Science.gov

Sample records for wet granular matter

  1. Spiral patterns in wet granular matter under vertical vibrations

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Gollwitzer, Frank; Rehberg, Ingo

    2010-03-01

    From the evolution of galaxy to hurricane, from the inner structure of sea shell to the cochlea of our inner ears, spirals are widely existing in nature. In the past decades, spiral patterns have been discovered and extensively studied in model systems such as Rayleigh-B'ernard convection, Belousov-Zhabotinksy reactions and various biological systems. Here we report spiral patterns observed in a thin layer of wet granular matter driven by vertical vibrations. In the phase diagram of driven wet granular matter, spirals appear close to a fluid-gas coexistence phase and show hysteresis. The trajectory and rotation velocity of the three-armed spirals are studied as a function of the driving parameters and compared with other model systems.

  2. Rheological behavior of partially-wet granular matter

    NASA Astrophysics Data System (ADS)

    Ghelichi, Ramin; Kamrin, Ken; Kamrin Group Team

    The topic of wet granular material modeling is an open area of study. In this talk we present a comprehensive continuum model for wet granular matter, which is informed by a novel Discrete Element Method (DEM), which tracks the fluid content coating each grain as well as a variable fluid-bridge volume. We have devloped a DEM simulation method with a history-dependent potential based on the Hertz-Mindlin contact in compression and evolving capillary forces in tension. The capillary bridge in the simulations forms based on the volume of the fluid on each particle. First, we determine the cohesive force between grains, which is a function of grain separation, bridge volume, grain geometry, and fluid properties. The volume of the bridges also evolves in time, which affects the cut-off distance in bridges and the force-separation function. The other important factor which has been considered in the model is the particle roughness, which has a significant effect on the capillary force function. The effect of fluid viscosity is also considered. The second step in this work is to utilize the DEM results to identify a constitutive model that can explain the plastic behavior (flow rule) of a dense granular assembly under varying degrees of wetness.

  3. Arrest stress of uniformly sheared wet granular matter

    NASA Astrophysics Data System (ADS)

    Ebrahimnazhad Rahbari, S. H.; Brinkmann, M.; Vollmer, J.

    2015-06-01

    We conduct extensive independent numerical experiments considering frictionless disks without internal degrees of freedom (rotation, etc.) in two dimensions. We report here that for a large range of the packing fractions below random-close packing, all components of the stress tensor of wet granular materials remain finite in the limit of zero shear rate. This is direct evidence for a fluid-to-solid arrest transition. The offset value of the shear stress characterizes plastic deformation of the arrested state which corresponds to dynamic yield stress of the system. Based on an analytical line of argument, we propose that the mean number of capillary bridges per particle, ν , follows a nontrivial dependence on the packing fraction, ϕ , and the capillary energy, ɛ . Most noticeably, we show that ν is a generic and universal quantity which does not depend on the driving protocol. Using this universal quantity, we calculate the arrest stress, σa, analytically based on a balance of the energy injection rate due to the external force driving the flow and the dissipation rate accounting for the rupture of capillary bridges. The resulting prediction of σa is a nonlinear function of the packing fraction, ϕ , and the capillary energy, ɛ . This formula provides an excellent, parameter-free prediction of the numerical data. Corrections to the theory for small and large packing fractions are connected to the emergence of shear bands and of contributions to the stress from repulsive particle interactions, respectively.

  4. Foam-film-stabilized liquid bridge networks in evaporative lithography and wet granular matter.

    PubMed

    Vakarelski, Ivan U; Marston, Jeremy O; Thoroddsen, Sigurdur T

    2013-04-23

    Evaporative lithography using latex particle templates is a novel approach for the self-assembly of suspension-dispersed nanoparticles into ordered microwire networks. The phenomenon that drives the self-assembly process is the propagation of a network of interconnected liquid bridges between the template particles and the underlying substrate. With the aid of video microscopy, we demonstrate that these liquid bridges are in fact the border zone between the underlying substrate and foam films vertical to the substrate, which are formed during the evaporation of the liquid from the suspension. The stability of the foam films and thus the liquid bridge network stability are due to the presence of a small amount of surfactant in the evaporating solution. We show that the same type of foam-film-stabilized liquid bridge network can also propagate in 3D clusters of spherical particles, which has important implications for the understanding of wet granular matter.

  5. Dynamics of wet granular hexagons

    NASA Astrophysics Data System (ADS)

    Baur, Manuel; Huang, Kai

    2017-03-01

    The collective behavior of vibrated hexagonal disks confined in a monolayer is investigated experimentally. Due to the broken circular symmetry, hexagons prefer to rotate upon sufficiently strong driving. Due to the formation of liquid bridges, short-ranged cohesive interactions are introduced upon wetting. Consequently, a nonequilibrium stationary state with the rotating disks self-organized in a hexagonal structure arises. The bond length of the hexagonal structure is slightly smaller than the circumdiameter of a hexagon, indicating geometric frustration. This investigation provides an example where the collective behavior of granular matter is tuned by the shape of individual particles.

  6. Role of contact-angle hysteresis for fluid transport in wet granular matter.

    PubMed

    Mani, Roman; Semprebon, Ciro; Kadau, Dirk; Herrmann, Hans J; Brinkmann, Martin; Herminghaus, Stephan

    2015-04-01

    The stability of sand castles is determined by the structure of wet granulates. Experimental data on the size distribution of fluid pockets are ambiguous with regard to their origin. We discovered that contact-angle hysteresis plays a fundamental role in the equilibrium distribution of bridge volumes, and not geometrical disorder as commonly conjectured. This has substantial consequences on the mechanical properties of wet granular beds, including a history-dependent rheology and lowered strength. Our findings are obtained using a model in which the Laplace pressures, bridge volumes, and contact angles are dynamical variables associated with the contact points. While accounting for contact line pinning, we track the temporal evolution of each bridge. We observe a crossover to a power-law decay of the variance of capillary pressures at late times and a saturation of the variance of bridge volumes to a finite value connected to contact line pinning. Large-scale simulations of liquid transport in the bridge network reveal that the equilibration dynamics at early times is well described by a mean-field model. The spread of final bridge volumes can be directly related to the magnitude of contact-angle hysteresis.

  7. Erosion dynamics of a wet granular medium.

    PubMed

    Lefebvre, Gautier; Jop, Pierre

    2013-09-01

    Liquid may give strong cohesion properties to a granular medium, and confer a solidlike behavior. We study the erosion of a fixed circular aggregate of wet granular matter subjected to a flow of dry grains inside a half-filled rotating drum. During the rotation, the dry grains flow around the fixed obstacle. We show that its diameter decreases linearly with time for low liquid content, as wet grains are pulled out of the aggregate. This erosion phenomenon is governed by the properties of the liquids. The erosion rate decreases exponentially with the surface tension while it depends on the viscosity to the power -1. We propose a model based on the force fluctuations arising inside the flow, explaining both dependencies: The capillary force acts as a threshold and the viscosity controls the erosion time scale. We also provide experiments using different flowing grains, confirming our model.

  8. Granular flow: Dry and wet

    NASA Astrophysics Data System (ADS)

    Mitarai, N.; Nakanishi, H.

    2012-04-01

    Granular material is a collection of macroscopic particles that are visible with naked eyes. The non-equilibrium nature of the granular materials makes their rheology quite different from that of molecular systems. In this minireview, we present the unique features of granular materials focusing on the shear flow of dry granular materials and granule-liquid mixture.

  9. Compaction dynamics of wet granular packings

    NASA Astrophysics Data System (ADS)

    Vandewalle, Nicolas; Ludewig, Francois; Fiscina, Jorge E.; Lumay, Geoffroy

    2013-03-01

    The extremely slow compaction dynamics of wet granular assemblies has been studied experimentally. The cohesion, due to capillary bridges between neighboring grains, has been tuned using different liquids having specific surface tension values. The characteristic relaxation time for compaction τ grows strongly with cohesion. A kinetic model, based on a free volume kinetic equations and the presence of a capillary energy barrier (due to liquid bridges), is able to reproduce quantitatively the experimental curves. This model allows one to describe the cohesion in wet granular packing. The influence of relative humidity (RH) on the extremely slow compaction dynamics of a granular assembly has also been investigated in the range 20 % - 80 % . Triboelectric and capillary condensation effects have been introduced in the kinetic model. Results confirm the existence of an optimal condition at RH ~ 45 % for minimizing cohesive interactions between glass beads.

  10. Free cooling of the one-dimensional wet granular gas.

    PubMed

    Zaburdaev, V Yu; Brinkmann, M; Herminghaus, S

    2006-07-07

    The free cooling behavior of a wet granular gas is studied in one dimension. We employ a particularly simple model system in which the interaction of wet grains is characterized by a fixed energy loss assigned to each collision. Macroscopic laws of energy dissipation and cluster formation are studied on the basis of numerical simulations and mean-field analytical calculations. We find a number of remarkable scaling properties which may shed light on earlier unexplained results for related systems.

  11. Avalanche Dynamics and Stability in Wet Granular Media

    NASA Astrophysics Data System (ADS)

    Schiffer, Peter; Tegzes, Pal; Vicsek, Tamas

    2002-11-01

    In our previous work, we identified three fundamental regimes for the repose angle of wet granular materials as a function of the liquid content. The granular regime at very low liquid contents is dominated by the motion of individual grains; in the correlated regime corresponding to intermediate liquid contents, a rough surface is formed by the flow of separated clumps; and the repose angle of very wet samples results from cohesive flow with viscoplastic properties. Here we report investigations of the avalanche dynamics and flow properties of wet granular materials, employing a rotating drum apparatus (a cylindrical chamber partly filled with a granular medium and rotated around a horizontal axis). At low rotation rates, the medium remains at rest relative to the drum while its surface angle is slowly increased by rotation, up to a critical angle thetamax where an avalanche occurs, thus decreasing the surface angle to the repose angle thetar The flow becomes continuous at high rotation rates, but the transition between avalanching and continuous flow is hysteretic in rotation rate in dry media. Previous studies of cohesive granular media in a rotating drum have focused on the surface angles of the medium before and after avalanches. In our measurements, we focus instead on characterizing the dynamics of cohesive flow. We quantitatively investigate the flow dynamics during avalanches at different liquid contents by analyzing the time evolution of the averaged surface profile obtained from hundreds of avalanche events, and we also measure surface velocities during continuous flow. In particular, we explore the nature of the viscoplastic flow, (observed at the highest liquid contents) in which there are lasting contacts during flow, leading to coherence across the entire sample. This coherence leads to a velocity independent flow depth at high rotation rates and novel robust pattern formation in the granular surface. Additional information is included in the

  12. Smarticles: smart, active granular matter

    NASA Astrophysics Data System (ADS)

    Savoie, Will; Pazouki, Arman; Negrut, Dan; Goldman, Daniel

    We investigate a granular medium composed of smart, active particles, or ``smarticles''. Previously, we discovered that ensembles of ``u''-shaped particles exhibited geometrically-induced cohesion by mechanically entangling via particle interpenetration [Gravish et al., PRL, 2012]; the strength and/or extent of entanglement could be varied by changing particle level entanglement by changes in arm-to-base length of the u-particle. Since changing this parameter on demand is inconvenient, we develop a power-autonomous programmable robot composed of two motors and three links with an on-board microcontroller. This smarticle can be activated to change its configuration (specified by its two joint angles) through audio communication. To complement these experiments, since study large ensembles of smarticles is cost and labor prohibitive, we also develop a simulated smarticle in the Chrono multibody simulation environment. We systematically study ensemble cohesiveness and compaction as a function of shape changes of the smarticles. We find that suitable activation of smarticles allows ensembles to become cohesive to ``grip'' rigid objects and lose cohesion to release on command. Work supported by ARO.

  13. Fracture reveals clustering in cohesive granular matter

    NASA Astrophysics Data System (ADS)

    Tapia, Franco; Santucci, Stéphane; Géminard, Jean-Christophe

    2016-09-01

    We report an experimental study of the morphology of fractures in cohesive granular materials. Cohesion is introduced by equilibrating the grains with a humid atmosphere. The setup allows to produce a controlled crack in a thin layer of a glass beads assembly, and observe with an extremely high resolution the edge of the fracture at the free surface of the layer. The detailed multi-scale analysis of the fracture profile reveals the presence, in the bulk of the material, of clusters of grains whose size increases monotonically with the relative humidity. These results are important because the formation of clusters, resulting in a heterogeneity of the cohesion force, governs the mechanical properties of cohesive granular matter in contact with a humid atmosphere.

  14. Locomotion and drag in wet and dry granular media

    NASA Astrophysics Data System (ADS)

    Goldman, Daniel; Kuckuk, Robyn; Sharpe, Sarah

    2015-03-01

    Many animals move within substrates such as soil and dry sand; the resistive properties of such granular materials (GM) can depend on water content and compaction, but little is known about how such parameters affect locomotion or the relevant physics of drag and penetration. We developed a system to create homogeneous wet GM of varying moisture content and compaction in quantities sufficient to study the burial and subsurface locomotion of the Ocellated skink (C. ocellatus) a desert-generalist lizard. X-ray imaging revealed that in wet and dry GM the lizard slowly buried (~ 30 seconds) propagating a wave from head to tail, while moving in a start-stop motion. During forward movement, the head oscillated, and the forelimb on the convex side of the body propelled the animal. Although body kinematics (and ``slip'') were similar in both substrates, the burial depth was smaller in wet GM. Penetration and drag force experiments on smooth cylinders revealed that wet GM was ~ 3 × more resistive than dry GM, suggesting that during burial the lizard operated near its maximum force producing capability and was thus constrained by environmental properties. work supported by NSF PoLS.

  15. Bottom pressure scaling of vibro-fluidized granular matter

    PubMed Central

    Katsuragi, Hiroaki

    2015-01-01

    Vibrated granular beds show various interesting phenomena such as convection, segregation, and so on. However, its fundamental physical properties (e.g., internal pressure structure) have not yet been understood well. Thus, in this study, the bottom wall pressure in a vertically vibrated granular column is experimentally measured and used to reveal the nature of granular fluidization. The scaling method allows us to elucidate the fluidization (softening) degree of a vibrated granular column. The peak value of the bottom pressure pm is scaled as Γ, where pJ, d, g, ω, H, and Γ are the Janssen pressure, grain diameter, gravitational acceleration, angular frequency, height of the column, and dimensionless vibrational acceleration, respectively. This scaling implies that the pressure of vibrated granular matter is quite different from the classical pressure forms: static and dynamic pressures. This scaling represents the importance of geometric factors for discussing the behavior of vibro-fluidized granular matter. The scaling is also useful to evaluate the dissipation degree in vibro-fluidized granular matter. PMID:26602973

  16. Quantitatively mimicking wet colloidal suspensions with dry granular media.

    PubMed

    Messina, René; Aljawhari, Sarah; Bécu, Lydiane; Schockmel, Julien; Lumay, Geoffroy; Vandewalle, Nicolas

    2015-06-01

    Athermal two-dimensional granular systems are exposed to external mechanical noise leading to Brownian-like motion. Using tunable repulsive interparticle interaction, it is shown that the same microstructure as that observed in colloidal suspensions can be quantitatively recovered at a macroscopic scale. To that end, experiments on granular and colloidal systems made up of magnetized particles as well as computer simulations are performed and compared. Excellent agreement throughout the range of the magnetic coupling parameter is found for the pair distribution as well as the bond-orientational correlation functions. This finding opens new ways to efficiently and very conveniently explore phase transitions, crystallization, nucleation, etc in confined geometries.

  17. Quantitatively mimicking wet colloidal suspensions with dry granular media

    PubMed Central

    Messina, René; Aljawhari, Sarah; Bécu, Lydiane; Schockmel, Julien; Lumay, Geoffroy; Vandewalle, Nicolas

    2015-01-01

    Athermal two-dimensional granular systems are exposed to external mechanical noise leading to Brownian-like motion. Using tunable repulsive interparticle interaction, it is shown that the same microstructure as that observed in colloidal suspensions can be quantitatively recovered at a macroscopic scale. To that end, experiments on granular and colloidal systems made up of magnetized particles as well as computer simulations are performed and compared. Excellent agreement throughout the range of the magnetic coupling parameter is found for the pair distribution as well as the bond-orientational correlation functions. This finding opens new ways to efficiently and very conveniently explore phase transitions, crystallization, nucleation, etc in confined geometries. PMID:26030718

  18. Fluidization of granular media wetted by liquid 4He.

    PubMed

    Huang, K; Sohaili, M; Schröter, M; Herminghaus, S

    2009-01-01

    We explore experimentally the fluidization of vertically agitated polymethylmethacrylate spheres wetted by liquid 4He . By controlling the temperature around the lambda point, we change the properties of the wetting liquid from a normal fluid (helium I) to a superfluid (helium II). For wetting by helium I, the critical acceleration for fluidization (Gamma_{c}) shows a steep increase close to the saturation of the vapor pressure in the sample cell. For helium II wetting, Gamma_{c} starts to increase at about 75% saturation, indicating that capillary bridges are enhanced by the superflow of the unsaturated helium film. Above saturation, Gamma_{c} enters a plateau regime where the capillary force between particles is independent of the bridge volume. The plateau value is found to vary with temperature and shows a peak at 2.1K , which we attribute to the influence of the specific heat of liquid helium.

  19. Size separation in vibrated granular matter

    NASA Astrophysics Data System (ADS)

    Kudrolli, Arshad

    2004-03-01

    We review recent developments in size separation in vibrated granular materials. Motivated by a need in industry to handle granular materials efficiently and a desire to make fundamental advances in non-equilibrium physics, experimental and theoretical investigations have shown size separation to be a complex phenomenon. Large particles in a vibrated granular system normally rise to the top. However, they may also sink to the bottom or show other patterns, depending on subtle variations in physical conditions. While size ratio is a dominant factor, particle-specific properties such as density, inelasticity and friction can play an important role. The nature of the energy input, boundary conditions and interstitial air have also been shown to be significant factors in determining spatial distributions. The presence of convection can enhance mixing or lead to size separation. Experimental techniques including direct visualization and magnetic resonance imaging are being used to investigate these properties. Molecular dynamics and Monte Carlo simulation techniques have been developed to probe size separation. Analytical methods such as kinetic theory are being used to study the interplay between particle size and density in the vibro-fluidized regime, and geometric models have been proposed to describe size separation for deep beds. Besides discussing these studies, we will also review the impact of inelastic collisions and friction on the density and velocity distributions to gain a deeper appreciation of the non-equilibrium nature of the system. While a substantial number of studies have been performed, considerable work is still required to achieve a firm description of the phenomena.

  20. Universal features of the jamming phase diagram of wet granular materials.

    PubMed

    Ebrahimnazhad Rahbari, S H; Khadem-Maaref, M; Seyed Yaghoubi, S K A

    2013-10-01

    We investigate the influence of the shape of a particle on the structure of the jamming phase diagram of wet granular materials. We compute the jamming phase diagram of wet dimers (two fused disks) and compare it with that of the wet disks. Amplitude of the external force at solidification, i.e., the jamming force F(s), is computed as a function of the packing fraction ϕ, the capillary bridge energy ɛ, and the aspect ratio of dimers α. Based on data collapse, an equation for amplitude of the external force at solidification F(s)(ϕ,ɛ,α) is derived. F(s) has scaling and logarithmic relations with ϕ and ɛ, respectively, exactly the same type reported for wet disks earlier. Interestingly, F(s) does not depend on the aspect ratio of dimers α. The only difference is that wet dimers are found to be more stiffer than wet disks. However, the similarities of the equations describing F(s)(ϕ,ɛ,α) of wet dimers and disks imply that there exists, yet unknown, universal aspects of mechanical response of wet granular materials to the external forces, independent from the particle shape. In addition, we study local orientation of particles and its statistical properties.

  1. Runaway Electrification of Friable Self-Replicating Granular Matter

    PubMed Central

    2013-01-01

    We establish that the nonlinear dynamics of collisions between particles favors the charging of an insulating, friable, self-replicating granular material that undergoes nucleation, growth, and fission processes; we demonstrate with a minimal dynamical model that secondary nucleation produces a positive feedback in an electrification mechanism that leads to runaway charging. We discuss ice as an example of such a self-replicating granular material: We confirm with laboratory experiments in which we grow ice from the vapor phase in situ within an environmental scanning electron microscope that charging causes fast-growing and easily breakable palmlike structures to form, which when broken off may form secondary nuclei. We propose that thunderstorms, both terrestrial and on other planets, and lightning in the solar nebula are instances of such runaway charging arising from this nonlinear dynamics in self-replicating granular matter. PMID:24041221

  2. Segregation simulation of binary granular matter under horizontal pendulum vibrations

    NASA Astrophysics Data System (ADS)

    Ma, Xuedong; Zhang, Yanbing; Ran, Heli; Zhang, Qingying

    2016-08-01

    Segregation of binary granular matter with different densities under horizontal pendulum vibrations was investigated through numerical simulation using a 3D discrete element method (DEM). The particle segregation mechanism was theoretically analyzed using gap filling, momentum and kinetic energy. The effect of vibrator geometry on granular segregation was determined using the Lacey mixing index. This study shows that dynamic changes in particle gaps under periodic horizontal pendulum vibrations create a premise for particle segregation. The momentum of heavy particles is higher than that of light particles, which causes heavy particles to sink and light particles to float. With the same horizontal vibration parameters, segregation efficiency and stability, which are affected by the vibrator with a cylindrical convex geometry, are superior to that of the original vibrator and the vibrator with a cross-bar structure. Moreover, vibrator geometry influences the segregation speed of granular matter. Simulation results of granular segregation by using the DEM are consistent with the final experimental results, thereby confirming the accuracy of the simulation results and the reliability of the analysis.

  3. Monitoring by Control Technique - Wet Scrubber For Particulate Matter

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about Wet Scrubber For Particulate Matter controls used to reduce pollutant emissions.

  4. Universality of slip avalanches in flowing granular matter.

    PubMed

    Denisov, D V; Lörincz, K A; Uhl, J T; Dahmen, K A; Schall, P

    2016-02-17

    The search for scale-bridging relations in the deformation of amorphous materials presents a current challenge with tremendous applications in material science, engineering and geology. While generic features in the flow and microscopic dynamics support the idea of a universal scaling theory of deformation, direct microscopic evidence remains poor. Here, we provide the first measurement of internal scaling relations in the deformation of granular matter. By combining macroscopic force fluctuation measurements with internal strain imaging, we demonstrate the existence of robust scaling relations from particle-scale to macroscopic flow. We identify consistent power-law relations truncated by systematic pressure-dependent cutoff, in agreement with recent mean-field theory of slip avalanches in elasto-plastic materials, revealing the existence of a mechanical critical point. These results experimentally establish scale-bridging relations in the flow of matter, paving the way to a new universal theory of deformation.

  5. Universality of slip avalanches in flowing granular matter

    NASA Astrophysics Data System (ADS)

    Denisov, D. V.; Lörincz, K. A.; Uhl, J. T.; Dahmen, K. A.; Schall, P.

    2016-02-01

    The search for scale-bridging relations in the deformation of amorphous materials presents a current challenge with tremendous applications in material science, engineering and geology. While generic features in the flow and microscopic dynamics support the idea of a universal scaling theory of deformation, direct microscopic evidence remains poor. Here, we provide the first measurement of internal scaling relations in the deformation of granular matter. By combining macroscopic force fluctuation measurements with internal strain imaging, we demonstrate the existence of robust scaling relations from particle-scale to macroscopic flow. We identify consistent power-law relations truncated by systematic pressure-dependent cutoff, in agreement with recent mean-field theory of slip avalanches in elasto-plastic materials, revealing the existence of a mechanical critical point. These results experimentally establish scale-bridging relations in the flow of matter, paving the way to a new universal theory of deformation.

  6. Universality of slip avalanches in flowing granular matter

    PubMed Central

    Denisov, D. V.; Lörincz, K. A.; Uhl, J. T.; Dahmen, K. A.; Schall, P.

    2016-01-01

    The search for scale-bridging relations in the deformation of amorphous materials presents a current challenge with tremendous applications in material science, engineering and geology. While generic features in the flow and microscopic dynamics support the idea of a universal scaling theory of deformation, direct microscopic evidence remains poor. Here, we provide the first measurement of internal scaling relations in the deformation of granular matter. By combining macroscopic force fluctuation measurements with internal strain imaging, we demonstrate the existence of robust scaling relations from particle-scale to macroscopic flow. We identify consistent power-law relations truncated by systematic pressure-dependent cutoff, in agreement with recent mean-field theory of slip avalanches in elasto-plastic materials, revealing the existence of a mechanical critical point. These results experimentally establish scale-bridging relations in the flow of matter, paving the way to a new universal theory of deformation. PMID:26883071

  7. Controlled preparation of wet granular media reveals limits to lizard burial ability.

    PubMed

    Sharpe, Sarah S; Kuckuk, Robyn; Goldman, Daniel I

    2015-06-25

    Many animals move within ground composed of granular media (GM); the resistive properties of such substrates can depend on water content and compaction, but little is known about how such parameters affect locomotion or the physics of drag and penetration. Using apparatus to control compaction of GM, our recent studies of movement in dry GM have revealed locomotion strategies of specialized dry-sand-swimming reptiles. However, these animals represent a small fraction of the diversity and presumed burial strategies of fossorial reptilian fauna. Here we develop a system to create states of wet GM of varying moisture content and compaction in quantities sufficient to study the burial and subsurface locomotion of the Ocellated skink (C. ocellatus), a generalist lizard. X-ray imaging revealed that in wet and dry GM the lizard slowly buried (≈30 s) propagating a wave from head to tail, while moving in a start-stop motion. During forward movement, the head oscillated, and the forelimb on the convex side of the body propelled the animal. Although body kinematics and 'slip' were similar in both substrates, the burial depth was smaller in wet GM. Penetration and drag force experiments on smooth cylinders revealed that wet GM was ≈4× more resistive than dry GM. In total, our measurements indicate that while the rheology of the dry and wet GM differ substantially, the lizard's burial motor pattern is conserved across substrates, while its burial depth is largely constrained by environmental resistance.

  8. Controlled preparation of wet granular media reveals limits to lizard burial ability

    NASA Astrophysics Data System (ADS)

    Sharpe, Sarah S.; Kuckuk, Robyn; Goldman, Daniel I.

    2015-07-01

    Many animals move within ground composed of granular media (GM); the resistive properties of such substrates can depend on water content and compaction, but little is known about how such parameters affect locomotion or the physics of drag and penetration. Using apparatus to control compaction of GM, our recent studies of movement in dry GM have revealed locomotion strategies of specialized dry-sand-swimming reptiles. However, these animals represent a small fraction of the diversity and presumed burial strategies of fossorial reptilian fauna. Here we develop a system to create states of wet GM of varying moisture content and compaction in quantities sufficient to study the burial and subsurface locomotion of the Ocellated skink (C. ocellatus), a generalist lizard. X-ray imaging revealed that in wet and dry GM the lizard slowly buried (≈ 30 s) propagating a wave from head to tail, while moving in a start-stop motion. During forward movement, the head oscillated, and the forelimb on the convex side of the body propelled the animal. Although body kinematics and ‘slip’ were similar in both substrates, the burial depth was smaller in wet GM. Penetration and drag force experiments on smooth cylinders revealed that wet GM was ≈ 4× more resistive than dry GM. In total, our measurements indicate that while the rheology of the dry and wet GM differ substantially, the lizard's burial motor pattern is conserved across substrates, while its burial depth is largely constrained by environmental resistance.

  9. Can Wet Rocky Granular Flows Become Debris Flows Due to Fine Sediment Production by Abrasion?

    NASA Astrophysics Data System (ADS)

    Arabnia, O.; Sklar, L. S.; Bianchi, G.; Mclaughlin, M. K.

    2015-12-01

    Debris flows are rapid mass movements in which elevated pore pressures are sustained by a viscous fluid matrix with high concentrations of fine sediments. Debris flows may form from coarse-grained wet granular flows as fine sediments are entrained from hillslope and channel material. Here we investigate whether abrasion of the rocks within a granular flow can produce sufficient fine sediments to create debris flows. To test this hypothesis experimentally, we used a set of 4 rotating drums ranging from 0.2 to 4.0 m diameter. Each drum has vanes along the boundary ensure shearing within the flow. Shear rate was varied by changing drum rotational velocity to maintain a constant Froude Number across drums. Initial runs used angular clasts of granodiorite with a tensile strength of 7.6 MPa, with well-sorted coarse particle size distributions linearly scaled with drum radius. The fluid was initially clear water, which rapidly acquired fine-grained wear products. After each 250 m tangential distance, we measured the particle size distributions, and then returned all water and sediment to the drums for subsequent runs. We calculate particle wear rates using statistics of size and mass distributions, and by fitting the Sternberg equation to the rate of mass loss from the size fraction > 2mm. Abundant fine sediments were produced in the experiments, but very little change in the median grain size was detected. This appears to be due to clast rounding, as evidenced by a decrease in the number of stable equilibrium resting points. We find that the growth in the fine sediment concentration in the fluid scales with unit drum power. This relationship can be used to estimate fine sediment production rates in the field. We explore this approach at Inyo Creek, a steep catchment in the Sierra Nevada, California. There, a significant debris flow occurred in July 2013, which originated as a coarse-grained wet granular flow. We use surveys to estimate flow depth and velocity where super

  10. Time-resolved dynamics of granular matter by random laser emission

    NASA Astrophysics Data System (ADS)

    Folli, Viola; Ghofraniha, Neda; Puglisi, Andrea; Leuzzi, Luca; Conti, Claudio

    2013-07-01

    Because of the huge commercial importance of granular systems, the second-most used material in industry after water, intersecting the industry in multiple trades, like pharmacy and agriculture, fundamental research on grain-like materials has received an increasing amount of attention in the last decades. In photonics, the applications of granular materials have been only marginally investigated. We report the first phase-diagram of a granular as obtained by laser emission. The dynamics of vertically-oscillated granular in a liquid solution in a three-dimensional container is investigated by employing its random laser emission. The granular motion is function of the frequency and amplitude of the mechanical solicitation, we show how the laser emission allows to distinguish two phases in the granular and analyze its spectral distribution. This constitutes a fundamental step in the field of granulars and gives a clear evidence of the possible control on light-matter interaction achievable in grain-like system.

  11. Fracturing in granular media: the role of capillarity, wetting, and disorder

    NASA Astrophysics Data System (ADS)

    Juanes, R.; Trojer, M.; de Anna, P.; Szulczewski, M. L.

    2015-12-01

    The advent of shale oil and shale gas into the energy landscape has relied on achieving vigorous stimulation of the rock by means of horizontal drilling and hydraulic fracturing. Traditionally, hydraulic fracturing is understood as a single-fluid-phase, pressure-driven process, in which the fluid (typically water with additives) is injected at a high-enough rate that the pressure builds up faster than it can dissipate by permeating into the rock, thereby fracturing it. However, the prevalent conditions for shale (ultra fine pore size, moderate overburden stress, and poor cementation) suggest that capillary forces could play an important role in the fracturing process. Here, we show the results of our recent experimental and theoretical studies on fracturing of granular media by means of injection of an immiscible fluid. We conduct carefully controlled injection experiments in a quasi-2D granular medium (a circular Hele-Shaw cell filled with glass beads), in an experimental set-up that allows us to systematically study the impact of capillarity (by varying injection rate, bead size, and fluid-fluid surface tension), wetting properties (by treating the beads and the cell plates by chemical vapor deposition of silane-based substances) and confinement (by varying the load on the cell). Our choice of defending and invading liquids and granular medium allows us to investigate a wide range of contact angles, from drainage to imbibition. We demonstrate that wettability exerts a powerful influence on the invasion/fracturing morphology of unfavorable mobility displacements. High time resolution imaging techniques and particle image velocimetry (PIV) allow us to quantify matrix displacement and fracture opening dynamics. Our results provide insights on fracture propagation, fracture length distribution and the fracture drainage area, parameters which are critically important to better understand long-term hydrocarbon production from shale.

  12. Fracturing in granular media: the role of capillarity, wetting, and disorder

    NASA Astrophysics Data System (ADS)

    Juanes, Ruben

    2015-11-01

    The advent of shale oil and shale gas into the energy landscape has relied on achieving vigorous stimulation of the rock by means of horizontal drilling and hydraulic fracturing. Traditionally, hydraulic fracturing is understood as a single-fluid-phase, pressure-driven process, in which the fluid (typically water with additives) is injected at a high-enough rate that the pressure builds up faster than it can dissipate by permeating into the rock, thereby fracturing it. However, the prevalent conditions for shale (ultra fine pore size, moderate overburden stress, and poor cementation) suggest that capillary forces could play an important role in the fracturing process. Here, we show the results of our recent experimental and theoretical studies on fracturing of granular media by means of injection of an immiscible fluid. We conduct carefully controlled injection experiments in a quasi-2D granular medium (a circular Hele-Shaw cell filled with glass beads), in an experimental set-up that allows us to systematically study the impact of capillarity (by varying injection rate, bead size, and fluid-fluid surface tension), wetting properties (by treating the beads and the cell plates by chemical vapor deposition of silane-based substances) and confinement (by varying the load on the cell). Our choice of defending and invading liquids and granular medium allows us to investigate a wide range of contact angles, from drainage to imbibition. We demonstrate that wettability exerts a powerful influence on the invasion/fracturing morphology of unfavorable mobility displacements. High time resolution imaging techniques and particle image velocimetry (PIV) allow us to quantify matrix displacement and fracture opening dynamics. Our results provide insights on fracture propagation, fracture length distribution and the fracture drainage area, parameters which are critically important to better understand long-term hydrocarbon production from shale.

  13. Avalanche to Continuous flow transition in wet and cohesive granular media

    NASA Astrophysics Data System (ADS)

    Orpe, Ashish; Basu, Saprativ; Doshi, Pankaj

    2013-11-01

    We have studied the flow of wet and cohesive granular media in a partially filled, horizontally rotating cylinder. Very small, amount of viscous liquid is added to dry granular particles and the mixture is rotated in the cylinder at various rotational speeds to determine the angle of repose in the avalanching regime, the continuous regime and at the transition rotational speed separating the two regimes. Every experimental run is carried out afresh at a pre-defined rotational speed using liquids with different free surface tension and added in different amounts. Increasing the liquid surface tension increases the angle of repose as well as shifts the transition rotational speed to increasingly higher values. Similar qualitative behaviour is also observed on increasing the amount liquid added. A linear dependence is observed when the transition angle of repose for all cases is plotted against the corresponding transition rotational speed. The entire flow regime is modeled using momentum and mass balance equations for the flowing layer of particles. The total stress in the flowing mass of particles is assumed to be a linear combination of frictional, collisional and capillary force contributions. The model equations are able to reproduce most of the observed flow behavior. Department of Science and Technology, India, (Grant No. SR/S3/CE/037/2009).

  14. Confocal Microscopy of Jammed Matter: From Elasticity to Granular Thermodynamics

    NASA Astrophysics Data System (ADS)

    Jorjadze, Ivane

    Packings of particles are ubiquitous in nature and are of interest not only to the scientific community but also to the food, pharmaceutical, and oil industries. In this thesis we use confocal microscopy to investigate packing geometry and stress transmission in 3D jammed particulate systems. By introducing weak depletion attraction we probe the accessible phase-space and demonstrate that a microscopic approach to jammed matter gives validity to statistical mechanics framework, which is intriguing because our particles are not thermally activated. We show that the fluctuations of the local packing parameters can be successfully captured by the recently proposed 'granocentric' model, which generates packing statistics according to simple stochastic processes. This model enables us to calculate packing entropy and granular temperature, the so-called 'compactivity', therefore, providing a basis for a statistical mechanics of granular matter. At a jamming transition point at which there are formed just enough number of contacts to guarantee the mechanical stability, theoretical arguments suggest a singularity which gives rise to the surprising scaling behavior of the elastic moduli and the microstructure, as observed in numerical simulations. Since the contact network in 3D is typically hidden from view, experimental test of the scaling law between the coordination number and the applied pressure is lacking in the literature. Our data show corrections to the linear scaling of the pressure with density which takes into account the creation of contacts. Numerical studies of vibrational spectra, in turn, reveal sudden features such as excess of low frequency modes, dependence of mode localization and structure on the pressure. Chapter four describes the first calculation of vibrational density of states from the experimental 3D data and is in qualitative agreement with the analogous computer simulations. We study the configurational role of the pressure and demonstrate

  15. Warm starting the projected Gauss-Seidel algorithm for granular matter simulation

    NASA Astrophysics Data System (ADS)

    Wang, Da; Servin, Martin; Berglund, Tomas

    2016-03-01

    The effect on the convergence of warm starting the projected Gauss-Seidel solver for nonsmooth discrete element simulation of granular matter are investigated. It is found that the computational performance can be increased by a factor 2-5.

  16. Angle of repose and segregation in cohesive granular matter.

    PubMed

    Samadani, A; Kudrolli, A

    2001-11-01

    We study the effect of fluids on the angle of repose and the segregation of granular matter poured into a silo. The experiments are conducted in two regimes where: (i) the volume fraction of the fluid (liquid) is small and it forms liquid bridges between particles thus giving rise to cohesive forces, and (ii) the particles are completely immersed in the fluid. The data is obtained by imaging the pile formed inside a quasi-two-dimensional silo through the transparent glass side walls and using color-coded particles. In the first series of experiments, the angle of repose is observed to increase sharply with the volume fraction of the fluid and then saturates at a value that depends on the size of the particles. We systematically study the effect of viscosity by using water-glycerol mixtures to vary it over at least three orders of magnitude while keeping the surface tension almost constant. Besides surface tension, the viscosity of the fluid is observed to have an effect on the angle of repose and the extent of segregation. In case of bidisperse particles, segregation is observed to decrease and finally saturate depending on the size ratio of the particles and the viscosity of the fluid. The sharp initial change and the subsequent saturation in the extent of segregation and angle of repose occurs over similar volume fraction of the fluid. Preferential clumping of small particles causes layering to occur when the size of the clumps of small particles exceeds the size of large particles. We calculate the azimuthal correlation function of particle density inside the pile to characterize the extent of layering. In the second series of experiments, particles are poured into a container filled with a fluid. Although the angle of repose is observed to be unchanged, segregation is observed to decrease with an increase in the viscosity of the fluid. The viscosity at which segregation decreases to zero depends on the size ratio of the particles.

  17. Angle of repose and segregation in cohesive granular matter

    NASA Astrophysics Data System (ADS)

    Samadani, Azadeh; Kudrolli, A.

    2001-11-01

    We study the effect of fluids on the angle of repose and the segregation of granular matter poured into a silo. The experiments are conducted in two regimes where: (i) the volume fraction of the fluid (liquid) is small and it forms liquid bridges between particles thus giving rise to cohesive forces, and (ii) the particles are completely immersed in the fluid. The data is obtained by imaging the pile formed inside a quasi-two-dimensional silo through the transparent glass side walls and using color-coded particles. In the first series of experiments, the angle of repose is observed to increase sharply with the volume fraction of the fluid and then saturates at a value that depends on the size of the particles. We systematically study the effect of viscosity by using water-glycerol mixtures to vary it over at least three orders of magnitude while keeping the surface tension almost constant. Besides surface tension, the viscosity of the fluid is observed to have an effect on the angle of repose and the extent of segregation. In case of bidisperse particles, segregation is observed to decrease and finally saturate depending on the size ratio of the particles and the viscosity of the fluid. The sharp initial change and the subsequent saturation in the extent of segregation and angle of repose occurs over similar volume fraction of the fluid. Preferential clumping of small particles causes layering to occur when the size of the clumps of small particles exceeds the size of large particles. We calculate the azimuthal correlation function of particle density inside the pile to characterize the extent of layering. In the second series of experiments, particles are poured into a container filled with a fluid. Although the angle of repose is observed to be unchanged, segregation is observed to decrease with an increase in the viscosity of the fluid. The viscosity at which segregation decreases to zero depends on the size ratio of the particles.

  18. Micro-macro transition and simplified contact models for wet granular materials

    NASA Astrophysics Data System (ADS)

    Roy, Sudeshna; Singh, Abhinendra; Luding, Stefan; Weinhart, Thomas

    2016-11-01

    Wet granular materials in a quasistatic steady-state shear flow have been studied with discrete particle simulations. Macroscopic quantities, consistent with the conservation laws of continuum theory, are obtained by time averaging and spatial coarse graining. Initial studies involve understanding the effect of liquid content and liquid properties like the surface tension on the macroscopic quantities. Two parameters of the liquid bridge contact model have been identified as the constitutive parameters that influence the macroscopic rheology (i) the rupture distance of the liquid bridge model, which is proportional to the liquid content, and (ii) the maximum adhesive force, as controlled by the surface tension of the liquid. Subsequently, a correlation is developed between these microparameters and the steady-state cohesion in the limit of zero confining pressure. Furthermore, as second result, the macroscopic torque measured at the walls, which is an experimentally accessible parameter, is predicted from our simulation results with the same dependence on the microparameters. Finally, the steady- state cohesion of a realistic non-linear liquid bridge contact model scales well with the steady-state cohesion for a simpler linearized irreversible contact model with the same maximum adhesive force and equal energy dissipated per contact.

  19. Stress-dependent normal-mode frequencies from the effective mass of granular matter.

    PubMed

    Hu, Yanqing; Johnson, David L; Valenza, John J; Santibanez, Francisco; Makse, Hernán A

    2014-06-01

    A zero-temperature critical point has been invoked to control the anomalous behavior of granular matter as it approaches jamming or mechanical arrest. Criticality manifests itself in an anomalous spectrum of low-frequency normal modes and scaling behavior near the jamming transition. The critical point may explain the peculiar mechanical properties of dissimilar systems such as glasses and granular materials. Here we study the critical scenario via an experimental measurement of the normal modes frequencies of granular matter under stress from a pole decomposition analysis of the effective mass. We extract a complex-valued characteristic frequency which displays scaling |ω (σ)| ∼ σΩ' with vanishing stress σ for a variety of granular systems. The critical exponent is smaller than that predicted by mean-field theory opening new challenges to explain the exponent for frictional and dissipative granular matter. Our results shed light on the anomalous behavior of stress-dependent acoustics and attenuation in granular materials near the jamming transition.

  20. The minimization of mechanical work in vibrated granular matter

    PubMed Central

    Clewett, James P. D.; Wade, Jack; Bowley, R. M.; Herminghaus, Stephan; Swift, Michael R.; Mazza, Marco G.

    2016-01-01

    Experiments and computer simulations are carried out to investigate phase separation in a granular gas under vibration. The densities of the dilute and the dense phase are found to follow a lever rule and obey an equation of state. Here we show that the Maxwell equal-areas construction predicts the coexisting pressure and binodal densities remarkably well, even though the system is far from thermal equilibrium. This construction can be linked to the minimization of mechanical work associated with density fluctuations without invoking any concept related to equilibrium-like free energies. PMID:27373719

  1. Aging process of electrical contacts in granular matter

    NASA Astrophysics Data System (ADS)

    Dorbolo, S.; Ausloos, M.; Vandewalle, N.; Houssa, M.

    2003-12-01

    The electrical resistance decay of a metallic granular packing has been measured as a function of time. This measurement gives information about the size of the conducting cluster formed by the well connected grains. Several regimes have been encountered. Chronologically, the first one concerns the growth of the conducting cluster and is identified to belong to diffusion processes through a stretched exponential behavior. The relaxation time is found to be simply related to the initial injected power. This regime is followed by a reorganization process due to thermal dilatation. For the long-term behavior of the decay, an aging process occurs and enhances the electrical contacts between grains through microsoldering.

  2. The minimization of mechanical work in vibrated granular matter

    NASA Astrophysics Data System (ADS)

    Clewett, James P. D.; Wade, Jack; Bowley, R. M.; Herminghaus, Stephan; Swift, Michael R.; Mazza, Marco G.

    2016-07-01

    Experiments and computer simulations are carried out to investigate phase separation in a granular gas under vibration. The densities of the dilute and the dense phase are found to follow a lever rule and obey an equation of state. Here we show that the Maxwell equal-areas construction predicts the coexisting pressure and binodal densities remarkably well, even though the system is far from thermal equilibrium. This construction can be linked to the minimization of mechanical work associated with density fluctuations without invoking any concept related to equilibrium-like free energies.

  3. "Lock in accelerometry" to follow sink dynamics in shaken granular matter

    NASA Astrophysics Data System (ADS)

    Clement, Cecile; Sanchez-Colina, Gustavo; Alonso-Llanes, Laciel; Martinez-Roman, Etien; Batitsta-Leyva, Alfo-Jose; Toussaint, Renaud; Altshuler, Ernesto

    2015-04-01

    molecular dynamic algorithm to confirm or not this assumption. We modelized a granular bed with particles of the same size than the one used in the experiments. Because we have access to the velocity of every particles we can quantify the dynamic of each layers of the granular medium and find its "jammed" boundary. Reference [1] G Sánchez-Colina, L Alonso-Llanes, E Martínez, AJ Batista-Leyva, C Clement, C Fliedner, R Toussaint, and E Altshuler. Note :"lock-in accelerometry" to follow sink dynamics in shaken granular matter. Review of Scientific Instruments, 85(12) :126101, 2014.

  4. Intermittent Flow of Granular Matter in an Annular Geometry

    NASA Astrophysics Data System (ADS)

    Brzinski, Ted; Daniels, Karen E.

    Granular solids can be subjected to a finite stress below which the response is elastic. Above this yield stress, however, the material fails catastrophically, undergoing a rapid plastic deformation. In the case of a monotonically increasing stress the material exhibits a characteristic stick-slip response. We investigate the statistics of this intermittent failure in an annular shear geometry, driven with a linear-ramp torque in order to generate the stick-slip behavior. The apparatus is designed to allow visual access to particle trajectories and inter-particle forces (through the use of photoelastic materials). Additionally, twelve piezoelectric sensors at the outer wall measure acoustic emissions due to the plastic deformation of the material. We vary volume fraction, and use both fixed and deformable boundaries. We measure how the distribution of slip size and duration are related to the bulk properties of the packing, and compare to systems with similar governing statistics.

  5. Removal of ultrafine and fine particulate matter from air by a granular bed filter.

    PubMed

    Ozis, Fethiye; Singh, Manisha; Devinny, Joseph; Sioutas, Constantinos

    2004-08-01

    The removal efficiency of granular filters packed with lava rock and sand was studied for collection of airborne particles 0.05-2.5 microm in diameter. The effects of filter depth, packing wetness, grain size, and flow rate on collection efficiency were investigated. Two packing grain sizes (0.3 and 0.15 cm) were tested for flow rates of 1.2, 2.4, and 3.6 L/min, corresponding to empty bed residence times (equal to the bulk volume of the packing divided by the airflow rate) in the granular media of 60, 30, and 20 sec, respectively. The results showed that at 1.2 L/min, dry packing with grains 0.15 cm in diameter removed more than 80% (by number) of the particles. Particle collection efficiency decreased with increasing flow rate. Diffusion was identified as the predominant collection mechanism for ultrafine particles, while the larger particles in the accumulation mode of 0.7-2.5 microm were removed primarily by gravitational settling. For all packing depths and airflow rates, particle removal efficiency was generally higher on dry packing than on wet packing for particles smaller than 0.25 microm. The results suggest that development of biological filters for fine particles is possible.

  6. Surface roughness effects in granular matter: influence on angle of repose and the absence of segregation.

    PubMed

    Pohlman, Nicholas A; Severson, Benjamin L; Ottino, Julio M; Lueptow, Richard M

    2006-03-01

    We investigate the effect of nanoscale variations in the surface roughness of individual particles on macroscale granular flow characteristics. Experiments were conducted in circular rotating tumblers with smooth and rough 2 and 3 mm steel particles. The smooth beads had a rms surface roughness of approximately 30 to 60 nm; rough beads had a surface roughness of approximately 240 to 350 nm. The dynamic angle of repose for rough particles increased by 10 degrees to 25 degrees over that of smooth particles over a wide range of rotation speeds. Even though surface roughness affects the angle of repose, we were unable to detect any segregation of bidisperse mixtures of rough and smooth particles in the radial direction in two-dimensional (2D) tumblers. Furthermore, no axial banding segregation occurred in 3D tumblers, both cylindrical and spherical. For mixtures of smooth and rough particles, the angle of repose increased monotonically with increasing concentration of rough particles. Particle dynamics simulations verified that the dependence of the angle of repose on the concentration of rough particles can be directly related to the coefficient of friction of the particles. Simulations over a broad range of friction parameters failed to induce segregation solely from differences in the angle of repose. These results indicate that nanoscale surface roughness can affect the flowability and angle of repose of granular matter without driving demixing of the bulk granular material.

  7. Scale invariance and universality of force networks in static granular matter.

    PubMed

    Ostojic, Srdjan; Somfai, Ellák; Nienhuis, Bernard

    2006-02-16

    Force networks form the skeleton of static granular matter. They are the key factor that determines mechanical properties such as stability, elasticity and sound transmission, which are important for civil engineering and industrial processing. Previous studies have focused on investigations of the global structure of external forces (the boundary condition) and on the probability distribution of individual contact forces. So far, however, precise knowledge of the disordered spatial structure of the force network has remained elusive. Here we report that molecular dynamics simulations of realistic granular packings reveal scale invariance of clusters of particles interacting by means of relatively strong forces. Despite visual variation, force networks for various values of the confining pressure and other parameters have identical scaling exponents and scaling function, thereby determining a universality class. Unexpectedly, the flat ensemble of force configurations (a simple generalization of equilibrium statistical mechanics) belongs to this universality class, whereas some widely studied simplified models do not. This implies that the elasticity of the grains and their geometrical disorder do not affect the universal mechanical properties.

  8. Laboratory Evaluation of Electrostatic Spray Wet Scrubber to Control Particulate Matter Emissions from Poultry Facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Particulate matter (PM) is a major air pollutant emitted from animal production and has significant impacts on health and the environment. Abatement of PM emissions is imperative and effective PM control technologies are strongly needed. In this work, an electrostatic spray wet scrubber (ESWS) techn...

  9. A k-{\\varepsilon} turbulence closure model of an isothermal dry granular dense matter

    NASA Astrophysics Data System (ADS)

    Fang, Chung

    2016-07-01

    The turbulent flow characteristics of an isothermal dry granular dense matter with incompressible grains are investigated by the proposed first-order k-{\\varepsilon} turbulence closure model. Reynolds-filter process is applied to obtain the balance equations of the mean fields with two kinematic equations describing the time evolutions of the turbulent kinetic energy and dissipation. The first and second laws of thermodynamics are used to derive the equilibrium closure relations satisfying turbulence realizability conditions, with the dynamic responses postulated by a quasi-linear theory. The established closure model is applied to analyses of a gravity-driven stationary flow down an inclined moving plane. While the mean velocity decreases monotonically from its value on the moving plane toward the free surface, the mean porosity increases exponentially; the turbulent kinetic energy and dissipation evolve, respectively, from their minimum and maximum values on the plane toward their maximum and minimum values on the free surface. The evaluated mean velocity and porosity correspond to the experimental outcomes, while the turbulent dissipation distribution demonstrates a similarity to that of Newtonian fluids in turbulent shear flows. When compared to the zero-order model, the turbulent eddy evolution tends to enhance the transfer of the turbulent kinetic energy and plane shearing across the flow layer, resulting in more intensive turbulent fluctuation in the upper part of the flow. Solid boundary as energy source and sink of the turbulent kinetic energy becomes more apparent in the established first-order model.

  10. Note: "Lock-in accelerometry" to follow sink dynamics in shaken granular matter.

    PubMed

    Sánchez-Colina, G; Alonso-Llanes, L; Martínez, E; Batista-Leyva, A J; Clement, C; Fliedner, C; Toussaint, R; Altshuler, E

    2014-12-01

    Understanding the penetration dynamics of intruders in granular beds is relevant not only for fundamental physics, but also for geophysical processes and construction on sediments or granular soils in areas potentially affected by earthquakes. While the penetration of intruders in two dimensional (2D) laboratory granular beds can be followed using video recording, this is useless in three dimensional (3D) beds of non-transparent materials such as common sand. Here, we propose a method to quantify the sink dynamics of an intruder into laterally shaken granular beds based on the temporal correlations between the signals from a reference accelerometer fixed to the shaken granular bed, and a probe accelerometer deployed inside the intruder. Due to its analogy with the working principle of a lock-in amplifier, we call this technique lock-in accelerometry.

  11. Fiat or Bona Fide Boundary—A Matter of Granular Perspective

    PubMed Central

    Vogt, Lars; Grobe, Peter; Quast, Björn; Bartolomaeus, Thomas

    2012-01-01

    Background Distinguishing bona fide (i.e. natural) and fiat (i.e. artificial) physical boundaries plays a key role for distinguishing natural from artificial material entities and is thus relevant to any scientific formal foundational top-level ontology, as for instance the Basic Formal Ontology (BFO). In BFO, the distinction is essential for demarcating two foundational categories of material entity: object and fiat object part. The commonly used basis for demarcating bona fide from fiat boundary refers to two criteria: (i) intrinsic qualities of the boundary bearers (i.e. spatial/physical discontinuity, qualitative heterogeneity) and (ii) mind-independent existence of the boundary. The resulting distinction of bona fide and fiat boundaries is considered to be categorial and exhaustive. Methodology/Principal Findings By referring to various examples from biology, we demonstrate that the hitherto used distinction of boundaries is not categorial: (i) spatial/physical discontinuity is a matter of scale and the differentiation of bona fide and fiat boundaries is thus granularity-dependent, and (ii) this differentiation is not absolute, but comes in degrees. By reducing the demarcation criteria to mind-independence and by also considering dispositions and historical relations of the bearers of boundaries, instead of only considering their spatio-structural properties, we demonstrate with various examples that spatio-structurally fiat boundaries can nevertheless be mind-independent and in this sense bona fide. Conclusions/Significance We argue that the ontological status of a given boundary is perspective-dependent and that the strictly spatio-structural demarcation criteria follow a static perspective that is ignorant of causality and the dynamics of reality. Based on a distinction of several ontologically independent perspectives, we suggest different types of boundaries and corresponding material entities, including boundaries based on function (locomotion

  12. A novel strategy for simultaneous removal of nitrogen and organic matter using anaerobic granular sludge in anammox hybrid reactor.

    PubMed

    Tomar, Swati; Gupta, Sunil Kumar; Mishra, Brijesh Kumar

    2015-12-01

    The coexistence of organic matter (OM) and nitrogen in industrial effluent is the major bottleneck in field-scale application of anammox process. The present study emphasized on investigating the role of seeding anaerobic granular sludge towards simultaneous removal of ammonium and OM in anammox hybrid reactor (AHR). The study delineated simultaneous reduction of both OM (94.8%) and nitrogen (96.8%) at optimal COD/N ratio (0.54). Pearson correlation matrix showed positive and strong correlation of ARE (ammonium removal efficiency) and CRE (COD removal efficiency) with NRE (nitrogen removal efficiency). The negative correlation of OLR and COD/TN ratio with NRE indicated that increase in organic loadings may suppress anammox activity. The process inhibition was evaluated using Haldane model considering free ammonia, OM and nitrite as inhibitors. The strategy of using anaerobic granular sludge not only augmented endurance of bacterial communities against OM inhibition but also facilitated simultaneous removal of OM and nitrogen.

  13. Critical Phenomena in Driven Granular Matter: Jamming and Glassy Behavior - Final Report

    SciTech Connect

    Teitel, Stephen

    2013-02-20

    Granular materials, such as powders, seeds, grains, sand, rocks, etc., are ubiquitous both in nature and in industrial processes. At the scale of individual grains, granular systems are particularly simple: particles interact only when they touch. But when viewed in the aggregate, granular systems can display complex behavior. In particular, as the volume packing fraction of the grains increases, the system undergoes a jamming transition from a flowing liquid to a disordered but rigid solid. We study the critical behavior of such systems near the jamming transition using numerical simulations of a simple model of soft-core, bidisperse, frictionless disks in two dimensions. We seek to understand the structural and transport properties of such systems under a variety of physical perturbations such as steady state shear driven flow, and finite thermal fluctuations.

  14. Granular Physics

    NASA Astrophysics Data System (ADS)

    Mehta, Anita

    2011-03-01

    1. Introduction; 2. Computer simulation approaches - an overview; 3. Structure of vibrated powders - numerical results; 4. Collective structures in sand - the phenomenon of bridging; 5. On angles of repose: bistability and collapse; 6. Compaction of disordered grains in the jamming limit: sand on random graphs; 7. Shaking a box of sand I - a simple lattice model; 8. Shaking a box of sand II - at the jamming limit, when shape matters!; 9. Avalanches with reorganising grains; 10. From earthquakes to sandpiles - stick-slip motion; 11. Coupled continuum equations: the dynamics of sand-pile surfaces; 12. Theory of rapid granular flows; 13. The thermodynamics of granular materials; 14. Static properties of granular materials; Author index; Subject index; Bibliography.

