysis for determining the volume percent SiC.« less
Mini-columns for Conducting Breakthrough Experiments. Design and Construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittrich, Timothy M.; Reimus, Paul William; Ware, Stuart Douglas
Experiments with moderately and strongly sorbing radionuclides (i.e., U, Cs, Am) have shown that sorption between experimental solutions and traditional column materials must be accounted for to accurately determine stationary phase or porous media sorption properties (i.e., sorption site density, sorption site reaction rate coefficients, and partition coefficients or K d values). This report details the materials and construction of mini-columns for use in breakthrough columns to allow for accurate measurement and modeling of sorption parameters. Material selection, construction techniques, wet packing of columns, tubing connections, and lessons learned are addressed.
NASA Technical Reports Server (NTRS)
Chang, A. T. C.; Shiue, J. C.
1979-01-01
Truck mounted microwave instrumentation was used to study the microwave emission characteristics of the Colorado Rocky Mountain snowpack in the vicinity of Fraser, Colorado during the winter of 1978. The spectral signatures of 5.0, 10.7, 18, and 37 GHz radiometers with dual polarization were used to measure the snowpack density and temperature profiles, rain profile, and free water content. These data were compared with calculated results based on microscopic scattering models for dry, surface melting, and very wet snowpacks.
1981-03-01
gradient of iii/a ion. SniAtt polari/ji oil fields As mentioned earlier, our object is to use the same valuse if L"~ as (Es Bi, H2 termnal I ire sut...spectral cut- arranged in order of decreasing wet longitude of ionospheric inter- %ection points of the various ray path% as shown in Figure I. oil in the...1977). Review of equatorial have suggested that density enhancements may scintillation phenomena in the light of recent developments spread oil over a
Effect of ultra-thin liner materials on copper nucleation/wetting and copper grain growth
NASA Astrophysics Data System (ADS)
Mueller, Justin E.
One of the key challenges facing future integrated circuit copper (Cu) interconnect manufacturing is to achieve uniform coverage of PVD Cu seed layer at minimum thickness on a liner and barrier. We have therefore characterized the nucleation and wetting of PVD Cu on various liner surfaces by monitoring in-situ the film's electrical conductance during the initial stages of deposition (0 to 25 nm). Our results showed that the Cu wetting is sensitive to the Cu/liner interfacial properties, while the nucleation depends on the liner microstructure. It was found that a ruthenium (Ru) liner has a good Cu wetting characteristic and allows at the onset nearly layer by layer Cu growth. Because of good wetting, Cu growth is not significantly affected by Ru liner grain size. Tantalum (Ta), however, exhibits poor Cu wetting, which results in an initial stage of three dimensional island growth of Cu. In this case, Cu island coalescing occurs sooner, at a smaller Cu film thickness, when the nucleation site density is increased with a smaller grain size Ta liner. To optimize the seed layer's conductance and step coverage, a liner with combined properties of Ta (for adhesion and barrier formation) and Ru (for wetting and grain growth) may be desired. A hybrid magnetron target has been developed for depositing TaRu liner films at various compositions. The microstructure of the compound liners and their effects on the overgrown Cu seed layer over a wide range of TaRu composition is presented. It was found that below 80% Ru concentration, TaRu films are amorphous. An amorphous liner results in poor Cu nucleation as compared with a crystalline Ta or Ru liner. A comparison of the microstructure of thin Cu films deposited on bcc alpha-Ta and tetragonal beta-Ta surfaces has been carried out. Cu resistivity is lower by 10-15%, accompanied by larger Cu grain size, in as-deposited Cu films of various thickness' (30-120 nm) on beta-Ta as compared to those deposited on alpha-Ta. This is due to the presence of an epitaxial relationship between Cu (111) and beta-Ta (002) planes. After annealing, the difference was only seen in films thinner than 60 nm. Results were confirmed when Cu film resistance was measured in-situ during deposition on each phase of Ta liner. Serpentine interconnect line structures of various line widths and aspect ratios were fabricated using either alpha- or beta-Ta liners, and subjected to a similar heat treatment. Results showed a similar ˜10% lower resistivity in the thinnest interconnects (˜40 nm) when a beta-Ta liner was used.
NASA Astrophysics Data System (ADS)
Pezeshki, Alan M.; Clement, Jason T.; Veith, Gabriel M.; Zawodzinski, Thomas A.; Mench, Matthew M.
2015-10-01
The roundtrip electrochemical energy efficiency is improved from 63% to 76% at a current density of 200 mA cm-2 in an all-vanadium redox flow battery (VRFB) by utilizing modified carbon paper electrodes in the high-performance no-gap design. Heat treatment of the carbon paper electrodes in a 42% oxygen/58% nitrogen atmosphere increases the electrochemically wetted surface area from 0.24 to 51.22 m2 g-1, resulting in a 100-140 mV decrease in activation overpotential at operationally relevant current densities. An enriched oxygen environment decreases the amount of treatment time required to achieve high surface area. The increased efficiency and greater depth of discharge doubles the total usable energy stored in a fixed amount of electrolyte during operation at 200 mA cm-2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jian; Guo, Pan; University of Chinese Academy of Sciences, Beijing 100049
Using molecular dynamics simulations, we show a fine linear relationship between surface energies and microscopic Lennard-Jones parameters of super-hydrophilic surfaces. The linear slope of the super-hydrophilic surfaces is consistent with the linear slope of the super-hydrophobic, hydrophobic, and hydrophilic surfaces where stable water droplets can stand, indicating that there is a universal linear behavior of the surface energies with the water-surface van der Waals interaction that extends from the super-hydrophobic to super-hydrophilic surfaces. Moreover, we find that the linear relationship exists for various substrate types, and the linear slopes of these different types of substrates are dependent on the surfacemore » atom density, i.e., higher surface atom densities correspond to larger linear slopes. These results enrich our understanding of water behavior on solid surfaces, especially the water wetting behaviors on uncharged super-hydrophilic metal surfaces.« less
Design and fabrication of low power GaAs/AlAs resonant tunneling diodes
NASA Astrophysics Data System (ADS)
Md Zawawi, Mohamad Adzhar; Missous, Mohamed
2017-12-01
A very low peak voltage GaAs/AlAs resonant tunneling diode (RTD) grown by molecular beam epitaxy (MBE) has been studied in detail. Excellent growth control with atomic-layer precision resulted in a peak voltage of merely 0.28 V (0.53 V) in forward (reverse) direction. The peak current density in forward bias is around 15.4 kA/cm2 with variation of within 7%. As for reverse bias, the peak current density is around 22.8 kA/cm2 with 4% variation which implies excellent scalability. In this work, we have successfully demonstrated the fabrication of a GaAs/AlAs RTD by using a conventional optical lithography and chemical wet-etching with very low peak voltage suitable for application in low dc input power RTD-based sub-millimetre wave oscillators.
Performance of InGaAs short wave infrared avalanche photodetector for low flux imaging
NASA Astrophysics Data System (ADS)
Singh, Anand; Pal, Ravinder
2017-11-01
Opto-electronic performance of the InGaAs/i-InGaAs/InP short wavelength infrared focal plane array suitable for high resolution imaging under low flux conditions and ranging is presented. More than 85% quantum efficiency is achieved in the optimized detector structure. Isotropic nature of the wet etching process poses a challenge in maintaining the required control in the small pitch high density detector array. Etching process is developed to achieve low dark current density of 1 nA/cm2 in the detector array with 25 µm pitch at 298 K. Noise equivalent photon performance less than one is achievable showing single photon detection capability. The reported photodiode with low photon flux is suitable for active cum passive imaging, optical information processing and quantum computing applications.
Ordering nanoparticles with polymer brushes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Shengfeng; Stevens, Mark J.; Grest, Gary S.
Ordering nanoparticles into a desired super-structure is often crucial for their technological applications. We use molecular dynamics simulations to study the assembly of nanoparticles in a polymer brush randomly grafted to a planar surface as the solvent evaporates. Initially, the nanoparticles are dispersed in a solvent that wets the polymer brush. After the solvent evaporates, the nanoparticles are either inside the brush or adsorbed at the surface of the brush, depending on the strength of the nanoparticle-polymer interaction. For strong nanoparticle-polymer interactions, a 2-dimensional ordered array is only formed when the brush density is finely tuned to accommodate a singlemore » layer of nanoparticles. When the brush density is higher or lower than this optimal value, the distribution of nanoparticles shows large fluctuations in space and the packing order diminishes. For weak nanoparticle-polymer interactions, the nanoparticles order into a hexagonal array on top of the polymer brush as long as the grafting density is high enough to yield a dense brush. As a result, an interesting healing effect is observed for a low-grafting-density polymer brush that can become more uniform in the presence of weakly adsorbed nanoparticles.« less
Ordering nanoparticles with polymer brushes
Cheng, Shengfeng; Stevens, Mark J.; Grest, Gary S.
2017-12-08
Ordering nanoparticles into a desired super-structure is often crucial for their technological applications. We use molecular dynamics simulations to study the assembly of nanoparticles in a polymer brush randomly grafted to a planar surface as the solvent evaporates. Initially, the nanoparticles are dispersed in a solvent that wets the polymer brush. After the solvent evaporates, the nanoparticles are either inside the brush or adsorbed at the surface of the brush, depending on the strength of the nanoparticle-polymer interaction. For strong nanoparticle-polymer interactions, a 2-dimensional ordered array is only formed when the brush density is finely tuned to accommodate a singlemore » layer of nanoparticles. When the brush density is higher or lower than this optimal value, the distribution of nanoparticles shows large fluctuations in space and the packing order diminishes. For weak nanoparticle-polymer interactions, the nanoparticles order into a hexagonal array on top of the polymer brush as long as the grafting density is high enough to yield a dense brush. As a result, an interesting healing effect is observed for a low-grafting-density polymer brush that can become more uniform in the presence of weakly adsorbed nanoparticles.« less
Eddy Correlation Flux Measurement System Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, D. R.
2016-01-01
The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind componentsmore » and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.« less
Postfact phenomena of the wet-steam flow electrization in turbines
NASA Astrophysics Data System (ADS)
Tarelin, A. A.
2017-11-01
Physical processes occurring in a turbine with natural electrization of a humidity-steam flow and their effect on efficiency and reliability of the turbine operation has been considered. Causes of the electrical potential occurrence on a rotor shaft are analyzed. The wet steam's electrization exposure on the electrical potential that is one of the major factors of bearings' electroerosion has been demonstrated on the full-scale installation. Hydrogen formation in wheelspace of the turbine as a result of electrochemical processes and electric field exposure of the space charge has been considered. Hydrogen concentration dependence on a volume charge density in the steam flow has been determined. It is stated that the processes occurring behind the final stage of wet-steam turbines are similar to the ones in elaerosol ectrostatic generators. It has been demonstrated that this phenomenon causes the flow's temporal inhibition and starts pulsations. These factors' impact on power loss of the turbine has been evaluated and recommendations for their elimination have been offered. It has been determined that motions of charged drops can cause self-maintained discharges inside of the flow and between the flow and grounded surfaces that are accompanied by electromagnetic radiation of the wide spectrum. The integrated studies have shown that physical phenomena occurring due to natural electrization negatively affect efficiency and reliability of the turbine operation. Practical recommendations allowing one to minimize the negative effects of the flow natural electrization process have been offered.
Fully Textile, PEDOT:PSS Based Electrodes for Wearable ECG Monitoring Systems.
Pani, Danilo; Dessi, Alessia; Saenz-Cogollo, Jose F; Barabino, Gianluca; Fraboni, Beatrice; Bonfiglio, Annalisa
2016-03-01
To evaluate a novel kind of textile electrodes based on woven fabrics treated with PSS, through an easy fabrication process, testing these electrodes for biopotential recordings. Fabrication is based on raw fabric soaking in PSS using a second dopant, squeezing and annealing. The electrodes have been tested on human volunteers, in terms of both skin contact impedance and quality of the ECG signals recorded at rest and during physical activity (power spectral density, baseline wandering, QRS detectability, and broadband noise). The electrodes are able to operate in both wet and dry conditions. Dry electrodes are more prone to noise artifacts, especially during physical exercise and mainly due to the unstable contact between the electrode and the skin. Wet (saline) electrodes present a stable and reproducible behavior, which is comparable or better than that of traditional disposable gelled Ag/AgCl electrodes. The achieved results reveal the capability of this kind of electrodes to work without the electrolyte, providing a valuable interface with the skin, due to mixed electronic and ionic conductivity of PSS. These electrodes can be effectively used for acquiring ECG signals. Textile electrodes based on PSS represent an important milestone in wearable monitoring, as they present an easy and reproducible fabrication process, very good performance in wet and dry (at rest) conditions and a superior level of comfort with respect to textile electrodes proposed so far. This paves the way to their integration into smart garments.
Separate and combined sewer systems: a long-term modelling approach.
Mannina, Giorgio; Viviani, Gaspare
2009-01-01
Sewer systems convey mostly dry weather flow, coming from domestic and industrial sanitary sewage as well as infiltration flow, and stormwater due to meteoric precipitations. Traditionally, in urban drainage two types of sewer systems are adopted: separate and combined sewers. The former convey dry and wet weather flow separately into two different networks, while the latter convey dry and wet weather flow together. Which is the best solution in terms of cost-benefit analysis still remains a controversial subject. The present study was aimed at comparing the pollution loads discharged to receiving bodies by Wastewater Treatment Plant (WWTP) and Combined Sewer Overflow (CSO) for different kinds of sewer systems (combined and separate). To accomplish this objective, a comparison between the two systems was carried out using results from simulations of catchments characterised by different dimensions, population densities and water supply rate. The analysis was based on a parsimonious mathematical model able to simulate the sewer system as well as the WWTP during both dry and wet weather. The rain series employed for the simulations was six years long. Several pollutants, both dissolved and particulate, were modelled. The results confirmed the uncertainties in the choice of one system versus the other, emphasising the concept that case-by-case solutions have to be undertaken. Further, the compared systems showed different responses in terms of effectiveness in reducing the discharged mass to the RWB in relation to the particular pollutant taken into account.
Moghimipour, Eskandar; Salimi, Anayatollah; Rezaee, Saeed; Balack, Maryam; Handali, Somayeh
2014-01-01
Background: Nitrofurantoin is a nitrofuran antibiotic that has been used for treatment of urinary tract against positive and negative bacteria. Objectives: The aim of this study was to evaluate the effect of structural vehicles and flocculating agents on physical stability and rheological behavior of nitrofurantoin suspension. Materials and Methods: To formulate the suspensions, the effect of glycerin and polysorbate 80 as wetting agents was evaluated and their particle sizes were determined using the sieve method. Then to achieve controlled flocculation, sodium citrate and aluminum chloride were added. After choosing the suitable wetting and flocculating agents, structural vehicles such as sodium carboxyl methyl cellulose and Veegum were evaluated individually and in combination. In addition, the effect of sorbitol on density of continuous phase and some physical stability parameters such as sedimentation volume, degree of flocculation and ease of redispersion of the suspensions were evaluated. After incorporation of structural vehicles, the rheological properties of formulations were also determined to find their flow behavior. Results: According to the results, glycerin (0.2%) and sodium citrate (0.3%) had the best effect on the suspension stability as wetting and flocculating agents, respectively. Rheological properties of formulations showed pseudoplastic behavior with some degree of thixotropy. Conclusions: In conclusion, the suspension containing Veegum 1%, sodium carboxy methyl cellulose 1%, glycerine 0.2%, sodium citrate 0.3% and sorbitol 20 % was chosen as the most physically stable formulation. PMID:24872937
Green-house gas emissions from rice fields under different water management
NASA Astrophysics Data System (ADS)
Lagomarsino, Alessandra; Elio Agnelli, Alessandro; Ferrara, Rossana Monica; Adviento-Borbe, Maria Arlene; Linquist, Bruce; Gavina, Giacomo; Ravaglia, Stefano
2013-04-01
During 2012 season, two rice fields have been selected in Italy (Cantaglia farm, Bologna province) and subjected to different water management: one under continuous flooding (WET) and the other under alternate wetting and drying (AWD). In AWD, re-flushing occurred in order to maintain water field capacity over 60 %. Two rice varieties (one commonly cultivated in Italy and one variety from the S.I.S. germoplasm collection) have been considered under WET treatment (Gladio and Zhen Long 13 - abbreviated as ZL13), while only Gladio under AWD. Green house gases (GHGs) sampling have been performed weekly or bi-weekly throughout the growing season. Soluble organic carbon (C), soluble nitrogen (N) and nitrates have been collected through piezometers. Soil sampling have been performed at the beginning and at the end of the growing season and total organic C (TOC), total N (TN), C/N ratio of soil organic matter (SOM), bulk density and water holding capacity were measured. At the end of the growing season rice above- and below-ground biomass have been sampled and C and N content of stem, grain and roots were measured. Methane (CH4) emissions showed a clear trend, following water availability in soils. An initial peak after the first flooding was observed in all soils, while after the second flooding CH4 was emitted only in the WET treatment. Further flooding events in AWD soil did not determine CH4 emissions during the vegetative season. Overall, in 2012 growing season a 98 % reduction of CH4 emissions in AWD soil was observed. In the WET treatment, no significant variations were observed between the two varieties, although on average ZL13 showed lower rates of CH4 emissions. Two peaks of nitrous oxide (N2O) emissions were observed: the first after the initial flooding in all soils; the second one, much greater, 14 days after the fertilization only in AWD soils. These two peaks accounted for 92 % of total N2O emissions in 2012 rice season. Overall, in 2012 growing season N2O emissions were five-fold greater in AWD with respect to WET soils. No significant differences were observed between the two varieties, although ZL13 showed on average lower emission rates. The large difference between the two water management systems indicates that more work is needed to optimize the AWD cultivation method (variety, N management, water management) under Italian conditions before it can be introduced as an instrument to reduce climate impact of the Italian rice crop.
Research and engineering assessment of biological solubilization of phosphate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, R.D.; McIlwain, M.E.; Losinski, S.J.
This research and engineering assessment examined a microbial phosphate solubilization process as a method of recovering phosphate from phosphorus containing ore compared to the existing wet acid and electric arc methods. A total of 860 microbial isolates, collected from a range of natural environments were tested for their ability to solubilize phosphate from rock phosphate. A bacterium (Pseudomonas cepacia) was selected for extensive characterization and evaluation of the mechanism of phosphate solubilization and of process engineering parameters necessary to recover phosphate from rock phosphate. These studies found that concentration of hydrogen ion and production of organic acids arising from oxidationmore » of the carbon source facilitated microbial solubilization of both pure chemical insoluble phosphate compounds and phosphate rock. Genetic studies found that phosphate solubilization was linked to an enzyme system (glucose dehydrogenase). Process-related studies found that a critical solids density of 1% by weight (ore to liquid) was necessary for optimal solubilization. An engineering analysis evaluated the cost and energy requirements for a 2 million ton per year sized plant, whose size was selected to be comparable to existing wet acid plants.« less
Advanced Microwave Radiometer (AMR) for SWOT mission
NASA Astrophysics Data System (ADS)
Chae, C. S.
2015-12-01
The objective of the SWOT (Surface Water & Ocean Topography) satellite mission is to measure wide-swath, high resolution ocean topography and terrestrial surface waters. Since main payload radar will use interferometric SAR technology, conventional microwave radiometer system which has single nadir look antenna beam (i.e., OSTM/Jason-2 AMR) is not ideally applicable for the mission for wet tropospheric delay correction. Therefore, SWOT AMR incorporates two antenna beams along cross track direction. In addition to the cross track design of the AMR radiometer, wet tropospheric error requirement is expressed in space frequency domain (in the sense of cy/km), in other words, power spectral density (PSD). Thus, instrument error allocation and design are being done in PSD which are not conventional approaches for microwave radiometer requirement allocation and design. A few of novel analyses include: 1. The effects of antenna beam size to PSD error and land/ocean contamination, 2. Receiver error allocation and the contributions of radiometric count averaging, NEDT, Gain variation, etc. 3. Effect of thermal design in the frequency domain. In the presentation, detailed AMR design and analyses results will be discussed.
Tripathi, Nagesh K; Karothia, Divyanshi; Shrivastava, Ambuj; Banger, Swati; Kumar, Jyoti S
2018-05-13
West Nile virus (WNV) is an emerging mosquito-borne virus which is responsible for severe and fatal encephalitis in humans and for which there is no licensed vaccine or therapeutic available to prevent infection. The envelope domain III protein (EDIII) of WNV was over-expressed in Escherichia coli and purified using a two-step chromatography process which included immobilized metal affinity chromatography and ion exchange chromatography. E. coli cells were grown in a bioreactor to high density using batch and fed-batch cultivation. Wet biomass obtained after batch and fed-batch cultivation processes was 11.2 g and 84 g/L of culture respectively. Protein yield after affinity purification was 5.76 mg and 5.81 mg/g wet cell weight after batch and fed-batch processes respectively. The purified WNV EDIII elicited specific antibodies in rabbits, confirming its immunogenicity. Moreover, the antibodies were able to neutralize WNV in vitro. These results established that the refolded and purified WNV EDIII could be a potential vaccine candidate. Copyright © 2018 Elsevier B.V. All rights reserved.
Preparation of gallium nitride surfaces for atomic layer deposition of aluminum oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, A. J.; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093; Chagarov, E.
2014-09-14
A combined wet and dry cleaning process for GaN(0001) has been investigated with XPS and DFT-MD modeling to determine the molecular-level mechanisms for cleaning and the subsequent nucleation of gate oxide atomic layer deposition (ALD). In situ XPS studies show that for the wet sulfur treatment on GaN(0001), sulfur desorbs at room temperature in vacuum prior to gate oxide deposition. Angle resolved depth profiling XPS post-ALD deposition shows that the a-Al{sub 2}O{sub 3} gate oxide bonds directly to the GaN substrate leaving both the gallium surface atoms and the oxide interfacial atoms with XPS chemical shifts consistent with bulk-like charge.more » These results are in agreement with DFT calculations that predict the oxide/GaN(0001) interface will have bulk-like charges and a low density of band gap states. This passivation is consistent with the oxide restoring the surface gallium atoms to tetrahedral bonding by eliminating the gallium empty dangling bonds on bulk terminated GaN(0001)« less
NASA Astrophysics Data System (ADS)
Ji, F.; Xu, J. P.; Liu, J. G.; Li, C. X.; Lai, P. T.
2011-05-01
TaON is in situ formed as a passivating interlayer in Ge metal-oxide-semiconductor (MOS) capacitors with high-k TaTiO gate dielectric fabricated simply by alternate sputtering of Ta and Ti. Also, postdeposition annealing is performed in wet N2 to suppress the growth of unstable GeOx at the Ge surface. As a result, excellent electrical properties of the Ge MOS devices are demonstrated, such as high equivalent dielectric constant (22.1), low interface-state density (7.3×1011 cm-2 eV), small gate leakage current (8.6×10-4 A cm-2 at Vg-Vfb=1 V), and high device reliability. Transmission electron microscopy and x-ray photoelectron spectroscopy support that all these should be attributed to the fact that the nitrogen barrier in the TaON interlayer can effectively block the interdiffusions of Ge and Ta, and the wet-N2 anneal can significantly suppress the growth of unstable low-k GeOx.
Audible acoustics in high-shear wet granulation: application of frequency filtering.
Hansuld, Erin M; Briens, Lauren; McCann, Joe A B; Sayani, Amyn
2009-08-13
Previous work has shown analysis of audible acoustic emissions from high-shear wet granulation has potential as a technique for end-point detection. In this research, audible acoustic emissions (AEs) from three different formulations were studied to further develop this technique as a process analytical technology. Condenser microphones were attached to three different locations on a PMA-10 high-shear granulator (air exhaust, bowl and motor) to target different sound sources. Size, flowability and tablet break load data was collected to support formulator end-point ranges and interpretation of AE analysis. Each formulation had a unique total power spectral density (PSD) profile that was sensitive to granule formation and end-point. Analyzing total PSD in 10 Hz segments identified profiles with reduced run variability and distinct maxima and minima suitable for routine granulation monitoring and end-point control. A partial least squares discriminant analysis method was developed to automate selection of key 10 Hz frequency groups using variable importance to projection. The results support use of frequency refinement as a way forward in the development of acoustic emission analysis for granulation monitoring and end-point control.
Yellapu, Sravan Kumar; Kaur, Rajwinder; Tyagi, Rajeshwar D
2017-01-01
In situ transesterification of oleaginous yeast wet biomass for fatty acid methyl esters (FAMEs) production using acid catalyst, methanol with or without N-Lauroyl sarcosine (N-LS) treatment was performed. The maximum FAMEs yield obtained with or without N-LS treatment in 24h reaction time was 96.1±1.9 and 71±1.4% w/w, respectively. The N-LS treatment of biomass followed by with or without ultrasonication revealed maximum FAMEs yield of 94.3±1.9% and 82.9±1.8% w/w using methanol to lipid molar ratio 360:1 and catalyst concentration 360mM (64μL H 2 SO 4 /g lipid) within 5 and 25min reaction time, respectively. The FAMEs composition obtained in in situ transesterification was similar to that obtained with conventional two step lipid extraction and transesterification process. Biodiesel fuel properties (density, kinematic viscosity, cetane number and total glycerol) were in accordance with international standard (ASTM D6751), which suggests the suitability of biodiesel as a fuel. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana, Malay Kumar; Chandra, Amalendu, E-mail: amalen@iitk.ac.in
2015-01-21
Atomistic simulations of model nonpolar nanotubes in a Stockmayer liquid are carried out for varying nanotube diameter and nanotube-solvent interactions to investigate solvophobic interactions in generic dipolar solvents. We have considered model armchair type single-walled nonpolar nanotubes with increasing radii from (5,5) to (12,12). The interactions between solute and solvent molecules are modeled by the well-known Lennard-Jones and repulsive Weeks-Chandler-Andersen potentials. We have investigated the density profiles and microscopic arrangement of Stockmayer molecules, orientational profiles of their dipole vectors, time dependence of their occupation, and also the translational and rotational motion of solvent molecules in confined environments of the cylindricalmore » nanopores and also in their external peripheral regions. The present results of structural and dynamical properties of Stockmayer molecules inside and near atomistically rough nonpolar surfaces including their wetting and dewetting behavior for varying interactions provide a more generic picture of solvophobic effects experienced by simple dipolar liquids without any specific interactions such as hydrogen bonds.« less
Tree allometry and improved estimation of carbon stocks and balance in tropical forests.
Chave, J; Andalo, C; Brown, S; Cairns, M A; Chambers, J Q; Eamus, D; Fölster, H; Fromard, F; Higuchi, N; Kira, T; Lescure, J-P; Nelson, B W; Ogawa, H; Puig, H; Riéra, B; Yamakura, T
2005-08-01
Tropical forests hold large stores of carbon, yet uncertainty remains regarding their quantitative contribution to the global carbon cycle. One approach to quantifying carbon biomass stores consists in inferring changes from long-term forest inventory plots. Regression models are used to convert inventory data into an estimate of aboveground biomass (AGB). We provide a critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees >or= 5 cm diameter, directly harvested in 27 study sites across the tropics. Proportional relationships between aboveground biomass and the product of wood density, trunk cross-sectional area, and total height are constructed. We also develop a regression model involving wood density and stem diameter only. Our models were tested for secondary and old-growth forests, for dry, moist and wet forests, for lowland and montane forests, and for mangrove forests. The most important predictors of AGB of a tree were, in decreasing order of importance, its trunk diameter, wood specific gravity, total height, and forest type (dry, moist, or wet). Overestimates prevailed, giving a bias of 0.5-6.5% when errors were averaged across all stands. Our regression models can be used reliably to predict aboveground tree biomass across a broad range of tropical forests. Because they are based on an unprecedented dataset, these models should improve the quality of tropical biomass estimates, and bring consensus about the contribution of the tropical forest biome and tropical deforestation to the global carbon cycle.
Hughes, Kristen; Budke, Christine M.; Ward, Michael P.; Kerry, Ruth; Ingram, Ben
2017-01-01
The population density of wildlife reservoirs contributes to disease transmission risk for domestic animals. The objective of this study was to model the African buffalo distribution of the Kruger National Park. A secondary objective was to collect field data to evaluate models and determine environmental predictors of buffalo detection. Spatial distribution models were created using buffalo census information and archived data from previous research. Field data were collected during the dry (August 2012) and wet (January 2013) seasons using a random walk design. The fit of the prediction models were assessed descriptively and formally by calculating the root mean square error (rMSE) of deviations from field observations. Logistic regression was used to estimate the effects of environmental variables on the detection of buffalo herds and linear regression was used to identify predictors of larger herd sizes. A zero-inflated Poisson model produced distributions that were most consistent with expected buffalo behavior. Field data confirmed that environmental factors including season (P = 0.008), vegetation type (P = 0.002), and vegetation density (P = 0.010) were significant predictors of buffalo detection. Bachelor herds were more likely to be detected in dense vegetation (P = 0.005) and during the wet season (P = 0.022) compared to the larger mixed-sex herds. Static distribution models for African buffalo can produce biologically reasonable results but environmental factors have significant effects and therefore could be used to improve model performance. Accurate distribution models are critical for the evaluation of disease risk and to model disease transmission. PMID:28902858
Drought effects on evapotransiration and subsurface water storage in the southern Sierra Nevada
NASA Astrophysics Data System (ADS)
Bales, R. C.; Goulden, M.; Hunsaker, C. T.; Conklin, M. H.; Hartsough, P. C.; O'Geen, T. T.; Hopmans, J. W.; Safeeq, M.
2015-12-01
Multi-year measurements of evapotranspiration (ET) at three elevations in the southern Sierra Nevada show the extent to which subsurface water storage in the regolith provides a buffer against multi-year dry periods. ET in a 2000-m elevation mixed-conifer forest showed a 24% decrease in ET in water-year 2014, the third dry year, as compared to the wet year of 2011. This decrease reflected reduced transpiration for the July to September period. Over half of the annual ET in both wet and dry years came from below the 1-m depth mapped soil, and with come coming from below the 2.5 m depth of our soil-moisture measurements. The ability of trees to access water from these depths does provide a 2-3 year buffer for ET, which also depends on forest density and the balance between perennial overstory and annual understory vegetation. An equally dense lower-elevation pine-oak forest (1160 m) showed nearly a 50% decrease in ET during the third year of drought, with significant visible effects on vegetation. While this lower elevation forest may have as much or more subsurface storage as does that at 2000-m elevation, the combination of lower precipitation as one goes down in elevation and very high forest density provides only a one-year buffer for ET in dry years. Regaining resiliency in this forest will only occur with significant reductions in biomass and commensurate lowering of ET. In a 400-m elevation oak savannah ET responds to annual precipitation, with essentially no multi-year buffer provided by subsurface storage.
Taft, Oriane W.; Haig, Susan M.
2006-01-01
While it is widely understood that local abundance of benthic invertebrates can greatly influence the distribution and abundance of wetland birds, no studies have examined if wetland landscape context can mediate this relationship. We studied the influence of wetland food abundance and landscape context on use of agricultural wetlands by wintering dunlin (Calidris alpina) and killdeer (Charadrius vociferus) in the Willamette Valley of Oregon, USA, over two winters (1999a??2000, 2000a??2001) of differing rainfall and subsequent habitat distribution. We monitored bird use (frequency of occurrence and abundance) at a sample of wetlands differing in local food abundance (density and biomass) and landscape context [adjacent shorebird habitat (defined as ha of wet habitat with less than 50% vegetative cover and within a 2-km radius) and nearest neighbor distance]. We evaluated predictive models for bird use using linear regression and the Cp criterion to select the most parsimonious model. During the dry winter (2000a??2001), dunlin exhibited greater use of sites with higher invertebrate density and biomass but also with more adjacent shorebird habitat and closest to a wetland neighbor. However, neither landscape context nor food abundance were important predictors of dunlin use during the wet winter (1999a??2000). Use of sites by killdeer was unrelated to either local food abundance or landscape context measures during both winters. Our findings contribute to a growing recognition of the importance of landscape structure to wetland birds and highlight a number of implications for the spatial planning and enhancement of wetlands using a landscape approach.
All solid-state V2O5-based flexible hybrid fiber supercapacitors
NASA Astrophysics Data System (ADS)
Li, Huan; He, Jin; Cao, Xin; Kang, Liping; He, Xuexia; Xu, Hua; Shi, Feng; Jiang, Ruibin; Lei, Zhibin; Liu, Zong-Huai
2017-12-01
Vanadium pentoxide/single-walled carbon nanotube (V2O5-SWCNT) hybrid fibers with good electrochemical performance and flexibility are firstly prepared by using wet-spinning method. V2O5 nanobelt suspension is obtained by mixing V2O5 bulk, 30% H2O2, H2O and followed by hydrothermally treating at 190 °C for 15 h. SWCNT suspension is suspended into V2O5 nanobelt suspension under vigorous stirring, the V2O5-SWCNT homogenous suspension is obtained. It is injected into a coagulation bath composed of 5 wt % CaCl2 ethanol-water solution using syringe pump, V2O5-SWCNT hybrid fibers are prepared by washing with deionized water and drying at room temperature. Reduced graphene oxide (RGO)-SWCNT hybrid fibers are also prepared by the similar wet-spinning approach and followed by reducing GO-SWCNT hybrid fibers in an aqueous solution of hydriodic acid. All solid-state asymmetric V2O5/SWCNT//RGO/SWCNT fiber supercapacitors are assembled with V2O5-SWCNT fiber as positive electrode and RGO-SWCNT fiber as negative electrode by using PVA-H3PO4 as gel electrolyte. The assembled device not only shows maximum volumetric energy density of 1.95 mW h cm-3 at a volumetric power density of 7.5 mW cm-3, superior rate performance and cycling stability, but also exhibits remarkable flexibility to tolerate long-term and repeated bending. This work will open a new application filed of V2O5-based fibers in wearable energy storage devices.
A thermodynamic approach to link self-organization, preferential flow and rainfall-runoff behaviour
NASA Astrophysics Data System (ADS)
Zehe, E.; Ehret, U.; Blume, T.; Kleidon, A.; Scherer, U.; Westhoff, M.
2013-11-01
This study investigates whether a thermodynamically optimal hillslope structure can, if existent, serve as a first guess for uncalibrated predictions of rainfall-runoff. To this end we propose a thermodynamic framework to link rainfall-runoff processes and dynamics of potential energy, kinetic energy and capillary binding energy in catchments and hillslopes. The starting point is that hydraulic equilibrium in soil corresponds to local thermodynamic equilibrium (LTE), characterized by a local maximum entropy/minimum of free energy of soil water. Deviations from LTE occur either due to evaporative losses, which increase absolute values of negative capillary binding energy of soil water and reduce its potential energy, or due to infiltration of rainfall, which increases potential energy of soil water and reduces the strength of capillary binding energy. The amplitude and relaxation time of these deviations depend on climate, vegetation, soil hydraulic functions, topography and density of macropores. Based on this framework we analysed the free energy balance of hillslopes within numerical experiments that perturbed model structures with respect to the surface density of macropores. These model structures have been previously shown to allow successful long-term simulations of the water balances of the Weiherbach and the Malalcahuello catchments, which are located in distinctly different pedological and climatic settings. Our findings offer a new perspective on different functions of preferential flow paths depending on the pedological setting. Free energy dynamics of soil water in the cohesive soils of the Weiherbach is dominated by dynamics of capillary binding energy. Macropores act as dissipative wetting structures by enlarging water flows against steep gradients in soil water potential after long dry spells. This implies accelerated depletion of these gradients and faster relaxation back towards LTE. We found two local optima in macropore density that maximize reduction rates of free energy of soil water during rainfall-driven conditions. These two optima exist because reduction rates of free energy are, in this case, a second-order polynomial of the wetting rate, which implicitly depends on macroporosity. An uncalibrated long-term simulation of the water balance of the Weiherbach catchment based on the first optimum macroporosity performed almost as well as the best fit when macroporosity was calibrated to match rainfall-runoff. In the Malalcahuello catchment we did not find an apparent optimum density of macropores, because free energy dynamics of soil water during rainfall-driven conditions is dominated by increases of potential energy. Macropores act as dissipative drainage structures by enhancing export of potential energy. No optimum macropore density exists in this case because potential energy change rates scale linearly with the wetting rate. We found, however, a distinguished macroporosity that assures steady-state conditions of the potential energy balance of the soil, in the sense that average storage of potential energy is compensated by average potential energy export. This distinguished macroporosity was close to the value that yielded the best fit of rainfall-runoff behaviour during a calibration exercise and allowed a robust estimate of the annual runoff coefficient. Our findings are promising for predictions in ungauged catchments (PUB) as the optimal/distinguished model structures can serve as a first guess for uncalibrated predictions of rainfall-runoff. They also offer an alternative for classifying catchments according to their similarity of the free energy balance components.
NASA Astrophysics Data System (ADS)
Khan, Zeeshan; Islam, Saeed; Shah, Rehan Ali; Khan, Muhammad Altaf; Bonyah, Ebenezer; Jan, Bilal; Khan, Aurangzeb
Modern optical fibers require a double-layer coating on the glass fiber in order to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC) and low and high density polyethylene (LDPE/HDPE), nylon and Polysulfone. One of the most important things which affect the final product after processing is the design of the coating die. In the present study, double-layer optical fiber coating is performed using melt polymer satisfying Oldroyd 8-constant fluid model in a pressure type die with the effect of magneto-hydrodynamic (MHD). Wet-on-wet coating process is applied for double-layer optical fiber coating. The coating process in the coating die is modeled as a simple two-layer Couette flow of two immiscible fluids in an annulus with an assigned pressure gradient. Based on the assumptions of fully developed laminar and MHD flow, the Oldroyd 8-constant model of non-Newtonian fluid of two immiscible resin layers is modeled. The governing nonlinear equations are solved analytically by the new technique of Optimal Homotopy Asymptotic Method (OHAM). The convergence of the series solution is established. The results are also verified by the Adomian Decomposition Method (ADM). The effect of important parameters such as magnetic parameter Mi , the dilatant constant α , the Pseodoplastic constant β , the radii ratio δ , the pressure gradient Ω , the speed of fiber optics V , and the viscosity ratio κ on the velocity profiles, thickness of coated fiber optics, volume flow rate, and shear stress on the fiber optics are investigated. At the end the result of the present work is also compared with the experimental results already available in the literature by taking non-Newtonian parameters tends to zero.
NASA Astrophysics Data System (ADS)
van der Kamp, G.; Sonnentag, O.; Chen, J. M.; Barr, A.; Hedstrom, N.; Granger, R.
2008-12-01
The interaction of fens with groundwater is spatially and temporally highly variable in response to meteorological conditions, resulting in frequent changes of groundwater fluxes in both vertical and lateral directions (flow reversals) across the mineral soil-peat boundary. However, despite the importance of the topographic and hydrogeological setting of fens, no study has been reported in the literature that explores a fen's atmospheric CO2 and energy flux densities under contrasting meteorological conditions in response to its physiographic setting. In our contribution we report four years of growing season eddy covariance and supporting measurements from the Canada Fluxnet-BERMS fen (formerly BOREAS southern peatland) in Saskatchewan, Canada. We first analyze hydrological data along two piezometer transects across the mineral soil-peat boundary with the objective of assessing changes in water table configuration and thus hydraulic gradients, indicating flow reversals, in response to dry and wet meteorological conditions. Next we quantify and compare growing season totals and diurnal and daily variations in evapotranspiration (ET) and net ecosystem exchange (NEE) and its component fluxes gross ecosystem productivity (GPP) and terrestrial ecosystem respiration (TER) to identify their controls with a major focus on water table depth. While ET growing season totals were similar (~ 310 mm) under dry and wet meteorological conditions, the CO2 sink- source strength of Sandhill fen varied substantially from carbon neutral (NEE = -2 [+-7] g C m-2 per growing season) under dry meteorological condition (2003) to a moderate CO2- sink with NEE ranging between 157 [+- 10] and 190 [+- 11] g C m-2 per growing season under wet meteorological conditions (2004, 2005, and 2006). Using a process-oriented ecosystem model, BEPS-TerrainLab, we investigate how different canopy components at Sandhill contribute to total ET and GPP, and thus water use efficiency, under dry and wet meteorological conditions.
Kosugi, Yoshiko; Takanashi, Satoru; Matsuo, Naoko; Nik, Abdul Rahim
2009-04-01
We observed diurnal and seasonal patterns of leaf-scale gas exchange within the crown of a Dipterocarpus sublamellatus Foxw. tree growing in a lowland dipterocarp forest at Pasoh, Peninsular Malaysia. Observations were carried out nine times over 6 years, from September 2002 to December 2007. Observation periods included both wet and mild-dry periods, and natural and saturated photosynthetic photon flux density (PPFD) light conditions. In situ measurements of the diurnal change in net photosynthetic rate and in stomatal conductance were carried out on canopy leaves of a 40-m-tall D. sublamellatus tree, which was accessed from a canopy corridor. A diurnal change in electron transport rate was observed under saturated PPFD conditions. The maximum net assimilation rate was approximately 10 micromol m(-2) s(-1). There was a clear inhibition of the net assimilation rate coupled with stomatal closure after late morning and this inhibition occurred year-round. Although the electron transport rate decreased alongside this inhibition, it sometimes followed on. Numerical analysis showed that the main factor in the inhibition of the net assimilation rate was patchy bimodal stomatal closure, which occurred in both mild-dry and wet periods. The midday depression occurred year-round, though there are fluctuations in soil moisture during the mild-dry and wet periods. The magnitude of the inhibition was not related to soil water content but was related to vapor pressure deficit (VPD): that is, whether the days were sunny and hot or cloudy and cool. On cloudy, cool days in the wet period, the net photosynthesis was only moderately inhibited, but it still decreased in the afternoon and was coupled with patchy stomatal closure, even in quite moderate VPD, leaf temperature and PPFD conditions. Our results suggest that patchy stomatal closure signaled by the increase in VPD, in transpiration and by circadian rhythms, was the key factor in constraining midday leaf gas exchange of the D. sublamellatus canopy leaves.
Dynamics of two-phase interfaces and surface tensions: A density-functional theory perspective
NASA Astrophysics Data System (ADS)
Yatsyshin, Petr; Sibley, David N.; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim
2016-11-01
Classical density functional theory (DFT) is a statistical mechanical framework for the description of fluids at the nanoscale, where the inhomogeneity of the fluid structure needs to be carefully accounted for. By expressing the grand free-energy of the fluid as a functional of the one-body density, DFT offers a theoretically consistent and computationally accessible way to obtain two-phase interfaces and respective interfacial tensions in a ternary solid-liquid-gas system. The dynamic version of DFT (DDFT) can be rigorously derived from the Smoluchowsky picture of the dynamics of colloidal particles in a solvent. It is generally agreed that DDFT can capture the diffusion-driven evolution of many soft-matter systems. In this context, we use DDFT to investigate the dynamic behaviour of two-phase interfaces in both equilibrium and dynamic wetting and discuss the possibility of defining a time-dependent surface tension, which still remains in debate. We acknowledge financial support from the European Research Council via Advanced Grant No. 247031 and from the Engineering and Physical Sciences Research Council of the UK via Grants No. EP/L027186 and EP/L020564.
Physical evaluation of a maize-based extruded snack with curry powder.
Christofides, Vassilis; Ainsworth, Paul; Ibanoğlu, Senol; Gomes, Frances
2004-02-01
Response surface methodology was used to analyze the effect of screw speed (200-280 rpm), feed moisture (13.0-17.0%, wet basis), and curry powder (6.0-9.0%) on the bulk density, lateral expansion, and firmness of maize-based extruded snack with curry powder. Regression equations describing the effect of each variable on the responses were obtained. Responses were most affected by changes in feed moisture followed by screw speed and curry powder (p < 0.05). Lateral expansion increased linearly as the amount of curry powder added was increased whereas a quadratic increase was obtained in lateral expansion with decreasing feed moisture. The firmness of samples was increased with an increase in feed moisture. The bulk density of samples was increased with increasing feed moisture and screw speeds. Radial expansion was found to be a better index to measure the physical properties of the extruded product indicated by a higher correlation coefficient.
Tuan, Chia-Chi; James, Nathan Pataki; Lin, Ziyin; Chen, Yun; Liu, Yan; Moon, Kyoung-Sik; Li, Zhuo; Wong, C P
2017-03-15
As microelectronics are trending toward smaller packages and integrated circuit (IC) stacks nowadays, underfill, the polymer composite filled in between the IC chip and the substrate, becomes increasingly important for interconnection reliability. However, traditional underfills cannot meet the requirements for low-profile and fine pitch in high density IC stacking packages. Post-applied underfills have difficulties in flowing into the small gaps between the chip and the substrate, while pre-applied underfills face filler entrapment at bond pads. In this report, we present a self-patterning underfilling technology that uses selective wetting of underfill on Cu bond pads and Si 3 N 4 passivation via surface energy engineering. This novel process, fully compatible with the conventional underfilling process, eliminates the issue of filler entrapment in typical pre-applied underfilling process, enabling high density and fine pitch IC die bonding.
NASA Astrophysics Data System (ADS)
Khan, Tasneem M. A.; Khan, Asiya; Sarawade, Pradip B.
2018-05-01
We report a method to synthesize low-density transparent mesoporous silica aerogel beads by ambient pressure drying (APD). The beads were prepared by acid-base sol-gel polymerization of sodium silicate in via the ball dropping method (BDM). To minimize shrinkage during drying, wet silica beads were initially prepared; their surfaces were then modified using trimethylchlorosilane (TMCS) via simultaneous solvent exchange and surface modification. The specific surface area and cumulative pore volume of the silica aerogel beads increased with an increase in the %V of TMCS. Silica aerogel beads with low packing bed density, high surface area, and large cumulative pore volume was obtained when TMCS was used. Properties of the final product were examined by BET, and TG-DT analyses. The hydrophobic silica aerogel beads were thermally stable up to 350°C. We discuss our results and compare our findings for modified versus unmodified silica beads.
NASA Astrophysics Data System (ADS)
Stegemann, Bert; Gad, Karim M.; Balamou, Patrice; Sixtensson, Daniel; Vössing, Daniel; Kasemann, Martin; Angermann, Heike
2017-02-01
Six advanced oxidation techniques were analyzed, evaluated and compared with respect to the preparation of high-quality ultra-thin oxide layers on crystalline silicon. The resulting electronic and chemical SiO2/Si interface properties were determined by a combined x-ray photoemission (XPS) and surface photovoltage (SPV) investigation. Depending on the oxidation technique, chemically abrupt SiO2/Si interfaces with low densities of interface states were fabricated on c-Si either at low temperatures, at short times, or in wet-chemical environment, resulting in each case in excellent interface passivation. Moreover, the beneficial effect of a subsequent forming gas annealing (FGA) step for the passivation of the SiO2/Si interface of ultra-thin oxide layers has been proven. Chemically abrupt SiO2/Si interfaces have been shown to generate less interface defect states.
Adhesive bonding of ion beam textured metals and fluoropolymers
NASA Technical Reports Server (NTRS)
Mirtich, M. J.; Sovey, J. S.
1978-01-01
An electron bombardment argon ion source was used to ion etch various metals and fluoropolymers. The metal and fluoropolymers were exposed to (0.5 to 1.0) keV Ar ions at ion current densities of (0.2 to 1.5) mA/sq cm for various exposure times. The resulting surface texture is in the form of needles or spires whose vertical dimensions may range from tenths to hundreds of micrometers, depending on the selection of beam energy, ion current density, and etch time. The bonding of textured surfaces is accomplished by ion beam texturing mating pieces of either metals or fluoropolymers and applying a bonding agent which wets in and around the microscopic cone-like structures. After bonding, both tensile and shear strength measurements were made on the samples. Also tested, for comparison's sake, were untextured and chemically etched fluoropolymers. The results of these measurements are presented.
Adhesive bonding of ion beam textured metals and fluoropolymers
NASA Technical Reports Server (NTRS)
Mirtich, M. J.; Sovey, J. S.
1978-01-01
An electron-bombardment argon ion source was used to ion-etch various metals and fluoropolymers. The metal and fluoropolymers were exposed to (0.5 to 1.0)-keV Ar ions at ion current densities of 0.2 to 1.5 mA/sq cm for various exposure times. The resulting surface texture is in the form of needles or spires whose vertical dimensions may range from tenths to hundreds of micrometers, depending on the selection of beam energy, ion current density, and etch time. The bonding of textured surfaces is accomplished by ion-beam texturing mating pieces of either metals or fluoropolymers and applying a bonding agent which wets in and around the microscopic conelike structures. After bonding, both tensile and shear strength measurements were made on the samples. Also tested, for comparison's sake, were untextured and chemically etched fluoropolymers. The results of these measurements are presented in this paper.