  15. Granular Physics

    NASA Astrophysics Data System (ADS)

    Mehta, Anita

    2007-06-01

    1. Introduction; 2. Computer simulation approaches - an overview; 3. Structure of vibrated powders - numerical results; 4. Collective structures in sand - the phenomenon of bridging; 5. On angles of repose: bistability and collapse; 6. Compaction of disordered grains in the jamming limit: sand on random graphs; 7. Shaking a box of sand I - a simple lattice model; 8. Shaking a box of sand II - at the jamming limit, when shape matters!; 9. Avalanches with reorganising grains; 10. From earthquakes to sandpiles - stick-slip motion; 11. Coupled continuum equations: the dynamics of sand-pile surfaces; 12. Theory of rapid granular flows; 13. The thermodynamics of granular materials; 14. Static properties of granular materials; Author index; Subject index; Bibliography.

  16. Universal slip dynamics in metallic glasses and granular matter - linking frictional weakening with inertial effects.

    PubMed

    Denisov, Dmitry V; Lőrincz, Kinga A; Wright, Wendelin J; Hufnagel, Todd C; Nawano, Aya; Gu, Xiaojun; Uhl, Jonathan T; Dahmen, Karin A; Schall, Peter

    2017-03-06

    Slowly strained solids deform via intermittent slips that exhibit a material-independent critical size distribution. Here, by comparing two disparate systems - granular materials and bulk metallic glasses - we show evidence that not only the statistics of slips but also their dynamics are remarkably similar, i.e. independent of the microscopic details of the material. By resolving and comparing the full time evolution of avalanches in bulk metallic glasses and granular materials, we uncover a regime of universal deformation dynamics. We experimentally verify the predicted universal scaling functions for the dynamics of individual avalanches in both systems, and show that both the slip statistics and dynamics are independent of the scale and details of the material structure and interactions, thus settling a long-standing debate as to whether or not the claim of universality includes only the slip statistics or also the slip dynamics. The results imply that the frictional weakening in granular materials and the interplay of damping, weakening and inertial effects in bulk metallic glasses have strikingly similar effects on the slip dynamics. These results are important for transferring experimental results across scales and material structures in a single theory of deformation dynamics.

  17. Universal slip dynamics in metallic glasses and granular matter – linking frictional weakening with inertial effects

    PubMed Central

    Denisov, Dmitry V.; Lőrincz, Kinga A.; Wright, Wendelin J.; Hufnagel, Todd C.; Nawano, Aya; Gu, Xiaojun; Uhl, Jonathan T.; Dahmen, Karin A.; Schall, Peter

    2017-01-01

    Slowly strained solids deform via intermittent slips that exhibit a material-independent critical size distribution. Here, by comparing two disparate systems - granular materials and bulk metallic glasses - we show evidence that not only the statistics of slips but also their dynamics are remarkably similar, i.e. independent of the microscopic details of the material. By resolving and comparing the full time evolution of avalanches in bulk metallic glasses and granular materials, we uncover a regime of universal deformation dynamics. We experimentally verify the predicted universal scaling functions for the dynamics of individual avalanches in both systems, and show that both the slip statistics and dynamics are independent of the scale and details of the material structure and interactions, thus settling a long-standing debate as to whether or not the claim of universality includes only the slip statistics or also the slip dynamics. The results imply that the frictional weakening in granular materials and the interplay of damping, weakening and inertial effects in bulk metallic glasses have strikingly similar effects on the slip dynamics. These results are important for transferring experimental results across scales and material structures in a single theory of deformation dynamics. PMID:28262791

  18. Universal slip dynamics in metallic glasses and granular matter – linking frictional weakening with inertial effects

    NASA Astrophysics Data System (ADS)

    Denisov, Dmitry V.; Lőrincz, Kinga A.; Wright, Wendelin J.; Hufnagel, Todd C.; Nawano, Aya; Gu, Xiaojun; Uhl, Jonathan T.; Dahmen, Karin A.; Schall, Peter

    2017-03-01

    Slowly strained solids deform via intermittent slips that exhibit a material-independent critical size distribution. Here, by comparing two disparate systems - granular materials and bulk metallic glasses - we show evidence that not only the statistics of slips but also their dynamics are remarkably similar, i.e. independent of the microscopic details of the material. By resolving and comparing the full time evolution of avalanches in bulk metallic glasses and granular materials, we uncover a regime of universal deformation dynamics. We experimentally verify the predicted universal scaling functions for the dynamics of individual avalanches in both systems, and show that both the slip statistics and dynamics are independent of the scale and details of the material structure and interactions, thus settling a long-standing debate as to whether or not the claim of universality includes only the slip statistics or also the slip dynamics. The results imply that the frictional weakening in granular materials and the interplay of damping, weakening and inertial effects in bulk metallic glasses have strikingly similar effects on the slip dynamics. These results are important for transferring experimental results across scales and material structures in a single theory of deformation dynamics.

  19. Large nerve cells with long axons in the granular layer and white matter of the murine cerebellum.

    PubMed Central

    Müller, T

    1994-01-01

    The murine cerebellum was investigated by light microscopy using an improved modification of Ehrlich's methylene blue supravital staining technique. The dye exhibited a special affinity for the perikarya as well as the axons of Purkinje cells. In addition, large fusiform or stellate nerve cells which were characterised by long descending axons were seen to be distributed diffusely within the granular layer and the subcortical white matter. These findings indicate the existence of a 2nd type of projection neuron besides the Purkinje cells and are therefore in full accordance with older neuroanatomical observations based on silver impregnation. When correlated with recent studies on the occurrence of different calcium-binding proteins, the results show that the large perikarya demonstrated immunohistochemically within the granular layer seem to belong to the group of methylene blue positive neurons. Nevertheless, the definitive association of a single neuron with a nerve cell class is only possible if the axon is stained and clearly identifiable. Because of its selectivity for a special type of nerve cell, including its axon, the histological method used in this study may therefore also be suitable for investigating other parts of the brain and the spinal cord. Images Fig. 1 Fig. 2 PMID:7516932

  20. Systemic T cell large granular lymphocyte lymphoma with multifocal white matter degeneration in the brain of a Japanese domestic cat.

    PubMed

    Tsuboi, Masaya; Uchida, Kazuyuki; Park, Eun Sil; Kotera, Yukiko; Seki, Takahiro; Takahashi, Masashi; Nakayama, Hiroyuki

    2010-06-01

    A 10-year-old spayed female Japanese domestic cat exhibited clinical symptoms suggesting pancreatitis. One month later the cat exhibited Horner's syndrome and was euthanized. At necropsy, multiple neoplastic masses were found in the intestines, spleen, kidneys, urinary bladder, and lungs. On cytology, many neoplastic lymphocytic cells had fine to large cytoplasmic granules, suggesting large granular lymphocyte (LGL) lymphoma. Histopathological examinations revealed infiltrative proliferation of the neoplastic cells in almost organs. Immunohistochemically, the neoplastic cells were intensely positive for CD3 and granzyme B. In the brain, there were multifocal white matter lesions characterized by diffuse myelin loss with mild infiltration of the neoplastic cells. Based on these findings, the cat was diagnosed as LGL lymphoma presumptively of intestinal origin with systemic involvement.

  1. The mechanics of active matter: Broken-symmetry hydrodynamics of motile particles and granular layers

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Sriram; Simha, R. Aditi

    2006-09-01

    This articles reviews briefly our recent theoretical results on order, fluctuations and flow in collections of self-driven particles, in suspension or on a solid surface. The theoretical approach we have developed applies not only to collections of organisms such as schools of fish or collectively swimming bacteria, but also to motor-microtubule extracts with ATP and, most surprisingly, to agitated monolayers of orientable granular particles. We contrast the behaviour of these active systems with that of thermal equilibrium systems with the same symmetry. As an illustration of the role of activity we show that active smectics in three dimensions show true long-range order, unlike their thermal equilibrium counterparts.

  2. Grain- and Pore-level Analysis of Drainage in Fractionally-wet Granular Media using Synchrotron X-ray Computed Microtomography

    NASA Astrophysics Data System (ADS)

    Willson, C. S.; Bradley, S.; Thompson, K. E.

    2011-12-01

    Numerous lab- and field-scale experimental studies have shown the strong impact of wettability on multiphase flow constitutive relations and how increased water repellency can lead to preferential flow paths and a heterogeneous water distribution. In conjunction, theoretical and pore-scale modeling work has been performed seeking to improve our understanding of the impact of grain-level wettability properties. Advances in high-resolution X-ray computed tomography (XCT) techniques now make it possible to nondestructively image opaque materials providing previously hard-to-observe qualitative and quantitative data and information. Furthermore, the characteristics of synchrotron X-rays make it possible to monochromatize the incident energy allowing for both k-edge absorption differencing and segmentation of fluids and materials that have even slightly different chemical composition. Concurrent with these advances has been the development of methods to extract granular packing and pore network structure data from XCT images. In this talk, we will present results from a series of experiments designed to obtain grain-, pore- and fluid-scale details during the drainage of water in fractionally-wet glass bead systems. Here, two sets of glass beads were used each having slightly different chemical compositions and thus, different X-ray absorption properties. One set was treated so that the bead surface was water neutral while the other set remained hydrophilic. Three sets of drainage experiments were conducted on three fractionally-wet systems: 100, 90, and 75% hydrophilic by weight. First, traditional lab-scale drainage experiments were performed to obtain a baseline set of characteristic drainage curves for the three systms. Next, a set of tomography-scale (i.e., 5.5 mm inner diameter column) drainage experiments were conducted in the lab to ensure that the drainage curves in the smaller columns were consistent with the lab-scale curves. Finally, tomography-scale drainage

  3. Non-Gaussian velocity distributions in vibrated granular matter at low densities

    NASA Astrophysics Data System (ADS)

    Kudrolli, Arshad; Henry, J.

    2000-03-01

    Velocity distribution of 100-500 steel and brass spheres rolling inside a rectangular two dimensional flat surface are obtained by high speed imaging. The particles are excited by periodic forcing of one of the confining walls and the surface can be also inclined to introduce gravitation. Rolling leads to an significantly lower effective coefficient of restitution during collisions thus amplifying its effect on the velocity and density distributions. The position and velocity of individual particles are accurately measured, and good statistical information of the distribution of the velocity components is obtained as a function of position by averaging over at least 10^6 data points. Recent experiments and numerical work have shown that clustering of particles are observed due to inelasticity which leads to non-gaussian velocity distributions at high densities. Our data suggests that strongly non-gaussian velocity distributions can occur in excited granular materials even in the absence of significant density correlations or clustering.

  4. Exact traveling wave solutions of the van der Waals normal form for fluidized granular matter

    NASA Astrophysics Data System (ADS)

    Abourabia, A. M.; Morad, A. M.

    2015-11-01

    Analytical solutions of the van der Waals normal form for fluidized granular media have been done to study the phase separation phenomenon by using two different exact methods. The Painlevé analysis is discussed to illustrate the integrability of the model equation. An auto-Bäcklund transformation is presented via the truncated expansion and symbolic computation. The results show that the exact solutions of the model introduce solitary waves of different types. The solutions of the hydrodynamic model and the van der Waals equation exhibit a behavior similar to the one observed in molecular dynamic simulations such that two pairs of shock and rarefaction waves appear and move away, giving rise to the bubbles. The dispersion properties and the relation between group and phase velocities of the model equation are studied using the plane wave assumption. The diagrams are drawn to illustrate the physical properties of the exact solutions, and indicate their stability and bifurcation.

  5. Dissipation of Energy by Dry Granular Matter in a Rotating Cylinder

    PubMed Central

    Sack, Achim; Pöschel, Thorsten

    2016-01-01

    We study experimentally the dissipation of energy in a rotating cylinder which is partially filled by granular material. We consider the range of angular velocity corresponding to continous and stationary flow of the granulate. In this regime, the stationary state depends on the angular velocity and on the filling mass. For a wide interval of filling levels we find a universal behavior of the driving torque required to sustain the stationary state as a function of the angular velocity. The result may be of relevance to industrial applications, e.g. to understand the power consumption of ball mills or rotary kilns and also for damping applications where mechanical energy has to be dissipated in a controlled way. PMID:27255925

  6. Impact of natural organic matter on monochloramine reduction by granular activated carbon: the role of porosity and electrostatic surface properties

    SciTech Connect

    Julian L. Fairey; Gerald E. Speitel Jr.; Lynn E. Katz

    2006-07-01

    Steady-state monochloramine reduction in fixed-bed reactors (FBRs) was quantified on five types of granular activated carbon (GAC) using two background waters - one natural source water (LAW) containing 2.5-3.5 mg/L organic carbon and one synthetic organic-free water (NW). GACs used were coal-based Filtrasorb 400, Filtrasorb 600, Centaur and Medical Grade, and wood-based AquaGuard. While more monochloramine was reduced at steady-state using NW compared to LAW for each GAC and empty-bed contact time studied, the differences in removal varied considerably among the GACs tested. Physical characterization of the GACs suggested that the degree of interference caused by natural organic matter (NOM) increased with increasing GAC surface area contained within pores greater than 2 nm in width. Acid/base and electrostatic properties of the GACs were not found to be significant in terms of NOM uptake, which indicated that size exclusion effects of the GAC pores overwhelmed the impact of the GAC surface chemistry. Therefore, selection of GAC to limit the impact of NOM on monochloramine reduction in FBRs should be based on pore size distribution alone, with the impact of NOM decreasing with decreasing mesoporosity and macroporosity. 23 refs., 4 figs., 3 tabs.

  7. The effect of water temperature on the adsorption equilibrium of dissolved organic matter and atrazine on granular activated carbon

    SciTech Connect

    Bernd Schreiber; Viktor Schmalz; Thomas Brinkmann; Eckhard Worch

    2007-09-15

    The influence of water temperature on the adsorption of natural dissolved organic matter (DOM) on activated carbon has not been investigated intensively yet. In this study, batch experiments with granular activated carbon (GAC) F300, from bituminous coal, have been carried out at three temperatures (5, 20, 35{sup o} C) using a humic acid model water and different types of surface water (lake, river, canal). Furthermore, the adsorption of an anthropogenic contaminant, atrazine, was quantified in the absence and presence of DOM. The results indicate a significant influence of water temperature on the adsorption equilibrium of DOM and atrazine. Contrary to expectations, DOM and atrazine adsorption in surface water tends to be increased with increasing water temperature, whereas the extent of this effect is dependent on the type and concentration of DOM. Furthermore, the temperature effect on atrazine adsorption is controlled by competition of DOM and atrazine on adsorption sites. Some assumptions are proposed and discussed for explaining the temperature effects observed in the batch studies. 39 refs., 4 figs., 2 tabs.

  8. Production response of lactating cows fed dried versus wet brewers' grain in diets with similar dry matter content.

    PubMed

    Dhiman, T R; Bingham, H R; Radloff, H D

    2003-09-01

    Twenty-four Holstein-Friesian dairy cows (20 intact and 4 fitted with rumen cannula) during early lactation (56 +/- 25.3 d in milk) were assigned to two treatments to determine intake and production responses to feeding dried and wet brewers' grain. There were two cows fitted with a rumen cannula in each treatment. Cows were fed a total mixed ration twice daily containing either dried or wet brewers' grain at 15% of the dietary dry matter (DM). The diet contained 47% forage and 53% concentrate. The experimental design was a replicated 2 x 2 Latin square with two periods of 5 wk each. First 2 wk in each period were considered as adaptation to diets and data from the last 3 wk were used for treatment comparisons. Dried and wet brewers' diets contained 68.0 and 66.5% DM, respectively. Feeding brewers' grain dry or wet to dairy cows had no influence on feed intake (25.6 vs. 25.1 kg/d), fat corrected milk yield (40.1 vs. 40.7 kg/d), milk composition and feed consumption. The pH, ammonia, total volatile fatty acids and molar ratios of volatile fatty acids in the rumen fluid were not different between treatments. Fatty acid composition of milk fat from cows fed diets containing dry or wet brewers' grain was identical, except C18:2 and C18:3 fatty acids were lower in milk fat from cows fed wet brewers' grain compared with dried brewers' grain. The results from the present study suggest that the performance of cows fed either dried or wet brewers' grain at 15% of dietary DM was similar when diets had the same DM. The average price for dried and wet brewers' grain in the United States from July 2001 to June 2002 was dollars 145.3 and dollars 96.9/metric tonne DM, respectively. Using wet instead of dried brewers' grain will save dollars 49/metric tonne minus the difference in storage costs. Wet brewers' grain can be fed to dairy cows in areas that are close to the brewery and provides nutritive value similar to the dried brewers' grain.

  9. Collection of ultrafine diesel particulate matter (DPM) in cylindrical single-stage wet electrostatic precipitators.

    PubMed

    Saiyasitpanich, Phirun; Keener, Tim C; Lu, Mingming; Khang, Soon-Jai; Evans, Douglas E

    2006-12-15

    Long-term exposures to diesel particulate matter (DPM) emissions are linked to increasing adverse human health effects due to the potential association of DPM with carcinogenicity. Current diesel vehicular particulate emission regulations are based solely upon total mass concentration, albeit it is the submicrometer particles that are highly respirable and the most detrimental to human health. In this study, experiments were performed with a tubular single-stage wet electrostatic precipitator (wESP) to evaluate its performance for the removal of number-based DPM emissions. A nonroad diesel generator utilizing a low sulfur diesel fuel (500 ppmw) operating under varying load conditions was used as a stationary DPM emission source. An electrical low-pressure impactor (ELPI) was used to quantify the number concentration distributions of diesel particles in the diluted exhaust gas at each tested condition. The wESP was evaluated with respect to different operational control parameters such as applied voltage, gas residence time, etc., to determine their effect on overall collection efficiency, as well as particle size dependent collection efficiency. The results show that the total DPM number concentrations in the untreated diesel exhaust are in the magnitude of approximately108/cm(3) at all engine loads with the particle diameter modes between 20 and 40 nm. The measured collection efficiency of the wESP operating at 70 kV based on total particle numbers was 86% at 0 kW engine load and the efficiency decreased to 67% at 75 kW due to a decrease in gas residence time and an increase in particle concentrations. At a constant wESP voltage of 70 kV and at 75 kW engine load, the variation of gas residence time within the wESP from approximately 0.1 to approximately 0.4 s led to a substantial increase in the collection efficiency from 67% to 96%. In addition, collection efficiency was found to be directly related to the applied voltage, with increasing collection efficiency

  10. The repeated drying-wetting and freezing-thawing cycles affect only the active pool of soil organic matter

    NASA Astrophysics Data System (ADS)

    Semenov, Vyacheslav; Zinyakova, Natalya; Tulina, Anastasiya

    2016-04-01

    The decrease in the content of soil organic carbon, particularly in active form, is one of the major problems of the 21st century, which is closely related to the disturbance of the biogeochemical carbon cycle and to the increase in the emission of carbon dioxide into the atmosphere. The main reasons for the SOM losses are the surplus of the SOM active pool losses due to mineralization, erosion, and infiltration over the input of fresh organic matter to the soil, as well as the changes in the soil conditions and processes due to natural and anthropogenic disturbing impacts. Experiments were carried out with mixed samples from the upper layers of soddy-podzolic soil, gray forest soil, and typical chernozems. Soil samples as controls were incubated after wetting for 150 days. The dynamics and cumulative production of C-CO2 under stable temperature (22°C) and moisture conditions were determined; the initial content of potentially mineralizable organic matter (C0) in the soil at the beginning of the incubation was then calculated to use these data as the control. Other soil samples were exposed in flasks to the following successive treatments: wetting →incubation → freezing → thawing → incubation →drying. Six repeated cycles of disturbing impacts were performed for 140 days of the experiment. After six cycles, the soil samples were incubated under stable temperature and moisture conditions for 150 days. The wetting of dried soils and the thawing of frozen soils are accompanied by the pulsed dynamics of the C-CO2 production with an abrupt increase in the rate of the C-CO2 emission within several days by 2.7-12.4 and 1.6-2.7 times, respectively, compared to the stable incubation conditions. The rate of the C-CO2 production pulses under each subsequent impact decreased compared to the preceding one similarly for all studied soils, which could be due to the depletion in potentially mineralizable soil organic matter (C0). The cumulative extra C-CO2 production by

  11. Enzymatic Hydrolysis and Ethanol Fermentation of High Dry Matter Wet-Exploded Wheat Straw at Low Enzyme Loading

    NASA Astrophysics Data System (ADS)

    Georgieva, Tania I.; Hou, Xiaoru; Hilstrøm, Troels; Ahring, Birgitte K.

    Wheat straw was pretreated by wet explosion using three different oxidizing agents (H2O2, O2, and air). The effect of the pretreatment was evaluated based on glucose and xylose liberated during enzymatic hydrolysis. The results showed that pretreatment with the use of O2 as oxidizing agent was the most efficient in enhancing overall convertibility of the raw material to sugars and minimizing generation of furfural as a by-product. For scale-up of the process, high dry matter (DM) concentrations of 15-20% will be necessary. However, high DM hydrolysis and fermentation are limited by high viscosity of the material, higher inhibition of the enzymes, and fermenting microorganism. The wet-explosion pretreatment method enabled relatively high yields from both enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) to be obtained when performed on unwashed slurry with 14% DM and a low enzyme loading of 10 FPU/g cellulose in an industrial acceptable time frame of 96 h. Cellulose and hemicellulose conversion from enzymatic hydrolysis were 70 and 68%, respectively, and an overall ethanol yield from SSF was 68%.

  12. Effects of surface-active organic matter on carbon dioxide nucleation in atmospheric wet aerosols: a molecular dynamics study.

    PubMed

    Daskalakis, Vangelis; Charalambous, Fevronia; Panagiotou, Fostira; Nearchou, Irene

    2014-11-21

    Organic matter (OM) uptake in cloud droplets produces water-soluble secondary organic aerosols (SOA) via aqueous chemistry. These play a significant role in aerosol properties. We report the effects of OM uptake in wet aerosols, in terms of the dissolved-to-gas carbon dioxide nucleation using molecular dynamics (MD) simulations. Carbon dioxide has been implicated in the natural rainwater as well as seawater acidity. Variability of the cloud and raindrop pH is assumed in space and time, as regional emissions, local human activities and geophysical characteristics differ. Rain scavenging of inorganic SOx, NOx and NH3 plays a major role in rain acidity in terms of acid-base activity, however carbon dioxide solubility also remains a key parameter. Based on the MD simulations we propose that the presence of surface-active OM promotes the dissolved-to-gas carbon dioxide nucleation in wet aerosols, even at low temperatures, strongly decreasing carbon dioxide solubility. A discussion is made on the role of OM in controlling the pH of a cloud or raindrop, as a consequence, without involving OM ionization equilibrium. The results are compared with experimental and computational studies in the literature.

  13. Controlling cohesive forces in granular media

    NASA Astrophysics Data System (ADS)

    G"Ogelein, Christoph; Schr"Oter, Matthias; Brinkmann, Martin; Herminghaus, Stephan

    2009-11-01

    When adding a small amount of water to a pile of granular matter, e.g., sand heap, close-by grains can be connected by liquid bridges [1]. Thus, the material becomes plastically and can sustain a larger stress as compared to dry sand. Our general aim is to compare the mechanical properties of wet and dry granular media. For this purpose, we use a suspension of micrometer large glass or Latex spheres dispersed in a binary liquid mixture. The suspending water-lutidine(oil) mixture exhibits a lower critical solution temperature leading to a water-oil-like phase separation slightly above ambient temperature. Close to this demixing region, the oil-like phase undergoes a pre-wetting transition on the particle glass surface inducing liquid bridges [2]. Thus, by varying the temperature we can switch the liquid bridges on and off. We will report on our attempts to directly visualize the formation and control of liquid bridges using confocal and non- confocal microscopy. [4pt] [1] M. Scheel, et al., Nature Materials 7, 174 (2008)[0pt] [2] D. Beysens, and D. Esteve, Phys. Rev. Lett. 54, 2123 (1985)

  14. Rain pH estimation based on the particulate matter pollutants and wet deposition study.

    PubMed

    Singh, Shweta; Elumalai, Suresh Pandian; Pal, Asim Kumar

    2016-09-01

    In forecasting of rain pH, the changes caused by particulate matter (PM) are generally neglected. In regions of high PM concentration like Dhanbad, the role of PM in deciding the rain pH becomes important. Present work takes into account theoretical prediction of rain pH by two methods. First method considers only acid causing gases (ACG) like CO2, SO2 and NOx in pH estimation, whereas, second method additionally accounts for effect of PM (ACG-PM). In order to predict the rain pH, site specific deposited dust that represents local PM was studied experimentally for its impact on pH of neutral water. After incorporation of PM correction factor, it was found that, rain pH values estimated were more representative of the observed ones. Fractional bias (FB) for the ACG-PM method reduced to values of the order of 10(-2) from those with order of 10(-1) for the ACG method. The study confirms neutralization of rain acidity by PM. On account of this, rain pH was found in the slightly acidic to near neutral range, despite of the high sulfate flux found in rain water. Although, the safer range of rain pH blurs the severity of acid rain from the picture, yet huge flux of acidic and other ions get transferred to water bodies, soil and ultimately to the ground water system. Simple use of rain pH for rain water quality fails to address the issues of its increased ionic composition due to the interfering pollutants and thus undermines severity of pollutants transferred from air to rain water and then to water bodies and soil.

  15. Dissolved Organic Matter as a Mechanism for Carbon Stabilization at Depth in Wet Tropical Forest Volcanic Soils

    NASA Astrophysics Data System (ADS)

    Marin-Spiotta, E.; Kramer, M. G.; Chadwick, O. A.

    2007-12-01

    Dissolved organic matter (DOM) plays an important role in many biological and chemical processes in soils. Our understanding of the types of plant and microbially-derived organic matter that accumulate in soils and the mechanisms responsible for their transformation and stabilization is still limited. In particular, we know very little about how microbial activity and water movement contribute to the production of DOM and the formation of stable C in soils. In well-drained soils under wet climates, DOM is potentially a primary pathway for the transport of C from the surface litter layers and the zones of highest microbial activity to deeper horizons in the soil profile where the potential for long-term storage increases. The mechanisms for long-term stabilization of organic C in deep mineral horizons include an accumulation of chemically recalcitrant C, strong sorption of soluble and otherwise labile C to mineral and/or metals making them inaccessible to decomposers, and microenvironmental conditions (low pH, low O2) which result in incomplete decomposition and persistence of labile C. Although most work to date has focused on the role of dissolved organic C and N (DOC and DON) in the C and N cycles of temperate forests, DOM fluxes may be even more important in forests in the wet tropics, where high rainfall and high primary productivity could lead to greater DOM production. In order to address the role of DOC in the transport and stabilization of C in mineral horizons, we are studying DOC production, transformation, and loss pathways in volcanic soils dominated by highly reactive, non-crystalline minerals (allophane). We are quantifying flux and solute concentrations (C, N, cations, anions) in rainwater, throughfall, and in soil water. We have installed tension and zero tension lysimeters throughout sequentially deeper organic and mineral horizons in an intermediate aged soil (ca. 350k years) under wet (ca. 3000 mm mean annual rainfall) native tropical forest

  16. Stabilization of Stormwater Biofilters: Impacts of Wetting and Drying Phases and the Addition of Organic Matter to Filter Media.

    PubMed

    Subramaniam, D N; Egodawatta, P; Mather, P; Rajapakse, J P

    2015-09-01

    Ripening period refers to a phase of stabilization in sand filters in water treatment systems that follow a new installation or cleaning of the filter. Intermittent wetting and drying, a unique property of stormwater biofilters, would similarly be subjected to a phase of stabilization. Suspended solids are an important parameter that is often used to monitor the stabilization of sand filters in water treatment systems. Stormwater biofilters, however, contain organic material that is added to the filter layer to enhance nitrate removal, the dynamics of which is seldom analyzed in stabilization of stormwater biofilters. Therefore, in this study of stormwater biofiltration in addition to suspended solids (turbidity), organic matter (TOC, DOC, TN, and TKN) was also monitored as a parameter for stabilization of the stormwater biofilter. One Perspex bioretention column (94 mm internal diameter) was fabricated with filter layer that contained 8 % organic material and fed with tapwater with different antecedent dry days (0-40 day) at 100 mL/min. Samples were collected from the outflow at different time intervals between 2 and 150 min and were tested for total organic carbon, dissolved organic carbon, total nitrogen, total Kjeldhal nitrogen, and turbidity. The column was observed to experience two phases of stabilization, one at the beginning of each event that lasted for 30 min, while the other phase was observed across subsequent events that are related to the age of filter.

  17. Stabilization of Stormwater Biofilters: Impacts of Wetting and Drying Phases and the Addition of Organic Matter to Filter Media

    NASA Astrophysics Data System (ADS)

    Subramaniam, D. N.; Egodawatta, P.; Mather, P.; Rajapakse, J. P.

    2015-09-01

    Ripening period refers to a phase of stabilization in sand filters in water treatment systems that follow a new installation or cleaning of the filter. Intermittent wetting and drying, a unique property of stormwater biofilters, would similarly be subjected to a phase of stabilization. Suspended solids are an important parameter that is often used to monitor the stabilization of sand filters in water treatment systems. Stormwater biofilters, however, contain organic material that is added to the filter layer to enhance nitrate removal, the dynamics of which is seldom analyzed in stabilization of stormwater biofilters. Therefore, in this study of stormwater biofiltration in addition to suspended solids (turbidity), organic matter (TOC, DOC, TN, and TKN) was also monitored as a parameter for stabilization of the stormwater biofilter. One Perspex bioretention column (94 mm internal diameter) was fabricated with filter layer that contained 8 % organic material and fed with tapwater with different antecedent dry days (0-40 day) at 100 mL/min. Samples were collected from the outflow at different time intervals between 2 and 150 min and were tested for total organic carbon, dissolved organic carbon, total nitrogen, total Kjeldhal nitrogen, and turbidity. The column was observed to experience two phases of stabilization, one at the beginning of each event that lasted for 30 min, while the other phase was observed across subsequent events that are related to the age of filter.

  18. WET SOLIDS FLOW ENHANCEMENT

    SciTech Connect

    Hugo S. Caram; Natalie Foster

    1997-03-31

    The objective was to visualize the flow of granular materials in flat bottomed silo. This was done by for dry materials introducing mustard seeds and poppy seeds as tracer particles and imaging them using Nuclear Magnetic Resonance. The region sampled was a cylinder 25 mm in diameter and 40 mm in length. Eight slices containing 128*128 to 256*256 pixels were generated for each image. The size of the silo was limited by the size of the high resolution NMR imager available. Cross-sections of 150mm flat bottomed silos, with the tracer layers immobilized by a gel, showed similar qualitative patterns for both dry and wet granular solids.

  19. Impact of natural organic matter on arsenic removal by modified granular natural siderite: Evidence of ternary complex formation by HPSEC-UV-ICP-MS.

    PubMed

    Li, Fulan; Guo, Huaming; Zhou, Xiaoqian; Zhao, Kai; Shen, Jiaxing; Liu, Fei; Wei, Chao

    2017-02-01

    High arsenic (As) groundwater usually has high concentrations of natural organic matter (NOM). Effects of NOM on arsenic adsorption were investigated to evaluate the efficiency of modified granular natural siderite (MGNS) as an adsorbent for groundwater arsenic remediation. Humic and fulvic acids (HA/FA) were selected as model NOM compounds. In batch tests, HA or FA was either first adsorbed onto the MGNS, or applied together with dissolved arsenic to investigate effects of both adsorbed and dissolved NOM on arsenic removal. The kinetic data showed no significant effects of both adsorbed and dissolved HA/FA on As(III) adsorption. However, As(V) removal was inhibited, whereby the adsorbed NOM compounds had greater inhibitory effect. The inhibitory effect on As(V) removal increased with increasing NOM concentrations. FA exhibited higher inhibitory effect than HA at the same concentration. Steric Exclusion Chromatography-HPLC (SEC-HPLC), and High-Performance Size Exclusion Chromatography-UV-Inductively Coupled Plasma Mass Spectrometry (HPSEC-UV-ICP-MS) revealed that As(V) removal was mostly achieved by the oxyanion adsorption and adversely affected by dissolved FA via competitive adsorption for surface sites. In addition to oxyanion adsorption, removal of As(V) was related to scavenging of ternary HA-As-Fe complexes, which led to the less inhibitory effect of dissolved HA on As(V) removal than dissolved FA via competitive adsorption.

  20. WET SOLIDS FLOW ENHANCEMENT

    SciTech Connect

    Hugo S. Caram; Natalie Foster

    1999-03-30

    The elastic modulus E of wet granular material was found to be of the order of 0.25 MPa, this value does not compare well with the value predicted for a cubic array of spheres under Hertzian contact were the predicted values were in the order of 250 MPa . The strain-stress behavior of a wet granular media was measured using a split Parfitt tensile tester. In all cases the stress increases linearly with distance until the maximum uniaxial tensile stress is reached. The stress then decreases exponentially with distance after this maximum is reached. The linear region indicates that wet solids behave elastically for stresses below the tensile stresses and can store significant elastic energy. The elastic deformation cannot be explained by analyzing the behavior of individual capillary bridges and requires accounting for the deformation of the solids particles. The elastic modulus of the wet granular material remains unexplained. New information was found to support the experimental finding and a first theory to explain the very small elastic modulus is presented. A new model based on the used of the finite element method is being developed.

  1. Granular slumps

    NASA Astrophysics Data System (ADS)

    Balmforth, Neil J.; Kerswell, Richard R.

    2002-11-01

    We report an experimental and theoretical study of slumping granular fluids. We use a variety of different materials, and explore how they slump in a chute once a gate holding one side of the material is suddenly released, in a set-up intended to mimic the classical dambreak problem of hydrodynamics. Two widths of the chute are used, one relatively thin, and one relatively thick. After a violent transient in which material rains down ballistically, the granular mass enters a slower phase of evolution in which it slumps towards a final equilibrium state. We compare the predictions of some theoretical models with the shape of the final equilibrium.

  2. Interfacial Instability during Granular Erosion.

    PubMed

    Lefebvre, Gautier; Merceron, Aymeric; Jop, Pierre

    2016-02-12

    The complex interplay between the topography and the erosion and deposition phenomena is a key feature to model granular flows such as landslides. Here, we investigated the instability that develops during the erosion of a wet granular pile by a dry dense granular flow. The morphology and the propagation of the generated steps are analyzed in relation to the specific erosion mechanism. The selected flowing angle of the confined flow on a dry heap appears to play an important role both in the final state of the experiment, and for the shape of the structures. We show that the development of the instability is governed by the inertia of the flow through the Froude number. We model this instability and predict growth rates that are in agreement with the experiment results.

  3. Sphere impact and penetration into wet sand.

    PubMed

    Marston, J O; Vakarelski, I U; Thoroddsen, S T

    2012-08-01

    We present experimental results for the penetration of a solid sphere when released onto wet sand. We show, by measuring the final penetration depth, that the cohesion induced by the water can result in either a deeper or shallower penetration for a given release height compared to dry granular material. Thus the presence of water can either lubricate or stiffen the granular material. By assuming the shear rate is proportional to the impact velocity and using the depth-averaged stopping force in calculating the shear stress, we derive effective viscosities for the wet granular materials.

  4. Sphere impact and penetration into wet sand

    NASA Astrophysics Data System (ADS)

    Marston, J. O.; Vakarelski, I. U.; Thoroddsen, S. T.

    2012-08-01

    We present experimental results for the penetration of a solid sphere when released onto wet sand. We show, by measuring the final penetration depth, that the cohesion induced by the water can result in either a deeper or shallower penetration for a given release height compared to dry granular material. Thus the presence of water can either lubricate or stiffen the granular material. By assuming the shear rate is proportional to the impact velocity and using the depth-averaged stopping force in calculating the shear stress, we derive effective viscosities for the wet granular materials.

  5. Granular parakeratosis.

    PubMed

    Martín, José M; Pinazo, Isabel; Molina, Inmaculada; Monteagudo, Carlos; Villalón, Guillermo; Jordá, Esperanza

    2008-07-01

    A healthy 62-year-old woman was referred to our dermatology department with a 1-month history of a pruritic axillary eruption. On examination, multiple erythematous and brownish hyperkeratotic papules were seen in both axillae. Some of these lesions coalesced into plaques, with small areas of sparing, and a background erythematous color was also found in the axillary vaults (Fig. 1). There was no involvement of other intertriginous sites and there were no associated systemic symptoms. The patient was not obese. The patient had removed the hair from her axillae with wax 3 weeks before the development of the eruption. Moreover, she had changed her antiperspirant 1 week before the onset of the lesions. A cutaneous biopsy for histologic analysis was performed. Histologically, the stratum corneum was thickened, with persistent nuclei together with countless small basophilic granules. The granular layer was preserved and, in some areas, hypergranulosis was found (Fig. 2). These findings were characteristic of granular parakeratosis. The cutaneous lesions resolved completely after 1 week of treatment with topical betamethasone dipropionate and gentamicin sulfate (twice daily). The patient was urged to discontinue her use of deodorants.

  6. Open problems in active chaotic flows: Competition between chaos and order in granular materials.

    PubMed

    Ottino, J. M.; Khakhar, D. V.

    2002-06-01

    There are many systems where interaction among the elementary building blocks-no matter how well understood-does not even give a glimpse of the behavior of the global system itself. Characteristic for these systems is the ability to display structure without any external organizing principle being applied. They self-organize as a consequence of synthesis and collective phenomena and the behavior cannot be understood in terms of the systems' constitutive elements alone. A simple example is flowing granular materials, i.e., systems composed of particles or grains. How the grains interact with each other is reasonably well understood; as to how particles move, the governing law is Newton's second law. There are no surprises at this level. However, when the particles are many and the material is vibrated or tumbled, surprising behavior emerges. Systems self-organize in complex patterns that cannot be deduced from the behavior of the particles alone. Self-organization is often the result of competing effects; flowing granular matter displays both mixing and segregation. Small differences in either size or density lead to flow-induced segregation and order; similar to fluids, noncohesive granular materials can display chaotic mixing and disorder. Competition gives rise to a wealth of experimental outcomes. Equilibrium structures, obtained experimentally in quasi-two-dimensional systems, display organization in the presence of disorder, and are captured by a continuum flow model incorporating collisional diffusion and density-driven segregation. Several open issues remain to be addressed. These include analysis of segregating chaotic systems from a dynamical systems viewpoint, and understanding three-dimensional systems and wet granular systems (slurries). General aspects of the competition between chaos-enhanced mixing and properties-induced de-mixing go beyond granular materials and may offer a paradigm for other kinds of physical systems. (c) 2002 American Institute of

  7. Energy decay in a granular gas collapse

    NASA Astrophysics Data System (ADS)

    Almazán, Lidia; Serero, Dan; Salueña, Clara; Pöschel, Thorsten

    2017-01-01

    An inelastic hard ball bouncing repeatedly off the ground comes to rest in finite time by performing an infinite number of collisions. Similarly, a granular gas under the influence of external gravity, condenses at the bottom of the confinement due to inelastic collisions. By means of hydrodynamical simulations, we find that the condensation process of a granular gas reveals a similar dynamics as the bouncing ball. Our result is in agreement with both experiments and particle simulations, but disagrees with earlier simplified hydrodynamical description. Analyzing the result in detail, we find that the adequate modeling of pressure plays a key role in continuum modeling of granular matter.

  8. Harnessing the instabilities of soft matter: Dynamically tuning of wetting, assembly and pattern transformation in polymer microstructures

    NASA Astrophysics Data System (ADS)

    Zhang, Ying

    2008-10-01

    In this dissertation, we have investigated the fabrication, mechanical instability and applications of two kinds of polymer micro/nano-structures: high-aspect-ratio (HAR) polymer pillar arrays, and periodic porous elastomer membranes. For HAR polymer pillar arrays, we demonstrated the fabrication of high-aspect-ratio (up to 18) polymer micropillars with different shapes and dimensions by replica molding. Capillary force lithography (CFL) is also demonstrated as a simple and flexible method to fabricate microstructures with controlled aspect ratios. Meanwhile, by introducing conventional photoresist SU-8, CFL is successfully coupled with photolithography and used to create hierarchical 2D or 3D structures, which greatly expand the capability of current capillary force lithography. The mechanical stability of HAR structures with varied materials and different aspect ratio, density and shape were also studied and the results show that the adhesive forces from environment are the major cause of structure collapsing. When HAR polymer pillars are subjected to different solvents treatment, both capillary force and solvent swelling need to be considered to completely understand the structure instability. On HAR micropillar array, thermoresponsive polymer brushes, poly ( N-isopropylacrylamide) (PNIPAAm), were selectively grafted at different locations for dynamically tuning surface wetting or pattern assembly. When the temperature changed from 40°C to 20°, depending on the location of polymer brushes, different wetting transitions, either from a composite solid/air state (Cassie state) to a composite solid/liquid state (Hemi-wicking state) or a transition between two Cassie states were observed. Meanwhile, the dynamically tuning of water contact angle enables us to control capillary drying force and thus harness pattern collapse to create superlattice micropatterns. For periodic porous elastomer membrane, a novel pattern transformation effect is discovered due to the

  9. Self-assembled granular towers

    NASA Astrophysics Data System (ADS)

    Pacheco-Vazquez, Felipe; Moreau, Florian; Vandewalle, Nicolas; Dorbolo, Stephan; GroupResearch; Applications in Statistical Physics Team

    2013-03-01

    When some water is added to sand, cohesion among the grains is induced. In fact, only 1% of liquid volume respect to the total pore space of the sand is necessary to built impressive sandcastles. Inspired on this experience, the mechanical properties of wet piles and sand columns have been widely studied during the last years. However, most of these studies only consider wet materials with less than 35% of liquid volume. Here we report the spontaneous formation of granular towers produced when dry sand is poured on a highly wet sand bed: The impacting grains stick on the wet grains due to instantaneous liquid bridges created during the impact. The grains become wet by the capillary ascension of water and the process continues, giving rise to stable narrow sand towers. Actually, the towers can reach the maximum theoretical limit of stability predicted by previous models, only expected for low liquid volumes. The authors would like to thank FNRS and Conacyt Mexico for financial support. FPV is a beneficiary of a movility grant from BELSPO/Marie Curie and the University of Liege.

  10. WET SOLIDS FLOW ENHANCEMENT

    SciTech Connect

    Unknown

    2001-03-25

    The yield locus, tensile strength and fracture mechanisms of wet granular materials were studied. The yield locus of a wet material was shifted to the left of that of the dry specimen by a constant value equal to the compressive isostatic stress due to pendular bridges. for materials with straight yield loci, the shift was computed from the uniaxial tensile strength, either measured in a tensile strength tester or calculated from the correlation, and the angle of internal friction of the material. The predicted shift in the yield loci due to different moisture contents compare well with the measured shift in the yield loci of glass beads, crushed limestone, super D catalyst and Leslie coal. Measurement of the void fraction during the shear testing was critical to obtain the correct tensile strength theoretically or experimentally.

  11. Scaling of liquid-drop impact craters in granular media

    NASA Astrophysics Data System (ADS)

    Zhao, Runchen; Zhang, Qianyun; Tjugito, Hendro; Gao, Ming; Cheng, Xiang

    Granular impact cratering by liquid drops is a ubiquitous phenomenon, directly relevant to many important natural and industrial processes such as soil erosion, drip irrigation, and dispersion of micro-organisms in soil. Here, by combining the high-speed photography with high precision laser profilometry, we investigate the liquid-drop impact dynamics on granular surfaces and monitor the morphology of resulting craters. Our experiments reveal novel scaling relations between the size of granular impact craters and important control parameters including the impact energy, the size of impinging drops and the degree of liquid saturation in a granular bed. Interestingly, we find that the scaling for liquid-drop impact cratering in dry granular media can be quantitatively described by the Schmidt-Holsapple scaling originally proposed for asteroid impact cratering. On the other hand, the scaling for impact craters in wet granular media can be understood by balancing the inertia of impinging drops and the strength of impacted surface. Our study sheds light on the mechanism governing liquid-drop impacts on dry/wet granular surfaces and reveals a remarkable analogy between familiar phenomena of raining and catastrophic asteroid strikes. Scaling of liquid-drop impact craters in granular media.

  12. Noise induces rare events in granular media.

    PubMed

    Khain, Evgeniy; Sander, Leonard M

    2016-09-01

    The granular Leidenfrost effect [B. Meerson, et al., Phys. Rev. Lett. 91, 024301 (2003)PRLTAO0031-900710.1103/PhysRevLett.91.024301; P. Eshuis et al., Phys. Rev. Lett. 95, 258001 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.258001] is the levitation of a mass of granular matter when a wall below the grains is vibrated, giving rise to a hot granular gas below the cluster. We find by simulation that for a range of parameters the system is bistable: the levitated cluster can occasionally break and give rise to two clusters and a hot granular gas above and below. We use techniques from the theory of rare events to compute the mean transition time for breaking to occur. This requires the introduction of a two-component reaction coordinate.

  13. Anthropogenic Influences of Paved Runoff and Sanitary Sewage on the Dissolved Organic Matter Quality of Wet Weather Overflows: An Excitation-Emission Matrix Parallel Factor Analysis Assessment.

    PubMed

    Chen, Hao; Liao, Zhen-Liang; Gu, Xian-Yong; Xie, Jia-Qiang; Li, Huai-Zheng; Zhang, Jin

    2017-02-07

    The quality of dissolved organic matter (DOM) in a wet weather overflow (WWF) can be broadly influenced by anthropogenic factors, such as nonpoint sources of paved runoff and point sources of sanitary sewage within the drainage networks. This study focused on the anthropogenic influences of the paved runoff and sanitary sewage on the DOM quality of WWF using excitation-emission matrix parallel factor analysis (EEM-PARAFAC). Results show that (1) EEM-PARAFAC fitted terrestrial humic-like, anthropogenic humic-like, tryptophan-like, and tyrosine-like components can be regarded as indicators to identify the types of sewage overflows and the illicit connection status of drainage systems. (2) A short emission wavelength (em: 302-313 nm) peak of the tyrosine-like component occurred in the reserved sanitary sewage, while a type of longer emission wavelength (em: 321-325 nm) peak came from the sump deposit. These tyrosine-like components were gradually evacuated in the initial phase of the overflow process with the fading of their EEM signals. Fluorescence signal transformations of all the components confirmed the potential ability of EEM-PARAFAC to monitor the dynamic changes of the primary pollutant sources. (3) The input of the newly increased sanitary sewage had a dominant influence on the quality and yield of the WWF DOM.

  14. PREFACE: Dynamics of wetting Dynamics of wetting

    NASA Astrophysics Data System (ADS)

    Grest, Gary S.; Oshanin, Gleb; Webb, Edmund B., III

    2009-11-01

    Capillary phenomena associated with fluids wetting other condensed matter phases have drawn great scientific interest for hundreds of years; consider the recent bicentennial celebration of Thomas Young's paper on equilibrium contact angles, describing the geometric shape assumed near a three phase contact line in terms of the relevant surface energies of the constituent phases [1]. Indeed, nearly a century has passed since the seminal papers of Lucas and Washburn, describing dynamics of capillary imbibition [2, 3]. While it is generally appreciated that dynamics of fluid wetting processes are determined by the degree to which a system is out of capillary equilibrium, myriad complications exist that challenge the fundamental understanding of dynamic capillary phenomena. The topic has gathered much interest from recent Nobel laureate Pierre-Gilles de Gennes, who provided a seminal review of relevant dissipation mechanisms for fluid droplets spreading on solid surfaces [4] Although much about the dynamics of wetting has been revealed, much remains to be learned and intrinsic technological and fundamental interest in the topic drives continuing high levels of research activity. This is enabled partly by improved experimental capabilities for resolving wetting processes at increasingly finer temporal, spatial, and chemical resolution. Additionally, dynamic wetting research advances via higher fidelity computational modeling capabilities, which drive more highly refined theory development. The significance of this topic both fundamentally and technologically has resulted in a number of reviews of research activity in wetting dynamics. One recent example addresses the evaluation of existing wetting dynamics theories from an experimentalist's perspective [5]. A Current Opinion issue was recently dedicated to high temperature capillarity, including dynamics of high temperature spreading [6]. New educational tools have recently emerged for providing instruction in wetting

  15. A constitutive law for dense granular flows.

    PubMed

    Jop, Pierre; Forterre, Yoël; Pouliquen, Olivier

    2006-06-08

    A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.

  16. Vibration-induced liquefaction of granular suspensions.

    PubMed

    Hanotin, C; Kiesgen de Richter, S; Marchal, P; Michot, L J; Baravian, C

    2012-05-11

    We investigate the mechanical behavior of granular suspensions subjected to coupled vibrations and shear. At high shear stress, whatever the mechanical vibration energy and bead size, the system behaves like a homogeneous suspension of hard spheres. At low shear stress, in addition to a dependence on bead size, vibration energy drastically influences the viscosity of the material that can decrease by more than 2 orders of magnitude. All experiments can be rationalized by introducing a hydrodynamical Peclet number defined as the ratio between the lubrication stress induced by vibrations and granular pressure. The behavior of vibrated wet and dry granular materials can then be unified by assimilating the hookean stress in dry media to the lubrication stress in suspensions.

  17. Granular statistical mechanics - a personal perspective

    NASA Astrophysics Data System (ADS)

    Blumenfeld, R.; Edwards, S. F.

    2014-10-01

    The science of granular matter has expanded from an activity for specialised engineering applications to a fundamental field in its own right. This has been accompanied by an explosion of research and literature, which cannot be reviewed in one paper. A key to progress in this field is the formulation of a statistical mechanical formalism that could help develop equations of state and constitutive relations. This paper aims at reviewing some milestones in this direction. An essential basic step toward the development of any static and quasi-static theory of granular matter is a systematic and useful method to quantify the grain-scale structure and we start with a review of such a method. We then review and discuss the ongoing attempt to construct a statistical mechanical theory of granular systems. Along the way, we will clarify a number of misconceptions in the field, as well as highlight several outstanding problems.

  18. Simulating the performance of fixed-bed granular activated carbon adsorbers: removal of synthetic organic chemicals in the presence of background organic matter.

    PubMed

    Jarvie, Michelle Edith; Hand, David W; Bhuvendralingam, Shanmugalingam; Crittenden, John C; Hokanson, Dave R

    2005-06-01

    Granular activated carbon (GAC) adsorption is an effective treatment technology for the removal of synthetic organic chemicals (SOCs) from drinking water supplies. This treatment process can be expensive if not properly designed. Application of mathematical models is an attractive method to evaluate the impact of process variables on process design and performance. Practical guidelines were developed to select an appropriate model framework and to estimate site-specific model parameters to predict GAC adsorber performance. Pilot plant and field-scale data from 11 different studies were utilized to investigate the effectiveness of this approach in predicting adsorber performance in the presence of background organic batter (BOM). These data represent surface and ground water sources from four different countries. The modeling approach was able to adequately describe fixed-bed adsorber performance for the purpose of determining the carbon usage rate and process design variables. This approach is more accurate at predicting bed life in the presence of BOM than the current methods commonly used by practicing engineers.

  19. Wet solids flow enhancemant

    SciTech Connect

    Caram, H.S.; Foster, N.; Wildman, D.J.

    1996-12-31

    WE used glass beads of different sizes as.a model system to study the flow enhancing properties of Octadecyltrichlorosilane (OTS). 0TS provides Si(CH{sub 2}){sub 17}CH{sub 3} groups that bind with the surface hydrox groups to make it hydrophobic. Experimental data showed, indeed, that surface hydrophobicity promotes the flow of wet granular materials. Mixtures of different percentage of silanized/unsilanized particles were prepared for tensile strength measurements. The tensile strength decreased as more silanized particles were added to the samples. The relationship between dimensionless tensile strength and void fraction followed the correlation found by Pierrat (1994). Contact angles were larger for the silanized particles, as compared with unsilanized ones.

  20. Prototype testing of a solar dryer of granular materials

    SciTech Connect

    Murdock, J.D.

    1982-01-01

    The results of testing a two module prototype solar convection dryer are presented. Collected data showed that the 540 square foot dryer can evaporate up to 900 pounds of water from a wet granular material over a 24 hour period in the Philadelphia climate. Testing included experimentation with different materials handling systems to determine the best method of moving each wet material through the dryer.

  1. On granular elasticity

    PubMed Central

    Sun, Qicheng; Jin, Feng; Wang, Guangqian; Song, Shixiong; Zhang, Guohua

    2015-01-01

    Mesoscopic structures form in dense granular materials due to the self-organisation of the constituent particles. These structures have internal structural degrees of freedom in addition to the translational degree of freedom. The resultant granular elasticity, which exhibits intrinsic variations and inevitable relaxation, is a key quantity that accounts for macroscopic solid- or fluid-like properties and the transitions between them. In this work, we propose a potential energy landscape (PEL) with local stable basins and low elastic energy barriers to analyse the nature of granular elasticity. A function for the elastic energy density is proposed for stable states and is further calibrated with ultrasonic measurements. Fluctuations in the elastic energy due to the evolution of internal structures are proposed to describe a so-called configuration temperature Tc as a counterpart of the classical kinetic granular temperature Tk that is attributed to the translational degrees of freedom. The two granular temperatures are chosen as the state variables, and a fundamental equation is established to develop non-equilibrium thermodynamics for granular materials. Due to the relatively low elastic energy barrier in the PEL, granular elasticity relaxes more under common mechanical loadings, and a simple model based on mean-field theory is developed to account for this behaviour. PMID:25951049

  2. Particle Deposition in Granular Media

    SciTech Connect

    Tien, C.

    1992-01-01

    Objective is to understand aerosol deposition from gas streams flowing through granular media; this is important to the design of granular filtration systems. The following investigations were carried out: transient behavior of granular filtration of aerosols, and stochastic simulation of aerosol deposition in granular media.

  3. Gravity and Granular Materials

    NASA Technical Reports Server (NTRS)

    Behringer, R. P.; Hovell, Daniel; Kondic, Lou; Tennakoon, Sarath; Veje, Christian

    1999-01-01

    We describe experiments that probe a number of different types of granular flow where either gravity is effectively eliminated or it is modulated in time. These experiments include the shaking of granular materials both vertically and horizontally, and the shearing of a 2D granular material. For the shaken system, we identify interesting dynamical phenomena and relate them to standard simple friction models. An interesting application of this set of experiments is to the mixing of dissimilar materials. For the sheared system we identify a new kind of dynamical phase transition.

  4. Dynamics of Granular Materials

    NASA Technical Reports Server (NTRS)

    Behringer, Robert P.

    1996-01-01

    Granular materials exhibit a rich variety of dynamical behavior, much of which is poorly understood. Fractal-like stress chains, convection, a variety of wave dynamics, including waves which resemble capillary waves, l/f noise, and fractional Brownian motion provide examples. Work beginning at Duke will focus on gravity driven convection, mixing and gravitational collapse. Although granular materials consist of collections of interacting particles, there are important differences between the dynamics of a collections of grains and the dynamics of a collections of molecules. In particular, the ergodic hypothesis is generally invalid for granular materials, so that ordinary statistical physics does not apply. In the absence of a steady energy input, granular materials undergo a rapid collapse which is strongly influenced by the presence of gravity. Fluctuations on laboratory scales in such quantities as the stress can be very large-as much as an order of magnitude greater than the mean.

  5. Transition from rolling to jamming in thin granular layers.

    PubMed

    Marone, C; Carpenter, B M; Schiffer, P

    2008-12-12

    We study the granular jamming transition for sheared layers of spherical beads ranging in thickness from 1 to 3 times the grain diameter d. As the layer thickness increases slightly above d, the measured friction jumps discontinuously from 0.02 to >0.1, marking the transition from rolling to jamming. Above a critical layer thickness for jamming, the effective granular pressure displays a power law increase with thickness. For thin layers, friction and P increases as the packing fraction decreases near the jamming transition, in contrast to expectations for bulk granular matter.

  6. The mechanics of brittle granular materials

    NASA Astrophysics Data System (ADS)

    Einav, Itai

    When considering the modelling of granular materials, use may be made of continuum mechanics principles if the granules are confined. The grain size distribution in these materials evolves with crushing. Therefore, in the continuum mechanics modelling of such matter, the grain size distribution should be taken into account as an internal variable function. In this chapter this idea is explored, first by adopting principles of variational calculus, but then a more accessible theory is motivated based on the concept of breakage.

  7. Numerical calculation of granular entropy.

    PubMed

    Asenjo, Daniel; Paillusson, Fabien; Frenkel, Daan

    2014-03-07

    We present numerical simulations that allow us to compute the number of ways in which N particles can pack into a given volume V. Our technique modifies the method of Xu, Frenkel, and Liu [Phys. Rev. Lett. 106, 245502 (2011)] and outperforms existing direct enumeration methods by more than 200 orders of magnitude. We use our approach to study the system size dependence of the number of distinct packings of a system of up to 128 polydisperse soft disks. We show that, even though granular particles are distinguishable, we have to include a factor 1=N! to ensure that the entropy does not change when exchanging particles between systems in the same macroscopic state. Our simulations provide strong evidence that the packing entropy, when properly defined, is extensive. As different packings are created with unequal probabilities, it is natural to express the packing entropy as S = − Σ(i)p(i) ln pi − lnN!, where pi denotes the probability to generate the ith packing. We can compute this quantity reliably and it is also extensive. The granular entropy thus (re)defined, while distinct from the one proposed by Edwards [J. Phys. Condens. Matter 2, SA63 (1990)], does have all the properties Edwards assumed.