Peters, Johanna; Bartscher, Kathrin; Döscher, Claas; Taute, Wolfgang; Höft, Michael; Knöchel, Reinhard; Breitkreutz, Jörg
2017-08-01
Microwave resonance technology (MRT) is known as a process analytical technology (PAT) tool for moisture measurements in fluid-bed granulation. It offers a great potential for wet granulation processes even where the suitability of near-infrared (NIR) spectroscopy is limited, e.g. colored granules, large variations in bulk density. However, previous sensor systems operating around a single resonance frequency showed limitations above approx. 7.5% granule moisture. This paper describes the application of a novel sensor working with four resonance frequencies. In-line data of all four resonance frequencies were collected and further processed. Based on calculation of density-independent microwave moisture values multiple linear regression (MLR) models using Karl-Fischer titration (KF) as well as loss on drying (LOD) as reference methods were build. Rapid, reliable in-process moisture control (RMSEP≤0.5%) even at higher moisture contents was achieved. Copyright © 2017 Elsevier B.V. All rights reserved.
Winters, W.J.; Dallimore, S.R.; Collett, T.S.; Jenner, K.A.; Katsube, J.T.; Cranston, R.E.; Wright, J.F.; Nixon, F.M.; Uchida, T.
2000-01-01
As part of an interdisciplinary field program, a 1150-m deep well was drilled in the Canadian Arctic to determine, among other goals, the location, characteristics, and properties of gas hydrate. Numerous physical properties of the host sediment were measured in the laboratory and are presented in relation to the lithology and quantity of in situ gas hydrate. Profiles of measured and derived properties presented from that investigation include: sediment wet bulk density, water content, porosity, grain density, salinity, gas hydrate content (percent occupancy of non-sediment grain void space), grain size, porosity, and post-recovery core temperature. The greatest concentration of gas hydrate is located within sand and gravel deposits between 897 and 922 m. Silty sediment between 926 and 952 m contained substantially less, or no, gas hydrate perhaps because of smaller pore size.
Palaeo-adaptive properties of the xylem of Metasequoia: mechanical/hydraulic compromises.
Jagels, Richard; Visscher, George E; Lucas, John; Goodell, Barry
2003-07-01
The xylem of Metasequoia glyptostroboides Hu et Cheng is characterized by very low density (average specific gravity = 0.27) and tracheids with relatively large dimensions (length and diameter). The microfibril angle in the S2 layer of tracheid walls is large, even in outer rings, suggesting a cambial response to compressive rather than tensile stresses. In some cases, this compressive stress is converted to irreversible strain (plastic deformation), as evidenced by cell wall corrugations. The heartwood is moderately decay resistant, helping to prevent Brazier buckling. These xylem properties are referenced to the measured bending properties of modulus of rupture and modulus of elasticity, and compared with other low-to-moderate density conifers. The design strategy for Metasequoia is to produce a mechanically weak but hydraulically efficient xylem that permits rapid height growth and crown development to capture and dominate a wet site environment. The adaptability of these features to a high-latitude Eocene palaeoenvironment is discussed.
Vitello, Dominic J.; Ripper, Richard M.; Fettiplace, Michael R.; Weinberg, Guy L.; Vitello, Joseph M.
2015-01-01
Purpose. The gravimetric method of weighing surgical sponges is used to quantify intraoperative blood loss. The dry mass minus the wet mass of the gauze equals the volume of blood lost. This method assumes that the density of blood is equivalent to water (1 gm/mL). This study's purpose was to validate the assumption that the density of blood is equivalent to water and to correlate density with hematocrit. Methods. 50 µL of whole blood was weighed from eighteen rats. A distilled water control was weighed for each blood sample. The averages of the blood and water were compared utilizing a Student's unpaired, one-tailed t-test. The masses of the blood samples and the hematocrits were compared using a linear regression. Results. The average mass of the eighteen blood samples was 0.0489 g and that of the distilled water controls was 0.0492 g. The t-test showed P = 0.2269 and R 2 = 0.03154. The hematocrit values ranged from 24% to 48%. The linear regression R 2 value was 0.1767. Conclusions. The R 2 value comparing the blood and distilled water masses suggests high correlation between the two populations. Linear regression showed the hematocrit was not proportional to the mass of the blood. The study confirmed that the measured density of blood is similar to water. PMID:26464949
Vázquez, Leopoldo; Renton, Katherine
2015-01-01
It has been suggested that a latitudinal gradient exists of a low density of snags and high density of naturally-formed tree-cavities in tropical vs. temperate forests, though few cavities may have characteristics suitable for nesting by birds. We determined snag and cavity density, characteristics, and suitability for birds in a tropical dry forest biome of western Mexico, and evaluated whether our data fits the trend of snag and cavity density typically found in tropical moist and wet forests. We established five 0.25-ha transects to survey and measure tree-cavities and snags in each of three vegetation types of deciduous, semi-deciduous, and mono-dominant Piranhea mexicana forest, comprising a total of 3.75 ha. We found a high density of 77 cavities/ha, with 37 cavities suitable for birds/ha, where density, and characteristics of cavities varied significantly among vegetation types. Lowest abundance of cavities occurred in deciduous forest, and these were in smaller trees, at a lower height, and with a narrower entrance diameter. Only 8.6% of cavities were excavated by woodpeckers, and only 11% of cavities were occupied, mainly by arthropods, though 52% of all cavities were unsuitable for birds. We also found a high density of 56 snags/ha, with greatest density in deciduous forest (70 snags/ha), though these were of significantly smaller diameter, and snags of larger diameter were more likely to contain cavities. The Chamela-Cuixmala tropical dry forest had the highest density of snags recorded for any tropical or temperate forest, and while snag density was significantly correlated with mean snag dbh, neither latitude nor mean dbh predicted snag density in ten forest sites. The high spatial aggregation of snag and cavity resources in tropical dry forest may limit their availability, particularly for large-bodied cavity adopters, and highlights the importance of habitat heterogeneity in providing resources for primary and secondary cavity-nesters.
Vázquez, Leopoldo; Renton, Katherine
2015-01-01
It has been suggested that a latitudinal gradient exists of a low density of snags and high density of naturally-formed tree-cavities in tropical vs. temperate forests, though few cavities may have characteristics suitable for nesting by birds. We determined snag and cavity density, characteristics, and suitability for birds in a tropical dry forest biome of western Mexico, and evaluated whether our data fits the trend of snag and cavity density typically found in tropical moist and wet forests. We established five 0.25-ha transects to survey and measure tree-cavities and snags in each of three vegetation types of deciduous, semi-deciduous, and mono-dominant Piranhea mexicana forest, comprising a total of 3.75 ha. We found a high density of 77 cavities/ha, with 37 cavities suitable for birds/ha, where density, and characteristics of cavities varied significantly among vegetation types. Lowest abundance of cavities occurred in deciduous forest, and these were in smaller trees, at a lower height, and with a narrower entrance diameter. Only 8.6% of cavities were excavated by woodpeckers, and only 11% of cavities were occupied, mainly by arthropods, though 52% of all cavities were unsuitable for birds. We also found a high density of 56 snags/ha, with greatest density in deciduous forest (70 snags/ha), though these were of significantly smaller diameter, and snags of larger diameter were more likely to contain cavities. The Chamela-Cuixmala tropical dry forest had the highest density of snags recorded for any tropical or temperate forest, and while snag density was significantly correlated with mean snag dbh, neither latitude nor mean dbh predicted snag density in ten forest sites. The high spatial aggregation of snag and cavity resources in tropical dry forest may limit their availability, particularly for large-bodied cavity adopters, and highlights the importance of habitat heterogeneity in providing resources for primary and secondary cavity-nesters. PMID:25615612
Shadwick, Robert E; Goldbogen, Jeremy A; Pyenson, Nicholas D; Whale, James C A
2017-11-01
The mandibles of rorqual whales are highly modified to support loads associated with lunge-feeding, a dynamic filter feeding mechanism that is characterized by rapid changes in gape angle and acceleration. Although these structures are the largest ossified elements in animals and an important part of the rorqual engulfment apparatus, details of internal structure are limited and no direct measurements of mechanical properties exist. Likewise, the forces that are sustained by the mandibles are unknown. Here we report on the structure and mechanical behavior of the mandible of an adult fin whale. A series of transverse sections were cut at locations along the entire length of a 3.6-m left mandible recovered post-mortem from a 16-m fin whale, and CT scanned to make density maps. Cored samples 6-8 mm in diameter were tested in compression to determine the Young's modulus and strength. In addition, wet density, dry density and mineral density were measured. Dense cortical bone occupies only a relatively narrow peripheral layer while much less dense and oil-filled trabecular bone occupies the rest. Mineral density of both types is strongly correlated with dry density and CT Hounsfield units. Compressive strength is strongly correlated with Young's modulus, while strength and stiffness are both correlated with mineral density. It appears that the superficial compact layer is the main load bearing element, and that the mandible is reinforced against dorso-vental flexion that would occur during the peak loads while feeding. Anat Rec, 300:1953-1962, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Ochoa-Hueso, Raúl; de la Puente Ranea, Daniel; Viejo, José Luis
2014-01-01
Abstract Butterfly community and single species based approaches were taken to establish conservation priorities within a nature reserve in Central Spain. In this study, patch type (sclerophyllous, halophilous, or disturbed), potential herbaceous nectar availability, potential woody plant nectar availability, total nectar availability, and two approximations to plant diversity (herbaceous and woody plant diversity) were evaluated as variables that account for adult butterfly density. Butterfly communities in the reserve, which consist mostly of generalist species, were denser in relatively wet areas dominated by halophilous vegetation. Diversity did not significantly vary between ecologically different transects. Total nectar availability correlated with higher butterfly densities within both undisturbed and disturbed areas, which could be primarily explained by the lack of water typical of semiarid Mediterranean climates, where fresh, nectariferous vegetation is scarce. Woody plants were also found to be important sources of nectar and shelter. In the dryer sclerophyllous sites, adult butterfly density was best explained by herbaceous plant diversity, suggesting better quality of available resources. The endangered specialist Zerynthia rumina (L.) (Lepidoptera: Papilionidae) was only present at the sclerophyllous sites. Its density was very low in all sampled transects, excluding one relatively isolated transect with high larval hostplant density. In contrast to the community-based approach, density of Z. rumina adults is better explained by the density of its larval hostplant than by nectar availability, a trend previously described for other sedentary species. Management strategies for protecting insect-rich areas should consider the specific ecological requirements of endangered species. PMID:25373198
WET AND DRY SCRUBBERS FOR EMISSION CONTROL
Generally speaking, absorption equipment includes two major categories: Wet adsorption scrubbers (or wet scrubbers); Dry absorption scrubbers (or dry scrubbers).
Wet scrubbers: As the name implies, wet scrubbers (also known as wet collectors) are devices which use a liquid fo...
Wet-Bulb-Globe Temperature Data Report
2015-03-01
Hour Min Pressure Dry Nat Wet Globe Dry Nat Wet Globe Dry Nat Wet Globe Wind Cld amt Cld type Obscuration Quest RH Kestrel RH VPSc RH S1 WBGT Q WBGT...Wet Globe Dry Nat Wet Globe Dry Nat Wet Globe Wind Cld amt Cld type Obscuration Quest RH Kestrel RH VPSc RH S1 WBGT Q WBGT K2 WBGT GMT millibars deg F...Dry Nat Wet Globe Dry Nat Wet Globe Wind Cld amt Cld type Obscuration Quest RH Kestrel RH VPSc RH S1 WBGT Q WBGT K2 WBGT GMT millibars deg F deg F deg
Proceedings of the Power Sources Conference (36th) Held in Cherry Hill, New Jersey on June 6-9, 1994
1994-06-09
bi- polar design. Activation: Entrapped gas bubbles are diffiult to remove. Thorough wetting requires pulling vacuum several times. Initial Charging...accomplished by pulling an exdernal vacuum which evacuates air from each cell through the sNTEvCEI.L-fill I vent tubes. After release of vacuum and...density = 1.75 amnps/in2 System Weight =86 lbs (9.7 WI-l1b) System Volume =1071 in3 (.78 W~fn 3) 7SI I I I I I 70 C~~URREN PRGRM GOALI 60 CCLE IFEEPI is
New Low Temperature Processing for Boron Carbide/Aluminum Based Composite Armor
1990-06-01
cases. The aluminum powder was finer than 325 mesh (nominal 4 ptm diameter). The titanium diboride powder also had a median particle diameter of 4 g ~m...Al Before Heat Treatment. Sample Density Hardness Flex ( g /mL) (Rockwell A) Strength 70/30 B4 C/Al/dry 2.62±.03 81±3 57±5 ksi 70/30 B4 C/AI/wet/A 2.57...0.4 w/o nitrogen, 160 ppm calcium, 140 ppm chromium. 270 ppm iron, and 330 ppm nickel. The surface area was 7 m 2 / g . Initial dispersion and filter
NASA Astrophysics Data System (ADS)
Golovkina, L. S.; Orlova, A. I.; Boldin, M. S.; Sakharov, N. V.; Chuvil'deev, V. N.; Nokhrin, A. V.; Konings, R.; Staicu, D.
2017-06-01
Powders based on the complex garnet-type oxide Y2.5Nd0.5Al5O12 - x wt. % Ni (x = 0, 10, 20) were prepared using wet chemistry methods. Ceramics based on these compounds were obtained by Spark Plasma Sintering (SPS) with a relative densities: 99%. 4% (TD = 4.77 g/cm3 (0%)), 97.6% (TD = 4.88 g/cm3 (10%)), 94.4% (TD = 5.06 g/cm3 (20%)). The influence of nickel concentration on the mechanical (fracture toughness, microhardness) and thermophysical (thermal conductivity) properties of the composites was studied.
High-temperature ductility of electro-deposited nickel
NASA Technical Reports Server (NTRS)
Dini, J. W.; Johnson, H. R.
1977-01-01
Work done during the past several months on high temperature ductility of electrodeposited nickel is summarized. Data are presented which show that earlier measurements made at NASA-Langley erred on the low side, that strain rate has a marked influence on high temperature ductility, and that codeposition of a small amount of manganese helps to improve high temperature ductility. Influences of a number of other factors on nickel properties were also investigated. They included plating solution temperature, current density, agitation, and elimination of the wetting agent from the plating solution. Repair of a large nozzle section by nickel plating is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samanta, Sujan Krishna, E-mail: itssujan@rediffmail.com; Chanda, Abhijit, E-mail: abhijitchanda.biomed@gmail.com
2016-04-13
Pure β-tricalcium phosphate (β-TCP), Zn-doped (3wt %) β-TCP and Mg- doped (3wt %) β-TCP samples were prepared by using a wet chemical precipitation synthesis technique, followed by calcination at 800 °C in air. The developed materials were subjected to sintering at different temperatures. Density and porosity were compared. The X-ray diffractometry (XRD) and Fourier-transformed infrared (FTIR) spectrometer were used to examine the changes in crystalline phases and presence of functional groups of TCP ceramics. The scanning electron microscopy (SEM) was used to study the pore formation, pore size, grain size.
Adhesion improvement of lignocellulosic products by enzymatic pre-treatment.
Widsten, Petri; Kandelbauer, Andreas
2008-01-01
Enzymatic bonding methods, based on laccase or peroxidase enzymes, for lignocellulosic products such as medium-density fiberboard and particleboard are discussed with reference to the increasing costs of presently used petroleum-based adhesives and the health concerns associated with formaldehyde emissions from current composite products. One approach is to improve the self-bonding properties of the particles by oxidation of their surface lignin before they are fabricated into boards. Another method involves using enzymatically pre-treated lignins as adhesives for boards and laminates. The application of this technology to achieve wet strength characteristics in paper is also reviewed.
Analysis of problems with dry fermentation process for biogas production
NASA Astrophysics Data System (ADS)
Pilát, Peter; Patsch, Marek; Jandačka, Jozef
2012-04-01
The technology of dry anaerobic fermentation is still meeting with some scepticism, and therefore in most biogas plants are used wet fermentation technology. Fermentation process would be not complete without an optimal controlled condition: dry matter content, density, pH, and in particular the reaction temperature. If is distrust of dry fermentation eligible it was on the workplace of the Department of Power Engineering at University of Zilina built an experimental small-scale biogas station that allows analysis of optimal parameters of the dry anaerobic fermentation, in particular, however, affect the reaction temperature on yield and quality of biogas.
NASA Astrophysics Data System (ADS)
Arata, Shigeki; Hayashi, Kenya; Nishio, Yuya; Kobayashi, Atsuki; Nakazato, Kazuo; Niitsu, Kiichi
2018-04-01
The world’s smallest (0.36 mm2) solid-state CMOS-compatible glucose fuel cell, which exhibits an open-circuit voltage (OCV) of 228 mV and a power generation density of 1.32 µW/cm2 with a 30 mM glucose solution, is reported in this paper. Compared with conventional wet etching, dry etching (reactive ion etching) for patterning minimizes damage to the anode and cathode, resulting in a cell with a small size and a high OCV, sufficient for CMOS circuit operation.
NASA Astrophysics Data System (ADS)
Lecoutre, C.; Marre, S.; Garrabos, Y.; Beysens, D.; Hahn, I.
2018-05-01
Analyses of ground-based experiments on near-critical fluids to precisely determine their density can be hampered by several effects, especially the density stratification of the sample, the liquid wetting behavior at the cell walls, and a possible singular curvature of the "rectilinear" diameter of the density coexisting curve. For the latter effect, theoretical efforts have been made to understand the amplitude and shape of the critical hook of the density diameter, which depart from predictions from the so-called ideal lattice-gas model of the uniaxial 3D-Ising universality class. In order to optimize the observation of these subtle effects on the position and shape of the liquid-vapor meniscus in the particular case of SF6, we have designed and filled a cell that is highly symmetrized with respect to any median plane of the total fluid volume. In such a viewed quasi-perfect symmetrical fluid volume, the precise detection of the meniscus position and shape for different orientations of the cell with respect to the Earth's gravity acceleration field becomes a sensitive probe to estimate the cell mean density filling and to test the singular diameter effects. After integration of this cell in the ALI-R insert, we take benefit of the high optical and thermal performances of the DECLIC Engineering Model. Here we present the sensitive imaging method providing the precise ground-based SF6 benchmark data. From these data analysis it is found that the temperature dependence of the meniscus position does not reflect the expected critical hook in the rectilinear density diameter. Therefore the off-density criticality of the cell is accurately estimated, before near future experiments using the same ALI-R insert in the DECLIC facility already on-board the International Space Station.
Margolis, Ellis; Malevich, Steven B.
2016-01-01
Anthropogenic alteration of ecosystem processes confounds forest management and conservation of rare, declining species. Restoration of forest structure and fire hazard reduction are central goals of forest management policy in the western United States, but restoration priorities and treatments have become increasingly contentious. Numerous studies have documented changes in fire regimes, forest stand structure and species composition following a century of fire exclusion in dry, frequent-fire forests of the western U.S. (e.g., ponderosa pine and dry mixed-conifer). In contrast, wet mixed-conifer forests are thought to have historically burned infrequently with mixed- or high-severity fire—resulting in reduced impacts from fire exclusion and low restoration need—but data are limited. In this study we quantified the current forest habitat of the federally endangered, terrestrial Jemez Mountains salamander (Plethodon neomexicanus) and compared it to dendroecological reconstructions of historical habitat (e.g., stand structure and composition), and fire regime parameters along a gradient from upper ponderosa pine to wet mixed-conifer forests. We found that current fire-free intervals in Jemez Mountains salamander habitat (116–165 years) are significantly longer than historical intervals, even in wet mixed-conifer forests. Historical mean fire intervals ranged from 10 to 42 years along the forest gradient. Low-severity fires were historically dominant across all forest types (92 of 102 fires). Although some mixed- or highseverity fire historically occurred at 67% of the plots over the last four centuries, complete mortality within 1.0 ha plots was rare, and asynchronous within and among sites. Climate was an important driver of temporal variability in fire severity, such that mixed- and high-severity fires were associated with more extreme drought than low-severity fires. Tree density in dry conifer forests historically ranged from open (90 trees/ha) to moderately dense (400 trees/ha), but has doubled on average since fire exclusion. Infill of fire-sensitive tree species has contributed to the conversion of historically dry mixedconifer to wet mixed-conifer forest. We conclude that low-severity fire, which has been absent for over a century, was a critical ecosystem process across the forest gradient in Jemez Mountains salamander habitat, and thus is an important element of ecosystem restoration, resilience, and rare species recovery.
Disruption rates for one vulnerable soil in Organ Pipe Cactus National Monument, Arizona, USA
Webb, Robert H.; Esque, Todd C.; Nussear, Kenneth E.; Sturm, Mark
2013-01-01
Rates of soil disruption from hikers and vehicle traffic are poorly known, particularly for arid landscapes. We conducted an experiment in Organ Pipe Cactus National Monument (ORPI) in western Arizona, USA, on an air-dry very fine sandy loam that is considered to be vulnerable to disruption. We created variable-pass tracks using hikers, an all-terrain vehicle (ATV), and a four-wheel drive vehicle (4WD) and measured changes in cross-track topography, penetration depth, and bulk density. Hikers (one pass = 5 hikers) increased bulk density and altered penetration depth but caused minimal surface disruption up to 100 passes; a minimum of 10 passes were required to overcome surface strength of this dry soil. Both ATV and 4WD traffic significantly disrupted the soil with one pass, creating deep ruts with increasing passes that rendered the 4WD trail impassable after 20 passes. Despite considerable soil loosening (dilation), bulk density increased in the vehicle trails, and lateral displacement created berms of loosened soil. This soil type, when dry, can sustain up to 10 passes of hikers but only one vehicle pass before significant soil disruption occurs; greater disruption is expected when soils are wet. Bulk density increased logarithmically with applied pressure from hikers, ATV, and 4WD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kissinger, G.; Richter, H.; Vanhellemont, J.
1996-12-01
One of the main advantages of infrared light scattering tomography (IR-LST) is the wide range of defect densities that can be studied using this technique. As-grown defects of low density and very small size as well as oxygen precipitation related defects that appear in densities up to some 1010 cm{sup -3} can be observed. As-grown wafers with a {open_quotes}stacking fault ring{close_quotes} were investigated in order to correlate the defects observed by IR-LST with the results of Secco etching and alcaline cleaning solution (SC1) treatment revealing flow pattern defects (FPDs) and crystal originated particles (COPs), respectively. These wafers were studied aftermore » a wet oxidation at 1100{degrees}C for 100 min. In processed CZ silicon wafers it was possible to identify stacking faults and prismatic punching systems directly from the IR-LST image. Brewster angle illumination is a special mode to reveal defects in epitaxial layers in a non-destructive way. Misfit dislocations in the interface between a Ge{sub 0.92}Si{sub 0.08} layer and a silicon substrate were studied using this mode that allows to observe very low dislocation densities.« less
Alatalo, Juha M; Jägerbrand, Annika K; Juhanson, Jaanis; Michelsen, Anders; Ľuptáčik, Peter
2017-03-15
High-altitude and alpine areas are predicted to experience rapid and substantial increases in future temperature, which may have serious impacts on soil carbon, nutrient and soil fauna. Here we report the impact of 20 years of experimental warming on soil properties and soil mites in three contrasting plant communities in alpine/subarctic Sweden. Long-term warming decreased juvenile oribatid mite density, but had no effect on adult oribatids density, total mite density, any major mite group or the most common species. Long-term warming also caused loss of nitrogen, carbon and moisture from the mineral soil layer in mesic meadow, but not in wet meadow or heath or from the organic soil layer. There was a significant site effect on the density of one mite species, Oppiella neerlandica, and all soil parameters. A significant plot-scale impact on mites suggests that small-scale heterogeneity may be important for buffering mites from global warming. The results indicated that juvenile mites may be more vulnerable to global warming than adult stages. Importantly, the results also indicated that global warming may cause carbon and nitrogen losses in alpine and tundra mineral soils and that its effects may differ at local scale.
NASA Astrophysics Data System (ADS)
Alatalo, Juha M.; Jägerbrand, Annika K.; Juhanson, Jaanis; Michelsen, Anders; Ľuptáčik, Peter
2017-03-01
High-altitude and alpine areas are predicted to experience rapid and substantial increases in future temperature, which may have serious impacts on soil carbon, nutrient and soil fauna. Here we report the impact of 20 years of experimental warming on soil properties and soil mites in three contrasting plant communities in alpine/subarctic Sweden. Long-term warming decreased juvenile oribatid mite density, but had no effect on adult oribatids density, total mite density, any major mite group or the most common species. Long-term warming also caused loss of nitrogen, carbon and moisture from the mineral soil layer in mesic meadow, but not in wet meadow or heath or from the organic soil layer. There was a significant site effect on the density of one mite species, Oppiella neerlandica, and all soil parameters. A significant plot-scale impact on mites suggests that small-scale heterogeneity may be important for buffering mites from global warming. The results indicated that juvenile mites may be more vulnerable to global warming than adult stages. Importantly, the results also indicated that global warming may cause carbon and nitrogen losses in alpine and tundra mineral soils and that its effects may differ at local scale.
Kagbadouno, S M; Salou, E; Rayaisse, J B; Courtin, F; Sanon, A; Solano, P; Camara, M
2016-05-01
The mangrove area on the Guinea littoral constitutes a favourable habitat for transmission of Trypanosoma brucei gambiens, the parasite causing sleeping sickness also called Human African Trypanosmosis (HAT), due the simultaneous presence of the vector (tsetse flies) and the human hosts. In order to assess the influence of the sea tides on the densities of Glossina palpalis gambiensis (Gpg), major vector of HAT in the mangrove, entomological surveys were performed using two transects, according to tides coefficient (great and small) and tide daily fluctuations (high and low). On each transect, 12 biconical traps were deployed through the mangrove to the continent. In total, up to 612 Gpg were caught, giving a density of 2.13 flies/trap/day (f/t/d). Highest captures were recorded during small tides and more tsetse were caught during the dry season than in the wet season. There were significant differences between captures when considering the different biotopes, and highest tsetse densities were recorded at the junction of the river and the channel of the mangrove (6.17±5.24); and in the channels of mangrove (3.50±3.76), during high tides of small coefficients. The results of this study may be used to improve vector control methods.
Orion Landing Simulation Eight Soil Model Comparison
NASA Technical Reports Server (NTRS)
Mark, Stephen D.
2009-01-01
LS-DYNA finite element simulations of a rigid Orion Crew Module (CM) were used to investigate the CM impact behavior on eight different soil models. Ten different landing conditions, characterized by the combination of CM vertical and horizontal velocity, hang angle, and roll angle were simulated on the eight different soils. The CM center of gravity accelerations, pitch angle, kinetic energy, and soil contact forces were the outputs of interest. The simulation results are presented, with comparisons of the CM behavior on the different soils. The soils analyzed in this study can be roughly categorized as soft, medium, or hard, according to the CM accelerations that occur when landing on them. The soft group is comprised of the Carson Sink Wet soil and the Kennedy Space Center (KSC) Low Density Dry Sand. The medium group includes Carson Sink Dry, the KSC High Density In-Situ Moisture Sand and High Density Flooded Sand, and Cuddeback B. The hard soils are Cuddeback A and the Gantry Unwashed Sand. The softer soils were found to produce lower peak accelerations, have more stable pitch behavior, and to be less sensitive to the landing conditions. This investigation found that the Cuddeback A soil produced the highest peak accelerations and worst stability conditions, and that the best landing performance was achieved on the KSC Low Density Dry Sand.
Zainabadi, Kayvan; Adams, Matthew; Han, Zay Yar; Lwin, Hnin Wai; Han, Kay Thwe; Ouattara, Amed; Thura, Si; Plowe, Christopher V; Nyunt, Myaing M
2017-09-18
Greater Mekong Subregion countries are committed to eliminating Plasmodium falciparum malaria by 2025. Current elimination interventions target infections at parasite densities that can be detected by standard microscopy or rapid diagnostic tests (RDTs). More sensitive detection methods have been developed to detect lower density "asymptomatic" infections that may represent an important transmission reservoir. These ultrasensitive polymerase chain reaction (usPCR) tests have been used to identify target populations for mass drug administration (MDA). To date, malaria usPCR tests have used either venous or capillary blood sampling, which entails complex sample collection, processing and shipping requirements. An ultrasensitive method performed on standard dried blood spots (DBS) would greatly facilitate the molecular surveillance studies needed for targeting elimination interventions. A highly sensitive method for detecting Plasmodium falciparum and P. vivax 18S ribosomal RNA from DBS was developed by empirically optimizing nucleic acid extraction conditions. The limit of detection (LoD) was determined using spiked DBS samples that were dried and stored under simulated field conditions. Further, to assess its utility for routine molecular surveillance, two cross-sectional surveys were performed in Myanmar during the wet and dry seasons. The lower LoD of the DBS-based ultrasensitive assay was 20 parasites/mL for DBS collected on Whatman 3MM filter paper and 23 parasites/mL for Whatman 903 Protein Saver cards-equivalent to 1 parasite per 50 µL DBS. This is about 5000-fold more sensitive than standard RDTs and similar to the LoD of ≤16-22 parasites/mL reported for other ultrasensitive methods based on whole blood. In two cross-sectional surveys in Myanmar, nearly identical prevalence estimates were obtained from contemporaneous DBS samples and capillary blood samples collected during the wet and dry season. The DBS-based ultrasensitive method described in this study shows equal sensitivity as previously described methods based on whole blood, both in its limit of detection and prevalence estimates in two field surveys. The reduced cost and complexity of this method will allow for the scale-up of surveillance studies to target MDA and other malaria elimination interventions, and help lead to a better understanding of the epidemiology of low-density malaria infections.
Ecological relationships of breeding blue-winged teal to prairie potholes
Drewien, R.C.; Springer, P.F.
1969-01-01
Ecology of breeding blue-winged teal (Anas discors) was studied on the Waubay Study Area in Day County, South Dakota, in 1965 and 1966. Breeding pair use of the wetland habitat and importance of Type 1 ponds in the wetland complex were evaluated. Changes in breeding pair densities and wetland habitat conditions on the study area were compared for the 16-year period, 1950-66.Blue-winged teal pair densities of 30.7 and 33.0 per square mile in 1965 and 1966, respectively, were above the 16-year average from 1950 to 1966 and near the maximum for this period. Blue-winged teal comprised 46.7 per cent of the waterfowl breeding population in 1965 and 51.7 per cent in 1966. Number of water areas per square mile through mid-spring 1965 was comparable to the average for the 16-year period, whereas during late spring 1965 and throughout the 1966 spring breeding seasons the number of water areas increased to near optimum conditions.Annual breeding-pair densities from 1950 to 1966 appeared to be largely influenced by water conditions, and pair-density fluctuations resulted from changes in number of wet ponds from late April through mid-May. Variations in water conditions after this period did not appear to have as great an effect on numbers of breeding teal.Use of wetland habitat by pairs changed throughout the spring breeding seasons. During the post-arrival period, teal congregated on larger wetlands. With onset of egg-laying, pairs dispersed into ponds throughout the wetland complex to establish breeding home ranges. Other factors that influenced changes in habitat use included: 1) pond type and size, 2) breeding cycle phenology, 3) availability of wet ponds, and 4) land use. Number of blue-winged teal pairs per unit area of water was highest in 1965 and 1966 on Type 1B ponds, followed in decreasing order by Types 3, 1A, and 4 and 5. Greater use of Type 1B ponds was probably related to larger ratio of edge or shore line to unit area of water. Interspersion of many small wetlands throughout the breeding habitat provided for maximum pair dispersal during egg-laying and early incubation stages of the reproductive cycle.
Potential of lattice Boltzmann to model droplets on chemically stripe-patterned substrates
NASA Astrophysics Data System (ADS)
Patrick Jansen, H.; Sotthewes, K.; Zandvliet, Harold J. W.; Kooij, E. Stefan
2016-01-01
Lattice Boltzmann modelling (LBM) has recently been applied to a range of different wetting situations. Here we demonstrate its potential in representing complex kinetic effects encountered in droplets on chemically stripe-patterned surfaces. An ultimate example of the power of LBM is provided by comparing simulations and experiments of impacting droplets with varying Weber numbers. Also, the shape evolution of droplets is discussed in relation to their final shape. The latter can then be compared to Surface Evolver (SE) results, since under the proper boundary conditions both approaches should yield the same configuration in a static state. During droplet growth in LBM simulations, achieved by increasing the density within the droplet, the contact line initially advances in the direction parallel to the stripes, therewith increasing its aspect ratio. Once the volume becomes too large the droplet starts wetting additional stripes, leading to a lower aspect ratio. The maximum aspect ratio is shown to be a function of the width ratio of the hydrophobic and hydrophilic stripes and also their absolute widths. In the limit of sufficiently large stripe widths the aspect ratio is solely dependent on the relative stripe widths. The maximum droplet aspect ratio in the LBM simulations is compared to SE simulations and results are shown to be in good agreement. Additionally, we also show the ability of LBM to investigate single stripe wetting, enabling determination of the maximum aspect ratio that can be achieved in the limit of negligible hydrophobic stripe width, under the constraint that the stripe widths are large enough such that they are not easily crossed.
Kinetics of gravity-driven water channels under steady rainfall.
Cejas, Cesare M; Wei, Yuli; Barrois, Remi; Frétigny, Christian; Durian, Douglas J; Dreyfus, Rémi
2014-10-01
We investigate the formation of fingered flow in dry granular media under simulated rainfall using a quasi-two-dimensional experimental setup composed of a random close packing of monodisperse glass beads. Using controlled experiments, we analyze the finger instabilities that develop from the wetting front as a function of fundamental granular (particle size) and fluid properties (rainfall, viscosity). These finger instabilities act as precursors for water channels, which serve as outlets for water drainage. We look into the characteristics of the homogeneous wetting front and channel size as well as estimate relevant time scales involved in the instability formation and the velocity of the channel fingertip. We compare our experimental results with that of the well-known prediction developed by Parlange and Hill [D. E. Hill and J. Y. Parlange, Soil Sci. Soc. Am. Proc. 36, 697 (1972)]. This model is based on linear stability analysis of the growth of perturbations arising at the interface between two immiscible fluids. Results show that, in terms of morphology, experiments agree with the proposed model. However, in terms of kinetics we nevertheless account for another term that describes the homogenization of the wetting front. This result shows that the manner we introduce the fluid to a porous medium can also influence the formation of finger instabilities. The results also help us to calculate the ideal flow rate needed for homogeneous distribution of water in the soil and minimization of runoff, given the grain size, fluid density, and fluid viscosity. This could have applications in optimizing use of irrigation water.
Modification of oil palm wood using acetylation and impregnation process
NASA Astrophysics Data System (ADS)
Subagiyo, Lambang; Rosamah, Enih; Hesim
2017-03-01
The purpose of this study is chemical modification by process of acetylation and impregnation of oil palm wood to improve the dimensional stability. Acetylation process aimed at substituting the hydroxyl groups in a timber with an acetyl group. By increasing the acetyl groups in wood is expected to reduce the ability of wood to absorb water vapor which lead to the dimensions of the wood becomes more stable. Studies conducted on oil palm wood (Elaeis guineensis Jacq) by acetylation and impregnation method. The results showed that acetylated and impregnated wood oil palm (E. guineensis Jacq) were changed in their physical properties. Impregnation with coal ashfly provide the greatest response to changes in weight (in wet conditions) and after conditioning (dry) with the average percentage of weight gain of 198.16% and 66.41% respectively. Changes in volume indicates an increase of volume in the wet condition (imbibition) with the coal ashfly treatment gave highest value of 23.04 %, whereas after conditioning (dry) the highest value obtained in the treatment of gum rosin:ethanol with a volume increase of 13:44%. The highest changes of the density with the coal ashfly impregnation in wet condition (imbibition) in value of 142.32% and after conditioning (dry) of 57.87%. The result of reduction in water absorption (RWA) test showed that in the palm oil wood samples most stable by using of gum rosin : ethanol of 0.97%, whereas the increase in oil palm wood dimensional stability (ASE) is the best of 59.42% after acetylation with Acetic Anhydride: Xylene.
Reese, Katlynd M; Philpott, Stacy M
2012-10-01
Phoridae (Diptera) have widespread impacts on insect communities by limiting host ant behavior. However, phorid-ant interactions may vary with habitat or environmental conditions. Three Pseudacteon species parasitize Azteca instabilis Fr. Smith, a common ant in coffee agroecosystems, and limit A. instabilis foraging, indirectly benefiting other insects. However, little is known about how phorid abundance, behavior, and effects change with environmental conditions. In shaded coffee systems, coffee (Coffea arabica L.) grows under a range of shade conditions and management changes affect species interactions. For example, Pseudacteon spp. more strongly limit A. instabilis foraging in low-shade coffee habitats. We sampled relative abundance of three phorid species around A. instabilis nests in three coffee habitats varying in shade management during dry and wet seasons. We measured canopy cover, tree richness, tree density, leaf litter depth, and number of nearby trees with A. instabilis to determine whether these habitat factors correlate with phorid abundance. P. laciniosus Brown was the most abundant phorid in both seasons. Phorid relative abundance did not differ by habitat, but did differ by season. P. laciniosus accounted for a higher proportion of phorids in the wet season (91.4%) than in the dry season (78.9%), and P. planidorsalis Brown accounted for a larger percent in the dry season (21.1%) than in the wet season (7.3%). Phorid composition did not differ with habitat type, and none of the measured environmental variables correlated with changes in phorid composition. Thus, phorids in coffee agroecosystems respond to large seasonal differences, but not differences between coffee habitats.
Mitra, Biplob; Wolfe, Chad; Wu, Sy-Juen
2018-05-01
The feasibility of dextrose monohydrate as a non-animal sourced diluent in high shear wet granulation (HSWG) tablet formulations was determined. Impacts of granulation solution amount and addition time, wet massing time, impeller speed, powder and solution binder, and dry milling speed and screen opening size on granule size, friability and density, and tablet solid fraction (SF) and tensile strength (TS) were evaluated. The stability of theophylline tablets TS, disintegration time (DT) and in vitro dissolution were also studied. Following post-granulation drying at 60 °C, dextrose monohydrate lost 9% water and converted into the anhydrate form. Higher granulation solution amounts and faster addition, faster impeller speeds, and solution binder produced larger, denser and stronger (less friable) granules. All granules were compressed into tablets with acceptable TS. Contrary to what is normally observed, denser and larger granules (at ≥21% water level) produced tablets with a higher TS. The TS of the weakest tablets increased the most after storage at both 25 °C/60% RH and 40 °C/75% RH. Tablet DT was higher for stronger granules and after storage. Tablet dissolution profiles for 21% or less water were comparable and did not change on stability. However, the dissolution profile for tablets prepared with 24% water was slower initially and continued to decrease on stability. The results indicate a granulation water amount of not more than 21% is required to achieve acceptable tablet properties. This study clearly demonstrated the utility of dextrose monohydrate as a non-animal sourced diluent in a HSWG tablet formulation.
Wet separation processes as method to separate limestone and oil shale
NASA Astrophysics Data System (ADS)
Nurme, Martin; Karu, Veiko
2015-04-01
Biggest oil shale industry is located in Estonia. Oil shale usage is mainly for electricity generation, shale oil generation and cement production. All these processes need certain quality oil shale. Oil shale seam have interlayer limestone layers. To use oil shale in production, it is needed to separate oil shale and limestone. A key challenge is find separation process when we can get the best quality for all product types. In oil shale separation typically has been used heavy media separation process. There are tested also different types of separation processes before: wet separation, pneumatic separation. Now oil shale industry moves more to oil production and this needs innovation methods for separation to ensure fuel quality and the changes in quality. The pilot unit test with Allmineral ALLJIG have pointed out that the suitable new innovation way for oil shale separation can be wet separation with gravity, where material by pulsating water forming layers of grains according to their density and subsequently separates the heavy material (limestone) from the stratified material (oil shale)bed. Main aim of this research is to find the suitable separation process for oil shale, that the products have highest quality. The expected results can be used also for developing separation processes for phosphorite rock or all others, where traditional separation processes doesn't work property. This research is part of the study Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 http://mi.ttu.ee/etp and the project B36 Extraction and processing of rock with selective methods - http://mi.ttu.ee/separation; http://mi.ttu.ee/miningwaste/
Clow, David W.; Ingersoll, George P.; Mast, M. Alisa; Turk, John T.; Campbell, Donald H.
2002-01-01
Depth-integrated snowpack chemistry was measured just prior to maximum snowpack depth during the winters of 1992-1999 at 12 sites co-located with National Atmospheric Deposition Program/National Trend Network (NADP/NTN) sites in the central and southern Rocky Mountains, USA. Winter volume-weighted mean wet-deposition concentrations were calculated for the NADP/NTN sites, and the data were compared to snowpack concentrations using the paired t-test and the Wilcoxon signed-rank test. No statistically significant differences were indicated in concentrations of SO42- or NO3- (p>0.1). Small, but statistically significant differences (p???0.03) were indicated for all other solutes analyzed. Differences were largest for Ca2+ concentrations, which on average were 2.3??eql-1 (43%) higher in the snowpack than in winter NADP/NTN samples. Eolian carbonate dust appeared to influence snowpack chemistry through both wet and dry deposition, and the effect increased from north to south. Dry deposition of eolian carbonates was estimated to have neutralized an average of 6.9??eql-1 and a maximum of 12??eql-1 of snowpack acidity at the southernmost sites. The good agreement between snowpack and winter NADP/NTN SO42- and NO3- concentrations indicates that for those solutes the two data sets can be combined to increase data density in high-elevation areas, where few NADP/NTN sites exist. This combination of data sets will allow for better estimates of atmospheric deposition of SO42- and NO3- across the Rocky Mountain region.
NASA Astrophysics Data System (ADS)
Clow, David W.; Ingersoll, George P.; Mast, M. Alisa; Turk, John T.; Campbell, Donald H.
Depth-integrated snowpack chemistry was measured just prior to maximum snowpack depth during the winters of 1992-1999 at 12 sites co-located with National Atmospheric Deposition Program/National Trend Network (NADP/NTN) sites in the central and southern Rocky Mountains, USA. Winter volume-weighted mean wet-deposition concentrations were calculated for the NADP/NTN sites, and the data were compared to snowpack concentrations using the paired t-test and the Wilcoxon signed-rank test. No statistically significant differences were indicated in concentrations of SO 42- or NO 3- ( p>0.1). Small, but statistically significant differences ( p⩽0.03) were indicated for all other solutes analyzed. Differences were largest for Ca 2+ concentrations, which on average were 2.3 μeq l -1 (43%) higher in the snowpack than in winter NADP/NTN samples. Eolian carbonate dust appeared to influence snowpack chemistry through both wet and dry deposition, and the effect increased from north to south. Dry deposition of eolian carbonates was estimated to have neutralized an average of 6.9 μeq l -1 and a maximum of 12 μeq l -1 of snowpack acidity at the southernmost sites. The good agreement between snowpack and winter NADP/NTN SO 42- and NO 3- concentrations indicates that for those solutes the two data sets can be combined to increase data density in high-elevation areas, where few NADP/NTN sites exist. This combination of data sets will allow for better estimates of atmospheric deposition of SO 42- and NO 3- across the Rocky Mountain region.
NASA Astrophysics Data System (ADS)
Deng, Chao; Liu, Wanjun; Zhang, Yinjiang; Huang, Chen; Zhao, Yi; Jin, Xiangyu
2018-04-01
Developing wet-laid papers with a good wet strength remains a longstanding challenge in the papermaking industry. In this study, hydroentanglement, a mechanical bonding technique is developed to consolidate the wet-laid fibre web. The results indicate that wet tensile strength, ductile stretching property, softness, air permeability and water absorbency of the wet-laid fibre web are significantly improved by hydroentanglement. In addition, the abrasion test shows that the dusting off rate of wet-laid fibre web can be effectively reduced through hydroentanglement. Moreover, the disintegration experiment proves that wet-laid hydroentangled nonwovens could be easily dispersed when compared with conventional carded hydroentangled nonwovens. Therefore, the new wet-laid hydroentangled nonwovens can maintain excellent performance in a wet state, showing a great potential for personal hygiene applications.
Deng, Chao; Liu, Wanjun; Zhang, Yinjiang; Huang, Chen; Zhao, Yi; Jin, Xiangyu
2018-04-01
Developing wet-laid papers with a good wet strength remains a longstanding challenge in the papermaking industry. In this study, hydroentanglement, a mechanical bonding technique is developed to consolidate the wet-laid fibre web. The results indicate that wet tensile strength, ductile stretching property, softness, air permeability and water absorbency of the wet-laid fibre web are significantly improved by hydroentanglement. In addition, the abrasion test shows that the dusting off rate of wet-laid fibre web can be effectively reduced through hydroentanglement. Moreover, the disintegration experiment proves that wet-laid hydroentangled nonwovens could be easily dispersed when compared with conventional carded hydroentangled nonwovens. Therefore, the new wet-laid hydroentangled nonwovens can maintain excellent performance in a wet state, showing a great potential for personal hygiene applications.
Mastin, Larry G.; Christiansen, Robert L.; Thornber, Carl R.; Lowenstern, Jacob B.; Beeson, Melvin H.
2004-01-01
Volcanic eruptions at the summit of Ki??ilauea volcano, Hawai'i, are of two dramatically contrasting types: (1) benign lava flows and lava fountains; and (2) violent, mostly prehistoric eruptions that dispersed tephra over hundreds of square kilometers. The violence of the latter eruptions has been attributed to mixing of water and magma within a wet summit caldera; however, magma injection into water at other volcanoes does not consistently produce widespread tephras. To identify other factors that may have contributed to the violence of these eruptions, we sampled tephra from the Keanaka??ko'i Ash, the most recent large hydromagmatic deposit, and measured vesicularity, bubble-number density and dissolved volatile content of juvenile matrix glass to constrain magma ascent rate and degree of degassing at the time of quenching. Bubble-number densities (9 ?? 104- 1 ?? 107 cm-3) of tephra fragments exceed those of most historically erupted Ki??lauean tephras (3 ?? 103-1.8 ?? 105 cm-3), and suggest exceptionally high magma effusion rates. Dissolved sulfur (average = 330 ppm) and water (0.15-0.45 wt.%) concentrations exceed equilibrium-saturation values at 1 atm pressure (100-150 ppm and ???0.09%, respectively), suggesting that clasts quenched before equilibrating to atmospheric pressure. We interpret these results to suggest rapid magma injection into a wet crater, perhaps similar to continuous-uprush jets at Surtsey. Estimates of Reynolds number suggest that the erupting magma was turbulent and would have mixed with surrounding water in vortices ranging downward in size to centimeters. Such fine-scale mixing would have ensured rapid heat exchange and extensive magma fragmentation, maximizing the violence of these eruptions.
How Ants Drop Out: Ant Abundance on Tropical Mountains
Longino, John T.; Branstetter, Michael G.; Colwell, Robert K.
2014-01-01
In tropical wet forests, ants are a large proportion of the animal biomass, but the factors determining abundance are not well understood. We characterized ant abundance in the litter layer of 41 mature wet forest sites spread throughout Central America (Chiapas, Guatemala, Honduras, Nicaragua, and Costa Rica) and examined the impact of elevation (as a proxy for temperature) and community species richness. Sites were intentionally chosen to minimize variation in precipitation and seasonality. From sea level to 1500 m ant abundance very gradually declined, community richness declined more rapidly than abundance, and the local frequency of the locally most common species increased. These results suggest that within this elevational zone, density compensation is acting, maintaining high ant abundance as richness declines. In contrast, in sites above 1500 m, ant abundance dropped abruptly to much lower levels. Among these high montane sites, community richness explained much more of the variation in abundance than elevation, and there was no evidence of density compensation. The relative stability of abundance below 1500 m may be caused by opposing effects of temperature on productivity and metabolism. Lower temperatures may decrease productivity and thus the amount of food available for consumers, but slower metabolisms of consumers may allow maintenance of higher biomass at lower resource supply rates. Ant communities at these lower elevations may be highly interactive, the result of continuous habitat presence over geological time. High montane sites may be ephemeral in geological time, resulting in non-interactive communities dominated by historical and stochastic processes. Abundance in these sites may be determined by the number of species that manage to colonize and/or avoid extinction on mountaintops. PMID:25098722
How ants drop out: ant abundance on tropical mountains.