  8. Numerical Calculation of Granular Entropy

    NASA Astrophysics Data System (ADS)

    Asenjo, Daniel; Paillusson, Fabien; Frenkel, Daan

    2014-03-01

    We present numerical simulations that allow us to compute the number of ways in which N particles can pack into a given volume V. Our technique modifies the method of Xu, Frenkel, and Liu [Phys. Rev. Lett. 106, 245502 (2011)] and outperforms existing direct enumeration methods by more than 200 orders of magnitude. We use our approach to study the system size dependence of the number of distinct packings of a system of up to 128 polydisperse soft disks. We show that, even though granular particles are distinguishable, we have to include a factor 1/N! to ensure that the entropy does not change when exchanging particles between systems in the same macroscopic state. Our simulations provide strong evidence that the packing entropy, when properly defined, is extensive. As different packings are created with unequal probabilities, it is natural to express the packing entropy as S=-∑ipilnpi-lnN!, where pi denotes the probability to generate the ith packing. We can compute this quantity reliably and it is also extensive. The granular entropy thus (re)defined, while distinct from the one proposed by Edwards [J. Phys. Condens. Matter 2, SA63 (1990)], does have all the properties Edwards assumed.

  9. Granular computing: perspectives and challenges.

    PubMed

    Yao, JingTao; Vasilakos, Athanasios V; Pedrycz, Witold

    2013-12-01

    Granular computing, as a new and rapidly growing paradigm of information processing, has attracted many researchers and practitioners. Granular computing is an umbrella term to cover any theories, methodologies, techniques, and tools that make use of information granules in complex problem solving. The aim of this paper is to review foundations and schools of research and to elaborate on current developments in granular computing research. We first review some basic notions of granular computing. Classification and descriptions of various schools of research in granular computing are given. We also present and identify some research directions in granular computing.

  10. A predictive, nonlocal rheology for granular flows

    NASA Astrophysics Data System (ADS)

    Kamrin, Ken; Henann, David

    2013-11-01

    We propose a continuum model for flowing granular matter and demonstrate that it quantitatively predicts flow and stress fields in many different geometries. The model is constructed in a step-by-step fashion. First we compose a relation based on existing granular rheological approaches (notably the ``inertial'' granular flow rheology) and point out where the resulting model succeeds and where it does not. The clearest missing ingredient is shown to be the lack of an intrinsic length-scale. To tie flow features more carefully to the characteristic grain size, we compose a nonlocal model that includes a new size-dependent term (with only one new material parameter). This new nonlocal model resolves some outstanding questions in the granular flow literature--of note, it is the first model to predict all features of flows in split-bottom cell geometries, a decade-long open question in the field. In total, we will show that this new model, using three material parameters, quantitatively matches the flow and stress data from over 160 experiments in several different geometries.

  11. Fluctuations in granular materials

    NASA Astrophysics Data System (ADS)

    Behringer, R. P.

    The intent of this work is to provide an overview of granular materials, with a particular focus on the dense granular states. The first part consists of a broad overview of granular properties. Then, there is an exploration of a range of phenomena that are illustrated through a series of experiments. The work presented here has benefitted from a number of collaborators, including in particular Eric Clément, Junfei Geng, Daniel Howell, Stefan Luding, Trushant Majmudar, Corey O'Hern, Guillaume Reydellet Matthias Sperl, Brian Utter and Peidong Yu who are represented by results that are presented in this work. Support has been provided by the US National Science Foundation, by NASA, and by ARO.

  12. Self-Organization in Granular Slurries

    NASA Astrophysics Data System (ADS)

    Ottino, Julio M.; Jain, Nitin; Lueptow, Richard M.; Khakhar, Devang V.

    2000-11-01

    Mixtures of tumbled granular materials under flow exhibit various intriguing types of un-mixing or self-organization. Small differences in particles' density, size or shape may trigger the effect. Nearly all studies to date have addressed the case of dry granular media, where the interparticle fluid is typically air. Here we report the existence of self-organization in wet granular media or slurries, mixtures of particles of different sizes dispersed in a lower density liquid. Technological examples appear in cement, ceramics, fine chemicals, and in the food industry; examples in nature appear in evolution of landslides and transport in river sediments. In spite of significantly different physics at the particle level, both axial banding (alternating bands rich in small and large particles in a long rotating cylinder) and radial segregation (in quasi 2D containers) are observed in slurries. However, axial segregation is significantly faster and the spectrum of outcomes is richer. Moreover, experiments with suitable fluids, reveal, for the first time, the internal structure of axially segregated systems, something that up to now has been accessible only via magnetic resonance imaging (MRI) experimentation.

  13. Bifurcation and nonlinear behavior of compartmentalized granular gases

    NASA Astrophysics Data System (ADS)

    Hou, Meiying; Liu, Rui; Li, Yinchang; Zhang, Yin; Shah, Sajjad Hussain

    2014-12-01

    Different from the molecular gas, clustering is a most commonly observed feature of the granular gas. A review is given of our previous work on the clustering, especially the oscillatory clustering for shaken fluidized granular matter in connected compartments, as examples for pattern formation and bifurcations in far from equilibrium systems. Flux model is presented and discussed for mono-disperse and bi-disperse granular systems. Comparison of the flux model with simulation results is given. They show reasonably well agreements. Besides the homogeneous (HOM), segregation (SEG), and oscillatory (OSC) states, two new stationary states (d-OSC and s-HOM) in the bi-disperse granular system are predicted by our simulation. In our recent work these two new states are observed experimentally, and their flow diagrams are obtained based on the flux model. The transition from degenerate oscillation state to oscillation state demonstrates a homoclinic gluing bifurcation.

  14. Rainwater Channelization and Infiltration in Granular Media

    NASA Astrophysics Data System (ADS)

    Cejas, Cesare; Wei, Yuli; Barrois, Remi; Durian, Douglas; Dreyfus, Remi; Compass Team

    2013-03-01

    We investigate the formation of fingered flow in dry granular media under simulated rainfall using a quasi-2D experimental set-up composed of a random close packing of mono-disperse glass beads. We determine effects of grain diameter and surface wetting properties on the formation and infiltration of water channels. For hydrophilic granular media, rainwater initially infiltrates a shallow top layer of soil creating a uniform horizontal wetting front before instabilities occur and grow to form water channels. For hydrophobic media, rainwater ponds on the soil surface rather than infiltrates and water channels may still occur at a later time when the hydraulic pressure of the ponding water exceeds the capillary repellency of the soil. We probe the kinetics of the fingering instabilities that serve as precursors for the growth and drainage of water channels. We also examine the effects of several different methods on improving rainwater channelization such as varying the level of pre-saturation, modifying the soil surface flatness, and adding superabsorbent hydrogel particles.

  15. Spreading of triboelectrically charged granular matter

    PubMed Central

    Kumar, Deepak; Sane, A.; Gohil, Smita.; Bandaru, P. R.; Bhattacharya, S.; Ghosh, Shankar

    2014-01-01

    We report on the spreading of triboelectrically charged glass particles on an oppositely charged surface of a plastic cylindrical container in the presence of a constant mechanical agitation. The particles spread via sticking, as a monolayer on the cylinder's surface. Continued agitation initiates a sequence of instabilities of this monolayer, which first forms periodic wavy-stripe-shaped transverse density modulation in the monolayer and then ejects narrow and long particle-jets from the tips of these stripes. These jets finally coalesce laterally to form a homogeneous spreading front that is layered along the spreading direction. These remarkable growth patterns are related to a time evolving frictional drag between the moving charged glass particles and the countercharges on the plastic container. The results provide insight into the multiscale time-dependent tribolelectric processes and motivates further investigation into the microscopic causes of these macroscopic dynamical instabilities and spatial structures. PMID:24919483

  16. Axillary granular parakeratosis.

    PubMed

    Kossard, S; White, A

    1998-08-01

    A 54-year-old woman had a 3 year history of a recurrent bilateral axillary rash during the summer months. Both axillae showed hyperkeratotic, fissured and cobblestone plaques. Skin biopsy showed the histology previously defined as axillary granular parakeratosis. This finding may indeed represent an unusual contact reaction to anti-perspirants interfering with epidermal keratinization.

  17. Wet Adhesion and Adhesive Locomotion of Snails on Anti-Adhesive Non-Wetting Surfaces

    PubMed Central

    Shirtcliffe, Neil J.; McHale, Glen; Newton, Michael I.

    2012-01-01

    Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted), texture (smooth, rough or granular) or wetting property (hydrophilic or hydrophobic) via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces. PMID:22693563

  18. Granular flow over inclined channels with constrictions

    NASA Astrophysics Data System (ADS)

    Tunuguntla, Deepak; Weinhart, Thomas; Thornton, Anthony; Bokhove, Onno

    2013-04-01

    , investigate the channel formed by the dead zones and compare it with our analytical calculations. REFERENCES 1. Akers, B. & Bokhove, O. 2008 Hydraulic flow through a channel contraction: Multiple steady states. Physics of fluids 20 (056601), 056601. 2. Mercury 2010 http://www2.msm.ctw.utwente.nl/athornton/md/ . 3. Pesch, L., Bell, A., Sollie, H., Ambati, V.R., Bokhove, O. & Van der Vegt, J.J.W. 2007 hpGEM—a software framework for discontinuous Galerkin finite element methods. ACM Transactions on Mathematical Software (TOMS) 33 (4), 23. 4. Savage, SB & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics 199 (1), 177-215. 5. Vreman, AW, Al-Tarazi, M., Kuipers, JAM, van Sint Annaland, M. & Bokhove, O. 2007 Supercritical shallow granular flow through a contraction: experiment, theory and simulation. Journal of Fluid Mechanics 578 (1), 233-269. 6. Weinhart, T., Thornton, A.R., Luding, S. & Bokhove, O. 2012 Closure relations for shallow granular flows from particle simulations. Granular Matter 14 (4), 531-552.

  19. Focus on granular segregation

    NASA Astrophysics Data System (ADS)

    Daniels, Karen E.; Schröter, Matthias

    2013-03-01

    Ordinary fluids mix themselves through thermal motions, or can be even more efficiently mixed by stirring. In contrast, granular materials such as sand often unmix when they are stirred, shaken or sheared. This granular segregation is both a practical means to separate materials in industry, and a persistent challenge to uniformly mixing them. While segregation phenomena are ubiquitous, a large number of different mechanisms have been identified and the underlying physics remains the subject of much inquiry. Particle size, shape, density and even surface roughness can play significant roles. The aim of this focus issue is to provide a snapshot of the current state of the science, covering a wide range of packing densities and driving mechanisms, from thermal-like dilute systems to dense flows.

  20. Geophysical granular and particle-laden flows: review of the field.

    PubMed

    Hutter, Kolumban

    2005-07-15

    An introduction is given to the title theme, in general, and the specific topics treated in detail in the articles of this theme issue of the Philosophical Transactions. They fit into the following broader subjects: (i) dense, dry and wet granular flows as avalanche and debris flow events, (ii) air-borne particle-laden turbulent flows in air over a granular base as exemplified in gravity currents, aeolian transport of sand, dust and snow and (iii) transport of a granular mass on a two-dimensional surface in ripple formations of estuaries and rivers and the motion of sea ice.

  1. Granular Crater Formation

    NASA Astrophysics Data System (ADS)

    Clark, Abe; Behringer, Robert; Brandenburg, John

    2009-11-01

    This project characterizes crater formation in a granular material by a jet of gas impinging on a granular material, such as a retro-rocket landing on the moon. We have constructed a 2D model of a planetary surface, which consists of a thin, clear box partially filled with granular materials (sand, lunar and Mars simulants...). A metal pipe connected to a tank of nitrogen gas via a solenoid valve is inserted into the top of the box to model the rocket. The results are recorded using high-speed video. We process these images and videos in order to test existing models and develop new ones for describing crater formation. A similar set-up has been used by Metzger et al.footnotetextP. T. Metzger et al. Journal of Aerospace Engineering (2009) We find that the long-time shape of the crater is consistent with a predicted catenary shape (Brandenburg). The depth and width of the crater both evolve logarithmically in time, suggesting an analogy to a description in terms of an activated process: dD/dt = A (-aD) (D is the crater depth, a and A constants). This model provides a useful context to understand the role of the jet speed, as characterized by the pressure used to drive the flow. The box width also plays an important role in setting the width of the crater.

  2. Impact on Granular Beds

    NASA Astrophysics Data System (ADS)

    van der Meer, Devaraj

    2017-01-01

    The impact of an object on a granular solid is an ubiquitous phenomenon in nature, the scale of which ranges from the impact of a raindrop onto sand all the way to that of a large asteroid on a planet. Despite the obvious relevance of these impact events, the study of the underlying physics mechanisms that guide them is relatively young, with most work concentrated in the past decade. Upon impact, an object starts to interact with a granular bed and experiences a drag force from the sand. This ultimately leads to phenomena such as crater formation and the creation of a transient cavity that upon collapse may cause a jet to appear from above the surface of the sand. This review provides an overview of research that targets these phenomena, from the perspective of the analogous but markedly different impact of an object on a liquid. It successively addresses the drag an object experiences inside a granular bed, the expansion and collapse of the cavity created by the object leading to the formation of a jet, and the remarkable role played by the air that resides within the pores between the grains.

  3. Wet Macular Degeneration

    MedlinePlus

    Wet macular degeneration Overview By Mayo Clinic Staff Wet macular degeneration is a chronic eye disease that causes blurred vision ... of the retina responsible for central vision. Wet macular degeneration is one of two types of age-related ...

  4. Plastic Deformation of Granular Materials

    DTIC Science & Technology

    1993-01-25

    discontinuities. These result will be important in our granular flow work, when considering viscoplastic constitutive relations (i.e. relaxation systems...5 CUNDN( NUMRES Plastic Deformation of Granular Materials (U) 61102F 6. AUTHOR(S) 2304/A4 Dr. E. Bruce Pitman 7 PERFORMING ORGANIZATION NA .h • 8...lose hyperbolicity. 98 3 81 061! SUBJECT TERMS 15. NUMBER OF PAGES granular material ; plastic deformation; hyperbolic 12 equations 16. PRICE CODE 17

  5. Granular controls of hillslope deformation and creep

    NASA Astrophysics Data System (ADS)

    Ferdowsi, B.; Jerolmack, D. J.; Ortiz, C. P.

    2015-12-01

    Sediment transport on hillslopes has been described as "creep", and has been modeled as a "diffusive" process by invoking random disturbance of soil in the presence of a gradient. In this framework, physical and biological agents are envisioned to cause dilation of the soil that is greatest at the surface and decays with depth. Thus, there is a kind of internal energy of the sediment that allows flow, even below the angle of repose. This transport has not yet been connected, however, to the more general phenomenon of creep in disordered, particulate systems. Work in such "soft matter" materials has shown that disordered solids are fragile, and may deform slowly by localized particle rearrangement under static loads much smaller than the yield stress at which fluid-like flow occurs. The transition from creep to granular flow has not been thoroughly examined. Here we use particle dynamics simulations to examine creep and granular flow dynamics and the transition between them, and to test the ability of a granular physics model to describe observations of hillslope soil creep. We employ a well-developed discrete element model, with frictional and over-damped interactions among grains to approximate the conditions of earth hillslopes. Transient and equilibrium particle dynamics are described for a range of inclination angles that transit the angle of repose. We verify that sub-threshold creep occurs, even in the absence of internal energy, and describe its dynamic signature. Moreover, simulations show that the transition from creeping to a sustained granular flow is continuous as the angle of repose is crossed. We then perturb the granular system with acoustic vibrations, to directly compare the model with previously-reported laboratory experiments of acoustically-driven hillslope transport. We test the ability of the model to reproduce the heuristic nonlinear hillslope flux law. Results reveal that the bulk movement of hillslope sediment over long timescales may be

  6. Constitutive relations for steady, dense granular flows

    NASA Astrophysics Data System (ADS)

    Vescovi, D.; Berzi, D.; di Prisco, C. G.

    2011-12-01

    -instantaneous collisions [4]. We have shown that the present theory is capable of reproducing, qualitatively and quantitatively, the numerical simulations on disks [2] and the experiments on incline flows of glass spere [9]. [1] C. S. Campbell, Annual Review of Fluid Mechanics 22, 57 (1990) [2] F. da Cruz, S. Emam, M. Prochnow, J. Roux, and F. Chevoir, Physical Review E 72, 021309 (2005) [3] I. Goldhirsch, Annual Review of Fluid Mechanics 35, 267 (2003). [4] H. Hwang and K. Hutter, Continuum Mechanics and Thermodynamics 7, 357 (1995) [5] J. T. Jenkins, Granular Matter 10, 47 (2007) [6] J. T. Jenkins, Physics of Fluids 18, 103307 (2006) [7] J. T. Jenkins and M. W. Richman, Archive for Rational Mechanics and Analysis 87, 355 (1985) [8] D. Muir Wood, Geotechnical modelling (Spon Press, New York, 2004) [9] O. Pouliquen, Physics of Fluids 11, 542 (1999) [10] A. N. Schofield and C. P. Wroth, Critical state soil mechanics (McGraw-Hill, London, U.K., 1968) [11] C. Song, P. Wang, and H. A. Makse, Nature 453, 629 (2008)

  7. Elastic Granular Flows

    NASA Astrophysics Data System (ADS)

    Campbell, Charles

    2006-03-01

    There is no fundamental understanding of the mechanics of granular solids. Partially this is because granular flows have historically been divided into two very distinct flow regimes, (1) the slow, quasistatic regime, in which the bulk friction coefficient is taken to be a material constant, and (2) the fast, rapid-flow regime, where the particles interact collisionally. But slow hopper flow simulations indicate that the bulk friction coefficient is not a constant. Rapidly moving large scale landslide simulations never entered the collisional regime and operate in a separate intermediate flow regime. In other words, most realistic granular flows are not described by either the quasistatic or rapid flow models and it is high time that the field look beyond those early models. This talk will discuss computer simulation studies that draw out the entire flowmap of shearing granular materials, spanning the quasistatic, rapid and the intermediate regimes. The key was to include the elastic properties of the solid material in the set of rheological parameters; in effect, this puts solid properties back into the rheology of granular solids. The solid properties were previously unnecessary in the plasticity and kinetic theory formalisms that respectively form the foundations of the quasistatic and rapid-flow theories. Granular flows can now be divided into two broad categories, the Elastic Regimes, in which the particles are locked in force chains and interact elastically over long duration contact with their neighbors and the Inertial regimes, where the particles have broken free of the force chains. The Elastic regimes can be further subdivided into the Elastic-Quasistatic regime (the old quasistatic regime) and the Elastic-Inertial regime. The Elastic-Inertial regime is the ``new'' regime observed in the landslide simulations, in which the inertially induced stresses are significant compared to the elastically induced stresses. The Inertial regime can also be sub

  8. PREFACE: Wetting: introductory note

    NASA Astrophysics Data System (ADS)

    Herminghaus, S.

    2005-03-01

    The discovery of wetting as a topic of physical science dates back two hundred years, to one of the many achievements of the eminent British scholar Thomas Young. He suggested a simple equation relating the contact angle between a liquid surface and a solid substrate to the interfacial tensions involved [1], γlg cos θ = γsg - γsl (1) In modern terms, γ denotes the excess free energy per unit area of the interface indicated by its indices, with l, g and s corresponding to the liquid, gas and solid, respectively [2]. After that, wetting seems to have been largely ignored by physicists for a long time. The discovery by Gabriel Lippmann that θ may be tuned over a wide range by electrochemical means [3], and some important papers about modifications of equation~(1) due to substrate inhomogeneities [4,5] are among the rare exceptions. This changed completely during the seventies, when condensed matter physics had become enthusiastic about critical phenomena, and was vividly inspired by the development of the renormalization group by Kenneth Wilson [6]. This had solved the long standing problem of how to treat fluctuations, and to understand the universal values of bulk critical exponents. By inspection of the critical exponents of the quantities involved in equation~(1), John W Cahn discovered what he called critical point wetting: for any liquid, there should be a well-defined transition to complete wetting (i.e., θ = 0) as the critical point of the liquid is approached along the coexistence curve [7]. His paper inspired an enormous amount of further work, and may be legitimately viewed as the entrance of wetting into the realm of modern physics. Most of the publications directly following Cahn's work were theoretical papers which elaborated on wetting in relation to critical phenomena. A vast amount of interesting, and in part quite unexpected, ramifications were discovered, such as the breakdown of universality in thin film systems [8]. Simultaneously, a number

  9. Sinking a Granular Raft

    NASA Astrophysics Data System (ADS)

    Protière, Suzie; Josserand, Christophe; Aristoff, Jeffrey M.; Stone, Howard A.; Abkarian, Manouk

    2017-03-01

    We report experiments that yield new insights on the behavior of granular rafts at an oil-water interface. We show that these particle aggregates can float or sink depending on dimensionless parameters taking into account the particle densities and size and the densities of the two fluids. We characterize the raft shape and stability and propose a model to predict its shape and maximum length to remain afloat. Finally we find that wrinkles and folds appear along the raft due to compression by its own weight, which can trigger destabilization. These features are characteristics of an elastic instability, which we discuss, including the limitations of our model.

  10. Labyrinthine granular landscapes.

    PubMed

    Caps, H; Vandewalle, N

    2001-11-01

    We have numerically studied a model of granular landscape eroded by wind. We show the appearance of labyrinthic patterns when the wind orientation turns by 90 degrees. The occurrence of such structures is discussed. Moreover, we introduce the density n(k) of "defects" as the dynamic parameter governing the landscape evolution. A power-law behavior of n(k) is found as a function of time. In the case of wind variations, the exponent (drastically) shifts from two to one. The presence of two asymptotic values of n(k) implies the irreversibility of the labyrinthic formation process.

  11. Granular cell tumor of trachea.

    PubMed

    Bekteshi, Edgar; Toth, Jennifer W; Benninghoff, Michael G; Kang, Jason; Betancourt, Manuel

    2009-01-01

    Granular cell tumors of the tracheobronchial tree are rare benign lesions of neurogenic origin. These benign tumors mostly involve the skin, oral cavity, or esophagus. There is no consensus regarding treatment of granular cell tumors. Treatment varies from simple observation to different bronchoscopic interventions, such as laser therapy or fulguration to surgical resection.

  12. Subsurface Explosions in Granular Media

    NASA Astrophysics Data System (ADS)

    Lai, Shuyue; Houim, Ryan; Oran, Elaine

    2015-11-01

    Numerical simulations of coupled gas-granular flows are used to study properties of shock formation and propagation in media, such as sand or regolith on the moon, asteroids, or comets. The simulations were performed with a multidimensional fully compressible model, GRAF, which solves two sets of coupled Navier-Stokes equations, one for the gas and one for the granular medium. The specific case discussed here is for a subsurface explosion in a granular medium initiated by an equivalent of 200g of TNT in depths ranging from 0.1m to 3m. The background conditions of 100K, 10 Pa and loose initial particle volume fraction of 25% are consistent with an event on a comet. The initial blast creates a cavity as a granular shock expands outwards. Since the gas-phase shock propagates faster than the granular shock in loose, granular material, some gas and particles are ejected before the granular shock arrives. When the granular shock reaches the surface, a cap-like structure forms. This cap breaks and may fall back on the surface and in this process, relatively dense particle clusters form. At lower temperatures, the explosion timescales are increased and entrained particles are more densely packed.

  13. Drop floating on a granular raft

    NASA Astrophysics Data System (ADS)

    Jambon-Puillet, Etienne; Josserand, Christophe; Protiere, Suzie

    2015-11-01

    When a droplet comes in contact with a bath of the same liquid, it coalesces to minimize the surface energy. This phenomenon reduces emulsion stability and is usually fought with surfactant molecules. Another way to slow down coalescence is to use colloidal solid particles. In this case the particles spontaneously migrate to the interface to form ``Pickering'' emulsions and act as a barrier between droplets. Here we use dense, large particles (~ 500 μm) which form a monolayer at an oil/water interface that we call a granular raft. When a droplet is placed on top of such a raft, for a given set of particle properties (contact angle/size), the raft prevents coalescence indefinitely. However, in contrast to what happens when a droplet is placed on a hydrophobic surface and never wets the surface, here the droplet is strongly anchored to the raft and deforms it. We will use this specific configuration to probe the mechanical response of the granular raft: by controlling the droplet volume we can impose tensile or compressive stresses. Finally we will show that the drop, spherical at first, slowly takes a more complex shape as it's volume increases. This shape is not reversible as the drop volume is decreased. The drop can become oblate or prolate with wrinkling of the raft.

  14. Spreading of a granular droplet

    NASA Astrophysics Data System (ADS)

    Clement, Eric; Sanchez, Ivan; Raynaud, Franck; Lanuza, Jose; Andreotti, Bruno; Aranson, Igor

    2008-03-01

    The influence of controlled vibrations on the granular rheology is investigated in a specifically designed experiment in which a granular film spreads under the action of horizontal vibrations. A nonlinear diffusion equation is derived theoretically that describes the evolution of the deposit shape. A self-similar parabolic shape (the``granular droplet'') and a spreading dynamics are predicted that both agree quantitatively with the experimental results. The theoretical analysis is used to extract effective friction coefficients between the base and the granular layer under sustained and controlled vibrations. A shear thickening regime characteristic of dense granular flows is evidenced at low vibration energy, both for glass beads and natural sand. Conversely, shear thinning is observed at high agitation.

  15. Spreading of a granular droplet

    NASA Astrophysics Data System (ADS)

    Sánchez, Iván; Raynaud, Franck; Lanuza, José; Andreotti, Bruno; Clément, Eric; Aranson, Igor S.

    2007-12-01

    The influence of controlled vibrations on the granular rheology is investigated in a specifically designed experiment in which a granular film spreads under the action of horizontal vibrations. A nonlinear diffusion equation is derived theoretically that describes the evolution of the deposit shape. A self-similar parabolic shape (the“granular droplet”) and a spreading dynamics are predicted that both agree quantitatively with the experimental results. The theoretical analysis is used to extract effective friction coefficients between the base and the granular layer under sustained and controlled vibrations. A shear thickening regime characteristic of dense granular flows is evidenced at low vibration energy, both for glass beads and natural sand. Conversely, shear thinning is observed at high agitation.

  16. Heterogeneities in granular dynamics

    PubMed Central

    Mehta, A.; Barker, G. C.; Luck, J. M.

    2008-01-01

    The absence of Brownian motion in granular media is a source of much complexity, including the prevalence of heterogeneity, whether static or dynamic, within a given system. Such strong heterogeneities can exist as a function of depth in a box of grains; this is the system we study here. First, we present results from three-dimensional, cooperative and stochastic Monte Carlo shaking simulations of spheres on heterogeneous density fluctuations. Next, we juxtapose these with results obtained from a theoretical model of a column of grains under gravity; frustration via competing local fields is included in our model, whereas the effect of gravity is to slow down the dynamics of successively deeper layers. The combined conclusions suggest that the dynamics of a real granular column can be divided into different phases—ballistic, logarithmic, activated, and glassy—as a function of depth. The nature of the ground states and their retrieval (under zero-temperature dynamics) is analyzed; the glassy phase shows clear evidence of its intrinsic (“crystalline”) states, which lie below a band of approximately degenerate ground states. In the other three phases, by contrast, the system jams into a state chosen randomly from this upper band of metastable states. PMID:18541918

  17. Jamming in granular materials

    NASA Astrophysics Data System (ADS)

    Behringer, Robert P.

    2015-01-01

    Granular materials are one of a class of materials which undergo a transition from mechanically unstable to mechanically stable states as key system parameters change. Pioneering work by Liu and Nagel and O'Hern et al. focused on models consisting of frictionless grains. In this case, density, commonly expressed in terms of the packing fraction, ϕ, is of particular importance. For instance, O'Hern et al. found that there is a minimum ϕ =ϕJ, such that below this value there are no jammed states, and that above this value, all stress-isotropic states are jammed. Recently, simulations and experiments have explored the case of grains with friction. This case is more subtle, and ϕ does not play such a simple role. Recently, several experiments have shown that there exists a range of relatively low ϕ's such that at the same ϕ it is possible to have jammed, unjammed, and fragile states in the sense of Cates et al. This review discusses some of this recent work, and contrasts the cases of jamming for frictionless and frictional granular systems.

  18. Intracranial meningioma with polygonal granular cell appearance in a Chihuahua.

    PubMed

    Takeuchi, Yoshinori; Ohnishi, Yumi; Matsunaga, Satoru; Nakayama, Hiroyuki; Uetsuka, Koji

    2008-05-01

    A menigioma with polygonal granular cell proliferation in an 11-year and 8-month-old male Chihuahua is described. The tumor was observed under the dura matter of the right cerebrum. Microscopically, the tumor consisted of solid growth foci of small- or large- sized polygonal cells, with pale-stained nuclei, prominent nucleoli, and fine granular to foamy eosinophilic cytoplasm. Some of the proliferating cells contained variable amounts of cytoplasmic PAS-positive granules. Immunohistochemical analysis revealed that neoplastic cells were positive for vimentin and S-100 protein. Ultrastructurally, the neoplastic cells contained vesicular structures with a few small round-shaped bodies in the cytoplasm. We diagnosed the case as canine meningioma with granular cell appearance.

  19. Particle Deposition in Granular Media. Final report

    SciTech Connect

    Tien, C.

    1992-12-31

    Objective is to understand aerosol deposition from gas streams flowing through granular media; this is important to the design of granular filtration systems. The following investigations were carried out: transient behavior of granular filtration of aerosols, and stochastic simulation of aerosol deposition in granular media.

  20. Pattern formation in granular and granular-fluid flows

    NASA Astrophysics Data System (ADS)

    Duong, Nhat-Hang P.

    Particles and suspensions of particles in fluids are regularly used in many engineering disciplines such as catalysis and reaction engineering, environmental engineering, pharmaceutical engineering, etc. A few issues that are commonly encountered include ensuring homogeneity in pharmaceutical suspensions, predicting particle transport in atmospheric and effluent streams, and manufacturing uniform composite materials. Yet the fundamental study of particle motions in granular media or in highly concentrated granular suspensions has received little attention. Relevant issues of research interest include development of adaptive models that permit wide ranges of particle concentrations, improvement of analyses that allow physical interpretation of particle motions in any medium, of scales ranging from particle size to system size, and accurate validation of theoretical with experimental data. Given the above shortcomings, this dissertation will focus on investigating basic transport behavior of particles in fluids and developing predictive models for granular media and granular suspensions. Emphasis will be given to combining experiments with computations through examples of pattern forming phenomena in a granular medium and a dense granular-fluid system. The background motivation and the objectives of this dissertation are stated in the opening chapter 1. The next three chapters address these objectives in detail. First, chapter 2 presents experimental evidence, descriptions, and characteristics of novel patterns in a dense granular suspension. This is followed by chapter 3 in which a mean-field continuum model is derived to further elucidate the reported patterning phenomena. Chapter 4 uncovers several novel granular patterns experimentally and is concluded with a coarse-grained phenomenological model for granular surface flows. Lastly, chapter 5 closes the dissertation with conclusions and possible future directions. This work provides additional understanding and

  1. Granularity analysis for mathematical proofs.

    PubMed

    Schiller, Marvin R G

    2013-04-01

    Mathematical proofs generally allow for various levels of detail and conciseness, such that they can be adapted for a particular audience or purpose. Using automated reasoning approaches for teaching proof construction in mathematics presupposes that the step size of proofs in such a system is appropriate within the teaching context. This work proposes a framework that supports the granularity analysis of mathematical proofs, to be used in the automated assessment of students' proof attempts and for the presentation of hints and solutions at a suitable pace. Models for granularity are represented by classifiers, which can be generated by hand or inferred from a corpus of sample judgments via machine-learning techniques. This latter procedure is studied by modeling granularity judgments from four experts. The results provide support for the granularity of assertion-level proofs but also illustrate a degree of subjectivity in assessing step size.

  2. Subharmonic instability of a self-organized granular jet

    NASA Astrophysics Data System (ADS)

    Kollmer, J. E.; Pöschel, T.

    2016-03-01

    Downhill flows of granular matter colliding in the lowest point of a valley, may induce a self-organized jet. By means of a quasi two-dimensional experiment where fine grained sand flows in a vertically sinusoidally agitated cylinder, we show that the emergent jet, that is, a sheet of ejecta, does not follow the frequency of agitation but reveals subharmonic response. The order of the subharmonics is a complex function of the parameters of driving.

  3. Subharmonic instability of a self-organized granular jet

    PubMed Central

    Kollmer, J. E.; Pöschel, T.

    2016-01-01

    Downhill flows of granular matter colliding in the lowest point of a valley, may induce a self-organized jet. By means of a quasi two-dimensional experiment where fine grained sand flows in a vertically sinusoidally agitated cylinder, we show that the emergent jet, that is, a sheet of ejecta, does not follow the frequency of agitation but reveals subharmonic response. The order of the subharmonics is a complex function of the parameters of driving. PMID:27001207

  4. Granular Superconductors and Gravity

    NASA Technical Reports Server (NTRS)

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  5. Simulations of Granular Media

    NASA Astrophysics Data System (ADS)

    Herrmann, H. J.; Müller, M.

    For the last ten years there has been an enormous progress in the simulation of granular media like sand or powders. These simulations consist in simulating trajectories of each particle individually. Essentially one has to solve the Newton's equations including the effects of Coulomb friction and the physics occuring at a collision. But the details of the trajectories are not important for the collective behaviour. Therefore simplifications are introduced on the smallest scales. I will introduce various methods like molecular dynamics that are used to simulate large amounts of particles (over 109). Some of these medhods are based on the exploitation of parallelisation and metacomputing. Other approaches are more stochastic (DSMC Direct Simulation Monte Carlo) which simplify the calculation of collisions, positions and collision times. Very successful has been also the use of cellular automata which have been able to predict details such as the logarithmic tale of sand heaps. I will also discuss numerical techniques used for the surrounding fluid. This can be water in the case of sedimentation or air when one studies the formation of dunes in the desert. The calculation of velocity and pressure field of the fluid are done using multigrid techniques on parallel computers. We will compare the performance of the various techniques and show some benchmarks on the dependence on the size of the system, the density of particles and the number of processors used.

  6. Effects of cohesion on the flow patterns of granular materials in spouted beds

    NASA Astrophysics Data System (ADS)

    Zhu, Runru; Li, Shuiqing; Yao, Qiang

    2013-02-01

    Two-dimensional spouted bed, capable to provide both dilute granular gas and dense granular solid flow patterns in one system, was selected as a prototypical system for studying granular materials. Effects of liquid cohesion on such kind of complex granular patterns were studied using particle image velocimetry. It is seen that the addition of liquid oils by a small fraction of 10-3-10-2 causes a remarkable narrowing (about 15%) of the spout area. In the dense annulus, as the liquid fraction increases, the downward particle velocity gradually decreases and approaches a minimum where, at a microscopic grain scale, the liquid bridge reaches spherical regimes with a maximum capillarity. Viscous lubrication effect is observed at a much higher fraction but is really weak with respect to the capillary effect. In the dilute spout, in contrast to the dry grains, the wet grains have a lightly smaller acceleration in the initial 1/3 of the spout, but have a dramatically higher acceleration in the rest of the spout. We attribute the former to the additional work needed to overcome interparticle cohesion during particle entrainment at the spout-annulus interface. Then, using mass and momentum balances, the latter is explained by the relative higher drag force resulting from both higher gas velocities and higher voidages due to spout narrowing in the wet system. The experimental findings will provide useful data for the validation of discrete element simulation of cohesive granular-fluid flows.

  7. Silo Collapse under Granular Discharge

    NASA Astrophysics Data System (ADS)

    Gutiérrez, G.; Colonnello, C.; Boltenhagen, P.; Darias, J. R.; Peralta-Fabi, R.; Brau, F.; Clément, E.

    2015-01-01

    We investigate, at a laboratory scale, the collapse of cylindrical shells of radius R and thickness t induced by a granular discharge. We measure the critical filling height for which the structure fails upon discharge. We observe that the silos sustain filling heights significantly above an estimation obtained by coupling standard shell-buckling and granular stress distribution theories. Two effects contribute to stabilize the structure: (i) below the critical filling height, a dynamical stabilization due to granular wall friction prevents the localized shell-buckling modes to grow irreversibly; (ii) above the critical filling height, collapse occurs before the downward sliding motion of the whole granular column sets in, such that only a partial friction mobilization is at play. However, we notice also that the critical filling height is reduced as the grain size d increases. The importance of grain size contribution is controlled by the ratio d /√{R t }. We rationalize these antagonist effects with a novel fluid-structure theory both accounting for the actual status of granular friction at the wall and the inherent shell imperfections mediated by the grains. This theory yields new scaling predictions which are compared with the experimental results.

  8. Different Effects of Roughness (Granularity) and Hydrophobicity

    NASA Astrophysics Data System (ADS)

    Shirtcliffe, Neil; McHale, Glen; Hamlett, Christopher; Newton, Michael

    2010-05-01

    With thanks to Stefan Doerr and Jorge Mataix-Solera for their invitation Superhydrophobicity is an interesting effect that appears to be simple on the outset; increased surface area from roughness increases interfacial area and therefore energy loss or gain. More extreme roughness prevents total wetting, resulting in gas pockets present at the surface and a drastic change in the properties of the system. Increases in complexity of the system, by adding porosity (granularity), allowing the structures to move, varying the shape of the roughness or the composition of the liquid used often has unexpected effects. Here we will consider a few of these related to complex topography. Overhanging features are commonly used in test samples as they perform better in some tests than simple roughness. It has been shown to be a prerequisite for superoleophobic surfaces as it allows liquids to be suspended for contact angles considerably below 90°. It also allows trapping of gas in lower layers even if the first layer is flooded. This is important in soils as a fixed bed of granules behaves just like a surface with overhanging roughness. Using simple geometry it is possible to predict at what contact angle penetration will occur. Plants have some structured superhydrophobic surfaces and we have shown that some use them in conjunction with other structured surfaces to control water flows. This allows some plants to survive in difficult environments and shows us how subtly different structures interact completely differently with water. Long fibres can either cause water droplets to roll over a plant surface or halt it in its tracks. Implications of this in soils include predicting when particles will adhere more strongly to water drops and why organic fibrous material may play a greater role in the behaviour of water in soils than may be expected from the amount present. The garden snail uses a biosurfactant that is very effective at wetting surfaces and can crawl over most

  9. Granular Rayleigh-Taylor instability

    SciTech Connect

    Vinningland, Jan Ludvig; Johnsen, Oistein; Flekkoey, Eirik G.; Maaloey, Knut Joergen; Toussaint, Renaud

    2009-06-18

    A granular instability driven by gravity is studied experimentally and numerically. The instability arises as grains fall in a closed Hele-Shaw cell where a layer of dense granular material is positioned above a layer of air. The initially flat front defined by the grains subsequently develops into a pattern of falling granular fingers separated by rising bubbles of air. A transient coarsening of the front is observed right from the start by a finger merging process. The coarsening is later stabilized by new fingers growing from the center of the rising bubbles. The structures are quantified by means of Fourier analysis and quantitative agreement between experiment and computation is shown. This analysis also reveals scale invariance of the flow structures under overall change of spatial scale.

  10. Initiation of immersed granular avalanches

    NASA Astrophysics Data System (ADS)

    Mutabaruka, Patrick; Delenne, Jean-Yves; Soga, Kenichi; Radjai, Farhang

    2014-05-01

    By means of coupled molecular dynamics-computational fluid dynamics simulations, we analyze the initiation of avalanches in a granular bed of spherical particles immersed in a viscous fluid and inclined above its angle of repose. In quantitative agreement with experiments, we find that the bed is unstable for a packing fraction below 0.59 but is stabilized above this packing fraction by negative excess pore pressure induced by the effect of dilatancy. From detailed numerical data, we explore the time evolution of shear strain, packing fraction, excess pore pressures, and granular microstructure in this creeplike pressure redistribution regime, and we show that they scale excellently with a characteristic time extracted from a model based on the balance of granular stresses in the presence of a negative excess pressure and its interplay with dilatancy. The cumulative shear strain at failure is found to be ≃0.2, in close agreement with the experiments, irrespective of the initial packing fraction and inclination angle. Remarkably, the avalanche is triggered when dilatancy vanishes instantly as a result of fluctuations while the average dilatancy is still positive (expanding bed) with a packing fraction that declines with the initial packing fraction. Another nontrivial feature of this creeplike regime is that, in contrast to dry granular materials, the internal friction angle of the bed at failure is independent of dilatancy but depends on the inclination angle, leading therefore to a nonlinear dependence of the excess pore pressure on the inclination angle. We show that this behavior may be described in terms of the contact network anisotropy, which increases with a nearly constant connectivity and levels off at a value (critical state) that increases with the inclination angle. These features suggest that the behavior of immersed granular materials is controlled not only directly by hydrodynamic forces acting on the particles but also by the influence of the

  11. Initiation of immersed granular avalanches.

    PubMed

    Mutabaruka, Patrick; Delenne, Jean-Yves; Soga, Kenichi; Radjai, Farhang

    2014-05-01

    By means of coupled molecular dynamics-computational fluid dynamics simulations, we analyze the initiation of avalanches in a granular bed of spherical particles immersed in a viscous fluid and inclined above its angle of repose. In quantitative agreement with experiments, we find that the bed is unstable for a packing fraction below 0.59 but is stabilized above this packing fraction by negative excess pore pressure induced by the effect of dilatancy. From detailed numerical data, we explore the time evolution of shear strain, packing fraction, excess pore pressures, and granular microstructure in this creeplike pressure redistribution regime, and we show that they scale excellently with a characteristic time extracted from a model based on the balance of granular stresses in the presence of a negative excess pressure and its interplay with dilatancy. The cumulative shear strain at failure is found to be ≃ 0.2, in close agreement with the experiments, irrespective of the initial packing fraction and inclination angle. Remarkably, the avalanche is triggered when dilatancy vanishes instantly as a result of fluctuations while the average dilatancy is still positive (expanding bed) with a packing fraction that declines with the initial packing fraction. Another nontrivial feature of this creeplike regime is that, in contrast to dry granular materials, the internal friction angle of the bed at failure is independent of dilatancy but depends on the inclination angle, leading therefore to a nonlinear dependence of the excess pore pressure on the inclination angle. We show that this behavior may be described in terms of the contact network anisotropy, which increases with a nearly constant connectivity and levels off at a value (critical state) that increases with the inclination angle. These features suggest that the behavior of immersed granular materials is controlled not only directly by hydrodynamic forces acting on the particles but also by the influence of the

  12. Density waves in granular flow

    NASA Astrophysics Data System (ADS)

    Herrmann, H. J.; Flekkøy, E.; Nagel, K.; Peng, G.; Ristow, G.

    Ample experimental evidence has shown the existence of spontaneous density waves in granular material flowing through pipes or hoppers. Using Molecular Dynamics Simulations we show that several types of waves exist and find that these density fluctuations follow a 1/f spectrum. We compare this behaviour to deterministic one-dimensional traffic models. If positions and velocities are continuous variables the model shows self-organized criticality driven by the slowest car. We also present Lattice Gas and Boltzmann Lattice Models which reproduce the experimentally observed effects. Density waves are spontaneously generated when the viscosity has a nonlinear dependence on density which characterizes granular flow.

  13. Granular cell ameloblastoma of mandible.

    PubMed

    Jansari, Trupti R; Samanta, Satarupa T; Trivedi, Priti P; Shah, Manoj J

    2014-01-01

    Ameloblastoma is a neoplasm of odontogenic epithelium, especially of enamel organ-type tissue that has not undergone differentiation to the point of hard tissue formation. Granular cell ameloblastoma is a rare condition, accounting for 3-5% of all ameloblastoma cases. A 30-year-old female patient presented with the chief complaint of swelling at the right lower jaw region since 1 year. Orthopantomogram and computed tomography scan was suggestive of primary bone tumor. Histopathologically, diagnosis of granular cell ameloblastoma of right mandible was made.

  14. DUNE - a granular flow code

    SciTech Connect

    Slone, D M; Cottom, T L; Bateson, W B

    2004-11-23

    DUNE was designed to accurately model the spectrum of granular. Granular flow encompasses the motions of discrete particles. The particles are macroscopic in that there is no Brownian motion. The flow can be thought of as a dispersed phase (the particles) interacting with a fluid phase (air or water). Validation of the physical models proceeds in tandem with simple experimental confirmation. The current development team is working toward the goal of building a flexible architecture where existing technologies can easily be integrated to further the capability of the simulation. We describe the DUNE architecture in some detail using physics models appropriate for an imploding liner experiment.

  15. Geometric morphology of granular materials

    NASA Astrophysics Data System (ADS)

    Schlei, Bernd R.; Prasad, Lakshman; Skourikhine, Alexei N.

    2000-10-01

    We present a new method to transform the spectral pixel information of a micrograph into an affine geometric description, which allows us to analyze the morphology of granular materials. We use spectral and pulse-coupled neural network based segmentation techniques to generate blobs, and a newly developed algorithm to extract dilated contours. A constrained Delaunay tessellation of the contour points results in a triangular mesh. This mesh is the basic ingredient of the Chodal Axis Transform, which provides a morphological decomposition of shapes. Such decomposition allows for grain separation and the efficient computation of the statistical features of granular materials.

  16. Unifying suspension and granular rheology.

    PubMed

    Boyer, François; Guazzelli, Élisabeth; Pouliquen, Olivier

    2011-10-28

    Using an original pressure-imposed shear cell, we study the rheology of dense suspensions. We show that they exhibit a viscoplastic behavior similarly to granular media successfully described by a frictional rheology and fully characterized by the evolution of the friction coefficient μ and the volume fraction ϕ with a dimensionless viscous number I(v). Dense suspension and granular media are thus unified under a common framework. These results are shown to be compatible with classical empirical models of suspension rheology and provide a clear determination of constitutive laws close to the jamming transition.

  17. Wet solids flow enhancement

    SciTech Connect

    Caram, H.S.; Agrawal, D.K.; Foster, N.

    1997-07-01

    The objective was to visualize the flow of granular materials in the silo using Nuclear Magnetic Resonance. This was done by introducing traces. Mustard seeds and poppy seeds were used as trace particles. The region sampled was a cylinder 25 mm in diameter and 40 mm in length. Eight slices containing 128 by 128 to 256 by 256 pixels were generated for each image.

  18. Adsorption of methyl tertiary butyl ether on granular zeolites: Batch and column studies.

    PubMed

    Abu-Lail, Laila; Bergendahl, John A; Thompson, Robert W

    2010-06-15

    Methyl tertiary butyl ether (MTBE) has been shown to be readily removed from water with powdered zeolites, but the passage of water through fixed-beds of very small powdered zeolites produces high friction losses not encountered in flow through larger sized granular materials. In this study, equilibrium and kinetic adsorption of MTBE onto granular zeolites, a coconut shell granular activated carbon (CS-1240), and a commercial carbon adsorbent (CCA) sample was evaluated. In addition, the effect of natural organic matter (NOM) on MTBE adsorption was evaluated. Batch adsorption experiments determined that ZSM-5 was the most effective granular zeolite for MTBE adsorption. Further equilibrium and kinetic experiments verified that granular ZSM-5 is superior to CS-1240 and CCA in removing MTBE from water. No competitive adsorption effects between NOM and MTBE were observed for adsorption to granular ZSM-5 or CS-1240, however there was competition between NOM and MTBE for adsorption onto the CCA granules. Fixed-bed adsorption experiments for longer run times were performed using granular ZSM-5. The bed depth service time model (BDST) was used to analyze the breakthrough data.

  19. Adsorption of Methyl Tertiary Butyl Ether on Granular Zeolites: Batch and Column Studies

    PubMed Central

    Abu-Lail, Laila; Bergendahl, John A.; Thompson, Robert W.

    2010-01-01

    Methyl tertiary butyl ether (MTBE) has been shown to be readily removed from water with powdered zeolites, but the passage of water through fixed beds of very small powdered zeolites produces high friction losses not encountered in flow through larger sized granular materials. In this study, equilibrium and kinetic adsorption of MTBE onto granular zeolites, a coconut shell granular activated carbon (CS-1240), and a commercial carbon adsorbent (CCA) sample was evaluated. In addition, the effect of natural organic matter (NOM) on MTBE adsorption was evaluated. Batch adsorption experiments determined that ZSM-5 was the most effective granular zeolite for MTBE adsorption. Further equilibrium and kinetic experiments verified that granular ZSM-5 is superior to CS-1240 and CCA in removing MTBE from water. No competitive-adsorption effects between NOM and MTBE were observed for adsorption to granular ZSM-5 or CS-1240, however there was competition between NOM and MTBE for adsorption onto the CCA granules. Fixed-bed adsorption experiments for longer run times were performed using granular ZSM-5. The bed depth service time model (BDST) was used to analyze the breakthrough data. PMID:20153106

  20. Very, Very Fast Wetting

    NASA Technical Reports Server (NTRS)

    Jacqmin, David; Lee, Chi-Ming (Technical Monitor); Salzman, Jack (Technical Monitor)

    2001-01-01

    Just after formation, optical fibers are wetted stably with acrylate at capillary numbers routinely exceeding 1000. It is hypothesized that this is possible because of dissolution of air into the liquid coating. A lubrication/boundary integral analysis that includes gas diffusion and solubility is developed. It is applied using conservatively estimated solubility and diffusivity coefficients and solutions are found that are consistent with industry practice and with the hypothesis. The results also agree with the claim of Deneka, Kar & Mensah (1988) that the use of high solubility gases to bathe a wetting line allows significantly greater wetting speeds. The solutions indicate a maximum speed of wetting which increases with gas solubility and with reduction in wetting-channel diameter.

  1. Marginal Matter

    NASA Astrophysics Data System (ADS)

    van Hecke, Martin

    2013-03-01

    All around us, things are falling apart. The foam on our cappuccinos appears solid, but gentle stirring irreversibly changes its shape. Skin, a biological fiber network, is firm when you pinch it, but soft under light touch. Sand mimics a solid when we walk on the beach but a liquid when we pour it out of our shoes. Crucially, a marginal point separates the rigid or jammed state from the mechanical vacuum (freely flowing) state - at their marginal points, soft materials are neither solid nor liquid. Here I will show how the marginal point gives birth to a third sector of soft matter physics: intrinsically nonlinear mechanics. I will illustrate this with shock waves in weakly compressed granular media, the nonlinear rheology of foams, and the nonlinear mechanics of weakly connected elastic networks.

  2. Mechanics of Granular Materials (MGM)

    NASA Technical Reports Server (NTRS)

    Alshibli, Khalid A.; Costes, Nicholas C.; Porter, Ronald F.

    1996-01-01

    The constitutive behavior of uncemented granular materials such as strength, stiffness, and localization of deformations are to a large extend derived from interparticle friction transmitted between solid particles and particle groups. Interparticle forces are highly dependent on gravitational body forces. At very low effective confining pressures, the true nature of the Mohr envelope, which defines the Mohr-Coulomb failure criterion for soils, as well as the relative contribution of each of non-frictional components to soil's shear strength cannot be evaluated in terrestrial laboratories. Because of the impossibility of eliminating gravitational body forces on earth, the weight of soil grains develops interparticle compressive stresses which mask true soil constitutive behavior even in the smallest samples of models. Therefore the microgravity environment induced by near-earth orbits of spacecraft provides unique experimental opportunities for testing theories related to the mechanical behavior of terrestrial granular materials. Such materials may include cohesionless soils, industrial powders, crushed coal, etc. This paper will describe the microgravity experiment, 'Mechanics of Granular Materials (MGM)', scheduled to be flown on Space Shuttle-MIR missions. The paper will describe the experiment's hardware, instrumentation, specimen preparation procedures, testing procedures in flight, as well as a brief summary of the post-mission analysis. It is expected that the experimental results will significantly improve the understanding of the behavior of granular materials under very low effective stress levels.

  3. Dynamic granularity of imaging systems

    SciTech Connect

    Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; Porter, John L.

    2015-11-04

    Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the “dynamic granularity” Gdyn as a standardized, objective relation between a detector’s spatial resolution (granularity) and dynamic range for complex imaging systems in a given environment rather than the widely found characterization of detectors such as cameras or films by themselves. We found that this relation can partly be explained through consideration of the signal’s photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging system’s performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. Our article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandia’s Z-Backlighter facility.

  4. Dynamic granularity of imaging systems

    DOE PAGES

    Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; ...

    2015-11-04

    Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the “dynamic granularity” Gdyn as a standardized, objective relation between a detector’s spatial resolution (granularity) and dynamic range for complex imaging systems in a given environment rathermore » than the widely found characterization of detectors such as cameras or films by themselves. We found that this relation can partly be explained through consideration of the signal’s photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging system’s performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. Our article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandia’s Z-Backlighter facility.« less

  5. A cohesive granular material with tunable elasticity

    PubMed Central

    Hemmerle, Arnaud; Schröter, Matthias; Goehring, Lucas

    2016-01-01

    By mixing glass beads with a curable polymer we create a well-defined cohesive granular medium, held together by solidified, and hence elastic, capillary bridges. This material has a geometry similar to a wet packing of beads, but with an additional control over the elasticity of the bonds holding the particles together. We show that its mechanical response can be varied over several orders of magnitude by adjusting the size and stiffness of the bridges, and the size of the particles. We also investigate its mechanism of failure under unconfined uniaxial compression in combination with in situ x-ray microtomography. We show that a broad linear-elastic regime ends at a limiting strain of about 8%, whatever the stiffness of the agglomerate, which corresponds to the beginning of shear failure. The possibility to finely tune the stiffness, size and shape of this simple material makes it an ideal model system for investigations on, for example, fracturing of porous rocks, seismology, or root growth in cohesive porous media. PMID:27774988

  6. A cohesive granular material with tunable elasticity

    NASA Astrophysics Data System (ADS)

    Hemmerle, Arnaud; Schröter, Matthias; Goehring, Lucas

    2016-10-01

    By mixing glass beads with a curable polymer we create a well-defined cohesive granular medium, held together by solidified, and hence elastic, capillary bridges. This material has a geometry similar to a wet packing of beads, but with an additional control over the elasticity of the bonds holding the particles together. We show that its mechanical response can be varied over several orders of magnitude by adjusting the size and stiffness of the bridges, and the size of the particles. We also investigate its mechanism of failure under unconfined uniaxial compression in combination with in situ x-ray microtomography. We show that a broad linear-elastic regime ends at a limiting strain of about 8%, whatever the stiffness of the agglomerate, which corresponds to the beginning of shear failure. The possibility to finely tune the stiffness, size and shape of this simple material makes it an ideal model system for investigations on, for example, fracturing of porous rocks, seismology, or root growth in cohesive porous media.

  7. Fingering, Fracturing and Dissolution in Granular Media

    NASA Astrophysics Data System (ADS)

    Juanes, R.; Cueto-Felgueroso, L.; Trojer, M.; Zhao, B.; Fu, X.

    2014-12-01

    The displacement of one fluid by another in a porous medium give rise to a rich variety of hydrodynamic instabilities. Beyond their scientific value as fascinating models of pattern formation, unstable porous-media flows are essential to understanding many natural and man-made processes, including water infiltration in the vadose zone, carbon dioxide injection and storage in deep saline aquifers, and hydrocarbon recovery. Here, we review the pattern-selection mechanisms of a wide spectrum of porous-media flows that develop hydrodynamic instabilities, discuss their origin and the mathematical models that have been used to describe them. We point out many challenges that remain to be resolved in the context of multiphase flows, and suggest modeling approaches that may offer new quantitative understanding. In particular, I will present experimental, theoretical and computational results for: (1) fluid spreading under partial wetting; (2) the impact of wettability on viscously unstable multiphase flow in porous media; (3) capillary fracturing in granular media; and (4) rock dissolution during convective mixing in porous media.

  8. Particle deposition in granular media: Progress report

    SciTech Connect

    Tien, Chi

    1987-01-01

    This paper discusses topics on particle deposition in granular media. The six topics discussed are: experimental determination of initial collection efficiency in granular beds - an assessment of the effect of instrument sensitivity and the extent of particle bounce-off; deposition of polydispersed aerosols in granular media; in situ observation of aerosol deposition in a two-dimensional model filter; solid velocity in cross-flow granular moving bed; aerosol deposition in granular moving bed; and aerosol deposition in a magnetically stabilized fluidized bed. (LSP)

  9. Armoring a droplet: Soft jamming of a dense granular interface

    NASA Astrophysics Data System (ADS)

    Lagubeau, Guillaume; Rescaglio, Antonella; Melo, Francisco

    2014-09-01

    Droplets and bubbles protected by armors of particles have found vast applications in encapsulation, stabilization of emulsions and foams, or flotation processes. The liquid phase stores capillary energy, while concurrently the solid contacts of the granular network induce friction and energy dissipation, leading to hybrid interfaces of combined properties. By means of nonintrusive tensiometric methods and structural measurements, we distinguish three surface phases of increasing rigidity during the evaporation of armored droplets. The emergence of surface rigidity is reminiscent of jamming of granular matter, but it occurs differently since it is marked by a step by step hardening under surface compression. These results show that the concept of the effective surface tension remains useful only below the first jamming transition. Beyond this point, the surface stresses become anisotropic.