Longino, John T; Branstetter, Michael G; Colwell, Robert K
2014-01-01
In tropical wet forests, ants are a large proportion of the animal biomass, but the factors determining abundance are not well understood. We characterized ant abundance in the litter layer of 41 mature wet forest sites spread throughout Central America (Chiapas, Guatemala, Honduras, Nicaragua, and Costa Rica) and examined the impact of elevation (as a proxy for temperature) and community species richness. Sites were intentionally chosen to minimize variation in precipitation and seasonality. From sea level to 1500 m ant abundance very gradually declined, community richness declined more rapidly than abundance, and the local frequency of the locally most common species increased. These results suggest that within this elevational zone, density compensation is acting, maintaining high ant abundance as richness declines. In contrast, in sites above 1500 m, ant abundance dropped abruptly to much lower levels. Among these high montane sites, community richness explained much more of the variation in abundance than elevation, and there was no evidence of density compensation. The relative stability of abundance below 1500 m may be caused by opposing effects of temperature on productivity and metabolism. Lower temperatures may decrease productivity and thus the amount of food available for consumers, but slower metabolisms of consumers may allow maintenance of higher biomass at lower resource supply rates. Ant communities at these lower elevations may be highly interactive, the result of continuous habitat presence over geological time. High montane sites may be ephemeral in geological time, resulting in non-interactive communities dominated by historical and stochastic processes. Abundance in these sites may be determined by the number of species that manage to colonize and/or avoid extinction on mountaintops.
Effect of Experimentally Manipulated Fire Regimes on the Response of Forests to Drought
NASA Astrophysics Data System (ADS)
Refsland, T. K.; Knapp, B.; Fraterrigo, J.
2017-12-01
Climate change is expected to increase drought stress in many forests and alter fire regimes. Fire can reduce tree density and thus competition for limited water, but the effects of changing fire regimes on forest productivity during drought remain poorly understood. We measured the annual ring-widths of adult oak (Quercus spp.) trees in Mark Twain National Forest, Missouri USA that experienced unburned, annual or periodic (every 4 years) surface fire treatments from 1951 - 2015. Severe drought events were identified using the BILJOU water balance model. We determined the effect of fire treatment on stand-level annual growth rates as well as stand-level resistance and resilience to drought, defined as the drought-induced reduction in growth and post-drought recovery in growth, respectively. During favorable wet years, annual and periodic fire treatments reduced annual growth rates by approximately 10-15% relative to unburned controls (P < 0.001). Stand-level growth rates declined 22-40% during drought events (P < 0.001), but fire-driven changes to stand basal area had no effect on the resistance or resilience of trees to drought. The decline in annual growth rates of burned stands during favorable wet years was likely caused by increased nitrogen (N) limitation in burned plots. After 60 years of treatment, burned plots experienced 30% declines in total soil N relative to unburned plots. Our finding that drought resistance and resilience were similar across all treatments suggest that fire-driven reductions in stand density may have negligible effects on soil moisture availability during drought. Our results highlight that climate-fire interactions can have important long-term effects on forest productivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
F. Cui; F.J. Presuel-Moreno; R.G. Kelly
2005-10-13
The ability of a SS316L surface wetted with a thin electrolyte layer to serve as an effective cathode for an active localized corrosion site was studied computationally. The dependence of the total net cathodic current, I{sub net}, supplied at the repassivation potential E{sub rp} (of the anodic crevice) on relevant physical parameters including water layer thickness (WL), chloride concentration ([Cl{sup -}]) and length of cathode (Lc) were investigated using a three-level, full factorial design. The effects of kinetic parameters including the exchange current density (i{sub o,c}) and Tafel slope ({beta}{sub c}) of oxygen reduction, the anodic passive current density (i{submore » p}) (on the cathodic surface), and E{sub rp} were studied as well using three-level full factorial designs of [Cl{sup -}] and Lc with a fixed WL of 25 {micro}m. The study found that all the three parameters WL, [Cl{sup -}] and Lc as well as the interactions of Lc x WL and Lc x [Cl{sup -}] had significant impact on I{sub net}. A five-factor regression equation was obtained which fits the computation results reasonably well, but demonstrated that interactions are more complicated than can be explained with a simple linear model. Significant effects on I{sub net} were found upon varying either i{sub o,c}, {beta}{sub c}, or E{sub rp}, whereas i{sub p} in the studied range was found to have little impact. It was observed that I{sub net} asymptotically approached maximum values (I{sub max}) when Lc increased to critical minimum values. I{sub max} can be used to determine the stability of coupled localized corrosion and the critical Lc provides important information for experimental design and corrosion protection.« less
NASA Astrophysics Data System (ADS)
Daniel, P. A.; Robertson, A. I.
1990-11-01
The epibenthos inhabiting creek-bottoms in a tidally influenced mangrove forest, a mangrove-lined estuary and several sites in two open embayments, was sampled on four occasions between August 1986 and June 1987. The inshore (mangrove habitats)-offshore (embayment) patterns in total faunal taxonomic richness (means ranging from 0 to 32·5 taxa per trawl) and density (range of means, < 1·55 individuals m -2) were generally complex, with patterns across the gradient changing seasonally. Patterns in total biomass (range of means 0-740 mg.m -2) were clearer, with highest biomasses recorded in May (post-wet season) and lowest in February (mid-wet season), with no significant cross-habitat gradient in biomass. Densities and biomasses were lower than those recorded in other studies, probably owing to the physically harsh conditions available to epibenthos and to the low quality of mangrove detritus as a food source. The significant difference in the structure of epibenthic communities in mangrove and embayment habitats in the dry season months (August and October) was likely due to the longer residence time of water in mangrove water-ways at that time of the year. Greater tidal amplitudes and increased tidal current velocities in February transported mangrove detritus and many faunal taxa into embayments. Variation in the quantities of exported mangrove detritus in nettings explained significant proportions of the variance in total (and component taxa) epibenthic standing stocks in mangrove and embayment habitats. Several factors may be important in causing the positive response of different groups within the epibenthos to mangrove detritus. For penaeid shrimps it seems likely that clumps of exported mangrove detritus provide refuges from predatory fish in both mangrove and embayment habitats.
Sánchez-Reyes, Uriel Jeshua; Niño-Maldonado, Santiago; Jones, Robert W.
2014-01-01
Abstract The Chrysomelidae (Coleoptera) is a highly speciose family that has been poorly studied at the regional level in Mexico. In the present study, we estimated species richness and diversity in oak-pine forest, Tamaulipan thorny scrub and in tropical deciduous forests in Peregrina Canyon within the Altas Cumbres Protected Area of the northeastern state of Tamaulipas, Mexico. Sampling of Chrysomelidae consisted of five sweep net samples (200 net sweeps) within each of three sites during four sample periods: early dry season, late dry season, early wet season, and late wet season. Species were identified and total numbers per species were recorded for each sample. A total of 2,226 specimens were collected belonging to six subfamilies, 81 genera and 157 species of Chrysomelidae from the study area. Galerucinae was the most abundant subfamily with 1,828 specimens, representing 82.1% of total abundance in the study area. Lower abundance was recorded in Cassidinae (8.5%), Eumolpinae (3.6%), Cryptocephalinae (2.2%), Chrysomelinae (2.2%), and finally Criocerinae (1.3%). The highest species richness was also presented in the subfamily Galerucinae with 49% of the total obtained species followed by Cassidinae (20%), Cryptocephalinae (9.7%), Eumolpinae (9.7%), Chrysomelinae (6.5%) and Criocerinae (5.2%). The most common species were Centralaphthona fulvipennis Jacoby (412 individuals), Centralaphthona diversa (Baly) (248), Margaridisa sp.1 (219), Acallepitrix sp.1 (134), Longitarsus sp.1 (104), Heterispa vinula (Erichson) (91), Epitrix sp.1 (84) and Chaetocnema sp.1 (72). Twenty-two species were doubletons (1.97% of total abundance) and 52 were singletons (2.33%). The estimated overall density value obtained was 0.0037 individuals/m2. The greatest abundance and density of individuals were recorded at the lowest elevation site. However, alpha diversity increased with increasing altitude. Similarity values were less than 50% among the three sites indicating that each site had distinct species assemblages of Chrysomelidae. The highest abundance was obtained during the late dry season, whereas diversity indices were highest during the early wet season. The present work represents the first report of the altitudinal variation in richness, abundance, and diversity of Chrysomelidae in Mexico. These results highlight the importance of conservation of this heterogeneous habitat and establish baseline data for Chrysomelidae richness and diversity for the region. PMID:25061357
NASA Astrophysics Data System (ADS)
Wong, Michael H.; Atreya, Sushil K.; Kuhn, William R.; Romani, Paul N.; Mihalka, Kristen M.
2015-01-01
Models of cloud condensation under thermodynamic equilibrium in planetary atmospheres are useful for several reasons. These equilibrium cloud condensation models (ECCMs) calculate the wet adiabatic lapse rate, determine saturation-limited mixing ratios of condensing species, calculate the stabilizing effect of latent heat release and molecular weight stratification, and locate cloud base levels. Many ECCMs trace their heritage to Lewis (Lewis, J.S. [1969]. Icarus 10, 365-378) and Weidenschilling and Lewis (Weidenschilling, S.J., Lewis, J.S. [1973]. Icarus 20, 465-476). Calculation of atmospheric structure and gas mixing ratios are correct in these models. We resolve errors affecting the cloud density calculation in these models by first calculating a cloud density rate: the change in cloud density with updraft length scale. The updraft length scale parameterizes the strength of the cloud-forming updraft, and converts the cloud density rate from the ECCM into cloud density. The method is validated by comparison with terrestrial cloud data. Our parameterized updraft method gives a first-order prediction of cloud densities in a “fresh” cloud, where condensation is the dominant microphysical process. Older evolved clouds may be better approximated by another 1-D method, the diffusive-precipitative Ackerman and Marley (Ackerman, A.S., Marley, M.S. [2001]. Astrophys. J. 556, 872-884) model, which represents a steady-state equilibrium between precipitation and condensation of vapor delivered by turbulent diffusion. We re-evaluate observed cloud densities in the Galileo Probe entry site (Ragent, B. et al. [1998]. J. Geophys. Res. 103, 22891-22910), and show that the upper and lower observed clouds at ∼0.5 and ∼3 bars are consistent with weak (cirrus-like) updrafts under conditions of saturated ammonia and water vapor, respectively. The densest observed cloud, near 1.3 bar, requires unexpectedly strong updraft conditions, or higher cloud density rates. The cloud density rate in this layer may be augmented by a composition with non-NH4SH components (possibly including adsorbed NH3).
NASA Astrophysics Data System (ADS)
Yonemori, Seiya; Ono, Ryo
2014-03-01
The atmospheric-pressure helium plasma jet is of emerging interest as a cutting-edge biomedical device for cancer treatment, wound healing and sterilization. Reactive oxygen species such as OH and O radicals are considered to be major factors in the application of biological plasma. In this study, density distribution, temporal behaviour and flux of OH and O radicals on a surface are measured using laser-induced fluorescence. A helium plasma jet is generated by applying pulsed high voltage of 8 kV with 10 kHz using a quartz tube with an inner diameter of 4 mm. To evaluate the relation between the surface condition and active species production, three surfaces are used: dry, wet and rat skin. When the helium flow rate is 1.5 l min-1, radial distribution of OH density on the rat skin surface shows a maximum density of 1.2 × 1013 cm-3 at the centre of the plasma-mediated area, while O atom density shows a maximum of 1.0 × 1015 cm-3 at 2.0 mm radius from the centre of the plasma-mediated area. Their densities in the effluent of the plasma jet are almost constant during the intervals of the discharge pulses because their lifetimes are longer than the pulse interval. Their density distribution depends on the helium flow rate and the surface humidity. With these results, OH and O production mechanisms in the plasma jet and their flux onto the surface are discussed.
Suitability of Coastal Marshes as Whooping Crane Foraging Habitat in Southwest Louisiana, USA
King, Sammy L.; Kang, Sung-Ryong
2014-01-01
Foraging habitat conditions (i.e., water depth, prey biomass, digestible energy density) can be a significant predictor of foraging habitat selection by wading birds. Potential foraging habitats of Whooping Cranes (Grus americana) using marshes include ponds and emergent marsh, but the potential prey and energy availability in these habitat types have rarely been studied. In this study, we estimated daily digestible energy density for Whooping Cranes in different marsh and microhabitat types (i.e., pond, flooded emergent marsh). Also, indicator metrics of foraging habitat suitability for Whooping Cranes were developed based on seasonal water depth, prey biomass, and digestible energy density. Seasonal water depth (cm), prey biomass (g wet weight m-2), and digestible energy density (kcal g-1m-2) ranged from 0.0 to 50.2 ± 2.8, 0.0 to 44.8 ± 22.3, and 0.0 to 31.0 ± 15.3, respectively. With the exception of freshwater emergent marsh in summer, all available habitats were capable of supporting one Whooping Crane per 0.1 ha per day. All habitat types in the marshes had relatively higher suitability in spring and summer than in fall and winter. Our study indicates that based on general energy availability, freshwater marshes in the region can support Whooping Cranes in a relatively small area, particularly in spring and summer. In actuality, the spatial density of ponds, the flood depth of the emergent marsh, and the habitat conditions (e.g., vegetation density) between adjacent suitable habitats will constrain suitable habitat and Whooping Crane numbers.
Ariga, Tomoko; Zhu, Yanbei; Ito, Mika; Takatsuka, Toshiko; Terauchi, Shinya; Kurokawa, Akira; Inagaki, Kazumi
2018-04-01
Area densities of Au/Ni/Cu layers on a Cr-coated quartz substrate were characterized to certify a multiple-metal-layer certified reference material (NMIJ CRM5208-a) that is intended for use in the analysis of the layer area density and the thickness by an X-ray fluorescence spectrometer. The area densities of Au/Ni/Cu layers were calculated from layer mass amounts and area. The layer mass amounts were determined by using wet chemical analyses, namely inductively coupled plasma mass spectrometry (ICP-MS), isotope-dilution (ID-) ICP-MS, and inductively coupled plasma optical emission spectrometry (ICP-OES) after dissolving the layers with diluted mixture of HCl and HNO 3 (1:1, v/v). Analytical results of the layer mass amounts obtained by the methods agreed well with each another within their uncertainty ranges. The area of the layer was determined by using a high-resolution optical scanner calibrated by Japan Calibration Service System (JCSS) standard scales. The property values of area density were 1.84 ± 0.05 μg/mm 2 for Au, 8.69 ± 0.17 μg/mm 2 for Ni, and 8.80 ± 0.14 μg/mm 2 for Cu (mean ± expanded uncertainty, coverage factor k = 2). In order to assess the reliability of these values, the density of each metal layer calculated from the property values of the area density and layer thickness measured by using a scanning electron microscope were compared with available literature values and good agreement between the observed values and values obtained in previous studies.
Landers, Mark N.; Ankcorn, Paul D.
2008-01-01
The influence of onsite septic wastewater-treatment systems (OWTS) on base-flow quantity needs to be understood to evaluate consumptive use of surface-water resources by OWTS. If the influence of OWTS on stream base flow can be measured and if the inflow to OWTS is known from water-use data, then water-budget approaches can be used to evaluate consumptive use. This report presents a method to evaluate the influence of OWTS on ground-water recharge and base-flow quantity. Base flow was measured in Gwinnett County, Georgia, during an extreme drought in October 2007 in 12 watersheds that have low densities of OWTS (22 to 96 per square mile) and 12 watersheds that have high densities (229 to 965 per square mile) of OWTS. Mean base-flow yield in the high-density OWTS watersheds is 90 percent greater than in the low-density OWTS watersheds. The density of OWTS is statistically significant (p-value less than 0.01) in relation to base-flow yield as well as specific conductance. Specific conductance of base flow increases with OWTS density, which may indicate influence from treated wastewater. The study results indicate considerable unexplained variation in measured base-flow yield for reasons that may include: unmeasured processes, a limited dataset, and measurement errors. Ground-water recharge from a high density of OWTS is assumed to be steady state from year to year so that the annual amount of increase in base flow from OWTS is expected to be constant. In dry years, however, OWTS contributions represent a larger percentage of natural base flow than in wet years. The approach of this study could be combined with water-use data and analyses to estimate consumptive use of OWTS.
Ochoa-Hueso, Raúl; de la Puente Ranea, Daniel; Viejo, José Luis
2014-04-10
Butterfly community and single species based approaches were taken to establish conservation priorities within a nature reserve in Central Spain. In this study, patch type (sclerophyllous, halophilous, or disturbed), potential herbaceous nectar availability, potential woody plant nectar availability, total nectar availability, and two approximations to plant diversity (herbaceous and woody plant diversity) were evaluated as variables that account for adult butterfly density. Butterfly communities in the reserve, which consist mostly of generalist species, were denser in relatively wet areas dominated by halophilous vegetation. Diversity did not significantly vary between ecologically different transects. Total nectar availability correlated with higher butterfly densities within both undisturbed and disturbed areas, which could be primarily explained by the lack of water typical of semiarid Mediterranean climates, where fresh, nectariferous vegetation is scarce. Woody plants were also found to be important sources of nectar and shelter. In the dryer sclerophyllous sites, adult butterfly density was best explained by herbaceous plant diversity, suggesting better quality of available resources. The endangered specialist Zerynthia rumina (L.) (Lepidoptera: Papilionidae) was only present at the sclerophyllous sites. Its density was very low in all sampled transects, excluding one relatively isolated transect with high larval hostplant density. In contrast to the community-based approach, density of Z. rumina adults is better explained by the density of its larval hostplant than by nectar availability, a trend previously described for other sedentary species. Management strategies for protecting insect-rich areas should consider the specific ecological requirements of endangered species. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.
Engineered ZnO nanowire arrays using different nanopatterning techniques
NASA Astrophysics Data System (ADS)
Volk, János; Szabó, Zoltán; Erdélyi, Róbert; Khánh, Nguyen Q.
2012-02-01
The impact of various masking patterns and template layers on the wet chemically grown vertical ZnO nanowire arrays was investigated. The nanowires/nanorods were seeded at nucleation windows which were patterned in a mask layer using various techniques such as electron beam lithography, nanosphere photolithography, and atomic force microscope type nanolithography. The compared ZnO templates included single crystals, epitaxial layer, and textured polycrystalline films. Scanning electron microscopy revealed that the alignment and crystal orientation of the nanowires were dictated by the underlying seed layer, while their geometry can be tuned by the parameters of the certain nanopatterning technique and of the wet chemical process. The comparison of the alternative nanolithography techniques showed that using direct writing methods the diameter of the ordered ZnO nanowires can be as low as 30-40 nm at a density of 100- 1000 NW/μm2 in a very limited area (10 μm2-1 mm2). Nanosphere photolithography assisted growth, on the other hand, favors thicker nanopillars (~400 nm) and enables large-area, low-cost patterning (1-100 cm2). These alternative lowtemperature fabrication routes can be used for different novel optoelectronic devices, such as nanorod based ultraviolet photodiode, light emitting device, and waveguide laser.
Díaz-García, Almudena; Martínez-García, Carmen; Cotes-Palomino, Teresa
2017-01-01
Action on climate, the environment, and the efficient use of raw materials and resources are important challenges facing our society. Against this backdrop, the construction industry must adapt to new trends and environmentally sustainable construction systems, thus requiring lines of research aimed at keeping energy consumption in new buildings as low as possible. One of the main goals of this research is to efficiently contribute to reducing the amount of residue from olive oil extraction using a two-phase method. This can be achieved by producing alternative structural materials to be used in the construction industry by means of a circular economy. The technical feasibility of adding said residue to ceramic paste was proven by analyzing the changes produced in the physical properties of the paste, which were then compared to the properties of the reference materials manufactured with clay without residue. Results obtained show that the heating value of wet pomace can contribute to the thermal needs of the sintering process, contributing 30% of energy in pieces containing 3% of said material. Likewise, adding larger amounts of wet pomace to the clay body causes a significant decrease in bulk density values. PMID:28772461
NASA Astrophysics Data System (ADS)
Park, Se Min; Koo, Yang Mo; Shim, Byoung Yul; Lee, Dong Nyung
2017-01-01
In Fe-3%Si-0.3%C steel sheet, a relatively strong <100>//ND texture can evolve in the surface layer through the α→γ→α phase transformation in relatively low vacuum (4 Pa) for an annealing time of 10 min and at a cooling rate of 20 K/s. Oxidation of the steel sheet surface prevents the evolution of the <100>//ND texture. However, vacuum-annealing under a vacuum pressure of 1.3×10-3 Pa causes decarburization of the steel sheet, which suppresses oxidation of the steel sheet surface, and subsequent annealing in wet hydrogen of 363 K in dew points causes a columnar grain structure with the <100>//ND texture. After the two-step-annealing (the vacuum annealing under a vacuum pressure of 1.3×10-3 Pa and subsequent decarburizing annealing in wet hydrogen of 363 K in dew points), the decarburized steel sheet exhibits good soft magnetic properties in NO with 3%Si, W15/50 (core loss at 1.5T and 50 Hz) = 2.47 W/kg and B50 (magnetic flux density at 5000 A/m) = 1.71 T.
NASA Technical Reports Server (NTRS)
Grimsley, Brian W.; Sutter, James K.; Burke, Eric R.; Dixon, Genevieve D.; Gyekenyesi, Thomas G.; Smeltzer, Stanley S.
2012-01-01
Several 1/16th-scale curved sandwich composite panel sections of a 10 m diameter barrel were fabricated to demonstrate the manufacturability of large-scale curved sections using minimum gauge, [+60/-60/0]s, toughened epoxy composite facesheets co-cured with low density (50 kilograms per cubic meters) aluminum honeycomb core. One of these panels was fabricated out of autoclave (OoA) by the vacuum bag oven (VBO) process using Cycom(Registered Trademark) T40-800b/5320-1 prepreg system while another panel with the same lay-up and dimensions was fabricated using the autoclave-cure, toughened epoxy prepreg system Cycom(Registered Trademark) IM7/977-3. The resulting 2.44 m x 2 m curved panels were investigated by non-destructive evaluation (NDE) at NASA Langley Research Center (NASA LaRC) to determine initial fabrication quality and then cut into smaller coupons for elevated temperature wet (ETW) mechanical property characterization. Mechanical property characterization of the sandwich coupons was conducted including edge-wise compression (EWC), and compression-after-impact (CAI) at conditions ranging from 25 C/dry to 150 C/wet. The details and results of this characterization effort are presented in this paper.
Geomorphic controls on hydrology and vegetation in an arid basin: Turkana district, northern Kenya
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coppinger, K.D.; Doehring, D.O.; Schimel, D.S.
1985-01-01
As part of a broad ecological study of Kenyan pastoralist adaptation to periodic drought, a study was done to determine how arid region geomorphology affects hydrology and subsequently vegetative patterns. In this study area, 100 kilometers south of Lake Turkana, it appears that irregular precipitation is stored in bajada sediments and is available to deeply rooted vegetation over long periods of time. This vegetation provides a relatively constant food source for people's herds of browsers, the camels and goats, whereas cattle, which graze mainly on grasses, are significant producers only during wet seasons. Field observations suggest that the mountain andmore » abutting pediment soils are too shallow to store appreciable water. However, greater quantities of water are stored in the deeper bajada sediments adjacent to the pediment where pastoralists dig temporary wells in ephemeral channels during wet seasons. Density of tree growth is greater along channels, and highest canopy cover values are found about the pediment-bajada interface. Geohydrologic processes in this area provide the basis for continuous occupation by the desert people, in contrast to recurring famines in adjacent areas, by enhancing the growth of woody vegetation.« less
Optimal design of permeable fiber network structures for fog harvesting.
Park, Kyoo-Chul; Chhatre, Shreerang S; Srinivasan, Siddarth; Cohen, Robert E; McKinley, Gareth H
2013-10-29
Fog represents a large untapped source of potable water, especially in arid climates. Numerous plants and animals use textural and chemical features on their surfaces to harvest this precious resource. In this work, we investigate the influence of the surface wettability characteristics, length scale, and weave density on the fog-harvesting capability of woven meshes. We develop a combined hydrodynamic and surface wettability model to predict the overall fog-collection efficiency of the meshes and cast the findings in the form of a design chart. Two limiting surface wettability constraints govern the re-entrainment of collected droplets and clogging of mesh openings. Appropriate tuning of the wetting characteristics of the surfaces, reducing the wire radii, and optimizing the wire spacing all lead to more efficient fog collection. We use a family of coated meshes with a directed stream of fog droplets to simulate a natural foggy environment and demonstrate a five-fold enhancement in the fog-collecting efficiency of a conventional polyolefin mesh. The design rules developed in this work can be applied to select a mesh surface with optimal topography and wetting characteristics to harvest enhanced water fluxes over a wide range of natural convected fog environments.
Modeling Evaporation and Particle Assembly in Colloidal Droplets.
Zhao, Mingfei; Yong, Xin
2017-06-13
Evaporation-induced assembly of nanoparticles in a drying droplet is of great importance in many engineering applications, including printing, coating, and thin film processing. The investigation of particle dynamics in evaporating droplets can provide fundamental hydrodynamic insight for revealing the processing-structure relationship in the particle self-organization induced by solvent evaporation. We develop a free-energy-based multiphase lattice Boltzmann method coupled with Brownian dynamics to simulate evaporating colloidal droplets on solid substrates with specified wetting properties. The influence of interface-bound nanoparticles on the surface tension and evaporation of a flat liquid-vapor interface is first quantified. The results indicate that the particles at the interface reduce surface tension and enhance evaporation flux. For evaporating particle-covered droplets on substrates with different wetting properties, we characterize the increase of evaporate rate via measuring droplet volume. We find that droplet evaporation is determined by the number density and circumferential distribution of interfacial particles. We further correlate particle dynamics and assembly to the evaporation-induced convection in the bulk and on the surface of droplet. Finally, we observe distinct final deposits from evaporating colloidal droplets with bulk-dispersed and interface-bound particles. In addition, the deposit pattern is also influenced by the equilibrium contact angle of droplet.
Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste.
Nagao, Norio; Tajima, Nobuyuki; Kawai, Minako; Niwa, Chiaki; Kurosawa, Norio; Matsuyama, Tatsushi; Yusoff, Fatimah Md; Toda, Tatsuki
2012-08-01
Anaerobic digestion of food waste was conducted at high OLR from 3.7 to 12.9 kg-VS m(-3) day(-1) for 225 days. Periods without organic loading were arranged between the each loading period. Stable operation at an OLR of 9.2 kg-VS (15.0 kg-COD) m(-3) day(-1) was achieved with a high VS reduction (91.8%) and high methane yield (455 mL g-VS-1). The cell density increased in the periods without organic loading, and reached to 10.9×10(10) cells mL(-1) on day 187, which was around 15 times higher than that of the seed sludge. There was a significant correlation between OLR and saturated TSS in the sludge (y=17.3e(0.1679×), r(2)=0.996, P<0.05). A theoretical maximum OLR of 10.5 kg-VS (17.0 kg-COD) m(-3) day(-1) was obtained for mesophilic single-stage wet anaerobic digestion that is able to maintain a stable operation with high methane yield and VS reduction. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Yu; Liu, Yingli; Zhang, Huaiwu; Li, Jie; Gao, Liwen; Chen, Daming; Chen, Yong
2018-02-01
In this paper, a wet magnetizing orientation process was applied to synthesize c-axis-textured, M-type barium ferrite (BaFe12O19 or BaM), which is widely used to produce hard magnetic materials. To modify the magnetic properties of the BaM ferrite and make it suitable for certain operating frequencies, Sc3+ was substituted into Fe3+ sites of the BaM crystal structure. A BaSc x Fe12- x O19 ferrite with a typical relative density of ˜ 75% was successfully obtained. We used x-ray diffraction, scanning electronic microscopy, and a vibrating sample magnetometer to obtain phase information, detail of the microstructure, and magnetic properties of the BaSc x Fe12- x O19, respectively. The composition BaSc x Fe12- x O19 ( x = 0.1) featured a superior squareness ratio of ˜ 67% and a saturation magnetization ( M S) of ˜ 5300 Gauss in magnetic hysteresis loop measurements. These features match well with requirements for self-biased passive devices. Moreover, the site preference of Sc3+ in the hexagonal crystal structure was investigated.
Prediction of fingering in porous media
NASA Astrophysics Data System (ADS)
Wang, Zhi; Feyen, Jan; Elrick, David E.
1998-09-01
Immiscible displacement, involving two fluids in a porous medium, can be unstable and fingered under certain conditions. In this paper, the original linear instability criterion of Chuoke et al. [1959] is generalized, considering wettability of two immiscible fluids to the porous medium. This is then used to predict 24 specific flow and porous medium conditions for the onset of wetting front instability in the subsurface. Wetting front instability is shown to be a function of the driving fluid wettability to the medium, differences in density and viscosity of the fluids, the magnitude of the interfacial tension, and the direction of flow with respect to gravity. Scenarios of water and nonaqueous-phase liquid infiltration into the vadose zone are examined to predict preferential flow and contamination of groundwater. The mechanisms of finger formation, propagation, and persistence in the vadose zone are reviewed, and the existing equations for calculating the size, the number and velocity of fingers are simplified for field applications. The analyses indicate that fingers initiate and propagate according to spatial and temporal distribution of the dynamic breakthrough (water- or air-entry) pressures in the porous medium. The predicted finger size and velocity are in close agreement with the experimental results.
Flotability and flotation separation of polymer materials modulated by wetting agents.
Wang, Hui; Wang, Chong-qing; Fu, Jian-gang; Gu, Guo-hua
2014-02-01
The surface free energy, surface tension and contact angles were performed to investigate the properties of wetting agents. Adsorption of wetting agents changes wetting behavior of polymer resins. Flotability of polymer materials modulated by wetting agents was studied, and wetting agents change significantly flotability of polymer materials. The flotability decreases with increasing the concentration of wetting agents, and the wetting ability is lignin sulfonate (LS)>tannic acid (TA)>methylcellulose (MC)>triton X-100 (TX-100) (from strong to weak). There is significant difference in the flotability between polymer resins and plastics due to the presence of additives in the plastics. Flotation separation of two-component and multicomponent plastics was conducted based on the flotability modulated by wetting agents. The two-component mixtures can be efficiently separated using proper wetting agent through simple flotation flowsheet. The multicomponent plastic mixtures can be separated efficiently through multi-stage flotation using TA and LS as wetting agents, and the purity of separated component was above 94%, and the recovery was more than 93%. Copyright © 2013 Elsevier Ltd. All rights reserved.
Obtaining sub-daily new snow density from automated measurements in high mountain regions
NASA Astrophysics Data System (ADS)
Helfricht, Kay; Hartl, Lea; Koch, Roland; Marty, Christoph; Olefs, Marc
2018-05-01
The density of new snow is operationally monitored by meteorological or hydrological services at daily time intervals, or occasionally measured in local field studies. However, meteorological conditions and thus settling of the freshly deposited snow rapidly alter the new snow density until measurement. Physically based snow models and nowcasting applications make use of hourly weather data to determine the water equivalent of the snowfall and snow depth. In previous studies, a number of empirical parameterizations were developed to approximate the new snow density by meteorological parameters. These parameterizations are largely based on new snow measurements derived from local in situ measurements. In this study a data set of automated snow measurements at four stations located in the European Alps is analysed for several winter seasons. Hourly new snow densities are calculated from the height of new snow and the water equivalent of snowfall. Considering the settling of the new snow and the old snowpack, the average hourly new snow density is 68 kg m-3, with a standard deviation of 9 kg m-3. Seven existing parameterizations for estimating new snow densities were tested against these data, and most calculations overestimate the hourly automated measurements. Two of the tested parameterizations were capable of simulating low new snow densities observed at sheltered inner-alpine stations. The observed variability in new snow density from the automated measurements could not be described with satisfactory statistical significance by any of the investigated parameterizations. Applying simple linear regressions between new snow density and wet bulb temperature based on the measurements' data resulted in significant relationships (r2 > 0.5 and p ≤ 0.05) for single periods at individual stations only. Higher new snow density was calculated for the highest elevated and most wind-exposed station location. Whereas snow measurements using ultrasonic devices and snow pillows are appropriate for calculating station mean new snow densities, we recommend instruments with higher accuracy e.g. optical devices for more reliable investigations of the variability of new snow densities at sub-daily intervals.
Shinneman, Douglas J.; Baker, William L.
2009-01-01
Fire is known to structure tree populations, but the role of broad-scale climate variability is less clear. For example, the influence of climatic “teleconnections” (the relationship between oceanic–atmospheric fluctuations and anomalous weather patterns across broad scales) on forest age structure is relatively unexplored. We sampled semiarid piñon–juniper (Pinus edulis–Juniperus osteosperma) woodlands in western Colorado, USA, to test the hypothesis that woodland age structures are shaped by climate, including links to oceanic–atmospheric fluctuations, and by past fires and livestock grazing. Low-severity surface fire was lacking, as fire scars were absent, and did not influence woodland densities, but stand-replacing fires served as long-rotation (>400–600 years), stand-initiating events. Old-growth stands (>300 years old) were found in 75% of plots, consistent with a long fire rotation. Juniper and piñon age structures suggest contrasting responses during the past several centuries to dry and wet episodes linked to the Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO). Juniper density increased slightly during periods of drought, positive (warm) AMO (after ∼10-year lag), and negative (cool) PDO. In contrast, piñon populations may still be recovering from a long, drought-filled period (AD 1620–1820), with pulses of recovery favored during cool AMO, warm PDO, and above-average moisture periods. Analysis of 20th-century tree establishment and instrumental climate data corroborate the long-term relationships between age structure and climate. After Euro–American settlement (AD 1881), livestock grazing reduced understory grasses and forbs, reducing competition with tree seedlings and facilitating climate-induced increases in piñons. Thus tree populations in these woodlands are in flux, affected by drought and wet periods linked to oceanic–atmospheric variability, Euro–American livestock grazing, and long-rotation, high-severity fires. Reductions in livestock grazing levels may aid ecological restoration efforts. However, given long-term fluctuations in tree density and composition, and expected further drought, thinning or burning to reduce tree populations may be misdirected.
Wu, Xinwei; Griffin, John N; Sun, Shucun
2014-05-01
Studies of grazing food webs show that species traits can interact with environmental factors to determine the strength of trophic cascades, but analogous context dependencies in detrital food webs remain poorly understood. In predator-detritivore-plant interaction chains, predators are expected to indirectly suppress plant biomass by reducing the density of plant-facilitating detritivores. However, this outcome can be reversed where above-ground predators drive burrowing detritivores to lower soil levels, strengthening their plant-facilitating effects. Here, we show that these trait-mediated indirect interactions further depend on environmental context in a Tibetan alpine meadow. In our study system, undulating topography generates higher (dry soil) patches interspersed with lower (wet soil) patches. Because the ability of detritivores to form deep burrows is likely to be limited by oxygen availability in low patches (wet soil), we hypothesized that (i) burrowing detritivores would undergo a vertical habitat shift, allowing them to more effectively avoid predation, in high - but not low - patches, and (ii) this shift would transmit positive effects of predators to plants in high patches by improving conditions in the lower soil layer. We tested these hypotheses using complementary field and glasshouse experiments examining whether the cascading effects of above-ground predatory beetles (presence/absence) on the density and behaviour of tunnel-forming detritivorous beetles, soil properties, and plant growth varied with patch type (low/high). Results revealed that predatory beetles did not reduce the density of detritivores in either patch type but had context-dependent trait-mediated effects, increasing the tunnelling depth of detritivores, improving soil conditions and ultimately increasing plant biomass in the high but not low patches. This study adds to an emerging predictive framework linking predators to plants in detritus food webs, demonstrating that these indirect interactions depend not just on the relative habitat domains of predators and prey, but also on environmental conditions that can predictably constrain the behavioural response of detritivores to predation risk. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
NASA Astrophysics Data System (ADS)
Ozdemir, Adnan
2011-07-01
SummaryThe purpose of this study is to produce a groundwater spring potential map of the Sultan Mountains in central Turkey, based on a logistic regression method within a Geographic Information System (GIS) environment. Using field surveys, the locations of the springs (440 springs) were determined in the study area. In this study, 17 spring-related factors were used in the analysis: geology, relative permeability, land use/land cover, precipitation, elevation, slope, aspect, total curvature, plan curvature, profile curvature, wetness index, stream power index, sediment transport capacity index, distance to drainage, distance to fault, drainage density, and fault density map. The coefficients of the predictor variables were estimated using binary logistic regression analysis and were used to calculate the groundwater spring potential for the entire study area. The accuracy of the final spring potential map was evaluated based on the observed springs. The accuracy of the model was evaluated by calculating the relative operating characteristics. The area value of the relative operating characteristic curve model was found to be 0.82. These results indicate that the model is a good estimator of the spring potential in the study area. The spring potential map shows that the areas of very low, low, moderate and high groundwater spring potential classes are 105.586 km 2 (28.99%), 74.271 km 2 (19.906%), 101.203 km 2 (27.14%), and 90.05 km 2 (24.671%), respectively. The interpretations of the potential map showed that stream power index, relative permeability of lithologies, geology, elevation, aspect, wetness index, plan curvature, and drainage density play major roles in spring occurrence and distribution in the Sultan Mountains. The logistic regression approach has not yet been used to delineate groundwater potential zones. In this study, the logistic regression method was used to locate potential zones for groundwater springs in the Sultan Mountains. The evolved model was found to be in strong agreement with the available groundwater spring test data. Hence, this method can be used routinely in groundwater exploration under favourable conditions.
Ramírez-Herrejón, Juan P; Mercado-Silva, Norman; Balart, Eduardo F; Moncayo-Estrada, Rodrigo; Mar-Silva, Valentín; Caraveo-Patiño, Javier
2015-09-01
Non-native species are often major drivers of the deterioration of natural ecosystems. The common carp Cyprinus carpio are known to cause major changes in lentic systems, but may not be solely responsible for large scale changes in these ecosystems. We used data from extensive collection efforts to gain insight into the importance of carp as drivers of ecosystem change in Lake Patzcuaro, Mexico. We compared the structure (fish density, biomass, diversity, and evenness) of fish assemblages from six Lake Patzcuaro sites with different habitat characteristics. Intersite comparisons were carried out for both wet and dry seasons. We explored the relationships between non-carp species and carp; and studied multivariate interactions between fish abundance and habitat characteristics. From a biomass perspective, carp was dominant in only four of six sites. In terms of density, carp was not a dominant species in all sites. Further, carp density and biomass were not negatively related to native species density and biomass, even when carp density and biomass were positively correlated to water turbidity levels. Carp dominated fish assemblages in the shallowest sites with the highest water turbidity, plant detritus at the bottom, and floating macrophytes covering the lake surface. These results suggest that the effect of carp on fish assemblages may be highly dependent on habitat characteristics in Lake Patzcuaro. Watershed degradation, pollution, water level loss, and other sources of anthropogenic influence may be more important drivers of Lake Patzcuaro degradation than the abundance of carp.
Effects of semen storage and separation techniques on sperm DNA fragmentation.
Jackson, Robert E; Bormann, Charles L; Hassun, Pericles A; Rocha, André M; Motta, Eduardo L A; Serafini, Paulo C; Smith, Gary D
2010-12-01
To determine the effect of semen storage and separation techniques on sperm DNA fragmentation. Controlled clinical study. An assisted reproductive technology laboratory. Thirty normoozospermic semen samples obtained from patients undergoing infertility evaluation. One aliquot from each sample was immediately prepared (control) for the sperm chromatin dispersion assay (SCD). Aliquots used to assess storage techniques were treated in the following ways: snap frozen by liquid nitrogen immersion, slow frozen with Tris-yolk buffer and glycerol, kept on ice for 24 hours or maintained at room temperature for 4 and 24 hours. Aliquots used to assess separation techniques were processed by the following methods: washed and centrifuged in media, swim-up from washed sperm pellet, density gradient separation, density gradient followed by swim-up. DNA integrity was then measured by SCD. DNA fragmentation as measured by SCD. There was no significant difference in fragmentation among the snap frozen, slow frozen, and wet-ice groups. Compared to other storage methods short-term storage at room temperature did not impact DNA fragmentation yet 24 hours storage significantly increased fragmentation. Swim-up, density gradient and density gradient/swim-up had significantly reduced DNA fragmentation levels compared with washed semen. Postincubation, density gradient/swim-up showed the lowest fragmentation levels. The effect of sperm processing methods on DNA fragmentation should be considered when selecting storage or separation techniques for clinical use. Copyright © 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Williams, C R; Johnson, P H; Ball, T S; Ritchie, S A
2013-09-01
New mosquito control strategies centred on the modifying of populations require knowledge of existing population densities at release sites and an understanding of breeding site ecology. Using a quantitative pupal survey method, we investigated production of the dengue vector Aedes aegypti (L.) (Stegomyia aegypti) (Diptera: Culicidae) in Cairns, Queensland, Australia, and found that garden accoutrements represented the most common container type. Deliberately placed 'sentinel' containers were set at seven houses and sampled for pupae over 10 weeks during the wet season. Pupal production was approximately constant; tyres and buckets represented the most productive container types. Sentinel tyres produced the largest female mosquitoes, but were relatively rare in the field survey. We then used field-collected data to make estimates of per premises population density using three different approaches. Estimates of female Ae. aegypti abundance per premises made using the container-inhabiting mosquito simulation (CIMSiM) model [95% confidence interval (CI) 18.5-29.1 females] concorded reasonably well with estimates obtained using a standing crop calculation based on pupal collections (95% CI 8.8-22.5) and using BG-Sentinel traps and a sampling rate correction factor (95% CI 6.2-35.2). By first describing local Ae. aegypti productivity, we were able to compare three separate population density estimates which provided similar results. We anticipate that this will provide researchers and health officials with several tools with which to make estimates of population densities. © 2012 The Royal Entomological Society.
NASA Astrophysics Data System (ADS)
Ramírez-Herrejón, Juan P.; Mercado-Silva, Norman; Balart, Eduardo F.; Moncayo-Estrada, Rodrigo; Mar-Silva, Valentín; Caraveo-Patiño, Javier
2015-09-01
Non-native species are often major drivers of the deterioration of natural ecosystems. The common carp Cyprinus carpio are known to cause major changes in lentic systems, but may not be solely responsible for large scale changes in these ecosystems. We used data from extensive collection efforts to gain insight into the importance of carp as drivers of ecosystem change in Lake Patzcuaro, Mexico. We compared the structure (fish density, biomass, diversity, and evenness) of fish assemblages from six Lake Patzcuaro sites with different habitat characteristics. Intersite comparisons were carried out for both wet and dry seasons. We explored the relationships between non-carp species and carp; and studied multivariate interactions between fish abundance and habitat characteristics. From a biomass perspective, carp was dominant in only four of six sites. In terms of density, carp was not a dominant species in all sites. Further, carp density and biomass were not negatively related to native species density and biomass, even when carp density and biomass were positively correlated to water turbidity levels. Carp dominated fish assemblages in the shallowest sites with the highest water turbidity, plant detritus at the bottom, and floating macrophytes covering the lake surface. These results suggest that the effect of carp on fish assemblages may be highly dependent on habitat characteristics in Lake Patzcuaro. Watershed degradation, pollution, water level loss, and other sources of anthropogenic influence may be more important drivers of Lake Patzcuaro degradation than the abundance of carp.
Can I Stop Myself From Having a Wet Dream? (For Teens)
... Can I Stop Myself From Having a Wet Dream? KidsHealth / For Teens / Can I Stop Myself From Having a Wet Dream? Print Can I stop myself from having a wet dream? – Tom* You really can't stop wet dreams, ...
Natural substrate lift-off technique for vertical light-emitting diodes
NASA Astrophysics Data System (ADS)
Lee, Chia-Yu; Lan, Yu-Pin; Tu, Po-Min; Hsu, Shih-Chieh; Lin, Chien-Chung; Kuo, Hao-Chung; Chi, Gou-Chung; Chang, Chun-Yen
2014-04-01
Hexagonal inverted pyramid (HIP) structures and the natural substrate lift-off (NSLO) technique were demonstrated on a GaN-based vertical light-emitting diode (VLED). The HIP structures were formed at the interface between GaN and the sapphire substrate by molten KOH wet etching. The threading dislocation density (TDD) estimated by transmission electron microscopy (TEM) was reduced to 1 × 108 cm-2. Raman spectroscopy indicated that the compressive strain from the bottom GaN/sapphire was effectively released through the HIP structure. With the adoption of the HIP structure and NSLO, the light output power and yield performance of leakage current could be further improved.
Ramp compression of magnesium oxide to 234 GPa
Wang, Jue; Smith, R. F.; Coppari, F.; ...
2014-05-07
Single-crystal magnesium oxide (MgO) samples were ramp compressed to above 200 GPa pressure at the Omega laser facility. Multi-stepped MgO targets were prepared using lithography and wet etching techniques. Free surface velocities of ramp-compressed MgO were measured with a VISAR. The sound velocity and stress-density response were determined using an iterative Lagrangian analysis. The measured equation of state is consistent with expectations from previous shock and static data as well as with a recent X-ray diffraction measurement under ramp loading. The peak elastic stresses observed in our samples had amplitudes of 3-5.5 GPa, decreasing with propagation distance.
1986-05-01
available high density metal. It was investigated as a practical substitute for ballistic tungsten or uranium alloys. It was also used as a core material... PPM ) H ɝ ɝ ɝ C ណ ណ N 12 ɝ 7 0 41 អ 60 Si ម ម Ti ង V ង ង ង Cr ង ង Fe ង ម ម Co ង Ni ង ង ង Cu...3M Tri-M- ite WETORDRY trademark silicon carbide paper, wet with a trichloroethane base coolant, to remove about 0.05 mm in the center. An 0.1
Effects on wetting by spray on concentrated flow erosion and intake rate
USDA-ARS?s Scientific Manuscript database
When water flows in dry rills (or furrows), fast wetting and aggregate slaking occur. Conversely, when rain wets the surface of the soil before applying concentrated flow, slow wetting precedes the concentrated flow, and less aggregate disintegration occurs. It is hypothesized that slow wetting by t...
NASA Astrophysics Data System (ADS)
Ormö, J.; Wünnemann, K.; Collins, G.; Melero Asensio, I.
2012-04-01
The Experimental Projectile Impact Chamber at Centro de Astrobiología, Spain, consists of a 7m wide, funnel-shaped test bed, and a 20.5mm caliber compressed N2 gas gun. The test bed can be filled with any type of target material, but is especially designed for wet target experiments. The shape and size aim to decrease disturbance from reflected surface waves in wet target experiments. Experiments are done under 1Atm pressure. The gas gun can launch projectiles of any material and dimensions <20mm (smaller diameters using sabots), and at any angle from vertical to near horizontal. The projectile velocities are of the order of a few hundreds of meters per second depending mainly on the gas pressure, as well as projectile diameter and density. When using a dry sand target a transient crater about 30cm wide is produced. Wet target experiments have not yet been performed in this newly installed test chamber, but transient cavities in water are expected to be in the order of 50-70cm wide. The large scale allows for detailed study of the dynamics of cratering motions during the stages of crater growth and subsequent collapse, especially in wet targets. These observations provide valuable benchmark data for numerical simulations and for comparison with field studies. Here we describe the results of ten impact experiments using three different gas pressures (100bar, 180bar, 200bar), two projectile compositions (20mm, 5.7g delrin; 20mm, 16.3g Al2O3), and two different impact angles (90˚ and 53˚ over the horizontal plane). Nine of the experiments were done in a quarter-space geometry using a specially designed camera tank with a 45mm thick glass window. One experiment was done in half-space geometry as reference. The experiments were recorded with a high-speed digital video camera, and the resulting craters were documented with a digital still frame camera. Projectile velocities are estimated with a combination of tracking software and a Shooting Chrony Alpha M-1 chronograph to be about 330m/s for delrin (100bar), 220m/s for Al2O3 (100bar), 400m/s for delrin (200bar), and 275m/s for Al2O3 (200bar). The velocities for the lighter delrin projectile and at the higher pressure are above the speed of sound in dry silica sand (243 m/s; Sandia report SAND2007-3524). The experimental set up (i.e. target material, projectile density and velocity, impact angle), as well as the dimensions of the resulting craters, are used as inputs in numerical simulation using the iSALE computational code. Results from these simulations will be presented and compared with the experiments.
Hydrologic Triggering of Shallow Landslides in a Field-scale Flume
NASA Astrophysics Data System (ADS)
Reid, M. E.; Iverson, R. M.; Iverson, N. R.; Brien, D. L.; Lahusen, R. G.; Logan, M.