  10. Armoring a droplet: soft jamming of a dense granular interface.

    PubMed

    Lagubeau, Guillaume; Rescaglio, Antonella; Melo, Francisco

    2014-09-01

    Droplets and bubbles protected by armors of particles have found vast applications in encapsulation, stabilization of emulsions and foams, or flotation processes. The liquid phase stores capillary energy, while concurrently the solid contacts of the granular network induce friction and energy dissipation, leading to hybrid interfaces of combined properties. By means of nonintrusive tensiometric methods and structural measurements, we distinguish three surface phases of increasing rigidity during the evaporation of armored droplets. The emergence of surface rigidity is reminiscent of jamming of granular matter, but it occurs differently since it is marked by a step by step hardening under surface compression. These results show that the concept of the effective surface tension remains useful only below the first jamming transition. Beyond this point, the surface stresses become anisotropic.

  11. Reduction of bromate by granular activated carbon

    SciTech Connect

    Kirisits, M.J.; Snoeyink, V.L.; Kruithof, J.C.

    1998-07-01

    Ozonation of waters containing bromide can lead to the formation of bromate, a probable human carcinogen. Since bromate will be regulated at 10 {micro}g/L by the Stage 1 Disinfectants/Disinfection By-Products Rule, there is considerable interest in finding a suitable method of bromate reduction. Granular activated carbon (GAC) can be used to chemically reduce bromate to bromide, but interference from organic matter and anions present in natural water render this process inefficient. In an effort to improve bromate reduction by GAC, several modifications were made to the GAC filtration process. The use of a biologically active carbon (BAC) filter ahead of a fresh GAC filter with and without preozonation, to remove the biodegradable organic matter, did not substantially improve the bromate removal of the GAC filter. The use of the BAC filter for biological bromate reduction proved to be the most encouraging experiment. By lowering the dissolved oxygen in the influent to the BAC from 8.0 mg/L to 2.0 mg/L, the percent bromate removal increased from 42% to 61%.

  12. Whole Effluent Toxicity (WET)

    EPA Pesticide Factsheets

    Whole Effluent Toxicity (WET) describes the aggregate toxic effect of an aqueous sample (e.g., whole effluent wastewater discharge) as measured by an organism's response upon exposure to the sample (e.g., lethality, impaired growth, or reproduction).

  13. HYPERELASTIC MODELS FOR GRANULAR MATERIALS

    SciTech Connect

    Humrickhouse, Paul W; Corradini, Michael L

    2009-01-29

    A continuum framework for modeling of dust mobilization and transport, and the behavior of granular systems in general, has been reviewed, developed and evaluated for reactor design applications. The large quantities of micron-sized particles expected in the international fusion reactor design, ITER, will accumulate into piles and layers on surfaces, which are large relative to the individual particle size; thus, particle-particle, rather than particle-surface, interactions will determine the behavior of the material in bulk, and a continuum approach is necessary and justified in treating the phenomena of interest; e.g., particle resuspension and transport. The various constitutive relations that characterize these solid particle interactions in dense granular flows have been discussed previously, but prior to mobilization their behavior is not even fluid. Even in the absence of adhesive forces between particles, dust or sand piles can exist in static equilibrium under gravity and other forces, e.g., fluid shear. Their behavior is understood to be elastic, though not linear. The recent “granular elasticity” theory proposes a non-linear elastic model based on “Hertz contacts” between particles; the theory identifies the Coulomb yield condition as a requirement for thermodynamic stability, and has successfully reproduced experimental results for stress distributions in sand piles. The granular elasticity theory is developed and implemented in a stand- alone model and then implemented as part of a finite element model, ABAQUS, to determine the stress distributions in dust piles subjected to shear by a fluid flow. We identify yield with the onset of mobilization, and establish, for a given dust pile and flow geometry, the threshold pressure (force) conditions on the surface due to flow required to initiate it. While the granular elasticity theory applies strictly to cohesionless granular materials, attractive forces are clearly important in the interaction of

  14. WetNet operations

    NASA Technical Reports Server (NTRS)

    Goodman, H. Michael; Smith, Matt; Lafontaine, Vada; Lafontaine, Frank; Moss, Don

    1991-01-01

    WetNet is an interdisciplinary Earth science data analysis and research project with an emphasis on the study of the global hydrological cycle. The project goals are to facilitate scientific discussion, collaboration, and interaction among a selected group of investigators by providing data access and data analysis software on a personal computer. The WetNet system fulfills some of the functionality of a prototype Product Generation System (PGS), Data Archive and Distribution System (DADS), and Information Management System for the Distributed Active Archive Center. The PGS functionality is satisfied in WetNet by processing the Special Sensor Microwave/Imager (SSM/I) data into a standard format (McIDAS) data sets and generating geophysical parameter Level II browse data sets. The DADS functionality is fulfilled when the data sets are archived on magneto optical cartridges and distributed to the WetNet investigators. The WetNet data sets on the magneto optical cartridges contain the complete WetNet processing, catalogue, and menu software in addition to SSM/I orbit data for the respective two week time period.

  15. In-Situ Regeneration of Saturated Granular Activated Carbon by an Iron Oxide Nanocatalyst

    EPA Science Inventory

    Granular activated carbon (GAC) can remove trace organic pollutants and natural organic matter (NOM) from industrial and municipal waters. This paper evaluates an iron nanocatalyst approach, based on Fenton-like oxidation reactions, to regenerate spent GAC within a packed bed con...

  16. Characterizing Three Dimensional Granular Materials

    NASA Astrophysics Data System (ADS)

    Chen, David; Bares, Jonathan; Zheng, Hu; Bester, Casey; Behringer, Robert

    2016-11-01

    We use systems of hydrogel particles to determine the microscopic response of 3D granular systems to deformations near jamming. We visualize the particles using a laser scan technique, and we determine the motion of the particles along with their inter-particle forces and contacts from the reconstructed scans. We focus on their response to shear with low friction. NSF-DMF-1206351, NASA NNX15AD38G.

  17. Bipedal locomotion in granular media

    NASA Astrophysics Data System (ADS)

    Kingsbury, Mark; Zhang, Tingnan; Goldman, Daniel

    Bipedal walking, locomotion characterized by alternating swing and double support phase, is well studied on ground where feet do not penetrate the substrate. On granular media like sand however, intrusion and extrusion phases also occur. In these phases, relative motion of the two feet requires that one or both feet slip through the material, degrading performance. To study walking in these phases, we designed and studied a planarized bipedal robot (1.6 kg, 42 cm) that walked in a fluidized bed of poppy seeds. We also simulated the robot in a multibody software environment (Chrono) using granular resistive force theory (RFT) to calculate foot forces. In experiment and simulation, the robot experienced slip during the intrusion phase, with the experiment presenting additional slip due to motor control error during the double support phase. This exaggerated slip gave insight (through analysis of ground reaction forces in simulation) into how slip occurs when relative motion exists between the two feet in the granular media, where the foot with higher relative drag forces (from its instantaneous orientation, rotation, relative direction of motion, and depth) remains stationary. With this relationship, we generated walking gaits for the robot to walk with minimal slip.

  18. Dynamic compaction of granular materials

    PubMed Central

    Favrie, N.; Gavrilyuk, S.

    2013-01-01

    An Eulerian hyperbolic multiphase flow model for dynamic and irreversible compaction of granular materials is constructed. The reversible model is first constructed on the basis of the classical Hertz theory. The irreversible model is then derived in accordance with the following two basic principles. First, the entropy inequality is satisfied by the model. Second, the corresponding ‘intergranular stress’ coming from elastic energy owing to contact between grains decreases in time (the granular media behave as Maxwell-type materials). The irreversible model admits an equilibrium state corresponding to von Mises-type yield limit. The yield limit depends on the volume fraction of the solid. The sound velocity at the yield surface is smaller than that in the reversible model. The last one is smaller than the sound velocity in the irreversible model. Such an embedded model structure assures a thermodynamically correct formulation of the model of granular materials. The model is validated on quasi-static experiments on loading–unloading cycles. The experimentally observed hysteresis phenomena were numerically confirmed with a good accuracy by the proposed model. PMID:24353466

  19. Membrane-based wet electrostatic precipitation

    SciTech Connect

    David J. Bayless; Liming Shi; Gregory Kremer; Ben J. Stuart; James Reynolds; John Caine

    2005-06-01

    Emissions of fine particulate matter, PM2.5, in both primary and secondary form, are difficult to capture in typical dry electrostatic precipitators (ESPs). Wet (or waterbased) ESPs are well suited for collection of acid aerosols and fine particulates because of greater corona power and virtually no re-entrainment. However, field disruptions because of spraying (misting) of water, formation of dry spots (channeling), and collector surface corrosion limit the applicability of current wet ESPs in the control of secondary PM2.5. Researchers at Ohio University have patented novel membrane collection surfaces to address these problems. Water-based cleaning in membrane collectors made of corrosion-resistant fibers is facilitated by capillary action between the fibers, maintaining an even distribution of water. This paper presents collection efficiency results of lab-scale and pilot-scale testing at First Energy's Bruce Mansfield Plant for the membrane-based wet ESP. The data indicate that a membrane wet ESP was more effective at collecting fine particulates, acid aerosols, and oxidized mercury than the metal-plate wet ESP, even with {approximately}15% less collecting area. 15 refs., 7 figs., 6 tabs.

  20. Membrane-based wet electrostatic precipitation.

    PubMed

    Bayless, David J; Shi, Liming; Kremer, Gregory; Stuart, Ben J; Reynolds, James; Caine, John

    2005-06-01

    Emissions of fine particulate matter, PM2.5, in both primary and secondary form, are difficult to capture in typical dry electrostatic precipitators (ESPs). Wet (or water-based) ESPs are well suited for collection of acid aerosols and fine particulates because of greater corona power and virtually no re-entrainment. However, field disruptions because of spraying (misting) of water, formation of dry spots (channeling), and collector surface corrosion limit the applicability of current wet ESPs in the control of secondary PM2.5. Researchers at Ohio University have patented novel membrane collection surfaces to address these problems. Water-based cleaning in membrane collectors made of corrosion-resistant fibers is facilitated by capillary action between the fibers, maintaining an even distribution of water. This paper presents collection efficiency results of lab-scale and pilot-scale testing at FirstEnergy's Bruce Mansfield Plant for the membrane-based wet ESP. The data indicate that a membrane wet ESP was more effective at collecting fine particulates, acid aerosols, and oxidized mercury than the metal-plate wet ESP, even with approximately 15% less collecting area.

  1. Capturing nonlocal effects in 2D granular flows

    NASA Astrophysics Data System (ADS)

    Kamrin, Ken; Koval, Georg

    2013-03-01

    There is an industrial need, and a scientific desire, to produce a continuum model that can predict the flow of dense granular matter in an arbitrary geometry. A viscoplastic continuum approach, developed over recent years, has shown some ability to approximate steady flow and stress profiles in multiple inhomogeneous flow environments. However, the model incorrectly represents phenomena observed in the slow, creeping flow regime. As normalized flow-rate decreases, granular stresses are observed to become largely rate-independent and a dominating length-scale emerges in the mechanics. This talk attempts to account for these effects, in the simplified case of 2D, using the notion of nonlocal fluidity, which has proven successful in treating nonlocal effects in emulsions. The idea is to augment the local granular fluidity law with a diffusive second-order term scaled by the particle size, which spreads flowing zones accordingly. Below the yield stress, the local contribution vanishes and the fluidity becomes rate-independent, as we require. We implement the modified law in multiple geometries and validate its flow and stress predictions in multiple geometries compared against discrete particle simulations. In so doing, we demonstrate that the nonlocal relation proposed is satisfied universally in a seemingly geometry-independent fashion.

  2. Robophysical study of jumping dynamics on granular media

    NASA Astrophysics Data System (ADS)

    Aguilar, Jeffrey; Goldman, Daniel I.

    2016-03-01

    Characterizing forces on deformable objects intruding into sand and soil requires understanding the solid- and fluid-like responses of such substrates and their effect on the state of the object. The most detailed studies of intrusion in dry granular media have revealed that interactions of fixed-shape objects during free impact (for example, cannonballs) and forced slow penetration can be described by hydrostatic- and hydrodynamic-like forces. Here we investigate a new class of granular interactions: rapid intrusions by objects that change shape (self-deform) through passive and active means. Systematic studies of a simple spring-mass robot jumping on dry granular media reveal that jumping performance is explained by an interplay of nonlinear frictional and hydrodynamic drag as well as induced added mass (unaccounted by traditional intrusion models) characterized by a rapidly solidified region of grains accelerated by the foot. A model incorporating these dynamics reveals that added mass degrades the performance of certain self-deformations owing to a shift in optimal timing during push-off. Our systematic robophysical experiment reveals both new soft-matter physics and principles for robotic self-deformation and control, which together provide principles of movement in deformable terrestrial environments.

  3. Granular packing as model glass formers

    NASA Astrophysics Data System (ADS)

    Wang, Yujie

    2017-01-01

    Static granular packings are model hard-sphere glass formers. The nature of glass transition has remained a hotly debated issue. We review recent experimental progresses in using granular materials to study glass transitions. We focus on the growth of glass order with five-fold symmetry in granular packings and relate the findings to both geometric frustration and random first-order phase transition theories.

  4. The Underlying Physics in Wetted Particle Collisions

    NASA Astrophysics Data System (ADS)

    Donahue, Carly; Hrenya, Christine; Davis, Robert

    2008-11-01

    Wetted granular particles are relevant in many industries including the pharmaceutical and chemical industries and has applications to granulation, filtration, coagulation, spray coating, drying and pneumatic transport. In our current focus, we investigate the dynamics of a three-body normal wetted particle collision. In order to conduct collisions we use an apparatus called a ``Stokes Cradle,'' similar to the Newton's Cradle (desktop toy) except that the target particles are covered with oil. Here, we are able to vary the oil thickness, oil viscosity, and material properties. With a three particle collision there are four possible outcomes: fully agglomerated (FA); Newton's Cradle (NC), the striker and the first target ball are agglomerated and the last target ball is separated; Reverse Newton's Cradle (RNC), the striker is separated and the two targets are agglomerated; and fully separated (FS). Varying the properties of the collisions, we have observed all four outcomes. We use elastohydrodynamics as a theoretical basis for modeling the system. We also have considered the glass transition of the oil as the pressure increases upon impact and the cavitation of the oil as the pressure drops below the vapor pressure upon rebound. A toy model has been developed where the collision is modeled as a series of two-body collisions. A qualitative agreement between the toy model and experiments gives insight into the underlying physics.

  5. Rapid wetting dynamics

    NASA Astrophysics Data System (ADS)

    Carlson, Andreas; Bellani, Gabriele; Amberg, Gustav

    2010-11-01

    Contact lines between solids and liquid or gas interfaces appear in very many instances of fluid flows. This could be coffee stains, water-oil mixtures in oil recovery, hydrophobic feet of insects or leaves in nature. In the present work we elucidate some of the wetting physics governing the very rapid wetting. Experimental and numerical results of spontaneously spreading droplets are presented, where focus is directed towards understanding the very rapid flow regime and highly dynamic initial wetting phase, where the contact line speed is limited by dissipative processes on a molecular scale occurring at the contact line. In particular we show the influence of the surface wettability and the liquid viscosity on the spreading dynamics, such as the contact line motion and dynamic contact angle in time.

  6. Wet storage integrity update

    SciTech Connect

    Bailey, W.J.; Johnson, A.B. Jr.

    1983-09-01

    This report includes information from various studies performed under the Wet Storage Task of the Spent Fuel Integrity Project of the Commercial Spent Fuel Management (CSFM) Program at Pacific Northwest Laboratory. An overview of recent developments in the technology of wet storage of spent water reactor fuel is presented. Licensee Event Reports pertaining to spent fuel pools and the associated performance of spent fuel and storage components during wet storage are discussed. The current status of fuel that was examined under the CSFM Program is described. Assessments of the effect of boric acid in spent fuel pool water on the corrosion and stress corrosion cracking of stainless steel and the stress corrosion cracking of stainless steel piping containing stagnant water at spent fuel pools are discussed. A list of pertinent publications is included. 84 references, 21 figures, 11 tables.

  7. Dynamics of Sheared Granular Materials

    NASA Technical Reports Server (NTRS)

    Kondic, Lou; Utter, Brian; Behringer, Robert P.

    2002-01-01

    This work focuses on the properties of sheared granular materials near the jamming transition. The project currently involves two aspects. The first of these is an experiment that is a prototype for a planned ISS (International Space Station) flight. The second is discrete element simulations (DES) that can give insight into the behavior one might expect in a reduced-g environment. The experimental arrangement consists of an annular channel that contains the granular material. One surface, say the upper surface, rotates so as to shear the material contained in the annulus. The lower surface controls the mean density/mean stress on the sample through an actuator or other control system. A novel feature under development is the ability to 'thermalize' the layer, i.e. create a larger amount of random motion in the material, by using the actuating system to provide vibrations as well control the mean volume of the annulus. The stress states of the system are determined by transducers on the non-rotating wall. These measure both shear and normal components of the stress on different size scales. Here, the idea is to characterize the system as the density varies through values spanning dense almost solid to relatively mobile granular states. This transition regime encompasses the regime usually thought of as the glass transition, and/or the jamming transition. Motivation for this experiment springs from ideas of a granular glass transition, a related jamming transition, and from recent experiments. In particular, we note recent experiments carried out by our group to characterize this type of transition and also to demonstrate/ characterize fluctuations in slowly sheared systems. These experiments give key insights into what one might expect in near-zero g. In particular, they show that the compressibility of granular systems diverges at a transition or critical point. It is this divergence, coupled to gravity, that makes it extremely difficult if not impossible to

  8. Wetting transparency of graphene.

    PubMed

    Rafiee, Javad; Mi, Xi; Gullapalli, Hemtej; Thomas, Abhay V; Yavari, Fazel; Shi, Yunfeng; Ajayan, Pulickel M; Koratkar, Nikhil A

    2012-01-22

    We report that graphene coatings do not significantly disrupt the intrinsic wetting behaviour of surfaces for which surface-water interactions are dominated by van der Waals forces. Our contact angle measurements indicate that a graphene monolayer is wetting-transparent to copper, gold or silicon, but not glass, for which the wettability is dominated by short-range chemical bonding. With increasing number of graphene layers, the contact angle of water on copper gradually transitions towards the bulk graphite value, which is reached for ~6 graphene layers. Molecular dynamics simulations and theoretical predictions confirm our measurements and indicate that graphene's wetting transparency is related to its extreme thinness. We also show a 30-40% increase in condensation heat transfer on copper, as a result of the ability of the graphene coating to suppress copper oxidation without disrupting the intrinsic wettability of the surface. Such an ability to independently tune the properties of surfaces without disrupting their wetting response could have important implications in the design of conducting, conformal and impermeable surface coatings.

  9. Partitioning of fresh crude oil between floating, dispersed and sediment phases: Effect of exposure order to dispersant and granular materials.

    PubMed

    Boglaienko, Daria; Tansel, Berrin

    2016-06-15

    When three or more high and low energy substrates are mixed, wetting order can significantly affect the behavior of the mixture. We analyzed the phase distribution of fresh floating Louisiana crude oil into dispersed, settled and floating phases depending on the exposure sequence to Corexit 9500A (dispersant) and granular materials. In the experiments artificial sea water at salinity 34‰ was used. Limestone (2.00-0.300 mm) and quartz sand (0.300-0.075 mm) were used as the natural granular materials. Dispersant Corexit 9500A increased the amount of dispersed oil up to 33.76 ± 7.04%. Addition of granular materials after the dispersant increased dispersion of oil to 47.96 ± 1.96%. When solid particles were applied on the floating oil before the dispersant, oil was captured as oil-particle aggregates and removed from the floating layer. However, dispersant addition led to partial release of the captured oil, removing it from the aggregated form to the dispersed and floating phases. There was no visible oil aggregation with the granular materials when quartz or limestone was at the bottom of the flask before the addition of oil and dispersant. The results show that granular materials can be effective when applied from the surface for aggregating or dispersing oil. However, the granular materials in the sediments are not effective neither for aggregating nor dispersing floating oil.

  10. Collective workload organization in confined excavation of granular media

    NASA Astrophysics Data System (ADS)

    Monaenkova, Daria; Linevich, Vadim; Goodisman, Michael A.; Goldman, Daniel I.

    2015-03-01

    Many social insects collectively construct large nests in complex substrates; such structures are often composed of narrow tunnels. The benefits of collective construction, including reduced construction costs per worker come with challenges of navigation in crowded, confined spaces. Here we study the workforce organization of groups of S. invicta fire ants creating tunnels in wet granular media. We monitor the activity levels of marked (painted) workers-defined as a number of tunnel visits over 12 hours- during initiation of tunnels. The activity levels are described by a Lorenz curve with a Gini coefficient of ~ 0 . 7 indicating that a majority of the excavation is performed by a minority of workers. We hypothesize that this workload distribution is beneficial for excavation in crowded conditions, and use a 2D cellular automata (CA) model to reproduce behaviors of the excavating ants. CA simulations reveal that tunnel construction rates decrease in groups of equally active animals compared to groups with the natural workload distribution. We use predictions of the CA model to organize collective excavation of granular material by teams of digging robots, and use the robots to test hypotheses of crowded excavation in the physical world. We acknowledge support of National Science Foundation, Physics of Living Systems division.

  11. Impact of Wettability on Fracturing of Nano-Granular Materials

    NASA Astrophysics Data System (ADS)

    Trojer, M.; Juanes, R.

    2014-12-01

    Hydraulic fracturing, or fracking, is a well-known reservoir stimulation technique, by which the permeability of the near-wellbore region is enhanced through the creation of tensile fractures within the rock, formed in the direction perpendicular to the least principal stress. While it is well known that fracturing of granular media strongly depends on the type of media, the pore fluids, and the fracking fluids, the interplay between multiphase flow, wettability and fracture mechanics of shale-like (nano-granular) materials remains poorly understood. Here, we study experimentally the dynamics of multiphase-flow fracking in nano-porous media and its dependence on the wetting properties of the system. The experiments consist in saturating a thin bed of glass beads with a viscous fluid, injecting a less viscous fluid, and imaging the invasion morphology. We investigate three control parameters: the injection rate of the less-viscous invading phase, the confining stress, and the contact angle, which we control by altering the surface chemistry of the beads and the Hele-Shaw cell. We quantify the dynamic fracture pattern by means of particle image velocimetry (PIV), and elucidate the role of wettability on the emerging flow physics at the length scale of the viscous-frictional instability.

  12. PRN 2001-2: Acute Toxicity Data Requirements For Granular Pesticide Products, Including Those With Granular Fertilizers in the Product.

    EPA Pesticide Factsheets

    This PR Notice announces guidance intended to streamline the acute toxicity review and classification process for certain granular pesticide products, including those products that contain granular fertilizers.

  13. Granular media in transformation: dynamics and structure

    NASA Astrophysics Data System (ADS)

    Merceron, Aymeric; Jop, Pierre; Sauret, Alban; SVI, CNRS/Saint-Gobain Team

    2015-11-01

    Sintering, glass melting and other industrially relevant processes turn batches of grains into continuous end products. Such processes involve complex and mostly misunderstood chemical and physical transformations of the granular packing. Affecting the contact network, physicochemical reactions entail mechanical rearrangements. But such reorganizations may also trigger new potential reactions. Granular reactive systems are strongly coupled and need investigations for achieving industrial optimizations. This study is focused on how transformations appearing on its components affect the response of the granular packing. Inert brass disks and grains undergoing well-known transformations like volume decrease are mixed and then confined in a vertical 2D cell. While the system reacts, the granular packing is regularly photographed with a high-resolution camera. Events largely distributed both spatially and temporally occur around reactive grains. Thanks to image processing, this reorganization process is then analyzed. Spatial and temporal amplitudes of events are quantified as well as their local and global impacts on the granular structure.

  14. Extensional Rheology of Granular Staples

    NASA Astrophysics Data System (ADS)

    Franklin, Scott

    2013-03-01

    Collections of U-shaped granular materials (e.g. staples) show a surprising resistance to being pulled apart. We conduct extensional stress-strain experiments on staple piles with vary arm/spine (barb) ratio. The elongation is not smooth, with the pile growing in bursts, reminiscent of intruder motion through ordinary and rod-like granular materials. The force-distance curve shows a power-law scaling, consistent with previous intruder experiments. Surprisingly, there is significant plastic creep of the pile as particles rearrange slightly in response to the increasing force. There is a broad distribution of yield forces that does not seem to evolve as the pile lengthens, suggesting that each yield event is independent of the pile's history. The distribution of yield forces can be interpreted in the context of a Weibullian weakest-link theory that predicts the maximum pile strength to decrease sharply with increasing pile length. From this interpretation arise length and force scales that may be used to characterize the sample. This research supported in part by the NSF (CBET-#1133722) and ACS-PRF (#51438-UR10).

  15. Modeling Size Polydisperse Granular Flows

    NASA Astrophysics Data System (ADS)

    Lueptow, Richard M.; Schlick, Conor P.; Isner, Austin B.; Umbanhowar, Paul B.; Ottino, Julio M.

    2014-11-01

    Modeling size segregation of granular materials has important applications in many industrial processes and geophysical phenomena. We have developed a continuum model for granular multi- and polydisperse size segregation based on flow kinematics, which we obtain from discrete element method (DEM) simulations. The segregation depends on dimensionless control parameters that are functions of flow rate, particle sizes, collisional diffusion coefficient, shear rate, and flowing layer depth. To test the theoretical approach, we model segregation in tri-disperse quasi-2D heap flow and log-normally distributed polydisperse quasi-2D chute flow. In both cases, the segregated particle size distributions match results from full-scale DEM simulations and experiments. While the theory was applied to size segregation in steady quasi-2D flows here, the approach can be readily generalized to include additional drivers of segregation such as density and shape as well as other geometries where the flow field can be characterized including rotating tumbler flow and three-dimensional bounded heap flow. Funded by The Dow Chemical Company and NSF Grant CMMI-1000469.

  16. EPRI wet stacks design guide

    SciTech Connect

    Weilert, C.V.; Pattison, D.C.; Richart, S.D.

    1995-06-01

    Because of the high cost of reheat, wet stacks are being considered for new or retrofit applications of wet FGD systems in the United States. All retrofit systems designed for compliance with Phase I of the Acid Rain Control program under the Clean Air Act have utilized wet stacks. For Phase II, utilities with existing wet FGD systems would benefit from overscrubbing. For those units which currently use bypass reheat, this could be accomplished by closing the bypass to treat the entire boiler flue gas stream. This would require conversion to wet stack operation. Due to the level of interest in these wet stack scenarios for future FGD applications, EPRI, in a tailored collaboration with NYSEG, retained Bums & McDonnell and DynaFlow Systems to prepare a design guide for wet stacks. This paper provides a brief summary of the wet stacks design guide.

  17. BOOK REVIEW: Kinetic Theory of Granular Gases

    NASA Astrophysics Data System (ADS)

    Trizac, Emmanuel

    2005-11-01

    Granular gases are composed of macroscopic bodies kept in motion by an external energy source such as a violent shaking. The behaviour of such systems is quantitatively different from that of ordinary molecular gases: due to the size of the constituents, external fields have a stronger effect on the dynamics and, more importantly, the kinetic energy of the gas is no longer a conserved quantity. The key role of the inelasticity of collisions has been correctly appreciated for about fifteen years, and the ensuing consequences in terms of phase behaviour or transport properties studied in an increasing and now vast body of literature. The purpose of this book is to help the newcomer to the field in acquiring the essential theoretical tools together with some numerical techniques. As emphasized by the authors—who were among the pioneers in the domain— the content could be covered in a one semester course for advanced undergraduates, or it could be incorporated in a more general course dealing with the statistical mechanics of dissipative systems. The book is self-contained, clear, and avoids mathematical complications. In order to elucidate the main physical ideas, heuristic points of views are sometimes preferred to a more rigorous route that would lead to a longer discussion. The 28 chapters are short; they offer exercises and worked examples, solved at the end of the book. Each part is supplemented with a relevant foreword and a useful summary including take-home messages. The editorial work is of good quality, with very few typographical errors. In spite of the title, kinetic theory stricto sensu is not the crux of the matter covered. The authors discuss the consequences of the molecular chaos assumption both at the individual particle level and in terms of collective behaviour. The first part of the book addresses the mechanics of grain collisions. It is emphasized that considering the coefficient of restitution ɛ —a central quantity governing the

  18. Wet chemistry instrument prototype

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A wet chemistry instrument prototype for detecting amino acids in planetary soil samples was developed. The importance of amino acids and their condensation products to the development of life forms is explained. The characteristics of the instrument and the tests which were conducted to determine the materials compatibility are described. Diagrams are provided to show the construction of the instrument. Data obtained from the performance tests are reported.

  19. Recent bright gully deposits on Mars: Wet or dry flow?

    USGS Publications Warehouse

    Pelletier, J.D.; Kolb, K.J.; McEwen, A.S.; Kirk, R.L.

    2008-01-01

    Bright gully sediments attributed to liquid water flow have been deposited on Mars within the past several years. To test the liquid water flow hypothesis, we constructed a high-resolution (1 m/pixel) photogrammetric digital elevation model of a crater in the Centauri Montes region, where a bright gully deposit formed between 2001 and 2005. We conducted one-dimensional (1-D) and 2-D numerical flow modeling to test whether the deposit morphology is most consistent with liquid water or dry granular How. Liquid water flow models that incorporate freezing can match the runout distance of the flow for certain freezing rates but fail to reconstruct the distributary lobe morphology of the distal end of the deposit. Dry granular flow models can match both the observed runout distance and the distal morphology. Wet debris flows with high sediment concentrations are also consistent with the observed morphology because their rheologies are often similar to that of dry granular flows. As such, the presence of liquid water in this flow event cannot be ruled out, but the available evidence is consistent with dry landsliding. ?? 2008 The Geological Society of America.

  20. Numerical Simulations of Granular Processes

    NASA Astrophysics Data System (ADS)

    Richardson, Derek C.; Michel, Patrick; Schwartz, Stephen R.; Ballouz, Ronald-Louis; Yu, Yang; Matsumura, Soko

    2014-11-01

    Spacecraft images and indirect observations including thermal inertia measurements indicate most small bodies have surface regolith. Evidence of granular flow is also apparent in the images. This material motion occurs in very low gravity, therefore in a completely different gravitational environment than on the Earth. Understanding and modeling these motions can aid in the interpretation of imaged surface features that may exhibit signatures of constituent material properties. Also, upcoming sample-return missions to small bodies, and possible future manned missions, will involve interaction with the surface regolith, so it is important to develop tools to predict the surface response. We have added new capabilities to the parallelized N-body gravity tree code pkdgrav [1,2] that permit the simulation of granular dynamics, including multi-contact physics and friction forces, using the soft-sphere discrete-element method [3]. The numerical approach has been validated through comparison with laboratory experiments (e.g., [3,4]). Ongoing and recently completed projects include: impacts into granular materials using different projectile shapes [5]; possible tidal resurfacing of asteroid Apophis during its 2029 encounter [6]; the Brazil-nut effect in low gravity [7]; and avalanche modeling.Acknowledgements: DCR acknowledges NASA (grants NNX08AM39G, NNX10AQ01G, NNX12AG29G) and NSF (AST1009579). PM acknowledges the French agency CNES. SRS works on the NEOShield Project funded under the European Commission’s FP7 program agreement No. 282703. SM acknowledges support from the Center for Theory and Computation at U Maryland and the Dundee Fellowship at U Dundee. Most simulations were performed using the YORP cluster in the Dept. of Astronomy at U Maryland and on the Deepthought High-Performance Computing Cluster at U Maryland.References: [1] Richardson, D.C. et al. 2000, Icarus 143, 45; [2] Stadel, J. 2001, Ph.D. Thesis, U Washington; [3] Schwartz, S.R. et al. 2012, Gran

  1. Capillary fracturing in granular media.

    PubMed

    Holtzman, Ran; Szulczewski, Michael L; Juanes, Ruben

    2012-06-29

    We study the displacement of immiscible fluids in deformable, noncohesive granular media. Experimentally, we inject air into a thin bed of water-saturated glass beads and observe the invasion morphology. The control parameters are the injection rate, the bead size, and the confining stress. We identify three invasion regimes: capillary fingering, viscous fingering, and "capillary fracturing," where capillary forces overcome frictional resistance and induce the opening of conduits. We derive two dimensionless numbers that govern the transition among the different regimes: a modified capillary number and a fracturing number. The experiments and analysis predict the emergence of fracturing in fine-grained media under low confining stress, a phenomenon that likely plays a fundamental role in many natural processes such as primary oil migration, methane venting from lake sediments, and the formation of desiccation cracks.

  2. Capillary Fracturing in Granular Media

    NASA Astrophysics Data System (ADS)

    Holtzman, Ran; Szulczewski, Michael L.; Juanes, Ruben

    2012-06-01

    We study the displacement of immiscible fluids in deformable, noncohesive granular media. Experimentally, we inject air into a thin bed of water-saturated glass beads and observe the invasion morphology. The control parameters are the injection rate, the bead size, and the confining stress. We identify three invasion regimes: capillary fingering, viscous fingering, and “capillary fracturing,” where capillary forces overcome frictional resistance and induce the opening of conduits. We derive two dimensionless numbers that govern the transition among the different regimes: a modified capillary number and a fracturing number. The experiments and analysis predict the emergence of fracturing in fine-grained media under low confining stress, a phenomenon that likely plays a fundamental role in many natural processes such as primary oil migration, methane venting from lake sediments, and the formation of desiccation cracks.

  3. Aerofractures in Confined Granular Media

    NASA Astrophysics Data System (ADS)

    Eriksen, Fredrik K.; Turkaya, Semih; Toussaint, Renaud; Måløy, Knut J.; Flekkøy, Eirik G.

    2015-04-01

    We will present the optical analysis of experimental aerofractures in confined granular media. The study of this generic process may have applications in industries involving hydraulic fracturing of tight rocks, safe construction of dams, tunnels and mines, and in earth science where phenomena such as mud volcanoes and sand injectites are results of subsurface sediment displacements driven by fluid overpressure. It is also interesting to increase the understanding the flow instability itself, and how the fluid flow impacts the solid surrounding fractures and in the rest of the sample. Such processes where previously studied numerically [Niebling 2012a, Niebling 2012b] or in circular geometries. We will here explore experimentally linear geometries. We study the fracturing patterns that form when air flows into a dense, non-cohesive porous medium confined in a Hele-Shaw cell - i.e. into a packing of dry 80 micron beads placed between two glass plates separated by ~1mm. The cell is rectangular and fitted with a semi-permeable boundary to the atmosphere - blocking beads but not air - on one short edge, while the other three edges are impermeable. The porous medium is packed inside the cell between the semi-permeable boundary and an empty volume at the sealed side where the air pressure can be set and kept at a constant overpressure (1-2bar). Thus, for the air trapped inside the cell to release the overpressure it has to move through the solid. At high enough overpressures the air flow deforms the solid and increase permeability in some regions along the air-solid interface, which results in unstable flow and aerofracturing. Aerofractures are thought to be an analogue to hydrofractures, and an advantage of performing aerofracturing experiments in a Hele-Shaw cell is that the fracturing process can easily be observed in the lab. Our experiments are recorded with a high speed camera with a framerate of 1000 frames per second. In the analysis, by using various image

  4. 21 CFR 133.145 - Granular cheese for manufacturing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Granular cheese for manufacturing. 133.145 Section... Standardized Cheese and Related Products § 133.145 Granular cheese for manufacturing. Granular cheese for manufacturing conforms to the definition and standard of identity prescribed for granular cheese by §...

  5. 21 CFR 133.145 - Granular cheese for manufacturing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Granular cheese for manufacturing. 133.145 Section... Standardized Cheese and Related Products § 133.145 Granular cheese for manufacturing. Granular cheese for manufacturing conforms to the definition and standard of identity prescribed for granular cheese by §...

  6. 21 CFR 133.145 - Granular cheese for manufacturing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Granular cheese for manufacturing. 133.145 Section... Standardized Cheese and Related Products § 133.145 Granular cheese for manufacturing. Granular cheese for manufacturing conforms to the definition and standard of identity prescribed for granular cheese by §...

  7. 21 CFR 133.145 - Granular cheese for manufacturing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Granular cheese for manufacturing. 133.145 Section... Standardized Cheese and Related Products § 133.145 Granular cheese for manufacturing. Granular cheese for manufacturing conforms to the definition and standard of identity prescribed for granular cheese by §...

  8. 21 CFR 133.145 - Granular cheese for manufacturing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Granular cheese for manufacturing. 133.145 Section... Standardized Cheese and Related Products § 133.145 Granular cheese for manufacturing. Granular cheese for manufacturing conforms to the definition and standard of identity prescribed for granular cheese by §...

  9. Force distributions in granular materials

    NASA Astrophysics Data System (ADS)

    Jaeger, Heinrich M.

    2002-03-01

    A fundamental problem in the study of disordered materials concerns the propagation of forces. Static granular media, such as sand particles inside a rigid container, have emerged as an important model system as they embody the zero temperature limit of disordered materials comprised of hardsphere repulsive particles. In this talk, I will review recent results on the distribution forces along the boundaries of granular material subjected to an applied load. While the spatial distribution of mean forces sensitively reflects the (macroscopic) packing structure of the material, the ensemble-averaged probability distribution of force fluctuations around the mean value, P(f), exhibits universal behavior. The shape of P(f) is found to be independent not only of the macroscopic packing arrangement but also of the inter-particle friction and, over a wide range, of the applied external stress. This shape is characterized by an exponential decay in the probability density for fluctuations above the mean force and only a small reduction, by no more than a factor two, for fluctuations below the mean [1]. Surprisingly, the exponential, non-Gaussian behavior appears to hold up even in the case of highly compressible grains, and it also has been observed in simulations of supercooled liquids [2]. I will discuss the implications of these findings on our current understanding of stress transmission in disordered media in general, and on glassy behavior in particular. [1] D. L. Blair, N. W. Mueggenburg, A. H. Marshall, H. M. Jaeger, and S. R. Nagel, Phys. Rev. E 63, 041304 (2001). [2] S. O’Hern, S. A. Langer, A. J. Liu, and S. R. Nagel, Phys. Rev. Lett. 86, 111 (2001). * Work performed in collaboration with D. L. Blair, J. M. Erikson, A. H. Marshall, N. W. Mueggenburg, and S. R. Nagel.

  10. Impact compaction of a granular material

    SciTech Connect

    Fenton, Gregg; Asay, Blaine; Dalton, Devon

    2015-05-19

    The dynamic behavior of granular materials has importance to a variety of engineering applications. Structural seismic coupling, planetary science, and earth penetration mechanics, are just a few of the application areas. Although the mechanical behavior of granular materials of various types have been studied extensively for several decades, the dynamic behavior of such materials remains poorly understood. High-quality experimental data are needed to improve our general understanding of granular material compaction physics. This study will describe how an instrumented plunger impact system can be used to measure pressure-density relationships for model materials at high and controlled strain rates and subsequently used for computational modeling.

  11. Continuum description of avalanches in granular media.

    SciTech Connect

    Aranson, I. S.; Tsimring, L. S.

    2000-12-05

    A continuum theory of partially fluidized granular flows is proposed. The theory is based on a combination of the mass and momentum conservation equations with the order parameter equation which describes the transition between flowing and static components of the granular system. We apply this model to the dynamics of avalanches in chutes. The theory provides a quantitative description of recent observations of granular flows on rough inclined planes (Daerr and Douady 1999): layer bistability, and the transition from triangular avalanches propagating downhill at small inclination angles to balloon-shaped avalanches also propagating uphill for larger angles.

  12. Wetting in Color

    NASA Astrophysics Data System (ADS)

    Burgess, Ian Bruce

    Colorimetric litmus tests such as pH paper have enjoyed wide commercial success due to their inexpensive production and exceptional ease of use. However, expansion of colorimetry to new sensing paradigms is challenging because macroscopic color changes are seldom coupled to arbitrary differences in the physical/chemical properties of a system. In this thesis I present in detail the development of Wetting in Color Technology, focusing primarily on its application as an inexpensive and highly selective colorimetric indicator for organic liquids. The technology exploits chemically-encoded inverse-opal photonic crystals to control the infiltration of fluids to liquid-specific spatial patterns, projecting minute differences in liquids' wettability to macroscopically distinct, easy-to-visualize structural color patterns. It is shown experimentally and corroborated with theoretical modeling using percolation theory that the high selectivity of wetting, upon-which the sensitivity of the indicator relies, is caused by the highly symmetric structure of our large-area, defect-free SiO2 inverse-opals. The regular structure also produces a bright iridescent color, which disappears when infiltrated with liquid - naturally coupling the optical and fluidic responses. Surface modification protocols are developed, requiring only silanization and selective oxidation, to facilitate the deterministic design of an indicator that differentiates a broad range of liquids. The resulting tunable, built-in horizontal and vertical chemistry gradients allow the wettability threshold to be tailored to specific liquids across a continuous range, and make the readout rely only on countable color differences. As wetting is a generic fluidic phenomenon, Wetting in Color technology could be suitable for applications in authentication or identification of unknown liquids across a broad range of industries. However, the generic nature of the response also ensures chemical non-specificity. It is shown

  13. Optical wet steam monitor

    DOEpatents

    Maxey, L.C.; Simpson, M.L.

    1995-01-17

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

  14. Optical wet steam monitor

    DOEpatents

    Maxey, Lonnie C.; Simpson, Marc L.

    1995-01-01

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.

  15. Phoenix's Wet Chemistry Lab

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an illustration of soil analysis on NASA's Phoenix Mars Lander's Wet Chemistry Lab (WCL) on board the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument. By dissolving small amounts of soil in water, WCL will attempt to determine the pH, the abundance of minerals such as magnesium and sodium cations or chloride, bromide and sulfate anions, as well as the conductivity and redox potential.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. Phoenix's Wet Chemistry Lab

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an illustration of the analytical procedure of NASA's Phoenix Mars Lander's Wet Chemistry Lab (WCL) on board the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument. By dissolving small amounts of soil in water, WCL can determine the pH, the abundance of minerals such as magnesium and sodium cations or chloride, bromide and sulfate anions, as well as the conductivity and redox potential.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Wet-dog shake

    NASA Astrophysics Data System (ADS)

    Dickerson, Andrew; Mills, Zack; Hu, David

    2010-11-01

    The drying of wet fur is a critical to mammalian heat regulation. We investigate experimentally the ability of hirsute animals to rapidly oscillate their bodies to shed water droplets, nature's analogy to the spin cycle of a washing machine. High-speed videography and fur-particle tracking is employed to determine the angular position of the animal's shoulder skin as a function of time. We determine conditions for drop ejection by considering the balance of surface tension and centripetal forces on drops adhering to the animal. Particular attention is paid to rationalizing the relationship between animal size and oscillation frequency required to self-dry.

  18. Sliding through a superlight granular medium.

    PubMed

    Pacheco-Vázquez, F; Ruiz-Suárez, J C

    2009-12-01

    We explore the penetration dynamics of an intruder in a granular medium composed of expanded polystyrene spherical particles. Three features distinguish our experiment from others studied so far in granular physics: (a) the impact is horizontal, decoupling the effects of gravity and the drag force; (b) the density of the intruder rho(i) is up to 350 times larger than the density of the granular medium rho(m); and (c) the way the intruder moves through the material, sliding at the bottom of the column with small friction. Under these conditions we find that the final penetration D scales with (rho(i)/rho(m)) and the drag force Fd and D saturate with the height of the granular bed.

  19. Two phase granular transport in cylindrical confinement

    NASA Astrophysics Data System (ADS)

    Ayaz, Monem; Toussaint, Renaud; Måløy, Knut-Jørgen

    2016-04-01

    We experimentally study the granular transport properties of a gas/liquid interface as it progresses trough a horizontal capillary tube, filled with a mixture of water and a sedimented granular layer.The displacement dynamics of such dense mixtures exhibit a rheology determined by the frictional interactions between the individual grains, capillary thresholds and the viscous interactions. By direct imaging and pressure measurements we observe different transport regimes as the pumping rate is varied. We classify these regimes according to the observed predominance of frictional or viscous interactions in a phase diagram. For the frictional regime the granular material is not transported out of the tube but structured in a pattern, characterized by its series of granular plugs and gaps. with the pressure signal displaying intermittent stick-slip behavior.

  20. Granular crystals: Nonlinear dynamics meets materials engineering

    DOE PAGES

    Porter, Mason A.; Kevrekidis, Panayotis G.; Daraio, Chiara

    2015-11-01

    In this article, the freedom to choose the size, stiffness, and spatial distribution of macroscopic particles in a lattice makes granular crystals easily tailored building blocks for shock-absorbing materials, sound-focusing devices, acoustic switches, and other exotica.

  1. Surface wave acoustics of granular packing under gravity

    SciTech Connect

    Clement, Eric; Andreotti, Bruno; Bonneau, Lenaic

    2009-06-18

    Due to the non-linearity of Hertzian contacts, the speed of sound in granular matter increases with pressure. For a packing under gravity and in the presence of a free surface, bulk acoustic waves cannot propagate due to the inherent refraction toward the surface (the mirage effect). Thus, only modes corresponding to surface waves (Raleigh-Hertz modes) are able to propagate the acoustic signal. First, based on a non-linear elasticity model, we describe the main features associated to these surface waves. We show that under gravity, a granular packing is from the acoustic propagation point of view an index gradient waveguide that selects modes of two distinct families i.e. the sagittal and transverse waves localized in the vicinity of the free surface. A striking feature of these surface waves is the multi-modal propagation: for both transverse and sagittal waves, we show the existence of a infinite but discrete series of propagating modes. In each case, we determine the mode shape and and the corresponding dispersion relation. In the case of a finite size system, a geometric waveguide is superimposed to the index gradient wave guide. In this later case, the dispersion relations are modified by the appearance of a cut-off frequency that scales with depth. The second part is devoted to an experimental study of surface waves propagating in a granular packing confined in a long channel. This set-up allows to tune a monomodal emission by taking advantage of the geometric waveguide features combined with properly designed emitters. For both sagittal and transverses waves, we were able to isolate a single mode (the fundamental one) and to plot the dispersion relation. This measurements agree well with the Hertzian scaling law as predicted by meanfield models. Furthermore, it allows us to determine quantitatively relations on the elastic moduli. However, we observe that our data yield a shear modulus abnormally weak when compared to several meanfield predictions.

  2. Small-signal analysis of granular semiconductors

    NASA Astrophysics Data System (ADS)

    Varpula, Aapo; Sinkkonen, Juha; Novikov, Sergey

    2010-11-01

    The small-signal ac response of granular n-type semiconductors is calculated analytically using the drift-diffusion theory when electronic trapping at grain boundaries is present. An electrical equivalent circuit (EEC) model of a granular n-type semiconductor is presented. The analytical model is verified with numerical simulation performed by SILVACO ATLAS. The agreement between the analytical and numerical results is very good in a broad frequency range at low dc bias voltages.

  3. [Granular cell tumor of the larynx].

    PubMed

    Modrzyński, M; Wróbel, B; Zawisza, E; Drozd, K

    1999-09-01

    Granular cell tumor is an unusual growth of probably neuroectodermal histogenesis, first reported by Abrikossoff in 1926 with the name of myoblastenmyoma. Authors described a case of a 54 year man with laryngeal seat of granular-cell myoblastoma. In this case Abrikossoff tumor was located in the right vocal chord. The tumor was treated successfully surgically by microlaryngoscopy. The etiology, clinical features and diagnostic difficulties are discussed.

  4. Shear dispersion in dense granular flows

    DOE PAGES

    Christov, Ivan C.; Stone, Howard A.

    2014-04-18

    We formulate and solve a model problem of dispersion of dense granular materials in rapid shear flow down an incline. The effective dispersivity of the depth-averaged concentration of the dispersing powder is shown to vary as the Péclet number squared, as in classical Taylor–Aris dispersion of molecular solutes. An extension to generic shear profiles is presented, and possible applications to industrial and geological granular flows are noted.

  5. Prediction of permeability of monodisperse granular materials with a micromechanics approach

    NASA Astrophysics Data System (ADS)

    Yang, Rongwei; Lemarchand, Eric; Fen-Chong, Teddy; Li, Kefei

    2016-04-01

    Prediction of the permeability of porous media is of vital importance to such fields as petroleum engineering, agricultural engineering and civil engineering. The liquid water within unsaturated granular materials is distinguished as the intergranular layer, the wetting layer and the water film. By means of the micromechanics approach, a physical conceptual model is developed to predict the permeability (intrinsic and relative permeabilities) of the monodisperse granular materials. The proposed model has been validated by comparing the available experimental data and the empirical models, and has been used to re-interpret the Kozeny-Carman's relation in particular. The results obtained with this model show that the intergranular water will dominate the flow transport when the saturation degree is higher than the residual saturation degree; when the saturation degree is below the residual saturation degree, the wetting layer will govern the flow transport and the relative permeability will decrease by 3 to 8 orders of magnitude depending on the connectivity of the wetting layer.

  6. Wetness perception across body sites.

    PubMed

    Ackerley, Rochelle; Olausson, Håkan; Wessberg, Johan; McGlone, Francis

    2012-07-26

    Human skin is innervated with a variety of receptors serving somatosensation and includes the sensory sub-modalities of touch, temperature, pain and itch. The density and type of receptors differ across the body surface, and there are various body-map representations in the brain. The perceptions of skin sensations outside of the specified sub-modalities, e.g. wetness or greasiness, are described as 'touch blends' and are learned. The perception of wetness is generated from the coincident activation of tactile and thermal receptors. The present study aims to quantify threshold levels of wetness perception and find out if this differs across body sites. A rotary tactile stimulator was used to apply a moving, wetted stimulus over selected body sites at a precise force and velocity. Four wetness levels were tested over eight body sites. After each stimulus, the participant rated how wet the stimulus was perceived to be using a visual analogue scale. The results indicated that participants discriminated between levels of wetness as distinct percepts. Significant differences were found between all levels of wetness, apart from the lowest levels of comparison (20 μl and 40 μl). The perception of wetness did not, however, differ significantly across body sites and there were no significant interactions between wetness level and body site. The present study emphasizes the importance of understanding how bottom-up and top-down processes interact to generate complex perceptions.

  7. Contact micromechanics in granular media with clay

    SciTech Connect

    Ita, Stacey Leigh

    1994-08-01

    Many granular materials, including sedimentary rocks and soils, contain clay particles in the pores, grain contacts, or matrix. The amount and location of the clays and fluids can influence the mechanical and hydraulic properties of the granular material. This research investigated the mechanical effects of clay at grain-to-grain contacts in the presence of different fluids. Laboratory seismic wave propagation tests were conducted at ultrasonic frequencies using spherical glass beads coated with Montmorillonite clay (SWy-1) onto which different fluids were adsorbed. For all bead samples, seismic velocity increased and attenuation decreased as the contact stiffnesses increased with increasing stress demonstrating that grain contacts control seismic transmission in poorly consolidated and unconsolidated granular material. Coating the beads with clay added stiffness and introduced viscosity to the mechanical contact properties that increased the velocity and attenuation of the propagating seismic wave. Clay-fluid interactions were studied by allowing the clay coating to absorb water, ethyl alcohol, and hexadecane. Increasing water amounts initially increased seismic attenuation due to clay swelling at the contacts. Attenuation decreased for higher water amounts where the clay exceeded the plastic limit and was forced from the contact areas into the surrounding open pore space during sample consolidation. This work investigates how clay located at grain contacts affects the micromechanical, particularly seismic, behavior of granular materials. The need for this work is shown by a review of the effects of clays on seismic wave propagation, laboratory measurements of attenuation in granular media, and proposed mechanisms for attenuation in granular media.

  8. [Fertility and Environmental Impacts of Urban Scattered Human Feces Used as Organic Granular Fertilizer for Leaf Vegetables].

    PubMed

    Lü, Wen-zhou; Qiao, Yu-xiang; Yu, Ning; Shi, Rong-hua; Wang, Guang-ming

    2015-09-01

    The disposal of urban scattered human feces has become a difficult problem for the management of modern city. In present study, the scattered human feces underwent the collection, scum removal, flocculation and dehydration, finally became the granular fertilizer; the effects of the ratio of fertilizer to soil on the growth of the pakchoi and the quality of soil and leaching water were evaluated, and the feasibility of granular fertilizer manuring the pakchoi was discussed by pot experiments. The results showed that the granular fertilizer significantly enhanced the production of the pakchoi which were not polluted by the intestinal microorganisms under the experiment conditions; meanwhile, at the proper ratio of fertilizer to soil, the concentration of these microorganisms in the leaching water was lower than that in the control check. Chemical analyses of soil revealed that the nutrient content of nitrogen, phosphorus, potassium and organic matters in soil became much richer in all treatments. In addition, the granular fertilizer improved the physical- chemical properties of soil, including raising the level of soil porosity and reducing the volume weight of soil. Application of granular fertilizer won't pollute the soil or leaching water; instead, it can also prevent nitrogen, potassium and intestinal microorganisms from leaching inio ground water at the proper ratio of granular fertilizer to soil.

  9. Driven fragmentation of granular gases.

    PubMed

    Cruz Hidalgo, Raúl; Pagonabarraga, Ignacio

    2008-06-01

    The dynamics of homogeneously heated granular gases which fragment due to particle collisions is analyzed. We introduce a kinetic model which accounts for correlations induced at the grain collisions and analyze both the kinetics and relevant distribution functions these systems develop. The work combines analytical and numerical studies based on direct simulation Monte Carlo calculations. A broad family of fragmentation probabilities is considered, and its implications for the system kinetics are discussed. We show that generically these driven materials evolve asymptotically into a dynamical scaling regime. If the fragmentation probability tends to a constant, the grain number diverges at a finite time, leading to a shattering singularity. If the fragmentation probability vanishes, then the number of grains grows monotonously as a power law. We consider different homogeneous thermostats and show that the kinetics of these systems depends weakly on both the grain inelasticity and driving. We observe that fragmentation plays a relevant role in the shape of the velocity distribution of the particles. When the fragmentation is driven by local stochastic events, the long velocity tail is essentially exponential independently of the heating frequency and the breaking rule. However, for a Lowe-Andersen thermostat, numerical evidence strongly supports the conjecture that the scaled velocity distribution follows a generalized exponential behavior f(c) approximately exp(-cn) , with n approximately 1.2 , regarding less the fragmentation mechanisms.

  10. Chemotaxis of large granular lymphocytes

    SciTech Connect

    Pohajdak, B.; Gomez, J.; Orr, F.W.; Khalil, N.; Talgoy, M.; Greenberg, A.H.

    1986-01-01

    The hypothesis that large granular lymphocytes (LGL) are capable of directed locomotion (chemotaxis) was tested. A population of LGL isolated from discontinuous Percoll gradients migrated along concentration gradients of N-formyl-methionyl-leucyl-phenylalanine (f-MLP), casein, and C5a, well known chemoattractants for polymorphonuclear leukocytes and monocytes, as well as interferon-..beta.. and colony-stimulating factor. Interleukin 2, tuftsin, platelet-derived growth factor, and fibronectin were inactive. Migratory responses were greater in Percoll fractions with the highest lytic activity and HNK-1/sup +/ cells. The chemotactic response to f-MLP, casein, and C5a was always greater when the chemoattractant was present in greater concentration in the lower compartment of the Boyden chamber. Optimum chemotaxis was observed after a 1 hr incubation that made use of 12 ..mu..m nitrocellulose filters. LGL exhibited a high degree of nondirected locomotion when allowed to migrate for longer periods (> 2 hr), and when cultured in vitro for 24 to 72 hr in the presence or absence of IL 2 containing phytohemagluttinin-conditioned medium. LGL chemotaxis to f-MLP could be inhibited in a dose-dependent manner by the inactive structural analog CBZ-phe-met, and the RNK tumor line specifically bound f-ML(/sup 3/H)P, suggesting that LGL bear receptors for the chemotactic peptide.

  11. Theoretical Model of Granular Compaction

    NASA Astrophysics Data System (ADS)

    Ben-Naim, Eli

    1998-03-01

    Experimental studies show that the density of a vibrated granular material evolves from a low density initial state into a higher density final steady state. The relaxation towards the final state follows an anomalously slow inverse logarithmic law. As the density increases, a growing number of grains have to be rearranged to create voids large enough to accommodate a particle. The time for such rearrangements diverges exponentially thereby leading to the logarithmic relaxation. We propose an analytically tractable stochastic process in one dimension that models the excluded volume interaction between grains. In addition to the relaxation towards the steady state, this model predicts the experimentally observed Gaussian distributions and spectrums of the steady state density fluctuations. Work done in collaboration with J. B. Knight, E. R. Nowak, P. L. Krapivsky, H. M. Jaeger, and S. R. Nagel. 1. P. L. Krapivsky and E. Ben-Naim, J. Chem. Phys. 100, 6778 (1994). 2. J. B. Knight, C. G. Fandrich, C. N. Lau, H. M. Jaeger, and S. R. Nagel, Phys. Rev. E 51, 3957 (1995). 3. E. Ben-Naim, J. B. Knight, E. R. Nowak, H. M. Jaeger, and S. R. Nagel, Physica D, in press.

  12. Mechanics of Granular Materials (MGM)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The packing of particles can change radically during cyclic loading such as in an earthquake or when shaking a container to compact a powder. A large hole (1) is maintained by the particles sticking to each other. A small, counterclockwise strain (2) collapses the hole, and another large strain (3) forms more new holes which collapse when the strain reverses (4). Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (after T.L. Youd, Packing Changes and Liquefaction Susceptibility, Journal of the Geotechnical Engieering Division, 103: GT8,918-922, 1977)(Credit: NASA/Marshall Space Flight Center.)(Credit: University of Colorado at Boulder).

  13. Discrete Element Modeling of Complex Granular Flows

    NASA Astrophysics Data System (ADS)

    Movshovitz, N.; Asphaug, E. I.

    2010-12-01

    Granular materials occur almost everywhere in nature, and are actively studied in many fields of research, from food industry to planetary science. One approach to the study of granular media, the continuum approach, attempts to find a constitutive law that determines the material's flow, or strain, under applied stress. The main difficulty with this approach is that granular systems exhibit different behavior under different conditions, behaving at times as an elastic solid (e.g. pile of sand), at times as a viscous fluid (e.g. when poured), or even as a gas (e.g. when shaken). Even if all these physics are accounted for, numerical implementation is made difficult by the wide and often discontinuous ranges in continuum density and sound speed. A different approach is Discrete Element Modeling (DEM). Here the goal is to directly model every grain in the system as a rigid body subject to various body and surface forces. The advantage of this method is that it treats all of the above regimes in the same way, and can easily deal with a system moving back and forth between regimes. But as a granular system typically contains a multitude of individual grains, the direct integration of the system can be very computationally expensive. For this reason most DEM codes are limited to spherical grains of uniform size. However, spherical grains often cannot replicate the behavior of real world granular systems. A simple pile of spherical grains, for example, relies on static friction alone to keep its shape, while in reality a pile of irregular grains can maintain a much steeper angle by interlocking force chains. In the present study we employ a commercial DEM, nVidia's PhysX Engine, originally designed for the game and animation industry, to simulate complex granular flows with irregular, non-spherical grains. This engine runs as a multi threaded process and can be GPU accelerated. We demonstrate the code's ability to physically model granular materials in the three regimes

  14. Spatiotemporal stick-slip phenomena in a coupled continuum-granular system

    NASA Astrophysics Data System (ADS)

    Ecke, Robert

    In sheared granular media, stick-slip behavior is ubiquitous, especially at very small shear rates and weak drive coupling. The resulting slips are characteristic of natural phenomena such as earthquakes and well as being a delicate probe of the collective dynamics of the granular system. In that spirit, we developed a laboratory experiment consisting of sheared elastic plates separated by a narrow gap filled with quasi-two-dimensional granular material (bi-dispersed nylon rods) . We directly determine the spatial and temporal distributions of strain displacements of the elastic continuum over 200 spatial points located adjacent to the gap. Slip events can be divided into large system-spanning events and spatially distributed smaller events. The small events have a probability distribution of event moment consistent with an M - 3 / 2 power law scaling and a Poisson distributed recurrence time distribution. Large events have a broad, log-normal moment distribution and a mean repetition time. As the applied normal force increases, there are fractionally more (less) large (small) events, and the large-event moment distribution broadens. The magnitude of the slip motion of the plates is well correlated with the root-mean-square displacements of the granular matter. Our results are consistent with mean field descriptions of statistical models of earthquakes and avalanches. We further explore the high-speed dynamics of system events and also discuss the effective granular friction of the sheared layer. We find that large events result from stored elastic energy in the plates in this coupled granular-continuum system.

  15. Physicochemical properties of granular and non-granular cationic starches prepared under ultra high pressure.

    PubMed

    Chang, Yoon-Je; Choi, Hyun-Wook; Kim, Hyun-Seok; Lee, Hyungjae; Kim, Wooki; Kim, Dae-Ok; Kim, Byung-Yong; Baik, Moo-Yeol

    2014-01-01

    Granular and non-granular cationic starches were prepared through the reaction of tapioca and corn starches with 2,3-epoxypropyl trimethyl ammonium chloride (ETMAC) using conventional and ultra high pressure (UHP)-assisted reactions. The cationic starches were characterized with respect to morphology, degree of substitution (DS), FT-IR, (13)C NMR, X-ray diffraction pattern, solubility and swelling power, pasting viscosity, and flocculating activity. Non-granular (relative to granular) cationic starches possessed higher DS values. While DS values of non-granular cationic starches were lower for UHP-assisted (relative to conventional) reaction, granular cationic starches did not differ for both reactions. For flocculation activity, granular cationic starches with lower solubility and higher swelling power were higher than non-granular counterparts with reversed patterns in solubility and swelling power, regardless of conventional and UHP-assisted reactions. Overall results suggested that flocculation activity of cationic starches may be directly associated with their swelling powers (relative to DS values).

  16. Controlling conditions for wet welding

    SciTech Connect

    Hill, M.

    1985-11-01

    Wet welding is finding increased use for repairing and maintaining vessel hulls around the world. Users are developing new methods and procedures to expand the technology. A wet welded joint underwater can be made as strong as one welded in a dry habitat, but at a greatly reduced cost. The design of the joint for wet welding and the procedures that need to be followed are outlined. In designing for wet welding, high tensile strength, ease of access, and over-design should be considered.

  17. Mortality of passerines adjacent to a North Carolina corn field treated with granular carbofuran.

    USGS Publications Warehouse

    Augspurger, Tom; Smith, Milton R.; Meteyer, Carol U.; Converse, Kathryn A.

    1996-01-01

    Red-winged blackbirds (Agelaius phoeniceus) were collected during an epizootic in southeastern North Carolina (USA). Activity of brain cholinesterase (ChE) was inhibited by 14 to 48% in three of five specimens, and returned to normal levels after incubation. Gastrointestinal tracts were analyzed for 30 anti-ChE agents. Carbofuran, the only compound detected, was present in all specimens at levels from 5.44 to 72.7 μg/g wet weight. Application of granular carbofuran in an adjacent corn field, results of necropsy examinations, and chemical analyses are consistent with a diagnosis of carbofuran poisoning in these specimens.

  18. The cooperativity length in simple shear of dry granular media

    NASA Astrophysics Data System (ADS)

    Ries, Alexander; Brendel, Lothar; Wolf, Dietrich E.

    2016-10-01

    The local flow rule and the cooperativity length are the crucial ingredients of non-local rheology of granular matter. Once they are known as functions of the stress ratio, one can predict steady-state flow in arbitrarily complex geometries. We show how these functions can most easily be extracted from simulated velocity profiles for three-dimensional simple shear. The critical behaviour at the yield threshold and its rounding by finite size effects are discussed. The simple shear is simulated with smooth frictional walls, which provide the spatial inhomogeneity necessary to determine the cooperativity length. They also allow for slip, so that the particle velocity at the wall adjusts itself according to the stress ratio and is sensitive to the bulk yield.

  19. Wettability Control on Hydro-capillary Fracturing in Granular Media

    NASA Astrophysics Data System (ADS)

    Trojer, M.; de Anna, P.; Juanes, R.

    2015-12-01

    The flow of two or more immiscible phases within geologic porous media is important in natural and industrial processes like geologic CO2 sequestration, enhanced oil recovery, and hydraulic fracturing. The latter one, however, is a well-known reservoir stimulation technique, by which the permeability of the near-wellbore region is enhanced through the creation of tensile fractures within the rock, formed in the direction perpendicular to the least principal stress. While it is well known that fracturing of granular media strongly depends on the type of media and on the variability of its wetting properties, the effect of wettability on capillary-driven fracturing continues to challenge our microscopic and macroscopic descriptions. Here we study this problem experimentally, starting with the classic experiment of two-phase flow in a horizontal Hele-Shaw cell filled with a granular medium. We inject a low-viscosity fluid into a thin bed of glass beads initially saturated with a fluid 350 times more viscous. We investigate three control parameters: the injection rate of the less-viscous invading phase, the confining stress, and the contact angle, which we control by carefully chosen fluid pairs covering the entire range from drainage to imbibition. Our results demonstrate that wettability exerts a powerful influence on the invasion/fracturing morphology of unfavorable mobility displacements. High time resolution imaging techniques and particle image velocimetry (PIV) allow us to quantify matrix displacement and fracture opening dynamics. Our findings provide insights on fracture propagation, fracture length distribution and the fracture drainage area, parameters which are critically important to better understand long-term hydrocarbon production from shale.

  20. Structure of Particle Networks in Capillary Suspensions with Wetting and Nonwetting Fluids

    PubMed Central

    2016-01-01

    The mechanical properties of a suspension can be dramatically altered by adding a small amount of a secondary fluid that is immiscible with the bulk phase. The substantial changes in the strength of these capillary suspensions arise due to the capillary force inducing a percolating particle network. Spatial information on the structure of the particle networks is obtained using confocal microscopy. It is possible, for the first time, to visualize the different types of percolating structures of capillary suspensions in situ. These capillary networks are unique from other types of particulate networks due to the nature of the capillary attraction. We investigate the influence of the three-phase contact angle on the structure of an oil-based capillary suspension with silica microspheres. Contact angles smaller than 90° lead to pendular networks of particles connected with single capillary bridges or clusters comparable to the funicular state in wet granular matter, whereas a different clustered structure, the capillary state, forms for angles larger than 90°. Particle pair distribution functions are obtained by image analysis, which demonstrate differences in the network microstructures. When porous particles are used, the pendular conformation also appears for apparent contact angles larger than 90°. The complex shear modulus can be correlated to these microstructural changes. When the percolating structure is formed, the complex shear modulus increases by nearly three decades. Pendular bridges lead to stronger networks than the capillary state network conformations, but the capillary state clusters are nevertheless much stronger than pure suspensions without the added liquid. PMID:26807651

  1. Characteristics of undulatory locomotion in granular media

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei; Pak, On Shun; Elfring, Gwynn J.

    2016-03-01

    Undulatory locomotion is ubiquitous in nature and observed in different media, from the swimming of flagellated microorganisms in biological fluids, to the slithering of snakes on land, or the locomotion of sandfish lizards in sand. Despite the similarity in the undulating pattern, the swimming characteristics depend on the rheological properties of different media. Analysis of locomotion in granular materials is relatively less developed compared with fluids partially due to a lack of validated force models but recently a resistive force theory in granular media has been proposed and shown useful in studying the locomotion of a sand-swimming lizard. Here we employ the proposed model to investigate the swimming characteristics of a slender filament, of both finite and infinite length, undulating in a granular medium and compare the results with swimming in viscous fluids. In particular, we characterize the effects of drifting and pitching in terms of propulsion speed and efficiency for a finite sinusoidal swimmer. We also find that, similar to Lighthill's results using resistive force theory in viscous fluids, the sawtooth swimmer is the optimal waveform for propulsion speed at a given power consumption in granular media. The results complement our understanding of undulatory locomotion and provide insights into the effective design of locomotive systems in granular media.

  2. Pulling rigid bodies through granular material

    NASA Astrophysics Data System (ADS)

    Kubik, Ryan; Dressaire, Emilie

    2016-11-01

    The need for anchoring systems in granular materials such as sand is present in the marine transportation industry, e.g. to layout moorings, keep vessels and docks fixed in bodies of water, build oil rigs, etc. The holding power of an anchor is associated with the force exerted by the granular media. Empirical evidence indicates that the holding power depends on the size and shape of the anchoring structure. In this model study, we use a two-dimensional geometry in which a rigid body is pulled through a granular media at constant velocity to determine the drag and lift forces exerted by a granular medium on a moving object. The method allows measuring the drag force and recording the trajectory of the rigid object through the sand. We systematically vary the size and geometry of the rigid body, the properties of the granular medium and the extraction speed. For different initial positions of a cylindrical object pulled horizontally through the medium, we record large variations in magnitude of the drag and a significant lift force that pulls the object out of the sand.

  3. Granular Materials and Risks in ISRU

    NASA Technical Reports Server (NTRS)

    Behringer, Robert P.; Wilki8nson, R. Allen

    2004-01-01

    Working with soil, sand, powders, ores, cement and sintered bricks, excavating, grading construction sites, driving off-road, transporting granules in chutes and pipes, sifting gravel, separating solids from gases, and using hoppers are so routine that it seems straightforward to execute these operations on the Moon and Mars as we do on Earth. We discuss how little these processes are understood and point out the nature of trial-and-error practices that are used in today s massive over-design. Nevertheless, such designs have a high failure rate. Implementation and extensive incremental scaling up of industrial processes are routine because of the inadequate predictive tools for design. We present a number of pragmatic scenarios where granular materials play a role, the risks involved, what some of the basic issues are, and what understanding is needed to greatly reduce the risks. This talk will focus on a particular class of granular flow issues, those that pertain to dense materials, their physics, and the failure problems associated with them. In particular, key issues where basic predictability is lacking include stability of soils for the support of vehicles and facilities, ability to control the flow of dense materials (jamming and flooding/unjamming at the wrong time), the ability to predict stress profiles (hence create reliable designs) for containers such as bunkers or silos. In particular, stress fluctuations, which are not accounted for in standard granular design models, can be very large as granular materials flows, and one result is frequent catastrophic failure of granular devices.

  4. Granular Materials and Risks In ISRU

    NASA Technical Reports Server (NTRS)

    Behringer, Robert P.; Wilkinson, R. Allen

    2004-01-01

    Working with soil, sand, powders, ores, cement and sintered bricks, excavating, grading construction sites, driving off-road, transporting granules in chutes and pipes, sifting gravel, separating solids from gases, and using hoppers are so routine that it seems straightforward to execute these operations on the Moon and Mars as we do on Earth. We discuss how little these processes are understood and point out the nature of trial-and-error practices that are used in today's massive over-design. Nevertheless, such designs have a high failure rate. Implementation and extensive incremental scaling up of industrial processes are routine because of the inadequate predictive tools for design. We present a number of pragmatic scenarios where granular materials play a role, the risks involved, what some of the basic issues are, and what understanding is needed to greatly reduce the risks. This talk will focus on a particular class of granular flow issues, those that pertain to dense materials, their physics, and the failure problems associated with them. In particular, key issues where basic predictability is lacking include stability of soils for the support of vehicles and facilities, ability to control the flow of dense materials (jamming and flooding/unjamming at the wrong time), the ability to predict stress profiles (hence create reliable designs) for containers such as bunkers or silos. In particular, stress fluctuations, which are not accounted for in standard granular design models, can be very large as granular materials flows, and one result is frequent catastrophic failure of granular devices.

  5. Wetting in Soldering and Microelectronics

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.; Nogi, K.

    2008-08-01

    Wettability of solid metals by molten solders is reviewed. The contact angle and wetting force are tabulated for various combinations of solid metals and molten solders such as Sn-Pb base alloys, Sn-Ag base alloys, Sn-Zn base alloys, Sn-Cu base alloys, and Sn-Bi base alloys. Studies on the wetting rate are also discussed.

  6. Wet Winding Improves Coil Encapsulation

    NASA Technical Reports Server (NTRS)

    Hill, A. J.

    1987-01-01

    Wet-winding process encapsulates electrical coils more uniformily than conventional processes. Process requires no vacuum pump and adapts easily to existing winding machines. Encapsulant applied to each layer of wire as soon as added to coil. Wet-winding process eliminates voids, giving more uniformly encapsulated coil.

  7. Uncertainty Management in Seismic Vulnerability Assessment Using Granular Computing Based on Covering of Universe

    NASA Astrophysics Data System (ADS)

    Khamespanah, F.; Delavar, M. R.; Zare, M.

    2013-05-01

    Earthquake is an abrupt displacement of the earth's crust caused by the discharge of strain collected along faults or by volcanic eruptions. Earthquake as a recurring natural cataclysm has always been a matter of concern in Tehran, capital of Iran, as a laying city on a number of known and unknown faults. Earthquakes can cause severe physical, psychological and financial damages. Consequently, some procedures should be developed to assist modelling the potential casualties and its spatial uncertainty. One of these procedures is production of seismic vulnerability maps to take preventive measures to mitigate corporeal and financial losses of future earthquakes. Since vulnerability assessment is a multi-criteria decision making problem depending on some parameters and expert's judgments, it undoubtedly is characterized by intrinsic uncertainties. In this study, it is attempted to use Granular computing (GrC) model based on covering of universe to handle the spatial uncertainty. Granular computing model concentrates on a general theory and methodology for problem solving as well as information processing by assuming multiple levels of granularity. Basic elements in granular computing are subsets, classes, and clusters of a universe called elements. In this research GrC is used for extracting classification rules based on seismic vulnerability with minimum entropy to handle uncertainty related to earthquake data. Tehran was selected as the study area. In our previous research, Granular computing model based on a partition model of universe was employed. The model has some kinds of limitations in defining similarity between elements of the universe and defining granules. In the model similarity between elements is defined based on an equivalence relation. According to this relation, two objects are similar based on some attributes, provided for each attribute the values of these objects are equal. In this research a general relation for defining similarity between

  8. Granular Shear Zone Formation: Acoustic Emission Measurements and Fiber-bundle Models

    NASA Astrophysics Data System (ADS)

    Michlmayr, Gernot; Or, Dani

    2013-04-01

    for detection of shear zone development and straining in granular matter and but also for investigating internal grain scale mechanical processes. The AE method could be integrated into monitoring networks of landslide-prone slopes and other early warning systems for abrupt mass release (snow avalanches).

  9. Underwater wet welding of steel

    SciTech Connect

    Ibarra, S.; Liu, S.; Olson, D.L.

    1995-05-01

    Underwater wet welding is conducted directly in water with the shielded metal arc (SMA) and flux cored arc (FCA) welding processes. Underwater wet welding has been demonstrated as an acceptable repair technique down to 100 meters (325 ft.) in depth, but wet welds have been attempted on carbon steel structures down to 200 meters (650 ft.). The primary purpose of this interpretive report is to document and evaluate current understanding of metallurgical behavior of underwater wet welds so that new welding consumables can be designed and new welding practices can be developed for fabrication and repair of high strength steel structures at greater depths. First the pyrometallurgical and physical metallurgy behaviors of underwater weldments are discussed. Second, modifications of the welding consumables and processes are suggested to enhance the ability to apply wet welding techniques.

  10. Does surface roughness amplify wetting?

    SciTech Connect

    Malijevský, Alexandr

    2014-11-14

    Any solid surface is intrinsically rough on the microscopic scale. In this paper, we study the effect of this roughness on the wetting properties of hydrophilic substrates. Macroscopic arguments, such as those leading to the well-known Wenzel's law, predict that surface roughness should amplify the wetting properties of such adsorbents. We use a fundamental measure density functional theory to demonstrate the opposite effect from roughness for microscopically corrugated surfaces, i.e., wetting is hindered. Based on three independent analyses we show that microscopic surface corrugation increases the wetting temperature or even makes the surface hydrophobic. Since for macroscopically corrugated surfaces the solid texture does indeed amplify wetting there must exist a crossover between two length-scale regimes that are distinguished by opposite response on surface roughening. This demonstrates how deceptive can be efforts to extend the thermodynamical laws beyond their macroscopic territory.

  11. Granular computing with multiple granular layers for brain big data processing.

    PubMed

    Wang, Guoyin; Xu, Ji

    2014-12-01

    Big data is the term for a collection of datasets so huge and complex that it becomes difficult to be processed using on-hand theoretical models and technique tools. Brain big data is one of the most typical, important big data collected using powerful equipments of functional magnetic resonance imaging, multichannel electroencephalography, magnetoencephalography, Positron emission tomography, near infrared spectroscopic imaging, as well as other various devices. Granular computing with multiple granular layers, referred to as multi-granular computing (MGrC) for short hereafter, is an emerging computing paradigm of information processing, which simulates the multi-granular intelligent thinking model of human brain. It concerns the processing of complex information entities called information granules, which arise in the process of data abstraction and derivation of information and even knowledge from data. This paper analyzes three basic mechanisms of MGrC, namely granularity optimization, granularity conversion, and multi-granularity joint computation, and discusses the potential of introducing MGrC into intelligent processing of brain big data.

  12. Unsteady granular flows down an inclined plane

    NASA Astrophysics Data System (ADS)

    Parez, Stanislav; Aharonov, Einat; Toussaint, Renaud

    2016-04-01

    The continuum description of granular flows is still a challenge despite their importance in many geophysical and industrial applications. We extend previous works, which have explored steady flow properties, by focusing on unsteady flows accelerating or decelerating down an inclined plane in the simple shear configuration. We solve the flow kinematics analytically, including predictions of evolving velocity and stress profiles and the duration of the transient stage. The solution shows why and how granular materials reach steady flow on slopes steeper than the angle of repose and how they decelerate on shallower slopes. The model might facilitate development of natural hazard assessment and may be modified in the future to explore unsteady granular flows in different configurations.

  13. Dynamic Effective Mass of Granular Media

    NASA Astrophysics Data System (ADS)

    Hsu, Chaur-Jian; Johnson, David L.; Ingale, Rohit A.; Valenza, John J.; Gland, Nicolas; Makse, Hernán A.

    2009-02-01

    We develop the concept of frequency dependent effective mass, Mtilde (ω), of jammed granular materials which occupy a rigid cavity to a filling fraction of 48%, the remaining volume being air of normal room condition or controlled humidity. The dominant features of Mtilde (ω) provide signatures of the dissipation of acoustic modes, elasticity, and aging effects in the granular medium. We perform humidity controlled experiments and interpret the data in terms of a continuum model and a “trap” model of thermally activated capillary bridges at the contact points. The results suggest that attenuation of acoustic waves in granular materials can be influenced significantly by the kinetics of capillary condensation between the asperities at the contacts.

  14. Image superresolution reconstruction via granular computing clustering.

    PubMed

    Liu, Hongbing; Zhang, Fan; Wu, Chang-an; Huang, Jun

    2014-01-01

    The problem of generating a superresolution (SR) image from a single low-resolution (LR) input image is addressed via granular computing clustering in the paper. Firstly, and the training images are regarded as SR image and partitioned into some SR patches, which are resized into LS patches, the training set is composed of the SR patches and the corresponding LR patches. Secondly, the granular computing (GrC) clustering is proposed by the hypersphere representation of granule and the fuzzy inclusion measure compounded by the operation between two granules. Thirdly, the granule set (GS) including hypersphere granules with different granularities is induced by GrC and used to form the relation between the LR image and the SR image by lasso. Experimental results showed that GrC achieved the least root mean square errors between the reconstructed SR image and the original image compared with bicubic interpolation, sparse representation, and NNLasso.

  15. Plastic deformation in a metallic granular chain

    NASA Astrophysics Data System (ADS)

    Musson, Ryan W.; Carlson, William

    2016-03-01

    Solitary wave response was investigated in a metallic granular chain-piston system using LS-DYNA. A power law hardening material model was used to show that localized plastic deformation is present in a metallic granular chain for an impact velocity of 0.5 m/s. This loss due to plastic deformation was quantified via impulse, and it was shown that the loss scales nearly linearly with impact velocity. Therefore, metallic grains may not be suitable for devices that require high-amplitude solitary waves. There would be too much energy lost to plastic deformation. One can assume that ceramics will behave elastically; therefore, the response of an aluminum oxide granular chain was compared to that of a steel chain.

  16. Impact compaction of a granular material

    DOE PAGES

    Fenton, Gregg; Asay, Blaine; Dalton, Devon

    2015-05-19

    The dynamic behavior of granular materials has importance to a variety of engineering applications. Structural seismic coupling, planetary science, and earth penetration mechanics, are just a few of the application areas. Although the mechanical behavior of granular materials of various types have been studied extensively for several decades, the dynamic behavior of such materials remains poorly understood. High-quality experimental data are needed to improve our general understanding of granular material compaction physics. This study will describe how an instrumented plunger impact system can be used to measure pressure-density relationships for model materials at high and controlled strain rates and subsequentlymore » used for computational modeling.« less

  17. Unsteady granular flows down an inclined plane.

    PubMed

    Parez, Stanislav; Aharonov, Einat; Toussaint, Renaud

    2016-04-01

    The continuum description of granular flows is still a challenge despite their importance in many geophysical and industrial applications. We extend previous works, which have explored steady flow properties, by focusing on unsteady flows accelerating or decelerating down an inclined plane in the simple shear configuration. We solve the flow kinematics analytically, including predictions of evolving velocity and stress profiles and the duration of the transient stage. The solution shows why and how granular materials reach steady flow on slopes steeper than the angle of repose and how they decelerate on shallower slopes. The model might facilitate development of natural hazard assessment and may be modified in the future to explore unsteady granular flows in different configurations.

  18. Simulating granular media on the computer

    NASA Astrophysics Data System (ADS)

    Herrmann, H. J.

    Granular materials, like sand or powder, can present very intriguing effects. When shaken, sheared or poured they show segregation, convection and spontaneous fluctuations in densities and stresses. I will discuss the modeling of a granular medium on a computer by simulating a packing of elastic spheres via Molecular Dynamics. Dissipation of energy and shear friction at collisions are included. In the physical range the friction coefficient is found to be a linear function of the angle of repose. On a vibrating plate the formation of convection cells due to walls or amplitude modulations can be observed. The onset of fluidization can be determined and is in good agreement with experiments. Segregation of larger particles is found to be always accompanied by convection cells. There is also ample experimental evidence showing the existence of spontaneous density patterns in granular material flowing through pipes or hoppers. The Molecular Dynamics simulations show that these density fluctuations follow a 1/f α spectrum. I compare this behavior to deterministic one-dimensional traffic models. A model with continuous positions and velocities shows self-organized critical jamming behind a slower car. The experimentally observed effects are also reproduced by Lattice Gas and Boltzmann Lattice Models. Density waves are spontaneously generated when the viscosity has a nonlinear dependence on density which characterizes granular flow. We also briefly sketch a thermodynamic formalism for loose granular material. In a dense packing non-linear acoustic phenomena, like the pressure dependence of the sound velocity are studied. Finally the plastic shear bands occurring in large scale deformations of compactified granular media are investigated using an explicit Lagrangian technique.

  19. Pore-Scale Investigation on Stress-Dependent Characteristics of Granular Packs and Their Impact on Multiphase Fluid Distribution

    NASA Astrophysics Data System (ADS)

    Torrealba, V.; Karpyn, Z.; Yoon, H.; Hart, D. B.; Klise, K. A.

    2013-12-01

    The pore-scale dynamics that govern multiphase flow under variable stress conditions are not well understood. This lack of fundamental understanding limits our ability to quantitatively predict multiphase flow and fluid distributions in natural geologic systems. In this research, we focus on pore-scale, single and multiphase flow properties that impact displacement mechanisms and residual trapping of non-wetting phase under varying stress conditions. X-ray micro-tomography is used to image pore structures and distribution of wetting and non-wetting fluids in water-wet synthetic granular packs, under dynamic load. Micro-tomography images are also used to determine structural features such as medial axis, surface area, and pore body and throat distribution; while the corresponding transport properties are determined from Lattice-Boltzmann simulations performed on lattice replicas of the imaged specimens. Results are used to investigate how inter-granular deformation mechanisms affect fluid displacement and residual trapping at the pore-scale. This will improve our understanding of the dynamic interaction of mechanical deformation and fluid flow during enhanced oil recovery and geologic CO2 sequestration. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. WET AND DRY SCRUBBERS FOR EMISSION CONTROL

    EPA Science Inventory

    Generally speaking, absorption equipment includes two major categories: Wet adsorption scrubbers (or wet scrubbers); Dry absorption scrubbers (or dry scrubbers).
    Wet scrubbers: As the name implies, wet scrubbers (also known as wet collectors) are devices which use a liquid fo...

  1. Axisymmetric collapses of granular columns

    NASA Astrophysics Data System (ADS)

    Lube, Gert; Huppert, Herbert E.; Sparks, R. Stephen J.; Hallworth, Mark A.

    2004-06-01

    Experimental observations of the collapse of initially vertical columns of small grains are presented. The experiments were performed mainly with dry grains of salt or sand, with some additional experiments using couscous, sugar or rice. Some of the experimental flows were analysed using high-speed video. There are three different flow regimes, dependent on the value of the aspect ratio a {=} h_i/r_i, where h_i and r_i are the initial height and radius of the granular column respectively. The differing forms of flow behaviour are described for each regime. In all cases a central, conically sided region of angle approximately 59(°) , corresponding to an aspect ratio of 1.7, remains undisturbed throughout the motion. The main experimental results for the final extent of the deposit and the time for emplacement are systematically collapsed in a quantitative way independent of any friction coefficients. Along with the kinematic data for the rate of spread of the front of the collapsing column, this is interpreted as indicating that frictional effects between individual grains in the bulk of the moving flow only play a role in the last instant of the flow, as it comes to an abrupt halt. For a {<} 1.7, the measured final runout radius, r_infty, is related to the initial radius by r_infty {=} r_i(1 {+} 1.24a); while for 1.7 {<} a the corresponding relationship is r_infty {=} r_i(1 {+} 1.6a(1/2) ). The time, t_infty, taken for the grains to reach r_infty is given by t_infty {=} 3(h_i/g)(1/2} {=} 3(r_i/g)({1/2}a^{1/2)) , where g is the gravitational acceleration. The insights and conclusions gained from these experiments can be applied to a wide range of industrial and natural flows of concentrated particles. For example, the observation of the rapid deposition of the grains can help explain details of the emplacement of pyroclastic flows resulting from the explosive eruption of volcanoes.

  2. Two scenarios for avalanche dynamics in inclined granular layers.

    PubMed

    Börzsönyi, Tamás; Halsey, Thomas C; Ecke, Robert E

    2005-05-27

    We report experimental measurements of avalanche behavior of thin granular layers on an inclined plane for low volume flow rate. The dynamical properties of avalanches were quantitatively and qualitatively different for smooth glass beads compared to irregular granular materials such as sand. Two scenarios for granular avalanches on an incline are identified, and a theoretical explanation for these different scenarios is developed based on a depth-averaged approach that takes into account the differing rheologies of the granular materials.

  3. Entropy driven patterning in vibrofluidized granular materials

    NASA Astrophysics Data System (ADS)

    Galanis, Jennifer

    2008-10-01

    We investigate pattern formation in vertically vibrofluidized rod and sphere granular mixtures confined to quasi-2D containers. In a pure rod system, crowding induces an isotropic-to-nematic phase transition. The inclusion of spheres destabilizes both the isotropic and nematic states. Instead, small independent rod bundles form, where the long axes of rods are closely approximated. To investigate the role of entropy maximization in the granular experiments, we performed strict-2D equilibrium Monte Carlo simulations of hard rods and spheres and found analogous patterning. Similarities and differences between the steady state experiments and equilibrium simulations will be discussed. In collaboration with Daniel Harries, The Hebrew University of Jerusalem.

  4. How granularity issues concern biomedical ontology integration.

    PubMed

    Schulz, Stefan; Boeker, Martin; Stenzhorn, Holger

    2008-01-01

    The application of upper ontologies has been repeatedly advocated for supporting interoperability between domain ontologies in order to facilitate shared data use both within and across disciplines. We have developed BioTop as a top-domain ontology to integrate more specialized ontologies in the biomolecular and biomedical domain. In this paper, we report on concrete integration problems of this ontology with the domain-independent Basic Formal Ontology (BFO) concerning the issue of fiat and aggregated objects in the context of different granularity levels. We conclude that the third BFO level must be ignored in order not to obviate cross-granularity integration.

  5. Challenges in Predicting Planetary Granular Mechanics

    NASA Technical Reports Server (NTRS)

    Metzger, Philip T.

    2005-01-01

    Through the course of human history, our needs in agriculture, habitat construction, and resource extraction have driven us to gain more experience working with the granular materials of planet Earth than with any other type of substance in nature, with the possible exception being water. Furthermore, throughout the past two centuries we have seen a dramatic and ever growing interest among scientists and engineers to understand and predict both its static and rheological properties. Ironically, however, despite this wealth of experience we still do not have a fundamental understanding of the complex physical phenomena that emerge even as just ordinary sand is shaken, squeezed or poured. As humanity is now reaching outward through the solar system, not only robotic ally but also with our immediate human presence, the need to understand and predict granular mechanics has taken on a new dimension. We must learn to farm, build and mine the regoliths of other planets where the environmental conditions are different than on Earth, and we are rapidly discovering that the effects of these environmental conditions are not trivial. Some of the relevant environmental features include the regolith formation processes throughout a planet's geologic and hydrologic history, the unknown mixtures of volatiles residing within the soil, the relative strength of gravitation, d the atm9spheric pressure and its seasonal variations. The need to work with soils outside our terrestrial experience base provides us with both a challenge and an opportunity. The challenge is to learn how to extrapolate our experience into these new planetary conditions, enabling the engineering decisions that are needed right now as we take the next few steps in solar system exploration. The opportunity is to use these new planetary environments as laboratories that will help us to see granular mechanics in new ways, to challenge our assumptions, and to help us finally unravel the elusive physics that lie

  6. 77 FR 59979 - Pure Magnesium (Granular) From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... COMMISSION Pure Magnesium (Granular) From China Determination On the basis of the record \\1\\ developed in the... antidumping duty order on pure magnesium (granular) from China would be likely to lead to continuation or...), entitled Pure Magnesium (Granular) from China: Investigation No.731-TA- 895 (Second Review)....

  7. The micromechanical nature of stresses in triphasic granular media with interfaces

    NASA Astrophysics Data System (ADS)

    Duriez, J.; Eghbalian, M.; Wan, R.; Darve, F.

    2017-02-01

    The total stress tensor as the average stress within a triphasic granular medium is formally derived from micromechanics where internal forces associated with the solid phase, the two immiscible fluid phases and the associated three interfaces are explicitly accounted for. It is demonstrated that for rigid solid particles, the contributions of all local solid-fluid surface tensions to the total stress are eventually zero. The present work gives the total stress expression as a function of a solid-phase specific stress tensor and a fluid mixture stress contribution that is related to the material's microstructure. A generally non-spherical fluid mixture stress is obtained in contrast to an averaged hydrostatic fluid pressure usually associated with standard thermodynamics. The tensorial nature of this fluid mixture stress contribution is highlighted through numerical experiments pertaining to an idealized granular material in the pendular regime at low wetting saturations. Numerical simulations providing full access to microstructural information are conducted using the Discrete Element Method (DEM), which describes internal forces using resultant forces that clearly deviate from the distributed nature of internal forces in triphasic granular media, e.g., fluid pressures. Nevertheless, this micro-scale representation is demonstrated to be indeed valid for macro-scale stress description in the pendular regime.

  8. Forced wetting and hydrodynamic assist

    NASA Astrophysics Data System (ADS)

    Blake, Terence D.; Fernandez-Toledano, Juan-Carlos; Doyen, Guillaume; De Coninck, Joël

    2015-11-01

    Wetting is a prerequisite for coating a uniform layer of liquid onto a solid. Wetting failure and air entrainment set the ultimate limit to coating speed. It is well known in the coating art that this limit can be postponed by manipulating the coating flow to generate what has been termed "hydrodynamic assist," but the underlying mechanism is unclear. Experiments have shown that the conditions that postpone air entrainment also reduce the apparent dynamic contact angle, suggesting a direct link, but how the flow might affect the contact angle remains to be established. Here, we use molecular dynamics to compare the outcome of steady forced wetting with previous results for the spontaneous spreading of liquid drops and apply the molecular-kinetic theory of dynamic wetting to rationalize our findings and place them on a quantitative footing. The forced wetting simulations reveal significant slip at the solid-liquid interface and details of the flow immediately adjacent to the moving contact line. Our results confirm that the local, microscopic contact angle is dependent not simply only on the velocity of wetting but also on the nature of the flow that drives it. In particular, they support an earlier suggestion that during forced wetting, an intense shear stress in the vicinity of the contact line can assist surface tension forces in promoting dynamic wetting, thus reducing the velocity-dependence of the contact angle. Hydrodynamic assist then appears as a natural consequence of wetting that emerges when the contact line is driven by a strong and highly confined flow. Our theoretical approach also provides a self-consistent model of molecular slip at the solid-liquid interface that enables its magnitude to be estimated from dynamic contact angle measurements. In addition, the model predicts how hydrodynamic assist and slip may be influenced by liquid viscosity and solid-liquid interactions.

  9. All-Wet Metallization Process for Transparent Polyimide Films

    NASA Astrophysics Data System (ADS)

    Ikeda, S.; Kobayashi, Y.; Fujiwara, Y.; Akamatsu, K.; Nawafune, H.

    2013-03-01

    Electrically conductive Ag thin films were successfully formed onto optically transparent polyimide films via all-wet chemical process. The process involves alkaline-induced surface modification of polyimide films, subsequent incorporation of Ag+ ions through ion exchange reaction followed by reduction of incorporated Ag+ ions. Initial alkaline treatment time determines thickness (depth) of surface-modified layer and amount of Ag+ ions loading consequently. Higher Ag+ ions loading result in forming electrically conductive Ag thin films and its granular interfacial structure. Cu electroplating is able to be conducted on the resulting Ag thin films directly, and adhesive strength between the Cu(/Ag) film and transparent polyimide substrate reached up to 2 kN m-1.

  10. 7 CFR 51.897 - Wet.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Definitions § 51.897 Wet. Wet means that the grapes are wet from moisture from crushed, leaking, or decayed berries or from rain. Grapes which are moist from dew or other moisture condensation such as...

  11. 7 CFR 51.897 - Wet.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Definitions § 51.897 Wet. Wet means that the grapes are wet from moisture from crushed, leaking, or decayed berries or from rain. Grapes which are moist from dew or other moisture condensation such as...

  12. Dimpling in loose granular sediments

    NASA Astrophysics Data System (ADS)

    Díaz-Hernández, Jose Luis; Yepes, Jorge

    2010-05-01

    Dimpling is the name given to the centimetre-scale collapse of granular deposits covering the interior of alteration shelters in semi-arid badlands. The development of micro-collapses is favoured by the stable conditions found in these shelters, where they are safe from water flows, rain impact, and animal or human traffic. The floor of these shelters is usually covered by several centimetres of sandy sediment resulting from the alteration of the rocky substratum and characterised by apparently very low density and high porosity. We have observed that the dimpling phenomenon does not depend on the mineralogy of the sands and occurs in dry conditions. The dimples are the shapes resulting from this process and are fragile, conical depressions ranging from 1 to 12 cm in diameter. They are generally over 3 cm in depth, depending on the depth of the sandy layer. The dimples can be classified into three groups by diameter (Ø): Ø≤1cm, 1cm≤Ø≤10 cm and Ø≥10 cm. These three morphometrical ranges suggest three evolutionary stages of the shapes. The main mechanisms of evolution are the coalescence of neighbouring dimples and the accommodation of the lateral walls towards more open, stable shapes. In this process, the slope of the dimple walls decreases to the angle of equilibrium, or internal friction angle of the sediment, when they acquire a more stable, dense structure. This evolution occurs naturally over several months. The process begins when sufficient sediment with low apparent density accumulates. This takes place by vertical accretion of particles from the shelter walls, which pile up in a stack-of-cards type structure. The increase in weight of the sediment column causes punctual micro-collapses when the limit of the sediment's self-supporting capacity is reached. The process is gravitational. Thermal variations can also condition the structural instability of the sediment due to the dilation-retraction changes undergone by the sediment grains. We can

  13. Stick-Slip and Granular Force Networks

    NASA Astrophysics Data System (ADS)

    Behringer, Robert; Yu, Peidong

    2008-03-01

    We describe friction/failure experiments for a granular system consisting of photoelastic particles. The goal of the experiments is to provide a microscopic understanding of stick-slip friction for an object that is pulled across a granular material. The granular material consists of a photoelastic disks (bidisperse distribution) that are confined to a vertically oriented channel. A slider that is rough at the grain scale is pulled across the upper surface of the material. The pulling is accomplished by a screw-driven platform that is connected to the slider by a spring. Photoelastic image data are acquired by a camera and light source that move with the platform. Non-periodic stick-slip occurs for the regime of parameters studied here. During a stick event, force builds up in a strong network of force chains in the granular material. When one or more of the chains break, a slip event occurs. Energy changes from these events are power-law distributed. Analysis of failure points and slip events yields the effective friction coefficients, which are broadly scattered. An alternative description involves modeling the force chain network as a collection of springs. Failure of one spring can lead to a cascade and hence the broad distribution of energy losses.

  14. A numerical laboratory for granular solids

    SciTech Connect

    Trent, B.C.; Margolin, L.G.; Lawrence Livermore National Lab., CA )

    1989-01-01

    The behavior of cemented granular material is complex and difficult to characterize. Physical tests on laboratory-size specimens are time consuming and often inconclusive, due to the variable nature of the bulk material. As an alternate approach, we have used the distinct element method to construct numerical samples of cemented granular material. The model allows us to verify which are the important microphysical processes determining material behavior. We can do parameter studies, continuously varying the material properties of the bonding material and the topology of the bonds themselves, to see how the macroscopic properties depend upon the microscopic structure. We illustrate our program with two types of calculations. The first series consists of measuring the macroscopic p-wave and the s-wave speeds of the numerical sample, and using them to infer elastic properties of the bulk material. We also investigate how the number and size of the bonds influence bulk response. In the second series, we look at crack growth in granular materials. The Griffith theory of crack growth assumes an ideally flat crack. In granular materials and in our simulation, the crack is formed when many consecutive bonds in the material are broken.

  15. Motile Fluids: Granular, Colloidal and Living

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Sriram

    2014-03-01

    My talk will present our recent results from theory, simulation and experiment on flocking, swarming and instabilities in diverse realizations of active systems. The findings I will report include: flocking at a distance in vibrated granular monolayers; the active hydrodynamics of self-propelled solids; clusters, asters and oscillations in colloidal chemotaxis. Supported by a J C Bose Fellowship.

  16. ENGINEERING BULLETIN: GRANULAR ACTIVATED CARBON TREATMENT

    EPA Science Inventory

    Granular activated carbon (GAC) treatment is a physicochemical process that removes a wide variety of contaminants by adsorbing them from liquid and gas streams [1, p. 6-3]. This treatment is most commonly used to separate organic contaminants from water or air; however, it can b...

  17. Drag on intruder in dense granular flows

    NASA Astrophysics Data System (ADS)

    Zheng, Hu; Bares, Jonathan; Wang, Dong; Behringer, Robert

    2015-11-01

    We perform an experimental study on an intruder dragged at a constant force in a quasi-statically cyclic-sheared granular medium. A Teflon disk is embedded in a layer of bidisperse photoelastic disks. The granular medium is contained in a horizontal square cell, which can be deformed into a parallelogram with the same area to produce simple shear. We find that the forward motion of the intruder happens at the fragile state during shear reversals, while only reversible affine motion could be found at the Jammed state. There is a burst of non-affine motion for the granular particles at each shear reversal. For a range of packing fractions, the cumulative intruder displacement shows a linear increase proportional to the number of cycles of shear. To explain the behavior of intruder motion, we analyze the coordination number, density, affine and non-affine motion of disk-granular system variations as the shear strain. We acknowledge support from NSF Grant No. DMR1206351, NASA Grant No. NNX15AD38G and the W.M. Keck Foundation.

  18. Granular materials interacting with thin flexible rods

    NASA Astrophysics Data System (ADS)

    Neto, Alfredo Gay; Campello, Eduardo M. B.

    2017-04-01

    In this work, we develop a computational model for the simulation of problems wherein granular materials interact with thin flexible rods. We treat granular materials as a collection of spherical particles following a discrete element method (DEM) approach, while flexible rods are described by a large deformation finite element (FEM) rod formulation. Grain-to-grain, grain-to-rod, and rod-to-rod contacts are fully permitted and resolved. A simple and efficient strategy is proposed for coupling the motion of the two types (discrete and continuum) of materials within an iterative time-stepping solution scheme. Implementation details are shown and discussed. Validity and applicability of the model are assessed by means of a few numerical examples. We believe that robust, efficiently coupled DEM-FEM schemes can be a useful tool to the simulation of problems wherein granular materials interact with thin flexible rods, such as (but not limited to) bombardment of grains on beam structures, flow of granular materials over surfaces covered by threads of hair in many biological processes, flow of grains through filters and strainers in various industrial segregation processes, and many others.

  19. Dense granular flows down an inclined plane

    NASA Astrophysics Data System (ADS)

    Ecke, Robert; Borzsonyi, Tamas

    2006-03-01

    Granular flow on a rough inclined plane is an important model system in which to study the basic rules of the dynamics of granular materials. Despite intensive study, many features of such flows are still incompletely understood. For uniformly flowing layers at relatively shallow inclination, we consider experimentally the the basic flow rheology of the granular media and propose new scalings to collapse our data for glass beads and rough sand as a function of inclination angle and particle diameter. At steep inclinations above some angle θs (θs/θr 1.3-1.5, where θr stands for the angle of repose) for flowing grains, numerics and theory predict that the surface roughness is inadequate to dissipate energy gained in the gravitational field, and the flow should continue to accelerate. We report on our experimental results on the properties of granular flows on a steeply inclined plane and define the domains of steady flows. We also discuss the instabilities of such flows leading to spatial patterns.

  20. Granular avalanches down inclined and vibrated planes.

    PubMed

    Gaudel, Naïma; Kiesgen de Richter, Sébastien; Louvet, Nicolas; Jenny, Mathieu; Skali-Lami, Salaheddine

    2016-09-01

    In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999)PHFLE61070-663110.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.

  1. Granular Gas in a Periodic Lattice

    ERIC Educational Resources Information Center

    Dorbolo, S.; Brandenbourger, M.; Damanet, F.; Dister, H.; Ludewig, F.; Terwagne, D.; Lumay, G.; Vandewalle, N.

    2011-01-01

    Glass beads are placed in the compartments of a horizontal square grid. This grid is then vertically shaken. According to the reduced acceleration [image omitted] of the system, the granular material exhibits various behaviours. By counting the number of beads in each compartment after shaking, it is possible to define three regimes. At low…

  2. Localized fluidization in a granular medium.

    PubMed

    Philippe, P; Badiane, M

    2013-04-01

    We present here experimental results on the progressive development of a fluidized zone in a bed of grains, immersed in a liquid, under the effect of a localized upward flow injected through a small orifice at the bottom of the bed. Visualization inside the model granular medium consisting of glass beads is made possible by the combined use of two optical techniques: refractive index matching between the liquid and the beads and planar laser-induced fluorescence. Gradually increasing the injection rate, three regimes are successively observed: static bed, fluidized cavity that does not open to the upper surface of the granular bed, and finally fluidization over the entire height of the granular bed inside a fluidized chimney. The phase diagram is plotted and partially interpreted using a model previously developed by Zoueshtiagh and Merlen [F. Zoueshtiagh and A. Merlen, Phys. Rev. E 75, 053613 (2007)]. A typical sequence, where the flow rate is first increased and then decreased back to zero, reveals a strong hysteretic behavior since the stability of the fluidized cavity is considerably strengthened during the defluidization phase. This effect can be explained by the formation of force arches within the granular packing when the chimney closes up at the top of the bed. A study of the expansion rate of the fluidized cavity was also conducted as well as the analysis of the interaction between two injection orifices with respect to their spacing.

  3. Experimental velocity distributions in a granular submonolayer

    NASA Astrophysics Data System (ADS)

    Cadillo-Martínez, Alejandra T.; Sánchez, Rodrigo

    2017-01-01

    Experimental speed distributions are obtained for driven granular submonolayers of binary mixtures of single spheres and dimers of spheres. The results are well-described by a distribution originally developed for a single-species one-dimensional system. This suggests that such a distribution may be extended to other mixtures such as systems exhibiting aggregation and dissociation.

  4. Bipotential continuum models for granular mechanics

    NASA Astrophysics Data System (ADS)

    Goddard, Joe

    2014-03-01

    Most currently popular continuum models for granular media are special cases of a generalized Maxwell fluid model, which describes the evolution of stress and internal variables such as granular particle fraction and fabric,in terms of imposed strain rate. It is shown how such models can be obtained from two scalar potentials, a standard elastic free energy and a ``dissipation potential'' given rigorously by the mathematical theory of Edelen. This allows for a relatively easy derivation of properly invariant continuum models for granular media and fluid-particle suspensions within a thermodynamically consistent framework. The resulting continuum models encompass all the prominent regimes of granular flow, ranging from the quasi-static to rapidly sheared, and are readily extended to include higher-gradient or Cosserat effects. Models involving stress diffusion, such as that proposed recently by Kamrin and Koval (PRL 108 178301), provide an alternative approach that is mentioned in passing. This paper provides a brief overview of a forthcoming review articles by the speaker (The Princeton Companion to Applied Mathematics, and Appl. Mech. Rev.,in the press, 2013).

  5. Granular avalanches down inclined and vibrated planes

    NASA Astrophysics Data System (ADS)

    Gaudel, Naïma; Kiesgen de Richter, Sébastien; Louvet, Nicolas; Jenny, Mathieu; Skali-Lami, Salaheddine

    2016-09-01

    In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999), 10.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.

  6. Cohesion, granular solids, granular liquids, and their connection to small near-Earth objects

    NASA Astrophysics Data System (ADS)

    Sánchez, P.; Scheeres, D.

    2014-07-01

    During the last 15 years or so, the Planetary Sciences community has been using Discrete Element Method (DEM) simulation codes to study small near-Earth objects (NEOs). In general, these codes treat gravitational aggregates as conglomerates of spherical particles; a good approximation given that many asteroids are self-gravitating granular media. Unfortunately, the degree of sophistication of these codes, and our own understanding, has not been high enough as to appropriately represent realistic physical properties of granular matter. In particular, angles of friction (θ) and cohesive strength (σ_c) of the aggregates were rarely taken in consideration and this could have led to unrealistic dynamics, and therefore, unrealistic conclusions about the dynamical evolution of small NEOs. In our research, we explore the failure mechanics of spherical (r=71 m) and ellipsoidal (r_1=92 m) self-gravitating aggregates with different angles of friction and values for their cohesive strength, in order to better understand the geophysics of rubble-pile asteroids. In particular we focused on the deformation and different disruption modes provoked by an always increasing angular velocity (spin rate). Scaling arguments allow us to regard simulations with the same aggregate size and different σ_c as equivalent to simulations of aggregates of different size and the same σ_c. We use a computational code that implements a Soft-Sphere DEM. The aggregates are composed by 3,000 spherical solid spheres (7--10 m) with 6 degrees of freedom. The code calculates normal, as well as, frictional (tangential) contact forces by means of soft potentials and the aggregate as a whole mimics the effect of non- spherical particles through the implementation of rolling friction. Cohesive forces, and a cohesive stress, are calculated as the net effect of the sum of the van der Waals forces between the smaller regolith, sand and dust (powder) that are present in real asteroids [1]. These finer materials

  7. Influence of magnetic cohesion on the stability of granular slopes.

    PubMed

    Taylor, K; King, P J; Swift, Michael R

    2008-09-01

    We use a molecular dynamics model to simulate the formation and evolution of a granular pile in two dimensions in order to gain a better understanding of the role of magnetic interactions in avalanche dynamics. We find that the angle of repose increases only slowly with magnetic field; the increase in angle is small even for intergrain cohesive forces many times stronger than gravity. The magnetic forces within the bulk of the pile partially cancel as a result of the anisotropic nature of the dipole-dipole interaction between grains. However, we show that this cancellation effect is not sufficiently strong to explain the discrepancy between the angle of repose in wet systems and magnetically cohesive systems. In our simulations we observe shearing deep within the pile, and we argue that it is this motion that prevents the angle of repose from increasing dramatically. We also investigate different implementations of friction with the front and back walls of the container, and conclude that the nature of the friction dramatically affects the influence of magnetic cohesion on the angle of repose.

  8. URBAN WET-WEATHER FLOWS

    EPA Science Inventory

    Provides the annual Urban Wet Weather Flow Literture Review for the calendar year 1998 conducted for the Water Environment Federation. It contains hundreds of citations covering the topics of characterization and effects, management, modeling, regulator policies and contol and t...

  9. Granular slumping on a horizontal surface

    NASA Astrophysics Data System (ADS)

    Lajeunesse, E.; Monnier, J. B.; Homsy, G. M.

    2005-10-01

    We report the results of an experimental investigation of the flow induced by the collapse of a column of granular material (glass beads of diameter d) over a horizontal surface. Two different setups are used, namely, a rectangular channel and a semicircular tube, allowing us to compare two-dimensional and axisymmetric flows, with particular focus on the internal flow structure. In both geometries the flow dynamics and the deposit morphologies are observed to depend primarily on the initial aspect ratio of the granular column a =Hi/Li, where Hi is the height of the initial granular column and Li its length along the flow direction. Two distinct regimes are observed depending on a: an avalanche of the column flanks producing truncated deposits for small a and a column free fall leading to conical deposits for large a. In both geometries the characteristic time scale is the free fall of the granular column τc=√Hi/g . The flow initiated by Coulomb-like failure never involves the whole granular heap but remains localized in a surface layer whose size and shape depend on a and vary in both space and time. Except in the vicinity of the pile foot where the flow is pluglike, velocity profiles measured at the side wall are identical to those commonly observed in steady granular surface flows: the velocity varies linearly with depth in the flowing layer and decreases exponentially with depth in the static layer. Moreover, the shear rate is constant, γ˙=0.3√g /d , independent of the initial aspect ratio, the flow geometry, position along the heap, or time. Despite the rather complex flow dynamics, the scaled deposit height Hf/Li and runout distance ΔL /Li both exhibit simple power laws whose exponents depend on a and on the flow geometry. We show that the physical origin of these power laws can be understood on the basis of a dynamic balance between acceleration, pressure gradient, and friction forces at the foot of the granular pile. Two asymptotic behaviors can be

  10. Reentrant Wetting of Network Fluids

    NASA Astrophysics Data System (ADS)

    Bernardino, N. R.; Telo da Gama, M. M.

    2012-09-01

    We use a simple mesoscopic Landau-Safran theory of network fluids to show that a reentrant phase diagram, in the “empty liquid” regime, leads to nonmonotonic surface tension and reentrant wetting, as previously reported for binary mixtures. One of the wetting transitions is of the usual kind, but the low temperature transition may allow the display of the full range of fluctuation regimes predicted by renormalization group theory.

  11. Time Granularity Transformation of Time Series Data for Failure Prediction of Overhead Line

    NASA Astrophysics Data System (ADS)

    Ma, Yan; Zhu, Wenbing; Yao, Jinxia; Gu, Chao; Bai, Demeng; Wang, Kun

    2017-01-01

    In this paper, we give an approach of transforming time series data with different time granularities into the same plane, which is the basis of further association analysis. We focus on the application of overhead line tripping. First all the relative state variables with line tripping are collected into our big data platform. We collect line account, line fault, lightning, power load and meteorological data. Second we respectively pre-process the five kinds of data to guarantee the integrality of data and simplicity of analysis. We use a representation way combining the aggregated representation and trend extraction methods, which considers both short term variation and long term trend of time sequence. Last we use extensive experiments to demonstrate that the proposed time granularity transformation approach not only lets multiple variables analysed on the same plane, but also has a high prediction accuracy and low running time no matter for SVM or logistic regression algorithm.

  12. Axisymmetric Granular Collapse: A Transient 3D Flow Test of Viscoplasticity

    NASA Astrophysics Data System (ADS)

    Lacaze, Laurent; Kerswell, Rich R.

    2009-03-01

    A viscoplastic continuum theory has recently been proposed to model dense, cohesionless granular flows [P. Jop , Nature (London)NATUAS0028-0836 441, 727 (2006)10.1038/nature04801]. We confront this theory for the first time with a transient, three-dimensional flow situation—the simple collapse of a cylinder of granular matter onto a horizontal plane—by extracting stress and strain rate tensors directly from soft particle simulations. These simulations faithfully reproduce the different flow regimes and capture the observed scaling laws for the final deposit. Remarkably, the theoretical hypothesis that there is a simple stress-strain rate tensorial relationship does seem to hold across the whole flow even close to the rough boundary provided the flow is dense enough. These encouraging results suggest viscoplastic theory is more generally applicable to transient, multidirectional, dense flows and open the way for quantitative predictions in real applications.