2006-12-01
Hydrologic Triggering of Shallow Landslides in a Field-scale Flume Mark E. Reid, Richard M. Iverson, Neal R. Iverson, Dianne L. Brien, Richard G. LaHusen, and Mathew Logan Shallow landslides are often triggered by pore-water pressure increases driven by 1) groundwater inflow from underlying bedrock or soil, 2) prolonged moderate-intensity rainfall or snowmelt, or 3) bursts of high-intensity rainfall. These shallow failures are difficult to capture in the field, limiting our understanding of how different water pathways control failure style or timing. We used the field-scale, USGS debris-flow flume for 7 controlled landslide initiation experiments designed to examine the influence of different hydrologic triggers and the role of soil density, relative to critical state, on failure style and timing. Using sprinklers and/or groundwater injectors, we induced failure in a 0.65m thick, 2m wide, 6m3 prism of loamy sand on a 31° slope, placed behind a retaining wall. We monitored ~50 sensors to measure soil deformation (tiltmeters & extensometers), pore pressure (tensiometers and transducers), and soil moisture (TDR probes). We also extracted soil samples for laboratory estimates of porosity, shear strength, saturated hydraulic conductivity at differing porosities, unsaturated moisture retention characteristics, and compressibility. Experiments with loose soil all resulted in abrupt failure along the concrete flume bed with rapid mobilization into a debris flow. Each of the 3 water pathways, however, resulted in slightly different pore-pressure fields at failure and different times to failure. For example, groundwater injection at the flume bed led to a saturated zone that advanced upward, wetting over half the soil prism before pressures at the bed were sufficient to provoke collapse. With moderate-intensity surface sprinkling, an unsaturated wetting front propagated downward until reaching the bed, then a saturated zone built upward, with the highest pressures at the bed. With the third trigger, soils were initially wetted (but not saturated) with moderate-intensity sprinkling and then subjected to a high-intensity burst, causing failure without widespread positive pressures. It appears that a small pressure perturbation from the burst traveled rapidly downward through tension-saturated soil and led to positive pressure development at the flume bed resulting in failure. In contrast, failures in experiments with stronger, denser soil were gradual and episodic, requiring both sprinkling and groundwater injection. Numerical simulations of variably saturated groundwater flow mimic the behaviors described above. Simulated rainfall with an intensity greater than soil hydraulic conductivity generates rapid pressure perturbations, whereas lower intensity rainfall leads to wetting front propagation and water table buildup. Our results suggest that transient responses induced by high intensity bursts require relatively high frequency monitoring of unsaturated zone changes; in this case conventional piezometers would be unlikely to detect failure-inducing pore pressure changes. These experiments also indicate that although different water pathways control the timing of failure, initial soil density controls the style of failure.
... prep - vaginitis; Vaginosis - wet mount; Trichomoniasis - wet mount; Vaginal candida - wet mount ... provider gently inserts an instrument (speculum) into the vagina to hold it open and view inside. A ...
NASA Astrophysics Data System (ADS)
Ali, Nisar; Bashir, Shazia; Umm-i-Kalsoom; Begum, Narjis; Hussain, Tousif
2017-07-01
Variation in surface morphology, chemical composition, crystallinity and hardness of laser irradiated silver in dry and wet ambient environments has been investigated. For this purpose, the silver targets were exposed for various number of laser pulses in ambient environment of air, ethanol and de-ionized water for various number of laser pulses i.e. 500, 1000, 1500 and 2000. Scanning Electron Microscope (SEM) was employed to investigate the surface morphology of irradiated silver. SEM analysis reveals significant surface variations for both dry and wet ambient environments. For lower number of pulses, in air environment significant mass removal is observed but in case of ethanol no significant change in surface morphology is observed. In case of de-ionized water small sized cavities are observed with formation of protrusions with spherical top ends. For higher number of laser pulses, refilling of cavities by shock liquefied material, globules and protrusions are observed in case of dry ablation. For ablation in ethanol porous and coarse periodic ripples are observed whereas, for de-ionized water increasing density of protrusions is observed for higher number of pulses. EDS analysis exhibits the variation in chemical composition along with an enhanced diffusion of oxygen under both ambient conditions. The crystal structure of the exposed targets were explored by X-ray Diffraction (XRD) technique. XRD results support the EDS results. Formation of Ag2O in case of air and ethanol whereas, Ag2O and Ag3O in case of de-ionized water confirms the diffusion of oxygen into the silver surface after irradiation. Vickers Hardness tester was employed to measure the hardness of laser treated targets. Enhanced hardness is observed after irradiation in both dry and wet ambient environments. Initial decrease and then increase in hardness is observed with increase in number of laser pulses in air environment. In case of ethanol, increase in number of laser pulses results in continuous decrease in hardness. Whereas, in case of de-ionized water hardness increases with increase in number of laser pulses.
Wet Snow Mapping in Southern Ontario with Sentinel-1A Observations
NASA Astrophysics Data System (ADS)
Chen, H.; Kelly, R. E. J.
2017-12-01
Wet snow is defined as snow with liquid water present in an ice-water mix. It is can be an indicator for the onset of the snowmelt period. Knowledge about the extent of wet snow area can be of great importance for the monitoring of seasonal snowmelt runoff with climate-induced changes in snowmelt duration having implications for operational hydrological and ecological applications. Spaceborne microwave remote sensing has been used to observe seasonal snow under all-weather conditions. Active microwave observations of snow at C-band are sensitive to wet snow due to the high dielectric contrast with non-wet snow surfaces and synthetic aperture radar (SAR) is now openly available to identify and map the wet snow areas globally at relatively fine spatial resolutions ( 100m). In this study, a semi-automated workflow is developed from the change detection method of Nagler et al. (2016) using multi-temporal Sentinel-1A (S1A) dual-polarization observations of Southern Ontario. Weather station data and visible-infrared satellite observations are used to refine the wet snow area estimates. Wet snow information from National Operational Hydrologic Remote Sensing Center (NOHRSC) is used to compare with the S1A estimates. A time series of wet snow maps shows the variations in backscatter from wet snow on a pixel basis. Different land cover types in Southern Ontario are assessed with respect to their impacts on wet snow estimates. While forests and complex land surfaces can impact the ability to map wet snow, the approach taken is robust and illustrates the strong sensitivity of the approach to wet snow backscattering characteristics. The results indicate the feasibility of the change detection method on non-mountainous large areas and address the usefulness of Sentinel-1A data for wet snow mapping.
Vertical counterflow evaporative cooler
Bourne, Richard C.; Lee, Brian Eric; Callaway, Duncan
2005-01-25
An evaporative heat exchanger having parallel plates that define alternating dry and wet passages. A water reservoir is located below the plates and is connected to a water distribution system. Water from the water distribution system flows through the wet passages and wets the surfaces of the plates that form the wet passages. Air flows through the dry passages, mixes with air below the plates, and flows into the wet passages before exiting through the top of the wet passages.
High-Resolution Time-Lapse Monitoring of Unsaturated Flow using Automated GPR Data Collection
NASA Astrophysics Data System (ADS)
Mangel, A. R.; Moysey, S. M.; Lytle, B. A.; Bradford, J. H.
2015-12-01
High-resolution ground-penetrating radar (GPR) data provide the detailed information required to image subsurface structures. Recent advances in GPR monitoring now also make it possible to study transient hydrologic processes, but high-speed data acquisition is critical for this application. We therefore highlight the capabilities of our automated system to acquire time-lapse, high-resolution multifold GPR data during infiltration of water into soils. The system design allows for fast acquisition of constant-offset (COP) and common-midpoint profiles (CMP) to monitor unsaturated flow at multiple locations. Qualitative interpretation of the unprocessed COPs can provide substantial information regarding the hydrologic response of the system, such as the complexities of patterns associated with the wetting of the soil and geophysical evidence of non-uniform propagation of a wetting front. While we find that unprocessed images are informative, we show that the spatial variability of velocity introduced by infiltration events can complicate the images and that migration of the data is an effective tool to improve interpretability of the time-lapse images. The ability of the system to collect high density CMP data also introduces the potential for improving the velocity model along with the image via reflection tomography in the post-migrated domain. We show that for both simulated and empirical time-lapse GPR profiles we can resolve a propagating wetting front in the soil that is in good agreement with the response of in-situ soil moisture measurements. The data from these experiments illustrate the importance of high-speed, high-resolution GPR data acquisition for obtaining insight about the dynamics of hydrologic events. Continuing research is aimed at improving the quantitative analysis of surface-based GPR monitoring data for identifying preferential flow in soils.
Fayed, Mohamed H; Abdel-Rahman, Sayed I; Alanazi, Fars K; Ahmed, Mahrous O; Tawfeek, Hesham M; Al-Shdefat, Ramadan I
2017-10-01
The aim of this work was to study the application of design of experiment (DoE) approach in defining design space for granulation and tableting processes using a novel gentle-wing high-shear granulator. According to quality-by-design (QbD) prospective, critical attributes of granules, and tablets should be ensured by manufacturing process design. A face-centered central composite design has been employed in order to investigate the effect of water amount (X 1 ), impeller speed (X 2 ), wet massing time (X 3 ), and water addition rate (X 4 ) as independent process variables on granules and tablets characteristics. Acetaminophen was used as a model drug and granulation experiments were carried out using dry addition of povidone k30. The dried granules have been analyzed for their size distribution, density, and flow pattern. Additionally, the produced tablets have been investigated for; weight uniformity, breaking force, friability and percent capping, disintegration time, and drug dissolution. Results of regression analysis showed that water amount, impeller speed and wet massing time have significant (p < .05) effect on granules and tablets characteristics. However, the water amount had the most pronounced effect as indicated by its higher parameter estimate. On the other hand, water addition rate showed a minimal impact on granules and tablets properties. In conclusion, water amount, impeller speed, and wet massing time could be considered as critical process variables. Thus, understanding the relationship between these variables and quality attributes of granules and corresponding tablets provides the basis for adjusting granulation variables in order to optimize product performance.
The impact of inter-annual rainfall variability on African savannas changes with mean rainfall.
Synodinos, Alexis D; Tietjen, Britta; Lohmann, Dirk; Jeltsch, Florian
2018-01-21
Savannas are mixed tree-grass ecosystems whose dynamics are predominantly regulated by resource competition and the temporal variability in climatic and environmental factors such as rainfall and fire. Hence, increasing inter-annual rainfall variability due to climate change could have a significant impact on savannas. To investigate this, we used an ecohydrological model of stochastic differential equations and simulated African savanna dynamics along a gradient of mean annual rainfall (520-780 mm/year) for a range of inter-annual rainfall variabilities. Our simulations produced alternative states of grassland and savanna across the mean rainfall gradient. Increasing inter-annual variability had a negative effect on the savanna state under dry conditions (520 mm/year), and a positive effect under moister conditions (580-780 mm/year). The former resulted from the net negative effect of dry and wet extremes on trees. In semi-arid conditions (520 mm/year), dry extremes caused a loss of tree cover, which could not be recovered during wet extremes because of strong resource competition and the increased frequency of fires. At high mean rainfall (780 mm/year), increased variability enhanced savanna resilience. Here, resources were no longer limiting and the slow tree dynamics buffered against variability by maintaining a stable population during 'dry' extremes, providing the basis for growth during wet extremes. Simultaneously, high rainfall years had a weak marginal benefit on grass cover due to density-regulation and grazing. Our results suggest that the effects of the slow tree and fast grass dynamics on tree-grass interactions will become a major determinant of the savanna vegetation composition with increasing rainfall variability. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liascukiene, Irma; Steffenhagen, Marie; Asadauskas, Svajus J; Lambert, Jean-François; Landoulsi, Jessem
2014-05-27
The self-assembly of fatty acids (FA) on the surfaces of inorganic materials is a relevant way to control their wetting properties. While the mechanism of adsorption on model flat substrate is well described in the literature, interfacial processes remain poorly documented on nanostructured surfaces. In this study, we report the self-assembly of a variety of FA on a hydroxylated Al surface which exhibits a random nanoscale organization. Our results revealed a peculiar fingerprint due to the FA self-assembly which consists in the formation of aligned nanopatterns in a state of hierarchical nanostructuration, regardless of the molecular structure of the FA (chain length, level of unsaturation). After a significant removal of adsorbed FA using UV/O3 treatment, a complete wetting was reached, and a noticeable disturbance of the surface morphology was observed, evidencing the pivotal role of FA molecules to maintain these nanostructures. The origin of wetting properties was investigated prior to and after conditioning of FA-modified samples taking into account key parameters, namely the surface roughness and its composition. For this purpose, the Wenzel roughness, defined as the third moment of power spectral density, was used, as it is sensitive to high spatial frequency and thus to the obtained hierarchical level of nanostructuration. Our results revealed that no correlation can be made between water contact angles (θ(w)) and the Wenzel roughness. By contrast, θ(w) strongly increased with the amount of -CHx- groups exhibited by adsorbed FA. These findings suggest that the main origin of hydrophobization is the presence of self-assembled molecules and that the surface roughness has only a small contribution to the wettability.
Scalon, Marina Corrêa; Rossatto, Davi Rodrigo; Domingos, Fabricius Maia Chaves Bicalho; Franco, Augusto Cesar
2016-04-01
Several mistletoe species are able to grow and reproduce on both deciduous and evergreen hosts, suggesting a degree of plasticity in their ability to cope with differences in intrinsic host functions. The aim of this study was to investigate the influence of host phenology on mistletoe water relations and leaf gas exchange. Mistletoe Passovia ovata parasitizing evergreen (Miconia albicans) hosts and P. ovata parasitizing deciduous (Byrsonima verbascifolia) hosts were sampled in a Neotropical savanna. Photosynthetic parameters, diurnal cycles of stomatal conductance, pre-dawn and midday leaf water potential, and stomatal anatomical traits were measured during the peak of the dry and wet seasons, respectively. P. ovata showed distinct water-use strategies that were dependent on host phenology. For P. ovata parasitizing the deciduous host, water use efficiency (WUE; ratio of photosynthetic rate to transpirational water loss) was 2-fold lower in the dry season than in the wet season; in contrast, WUE was maintained at the same level during the wet and dry seasons in P. ovata parasitizing the evergreen host. Generally, mistletoe and host diurnal cycles of stomatal conductance were linked, although there were clear differences in leaf water potential, with mistletoe showing anisohydric behaviour and the host showing isohydric behaviour. Compared to mistletoes attached to evergreen hosts, those parasitizing deciduous hosts had a 1.4-fold lower stomatal density and 1.2-fold wider stomata on both leaf surfaces, suggesting that the latter suffered less intense drought stress. This is the first study to show morphophysiological differences in the same mistletoe species parasitizing hosts of different phenological groups. Our results provide evidence that phenotypical plasticity (anatomical and physiological) might be essential to favour the use of a greater range of hosts.
Sterck, Frank J; Zweifel, Roman; Sass-Klaassen, Ute; Chowdhury, Qumruzzaman
2008-04-01
Leaf specific conductivity (LSC; the ratio of stem conductivity (K(P)) to leaf area (A(L))), a measure of the hydraulic capacity of the stem to supply leaves with water, varies with soil water content. Empirical evidence for LSC responses to drought is ambiguous, because previously published results were subject to many confounding factors. We tested how LSC of similar-sized trees of the same population, under similar climatic conditions, responds to persistently wet or dry soil. Scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescens Willd.) trees were compared between a dry site and a wet site in the Valais, an inner alpine valley in Switzerland. Soil water strongly influenced A(L) and K(P) and the plant components affecting K(P), such as conduit radius, conduit density and functional sapwood area. Trees at the dry site had lower LSC than trees with the same stem diameter at the wet site. Low LSC in trees at the dry site was associated with a smaller functional sapwood area and narrower conduits, resulting in a stronger reduction in K(P) than in A(L). These observations support the hypothesis that trees maintain a homeostatic water pressure gradient. An alternative hypothesis is that relatively high investments in leaves compared with sapwood contribute to carbon gain over an entire season by enabling rapid whole-plant photosynthesis during periods of high water availability (e.g., in spring, after rain events and during morning hours when leaf-to-air vapor pressure deficit is small). Dynamic data and a hydraulic plant growth model are needed to test how investments in leaves versus sapwood and roots contribute to transpiration and to maximizing carbon gain throughout entire growth seasons.
NASA Technical Reports Server (NTRS)
Neale, Christopher M. U.; Mcdonnell, Jeffrey J.; Ramsey, Douglas; Hipps, Lawrence; Tarboton, David
1993-01-01
Since the launch of the DMSP Special Sensor Microwave/Imager (SSM/I), several algorithms have been developed to retrieve overland parameters. These include the present operational algorithms resulting from the Navy calibration/validation effort such as land surface type (Neale et al. 1990), land surface temperature (McFarland et al. 1990), surface moisture (McFarland and Neale, 1991) and snow parameters (McFarland and Neale, 1991). In addition, other work has been done including the classification of snow cover and precipitation using the SSM/I (Grody, 1991). Due to the empirical nature of most of the above mentioned algorithms, further research is warranted and improvements can probably be obtained through a combination of radiative transfer modelling to study the physical processes governing the microwave emissions at the SSM/I frequencies, and the incorporation of additional ground truth data and special cases into the regression data sets. We have proposed specifically to improve the retrieval of surface moisture and snow parameters using the WetNet SSM/I data sets along with ground truth information namely climatic variables from the NOAA cooperative network of weather stations as well as imagery from other satellite sensors such as the AVHRR and Thematic Mapper. In the case of surface moisture retrievals the characterization of vegetation density is of primary concern. The higher spatial resolution satellite imagery collected at concurrent periods will be used to characterize vegetation types and amounts which, along with radiative transfer modelling should lead to more physically based retrievals. Snow parameter retrieval algorithm improvement will initially concentrate on the classification of snowpacks (dry snow, wet snow, refrozen snow) and later on specific products such as snow water equivalent. Significant accomplishments in the past year are presented.
Ferguson, Jayde A; St-Hilaire, Sophie; Peterson, Tracy S; Rodnick, Kenneth J; Kent, Michael L
2011-12-01
We are conducting studies on the impacts of parasites on Oregon coastal coho salmon (Oncorhynchus kistuch). An essential first step is documenting the geographic distribution of infections, which may be accomplished by using different methods for parasite detection. Thus, the objectives of the current study were to (1) identify parasite species infecting these stocks of coho salmon and document their prevalence, density, and geographic distribution; (2) assess the pathology of these infections; and (3) for the first time, determine the sensitivity and specificity of histology for detecting parasites compared with examining wet preparations for muscle and gill infections. We examined 576 fry, parr, and smolt coho salmon in total by histology. The muscle and gills of 219 of these fish also were examined by wet preparation. Fish were collected from 10 different locations in 2006-2007. We identified 21 different species of parasites in these fish. Some parasites, such as Nanophyetus salmincola and Myxobolus insidiosus, were common across all fish life stages from most basins. Other parasites, such as Apophallus sp., were more common in underyearling fish than smolts and had a more restricted geographic distribution. Additional parasites commonly observed were as follows: Sanguinicola sp., Trichodina truttae , Epistylis sp., Capriniana piscium, and unidentified metacercariae in gills; Myxobolus sp. in brain; Myxidium salvelini and Chloromyxum majori in kidney; Pseudocapillaria salvelini and adult digenean spp. in the intestine. Only a few parasites, such as the unidentified gill metacercariae, elicted overt pathologic changes. Histology had generally poor sensitivity for detecting parasites; however, it had relatively good specificity. We recommend using both methods for studies or monitoring programs requiring a comprehensive assessment of parasite identification, enumeration, and parasite-related pathology.
Contact angle of sessile drops in Lennard-Jones systems.
Becker, Stefan; Urbassek, Herbert M; Horsch, Martin; Hasse, Hans
2014-11-18
Molecular dynamics simulations are used for studying the contact angle of nanoscale sessile drops on a planar solid wall in a system interacting via the truncated and shifted Lennard-Jones potential. The entire range between total wetting and dewetting is investigated by varying the solid-fluid dispersive interaction energy. The temperature is varied between the triple point and the critical temperature. A correlation is obtained for the contact angle in dependence of the temperature and the dispersive interaction energy. Size effects are studied by varying the number of fluid particles at otherwise constant conditions, using up to 150,000 particles. For particle numbers below 10,000, a decrease of the contact angle is found. This is attributed to a dependence of the solid-liquid surface tension on the droplet size. A convergence to a constant contact angle is observed for larger system sizes. The influence of the wall model is studied by varying the density of the wall. The effective solid-fluid dispersive interaction energy at a contact angle of θ = 90° is found to be independent of temperature and to decrease linearly with the solid density. A correlation is developed that describes the contact angle as a function of the dispersive interaction, the temperature, and the solid density. The density profile of the sessile drop and the surrounding vapor phase is described by a correlation combining a sigmoidal function and an oscillation term.
40 CFR Table 2 to Subpart III of... - Operating Limits for Wet Scrubbers
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Operating Limits for Wet Scrubbers 2... Part 62—Operating Limits for Wet Scrubbers For these operating parameters You must establish these... and intermittent units) a Pressure drop across the wet scrubber or amperage to wet scrubber Minimum...
40 CFR Table 2 to Subpart III of... - Operating Limits for Wet Scrubbers
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Operating Limits for Wet Scrubbers 2... Part 62—Operating Limits for Wet Scrubbers For these operating parameters You must establish these... and intermittent units) a Pressure drop across the wet scrubber or amperage to wet scrubber Minimum...
Zolali, Ali M; Favis, Basil D
2017-04-12
In this study it is shown that the three different intermediate phases in melt blended ternary PLA/PHBV/PBS, PLA/PBAT/PE and PLA/PE/PBAT systems all demonstrate partial wetting, but have very different wetting behaviors as a function of composition and annealing. The interfacial tension of the various components, their spreading coefficients and the contact angles of the confined partially wet droplets at the interface are examined in detail. A wetting transition from partially wet droplets to a complete layer at the interface is observed for both PHBV and PBAT by increasing the concentration and also by annealing. In contrast, in PLA/PE/PBAT, the partially wet droplets of PE at the interface of PLA/PBAT coalesce and grow in size, but remain partially wet even at a high PE concentration of 20% and after 30 min of quiescent annealing. The dewetting speed of the intermediate phase is found to be the principal factor controlling these wetting transitions. This work shows the significant potential for controlled wetting and structuring in ternary polymer systems.
Stimuli Responsive Morphological Changes of Pnipa Polymer Brushes Synthesized on Silicon Substrate
NASA Astrophysics Data System (ADS)
Huda, Muhammad Nurul; Kabir, A. N. M. Hamidul
2013-08-01
High-density polymer brushes were grown from the silicon surface by atom transfer radical polymerization of Poly(N-isopropylacrylamide) (PNIPA) at different polymerization conditions. PNIPA brushes were prepared using Copper (I) Chloride/tris(2-(dimetylamino)ethyl)amine (Me6TREN) as a catalytic system in DMSO at 20°C. Free polymer formed during the brush formation was characterized by gel permeation chromatography. The grafting densities up to 0.52 chains/nm2 were obtained. The layer thickness of polymer brush increases with the increase of conversion of the monomer conversion as well as polymerization time. Atomic force microscopy and air bubble contact angle under pH solution were employed to study the surface morphology, reversible conformational changes of and stimulus-response behavior. PNIPA brushes exhibited a different nanomorphology after treatment with different pH solution. It also revealed a unique reversible wetting behavior with pH. The reversible properties of the PNIPA brushes can be used to regulate the adsorption of the sulfonated PS nanoparticles.
Snowcover influence on backscattering from terrain
NASA Technical Reports Server (NTRS)
Ulaby, F. T.; Abdelrazik, M.; Stiles, W. H.
1984-01-01
The effects of snowcover on the microwave backscattering from terrain in the 8-35 GHz region are examined through the analysis of experimental data and by application of a semiempirical model. The model accounts for surface backscattering contributions by the snow-air and snow-soil interfaces, and for volume backscattering contributions by the snow layer. Through comparisons of backscattering data for different terrain surfaces measured both with and without snowcover, the masking effects of snow are evaluated as a function of snow water equivalent and liquid water content. The results indicate that with dry snowcover it is not possible to discriminate between different types of ground surface (concrete, asphalt, grass, and bare ground) if the snow water equivalent is greater than about 20 cm (or a depth greater than 60 cm for a snow density of 0.3 g/cu cm). For the same density, however, if the snow is wet, a depth of 10 cm is sufficient to mask the underlying surface.
NASA Technical Reports Server (NTRS)
Lambrecht, Walter R. L.
1992-01-01
The goals of the research were to provide a fundamental science basis for why the bonding of Cu to graphite is weak, to critically evaluate the previous analysis of the wetting studies with particular regard to the values used for the surface energies of Cu and graphite, and to make recommendations for future experiments or other studies which could advance the understanding and solution of this technological problem. First principles electronic structure calculations were used to study the problem. These are based on density functional theory in the local density approximation and the use of the linear muffin-tin orbital band structure method. Calculations were performed for graphite monolayers, single crystal graphite with the hexagonal AB stacking, bulk Cu, Cu(111) surface, and Cu/graphite superlattices. The study is limited to the basal plane of graphite because this is the graphite plane exposed to Cu and graphite surface energies and combined with the measured contact angles to evaluate the experimental adhesion energy.