  13. Record Dynamics and the Parking Lot Model for granular dynamics

    NASA Astrophysics Data System (ADS)

    Sibani, Paolo; Boettcher, Stefan

    Also known for its application to granular compaction (E. Ben-Naim et al., Physica D, 1998), the Parking Lot Model (PLM) describes the random parking of identical cars in a strip with no marked bays. In the thermally activated version considered, cars can be removed at an energy cost and, in thermal equilibrium, their average density increases as temperature decreases. However, equilibration at high density becomes exceedingly slow and the system enters an aging regime induced by a kinematic constraint, the fact that parked cars may not overlap. As parking an extra car reduces the available free space,the next parking event is even harder to achieve. Records in the number of parked cars mark the salient features of the dynamics and are shown to be well described by the log-Poisson statistics known from other glassy systems with record dynamics. Clusters of cars whose positions must be rearranged to make the next insertion possible have a length scale which grows logarithmically with age, while their life-time grows exponentially with size. The implications for a recent cluster model of colloidal dynamics,(S. Boettcher and P. Sibani, J. Phys.: Cond. Matter, 2011 N. Becker et al., J. Phys.: Cond. Matter, 2014) are discussed. Support rom the Villum Foundation is gratefully acknowledged.

  14. Granular Mechanics in the Asteroid Regime

    NASA Astrophysics Data System (ADS)

    Sanchez, Paul; Swift, M. R.; Scheeres, D. J.

    2009-09-01

    We study the granular mechanics properties of asteroid regolith and of asteroids modeled as gravitational aggregates using soft-sphere molecular simulation codes. For definiteness we assume parameters similar to the asteroid Itokawa, for which we have detailed observational data. Essential questions that can be studied using the techniques of granular mechanics are why large blocks dominate 80% of the surface of Itokawa and why the remaining 20% is uniformly covered with smaller particles, indicating global segregation mechanisms at work on this body. The prime energy source proposed for the segregation of granular materials on asteroids has been seismic shaking due to hypervelocity impacts with asteroids much smaller than the target body. We analyze the detailed mechanics of segregation physics in the asteroid environment due to such interactions. First we analyze the so-called Brazil Nut Effect (BNE), which preferentially causes larger particles to rise to the highest potential energy in a granular material. We note that the regions of highest potential on Itokawa are dominated by larger blocks, while the potential lows are dominated by smaller blocks. We verify and characterise the BNE effect in an asteroid environment under a variety of boundary and shaking conditions. We also extend our analyses to a global-scale simulation of aggregates, modeling the response of self-gravitating granules of a mixture of sizes to impacts. Analysis of such global-scale systems show additional mechanics that may account for the exposure of large blocks on the surface. Specifically we find that hypervelocity impacts are more effective in removing and transporting smaller regolith, exposing sub-surface larger blocks that might otherwise be covered in finer grained material. We discuss the scaling of granular mechanics effects from local regolith to global aggregate scale.

  15. Supporting user-defined granularities in a spatiotemporal conceptual model

    USGS Publications Warehouse

    Khatri, V.; Ram, S.; Snodgrass, R.T.; O'Brien, G. M.

    2002-01-01

    Granularities are integral to spatial and temporal data. A large number of applications require storage of facts along with their temporal and spatial context, which needs to be expressed in terms of appropriate granularities. For many real-world applications, a single granularity in the database is insufficient. In order to support any type of spatial or temporal reasoning, the semantics related to granularities needs to be embedded in the database. Specifying granularities related to facts is an important part of conceptual database design because under-specifying the granularity can restrict an application, affect the relative ordering of events and impact the topological relationships. Closely related to granularities is indeterminacy, i.e., an occurrence time or location associated with a fact that is not known exactly. In this paper, we present an ontology for spatial granularities that is a natural analog of temporal granularities. We propose an upward-compatible, annotation-based spatiotemporal conceptual model that can comprehensively capture the semantics related to spatial and temporal granularities, and indeterminacy without requiring new spatiotemporal constructs. We specify the formal semantics of this spatiotemporal conceptual model via translation to a conventional conceptual model. To underscore the practical focus of our approach, we describe an on-going case study. We apply our approach to a hydrogeologic application at the United States Geologic Survey and demonstrate that our proposed granularity-based spatiotemporal conceptual model is straightforward to use and is comprehensive.

  16. Tap density equations of granular powders based on the rate process theory and the free volume concept.

    PubMed

    Hao, Tian

    2015-02-28

    The tap density of a granular powder is often linked to the flowability via the Carr index that measures how tight a powder can be packed, under an assumption that more easily packed powders usually flow poorly. Understanding how particles are packed is important for revealing why a powder flows better than others. There are two types of empirical equations that were proposed to fit the experimental data of packing fractions vs. numbers of taps in the literature: the inverse logarithmic and the stretched exponential. Using the rate process theory and the free volume concept under the assumption that particles will obey similar thermodynamic laws during the tapping process if the "granular temperature" is defined in a different way, we obtain the tap density equations, and they are reducible to the two empirical equations currently widely used in literature. Our equations could potentially fit experimental data better with an additional adjustable parameter. The tapping amplitude and frequency, the weight of the granular materials, and the environmental temperature are grouped into this parameter that weighs the pace of the packing process. The current results, in conjunction with our previous findings, may imply that both "dry" (granular) and "wet" (colloidal and polymeric) particle systems are governed by the same physical mechanisms in term of the role of the free volume and how particles behave (a rate controlled process).

  17. SETAC-U.S. EPA WET INITIATIVES: ALL WET AND NOTHING BUT WET

    EPA Science Inventory

    To ensure that sould scientific principles and sound science are applied to the challenging issues in t he Whole Effluent Toxicity (WET) process, the Society of Environmental Toxicology and Chemistry (SETAC) Foundation for Environmental Education was awarded a cooperative agreem...

  18. On the similarity in shape between debris-flow channels and high-gradient flood channels: Initial insight from continuum models for granular and water flow

    NASA Astrophysics Data System (ADS)

    Kean, J. W.; McCoy, S. W.; Tucker, G. E.

    2011-12-01

    The cross-sectional shape of high-gradient bedrock channels carved by debris flows is often very similar to that of channels formed by fluvial erosion. Both tend to have narrow U-shapes with width-to-depth ratios much less than 10. Gullies and channels cut into colluvium by both water erosion and debris-flow erosion have similarly narrow geometries. Given that the physics governing debris flow and turbulent water flow are very different, why are channels eroded by these two processes so similar in shape? To begin to investigate this question, we conducted a series of numerical simulations using continuum models for the end-member cases of granular flow and water flow. Each model is used to evolve the steady-state channel shape formed by uniform flow of the respective material. The granular model is based on the constitutive equation for dense granular flow proposed by Jop et al. (Nature, 2006). They demonstrated that without any fitting parameters, a numerical model using this constitutive equation could reproduce the velocity and depth profiles observed in granular-flow laboratory experiments. The model for water flow uses a ray-isovel turbulence closure to calculate the boundary shear stress across the wetted perimeter of the channel. This fully predictive model has also been shown to be in good agreement with laboratory data. We start the calculations for the granular and water-flow cases by determining the velocity and boundary shear-stress fields in an initial V-shape cross section. We then erode both channels using a simple wear law scaled linearly by the bed-normal boundary shear stress. The calculation is repeated until the channel reaches an equilibrium shape. Initial comparisons of the granular and water-flow channels show that they have very similar width-to-depth ratios of about four, and only moderate differences in bottom geometries and boundary shear-stress distributions. The structure of the velocity field differs more substantially between the two

  19. Wetting Effect on Torricelli's Law

    NASA Astrophysics Data System (ADS)

    Ferrand, J.; Favreau, L.; Joubaud, S.; Freyssingeas, E.

    2016-12-01

    This Letter presents an experimental study on the effect of wetting on the draining of a tank through an orifice set at its bottom. The investigation focuses on flows of liquids in the inertial regime through an orifice the size on the order of magnitude of the capillary length. The results show that although the flows always follow a Torricelli-like behavior, wetting strongly affects the speed of drainage. Surprisingly, this speed goes through a minimum as the outside surface of the tank bottom plate changes from hydrophilic to hydrophobic. The maximum effect in slowing down the flows (up to 20%) is obtained for a static wetting angle θs of about 60°. Experiments suggest that the effect of wetting on the exit flows, very likely, is related to the meniscus that forms at the hole's outlet. A simple model is proposed that estimates the variation of kinetic energy within the meniscus. This model captures the main features of the experimental observations, particularly the nonmonotonic variation of the speed of drainage as a function of θs with a minimum for a static wetting angle of about 60°.

  20. Evaluation of peripheral fundus autofluorescence in eyes with wet age-related macular degeneration

    PubMed Central

    Suetsugu, Tetsuyuki; Kato, Aki; Yoshida, Munenori; Yasukawa, Tsutomu; Nishiwaki, Akiko; Hasegawa, Norio; Usui, Hideaki; Ogura, Yuichiro

    2016-01-01

    Purpose We aimed to evaluate the prevalence of abnormal peripheral fundus autofluorescence (FAF) in wet age-related macular degeneration (AMD) using wide-field imaging instrument. Patients and methods A retrospective, case-controlled study involving 66 eyes of 46 Japanese wet AMD patients and 32 eyes of 20 control patients was performed. Wide-field FAF images were obtained for typical AMD (37 eyes/28 patients), polypoidal choroidal vasculopathy (PCV) (22 eyes/20 patients), and retinal angiomatous proliferation (RAP) (seven eyes/four patients). Two masked ophthalmologists independently graded the images for mottled, granular, and nummular patterns. Main outcome measures were abnormal peripheral FAF frequencies and relative risks by disease subgroups and treatments. Results Abnormal peripheral FAF patterns were found in 51.5% of wet AMD eyes compared with 18.8% of control eyes (P<0.001). Mottled, granular, and nummular patterns were found in 45.5%, 31.8%, and 16.7%, respectively, of wet AMD eyes. Each disease subgroup (typical AMD, 54.1%; PCV, 36.4%; and RAP, 85.7%) showed significantly higher frequencies of peripheral FAF (P<0.001, P=0.03, and P<0.001, respectively) than control eyes (18.8%). There were no significant differences (P=0.76) between the frequencies in untreated and treated eyes. Conclusion Eyes of Japanese wet AMD patients had a higher abnormal FAF prevalence compared with control eyes. Among the three disease subtypes, abnormal patterns were least prevalent in PCV eyes. PMID:28008222

  1. Mechanism and Structure of Subsurface Explosions in Granular Media

    NASA Astrophysics Data System (ADS)

    Lai, Shuyue; Houim, Ryan; Oran, Elaine

    2016-11-01

    Numerical simulations of explosions in granular media were performed with an unsteady multidimensional fully compressible model, which solves two sets of coupled Euler equations, one for the gas and one for the granular medium. An explosive charge, buried in the granular medium, is modeled by a pocket of high-pressure and high-temperature gas. The initial conditions were determined based on an estimate of subsurface conditions on a comet. A series of simulations were performed in which the charge was buried at 3 m and 1.5 m and the particle volume fractions and the coefficient of restitution varied in the ranges 0.25 to 0.45 and 0 to 1, respectively. The simulations show the process of granular shock formation and propagation as a blast wave is created during the explosion. The blast wave initiates the particle motion and the particles accumulate to form a granular shock. The granular shock, in turn, produces a weak gas shock following it. There is a power law that relates the granular-shock radius to the explosion time: R t0.4, which is consistent with the results found by G. I. Taylor for 3-D spherical shock waves. The exponent of the power law remains at 0.4 regardless of the volume fraction and the elasticity of the granular material. For denser granular flows, the intergranular stress becomes stronger, and so the granular shock propagates at a higher velocity.

  2. The design of free structure granular mappings: the use of the principle of justifiable granularity.

    PubMed

    Pedrycz, Witold; Al-Hmouz, Rami; Morfeq, Ali; Balamash, Abdullah

    2013-12-01

    The study introduces a concept of mappings realized in presence of information granules and offers a design framework supporting the formation of such mappings. Information granules are conceptually meaningful entities formed on a basis of a large number of experimental input–output numeric data available for the construction of the model. We develop a conceptually and algorithmically sound way of forming information granules. Considering the directional nature of the mapping to be formed, this directionality aspect needs to be taken into account when developing information granules. The property of directionality implies that while the information granules in the input space could be constructed with a great deal of flexibility, the information granules formed in the output space have to inherently relate to those built in the input space. The input space is granulated by running a clustering algorithm; for illustrative purposes, the focus here is on fuzzy clustering realized with the aid of the fuzzy C-means algorithm. The information granules in the output space are constructed with the aid of the principle of justifiable granularity (being one of the underlying fundamental conceptual pursuits of Granular Computing). The construct exhibits two important features. First, the constructed information granules are formed in the presence of information granules already constructed in the input space (and this realization is reflective of the direction of the mapping from the input to the output space). Second, the principle of justifiable granularity does not confine the realization of information granules to a single formalism such as fuzzy sets but helps form the granules expressed any required formalism of information granulation. The quality of the granular mapping (viz. the mapping realized for the information granules formed in the input and output spaces) is expressed in terms of the coverage criterion (articulating how well the experimental data are

  3. Spreading granular material with a blade

    NASA Astrophysics Data System (ADS)

    Dressaire, Emilie; Singh, Vachitar; Grimaldi, Emma; Sauret, Alban

    2015-11-01

    The spreading of a complex fluid with a blade is encountered in applications that range from the bulldozing of granular material in construction projects to the coating of substrates with fluids in industrial applications. This spreading process is also present in everyday life, when we use a knife to turn a lump of peanut butter into a thin layer over our morning toast. In this study, we rely on granular media in a model experiment to describe the three-dimensional spreading of the material. Our experimental set-up allows tracking the spreading of a sandpile on a translating flat surface as the blade remains fixed. We characterize the spreading dynamics and the shape of the spread fluid layer when varying the tilt of the blade, its spacing with the surface and its speed. Our findings suggest that it is possible to tune the spreading parameters to optimize the coating.

  4. Capillary movement of liquid in granular beds

    SciTech Connect

    Yendler, B.; Webbon, B.

    1993-12-31

    Knowledge of capillary migration of liquids in granular beds in microgravity is essential for the development of a substrate based nutrient delivery sytem for the growth of plants in space. This problem is also interesting from the theoretical as well as the practical point of view. The purpose of this study was to model capillary water propagation through a granular bed in microgravity. In our ground experiments, water propagation is driven primarily by capillary force. Data for spherical partical sizes in the range from 0.46 to 2 mm have been obtained. It was shown that the velocity of water propagation is very sensitive to particle size. Theoretical consideration is also provided. Actual space flight experiments are planned for the future to confirm our results.

  5. Movers and shakers: granular damping in microgravity.

    PubMed

    Bannerman, M N; Kollmer, J E; Sack, A; Heckel, M; Mueller, P; Pöschel, T

    2011-07-01

    The response of an oscillating granular damper to an initial perturbation is studied using experiments performed in microgravity and granular dynamics simulations. High-speed video and image processing techniques are used to extract experimental data. An inelastic hard sphere model is developed to perform simulations and the results are in excellent agreement with the experiments. In line with previous work, a linear decay of the amplitude is observed. Although this behavior is typical for a friction-damped oscillator, through simulation it is shown that this effect is still present even when friction forces are absent. A simple expression is developed which predicts the optimal damping conditions for a given amplitude and is independent of the oscillation frequency and particle inelasticities.

  6. Intracranial granular cell tumor in a dog.

    PubMed

    Liu, Chen-Hsuan; Liu, Chen-I; Liang, Sao-Ling; Cheng, Chiung-Hsiang; Huang, Sun-Chau; Lee, Chin-Cheng; Hsu, Wei-Chih; Lin, Yung-Chang

    2004-01-01

    A 12-year-old female miniature poodle showed a 3-month history of neurological signs. Magnetic resonance imaging disclosed a high intensity tumor mass in the right cerebral hemisphere with compression of the lateral ventricle. At necropsy, a 2 x 3 cm white, friable mass was found in the right ventral pyriform lobe. Microscopically, the tumor cells were large, polygonal to round cells supported by a sparse fibrovascular stroma. The tumor cells typically possessed finely granular, pale eosinophilic cytoplasm with strongly positive periodic acid-Schiff (PAS) reaction. The tumor cells were immunopositive for vimentin, NSE and S-100. Ultrastructurally, the tumor cells showed large amounts of granules in the cytoplasm, and absence of basement membrane. Based on the above-mentioned findings, the intracranial granular cell tumor was diagnosed.

  7. Writing in the granular gel medium

    PubMed Central

    Bhattacharjee, Tapomoy; Zehnder, Steven M.; Rowe, Kyle G.; Jain, Suhani; Nixon, Ryan M.; Sawyer, W. Gregory; Angelini, Thomas E.

    2015-01-01

    Gels made from soft microscale particles smoothly transition between the fluid and solid states, making them an ideal medium in which to create macroscopic structures with microscopic precision. While tracing out spatial paths with an injection tip, the granular gel fluidizes at the point of injection and then rapidly solidifies, trapping injected material in place. This physical approach to creating three-dimensional (3D) structures negates the effects of surface tension, gravity, and particle diffusion, allowing a limitless breadth of materials to be written. With this method, we used silicones, hydrogels, colloids, and living cells to create complex large aspect ratio 3D objects, thin closed shells, and hierarchically branched tubular networks. We crosslinked polymeric materials and removed them from the granular gel, whereas uncrosslinked particulate systems were left supported within the medium for long times. This approach can be immediately used in diverse areas, contributing to tissue engineering, flexible electronics, particle engineering, smart materials, and encapsulation technologies. PMID:26601274

  8. Erosion and flow of hydrophobic granular materials

    NASA Astrophysics Data System (ADS)

    Utter, Brian; Benns, Thomas; Foltz, Benjamin; Mahler, Joseph

    2015-03-01

    We experimentally investigate submerged granular flows of hydrophobic and hydrophilic grains both in a rotating drum geometry and under erosion by a surface water flow. While slurry and suspension flows are common in nature and industry, effects of surface chemistry on flow behavior have received relatively little attention. In the rotating drum, we use varying concentrations of hydrophobic and hydrophilic grains of sand submerged in water rotated at a constant angular velocity. Sequential images of the resulting avalanches are taken and analyzed. High concentrations of hydrophobic grains result in an effectively cohesive interaction between the grains forming aggregates, with aggregate size and repose angle increasing with hydrophobic concentration. However, the formation and nature of the aggregates depends significantly on the presence of air in the system. We present results from a related experiment on erosion by a surface water flow designed to characterize the effects of heterogeneous granular surfaces on channelization and erosion.

  9. Erosion and flow of hydrophobic granular materials

    NASA Astrophysics Data System (ADS)

    Utter, Brian; Benns, Thomas; Mahler, Joseph

    2013-11-01

    We experimentally investigate submerged granular flows of hydrophobic and hydrophilic grains both in a rotating drum geometry and under erosion by a surface water flow. While slurry and suspension flows are common in nature and industry, effects of surface chemistry on flow behavior have received relatively little attention. In the rotating drum , we use varying concentrations of hydrophobic and hydrophilic grains of sand submerged in water rotated at a constant angular velocity. Sequential images of the resulting avalanches are taken and analyzed. High concentrations of hydrophobic grains result in an effectively cohesive interaction between the grains forming aggregates, with aggregate size and repose angle increasing with hydrophobic concentration. However, the formation and nature of the aggregates depends significantly on the presence of air in the system. We present results from a related experiment on erosion by a surface water flow designed to characterize the effects of heterogeneous granular surfaces on channelization and erosion. Supported by NSF CBET Award 1067598.

  10. Writing in the granular gel medium.

    PubMed

    Bhattacharjee, Tapomoy; Zehnder, Steven M; Rowe, Kyle G; Jain, Suhani; Nixon, Ryan M; Sawyer, W Gregory; Angelini, Thomas E

    2015-09-01

    Gels made from soft microscale particles smoothly transition between the fluid and solid states, making them an ideal medium in which to create macroscopic structures with microscopic precision. While tracing out spatial paths with an injection tip, the granular gel fluidizes at the point of injection and then rapidly solidifies, trapping injected material in place. This physical approach to creating three-dimensional (3D) structures negates the effects of surface tension, gravity, and particle diffusion, allowing a limitless breadth of materials to be written. With this method, we used silicones, hydrogels, colloids, and living cells to create complex large aspect ratio 3D objects, thin closed shells, and hierarchically branched tubular networks. We crosslinked polymeric materials and removed them from the granular gel, whereas uncrosslinked particulate systems were left supported within the medium for long times. This approach can be immediately used in diverse areas, contributing to tissue engineering, flexible electronics, particle engineering, smart materials, and encapsulation technologies.

  11. Heat flux in a granular gas

    NASA Astrophysics Data System (ADS)

    Brey, J. J.; Ruiz-Montero, M. J.

    2012-11-01

    A peculiarity of the hydrodynamic Navier-Stokes equations for a granular gas is the modification of the Fourier law, with the presence of an additional contribution to the heat flux that is proportional to the density gradient. Consequently, the constitutive relation involves, in the case of a one-component granular gas, two transport coefficients: the usual (thermal) heat conductivity and a diffusive heat conductivity. A very simple physical interpretation of this effect, in terms of the mean free path and the mean free time is provided. It leads to the modified Fourier law with an expression for the diffusive Fourier coefficient that differs in a factor of the order of unity from the expression obtained by means of the inelastic Boltzmann equation. Also, some aspects of the Chapman-Enskog computation of the new transport coefficients as well as of the comparison between simulation results and theory are discussed.

  12. Maximizing energy transfer in vibrofluidized granular systems.

    PubMed

    Windows-Yule, C R K; Rosato, A D; Parker, D J; Thornton, A R

    2015-05-01

    Using discrete particle simulations validated by experimental data acquired using the positron emission particle tracking technique, we study the efficiency of energy transfer from a vibrating wall to a system of discrete, macroscopic particles. We demonstrate that even for a fixed input energy from the wall, energy conveyed to the granular system under excitation may vary significantly dependent on the frequency and amplitude of the driving oscillations. We investigate the manner in which the efficiency with which energy is transferred to the system depends on the system variables and determine the key control parameters governing the optimization of this energy transfer. A mechanism capable of explaining our results is proposed, and the implications of our findings in the research field of granular dynamics as well as their possible utilization in industrial applications are discussed.

  13. Surface structure determines dynamic wetting

    PubMed Central

    Wang, Jiayu; Do-Quang, Minh; Cannon, James J.; Yue, Feng; Suzuki, Yuji; Amberg, Gustav; Shiomi, Junichiro

    2015-01-01

    Liquid wetting of a surface is omnipresent in nature and the advance of micro-fabrication and assembly techniques in recent years offers increasing ability to control this phenomenon. Here, we identify how surface roughness influences the initial dynamic spreading of a partially wetting droplet by studying the spreading on a solid substrate patterned with microstructures just a few micrometers in size. We reveal that the roughness influence can be quantified in terms of a line friction coefficient for the energy dissipation rate at the contact line, and that this can be described in a simple formula in terms of the geometrical parameters of the roughness and the line-friction coefficient of the planar surface. We further identify a criterion to predict if the spreading will be controlled by this surface roughness or by liquid inertia. Our results point to the possibility of selectively controlling the wetting behavior by engineering the surface structure. PMID:25683872

  14. Squeezing wetting and nonwetting liquids.

    PubMed

    Samoilov, V N; Persson, B N J

    2004-01-22

    We present molecular-dynamics results for the squeezing of octane (C8H18) between two approaching solid elastic walls with different wetting properties. The interaction energy between the octane bead units and the solid walls is varied from a very small value (1 meV), corresponding to a nonwetting surface with a very large contact angle (nearly 180 degrees), to a high value (18.6 meV) corresponding to complete wetting. When at least one of the solid walls is wetted by octane we observe well defined molecular layers develop in the lubricant film when the thickness of the film is of the order of a few atomic diameters. An external squeezing-pressure induces discontinuous, thermally activated changes in the number n of lubricant layers (n-->n-1 layering transitions). With increasing interaction energy between the octane bead units and the solid walls, the transitions from n to n-1 layers occur at higher average pressure. This results from the increasing activation barrier to nucleate the squeeze-out with increasing lubricant-wall binding energy (per unit surface area) in the contact zone. Thus, strongly wetting lubricant fluids are better boundary lubricants than the less wetting ones, and this should result in less wear. We analyze in detail the effect of capillary bridge formation (in the wetting case) and droplets formation (in the nonwetting case) on the forces exerted by the lubricant on the walls. For the latter case small liquid droplets may be trapped at the interface, resulting in a repulsive force between the walls during squeezing, until the solid walls come into direct contact, where the wall-wall interaction may be initially attractive. This effect is made use of in some practical applications, and we give one illustration involving conditioners for hair care application.

  15. Squeezing wetting and nonwetting liquids

    NASA Astrophysics Data System (ADS)

    Samoilov, V. N.; Persson, B. N. J.

    2004-01-01

    We present molecular-dynamics results for the squeezing of octane (C8H18) between two approaching solid elastic walls with different wetting properties. The interaction energy between the octane bead units and the solid walls is varied from a very small value (1 meV), corresponding to a nonwetting surface with a very large contact angle (nearly 180 degrees), to a high value (18.6 meV) corresponding to complete wetting. When at least one of the solid walls is wetted by octane we observe well defined molecular layers develop in the lubricant film when the thickness of the film is of the order of a few atomic diameters. An external squeezing-pressure induces discontinuous, thermally activated changes in the number n of lubricant layers (n→n-1 layering transitions). With increasing interaction energy between the octane bead units and the solid walls, the transitions from n to n-1 layers occur at higher average pressure. This results from the increasing activation barrier to nucleate the squeeze-out with increasing lubricant-wall binding energy (per unit surface area) in the contact zone. Thus, strongly wetting lubricant fluids are better boundary lubricants than the less wetting ones, and this should result in less wear. We analyze in detail the effect of capillary bridge formation (in the wetting case) and droplets formation (in the nonwetting case) on the forces exerted by the lubricant on the walls. For the latter case small liquid droplets may be trapped at the interface, resulting in a repulsive force between the walls during squeezing, until the solid walls come into direct contact, where the wall-wall interaction may be initially attractive. This effect is made use of in some practical applications, and we give one illustration involving conditioners for hair care application.

  16. Seismic wave propagation in granular media

    NASA Astrophysics Data System (ADS)

    Tancredi, Gonzalo; López, Francisco; Gallot, Thomas; Ginares, Alejandro; Ortega, Henry; Sanchís, Johnny; Agriela, Adrián; Weatherley, Dion

    2016-10-01

    Asteroids and small bodies of the Solar System are thought to be agglomerates of irregular boulders, therefore cataloged as granular media. It is a consensus that many asteroids might be considered as rubble or gravel piles.Impacts on their surface could produce seismic waves which propagate in the interior of these bodies, thus causing modifications in the internal distribution of rocks and ejections of particles and dust, resulting in a cometary-type comma.We present experimental and numerical results on the study of propagation of impact-induced seismic waves in granular media, with special focus on behavior changes by increasing compression.For the experiment, we use an acrylic box filled with granular materials such as sand, gravel and glass spheres. Pressure inside the box is controlled by a movable side wall and measured with sensors. Impacts are created on the upper face of the box through a hole, ranging from free-falling spheres to gunshots. We put high-speed cameras outside the box to record the impact as well as piezoelectic sensors and accelerometers placed at several depths in the granular material to detect the seismic wave.Numerical simulations are performed with ESyS-Particle, a software that implements the Discrete Element Method. The experimental setting is reproduced in the numerical simulations using both individual spherical particles and agglomerates of spherical particles shaped as irregular boulders, according to rock models obtained with a 3D scanner. The numerical experiments also reproduces the force loading on one of the wall to vary the pressure inside the box.We are interested in the velocity, attenuation and energy transmission of the waves. These quantities are measured in the experiments and in the simulations. We study the dependance of these three parameters with characteristics like: impact speed, properties of the target material and the pressure in the media.These results are relevant to understand the outcomes of impacts in

  17. Swimming in a granular frictional fluid

    NASA Astrophysics Data System (ADS)

    Goldman, Daniel

    2012-02-01

    X-ray imaging reveals that the sandfish lizard swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. To model the locomotion of the sandfish, we previously developed an empirical resistive force theory (RFT), a numerical sandfish model coupled to an experimentally validated Discrete Element Method (DEM) model of the granular medium, and a physical robot model. The models reveal that only grains close to the swimmer are fluidized, and that the thrust and drag forces are dominated by frictional interactions among grains and the intruder. In this talk I will use these models to discuss principles of swimming within these granular ``frictional fluids". The empirical drag force laws are measured as the steady-state forces on a small cylinder oriented at different angles relative to the displacement direction. Unlike in Newtonian fluids, resistive forces are independent of speed. Drag forces resemble those in viscous fluids while the ratio of thrust to drag forces is always larger in the granular media than in viscous fluids. Using the force laws as inputs, the RFT overestimates swimming speed by approximately 20%. The simulation reveals that this is related to the non-instantaneous increase in force during reversals of body segments. Despite the inaccuracy of the steady-state assumption, we use the force laws and a recently developed geometric mechanics theory to predict optimal gaits for a model system that has been well-studied in Newtonian fluids, the three-link swimmer. The combination of the geometric theory and the force laws allows us to generate a kinematic relationship between the swimmer's shape and position velocities and to construct connection vector field and constraint curvature function visualizations of the system dynamics. From these we predict optimal gaits for forward, lateral and rotational motion. Experiment and simulation are in accord with the theoretical prediction, and demonstrate that

  18. Behavior of granular materials under cyclic shear.

    PubMed

    Mueggenburg, Nathan W

    2005-03-01

    The design and development of a parallel plate shear cell for the study of large-scale shear flows in granular materials is presented. The parallel plate geometry allows for shear studies without the effects of curvature found in the more common Couette experiments. A system of independently movable slats creates a well with side walls that deform in response to the motions of grains within the pack. This allows for true parallel plate shear with minimal interference from the containing geometry. The motions of the side walls also allow for a direct measurement of the velocity profile across the granular pack. Results are presented for applying this system to the study of transients in granular shear and for shear-induced crystallization. Initial shear profiles are found to vary from packing to packing, ranging from a linear profile across the entire system to an exponential decay with a width of approximately six bead diameters. As the system is sheared, the velocity profile becomes much sharper, resembling an exponential decay with a width of roughly three bead diameters. Further shearing produces velocity profiles which can no longer be fit to an exponential decay, but are better represented as a Gaussian decay or error function profile. Cyclic shear is found to produce large-scale ordering of the granular pack, which has a profound impact on the shear profile. There exist periods of time in which there is slipping between layers as well as periods of time in which the layered particles lock together resulting in very little relative motion.

  19. Kinetic Effects in Dynamic Wetting

    NASA Astrophysics Data System (ADS)

    Sprittles, James E.

    2017-03-01

    The maximum speed at which a liquid can wet a solid is limited by the need to displace gas lubrication films in front of the moving contact line. The characteristic height of these films is often comparable to the mean free path in the gas so that hydrodynamic models do not adequately describe the flow physics. This Letter develops a model which incorporates kinetic effects in the gas, via the Boltzmann equation, and can predict experimentally observed increases in the maximum speed of wetting when (a) the liquid's viscosity is varied, (b) the ambient gas pressure is reduced, or (c) the meniscus is confined.

  20. Characterization of undulatory locomotion in granular media

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei; Pak, On Shun; Elfring, Gwynn

    2015-11-01

    Undulatory locomotion is ubiquitous in nature, from the swimming of flagellated microorganisms in biological fluids, to the slithering of snakes on land, or the locomotion of sandfish lizards in sand. Analysis of locomotion in granular materials is relatively less developed compared with fluids partially due to a lack of validated force models but a recently proposed resistive force theory (RFT) in granular media has been shown useful in studying the locomotion of a sand-swimming lizard. Here we employ this model to investigate the swimming characteristics of an undulating slender filament of both finite and infinite length. For infinite swimmers, similar to results in viscous fluids, the sawtooth waveform is found to be optimal for propulsion speed at a given power consumption. We also compare the swimming characteristics of sinusoidal and sawtooth swimmers with swimming in viscous fluids. More complex swimming dynamics emerge when the assumption of an infinite swimmer is removed. In particular, we characterize the effects of drifting and pitching in terms of propulsion speed and efficiency for a finite sinusoidal swimmer. The results complement our understanding of undulatory locomotion and provide insights into the effective design of locomotive systems in granular media.

  1. A Taylor vortex analogy in granular flows.

    PubMed

    Conway, Stephen L; Shinbrot, Troy; Glasser, Benjamin J

    2004-09-23

    Fluids sheared between concentric rotating cylinders undergo a series of three-dimensional instabilities. Since Taylor's archetypal 1923 study, these have proved pivotal to understanding how fluid flows become unstable and eventually undergo transitions to chaotic or turbulent states. In contrast, predicting the dynamics of granular systems--from nano-sized particles to debris flows--is far less reliable. Under shear these materials resemble fluids, but solid-like responses, non-equilibrium structures and segregation patterns develop unexpectedly. As a result, the analysis of geophysical events and the performance of largely empirical particle technologies might suffer. Here, using gas fluidization to overcome jamming, we show experimentally that granular materials develop vortices consistent with the primary Taylor instability in fluids. However, the vortices observed in our fluidized granular bed are unlike those in fluids in that they are accompanied by novel mixing-segregation transitions. The vortices seem to alleviate increased strain by spawning new vortices, directly modifying the scale of kinetic interactions. Our observations provide insights into the mechanisms of shear transmission by particles and their consequent convective mixing.

  2. Legged-locomotion on inclined granular media

    NASA Astrophysics Data System (ADS)

    Rieser, Jennifer; Qian, Feifei; Goldman, Daniel

    Animals traverse a wide variety of complex environments, including situations in which the ground beneath them can yield (e.g. dry granular media in desert dunes). Locomotion strategies that are effective on level granular media can fail when traversing a granular slope. Taking inspiration from successful legged-locomotors in sandy, uneven settings, we explore the ability of a small (15 cm long, 100 g), six-c-shaped legged robot to run uphill in a bed of 1-mm-diameter poppy seeds, using an alternating tripod gait. Our fully automated experiments reveal that locomotor performance can depend sensitively on both environmental parameters such as the inclination angle and volume fraction of the substrate, and robot morphology and control parameters like leg shape, step frequency, and the friction between the feet of the robot and the substrate. We assess performance by measuring the average speed of the robot, and we find that the robot tends to perform better at higher step frequency and lower inclination angles, and that average speed decreases more rapidly with increasing angle for higher step frequency.

  3. Electrical charging in shaken granular media

    NASA Astrophysics Data System (ADS)

    Nordsiek, Freja; Lathrop, Daniel

    2015-03-01

    Collisional electrification of granular particles and the resulting electric fields are seen but poorly understood in sand storms, volcanic ash clouds, thunderstorms, and thundersnow. We present results on the electrical charging of granular media (100 micron to 1 mm in size) shaken between two conducting plates. The voltage between the plates was measured. We saw particle electrification through capacitive coupling with the plates and electrical discharges for a diverse class of materials: polystyrene (polymer), soda-lime glass (glass), 69%:31% ZrO2:SiO2 (ceramic), and aluminum (metal). We found 1) a monotonic increase in charging with shaking strength, 2) a threshold in the number of particles to see charging of about the number of particles needed to form a monolayer on the plate, 3) material and diameter differences causing an order of magnitude spread in measured signal but little difference between mono-material sets with one size range and bi-material and/or bi-size range set combinations, and 4) long time scale transients. We argue that while two-body collisions and the physical properties of the particles (material and size) are relevant, collective phenomena are a necessary part of explaining natural charging of granular flows. We gratefully acknowledge funding from the Julien Schwinger Foundation.

  4. Mechanics of Granular Materials-3 (MGM-3)

    NASA Technical Reports Server (NTRS)

    Sture, Stein; Alshibi, Khalid; Guynes, Buddy (Technical Monitor)

    2002-01-01

    Scientists are going to space to understand how earthquakes and other forces disturb grains of soil and sand. They will examine how the particle arrangement and structure of soils, grains and powders are changed by external forces and gain knowledge about the strength, stiffness and volume changes properties of granular materials at low pressures. The Mechanics of Granular Materials (MGM) experiment uses the microgravity of orbit to test sand columns under conditions that cannot be obtained in experiments on Earth. Research can only go so far on Earth because gravity-induced stresses complicate the analysis and change loads too quickly for detailed analysis. This new knowledge will be applied to improving foundations for buildings, managing undeveloped land, and handling powdered and granular materials in chemical, agricultural, and other industries. NASA wants to understand the way soil behaves under different gravity levels so that crews can safely build habitats on Mars and the Moon. Future MGM experiments will benefit from extended tests aboard the International Space Station, including experiments under simulated lunar and Martian gravity in the science centrifuge.

  5. Structural characterization of submerged granular packings.

    PubMed

    Jakšić, Z M; Šćepanović, J R; Lončarević, I; Budinski-Petković, Lj; Vrhovac, S B; Belić, A

    2014-12-01

    We consider the impact of the effective gravitational acceleration on microstructural properties of granular packings through experimental studies of spherical granular materials saturated within fluids of varying density. We characterize the local organization of spheres in terms of contact connectivity, distribution of the Delaunay free volumes, and the shape factor (parameter of nonsphericity) of the Voronoï polygons. The shape factor gives a clear physical picture of the competition between less and more ordered domains of particles in experimentally obtained packings. As the effective gravity increases, the probability distribution of the shape factor becomes narrower and more localized around the lowest values of the shape factor corresponding to regular hexagon. It is found that curves of the pore distributions are asymmetric with a long tail on the right-hand side, which progressively reduces while the effective gravity gets stronger for lower densities of interstitial fluid. We show that the distribution of local areas (Voronoï cells) broadens with decreasing value of the effective gravity due to the formation of lose structures such as large pores and chainlike structures (arches or bridges). Our results should be particularly helpful in testing the newly developed simulation techniques involving liquid-related forces associated with immersed granular particles.

  6. Structural characterization of submerged granular packings

    NASA Astrophysics Data System (ADS)

    Jakšić, Z. M.; Šćepanović, J. R.; Lončarević, I.; Budinski-Petković, Lj.; Vrhovac, S. B.; Belić, A.

    2014-12-01

    We consider the impact of the effective gravitational acceleration on microstructural properties of granular packings through experimental studies of spherical granular materials saturated within fluids of varying density. We characterize the local organization of spheres in terms of contact connectivity, distribution of the Delaunay free volumes, and the shape factor (parameter of nonsphericity) of the Voronoï polygons. The shape factor gives a clear physical picture of the competition between less and more ordered domains of particles in experimentally obtained packings. As the effective gravity increases, the probability distribution of the shape factor becomes narrower and more localized around the lowest values of the shape factor corresponding to regular hexagon. It is found that curves of the pore distributions are asymmetric with a long tail on the right-hand side, which progressively reduces while the effective gravity gets stronger for lower densities of interstitial fluid. We show that the distribution of local areas (Voronoï cells) broadens with decreasing value of the effective gravity due to the formation of lose structures such as large pores and chainlike structures (arches or bridges). Our results should be particularly helpful in testing the newly developed simulation techniques involving liquid-related forces associated with immersed granular particles.

  7. Drag reduction by rotation in granular media

    NASA Astrophysics Data System (ADS)

    Jung, Wonjong; Choi, Sung Mok; Kim, Wonjung; Kim, Ho-Young

    2016-11-01

    We present quantitative measurements and mathematical analysis of the granular drag reduction by rotation inspired by some self-burrowing seeds whose morphologies respond to environmental changes in humidity. The seeds create a motion to dig into soil using their moisture-responsive awns, which are basically helical shaped in a dry environment but reversibly deform to a linear shape in a humid environment. When the tip of the awn is fixed by an external support, the hygroscopic deformation of the awn gives the seed a thrust with rotation against the soil. By measuring the granular drag of vertically penetrating intruders with rotation, we find the drag to decrease with its rotation speed. Noting that the relative motions of the grains in contact with the intruder induce the collapse of the force chains in the granular bulk, we develop a general correlation for the drag reduction by rotation in terms of the relative slip velocity of the grains, which successfully explains the drag reduction of the rotating intruders including self-burrowing rotary seeds.

  8. Mechanics of Granular Materials Test Cell

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A test cell for Mechanics of Granular Materials (MGM) experiment is shown from all three sides by its video camera during STS-89. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: NASA/Marshall Space Flight Center (MSFC)

  9. Mechanics of Granular Materials (MGM) Test Cell

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A test cell for Mechanics of Granular Materials (MGM) experiment is shown approximately 20 and 60 minutes after the start of an experiment on STS-89. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: NASA/Marshall Space Flight Center (MSFC)

  10. Mechanics of Granular Materials (MGM) Cell

    NASA Technical Reports Server (NTRS)

    1996-01-01

    One of three Mechanics of Granular Materials (MGM) test cells after flight on STS-79 and before impregnation with resin. Note that the sand column has bulged in the middle, and that the top of the column is several inches lower than the top of the plastic enclosure. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: University of Colorado at Boulder

  11. Mechanics of Granular Materials (MGM) Flight Hardware

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A test cell for the Mechanics of Granular Materials (MGM) experiment is shown in its on-orbit configuration in Spacehab during preparations for STS-89. The twin locker to the left contains the hydraulic system to operate the experiment. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Note: Because the image on the screen was muted in the original image, its brightness and contrast are boosted in this rendering to make the test cell more visible. Credit: NASA/Marshall Space Flight Center (MSFC)

  12. Granular flow in the marginal ice zone.

    PubMed

    Feltham, Daniel L

    2005-07-15

    The region of sea ice near the edge of the sea ice pack is known as the marginal ice zone (MIZ), and its dynamics are complicated by ocean wave interaction with the ice cover, strong gradients in the atmosphere and ocean and variations in sea ice rheology. This paper focuses on the role of sea ice rheology in determining the dynamics of the MIZ. Here, sea ice is treated as a granular material with a composite rheology describing collisional ice floe interaction and plastic interaction. The collisional component of sea ice rheology depends upon the granular temperature, a measure of the kinetic energy of flow fluctuations. A simplified model of the MIZ is introduced consisting of the along and across momentum balance of the sea ice and the balance equation of fluctuation kinetic energy. The steady solution of these equations is found to leading order using elementary methods. This reveals a concentrated region of rapid ice flow parallel to the ice edge, which is in accordance with field observations, and previously called the ice jet. Previous explanations of the ice jet relied upon the existence of ocean currents beneath the ice cover. We show that an ice jet results as a natural consequence of the granular nature of sea ice.

  13. Mechanics of Granular Materials (MGM) Test Cell

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A test cell for Mechanics of Granular Materials (MGM) experiment is tested for long-term storage with water in the system as plarned for STS-107. This view shows the compressed sand column with the protective water jacket removed. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that cannot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: University of Colorado at Boulder

  14. Mechanics of Granular Materials (MGM) Test Cell

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A test cell for Mechanics of Granular Materials (MGM) experiment is tested for long-term storage with water in the system as plarned for STS-107. This view shows the top of the sand column with the metal platten removed. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that cannot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: University of Colorado at Boulder

  15. Energy dissipation in sheared granular flows

    SciTech Connect

    Karion, A.; Hunt, M.L.

    1999-11-01

    Granular material flows describe flows of solid particles in which the interstitial fluid plays a negligible role in the flow mechanics. Examples include the transport of coal, food products, detergents, pharmaceutical tablets, and toner particles in high-speed printers. Using a two-dimensional discrete element computer simulation of a bounded, gravity-free Couette flow of particles, the heat dissipation rate per unit area is calculated as a function of position in the flow as well as overall solid fraction. The computation results compare favorably with the kinetic theory analysis for rough disks. The heat dissipation rate is also measured for binary mixtures of particles for different small to large solid fraction ratios, and for diameter ratios of ten, five, and two. The dissipation rates increase significantly with overall solid fraction as well as local strain rates and granular temperatures. The thermal energy equation is solved for a Couette flow with one adiabatic wall and one at constant temperature. Solutions use the simulation measurements of the heat dissipation rate, solid fraction, and granular temperature to show that the thermodynamic temperature increases with solid fraction and decreases with particle conductivity. In mixtures, both the dissipation rate and the thermodynamic temperature increase with size ratio and with decreasing ratio of small to large particles.

  16. Brain microvascular accumulation and distribution of the NOTCH3 ectodomain and granular osmiophilic material in CADASIL.

    PubMed

    Yamamoto, Yumi; Craggs, Lucinda J L; Watanabe, Atsushi; Booth, Trevor; Attems, Johannes; Low, Roger W C; Oakley, Arthur E; Kalaria, Raj N

    2013-05-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most common form of familial brain arteriopathy, is associated with deposition of granular osmiophilic material (GOM). We used immunohistochemistry and immunogold electron microscopy (EM) to examine the distribution of GOM and NOTCH3 ectodomain (N3ECD) protein in microvasculature of brain gray matter and white matter in patients with CADASIL, non-CADASIL hereditary small-vessel disease and sporadic age-related degenerative disease, and comparable-age controls. We observed intense immunostaining patterns with 2 different anti-N3ECD antibodies in CADASIL but not in young and older controls or other small-vessel disease patients. In addition, CADASIL samples exhibited immunoreactivity in arterial walls and in most capillaries. Electron microscopy revealed profound and widespread extracellular distribution of 0.2- to 2-μm GOM deposits associated with meningeal vessels and perforating arteries and arterioles. Granular osmiophilic material was adjacent to capillaries even within white matter. Immunogold EM with antibody A1-1 to N3ECD revealed abundant particles in GOM within microvessels, vascular smooth muscle cell membranes, and perivascular cells. Granular osmiophilic material did not exhibit immunogold labeling for smooth muscle α-actin or collagen IV. These results showed the specificity of the antibodies and confirm the predominant localization of N3ECD within GOM deposits. The extensive distribution of N3ECD-GOM complexes within meninges, arteries, arterioles, and particularly capillaries in the brains of CADASIL patients suggests that NOTCH3 fragments are major components of GOM deposits, which may be eliminated via perivascular routes.

  17. Regulation of aerobic granular sludge reformulation after granular sludge broken: effect of poly aluminum chloride (PAC).

    PubMed

    Liu, Yongjun; Liu, Zhe; Wang, Fukun; Chen, Yiping; Kuschk, Peter; Wang, Xiaochang

    2014-04-01

    The present study focuses on the effect of poly aluminum chloride (PAC) on the re-formation of aerobic granular sludge after its rupture. The morphological changes, physical characteristics such as SVI, mechanical strength and surface properties of aerobic granular sludge during the re-formation process of broken granules were investigated. Moreover, components (protein (PN), polysaccharides (PS)) and distributions (soluble, loosely-bound (LB), tightly-bound (TB)) of extracellular polymeric substances (EPS) in sludge flocs were taken into consideration. It was found that the effect of charge neutralization and bridging induced by PAC treatment improved the surface properties of sludge, the re-formed granules had a larger size, more compact structure and that the removal performance of pollutants after chemical coagulation had improved. The results of correlation analysis demonstrated that PN in EPS correlated well with the surface characteristics and settling ability of sludge flocs, and PAC treatment strengthened the influence, further accelerated the reformation of granular sludge.

  18. Mutiscale Modeling of Segregation in Granular Flows

    SciTech Connect

    Sun, Jin

    2007-01-01

    Modeling and simulation of segregation phenomena in granular flows are investigated. Computational models at different scales ranging from particle level (microscale) to continuum level (macroscale) are employed in order to determine the important microscale physics relevant to macroscale modeling. The capability of a multi-fluid model to capture segregation caused by density difference is demonstrated by simulating grain-chaff biomass flows in a laboratory-scale air column and in a combine harvester. The multi-fluid model treats gas and solid phases as interpenetrating continua in an Eulerian frame. This model is further improved by incorporating particle rotation using kinetic theory for rapid granular flow of slightly frictional spheres. A simplified model is implemented without changing the current kinetic theory framework by introducing an effective coefficient of restitution to account for additional energy dissipation due to frictional collisions. The accuracy of predicting segregation rate in a gas-fluidized bed is improved by the implementation. This result indicates that particle rotation is important microscopic physics to be incorporated into the hydrodynamic model. Segregation of a large particle in a dense granular bed of small particles under vertical. vibration is studied using molecular dynamics simulations. Wall friction is identified as a necessary condition for the segregation. Large-scale force networks bearing larger-than-average forces are found with the presence of wall friction. The role of force networks in assisting rising of the large particle is analyzed. Single-point force distribution and two-point spatial force correlation are computed. The results show the heterogeneity of forces and a short-range correlation. The short correlation length implies that even dense granular flows may admit local constitutive relations. A modified minimum spanning tree (MST) algorithm is developed to asymptotically recover the force statistics in the

  19. Dynamics of oblique impact in a 2D photoelastic granular medium

    NASA Astrophysics Data System (ADS)

    Cox, Noah; Wu, Xinyu; Stevens Bester, Cacey; Behringer, Robert

    2016-11-01

    Penetration of a solid projectile into dry granular matter is studied via two-dimensional impact experiments with bidisperse photoelastic grains. The drag force acting on the projectile is determined by high-speed imaging of the projectile's dynamics combined with the local granular response of the photoelastic grains. This force was previously shown using vertical impact to be the sum of a static, depth-dependent drag and a velocity-dependent inertial drag. Here the impact occurs obliquely, invoking a significant horizontal drag force that has not been fully explored. Accordingly we study the drag force model for oblique impact. We consider the influence of the projectile's impact speed and initial impact angle on its resultant trajectory. The path of the projectile changes drastically with impact angle. We therefore connect the effect of the impact angle to the nature of the drag force exerted on the projectile by the granular medium. supported by Duke University Provost's Postdoctoral Program, NASA Grant NNX15AD38G, and NSF-DMR-1206351.

  20. Computational study on the behaviors of granular materials under mechanical cycling

    SciTech Connect

    Wang, Xiaoliang; Ye, Minyou; Chen, Hongli

    2015-11-07

    Considering that fusion pebble beds are probably subjected to the cyclic compression excitation in their future applications, we presented a computational study to report the effect of mechanical cycling on the behaviors of granular matter. The correctness of our numerical experiments was confirmed by a comparison with the effective medium theory. Under the cyclic loads, the fast granular compaction was observed to evolve in a stretched exponential law. Besides, the increasing stiffening in packing structure, especially the decreasing moduli pressure dependence due to granular consolidation, was also observed. For the force chains inside the pebble beds, both the internal force distribution and the spatial distribution of force chains would become increasingly uniform as the external force perturbation proceeded and therefore produced the stress relief on grains. In this case, the originally proposed 3-parameter Mueth function was found to fail to describe the internal force distribution. Thereby, its improved functional form with 4 parameters was proposed here and proved to better fit the data. These findings will provide more detailed information on the pebble beds for the relevant fusion design and analysis.

  1. Onset of Stationary Flows of a Cohesive Granular Material in a Channel

    NASA Astrophysics Data System (ADS)

    de Ryck, A.; Louisnard, O.

    The handling of bulk materials and powders in process engineering remains an important issue. To obtain reliable gravitational flows, starting and remaining stationary, the hoppers and transport channels must be designed at a scale appropriate for the friction and cohesive properties of the granular material. To describe such dense flows (the interaction with the surrounding ambient fluid is negligible compared to the weight of the particles and interparticles forces), they can be modelled by continuum mechanics, associated with a constitutive equation taking into account the friction behaviour (Mohr-Coulomb or Druger-Prager plasticity criterion). We use here the rheology proposed by Jop et al. (Nature 441: 727-730, 2006) which combines this with an associated flow rule (co-linearity of the stress and strain tensors) (Jenike, Powder Technol. 50: 229-236, 1987) and a viscous dependency of the coefficient of friction on the strain (Da Cruz et al., Phys. Rev. E 72: 021309, 2005).Using the method of characteristics to describe the flow structure (de Ryck, Granular Matter 10: 361-367, 2008), we deduce the minimal slope to obtain a stationary flow of cohesive granular materials on a finite width channel, whose lateral walls are rough or smooth. We also obtain the depth of the flow (maximal at the centre of the channel). In the case of weak cohesive materials, these results are formulated with simple analytical expressions.

  2. The Microstructural Response of Granular Soil Under Uniaxial Strain

    DTIC Science & Technology

    1993-10-01

    Mechanics of Granular Materials : New Models and Constitutive Relations, University of Minnesota, Minneapolis, Minnesota, 1983. 23. Trent, B.C...contacts or granular motions will provide insight into more accurate modeling of the material response. The microstructural theory can be directly...use of a flow rule, the ramifications of using an associated or nonassociated flow rule for modeling the response of granular materials will also be

  3. Solidification of underwater wet welds

    SciTech Connect

    Pope, A.M.; Medeiros, R.C. de; Liu, S.

    1995-12-31

    It is well known that the shape of a weld pool can influence the microstructure and segregation pattern of the final solidified weld metal. Mechanical properties and susceptibility to defects are consequently affected by the solidification mode of the weld. In this work the solidification behavior of weld beads deposited in air and underwater wet welding using rutile electrodes were compared. The welds were deposited by gravity feed, on low carbon, manganese steel plates using similar welding conditions. Macroscopic observation of the weld craters showed that welds deposited in air presented an elliptical weld pool. The underwater wet welds, on the other hand, solidified with a tear drop shape. Although the welds differed in shape, their lengths were approximately the same. Microscopic examinations carried out on transverse, normal and longitudinal sections revealed a coarser columnar grain structure in the underwater welds. These results suggest that the tear-drop shaped pool induced solidification in a preferred orientation with segregation more likely in welds deposited under wet conditions. This change in weld pool geometry can be explained by the surface heat loss conditions that occur in a wet weld: slower when covered by the steam bubble and faster in the region in contact with water behind the pool.

  4. Inhibiting Wet Oxidation of Ammonia

    NASA Technical Reports Server (NTRS)

    Onisko, D. B. L.

    1985-01-01

    Simple modification of wet-oxidation process for treating organicwaste reduces loss of fixed nitrogen, potentially valuable byproduct of process. Addition of sufficient sulfuric acid to maintain reaction pH below 3 greatly reduces oxidation of ammonia to free nitrogen. No equipment modification required.

  5. Microgravity Experiments to Evaluate Electrostatic Forces in Controlling Cohesion and Adhesion of Granular Materials

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Weislogel, M.; Jacobson, T.

    1999-01-01

    The bulk behavior of dispersed, fluidized, or undispersed stationary granular systems cannot be fully understood in terms of adhesive/cohesive properties without understanding the role of electrostatic forces acting at the level of the grains themselves. When grains adhere to a surface, or come in contact with one another in a stationary bulk mass, it is difficult to measure the forces acting on the grains, and the forces themselves that induced the cohesion and adhesion are changed. Even if a single gain were to be scrutinized in the laboratory, it might be difficult, perhaps impossible, to define the distribution and character of surface charging and the three- dimensional relationship that charges (electrons, holes) have to one another. The hypothesis that we propose to test in microgravity (for dielectric materials) is that adhesion and cohesion of granular matter are mediated primarily by dipole forces that do not require the presence of a net charge; in fact, nominally electrically neutral materials should express adhesive and cohesive behavior when the neutrality results from a balance of positive and negative charge carriers. Moreover, the use of net charge alone as a measure of the electrical nature of grain-to-grain relationships within a granular mass may be misleading. We believe that the dipole forces arise from the presence of randomly-distributed positive and negative fixed charge carriers on grains that give rise to a resultant dipole moment. These dipole forces have long-range attraction. Random charges are created whenever there is triboelectrical activity of a granular mass, that is, whenever the grains experience contact/separation sequences or friction. Electrostatic forces are generally under-estimated for their role in causing agglomeration of dispersed grains in particulate clouds, or their role in affecting the internal frictional relationships in packed granular masses. We believe that electrostatic, in particular dipole-mediated processes

  6. Granular Solid-liquid Transition: Experiment and Simulation

    NASA Astrophysics Data System (ADS)

    Fei, M.; Xu, X.; Sun, Q.

    2015-12-01

    Granular media are amorphous materials, which differs from traditional solid or liquid. In different circumstance, granular behavior varies from solid-like to liquid-like, and the transitions between these regimes are always related to many complex natural progresses such as the failure of soil foundation and the occurrence of landslide and debris flow. The mechanic of elastic instability during the transition from solid-like to liquid-like regime, and the quantitative description of irreversible deformation during flow are the key problems to interpret these transition phenomena. In this work, we developed a continuum model with elastic stable condition and irreversible flow rule of granular material based on a thermal dynamical model, the Two-Granular-Temperature model (TGT). Since infinitesimal elastic deformation in solid-like regime and significant plastic large deformation in liquid-like regime can coexist in the granular solid-liquid transition process, the material point method (MPM) was used to build an effective numerical model. Collapse of rectangular granular pile contains both the transition from granular solid to granular liquid and the inverse process, thus in this work we carried out collapse experiment with clay particles, and simulated the experiment with our continuum model and an open-source DEM model YADE to study the transition processes. Results between experiment and simulations were compared and good agreements on collapse shape and velocity profiles were achieved, and the new model proposed in this work seems to work well on the description of granular solid-liquid transition.