Metal-oxide-based energetic materials and synthesis thereof
Tillotson, Thomas M. , Simpson; Randall, L [Livermore, CA; Hrubesh, Lawrence W [Pleasanton, CA
2006-01-17
A method of preparing energetic metal-oxide-based energetic materials using sol-gel chemistry has been invented. The wet chemical sol-gel processing provides an improvement in both safety and performance. Essentially, a metal-oxide oxidizer skeletal structure is prepared from hydrolyzable metals (metal salts or metal alkoxides) with fuel added to the sol prior to gelation or synthesized within the porosity metal-oxide gel matrix. With metal salt precursors a proton scavenger is used to destabilize the sol and induce gelation. With metal alkoxide precursors standard well-known sol-gel hydrolysis and condensation reactions are used. Drying is done by standard sol-gel practices, either by a slow evaporation of the liquid residing within the pores to produce a high density solid nanocomposite, or by supercritical extraction to produce a lower density, high porous nanocomposite. Other ingredients may be added to this basic nanostructure to change physical and chemical properties, which include organic constituents for binders or gas generators during reactions, burn rate modifiers, or spectral emitters.
A High-Energy-Density Potassium Battery with a Polymer-Gel Electrolyte and a Polyaniline Cathode.
Gao, Hongcai; Xue, Leigang; Xin, Sen; Goodenough, John B
2018-05-04
A safe, rechargeable potassium battery of high energy density and excellent cycling stability has been developed. The anion component of the electrolyte salt is inserted into a polyaniline cathode upon charging and extracted from it during discharging while the K + ion of the KPF 6 salt is plated/stripped on the potassium-metal anode. The use of a p-type polymer cathode increases the cell voltage. By replacing the organic-liquid electrolyte in a glass-fiber separator with a polymer-gel electrolyte of cross-linked poly(methyl methacrylate), a dendrite-free potassium anode can be plated/stripped, and the electrode/electrolyte interface is stabilized. The potassium anode wets the polymer, and the cross-linked architecture provides small pores of adjustable sizes to stabilize a solid-electrolyte interphase formed at the anode/electrolyte interface. This alternative electrolyte/cathode strategy offers a promising new approach to low-cost potassium batteries for the stationary storage of electric power. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Palaeo‐adaptive Properties of the Xylem of Metasequoia: Mechanical/Hydraulic Compromises
JAGELS, RICHARD; VISSCHER, GEORGE E.; LUCAS, JOHN; GOODELL, BARRY
2003-01-01
The xylem of Metasequoia glyptostroboides Hu et Cheng is characterized by very low density (average specific gravity = 0·27) and tracheids with relatively large dimensions (length and diameter). The microfibril angle in the S2 layer of tracheid walls is large, even in outer rings, suggesting a cambial response to compressive rather than tensile stresses. In some cases, this compressive stress is converted to irreversible strain (plastic deformation), as evidenced by cell wall corrugations. The heartwood is moderately decay resistant, helping to prevent Brazier buckling. These xylem properties are referenced to the measured bending properties of modulus of rupture and modulus of elasticity, and compared with other low‐to‐moderate density conifers. The design strategy for Metasequoia is to produce a mechanically weak but hydraulically efficient xylem that permits rapid height growth and crown development to capture and dominate a wet site environment. The adaptability of these features to a high‐latitude Eocene palaeoenvironment is discussed. PMID:12763758
NASA Astrophysics Data System (ADS)
Fakhari, Abbas; Bolster, Diogo
2017-04-01
We introduce a simple and efficient lattice Boltzmann method for immiscible multiphase flows, capable of handling large density and viscosity contrasts. The model is based on a diffuse-interface phase-field approach. Within this context we propose a new algorithm for specifying the three-phase contact angle on curved boundaries within the framework of structured Cartesian grids. The proposed method has superior computational accuracy compared with the common approach of approximating curved boundaries with stair cases. We test the model by applying it to four benchmark problems: (i) wetting and dewetting of a droplet on a flat surface and (ii) on a cylindrical surface, (iii) multiphase flow past a circular cylinder at an intermediate Reynolds number, and (iv) a droplet falling on hydrophilic and superhydrophobic circular cylinders under differing conditions. Where available, our results show good agreement with analytical solutions and/or existing experimental data, highlighting strengths of this new approach.
NASA Astrophysics Data System (ADS)
Zhou, Wei
Analytical Transmission Electron Microscopy (TEM) and High Resolution Electron Microscopy have been carried out to characterize microstructures and nanostructures in various III-V compound semiconductor devices by metalorganic chemical vapor deposition (MOCVD). The low-defect GaN nonplanar templates by lateral epitaxial overgrowth (LEO) has a trapezoidal cross-section with smooth (0001) and {112¯2} facets. Penetration of threading dislocations (TDs) beyond mask windows is observed in ordinary LEO substrates. In two-step LEO substrates, where TDs are engineered to bend 90° in the TD bending layer after the first LEO step, only perfect a-type dislocations with Burgers vector b = 1/3 <112¯0> are generated in the upper Post-bending layer with a density of ˜8 x 107cm-2. The demonstrated 3-dimensional dislocation spatial distribution in the LEO nonplanar substrate substantiates the dislocation reaction mechanism. Al0.07GaN/GaN superlattice can further decrease dislocations. InGaN QW thickness enhancement on top of GaN nonplanar templates has been verified to influence the optoelectronic properties significantly. Dense arrays of hexagonally ordered MOCVD-grown (In)(Ga)As nano-QDs by block copolymer nanolithography & selective area growth (SAG), approximately 20nm in diameter and 40nm apart with a density of 1011/cm 2, are perfect crystals by TEM. V-shaped defects and worse InAs growth uniformity have been observed in multiple layers of vertically coupled self-assembled InAs nanostructure arrays on strain-modulated GaAs substrates. TEM shows a smooth coalesced GaN surface with a thickness as thin as ˜200nm after Nano-LEO and a defect reduction of 70%-75%. The (In)GaAs 20 nm twist bonded compliant substrates have almost no compliant effect and higher dislocation density, but the 10nm compliant substrates are on the contrary. A 60nm oxygen-infiltrated crystallized transition layer is observed between the amorphous oxidized layer and the crystallized unoxidized aperture in Al xGa1-xAs wet lateral oxidation, potentially influencing the current confinement characteristic of the sub-micron oxide aperture. Almost no dislocation is aroused by the wet lateral oxidation of In0.52Al 0.48As in the InP microresonator waveguides. XTEM was performed to compare InP SAG regions with 10˜50mum masks, which shows the performance deterioration of laser threshold current densities in the case of 50mum mask results from high density of dislocations induced from the highly strained QW structures caused by the high enhancements.
NASA Astrophysics Data System (ADS)
Yusof, Fadhilah; Hui-Mean, Foo; Suhaila, Jamaludin; Yusop, Zulkifli; Ching-Yee, Kong
2014-02-01
The interpretations of trend behaviour for dry and wet events are analysed in order to verify the dryness and wetness episodes. The fitting distribution of rainfall is computed to classify the dry and wet events by applying the standardised precipitation index (SPI). The rainfall amount for each station is categorised into seven categories, namely extremely wet, severely wet, moderately wet, near normal, moderately dry, severely dry and extremely dry. The computation of the SPI is based on the monsoon periods, which include the northeast monsoon, southwest monsoon and inter-monsoon. The trends of the dry and wet periods were then detected using the Mann-Kendall trend test and the results indicate that the major parts of Peninsular Malaysia are characterised by increasing droughts rather than wet events. The annual trends of drought and wet events of the randomly selected stations from each region also yield similar results. Hence, the northwest and southwest regions are predicted to have a higher probability of drought occurrence during a dry event and not much rain during the wet event. The east and west regions, on the other hand, are going through a significant upward trend that implies lower rainfall during the drought episodes and heavy rainfall during the wet events.
Nyman, Jeffry S.; Gorochow, Lacey E.; Horch, R. Adam; Uppuganti, Sasidhar; Zein-Sabatto, Ahbid; Manhard, Mary Katherine; Does, Mark D.
2012-01-01
With an ability to quantify matrix-bound and pore water in bone, 1H nuclear magnetic resonance (NMR) relaxometry can potentially be implemented in clinical imaging to assess the fracture resistance of bone in a way that is independent of current X-ray techniques, which assess bone mineral density as a correlate of bone strength. Working towards that goal, we quantified the effect of partial dehydration in air on the mechanical and NMR properties of human cortical bone in order to understand whether NMR is sensitive to water-bone interactions at low energy and whether such interactions contribute to the age-related difference in the toughness of bone. Cadaveric femurs were collected from male and female donors falling into two age groups: 21 to 60 years of age (young) and 74 to 99 years of age (old). After extracting two samples from the medial cortex of the mid-shaft, tensile tests were conducted on Wet specimens and paired, Partially Dry (PtlD) specimens (prepared by low-energy drying in air to remove ~3% of original mass before testing). Prior analysis by micro-computed tomography found that there were no differences in intra-cortical porosity between the Wet and PtlD specimens nor did an age-related difference in porosity exist. PtlD specimens from young and old donors had significantly less toughness than Wet specimens, primarily due to a dehydration-related decrease in post-yield strain. The low-energy drying protocol did not affect the modulus and yield strength of bone. Subsequent dehydration of the PtlD specimens in a vacuum oven at 62 °C and then 103 °C, with quantification of water loss at each temperature, revealed an age-related shift from more loosely bound water to more tightly bound water. NMR detected a change in both bound and pore water pools with low-energy air-drying, and both pools were effectively removed when bone was oven-dried at 62 °C, irrespective of donor age. Although not strictly significant due to variability in the drying and testing conditions, the absolute difference in toughness between Wet and PtlD tended to be greater for the younger donors that had higher bone toughness and more bound water for the wet condition than did the older donors. With sensitivity to low-energy bone-water interactions, NMR, which underpins magnetic resonance imaging, has potential to assess fracture resistance of bone as it relates to bone toughness. PMID:23631897
Nyman, Jeffry S; Gorochow, Lacey E; Adam Horch, R; Uppuganti, Sasidhar; Zein-Sabatto, Ahbid; Manhard, Mary Katherine; Does, Mark D
2013-06-01
With an ability to quantify matrix-bound and pore water in bone, (1)H nuclear magnetic resonance (NMR) relaxometry can potentially be implemented in clinical imaging to assess the fracture resistance of bone in a way that is independent of current X-ray techniques, which assess bone mineral density as a correlate of bone strength. Working towards that goal, we quantified the effect of partial dehydration in air on the mechanical and NMR properties of human cortical bone in order to understand whether NMR is sensitive to water-bone interactions at low energy and whether such interactions contribute to the age-related difference in the toughness of bone. Cadaveric femurs were collected from male and female donors falling into two age groups: 21-60 years of age (young) and 74-99 years of age (old). After extracting two samples from the medial cortex of the mid-shaft, tensile tests were conducted on Wet specimens and paired, Partially Dry (PtlD) specimens (prepared by low-energy drying in air to remove ∼3% of original mass before testing). Prior analysis by micro-computed tomography found that there were no differences in intra-cortical porosity between the Wet and PtlD specimens nor did an age-related difference in porosity exist. PtlD specimens from young and old donors had significantly less toughness than Wet specimens, primarily due to a dehydration-related decrease in post-yield strain. The low-energy drying protocol did not affect the modulus and yield strength of bone. Subsequent dehydration of the PtlD specimens in a vacuum oven at 62°C and then 103°C, with quantification of water loss at each temperature, revealed an age-related shift from more loosely bound water to more tightly bound water. NMR detected a change in both bound and pore water pools with low-energy air-drying, and both pools were effectively removed when bone was oven-dried at 62°C, irrespective of donor age. Although not strictly significant due to variability in the drying and testing conditions, the absolute difference in toughness between Wet and PtlD tended to be greater for the younger donors that had higher bone toughness and more bound water for the wet condition than did the older donors. With sensitivity to low-energy bone-water interactions, NMR, which underpins magnetic resonance imaging, has potential to assess fracture resistance of bone as it relates to bone toughness. Published by Elsevier Ltd.
Wagemann, R; Kozlowska, H
2005-12-01
Beluga and narwhal skin as a whole (in Inuktitut known as "muktuk") is considered to be a delicacy by native Canadian and Greenland people. Individual strata of the skin, and muscle from 27 beluga from the western, and 20 narwhal from the eastern Canadian Arctic, were analyzed for mercury and the thickness and density of each skin layer was measured. Mercury was not uniformly distributed in the skin, but increased outwardly with each layer. The concentration was only 0.29 and 0.16 microg/g (wet wt) in the innermost layer (dermis) of belugas and narwhal respectively, and 1.5 and 1.4 microg/g (wet wt) in the outermost layer (degenerative epidermis) of beluga and narwhal, respectively. There was a significant (alpha=0.05) association between age and mercury concentration in each skin layer, the regression coefficients progressively increasing from the inner layer (dermis) to the outer layer: 0.011-0.063 microg/g year-1; 0.034 microg/g year-1 for skin as a whole; 0.054 microg/g year-1 for muscle. The concentration of total mercury was 0.84 and 0.59 microg/g (wet wt) in skin as a whole (muktuk) of beluga and narwhal respectively, and 0.12 and 0.03 microg/g in blubber, respectively. The average, total mercury concentration in muscle tissue was 1.4 and 0.81 microg/g wet wt, in beluga and narwhal respectively, exceeding (except for blubber) the Canadian Government's Guideline (0.5 microg/g wet wt) for fish export and consumption. The skin surface area of an average-size beluga and narwhal was estimated (6.10 and 6.50 m2, respectively), as were excretions of mercury through moulting (13,861 and 6721 microg year-1; 14 and 7 mg year-1) for belugas and narwhal, respectively. The whole-body mercury burden (699,300 microg; 700 mg) for a 1000 kg beluga and its various tissues were estimated, as was the fraction of mercury excreted by moulting (2-0.42% of the whole-body burden). Annual mercury burden increments in beluga skin, muscle and the whole body were estimated (2750; 17,280; 40,00 microg year-1, respectively), using regression coefficients of age on mercury concentration. The annual gross mercury intake via food was estimated (131,400 microg), of which 70% was excreted.
Recent developments of the in situ wet cell technology for transmission electron microscopies.
Chen, Xin; Li, Chang; Cao, Hongling
2015-03-21
In situ wet cells for transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) allow studying structures and processes in a liquid environment with high temporal and spatial resolutions, and have been attracting increasing research interests in many fields. In this review, we highlight the structural and functional developments of the wet cells for TEM and STEM. One of the key features of the wet cells is the sealing technique used to isolate the liquid sample from the TEM/STEM vacuum environments, thus the existing in situ wet cells are grouped by different sealing methods. In this study, the advantages and shortcomings of each type of in situ wet cells are discussed, the functional developments of different wet cells are presented, and the future trends of the wet cell technology are addressed. It is suggested that in the future the in situ wet cell TEM/STEM technology will have an increasing impact on frontier nanoscale research.
A critical analysis of one standard and five methods to monitor surface wetness and time-of-wetness
NASA Astrophysics Data System (ADS)
Camuffo, Dario; della Valle, Antonio; Becherini, Francesca
2018-05-01
Surface wetness is a synergistic factor to determine atmospheric corrosion, monument weathering, mould growth, sick buildings, etc. However, its detection and monitoring are neither easy nor homogeneous, for a number of factors that may affect readings. Various types of methods and sensors, either commercial or prototypes built in the lab, have been investigated and compared, i.e. the international standard ISO 9223 to evaluate corrosivity after wetness and time-of-wetness; indirect evaluation of wetness, based on the dew point calculated after the output of temperature and relative humidity sensors and direct measurements by means of capacitive wetness sensors, safety sensors, rain sensors (also known as leaf wetness sensors), infrared reflection sensors and fibre optic sensors. A comparison between the different methods is presented, specifying physical principles, forms of wetting to which they are respondent (i.e. condensation, ice melting, splashing drops, percolation and capillary rise), critical factors, use and cost.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Definitions § 51.897 Wet. Wet means that the grapes are wet from moisture from crushed, leaking, or decayed berries or from rain. Grapes which are moist from dew or other moisture condensation such as that...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Definitions § 51.897 Wet. Wet means that the grapes are wet from moisture from crushed, leaking, or decayed berries or from rain. Grapes which are moist from dew or other moisture condensation such as that...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Incinerators and Wet Scrubbers 3 Table 3 to Subpart FFFF of Part 60 Protection of Environment ENVIRONMENTAL...—Model Rule—Operating Limits for Incinerators and Wet Scrubbers As stated in § 60.3023, you must comply... units. a 2. Pressure drop across the wet scrubber or amperage to wet scrubber Minimum pressure drop or...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Incinerators and Wet Scrubbers 3 Table 3 to Subpart FFFF of Part 60 Protection of Environment ENVIRONMENTAL...—Model Rule—Operating Limits for Incinerators and Wet Scrubbers As stated in § 60.3023, you must comply... units. a 2. Pressure drop across the wet scrubber or amperage to wet scrubber Minimum pressure drop or...
Water Use Patterns of Four Tropical Bamboo Species Assessed with Sap Flux Measurements.
Mei, Tingting; Fang, Dongming; Röll, Alexander; Niu, Furong; Hendrayanto; Hölscher, Dirk
2015-01-01
Bamboos are grasses (Poaceae) that are widespread in tropical and subtropical regions. We aimed at exploring water use patterns of four tropical bamboo species (Bambusa vulgaris, Dendrocalamus asper, Gigantochloa atroviolacea, and G. apus) with sap flux measurement techniques. Our approach included three experimental steps: (1) a pot experiment with a comparison of thermal dissipation probes (TDPs), the stem heat balance (SHB) method and gravimetric readings using potted B. vulgaris culms, (2) an in situ calibration of TDPs with the SHB method for the four bamboo species, and (3) field monitoring of sap flux of the four bamboo species along with three tropical tree species (Gmelina arborea, Shorea leprosula, and Hevea brasiliensis) during a dry and a wet period. In the pot experiment, it was confirmed that the SHB method is well suited for bamboos but that TDPs need to be calibrated. In situ, species-specific parameters for such calibration formulas were derived. During field monitoring we found that some bamboo species reached high maximum sap flux densities. Across bamboo species, maximal sap flux density increased with decreasing culm diameter. In the diurnal course, sap flux densities in bamboos peaked much earlier than radiation and vapor pressure deficit (VPD), and also much earlier than sap flux densities in trees. There was a pronounced hysteresis between sap flux density and VPD in bamboos, which was less pronounced in trees. Three of the four bamboo species showed reduced sap flux densities at high VPD values during the dry period, which was associated with a decrease in soil moisture content. Possible roles of internal water storage, root pressure and stomatal sensitivity are discussed.
Water Use Patterns of Four Tropical Bamboo Species Assessed with Sap Flux Measurements
Mei, Tingting; Fang, Dongming; Röll, Alexander; Niu, Furong; Hendrayanto; Hölscher, Dirk
2016-01-01
Bamboos are grasses (Poaceae) that are widespread in tropical and subtropical regions. We aimed at exploring water use patterns of four tropical bamboo species (Bambusa vulgaris, Dendrocalamus asper, Gigantochloa atroviolacea, and G. apus) with sap flux measurement techniques. Our approach included three experimental steps: (1) a pot experiment with a comparison of thermal dissipation probes (TDPs), the stem heat balance (SHB) method and gravimetric readings using potted B. vulgaris culms, (2) an in situ calibration of TDPs with the SHB method for the four bamboo species, and (3) field monitoring of sap flux of the four bamboo species along with three tropical tree species (Gmelina arborea, Shorea leprosula, and Hevea brasiliensis) during a dry and a wet period. In the pot experiment, it was confirmed that the SHB method is well suited for bamboos but that TDPs need to be calibrated. In situ, species-specific parameters for such calibration formulas were derived. During field monitoring we found that some bamboo species reached high maximum sap flux densities. Across bamboo species, maximal sap flux density increased with decreasing culm diameter. In the diurnal course, sap flux densities in bamboos peaked much earlier than radiation and vapor pressure deficit (VPD), and also much earlier than sap flux densities in trees. There was a pronounced hysteresis between sap flux density and VPD in bamboos, which was less pronounced in trees. Three of the four bamboo species showed reduced sap flux densities at high VPD values during the dry period, which was associated with a decrease in soil moisture content. Possible roles of internal water storage, root pressure and stomatal sensitivity are discussed. PMID:26779233
High-Performance Supercapacitors from Niobium Nanowire Yarns.
Mirvakili, Seyed M; Mirvakili, Mehr Negar; Englezos, Peter; Madden, John D W; Hunter, Ian W
2015-07-01
The large-ion-accessible surface area of carbon nanotubes (CNTs) and graphene sheets formed as yarns, forests, and films enables miniature high-performance supercapacitors with power densities exceeding those of electrolytics while achieving energy densities equaling those of batteries. Capacitance and energy density can be enhanced by depositing highly pseudocapacitive materials such as conductive polymers on them. Yarns formed from carbon nanotubes are proposed for use in wearable supercapacitors. In this work, we show that high power, energy density, and capacitance in yarn form are not unique to carbon materials, and we introduce niobium nanowires as an alternative. These yarns show higher capacitance and energy per volume and are stronger and 100 times more conductive than similarly spun carbon multiwalled nanotube (MWNT) and graphene yarns. The long niobium nanowires, formed by repeated extrusion and drawing, achieve device volumetric peak power and energy densities of 55 MW·m(-3) (55 W·cm(-3)) and 25 MJ·m(-3) (7 mWh·cm(-3)), 2 and 5 times higher than that for state-of-the-art CNT yarns, respectively. The capacitance per volume of Nb nanowire yarn is lower than the 158 MF·m(-3) (158 F·cm(-3)) reported for carbon-based materials such as reduced graphene oxide (RGO) and CNT wet-spun yarns, but the peak power and energy densities are 200 and 2 times higher, respectively. Achieving high power in long yarns is made possible by the high conductivity of the metal, and achievement of high energy density is possible thanks to the high internal surface area. No additional metal backing is needed, unlike for CNT yarns and supercapacitors in general, saving substantial space. As the yarn is infiltrated with pseudocapacitive materials such as poly(3,4-ethylenedioxythiophene) (PEDOT), the energy density is further increased to 10 MJ·m(-3) (2.8 mWh·cm(-3)). Similar to CNT yarns, niobium nanowire yarns are highly flexible and show potential for weaving into textiles and use in wearable devices.
NASA Astrophysics Data System (ADS)
Muluneh Bitew, Alemayehu; Keesstra, Saskia; Stroosnijder, Leo
2015-04-01
Maize yield in the Central Rift Valley of Ethiopia (CRV) suffers from dry spells at sensitive growth stages. Risk of crop failure makes farmers reluctant to invest in fertilizer. This makes the CRV food insecure. There are farms with well-maintained terraces and Rain Water Harvesting (RWH) systems using concrete farms ponds. We tested the hypothesis that in these farms supplemental irrigation with simultaneous crop intensification might boost production of a small maize area sufficient to improve food security. Intensification includes a higher plant density of a hybrid variety under optimum fertilization. First we assessed the probability of occurrence of dry spells. Then we estimated the availability of sufficient runoff in the ponds in dry years. During 2012 (dry) and 2013 (wet) on-farm field research was conducted with 10 combinations of supplemental irrigation and plant density. The simplest was rainfed farming with 30,000 plants ha-1. The most advanced was no water stress and 75,000 plants ha-1. Finally we compared our on-farm yield with that of neighbouring farmers. Because 2013 was a wet year no irrigation was needed. Our long term daily rainfall (1970-2011) analysis proves the occurrence of dry spells during the onset of the maize (Belg months March and April). In March there is hardly enough water in the ponds. So, we advise later sowing. Starting from April available water (runoff from a 2.2 ha catchment) matches crop water requirement (for 0.5 ha maize). Significant differences between grain and total biomass yield were observed between rainfed and other irrigation levels. However, since the largest difference is only 12%, the investment in irrigation non-critical drought years is not worth the effort. There was also a limited effect (18-22%) of increasing plant density. So, we advise not to use more than 45,000 plants ha-1. The grain yield and total biomass difference between farmers own practice and our on-farm research was 101% and 84% respectively in 2012. This large increase in grain yield is contributed to the higher use of (150% recommended) of fertilizer against the current use (50% or less) by adjacent farmers. Our hypothesis was that supplemental irrigation in combination with increased plant density would greatly increase grain yield. This hypothesis could not be proven with our 2 years experiment. Our experiment, once again, suggests that yield lower than attainable is not a matter of water shortage but rather an effect of lack of fertilizer.