  7. A Granular Bed for Use in a Nanoparticle Respiratory Deposition Sampler

    PubMed Central

    Park, Jae Hong; Mudunkotuwa, Imali A.; Mines, Levi W. D.; Anthony, T. Renée; Grassian, Vicki H.; Peters, Thomas M.

    2016-01-01

    A granular bed was designed to collect nanoparticles as an alternative to nylon mesh screens for use in a nanoparticle respiratory deposition (NRD) sampler. The granular bed consisted of five layers in series: a coarse mesh, a large-bead layer, a small-bead layer, a second large-bead layer, and a second coarse mesh. The bed was designed to primarily collect particles in the small-bead layer, with the coarse mesh and large-bead layers designed to hold the collection layer in position. The collection efficiency of the granular bed was measured for varying depths of the small-bead layer and for test particles with different shape (cuboid, salt particles; and fractal, and stainless steel and welding particles). Experimental measurements of collection efficiency were compared to estimates of efficiency from theory and to the nanoparticulate matter (NPM) criterion, which was established to reflect the total deposition in the human respiratory system for particles smaller than 300 nm. The shape of the collection efficiency curve for the granular bed was similar to the NPM criterion in these experiments. The collection efficiency increased with increasing depth of the small-bead layer: the particle size associated with 50% collection efficiency, d50, for salt particles was 25 nm for a depth of 2.2 mm, 35 nm for 3.2 mm, and 45 nm for 4.3 mm. The best-fit to the NPM criterion was found for the bed with a small-bead layer of 3.2 mm. Compared to cubic salt particles, the collection efficiency was higher for fractal-shaped particles larger than 50 nm, presumably due to increased interception. Copyright 2015 American Association for Aerosol Research PMID:26900208

  8. Microgravity Experiments to Evaluate Electrostatic Forces in Controlling Cohesion and Adhesion of Granular Materials

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Weislogel, M.; Jacobson, T.

    1999-01-01

    The bulk behavior of dispersed, fluidized, or undispersed stationary granular systems cannot be fully understood in terms of adhesive/cohesive properties without understanding the role of electrostatic forces acting at the level of the grains themselves. When grains adhere to a surface, or come in contact with one another in a stationary bulk mass, it is difficult to measure the forces acting on the grains, and the forces themselves that induced the cohesion and adhesion are changed. Even if a single grain were to be scrutinized in the laboratory, it might be difficult, perhaps impossible, to define the distribution and character of surface charging and the three-dimensional relationship that charges (electrons, holes) have to one another. The hypothesis that we propose to test in microgravity (for dielectric materials) is that adhesion and cohesion of granular matter are mediated primarily by dipole forces that do not require the presence of a net charge; in fact, nominally electrically neutral materials should express adhesive and cohesive behavior when the neutrality results from a balance of positive and negative charge carriers. Moreover, the use of net charge alone as a measure of the electrical nature of grain-to-grain relationships within a granular mass may be misleading. We believe that the dipole forces arise from the presence of randomly-distributed positive and negative fixed charge carriers on grains that give rise to a resultant dipole moment. These dipole forces have long-range attraction. Random charges are created whenever there is triboelectrical activity of a granular mass, that is, whenever the grains experience contact/separation sequences or friction.

  9. When matter matters

    SciTech Connect

    Easson, Damien A.; Sawicki, Ignacy; Vikman, Alexander E-mail: ignacy.sawicki@uni-heidelberg.de

    2013-07-01

    We study a recently proposed scenario for the early universe:Subluminal Galilean Genesis. We prove that without any other matter present in the spatially flat Friedmann universe, the perturbations of the Galileon scalar field propagate with a speed at most equal to the speed of light. This proof applies to all cosmological solutions — to the whole phase space. However, in a more realistic situation, when one includes any matter which is not directly coupled to the Galileon, there always exists a region of phase space where these perturbations propagate superluminally, indeed with arbitrarily high speed. We illustrate our analytic proof with numerical computations. We discuss the implications of this result for the possible UV completion of the model.

  10. Are granular osmiophilic material deposits an epiphenomenon in CADASIL?

    PubMed

    Erro, Roberto; Moccia, Marcello; Cervasio, Mariarosaria; Penco, Silvana; De Caro, Marialaura Del Basso; Barone, Paolo

    2015-01-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is caused by mutations in the NOTCH3 gene. Pathophysiologically, there seems to be multimerization of the extracellular domain of the protein with a possible gain of function on vascular smooth muscular cells. However, the mechanisms and determinants of NOTCH3 multimerization are not completely understood, and it is not completely elucidated whether NOTCH3 multimerization contributes to the appearance of granular osmiophilic material (GOM) deposits, which are the pathological hallmark of CADASIL. We recently reported a patient with parkinsonism and cognitive impairment and with evidence of diffuse white matter changes on imaging, carrying a NOTCH3 nonsense mutation in exon 3 (c.307C>T), and suggested that such a hypomorphic NOTCH3 mutation was likely to be pathogenic. We further pursued ultrastructural examination of skin vessels in our case, and here we report the results, wishing to make a comment on whether GOM deposits should be considered the pathological hallmark for a definitive diagnosis of CADASIL in those patients whose mutations are predicted in the production of hypomorphic protein products.

  11. The thermodynamics of dense granular flow and jamming

    NASA Astrophysics Data System (ADS)

    Lu, Shih Yu

    The scope of the thesis is to propose, based on experimental evidence and theoretical validation, a quantifiable connection between systems that exhibit the jamming phenomenon. When jammed, some materials that flow are able to resist deformation so that they appear solid-like on the laboratory scale. But unlike ordinary fusion, which has a critically defined criterion in pressure and temperature, jamming occurs under a wide range of conditions. These condition have been rigorously investigated but at the moment, no self-consistent framework can apply to grains, foam and colloids that may have suddenly ceased to flow. To quantify the jamming behavior, a constitutive model of dense granular flows is deduced from shear-flow experiments. The empirical equations are then generalized, via a thermodynamic approach, into an equation-of-state for jamming. Notably, the unifying theory also predicts the experimental data on the behavior of molecular glassy liquids. This analogy paves a crucial road map for a unifying theoretical framework in condensed matter, for example, ranging from sand to fire retardants to toothpaste.

  12. Nanofiltration and granular activated carbon treatment of perfluoroalkyl acids.

    PubMed

    Appleman, Timothy D; Dickenson, Eric R V; Bellona, Christopher; Higgins, Christopher P

    2013-09-15

    Perfluoroalkyl acids (PFAAs) are of concern because of their persistence in the environment and the potential toxicological effects on humans exposed to PFAAs through a variety of possible exposure routes, including contaminated drinking water. This study evaluated the efficacy of nanofiltration (NF) and granular activated carbon (GAC) adsorption in removing a suite of PFAAs from water. Virgin flat-sheet NF membranes (NF270, Dow/Filmtec) were tested at permeate fluxes of 17-75 Lm(-2)h(-1) using deionized (DI) water and artificial groundwater. The effects of membrane fouling by humic acid on PFAA rejection were also tested under constant permeate flux conditions. Both virgin and fouled NF270 membranes demonstrated >93% removal for all PFAAs under all conditions tested. GAC efficacy was tested using rapid small-scale columns packed with Calgon Filtrasorb300 (F300) carbon and DI water with and without dissolved organic matter (DOM). DOM effects were also evaluated with F600 and Siemens AquaCarb1240C. The F300 GAC had <20% breakthrough of all PFAAs in DI water for up to 125,000 bed volumes (BVs). When DOM was present, >20% breakthrough of all PFAAs by 10,000 BVs was observed for all carbons.

  13. Segregation induced fingering instabilities in granular avalanches

    NASA Astrophysics Data System (ADS)

    Woodhouse, Mark; Thornton, Anthony; Johnson, Chris; Kokelaar, Pete; Gray, Nico

    2013-04-01

    It is important to be able to predict the distance to which a hazardous natural granular flows (e.g. snow slab avalanches, debris-flows and pyroclastic flows) might travel, as this information is vital for accurate assessment of the risks posed by such events. In the high solids fraction regions of these flows the large particles commonly segregate to the surface, where they are transported to the margins to form bouldery flow fronts. In many natural flows these bouldery margins experience a much greater frictional force, leading to frontal instabilities. These instabilities create levees that channelize the flow vastly increasing the run-out distance. A similar effect can be observed in dry granular experiments, which use a combination of small round and large rough particles. When this mixture is poured down an inclined plane, particle size segregation causes the large particles to accumulate near the margins. Being rougher, the large particles experience a greater friction force and this configuration (rougher material in front of smoother) can be unstable. The instability causes the uniform flow front to break up into a series of fingers. A recent model for particle size-segregation has been coupled to existing avalanche models through a particle concentration dependent friction law. In this talk numerical solutions of this coupled system are presented and compared to both large scale experiments carried out at the USGS flume and more controlled small scale laboratory experiments. The coupled depth-averaged model captures the accumulation of large particles at the flow front. We show this large particle accumulation at the head of the flow can lead to the break-up of the initially uniform front into a series of fingers. However, we are unable to obtain a fully grid-resolved numerical solution; the width of the fingers decreases as the grid is refined. By considering the linear stability of a steady, fully-developed, bidisperse granular layer it is shown that

  14. Clustering in vibrated monolayers of granular rods.

    PubMed

    González-Pinto, M; Borondo, F; Martínez-Ratón, Y; Velasco, E

    2017-04-05

    We investigate the ordering properties of vertically-vibrated monolayers of granular cylinders in a circular container at high packing fraction. In line with previous works by other groups, we identify liquid-crystalline ordering behaviour similar to that of two-dimensional hard rectangular particles subject to thermal equilibrium fluctuations. However, due to dissipation, there is a much stronger tendency for particles to cluster into parallel arrangements in the granular system. These clusters behave as a polydisperse mixture of long life-time 'superparticles', and some aspects of the system behaviour can be understood by applying mean-field theories for equilibrium hard rectangles, based on two-body correlations, to these 'superparticles'. Many other features of the granular system are different: (i) for small particle length-to-breadth ratio κ, we identify tetratic ordering at moderate packing fractions and smectic fluctuations at higher packing fractions, with no sharp transition between the two states. Both types of ordering can be explained in terms of clustering. (ii) For large κ, strong clustering precludes the stabilisation of a uniaxial nematic state, and the system exhibits a mixture of randomly-oriented clusters which, as packing fraction is increased, develops into states with smectic fluctuations, again through a diffuse transition. (iii) Vorticity excitations of the velocity field compete with smectic ordering, causing dynamic fluctuations and the absence of steady states at high densities; the tetratic state, by contrast, is very stiff against vorticity, and long-standing steady states, spatially and orientationally homogeneous except for four symmetrical defects located close to the wall, can be observed.

  15. Rolling friction on a granular medium

    NASA Astrophysics Data System (ADS)

    de Blasio, Fabio Vittorio; Saeter, May-Britt

    2009-02-01

    We present experimental results for the rolling of spheres on a granular bed. We use two sets of glass and steel spheres with varying diameters and a high-speed camera to follow the motion of the spheres. Despite the complex phenomena occurring during the rolling, the results show a friction coefficient nearly independent of the velocity (0.45-0.5 for glass and 0.6-0.65 for steel). It is found that for a given sphere density, the large spheres reach a longer distance, a result that may also help explain the rock sorting along natural stone accumulations at the foot of mountain slopes.

  16. Archimedes' principle in fluidized granular systems.

    PubMed

    Huerta, D A; Sosa, Victor; Vargas, M C; Ruiz-Suárez, J C

    2005-09-01

    We fluidize a granular bed in a rectangular container by injecting energy through the lateral walls with high-frequency sinusoidal horizontal vibrations. In this way, the bed is brought to a steady state with no convection. We measured buoyancy forces on light spheres immersed in the bed and found that they obey Archimedes' principle. The buoyancy forces decrease when we reduce the injected energy. By measuring ascension velocities as a function of gamma, we can evaluate the frictional drag of the bed; its exponential dependence agrees very well with previous findings. Rising times of the intruders ascending through the bed were also measured, they increase monotonically as we increase the density.

  17. Granular convection observed by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Ehrichs, E. E.; Jaeger, H. M.; Karczmar, Greg S.; Knight, James B.; Kuperman, Vadim Yu.; Nagel, Sidney R.

    1995-03-01

    Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here.

  18. Granular convection observed by magnetic resonance imaging

    SciTech Connect

    Ehrichs, E.E.; Jaeger, H.M.; Knight, J.B.; Nagel, S.R.; Karczmar, G.S.; Kuperman, V.Yu.

    1995-03-17

    Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here. 31 refs., 4 figs.

  19. Modelling of dc characteristics for granular semiconductors

    NASA Astrophysics Data System (ADS)

    Varpula, Aapo; Sinkkonen, Juha; Novikov, Sergey

    2010-11-01

    The dc characteristics of granular n-type semiconductors are calculated analytically with the drift-diffusion theory. Electronic trapping at the grain boundaries (GBs) is taken into account. The use of quadratic and linear GB potential profiles in the calculation is compared. The analytical model is verified with numerical simulation performed by SILVACO ATLAS. The agreement between the analytical and numerical results is excellent in a large voltage range. The results show that electronic trapping at the GBs has a remarkable effect on the highly nonlinear I-V characteristics of the material.

  20. Brine Transport Experiments in Granular Salt

    SciTech Connect

    Jordan, Amy B.; Boukhalfa, Hakim; Caporuscio, Florie Andre; Stauffer, Philip H.

    2016-06-06

    To gain confidence in the predictive capability of numerical models, experimental validation must be performed to ensure that parameters and processes are correctly simulated. The laboratory investigations presented herein aim to address knowledge gaps for heat-generating nuclear waste (HGNW) disposal in bedded salt that remain after examination of prior field and laboratory test data. Primarily, we are interested in better constraining the thermal, hydrological, and physicochemical behavior of brine, water vapor, and salt when moist salt is heated. The target of this work is to use run-of-mine (RoM) salt; however during FY2015 progress was made using high-purity, granular sodium chloride.

  1. Gravity-driven dense granular flows

    SciTech Connect

    ERTAS,DENIZ; GREST,GARY S.; HALSEY,THOMAS C.; DEVINE,DOV; SILBERT,LEONARDO E.

    2000-03-29

    The authors report and analyze the results of numerical studies of dense granular flows in two and three dimensions, using both linear damped springs and Hertzian force laws between particles. Chute flow generically produces a constant density profile that satisfies scaling relations suggestive of a Bagnold grain inertia regime. The type for force law has little impact on the behavior of the system. Failure is not initiated at the surface, consistent with the absence of surface flows and different principal stress directions at vs. below the surface.

  2. Biological and robotic movement through granular media

    NASA Astrophysics Data System (ADS)

    Goldman, Daniel

    2008-03-01

    We discuss laboratory experiments and numerical simulations of locomotion of biological organisms and robots on and within a granular medium. Terrestrial locomotion on granular media (like desert and beach sand) is unlike locomotion on rigid ground because during a step the material begins as a solid, becomes a fluid and then re-solidifies. Subsurface locomotion within granular media is unlike swimming in water for similar reasons. The fluidization and solidification depend on the packing properties of the material and can affect limb penetration depth and propulsive force. Unlike aerial and aquatic locomotion in which the Navier-Stokes equations can be used to model environment interaction, models for limb interaction with granular media do not yet exist. To study how the fluidizing properties affect speed in rapidly running and swimming lizards and crabs, we use a trackway composed of a fluidized bed of of 250 μm glass spheres. Pulses of air to the bed set the solid volume fraction 0.59<φ<0.63; a constant flow rate Q below the onset of fluidization (at Q=Qf) linearly reduces the material strength (resistance force per depth) at fixed φ for increasing Q. Systematic studies of four species of lizard and a species of crab (masses 20 grams) reveal that as Q increases, the average running speed of an animal decreases proportionally to √M/A-const(1-Q/Qf) where M is the mass of the animal and A is a characteristic foot area. While the crabs decrease speed by nearly 75 % as the material weakens to a fluid, the zebra tailed lizard uses long toes and a plantigrade foot posture at foot impact to maintain high speed ( 1.5 m/sec). We compare our biological results to systematic studies of a physical model of an organism, a 2 kg hexapedal robot SandBot. We find that the robot speed sensitively depends on φ and the details of the limb trajectory. We simulate the robot locomotion by computing ground reaction forces on a numerical model of the robot using a soft

  3. Granular Activated Carbon Performance Capability and Availability.

    DTIC Science & Technology

    1983-06-01

    5-11 Notes: 1. As total nitrobodies 2. Combined with RDX 3. Includes dissolved air flotation, sand filter, and GAC 4. Can be achieved with moderate...RDX-HMX Water and Air Research Inc Feoruary 1976 Facility Newoort Army Aunition Plant 0-27 ater Quality Assessment for the Proposed RDX-HMX Water and... Air Research Inc February 1976 Facility, McAlester Naval munition Depot. Vol I 0-28 luorovin Granular Carbon Treatment FMC Corp/EPA 1792-6D" N 07 71

  4. Granular jamming transitions for a robotic mechanism

    NASA Astrophysics Data System (ADS)

    Jiang, Allen; Aste, Tomaso; Dasgupta, Prokar; Althoefer, Kaspar; Nanayakkara, Thrishantha

    2013-06-01

    The jamming transitions for granules growing field of interest in robotics for use in variable stiffness mechanisms. However, the traditional use of air pressure to control the jamming transition requires heavy vacuums, reducing the mobility of the robot. Thus, we propose the use of water as a hydraulic fluid to control the transition between free and clustered granules. This paper presents comparative studies that show that a hydraulic granular jammed finger joint can both achieve the same stiffness level and maintain the same hysteresis level of a pneumatic system, with only a small volume of fluid.

  5. Nonlinear Phononic Periodic Structures and Granular Crystals

    DTIC Science & Technology

    2012-02-10

    of the advanced delay equation (13) and they compared the numerically obtained solutions with those of approximated PDEs. Recently, Starosvetsky... KdV ), a nonlinear partial differential equation , and have been discovered in myriad systems and discrete nonlinear lattices of all the above types...granular chain, and derived the following KdV equation : t 0 0 1/2 2 2 2 2 0 0 0 0 0 0, 2 6 , , . 6 xx x xc uc A R c R c Rc m σξ ξ γξ ξξ ξ δ γ σ δ

  6. Fluidization of a horizontally driven granular monolayer.

    PubMed

    Heckel, Michael; Sack, Achim; Kollmer, Jonathan E; Pöschel, Thorsten

    2015-06-01

    We consider the transition of a horizontally vibrated monodisperse granular monolayer between its condensed state and its three-dimensional gaseous state as a function of the vibration parameters, amplitude, and frequency as well as particle number density. The transition is characterized by an abrupt change of the dynamical state which leaves its fingerprints in several measurable quantities including dissipation rate, sound emission, and a gap size which characterizes the sloshing motion of the material. The transition and its pronounced hysteresis is explained through the energy due to the collective motion of the particles relative to the container.

  7. Speckle visibility spectroscopy and variable granular fluidization.

    PubMed

    Dixon, P K; Durian, D J

    2003-05-09

    We introduce a dynamic light scattering technique capable of resolving motion that changes systematically, and rapidly, with time. It is based on the visibility of a speckle pattern for a given exposure duration. Applying this to a vibrated layer of glass beads, we measure the granular temperature and its variation with phase in the oscillation cycle. We observe several transitions involving jammed states, where the grains are at rest during some portion of the cycle. We also observe a two-step decay of the temperature on approach to jamming.

  8. EFFECT OF UV IRRADIATION ON ORGANIC MATTER EXTRACTED FROM TREATED OHIO RIVER WATER STUDIED THROUGH THE USE OF ELECTROSPRAY MASS SPECTROMETRY

    EPA Science Inventory

    Ohio River water was treated by settling, sand filtration, and granular activated carbon filtration. It was then irradiated by low pressure (monochromatic) and medium pressure (polychromatic) UV lamps to investigate the effects of UV irradiation of natural organic matter (NOM). ...

  9. Numerical simulations of granular dynamics II: Particle dynamics in a shaken granular material

    NASA Astrophysics Data System (ADS)

    Murdoch, Naomi; Michel, Patrick; Richardson, Derek C.; Nordstrom, Kerstin; Berardi, Christian R.; Green, Simon F.; Losert, Wolfgang

    2012-05-01

    Surfaces of planets and small bodies of our Solar System are often covered by a layer of granular material that can range from a fine regolith to a gravel-like structure of varying depths. Therefore, the dynamics of granular materials are involved in many events occurring during planetary and small-body evolution thus contributing to their geological properties. We demonstrate that the new adaptation of the parallel N-body hard-sphere code pkdgrav has the capability to model accurately the key features of the collective motion of bidisperse granular materials in a dense regime as a result of shaking. As a stringent test of the numerical code we investigate the complex collective ordering and motion of granular material by direct comparison with laboratory experiments. We demonstrate that, as experimentally observed, the scale of the collective motion increases with increasing small-particle additive concentration. We then extend our investigations to assess how self-gravity and external gravity affect collective motion. In our reduced-gravity simulations both the gravitational conditions and the frequency of the vibrations roughly match the conditions on asteroids subjected to seismic shaking, though real regolith is likely to be much more heterogeneous and less ordered than in our idealised simulations. We also show that collective motion can occur in a granular material under a wide range of inter-particle gravity conditions and in the absence of an external gravitational field. These investigations demonstrate the great interest of being able to simulate conditions that are to relevant planetary science yet unreachable by Earth-based laboratory experiments.

  10. Frosted granular flow: A new hypothesis for mass wasting in martian gullies

    NASA Astrophysics Data System (ADS)

    Hugenholtz, Chris H.

    2008-09-01

    Recent gully deposits on Mars have been attributed to both wet and dry mass wasting processes. In this paper frosted granular flow (FGF) is presented as a new hypothesis for recent mass wasting activity in martian gullies. FGF is a rare type of granular flow observed on a talus slope in the Province of Québec, Canada [Hétu, B., van Steijn, H., Vandelac, P., 1994. Géogr. Phys. Quat. 48, 3-22]. Frost reduces dynamic inter-particle friction, enabling flows to mobilize onto relatively low slope gradients (25-30°) compared to those involving dry granular flow of the same material (35-41°). Resulting erosional and depositional features include straight to sinuous channels, levees and digitate to branching arrangements of terminal deposits. Similar features are commonly found in association with geologically-young gully systems on Mars. Based on terrestrial observations of FGF processes the minimum criteria required for their occurrence on Mars include: (i) readily mobilized, unconsolidated sediment at the surface; (ii) an upper slope gradient at or near the angle of repose; (iii) frost accumulation at the surface; and (iv) triggering by rock fall. All four conditions appear to be met in many areas on present-day Mars though triggering mechanisms may vary. Compared to terrestrial FGFs, which are lubricated by thin liquid films at inter-particle contacts, those occurring on Mars are more likely lubricated by vaporization of CO 2 and small amounts of H 2O frost that becomes incorporated in the translating mass. Some recent mass wasting activity in martian gullies, therefore, could be interpreted as the product of FGF.

  11. Competitive Wetting in Active Brazes

    DOE PAGES

    Chandross, Michael Evan

    2014-05-01

    We found that the wetting and spreading of molten filler materials (pure Al, pure Ag, and AgAl alloys) on a Kovar ™ (001) substrate was studied with molecular dynamics simulations. A suite of different simulations was used to understand the effects on spreading rates due to alloying as well as reactions with the substrate. Moreover, the important conclusion is that the presence of Al in the alloy enhances the spreading of Ag, while the Ag inhibits the spreading of Al.

  12. Phoenix's Wet Chemistry Laboratory Units

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows four Wet Chemistry Laboratory units, part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument on board NASA's Phoenix Mars Lander. This image was taken before Phoenix's launch on August 4, 2007.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. The microrheology of wet forms

    SciTech Connect

    Kraynik, A.M.; Reinelt, D.A.

    1996-05-01

    The Kelvin cell is the only known topology for stable, perfectly ordered, dry foams. During topological transitions (T1s) associated with large elastic-plastic deformations, these cells switch neighbors and some faces gain or lose two sides, but the resulting bubbles with different shape are still Kelvin cells. The bubbles in a stable, perfectly ordered. wet foam are not limited to one topology (or even the two described here). The topological transitions considered here result in gain or loss of two dry films per bubble. The transition from Kelvin to RD topology is triggered by films shrinking in area, as in the dry case. However, the reverse transition from RD to Kelvin topology involves a different mechanism--opposite interfaces of an eight-way vertex touch and a new film grows from the point of contact as the foam is compressed. Microrheological analysis based on 2D models of foam structure has been useful preparation for 3D, despite obvious differences between 2D and 3D. Linear elastic behavior is anisotropic for perfectly ordered 3D foams--nonlinear elastic behavior is isotropic for 2D foams with polydisperse hexagonal structure. The shear moduli of a wet Kelvin foam decrease with increasing {phi}--the shear modulus of a wet 2D foam (with three-way Plateau borders) does not depend on {phi} at all. The effective isotropic shear moduli G of perfectly ordered wet foams tend to decrease with increasing {phi} but do not exhibit linear dependence, which may stem from the disorder of real systems.

  14. Formative Assessment Probes: Wet Jeans

    ERIC Educational Resources Information Center

    Keeley, Page

    2015-01-01

    Picture a wet towel or a puddle of water on a hot, sunny day. An hour later, the towel is dry and the puddle no longer exists. What happened to the water? Where did it go? These are questions that reveal myriad interesting student ideas about evaporation and the water cycle--ideas that provide teachers with a treasure trove of data they can use to…

  15. Wetting hysteresis induced by nanodefects.

    PubMed

    Giacomello, Alberto; Schimmele, Lothar; Dietrich, Siegfried

    2016-01-19

    Wetting of actual surfaces involves diverse hysteretic phenomena stemming from ever-present imperfections. Here, we clarify the origin of wetting hysteresis for a liquid front advancing or receding across an isolated defect of nanometric size. Various kinds of chemical and topographical nanodefects, which represent salient features of actual heterogeneous surfaces, are investigated. The most probable wetting path across surface heterogeneities is identified by combining, within an innovative approach, microscopic classical density functional theory and the string method devised for the study of rare events. The computed rugged free-energy landscape demonstrates that hysteresis emerges as a consequence of metastable pinning of the liquid front at the defects; the barriers for thermally activated defect crossing, the pinning force, and hysteresis are quantified and related to the geometry and chemistry of the defects allowing for the occurrence of nanoscopic effects. The main result of our calculations is that even weak nanoscale defects, which are difficult to characterize in generic microfluidic experiments, can be the source of a plethora of hysteretical phenomena, including the pinning of nanobubbles.

  16. Wetting hysteresis induced by nanodefects

    PubMed Central

    Giacomello, Alberto; Schimmele, Lothar; Dietrich, Siegfried

    2016-01-01

    Wetting of actual surfaces involves diverse hysteretic phenomena stemming from ever-present imperfections. Here, we clarify the origin of wetting hysteresis for a liquid front advancing or receding across an isolated defect of nanometric size. Various kinds of chemical and topographical nanodefects, which represent salient features of actual heterogeneous surfaces, are investigated. The most probable wetting path across surface heterogeneities is identified by combining, within an innovative approach, microscopic classical density functional theory and the string method devised for the study of rare events. The computed rugged free-energy landscape demonstrates that hysteresis emerges as a consequence of metastable pinning of the liquid front at the defects; the barriers for thermally activated defect crossing, the pinning force, and hysteresis are quantified and related to the geometry and chemistry of the defects allowing for the occurrence of nanoscopic effects. The main result of our calculations is that even weak nanoscale defects, which are difficult to characterize in generic microfluidic experiments, can be the source of a plethora of hysteretical phenomena, including the pinning of nanobubbles. PMID:26721395

  17. Forward Looking Needs Systematised Megatrends in Suitable Granularity

    ERIC Educational Resources Information Center

    Ahamer, Gilbert

    2014-01-01

    Purpose: The purpose of this paper is to inquire about the applicability of the concept of granularity to the necessity of future research or--as often called in the European Union--forward looking (FL). After theoretical deliberation, it uses a planned world-wide information system as a case study for applying the notion of granularity regarding…

  18. USE OF GRANULAR GRAPHITE FOR ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE

    EPA Science Inventory

    Granular graphite is a potential electrode material for the electrochemical remediation of refractory chlorinated organic compounds such as trichloroethylene (TCE). However, the use of granular graphite can complicate the experimental results. On one hand, up to 99% of TCE was re...

  19. Effects of granular charge on flow and mixing

    NASA Astrophysics Data System (ADS)

    Shinbrot, T.; Herrmann, H. J.

    2008-12-01

    Sandstorms in the desert have long been reported to produce sparks and other electrical disturbances - indeed as long ago as 1850, Faraday commented on the peculiarities of granular charging during desert sandstorms. Similarly, lightning strikes within volcanic dust plumes have been repeatedly reported for over half a century, but remain unexplained. The problem of granular charging has applied, as well as natural, implications, for charged particle clouds frequently generate spectacularly devastating dust explosions in granular processing plants, and sand becomes strongly electrified by helicopters traveling in desert environments. The issue even has implications for missions to the Moon and to Mars, where charged dust degrades solar cells viability and clings to spacesuits, limiting the lifetime of their joints. Despite the wide-ranging importance of granular charging, even the simplest aspects of its causes remain elusive. To take one example, sand grains in the desert manage to charge one another despite having only similar materials to rub against over expanses of many miles - thus existing theories of charging due to material differences fail entirely to account for the observed charging of desert sands. In this talk, we describe recent progress made in identifying underlying causes of granular charging, both in desert-like environments and in industrial applications, and we examine effects of granular charging on flow, mixing and separation of common granular materials. We find that charging of identical grains can occur under simple laboratory conditions, and we make new predictions for the effects of this charging on granular behaviours.

  20. 75 FR 67105 - Granular Polytetrafluoroethylene Resin From Italy and Japan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-01

    ...), as most recently amended at 74 FR 2847 (January 16, 2009). \\1\\ No response to this request for... granular polytetrafluoroethylene resin from Japan (53 FR 32267). On August 30, 1988, Commerce issued an antidumping duty order on imports of granular polytetrafluoroethylene resin from Italy (53 FR...

  1. Physical Properties of Various Materials Relevant to Granular Flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of the ubiquitous nature of granular materials, ranging from natural avalanches to industrial storage and processing operations, interest in quantifying and predicting the dynamics of granular flow continues to increase. The objective of this study was to investigate various physical proper...

  2. Granular Cell Tumor of Rectum: A Very Rare Entity

    PubMed Central

    Nagaraj, Savitha V.

    2017-01-01

    Granular cell tumors are predominantly benign, occurring more commonly in women, with about 10% developing in the gastrointestinal tract. Rectal location of this tumor is very rare. We herein report one such case of a 61-year-old man with granular cell tumor in the rectum who underwent endoscopic curative resection. PMID:28255473

  3. Process Performance of Secondary Effluent Granular Media Filtration with and without Preozonation.

    PubMed

    Merlo, Rion; De Las Casas, Carla; Henneman, Seppi; Witzgall, Robert; Yu, William; Ramberg, Steve; Parker, Denny; Ohlinger, Kurt

    2015-07-01

    A 10-month pilot study compared the performance of conventional granular media filtration (CGMF) with granular media filtration with preozonation (OGMF) to determine the effects of preozonation on filter performance. Filtration recoveries were lower for OGMF compared to CMGF when operated at a loading rate of 18.3 m/h. Operation at 18.3 m/h met turbidity requirements for California Department of Public Health Title 22 unrestricted reclaimed water requirements for both OGMF and CGMF. Preozonated secondary effluent at a transferred dose of 3 mg/L resulted in an increase in ultraviolet transmissivity (UVT) of approximately 6% and greater than 5-log inactivation of male-specific bacteriophage MS2. Wet weather flow events resulted in UVT decrease and a decline in MS2 inactivation to less than 3 log attributed to higher ozone demand in the secondary effluent. Preozonation increased N-nitrosodimethlyamine (NDMA) concentration approximately 10 times, but subsequent filtration reduced levels to secondary effluent values. A net increase in NDMA was observed at times.

  4. Adhesion and wetting: Similarities and differences

    SciTech Connect

    Shanahan, M.E.R. )

    1991-10-01

    This article examines what is understood about adhesion and wetting both from the historical and scientific perspectives. Topics covered include mechanical adhesion, specific adhesion, chemical adhesion, adhesion by diffusion, the adsorption or wetting theory, bulk adhesion, the rheological theory, hysteresis effects in rubber adhesion, and hysteresis of wetting.

  5. Interpreting concept learning in cognitive informatics and granular computing.

    PubMed

    Yao, Yiyu

    2009-08-01

    Cognitive informatics and granular computing are two emerging fields of study concerning information and knowledge processing. A central notion to this processing is information and knowledge granularity. Concepts, as the basic units of thought underlying human intelligence and communication, may play a fundamental role when integrating the results from the two fields in terms of information and knowledge coding, representation, communication, and processing. While cognitive informatics focuses on information processing in the abstract, in machines, and in the brain, granular computing models such processing at multiple levels of granularity. In this paper, we examine a conceptual framework for concept learning from the viewpoints of cognitive informatics and granular computing. Within the framework, we interpret concept learning based on a layered model of knowledge discovery.

  6. Segregation time-scales in model granular flows

    NASA Astrophysics Data System (ADS)

    Staron, Lydie; Phillips, Jeremy C.

    2016-04-01

    Segregation patterns in natural granular systems offer a singular picture of the systems evolution. In many cases, understanding segregation dynamics may help understanding the system's history as well as its future evolution. Among the key questions, one concerns the typical time-scales at which segregation occurs. In this contribution, we present model granular flows simulated by means of the discrete Contact Dynamics method. The granular flows are bi-disperse, namely exhibiting two grain sizes. The flow composition and its dynamics are systematically varied, and the segregation dynamics carefully analyzed. We propose a physical model for the segregation that gives account of the observed dependence of segregation time scales on composition and dynamics. References L. Staron and J. C. Phillips, Stress partition and micro-structure in size-segregating granular flows, Phys. Rev. E 92 022210 (2015) L. Staron and J. C. Phillips, Segregation time-scales in bi-disperse granular flows, Phys. Fluids 26 (3), 033302 (2014)

  7. Granular physics in low-gravity enviroments

    NASA Astrophysics Data System (ADS)

    Tancredi, G.; Maciel, A.; Heredia, L.; Richeri, P.; Nesmachnow, S.

    2011-10-01

    The granular media are formed by a set of macroscopic objects (named grains) which interact through temporal or permanent contacts. Several processes has been identified which require a full understanding, like: grain blocking, formation of arcs, size segregation, response to shakes and impacts, etc. These processes has been studied experimentally in the laboratory, and, in the last decades, numerically. The Discrete Element Method (DEM) simulate the mechanical behavior in a media formed by a set of particles which interact through their contact points. We describe the implementation of DEM for the study of several relevant processes in minor bodies of the Solar System. We present the results of simulations of the process of size segregation in low-gravity environments, the so-called Brazil nut effect, in the cases of Eros and Itokawa. The segregation of particles with different densities is also analyzed, with the application to the case of P/Hartley 2. The surface shaking in these different gravity environments could produce the ejection of particles from the surface at very low relative velocities. The shaking that cause the above processes is due to impacts or explosions like the release of energy by the liberation of internal stresses or the reaccommodation of material. We run simulations of the passage of seismic wave produced at impact through a granular media.

  8. Discrete particle modelling of granular roll waves

    NASA Astrophysics Data System (ADS)

    Tsang, Jonathan; Dalziel, Stuart; Vriend, Nathalie

    2016-11-01

    A granular current flowing down an inclined chute or plane can undergo an instability that leads to the formation of surface waves, known as roll waves. Examples of roll waves are found in avalanches and debris flows in landslides, and in many industrial processes. Although related to the Kapitza instability of viscous fluid films, granular roll waves are not yet as well understood. Laboratory experiments typically measure the surface height and velocity of a current as functions of position and time, but they do not give insight into the processes below the surface: in particular, the possible formation of a boundary layer at the free surface as well as the base. To overcome this, we are running discrete particle model (DPM) simulations. Simulations are validated against our laboratory experiments, but they also allow us to examine a much larger range of parameters, such as material properties, chute geometry and particle size dispersity, than that which is possible in the lab. We shall present results from simulations in which we vary particle size and dispersity, and examine the implications on roll wave formation and propagation. Future work will include simulations in which the shape of the chute is varied, both cross-sectionally and in the downstream direction. EPSRC studentship (Tsang) and Royal Society Research Fellowship (Vriend).

  9. Size segregation in a granular bore

    NASA Astrophysics Data System (ADS)

    Edwards, A. N.; Vriend, N. M.

    2016-10-01

    We investigate the effect of particle-size segregation in an upslope propagating granular bore. A bidisperse mixture of particles, initially normally graded, flows down an inclined chute and impacts with a closed end. This impact causes the formation of a shock in flow thickness, known as a granular bore, to travel upslope, leaving behind a thick deposit. This deposit imprints the local segregated state featuring both pure and mixed regions of particles as a function of downstream position. The particle-size distribution through the depth is characterized by a thin purely small-particle layer at the base, a significant linear transition region, and a thick constant mixed-particle layer below the surface, in contrast to previously observed S-shaped steady-state concentration profiles. The experimental observations agree with recent progress that upward and downward segregation of large and small particles respectively is asymmetric. We incorporate the three-layer, experimentally observed, size-distribution profile into a depth-averaged segregation model to modify it accordingly. Numerical solutions of this model are able to match our experimental results and therefore motivate the use of a more general particle-size distribution profile.

  10. Three-phase fracturing in granular material

    NASA Astrophysics Data System (ADS)

    Campbell, James; Sandnes, Bjornar

    2015-04-01

    There exist numerous geo-engineering scenarios involving the invasion of a gas into a water-saturated porous medium: in fracking, this may occur during the fracking process itself or during subsequent gas penetration into propant beds; the process is also at the heart of carbon dioxide sequestration. We use a bed of water-saturated glass beads confined within a Hele-Shaw cell as a model system to illuminate these processes. Depending on packing density, injection rate and other factors, air injected into this system may invade in a broad variety of patterns, including viscous fingering, capillary invasion, bubble formation and fracturing. Here we focus primarily on the latter case. Fracturing is observed when air is injected into a loosely packed bed of unconsolidated granular material. Our approach allows us to image the complete fracture pattern as it forms, and as such to study both the topographical properties of the resulting pattern (fracture density, braching frequency etc) and the dynamics of its growth. We present an overview of the fracturing phenomenon within the context of pattern formation in granular fluids as a whole. We discuss how fracturing arises from an interplay between frictional, capillary and viscous forces, and demonstrate the influence of various parameters on the result.

  11. Fingering and fracturing in granular media

    NASA Astrophysics Data System (ADS)

    Juanes, R.; Holtzman, R.; Szulczewski, M.

    2012-12-01

    Here, we describe the phenomenon of capillary fracturing in granular media. We study the displacement of immiscible fluids in deformable, non-cohesive granular media. Experimentally, we inject air into a thin bed of water-saturated glass beads and observe the invasion morphology. The control parameters are the injection rate, the bead size, and the confining stress. We identify three invasion regimes: capillary fingering, viscous fingering, and "capillary fracturing", where capillary forces overcome frictional resistance and induce the opening of conduits. We derive two dimensionless numbers that govern the transition among the different regimes: a modified capillary number and a fracturing number. The experiments and analysis predict the emergence of fracturing in fine-grained media under low confining stress, a phenomenon that likely plays a fundamental role in many natural processes such as primary oil migration, methane venting from lake sediments, and the formation of desiccation cracks.Examples of experimentally observed patterns. We classify these patterns into three regimes: viscous fingering, capillary fingering, and fracturing.

  12. Granular motions near the threshold of entrainment

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Alexakis, athanasios-Theodosios

    2016-04-01

    Our society is continuously impacted by significant weather events many times resulting in catastrophes that interrupt our normal way of life. In the context of climate change and increasing urbanisation these "extreme" hydrologic events are intensified both in magnitude and frequency, inducing costs of the order of billions of pounds. The vast majority of such costs and impacts (even more to developed societies) are due to water related catastrophes such as the geomorphic action of flowing water (including scouring of critical infrastructure, bed and bank destabilisation) and flooding. New tools and radically novel concepts are in need, to enable our society becoming more resilient. This presentation, emphasises the utility of inertial sensors in gaining new insights on the interaction of flow hydrodynamics with the granular surface at the particle scale and for near threshold flow conditions. In particular, new designs of the "smart-sphere" device are discussed with focus on the purpose specific sets of flume experiments, designed to identify the exact response of the particle resting at the bed surface for various below, near and above threshold flow conditions. New sets of measurements are presented for particle entrainment from a Lagrangian viewpoint. Further to finding direct application in addressing real world challenges in the water sector, it is shown that such novel sensor systems can also help the research community (both experimentalists and computational modellers) gain a better insight on the underlying processes governing granular dynamics.

  13. Dynamic effective mass of granular media

    NASA Astrophysics Data System (ADS)

    Johnson, David; Ingale, Rohit; Valenza, John; Hsu, Chaur-Jian; Gland, Nicolas; Makse, Hernan

    2009-03-01

    We report an experimental and theoretical investigation of the frequency-dependent effective mass, M(φ), of loose granular particles which occupy a rigid cavity to a filling fraction of 48%, the remaining volume being air of differing humidities. We demonstrate that this is a sensitive and direct way to measure those properties of the granular medium that are the cause of the changes in acoustic properties of structures containing grain-filled cavities. Specifically, we apply this understanding to the case of the flexural resonances of a rectangular bar with a grain-filled cavity within it. The dominant features of M(φ) are a sharp resonance and a broad background, which we analyze within the context of simple models. We find that: a) These systems may be understood in terms of a height-dependent and diameter-dependent effective sound speed (˜130 m/s) and an effective viscosity (˜2x10^4 Poise). b) There is a dynamic Janssen effect in the sense that, at any frequency, and depending on the method of sample preparation, approximately one-half of the effective mass is borne by the side walls of the cavity and one-half by the bottom. c) On a fundamental level, dissipation is dominated by adsorbed films of water at grain-grain contacts in our experiments.

  14. Density fluctuations in vibrated granular materials

    SciTech Connect

    Nowak, E.R.; Knight, J.B.; Ben-Naim, E.; Jaeger, H.M.; Nagel, S.R.

    1998-02-01

    We report systematic measurements of the density of a vibrated granular material as a function of time. Monodisperse spherical beads were confined to a cylindrical container and shaken vertically. Under vibrations, the density of the pile slowly reaches a final steady-state value about which the density fluctuates. We have investigated the frequency dependence and amplitude of these fluctuations as a function of vibration intensity {Gamma}. The spectrum of density fluctuations around the steady state value provides a probe of the internal relaxation dynamics of the system and a link to recent thermodynamic theories for the settling of granular material. In particular, we propose a method to evaluate the compactivity of a powder, first put forth by Edwards and co-workers, that is the analog to temperature for a quasistatic powder. We also propose a stochastic model based on free volume considerations that captures the essential mechanism underlying the slow relaxation. We compare our experimental results with simulations of a one-dimensional model for random adsorption and desorption. {copyright} {ital 1998} {ital The American Physical Society}

  15. Pressure-shear experiments on granular materials.

    SciTech Connect

    Reinhart, William Dodd; Thornhill, Tom Finley, III; Vogler, Tracy John; Alexander, C. Scott

    2011-10-01

    Pressure-shear experiments were performed on granular tungsten carbide and sand using a newly-refurbished slotted barrel gun. The sample is a thin layer of the granular material sandwiched between driver and anvil plates that remain elastic. Because of the obliquity, impact generates both a longitudinal wave, which compresses the sample, and a shear wave that probes the strength of the sample. Laser velocity interferometry is employed to measure the velocity history of the free surface of the anvil. Since the driver and anvil remain elastic, analysis of the results is, in principal, straightforward. Experiments were performed at pressures up to nearly 2 GPa using titanium plates and at higher pressure using zirconium plates. Those done with the titanium plates produced values of shear stress of 0.1-0.2 GPa, with the value increasing with pressure. On the other hand, those experiments conducted with zirconia anvils display results that may be related to slipping at an interface and shear stresses mostly at 0.1 GPa or less. Recovered samples display much greater particle fracture than is observed in planar loading, suggesting that shearing is a very effective mechanism for comminution of the grains.

  16. Ultrasonic compaction of granular geological materials.

    PubMed

    Feeney, Andrew; Sikaneta, Sakalima; Harkness, Patrick; Lucas, Margaret

    2017-04-01

    It has been shown that the compaction of granular materials for applications such as pharmaceutical tableting and plastic moulding can be enhanced by ultrasonic vibration of the compaction die. Ultrasonic vibrations can reduce the compaction pressure and increase particle fusion, leading to higher strength products. In this paper, the potential benefits of ultrasonics in the compaction of geological granular materials in downhole applications are explored, to gain insight into the effects of ultrasonic vibrations on compaction of different materials commonly encountered in sub-sea drilling. Ultrasonic vibrations are applied, using a resonant 20kHz compactor, to the compaction of loose sand and drill waste cuttings derived from oolitic limestone, clean quartz sandstone, and slate-phyllite. For each material, a higher strain for a given compaction pressure was achieved, with higher sample density compared to that in the case of an absence of ultrasonics. The relationships between the operational parameters of ultrasonic vibration amplitude and true strain rate are explored and shown to be dependent on the physical characteristics of the compacting materials.

  17. Nonlocal modeling of granular flows down inclines.

    PubMed

    Kamrin, Ken; Henann, David L

    2015-01-07

    Flows of granular media down a rough inclined plane demonstrate a number of nonlocal phenomena. We apply the recently proposed nonlocal granular fluidity model to this geometry and find that the model captures many of these effects. Utilizing the model's dynamical form, we obtain a formula for the critical stopping height of a layer of grains on an inclined surface. Using an existing parameter calibration for glass beads, the theoretical result compares quantitatively to existing experimental data for glass beads. This provides a stringent test of the model, whose previous validations focused on driven steady-flow problems. For layers thicker than the stopping height, the theoretical flow profiles display a thickness-dependent shape whose features are in agreement with previous discrete particle simulations. We also address the issue of the Froude number of the flows, which has been shown experimentally to collapse as a function of the ratio of layer thickness to stopping height. While the collapse is not obvious, two explanations emerge leading to a revisiting of the history of inertial rheology, which the nonlocal model references for its homogeneous flow response.

  18. Mechanics of Granular Materials labeled hardware

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Mechanics of Granular Materials (MGM) flight hardware takes two twin double locker assemblies in the Space Shuttle middeck or the Spacehab module. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: NASA/MSFC).

  19. Machanics of Granular Materials (MGM) Investigator

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Key persornel in the Mechanics of Granular Materials (MGM) experiment include Khalid Alshibli, project scientist at NASA's Marshall Space Flight Center (MSFC). Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that cannot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: MSFC).

  20. Mechanic of Granular Materials (MGM) Investigator

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Key persornel in the Mechanics of Granular Materials (MGM) experiment are Mark Lankton (Program Manager at University Colorado at Boulder), Susan Batiste (research assistance, UCB), and Stein Sture (principal investigator). Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that cannot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: University of Colorado at Boulder).

  1. Mechanics of Granular Materials (MGM) Investigators

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Key persornel in the Mechanics of Granular Materials (MGM) experiment at the University of Colorado at Boulder include Tawnya Ferbiak (software engineer), Susan Batiste (research assistant), and Christina Winkler (graduate research assistant). Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that cannot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: University of Colorado at Boulder).

  2. Microstructural characteristics of planar granular solids

    NASA Astrophysics Data System (ADS)

    Matsushima, Takashi; Blumenfeld, Raphael

    2013-06-01

    The microstructure of granular materials is the main factor determining their macroscopic behaviour. We study systematically the statistical characteristics of volume elements (called quadrons) of microstructures of mono-and polydisperse planar disc packs granular and report a number of new results. The packs analysed were of different intergranular friction coefficients, μ, contained about 20,000 discs each and were brought to mechanical equilibrium under identical isotropic compression stresses from three different initial states: loose, intermediate and dense. Our findings are the following. (i) The rattlers volume fraction φr is not affected by the disc size distribution (DSD). (ii) Excluding the rattlers, we find that the relation between the packing fraction φ' and the mean coordination number ¯z is independent of the initial state. Together with result (i), this allows us to separate the effects of the DSD and the initial state on the microstructure. (iii) We relate analytically ¯z, φ' and the (normalised) mean quadron volume ¯ν'. (iv) Combining (iii) and a relation between ¯z and the mean cell order, ē, derived from Euler's topological relation, we show that (ii) is a result of the geometrical relation between ¯ν' and ē. (v) The probability density function of the quadron volumes, normalised by ¯ν', is universal for all the studied systems and it can be fit reasonably well by a Γ distribution.

  3. Thermodynamic Consistency of Mechanical Granular Theories

    NASA Astrophysics Data System (ADS)

    Hutter, K.

    Constitutive Theories of the mechanical behaviour of soils are often derived without resort to thermodynamic considerations. The form of the closure conditions, however, needs to be in conformity with the second law of thermodynamics and depends on it, even on the particular form which the second law is postulated to take. We outline two common forms of the entropy principle, (i) due to Clausius-Duhem and exploited according to Coleman-Noll and (ii) due to I. Müller and exploited ac- cording to Liu. We subject them to certain classes of material behaviour of saturated and unsaturated soil and show that not only the dynamic behaviour depends on the satisfaction of the second law, but equally also that in equilibrium. Examples illus- trating this will be given for (i) a dry soil with voids and exhibiting plastic internal frictional behaviour, (ii) a saturated granular fluid mixture able to model ground water soil interactions as well as (iii) a mixture of a finite number of grains with different diameters that is capable to describe inverse grading of a soil with a broad grain size distribution. In postulating constitutive relations for continuous granular mixtures, the rule of equipresence is often replaced by the rule of phase separation to simplify the com- putations. It is made plausible that, when constituents are strongly interacting, this principle is not likely to yield satisfactory formulations for the intended phenomena.

  4. Lizard locomotion in heterogeneous granular media

    NASA Astrophysics Data System (ADS)

    Schiebel, Perrin; Goldman, Daniel

    2014-03-01

    Locomotion strategies in heterogeneous granular environments (common substrates in deserts), are relatively unexplored. The zebra-tailed lizard (C. draconoides) is a useful model organism for such studies owing to its exceptional ability to navigate a variety of desert habitats at impressive speed (up to 50 body-lengths per second) using both quadrapedal and bidepal gaits. In laboratory experiments, we challenge the lizards to run across a field of boulders (2.54 cm diameter glass spheres or 3.8 cm 3D printed spheres) placed in a lattice pattern and embedded in a loosely packed granular medium of 0.3 mm diameter glass particles. Locomotion kinematics of the lizard are recorded using high speed cameras, with and without the scatterers. The data reveals that unlike the lizard's typical quadrupedal locomotion using a diagonal gait, when scatterers are present the lizard is most successful when using a bipedal gait, with a raised center of mass (CoM). We propose that the kinematics of bipedal running in conjunction with the lizard's long toes and compliant hind foot are the keys to this lizard's successful locomotion in the presence of such obstacles. NSF PoLS

  5. Origin of Rigidity in Dry Granular Solids

    NASA Astrophysics Data System (ADS)

    Sarkar, Sumantra; Bi, Dapeng; Zhang, Jie; Behringer, R. P.; Chakraborty, Bulbul

    2013-08-01

    Solids are distinguished from fluids by their ability to resist shear. In traditional solids, the resistance to shear is associated with the emergence of broken translational symmetry as exhibited by a nonuniform density pattern. In this work, we focus on the emergence of shear rigidity in a class of solids where this paradigm is challenged. Dry granular materials have no energetically or entropically preferred density modulations. We show that, in contrast to traditional solids, the emergence of shear rigidity in these granular solids is a collective process, which is controlled solely by boundary forces, the constraints of force and torque balance, and the positivity of the contact forces. We develop a theoretical framework based on these constraints, which connects rigidity to broken translational symmetry in the space of forces, not positions of grains. We apply our theory to experimentally generated shear-jammed states and show that these states are indeed characterized by a persistent, non-uniform density modulation in force space, which emerges at the shear-jamming transition.

  6. An experimental study of low velocity impacts into granular material in reduced gravity

    NASA Astrophysics Data System (ADS)

    Murdoch, Naomi; Avila Martinez, Iris; Sunday, Cecily; Cherrier, Olivier; Zenou, Emanuel; Janin, Tristan; Cadu, Alexandre; Gourinat, Yves; Mimoun, David

    2016-04-01

    ). Previous experiments using similar methods have demonstrated the important role of gravity in the peak accelerations and collision timescales during low velocity granular impacts (Goldman and Umbanhower, 2007; Alsthuler et al., 2013). The design of our experiment accommodates collision velocities and effective accelerations that are lower than in previous experiments (<20 cm/s and ˜0.1 - 1.0 m/s2, respectively), allowing us to come closer to the conditions that may be encountered by current and future small body missions. [1] Altshuler, E., et al., "Extraterrestrial sink dynamics in granular matter", arXiv 1305.6796, 2013. [2] Biele, J., et al., "The landing(s) of Philae and inferences about comet surface mechanical properties", Science, 349 (6247), 2015. [3] Goldman, D. I., Umbanhowar, P., Scaling and dynamics of sphere and disk impact into granular media, Physics Review E 77 (2), (2008) 021308. [4] Murdoch, N., et al. "Investigating the surface and subsurface properties of the Didymos binary asteroid with a landed CubeSat", EGU, 2016. [5] Sunday, C., et al., "An original facility for reduced-gravity testing: a set-up for studying low-velocity collisions into granular surfaces", Submitted to the Review of Scientific Instruments, 2016.

  7. Wet and dry African dust episodes over eastern Spain

    NASA Astrophysics Data System (ADS)

    Escudero, M.; Castillo, S.; Querol, X.; Avila, A.; Alarcón, M.; Viana, M. M.; Alastuey, A.; Cuevas, E.; RodríGuez, S.

    2005-09-01

    The impact of the African dust on levels of atmospheric suspended particulate matter (SPM) and on wet deposition was evaluated in eastern Iberia for the period 1996-2002. An effort was made to compile both the SPM and wet episodes. To this end, the time series of levels of TSP and PM10 in Levantine air quality monitoring stations were evaluated and complemented with the computation of back trajectories, satellite images, and meteorological analysis. Wet deposition frequency was obtained from weekly collected precipitation data at a rural background station in which the African chemical signature was identified (mainly pH and Ca2+ concentrations). A number of African dust episodes (112) were identified (16 episodes per year). In 93 out of the 112 (13 episodes per year) the African dust influence caused high SPM levels. In 49 out of 112 (7 episodes per year), wet deposition was detected, and the chemistry was influenced by dust. There is a clear seasonal trend with higher frequency of dust outbreaks in May-August, with second modes in March and October. Wet events followed a different pattern, with a marked maximum in May. Except for one event, December was devoid of African air mass intrusions. On the basis of seasonal meteorological patterns affecting the Iberian Peninsula, an interpretation of the meteorological scenarios causing African dust transport over Iberia was carried out. Four scenarios were identified with a clear seasonal trend. The impact of the different dust outbreak scenarios on the levels of PM10 recorded at a rural site (Monagrega, Teruel, Spain) in the period 1996-2002 was also evaluated.

  8. Electrostatics of Granular Material (EGM): Space Station Experiment

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Sauke, T.; Farrell, W.

    2000-01-01

    Aggregates were observed to form very suddenly in a lab-contained dust cloud, transforming (within seconds) an opaque monodispersed cloud into a clear volume containing rapidly-settling, long hair-like aggregates. The implications of such a "phase change" led to a series of experiments progressing from the lab, to KC-135, followed by micro-g flights on USML-1 and USML-2, and now EGM slated for Space Station. We attribute the sudden "collapse" of a cloud to the effect of dipoles. This has significant ramifications for all types of cloud systems, and additionally implicates dipoles in the processes of cohesion and adhesion of granular matter. Notably, there is the inference that like-charged grains need not necessarily repel if they are close enough together: attraction or repulsion depends on intergranular distance (the dipole being more powerful at short range), and the D/M ratio for each grain, where D is the dipole moment and M is the net charge. We discovered that these ideas about dipoles, the likely pervasiveness of them in granular material, the significance of the D/M ratio, and the idea of mixed charges on individual grains resulting from tribological processes --are not universally recognized in electrostatics, granular material studies, and aerosol science, despite some early seminal work in the literature, and despite commercial applications of dipoles in such modern uses as "Krazy Glue", housecleaning dust cloths, and photocopying. The overarching goal of EGM is to empirically prove that (triboelectrically) charged dielectric grains of material have dipole moments that provide an "always attractive" intergranular force as a result of both positive and negative charges residing on the surfaces of individual grains. Microgravity is required for this experiment because sand grains can be suspended as a cloud for protracted periods, the grains are free to rotate to express their electrostatic character, and Coulombic forces are unmasked. Suspended grains

  9. Controlling wave propagation through nonlinear engineered granular systems

    NASA Astrophysics Data System (ADS)

    Leonard, Andrea

    We study the fundamental dynamic behavior of a special class of ordered granular systems in order to design new, structured materials with unique physical properties. The dynamic properties of granular systems are dictated by the nonlinear, Hertzian, potential in compression and zero tensile strength resulting from the discrete material structure. Engineering the underlying particle arrangement of granular systems allows for unique dynamic properties, not observed in natural, disordered granular media. While extensive studies on 1D granular crystals have suggested their usefulness for a variety of engineering applications, considerably less attention has been given to higher-dimensional systems. The extension of these studies in higher dimensions could enable the discovery of richer physical phenomena not possible in 1D, such as spatial redirection and anisotropic energy trapping. We present experiments, numerical simulation (based on a discrete particle model), and in some cases theoretical predictions for several engineered granular systems, studying the effects of particle arrangement on the highly nonlinear transient wave propagation to develop means for controlling the wave propagation pathways. The first component of this thesis studies the stress wave propagation resulting from a localized impulsive loading for three different 2D particle lattice structures: square, centered square, and hexagonal granular crystals. By varying the lattice structure, we observe a wide range of properties for the propagating stress waves: quasi-1D solitary wave propagation, fully 2D wave propagation with tunable wave front shapes, and 2D pulsed wave propagation. Additionally the effects of weak disorder, inevitably present in real granular systems, are investigated. The second half of this thesis studies the solitary wave propagation through 2D and 3D ordered networks of granular chains, reducing the effective density compared to granular crystals by selectively placing wave

  10. Mold management of wetted carpet.

    PubMed

    Ong, Kee-Hean; Dixit, Anupma; Lewis, Roger D; MacDonald Perkins, Maureen; Backer, Denis; Condoor, Sridhar; Emo, Brett; Yang, Mingan

    2014-01-01

    This study evaluated the growth and removal of fungi on wetted carpet using newly designed technologies that rely on physical principles of steam, heat, and fluid flow. Sixty samples of carpet were embedded with heat-treated house dust, followed by embedding, wearing with a hexapod, and wetting. Samples were inoculated using a liquid suspension of Cladosporium sphaerospermum prior to placement over a water-saturated foam pad. Incubation times were 24 hr, 7 days, and 30 days. Cleaning was performed using three methods; high-flow hot water extraction, hot water and detergent, and steam. Fungal loading increased from approximately 1500 colony forming units per area (CFU/cm(2)) in 24 hr to a maximum of approximately 10,200 CFU/cm(2) after 7 days with a slight decline to 9700 CFU/cm(2) after 30 days incubation. Statistically significant differences were found among all three methods for removal of fungi for all three time periods (p < 0.05). Steam-vapor was significantly better than the alternative methods (p <0.001) with over 99% efficiency in mold spore decline from wetted carpet after 24 hr and 30 days, and over 92% efficiency after 7 days. The alternative methods exhibited lower efficiencies with a decline over time, from a maximum of 82% and 81% at 24 hr down to 60% and 43% at 30 days for detergent-hot water and high-flow, hot water extraction, respectively. The net effect of the mold management study demonstrates that while steam has a consistent fungal removal rate, the detergent and high-flow, hot water methods decline in efficiency with increasing incubation time.

  11. Coal combustion by wet oxidation

    SciTech Connect

    Bettinger, J.A.; Lamparter, R.A.; McDowell, D.C.

    1980-11-15

    The combustion of coal by wet oxidation was studied by the Center for Waste Management Programs, of Michigan Technological University. In wet oxidation a combustible material, such as coal, is reacted with oxygen in the presence of liquid water. The reaction is typically carried out in the range of 204/sup 0/C (400/sup 0/F) to 353/sup 0/C (650/sup 0/F) with sufficient pressure to maintain the water present in the liquid state, and provide the partial pressure of oxygen in the gas phase necessary to carry out the reaction. Experimental studies to explore the key reaction parameters of temperature, time, oxidant, catalyst, coal type, and mesh size were conducted by running batch tests in a one-gallon stirred autoclave. The factors exhibiting the greatest effect on the extent of reaction were temperature and residence time. The effect of temperature was studied from 204/sup 0/C (400/sup 0/F) to 260/sup 0/C (500/sup 0/F) with a residence time from 600 to 3600 seconds. From this data, the reaction activation energy of 2.7 x 10/sup 4/ calories per mole was determined for a high-volatile-A-Bituminous type coal. The reaction rate constant may be determined at any temperature from the activation energy using the Arrhenius equation. Additional data were generated on the effect of mesh size and different coal types. A sample of peat was also tested. Two catalysts were evaluated, and their effects on reaction rate presented in the report. In addition to the high temperature combustion, low temperature desulfurization is discussed. Desulfurization can improve low grade coal to be used in conventional combustion methods. It was found that 90% of the sulfur can be removed from the coal by wet oxidation with the carbon untouched. Further desulfurization studies are indicated.

  12. A Wet Chemistry Laboratory Cell

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This picture of NASA's Phoenix Mars Lander's Wet Chemistry Laboratory (WCL) cell is labeled with components responsible for mixing Martian soil with water from Earth, adding chemicals and measuring the solution chemistry. WCL is part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument suite on board the Phoenix lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. Wet/Dry Vacuum Cleaner

    NASA Technical Reports Server (NTRS)

    Reimers, Harold; Andampour, Jay; Kunitser, Craig; Thomas, Ike

    1995-01-01

    Vacuum cleaner collects and retains dust, wet debris, and liquids. Designed for housekeeping on Space Station Freedom, it functions equally well in normal Earth Gravity or in microgravity. Generates acoustic noise at comfortably low levels and includes circuitry that reduces electromagnetic interference to other electronic equipment. Draws materials into bag made of hydrophobic sheet with layers of hydrophilic super-absorbing pads at downstream end material. Hydrophilic material can gel many times its own weight of liquid. Blower also provides secondary airflow to cool its electronic components.

  14. Experimental and Computational Techniques in Soft Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    Olafsen, Jeffrey

    2010-09-01

    1. Microscopy of soft materials Eric R. Weeks; 2. Computational methods to study jammed Systems Carl F. Schrek and Corey S. O'Hern; 3. Soft random solids: particulate gels, compressed emulsions and hybrid materials Anthony D. Dinsmore; 4. Langmuir monolayers Michael Dennin; 5. Computer modeling of granular rheology Leonardo E. Silbert; 6. Rheological and microrheological measurements of soft condensed matter John R. de Bruyn and Felix K. Oppong; 7. Particle-based measurement techniques for soft matter Nicholas T. Ouellette; 8. Cellular automata models of granular flow G. William Baxter; 9. Photoelastic materials Brian Utter; 10. Image acquisition and analysis in soft condensed matter Jeffrey S. Olafsen; 11. Structure and patterns in bacterial colonies Nicholas C. Darnton.

  15. S-100 Negative Granular Cell Tumor of the Oral Cavity.

    PubMed

    Solomon, Lynn W; Velez, Ines

    2016-09-01

    Classic granular cell tumor is a mesenchymal neoplasm that commonly occurs on the skin, but is not infrequently found in the oral cavity, primarily on the dorsal tongue. Diagnosis is usually straightforward with hematoxylin and eosin stained slides. Immunohistochemical studies on classic granular cell tumor shows positive immunostaining for S-100 and vimentin, while CD68 is variably positive. We report a case of otherwise unremarkable oral granular cell tumor that was immunohistochemically negative for S-100, and positive for vimentin and CD68, and discuss the differential diagnosis. The results of the immunohistochemical studies in our case are compared with those of classic S-100 positive oral granular cell tumors, as well as cutaneous and oral S-100 negative granular cell tumors. Classic S-100 positive granular cell tumors and S-100 negative granular cell tumors of the oral cavity can only be distinguished by immunohistochemical studies; however, the necessity of this distinction is unclear, as both are benign lesions in which recurrence is unlikely.

  16. Collision of a vortex ring on granular material. Part II. Erosion of the granular layer

    NASA Astrophysics Data System (ADS)

    Yoshida, Junya; Masuda, Naoya; Ito, Boku; Furuya, Takayoshi; Sano, Osamu

    2012-02-01

    In our previous paper (part I), an experimental result was presented on the normal impact of a vortex ring on the granular layer (glass beads of diameter 0.10 mm), which was placed at a specified distance from the outlet of the vortex ring generator. The Reynolds number of the vortex ring ranged from 1000 to 6000, whereas the traveling distance ranged from 2 to 13 times of the diameter of the vortex ring generator nozzle. In part I, the deformation of the vortex ring impacting on the granular layer and the development of the secondary vortex ring were focused. In this paper (part II), the erosion of the granular surface by the vortex ring is described. Various patterns were found depending on the Reynolds number of the vortex ring and the traveling distance. Two patterns, one (grooves) which has radial striations from the central depressed region to the outer edge of the rim and the other (dimples) which is characterized by isolated small depressions around the outer edge of the rim, are examined in detail. The formation processes of these patterns are elucidated in terms of the deformation of the vortex ring.

  17. Mars: Always Cold, Sometimes Wet?

    NASA Technical Reports Server (NTRS)

    Lee, Pascal; McKay, Christoper P.

    2003-01-01

    A synthesis of a diverse suite of observations of H2O-related landforms that are possible Mars analogs from terrestrial polar regions (Devon Island in the Arctic; the Dry Valleys of Antarctica) put into question any requirement for extended episode(s) of warm and wet climate in Mars past. Geologically transient episodes of localized H2O cycling, forced by exogenic impacts, enhanced endogenic heat flow, and/or orbit-driven short-term local environmental change under an otherwise cold, low pressure (=10(exp 2) mbar) global climate, may be sufficient to account for the martian surface's exposed record of aqueous activity. A Mars that was only sometimes locally warm and wet while remaining climatically cold throughout its history is consistent with results (difficulties) encountered in modeling efforts attempting to support warm martian climate hypotheses. Possible analogs from terrestrial cold climate regions for the recent gully features on Mars also illustrate how transient localized aqueous activity might, under specific circumstances, also occur on Mars under the present frigid global climatic regime.

  18. Elucidating the mysteries of wetting.

    SciTech Connect

    Webb, Edmund Blackburn, III; Bourdon, Christopher Jay; Grillet, Anne Mary; Sackinger, Philip A.; Grest, Gary Stephen; Emerson, John Allen; Ash, Benjamin Jesse; Heine, David R.; Brooks, Carlton, F.; Gorby, Allen D.

    2005-11-01

    Nearly every manufacturing and many technologies central to Sandia's business involve physical processes controlled by interfacial wetting. Interfacial forces, e.g. conjoining/disjoining pressure, electrostatics, and capillary condensation, are ubiquitous and can surpass and even dominate bulk inertial or viscous effects on a continuum level. Moreover, the statics and dynamics of three-phase contact lines exhibit a wide range of complex behavior, such as contact angle hysteresis due to surface roughness, surface reaction, or compositional heterogeneities. These thermodynamically and kinetically driven interactions are essential to the development of new materials and processes. A detailed understanding was developed for the factors controlling wettability in multicomponent systems from computational modeling tools, and experimental diagnostics for systems, and processes dominated by interfacial effects. Wettability probed by dynamic advancing and receding contact angle measurements, ellipsometry, and direct determination of the capillary and disjoining forces. Molecular scale experiments determined the relationships between the fundamental interactions between molecular species and with the substrate. Atomistic simulations studied the equilibrium concentration profiles near the solid and vapor interfaces and tested the basic assumptions used in the continuum approaches. These simulations provide guidance in developing constitutive equations, which more accurately take into account the effects of surface induced phase separation and concentration gradients near the three-phase contact line. The development of these accurate models for dynamic multicomponent wetting allows improvement in science based engineering of manufacturing processes previously developed through costly trial and error by varying material formulation and geometry modification.

  19. Hyperstaticity and loops in frictional granular packings

    NASA Astrophysics Data System (ADS)

    Tordesillas, Antoinette; Lam, Edward; Metzger, Philip T.

    2009-06-01

    The hyperstatic nature of granular packings of perfectly rigid disks is analyzed algebraically and through numerical simulation. The elementary loops of grains emerge as a fundamental element in addressing hyperstaticity. Loops consisting of an odd number of grains behave differently than those with an even number. For odd loops, the latent stresses are exterior and are characterized by the sum of frictional forces around each loop. For even loops, the latent stresses are interior and are characterized by the alternating sum of frictional forces around each loop. The statistics of these two types of loop sums are found to be Gibbsian with a "temperature" that is linear with the friction coefficient μ when μ<1.

  20. Frictional granular mechanics: A variational approach

    SciTech Connect

    Holtzman, R.; Silin, D.B.; Patzek, T.W.

    2009-10-16

    The mechanical properties of a cohesionless granular material are evaluated from grain-scale simulations. Intergranular interactions, including friction and sliding, are modeled by a set of contact rules based on the theories of Hertz, Mindlin, and Deresiewicz. A computer generated, three-dimensional, irregular pack of spherical grains is loaded by incremental displacement of its boundaries. Deformation is described by a sequence of static equilibrium configurations of the pack. A variational approach is employed to find the equilibrium configurations by minimizing the total work against the intergranular loads. Effective elastic moduli are evaluated from the intergranular forces and the deformation of the pack. Good agreement between the computed and measured moduli, achieved with no adjustment of material parameters, establishes the physical soundness of the proposed model.

  1. Methods of similitude in granular avalanche flows

    NASA Astrophysics Data System (ADS)

    Tai, Yih-Chin; Wang, Yongqi; Gray, J. M. N. T.; Hutter, Kolumban

    Snow avalanches are relatively dry and dense granular flows for which the Savage-Hutter (SH) equations have been demonstrated to be an adequate mathematical model. We review these equations and point out for which cases the equations have been tested against laboratory experiments. Since the equations are scale invariant and because agreement with experiments is good, laboratory experiments can be used to test realistic flows. This is detailed in this paper. We demonstrate how shocks are formed when dilatational flow states merge into compacting states and show that shock formation is an essential mechanism in flows against obstructions. We finally apply the theory of similitude to the design of a projected avalanche protection structure of the Schneefernerhaus at the Zugspitze.

  2. Dense annular flows of granular media

    NASA Astrophysics Data System (ADS)

    de Ryck, Alain; Louisnard, Olivier

    2013-06-01

    Dense granular flows constitute an important topic for geophysics and process engineering. To describe them, a rheology based on the coaxiality between the stress and strain tensors with a Mohr-Coulomb yield criterion has been proposed. We propose here an analytic study of flows in an annular cell, with this rheology. This geometry is relevant for a series of powder rheometers or mixing devices, but the discussion is focused on the split-bottom geometry, for which the internal flow has been investigated by NMR technique. In this case, the full resolution of the velocity and stress fields allow to localize the shear deformations. The theoretical results obtained for the latter are compared with the torque measurements by Dijksman et al. [Phys. Rev. E, 82 (2010) 060301].

  3. Emotional Granularity and Borderline Personality Disorder

    PubMed Central

    Suvak, Michael K.; Litz, Brett T.; Sloan, Denise M.; Zanarini, Mary C.; Barrett, Lisa Feldman; Hofmann, Stefan G.

    2011-01-01

    This study examined the affective dysregulation component of borderline personality disorder (BPD) from an emotional granularity perspective, which refers to the specificity in which one represents emotions. Forty-six female participants meeting criteria for BPD and 51 female control participants without BPD and Axis I pathology completed tasks that assessed the degree to which participants incorporated information about valence (pleasant–unpleasant) and arousal (calm–activated) in their semantic/conceptual representations of emotions and in using labels to represent emotional reactions. As hypothesized, participants with BPD emphasized valence more and arousal less than control participants did when using emotion terms to label their emotional reactions. Implications and future research directions are discussed. PMID:21171723

  4. Trapping and sorting active granular rods

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Sriram; Kumar, Nitin; Soni, Harsh; Gupta, Rahul; Sood, Ajay

    We report experiments and simulations on collective trapping in a horizontal monolayer of tapered granular rods rendered motile by mechanical vibration. A macroscopic fraction of the particles are trapped by a V-shaped obstacle if its opening angle is less than a threshold value of about 120 degrees, consistent with active Brownian simulations [PRL 108, 268307 (2012)]. the transition between trapped and untrapped states becomes sharper with increasing system size in our numerical studies. We offer a theoretical understanding of this nonequilibrium phase transition based on collective noise suppression and an analysis of fluxes. We show also that the trap can serve to separate particles based on their motility and rotational diffusivity. On leave from Dept of Physics, Indian Institute of Science.

  5. NMRI Measurements of Flow of Granular Mixtures

    NASA Technical Reports Server (NTRS)

    Nakagawa, Masami; Waggoner, R. Allen; Fukushima, Eiichi

    1996-01-01

    We investigate complex 3D behavior of granular mixtures in shaking and shearing devices. NMRI can non-invasively measure concentration, velocity, and velocity fluctuations of flows of suitable particles. We investigate origins of wall-shear induced convection flow of single component particles by measuring the flow and fluctuating motion of particles near rough boundaries. We also investigate if a mixture of different size particles segregate into their own species under the influence of external shaking and shearing disturbances. These non-invasive measurements will reveal true nature of convecting flow properties and wall disturbance. For experiments in a reduced gravity environment, we will design a light weight NMR imager. The proof of principle development will prepare for the construction of a complete spaceborne system to perform experiments in space.

  6. Defining and testing a granular continuum element

    SciTech Connect

    Rycroft, Chris H.; Kamrin, Ken; Bazant, Martin Z.

    2007-12-03

    Continuum mechanics relies on the fundamental notion of amesoscopic volume "element" in which properties averaged over discreteparticles obey deterministic relationships. Recent work on granularmaterials suggests a continuum law may be inapplicable, revealinginhomogeneities at the particle level, such as force chains and slow cagebreaking. Here, we analyze large-scale Discrete-Element Method (DEM)simulations of different granular flows and show that a "granularelement" can indeed be defined at the scale of dynamical correlations,roughly three to five particle diameters. Its rheology is rather subtle,combining liquid-like dependence on deformation rate and solid-likedependence on strain. Our results confirm some aspects of classicalplasticity theory (e.g., coaxiality of stress and deformation rate),while contradicting others (i.e., incipient yield), and can guide thedevelopment of more realistic continuum models.

  7. Contact breaking in frictionless granular packings

    NASA Astrophysics Data System (ADS)

    Wu, Qikai; Bertrand, Thibault; O'Hern, Corey; Shattuck, Mark

    We numerically study the breaking of interparticle contact networks in static granular packings of frictionless bidisperse disks that are subjected to vibrations. The packings are created using an isotropic compression protocol at different values of the total potential energy per particle Ep. We first add displacements along a single vibrational mode i of the dynamical matrix to a given packing and calculate the minimum amplitude Ai of the perturbation at which the first interparticle contact breaks. We then identify the minimum amplitude Amin over all perturbations along each mode and study the distribution of Amin from an ensemble of packings at each Ep. We then study two-, three-, and multi-mode excitations and determine the dependence of Amin on the number of modes that are included in the perturbation. W. M. Keck Foundation Science and Engineering Grant.

  8. Pneumatic fractures in Confined Granular Media

    NASA Astrophysics Data System (ADS)

    Eriksen, Fredrik K.; Toussaint, Renaud; Jørgen Måløy, Knut; Grude Flekkøy, Eirik; Turkaya, Semih

    2016-04-01

    We will present our ongoing study of the patterns formed when air flows into a dry, non-cohesive porous medium confined in a horizontal Hele-Shaw cell. This is an optically transparent system consisting of two glass plates separated by 0.5 to 1 mm, containing a packing of dry 80 micron beads in between. The cell is rectangular and has an air-permeable boundary (blocking beads) at one short edge, while the other three edges are completely sealed. The granular medium is loosely packed against the semi-permeable boundary and fills about 80 % of the cell volume. This leaves an empty region at the sealed side, where an inlet allows us to set and maintain the air at a constant overpressure (0.1 - 2 bar). For the air trapped inside the cell to relax its overpressure it has to move through the deformable granular medium. Depending on the applied overpressure and initial density of the medium, we observe a range of different behaviors such as seepage through the pore-network with or without an initial compaction of the solid, formation of low density bubbles with rearrangement of particles, granular fingering/fracturing, and erosion inside formed channels/fractures. The experiments are recorded with a high-speed camera at a framerate of 1000 images/s and a resolution of 1024x1024 pixels. We use various image processing techniques to characterize the evolution of the air invasion patterns and the deformations in the surrounding material. The experiments are similar to deformation processes in porous media which are driven by pore fluid overpressure, such as mud volcanoes and hydraulic or pneumatic (gas-induced) fracturing, and the motivation is to increase the understanding of such processes by optical observations. In addition, this setup is an experimental version of the numerical models analyzed by Niebling et al. [1,2], and is useful for comparison with their results. In a directly related project [3], acoustic emissions from the cell plate are recorded during

  9. Sound pulse broadening in stressed granular media

    NASA Astrophysics Data System (ADS)

    Langlois, Vincent; Jia, Xiaoping

    2015-02-01

    The pulse broadening and decay of coherent sound waves propagating in disordered granular media are investigated. We find that the pulse width of these compressional waves is broadened when the disorder is increased by mixing the beads made of different materials. To identify the responsible mechanism for the pulse broadening, we also perform the acoustic attenuation measurement by spectral analysis and the numerical simulation of pulsed sound wave propagation along one-dimensional disordered elastic chains. The qualitative agreement between experiment and simulation reveals a dominant mechanism by scattering attenuation at the high-frequency range, which is consistent with theoretical models of sound wave scattering in strongly random media via a correlation length.

  10. Pulling an intruder from a granular material

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Behringer, R. P.

    2016-11-01

    As a complement to 2D impact experiments, which involves a strongly fluctuating drag force involving collisional momentum transfer from intruder to grains, we consider a controlled 2D pull-out experiments, which is heuristically a reversed version of impact. During the pull-out experiment, a buried intruder is pulled out of a material, starting from rest. In the experiment, the intruder is subject to a gradually increasing upward vertical force, which we increase to the point where the intruder begins to accelerate upwards. To visualize this pulling process, we use 2D photoelastic disks from which circular intruders of different radii are pulled out. We will analyze the dynamics of the intruder and the structures of the force chains inside the granular system, which are captured by a high speed camera. NSF-DMR-1206351, and the William M. Keck Foundation.

  11. Bubbles Rising Through a Soft Granular Material

    NASA Astrophysics Data System (ADS)

    Le Mestre, Robin; MacMinn, Chris; Lee, Sungyon

    2016-11-01

    Bubble migration through a soft granular material involves a strong coupling between the bubble dynamics and the deformation of the material. This is relevant to a variety of natural processes such as gas venting from sediments and gas exsolution from magma. Here, we study this process experimentally by injecting air bubbles into a quasi-2D packing of soft hydrogel beads and measuring the size, speed, and morphology of the bubbles as they rise due to buoyancy. Whereas previous work has focused on deformation resisted by intergranular friction, we focus on the previously inaccessible regime of deformation resisted by elasticity. At low confining stress, the bubbles are irregular and rounded, migrating via local rearrangement. At high confining stress, the bubbles become unstable and branched, migrating via pathway opening. The authors thank The Royal Society for support (International Exchanges Ref IE150885).

  12. Partial nitritation of stored source-separated urine by granular activated sludge in a sequencing batch reactor.

    PubMed

    Chen, Liping; Yang, Xiaoxiao; Tian, Xiujun; Yao, Song; Li, Jiuyi; Wang, Aimin; Yao, Qian; Peng, Dangcong

    2017-12-01

    The combination of partial nitritation (PN) and anaerobic ammonium oxidation (anammox) has been proposed as an ideal process for nitrogen removal from source-separated urine, while the high organic matters in urine cause instability of single-stage PN-anammox process. This study aims to remove the organic matters and partially nitrify the nitrogen in urine, producing an ammonium/nitrite solution suitable for anammox. The organic matters in stored urine were used as the electron donors to achieve 40% total nitrogen removal in nitritation-denitrification process in a sequencing batch reactor (SBR). Granular aggregates were observed and high mixed liquor suspended solids (9.5 g/L) were maintained in the SBR. Around 70-75% ammonium was oxidized to nitrite under the volumetric loading rates of 3.23 kg chemical oxygen demand (COD)/(m(3) d) and 1.86 kg N/(m(3) d), respectively. The SBR produced an ammonium/nitrite solution free of biodegradable organic matters, with a NO2(-)-N:NH4(+)-N of 1.24 ± 0.13. Fluorescence in situ hybridization images showed that Nitrosomonas-like ammonium-oxidizing bacteria, accounting for 7.2% of total bacteria, located in the outer layer (25 μm), while heterotrophs distributed homogeneously throughout the granular aggregates. High concentrations of free ammonia and nitrous acids in the reactor severely inhibited the growth of nitrite-oxidizing bacteria, resulting in their absence in the granular sludge. The microbial diversity analysis indicated Proteobacteria was the predominant phylum, in which Pseudomonas was the most abundant genus.

  13. Moving Granular Bed Filter Development Program

    SciTech Connect

    Wilson, K.B.; Haas, J.C.; Gupta, R.P.; Turk, B.S.

    1996-12-31

    For coal-fired power plants utilizing a gas turbine, the removal of ash particles is necessary to protect the turbine and to meet emission standards. Advantages are also evident for a filter system that can remove other coal-derived contaminants such as alkali, halogens, and ammonia. With most particulates and other contaminants removed, erosion and corrosion of turbine materials, as well as deposition of particles within the turbine, are reduced to acceptable levels. The granular bed filter is suitable for this task in a pressurized gasification or combustion environment. The objective of the base contract was to develop conceptual designs of moving granular bed filter (GBF) and ceramic candle filter technologies for control of particles from integrated gasification combined cycle (IGCC), pressurized fluidized-bed combustion (PFBC), and direct coal-fueled turbine (DCFT) systems. The results of this study showed that the GBF design compared favorably with the candle filter. Three program options followed the base contract. The objective of Option I, Component Testing, was to identify and resolve technical issues regarding GBF development for IGCC and PFBC environments. This program was recently completed. The objective of Option II, Filter Proof Tests, is to test and evaluate the moving GBF system at a government-furnished hot-gas cleanup test facility. This facility is located at Southern Company Services (SCS), Inc., Wilsonville, Alabama. The objective of Option III, Multicontaminant Control Using a GBF, is to develop a chemically reactive filter material that will remove particulates plus one or more of the following coal-derived contaminants: alkali, halogens, and ammonia.

  14. Study on mechanism of wet air oxidation of emulsification wastewater.

    PubMed

    Tang, Wen W; Zeng, Xin P; Xiao, Yao M; Gu, Guo W

    2009-04-01

    Wet air oxidation (WAO) can effectively be used to treat high-concentration, non-biodegradable emulsification wastewater that contains nonionic matters. Gas chromatograph analysis of emulsification wastewater after oxidation indicated that a catalyst increased production of fatty acids but could not promote its oxidation between 160 and 180 degrees C. When the temperature was greater than or equal to 220 degrees C, the catalyst not only increased production of fatty acids initially but effectively promoted its oxidation in later stages and significantly reduced the concentration of residual surfactants. Experiments proved that fatty acids (especially acetic acid) were the primary intermediate products and that oxidation of these acids was the rate-limiting step. During the process of catalytic WAO of emulsification wastewater, active oxygen molecules attacked organic matters resulting in production of fatty acids, ketone, alcohol, hydrocarbon, and oligo-polyether through radical chain reactions.

  15. Brazil-nut effect: Size separation of granular particles

    NASA Astrophysics Data System (ADS)

    Möbius, Matthias E.; Lauderdale, Benjamin E.; Nagel, Sidney R.; Jaeger, Heinrich M.

    2001-11-01

    Granular media differ from other materials in their response to stirring or jostling - unlike two-fluid systems, bi-disperse granular mixtures will separate according to particle size when shaken, with large particles rising, a phenomenon termed the 'Brazil-nut effect'. Mounting evidence indicates that differences in particle density affect size separation in mixtures of granular particles. We show here that this density dependence does not follow a steady trend but is non-monotonic and sensitive to background air pressure. Our results indicate that particle density and interstitial air must both be considered in size segregation.

  16. Kinetics of adsorption with granular, powdered, and fibrous activated carbon

    SciTech Connect

    Shmidt, J.L.; Pimenov, A.V.; Lieberman, A.I.; Cheh, H.Y.

    1997-08-01

    The properties of three different types of activated carbon, fibrous, powdered, and granular, were investigated theoretically and experimentally. The adsorption rate of the activated carbon fiber was found to be two orders of magnitude higher than that of the granular activated carbon, and one order of magnitude higher than that of the powdered activated carbon. Diffusion coefficients of methylene blue in the fibrous, powdered, and granular activated carbons were determined experimentally. A new method for estimating the meso- and macropore surface areas in these carbons was proposed.

  17. Drag force scaling for penetration into granular media.

    PubMed

    Katsuragi, Hiroaki; Durian, Douglas J

    2013-05-01

    Impact dynamics is measured for spherical and cylindrical projectiles of many different densities dropped onto a variety non-cohesive granular media. The results are analyzed in terms of the material-dependent scaling of the inertial and frictional drag contributions to the total stopping force. The inertial drag force scales similar to that in fluids, except that it depends on the internal friction coefficient. The frictional drag force scales as the square-root of the density of granular medium and projectile, and hence cannot be explained by the combination of granular hydrostatic pressure and Coulomb friction law. The combined results provide an explanation for the previously observed penetration depth scaling.

  18. Computer simulations of granular materials: the effects of mesoscopic forces

    NASA Astrophysics Data System (ADS)

    Kohring, G. A.

    1994-12-01

    The problem of the relatively small angles of repose reported by computer simulations of granular materials is discussed. It is shown that this problem can be partially understood as resulting from mesoscopic forces which are commonly neglected in the simulations. After including mesoscopic forces, characterized by the easily measurable surface energy, 2D computer simulations indicate that the angle of repose should increase as the size of the granular grains decreases, an effect not seen without mesoscopic forces. The exact magnitude of this effect depends upon the value of the surface energy and the coordination number of the granular pile.

  19. Hydrodynamic modeling of granular flows in a modified Couette cell.

    PubMed

    Jop, Pierre

    2008-03-01

    We present simulations of granular flows in a modified Couette cell, using a continuum model recently proposed for dense granular flows. Based on a friction coefficient, which depends on an inertial number, the model captures the positions of the wide shear bands. We show that a smooth transition in velocity-profile shape occurs when the height of the granular material is increased, leading to a differential rotation of the central part close to the surface. The numerical predictions are in qualitative agreement with previous experimental results. The model provides predictions for the increase of the shear band width when the rotation rate is increased.

  20. Some fundamental aspects of the continuumization problem in granular Media

    NASA Astrophysics Data System (ADS)

    Peters, John F.

    The central problem of devising mathematical models of granular materials is how to define a granular medium as a continuum. This paper outlines the elements of a theory that could be incorporated in discrete models such as the Discrete-Element Method, without recourse to a continuum description. It is shown that familiar concepts from continuum mechanics such as stress and strain can be defined for interacting discrete quantities. Established concepts for constitutive equations can likewise be applied to discrete quantities. The key problem is how to define the constitutive response in terms of truncated strain measures that are a practical necessity for analysis of large granular systems.

  1. [Dynamic changes of soil amino sugar contents under drying and wetting cycle].

    PubMed

    Zhang, Wei; Han, Yong-Jiao; He, Hong-Bo; Xie, Hong-Tu; Zhang, Xu-Dong

    2012-04-01

    A soil incubation test was conducted to study the quantitative changes of three amino sugars (glucosamine, muramic acid, and galactosamine) derived from microbes under drying and wetting cycle, and to analyze the relative contribution of soil bacteria and fungi to the turnover of soil organic matter by using the measured glucosamine/muramic acid ratio. Under continuous wetting, the degradation of bacteria-derived muramic acid was faster than that of fungi-derived glucosamine, and the degradation rate of galactosamine was the lowest. Drying and wetting cycle altered the degradation characteristics of the three amino sugars. As compared with that under continuous wetting, the degradation rate of bacteria-derived muramic acid at the prophase of drying and wetting was faster than that of fungi-derived glucosamine, and, with the increasing frequency of drying and wetting cycle, the degradation rate of fungi-derived glucosamine was faster than that of bacteria-derived muramic acid. These results indicated that drying and wetting cycle changed the course of the microbial transformation of soil amino sugar-derived nitrogen.

  2. Impact of wettability on two-phase displacement patterns in granular media

    NASA Astrophysics Data System (ADS)

    Juanes, Ruben; Trojer, Mathias; Szulczewski, Michael; Holtzman, Ran

    2013-11-01

    Two phase flow in porous media controls many natural processes like geological CO2 sequestration, enhanced oil recovery, water infiltration in soil, and methane venting from organic-rich sediments. While the wetting properties of rocks can vary drastically, the effect of wettability on fluid displacement in porous media remains poorly understood. Here, we study experimentally how wettability affects the fluid-fluid displacement pattern in rigid granular media within the capillary and viscous fingering regime. We inject a less viscous fluid into a thin bed of glass beads, initially fully saturated with a more viscous one. By keeping all control parameters constant and changing the contact angle of the substrate systematically, we visually explore and quantify the impact of the wetting properties on the invasion morphology. For fixed capillary number, we show that the invasion pattern becomes more stable as the contact angle increases (i.e., as we transition from drainage to imbibition) both in the capillary-fingering and in the viscous-fingering regime. We quantify the dependence of the lengthscale of the instability on contact angle, and propose a mechanistic pore-scale model that explains the macroscopic observations.

  3. Wet comet model: Rosetta redux

    NASA Astrophysics Data System (ADS)

    Sheldon, Robert B.

    2015-09-01

    The wet-comet model (WCM) of the structure and composition of comets was developed in 2005 to replace the "dirty-snowball" model (DSM) of Fred Whipple, because the first comet flybys of P/Halley "armada" revealed a very different landscape. Subsequent flybys of P/Borrelly, P/Wild-2, P/Hartley, P/Tempel-1 have confirmed and refined the model, so that we confidently predicted that the Rosetta mission would encounter a prolate, tumbling, concrete-encrusted, black comet: P/Churyumov-Gerasimenko. Unfortunately, the Philae lander team was preparing for a DSM and the anchors bounced off the concrete surface, but the orbiter has returned spec- tacular pictures of every crevice, which confirm and extend the WCM yet a sixth time. We report of what we predicted, what was observed, and several unexpected results from the ROSETTA mission.

  4. Thunderstorms Increase Mercury Wet Deposition.

    PubMed

    Holmes, Christopher D; Krishnamurthy, Nishanth P; Caffrey, Jane M; Landing, William M; Edgerton, Eric S; Knapp, Kenneth R; Nair, Udaysankar S

    2016-09-06

    Mercury (Hg) wet deposition, transfer from the atmosphere to Earth's surface by precipitation, in the United States is highest in locations and seasons with frequent deep convective thunderstorms, but it has never been demonstrated whether the connection is causal or simple coincidence. We use rainwater samples from over 800 individual precipitation events to show that thunderstorms increase Hg concentrations by 50% relative to weak convective or stratiform events of equal precipitation depth. Radar and satellite observations reveal that strong convection reaching the upper troposphere (where high atmospheric concentrations of soluble, oxidized mercury species (Hg(II)) are known to reside) produces the highest Hg concentrations in rain. As a result, precipitation meteorology, especially thunderstorm frequency and total rainfall, explains differences in Hg deposition between study sites located in the eastern United States. Assessing the fate of atmospheric mercury thus requires bridging the scales of global transport and convective precipitation.

  5. Wet quenching of incandescent coke

    SciTech Connect

    Porter, R.W.

    1981-04-21

    Method for the reduction of emissions from the wet quenching of incandescent coke in a quenching tower adapted to receive in its base a quench car containing the coke which comprises positioning the car with the coke in the quenching chamber of the tower, effecting a gas seal to substantially prevent air from infiltrating the quenching chamber and ascending the tower, quenching the coke with the resultant generation of steam and other quenching emissions, cooling and cleaning the emissions with water sprays, demisting the cooled emissions, sensing the external and internal pressures of the tower during the quenching process, maintaining a substantially zero gauge internal pressure by controlling the emissions flow exiting the tower and collecting, cooling and recycling the quenching and cooling waters. Apparatus for practicing the method is also disclosed.

  6. Dark Matters

    ScienceCinema

    Joseph Silk

    2016-07-12

    One of the greatest mysteries in the cosmos is that it is mostly dark.  Astronomers and particle physicists today are seeking to unravel the nature of this mysterious, but pervasive dark matter which has profoundly influenced the formation of structure in the universe.  I will describe the complex interplay between galaxy formation and dark matter detectability and review recent attempts to measure particle dark matter by direct and indirect means.

  7. REPEATED REDUCTIVE AND OXIDATIVE TREATMENTS ON GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    Fenton oxidation and Fenton oxidation preceded by reduction solutions were applied to granular activated carbon (GAC) to chemically regenerate the adsorbent. No adsorbate was present on the GAC so physicochemical effects from chemically aggressive regeneration of the carbon coul...

  8. The propagation of blast pulses through dampened granular media

    NASA Astrophysics Data System (ADS)

    Badham, Henry; Chalmers, Max; Nguyen, Thuy-Tien Ngoc; Proud, William Graham

    2017-01-01

    The propagation of stress through granular and dampened granular material has been reported previously, the addition of significant amounts of liquid in granular beds causes the mechanism of transmission of blast from one of percolation through the bed pores to one of stress transmission through the granules of the bed. It has been shown, however, that limited amounts liquid can retard propagation within blast-loaded beds by approximately an order of magnitude. This paper presents data on percolation through dampened granular beds using a shock tube as the pressure driver. The effect of particle shape and size was investigated using angular grains of quartz sand as well as smooth glass microspheres. The effect of addition of small amounts of liquids is presented.

  9. 76 FR 8774 - Granular Polytetrafluoroethylene Resin From Japan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Granular Polytetrafluoroethylene Resin From Japan AGENCY: United States International Trade... polytetrafluoroethylene resin from Japan would be likely to lead to continuation or recurrence of material injury....

  10. Granular Microbial Habitats Built from Iron Sulfides: Alternative Microbial Lifestyles?

    NASA Astrophysics Data System (ADS)

    Schieber, J.

    2005-03-01

    Concentrically zoned pyrite grains grew as granular microbial colonies. They stayed in the surface layer during long history of reworking and accretion and consist of marcasite and pyrite cortices with sulfide mineralized microbial remains.

  11. Instationary compaction wave propagation in highly porous cohesive granular media

    NASA Astrophysics Data System (ADS)

    Gunkelmann, Nina; Ringl, Christian; Urbassek, Herbert M.

    2016-07-01

    We study the collision of a highly porous granular aggregate of adhesive \\upmu m-sized silica grains with a hard wall using a granular discrete element method. A compaction wave runs through the granular sample building up an inhomogeneous density profile. The compaction is independent of the length of the aggregate, within the regime of lengths studied here. Also short pulses, as they might be exerted by a piston pushing the granular material, excite a compaction wave that runs through the entire material. The speed of the compaction wave is larger than the impact velocity but considerably smaller than the sound speed. The wave speed is related to the compaction rate at the colliding surface and the average slope of the linear density profile.

  12. Reorganization of a granular medium around a localized transformation.

    PubMed

    Merceron, Aymeric; Sauret, Alban; Jop, Pierre

    2016-06-01

    Physical and chemical transformation processes in reactive granular media involve the reorganization of the structure. In this paper, we study experimentally the rearrangements of a two-dimensional (2D) granular packing undergoing a localized transformation. We track the position and evolution of all the disks that constitute the granular packing when either a large intruder shrinks in size or is pulled out of the granular structure. In the two situations the displacements at long time are similar to 2D quasistatic silo flows whereas the short-time dynamic is heterogeneous in both space and time. We observe an avalanchelike behavior with power-law distributed events uncorrelated in time. In addition, the instantaneous evolutions of the local solid fraction exhibit self-similar distributions. The averages and the standard deviations of the solid fraction variations can be rescaled, suggesting a single mechanism of rearrangement.

  13. Reorganization of a granular medium around a localized transformation

    NASA Astrophysics Data System (ADS)

    Merceron, Aymeric; Sauret, Alban; Jop, Pierre

    2016-06-01

    Physical and chemical transformation processes in reactive granular media involve the reorganization of the structure. In this paper, we study experimentally the rearrangements of a two-dimensional (2D) granular packing undergoing a localized transformation. We track the position and evolution of all the disks that constitute the granular packing when either a large intruder shrinks in size or is pulled out of the granular structure. In the two situations the displacements at long time are similar to 2D quasistatic silo flows whereas the short-time dynamic is heterogeneous in both space and time. We observe an avalanchelike behavior with power-law distributed events uncorrelated in time. In addition, the instantaneous evolutions of the local solid fraction exhibit self-similar distributions. The averages and the standard deviations of the solid fraction variations can be rescaled, suggesting a single mechanism of rearrangement.

  14. Brownian motion in granular gases of viscoelastic particles

    SciTech Connect

    Bodrova, A. S. Brilliantov, N. V.; Loskutov, A. Yu.

    2009-12-15

    A theory is developed of Brownian motion in granular gases (systems of many macroscopic particles undergoing inelastic collisions), where the energy loss in inelastic collisions is determined by a restitution coefficient {epsilon}. Whereas previous studies used a simplified model with {epsilon} = const, the present analysis takes into account the dependence of the restitution coefficient on relative impact velocity. The granular temperature and the Brownian diffusion coefficient are calculated for a granular gas in the homogeneous cooling state and a gas driven by a thermostat force, and their variation with grain mass and size and the restitution coefficient is analyzed. Both equipartition principle and fluctuation-dissipation relations are found to break down. One manifestation of this behavior is a new phenomenon of 'relative heating' of Brownian particles at the expense of cooling of the ambient granular gas.

  15. Directional wetting in anisotropic inverse opals.

    PubMed

    Phillips, Katherine R; Vogel, Nicolas; Burgess, Ian B; Perry, Carole C; Aizenberg, Joanna

    2014-07-01

    Porous materials display interesting transport phenomena due to restricted motion of fluids within the nano- to microscale voids. Here, we investigate how liquid wetting in highly ordered inverse opals is affected by anisotropy in pore geometry. We compare samples with different degrees of pore asphericity and find different wetting patterns depending on the pore shape. Highly anisotropic structures are infiltrated more easily than their isotropic counterparts. Further, the wetting of anisotropic inverse opals is directional, with liquids filling from the side more easily. This effect is supported by percolation simulations as well as direct observations of wetting using time-resolved optical microscopy.

  16. Carbon nanotube fiber spun from wetted ribbon

    DOEpatents

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  17. Dark Matter

    SciTech Connect

    Bashir, A.; Cotti, U.; De Leon, C. L.; Raya, A; Villasenor, L.

    2008-07-02

    One of the biggest scientific mysteries of our time resides in the identification of the particles that constitute a large fraction of the mass of our Universe, generically known as dark matter. We review the observations and the experimental data that imply the existence of dark matter. We briefly discuss the properties of the two best dark-matter candidate particles and the experimental techniques presently used to try to discover them. Finally, we mention a proposed project that has recently emerged within the Mexican community to look for dark matter.

  18. From cell extracts to fish schools to granular layers: the universal hydrodynamics of self-driven systems

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Sriram

    2007-03-01

    Collections of self-driven or ``active'' particles are now recognised as a distinct kind of nonequilibrium matter, and an understanding of their phases, hydrodynamics, mechanical response, and correlations is a vital and rapidly developing part of the statistical physics of soft-matter systems far from equilibrium. My talk will review our recent results, from theory, simulation and experiment, on order, fluctuations, and flow instabilities in collections of active particles, in suspension or on a solid surface. Our work, which began by adapting theories of flocking to include the hydrodynamics of the ambient fluid, provides the theoretical framework for understanding active matter in all its diversity: contractile filaments in cell extracts, crawling or dividing cells, collectively swimming bacteria, fish schools, and agitated monolayers of orientable granular particles.

  19. [Endobronchial granular cell tumor - what approach to take].

    PubMed

    Rego, Ana; Amado, Joana; Esteves, Idália; Almeida, José; Furtado, Antónia; Couceiro, António; Moura e Sá, João

    2006-01-01

    Granular cell tumor is a mesenchymal neoplasm almost always benign, with tendency to recurrence. Although it is more frequent in in the head and neck it has been described in almost all areas of the body. Its occurrence in the lung is extremely rare. The authors describe two cases of endobronchial granular cell tumours, discuss the particularities of this pathology as well as the treatment options, with particular attention to the use of endobronchial excision and criotherapy.

  20. Energy-Consistent Multiscale Algorithms for Granular Flows

    DTIC Science & Technology

    2014-08-07

    the behavior of granular materials under extreme avalanche flow. In the area of algorithmic development at the grain scale, we have successfully...flow; iii) the development of experimental techniques and approaches to model the behavior of granular materials under extreme avalanche flow. In the... avalanches . Status/Progress In this grant, we have focused mainly in making progress within three (3) areas of mayor interest: (1) a new simulation

  1. Particle deposition in granular media. Annual progress report

    SciTech Connect

    Tien, C.

    1980-01-01

    Studies performed under Contract DE-AC02-79-ER10386.A000 Particle Deposition in Granular Media during the period June 1, 1979 to date are described. These studies include the design and construction of apparatus for filtration experiments and a complete trajectory analysis for the calculation of the initial collection efficiency of granular media. The results of the trajectory analysis have been used to develop a generalized correlation of the collection efficiency.

  2. Thermal creep of granular breeder materials in fusion blankets

    NASA Astrophysics Data System (ADS)

    Bühler, L.; Reimann, J.

    2002-12-01

    Continuum models for granular materials in fusion blankets are efficient tools for modeling of the nonlinear elastic behavior of pebble beds, granular particle flow caused by shear, volume compaction and hardening. The present paper describes how the material models used in finite element analyses can be extended in order to account additionally for thermally activated creep. The derived material model gives results which are in reasonable accordance with experimental data for pebble beds.

  3. Hydrodynamics of soft active matter

    NASA Astrophysics Data System (ADS)

    Marchetti, M. C.; Joanny, J. F.; Ramaswamy, S.; Liverpool, T. B.; Prost, J.; Rao, Madan; Simha, R. Aditi

    2013-07-01

    This review summarizes theoretical progress in the field of active matter, placing it in the context of recent experiments. This approach offers a unified framework for the mechanical and statistical properties of living matter: biofilaments and molecular motors in vitro or in vivo, collections of motile microorganisms, animal flocks, and chemical or mechanical imitations. A major goal of this review is to integrate several approaches proposed in the literature, from semimicroscopic to phenomenological. In particular, first considered are “dry” systems, defined as those where momentum is not conserved due to friction with a substrate or an embedding porous medium. The differences and similarities between two types of orientationally ordered states, the nematic and the polar, are clarified. Next, the active hydrodynamics of suspensions or “wet” systems is discussed and the relation with and difference from the dry case, as well as various large-scale instabilities of these nonequilibrium states of matter, are highlighted. Further highlighted are various large-scale instabilities of these nonequilibrium states of matter. Various semimicroscopic derivations of the continuum theory are discussed and connected, highlighting the unifying and generic nature of the continuum model. Throughout the review, the experimental relevance of these theories for describing bacterial swarms and suspensions, the cytoskeleton of living cells, and vibrated granular material is discussed. Promising extensions toward greater realism in specific contexts from cell biology to animal behavior are suggested, and remarks are given on some exotic active-matter analogs. Last, the outlook for a quantitative understanding of active matter, through the interplay of detailed theory with controlled experiments on simplified systems, with living or artificial constituents, is summarized.

  4. Impact of wettability on two-phase displacement patterns in granular media

    NASA Astrophysics Data System (ADS)

    Trojer, M.; Szulczewski, M.; Holtzman, R.; Juanes, R.

    2013-12-01

    Two-phase flow in porous media is important in many natural and industrial processes like geologic CO2 sequestration, enhanced oil recovery, water infiltration in soil, and methane venting from organic-rich sediments. While the wetting properties of porous media can vary drastically depending on the type of media and the pore fluids, the effect of wettability on the fluid displacement remains poorly understood. Here, we study experimentally how wettability affects fluid displacement patterns in rigid granular media within the capillary and viscous fingering regimes. The experiments consist of saturating a thin bed of glass beads with a viscous fluid, injecting a less viscous fluid, and imaging the invasion morphology. There are two control parameters: the injection rate of the less viscous fluid and the contact angle, which we control by modifying the surface chemistry of the beads. When the contact angle is fixed at zero (drainage), we recover the well-known transition from capillary fingering to viscous fingering as the injection rate is increased. When the injection rate is fixed, we show that the invasion pattern becomes more stable as the contact angle increases (i.e., as the system transitions from drainage to imbibition), both in the capillary-fingering and viscous-fingering regimes. We quantify the effect of the contact angle on the length scale of the instability, and propose a mechanistic pore-scale model that explains the macroscopic observations. The results demonstrate that wettability can significantly impact multiphase flow in porous media, and highlight the need to better understand the specific effects in many processes such as CO2 sequestration and enhanced oil recovery. Air displacing a water/glycerol mixture within a radial Hele-Shaw cell filled with glass beads. Varying the wetting properties of the solid matrix (horizontal axis) as well as the injection rate (vertical axis) systematically, the invasion pattern stabilizes as the invading phase

  5. Granular materials: constitutive equations and strain localization

    NASA Astrophysics Data System (ADS)

    Anand, L.; Gu, C.

    2000-08-01

    Strain localization into shear bands is commonly observed in natural soil masses, as well as in human-built embankments, footings, retaining walls and other geotechnical structures. Numerical predictions for the process of shear band formation are critically dependent on the constitutive equations employed. In this paper, the plane strain "double-shearing" constitutive model (e.g., Spencer, A.J.M., 1964. A theory of the kinematics of ideal soils under plane strain conditions. Journal of the Mechanics and Physics of Solids 12, 337-351; Spencer, A.J.M., 1982, Deformation of ideal granular materials. In: Hopkins, H.G., Sewell, M.J. (Eds.), Mechanics of Solids. Pergamon Press, Oxford and New York, pp. 607-652; Mehrabadi, M.M., Cowin, S.C., 1978. Initial planar deformation of dilatant granular materials. Journal of the Mechanics and Physics of Solids 26, 269-284; Nemat-Nasser, S., Mehrabadi, M.M., Iwakuma, T. 1981. On certain macroscopic and microscopic aspects of plastic flow of ductile materials. In: Nemat-Nasser, S. (Ed.), Three-dimensional Constitutive Relations and Ductile Fracture. North-Holland, Amsterdam, pp. 157-172; Anand, L., 1983. Plane deformations of ideal granular materials. Journal of the Mechanics and Physics of Solids 31, 105-122) is generalized to three dimensions including the effects of elastic deformation and pre-peak behavior. The constitutive model is implemented in a finite element program and is used to predict the formation of shear bands in plane strain compression, and plane strain cylindrical cavity expansion. The predictions from the model are shown to be in good quantitative agreement with the recent experiments of Han, C., Drescher, A., (1993. Shear bands in biaxial tests on dry coarse sand. Soils and Foundations 33, 118-132) and Alsiny, H., Vardoulakis, I., Drescher, A., (1992. Deformation localization in cavity inflation experiments on dry sand. Geotechnique 42, 395-410) on a dry sand. The constitutive model is also used to predict the

  6. Collapse of granular-liquid mixtures over rigid, inclined beds.

    PubMed

    Berzi, D; Bossi, F C; Larcan, E

    2012-05-01

    This work deals with the propagation of granular-liquid waves over rigid beds, originated by the sudden removal of a sluice gate in a rectangular, inclined flume. In particular, we experimentally investigate the role of the initial volume ratio of granular material-monodispersed plastic cylinders-to water, the flume width, and the bed roughness on the time evolution of the granular front. Due to the presence of the interstitial liquid, we observed previously unreported types of collapse: (i) discontinuous flows, where the granular material stops after an initial spreading, and then flows again when the liquid, initially slower than the particles, reaches the front and remobilizes it; (ii) flows evolving into uniformly progressive waves at an angle of inclination of the flume well below the angle of repose of the dry granular material. We also noticed an unusual influence of the lateral confinement on the wave propagation. Indeed, the constant front velocity in the uniformly progressive state decreases when the channel width increases. We claim that the latter observation and the presence of discontinuous flows, strongly support the idea that only two-phase, stratified mathematical models can predict the behavior of unsteady, granular-liquid mixtures at high concentration, such as debris flows.

  7. Flow of Dense Granular Media; A Peculiar Liquid

    NASA Astrophysics Data System (ADS)

    Pouliquen, Olivier

    2007-11-01

    Rice flowing out of a silo, rocks tumbling down a slope, sand avalanching on a dune, are examples of simple granular flows. Their description still represents a challenge due to the lack of constitutive laws able to describe the rich phenomenology observed with granular materials. However, the numerous experiments and simulations carried out during the last ten years have given keys for a better understanding. This talk will review the general properties of granular flows, before focusing on the dense flow regime where granular media flow like a liquid. In this regime, simple constitutive laws can be proposed, in which the granular fluid is described as a peculiar visco-plastic liquid. This talk will show that this approach gives quantitative predictions in several configurations, providing a relevant framework for adressing granular hydrodynamic problems. The second part of this presentation will discuss the limits of this approach, the important open problems, and the consequences of this development for the more complex case of mixture of grains and fluid. This work has been done with Pierre Jop, Yoel Forterre and Mickael Paihla.

  8. Experimental tests of a statistical mechanics of static granular media

    NASA Astrophysics Data System (ADS)

    Schr"Oter, Matthias

    2005-11-01

    In 1989 Edwards and Oakeshott proposed a statistical mechanics theory of static granular materials described by a temperature-like state variable named compactivity [1]. We have made the first measurement of the compactivity of a granular material [2]. We have examined a granular column driven by flow pulses and have found that the system explores its phase space of mechanically stable configurations in a history-independent way. The system quickly approaches a steady state; the volume fluctuations about this steady state are Gaussian. The mean volume fraction can be varied by changing the flow rate of the pulses. We calculate the compactivity from the standard deviation of the volume fluctuations [3]. This talk will address the following two questions: (a) Are compactivity values measured with our ``thermometer'' different from values one might measure with a ``thermometer'' based on the grain volume distribution [4]? (b) Can compactivity be a control parameter of granular systems, for example, in size segregation in binary granular mixtures? [1] Edwards and Oakeshott, Physica A 157, 1080 (1989). [2] Schr"oter, Goldman, and Swinney, Phys. Rev. E 71, 030301 (2005). [3] Nowak, Knight, Ben-Naim, Jaeger, and Nagel, Phys. Rev. E 57, 1971 (1988). [4] Edwards, Bruji'c, and Makse, in Unifying Concepts in Granular Media and Glasses, edited by Coniglio et al. (Elsevier, Amsterdam, 2004)

  9. The effectiveness of resistive force theory in granular locomotiona)

    NASA Astrophysics Data System (ADS)

    Zhang, Tingnan; Goldman, Daniel I.

    2014-10-01

    Resistive force theory (RFT) is often used to analyze the movement of microscopic organisms swimming in fluids. In RFT, a body is partitioned into infinitesimal segments, each of which generates thrust and experiences drag. Linear superposition of forces from elements over the body allows prediction of swimming velocities and efficiencies. We show that RFT quantitatively describes the movement of animals and robots that move on and within dry granular media (GM), collections of particles that display solid, fluid, and gas-like features. RFT works well when the GM is slightly polydisperse, and in the "frictional fluid" regime such that frictional forces dominate material inertial forces, and when locomotion can be approximated as confined to a plane. Within a given plane (horizontal or vertical) relationships that govern the force versus orientation of an elemental intruder are functionally independent of the granular medium. We use the RFT to explain features of locomotion on and within granular media including kinematic and muscle activation patterns during sand-swimming by a sandfish lizard and a shovel-nosed snake, optimal movement patterns of a Purcell 3-link sand-swimming robot revealed by a geometric mechanics approach, and legged locomotion of small robots on the surface of GM. We close by discussing situations to which granular RFT has not yet been applied (such as inclined granular surfaces), and the advances in the physics of granular media needed to apply RFT in such situations.

  10. Simulating granular materials by energy minimization

    NASA Astrophysics Data System (ADS)

    Krijgsman, D.; Luding, S.

    2016-11-01

    Discrete element methods are extremely helpful in understanding the complex behaviors of granular media, as they give valuable insight into all internal variables of the system. In this paper, a novel discrete element method for performing simulations of granular media is presented, based on the minimization of the potential energy in the system. Contrary to most discrete element methods (i.e., soft-particle method, event-driven method, and non-smooth contact dynamics), the system does not evolve by (approximately) integrating Newtons equations of motion in time, but rather by searching for mechanical equilibrium solutions for the positions of all particles in the system, which is mathematically equivalent to locally minimizing the potential energy. The new method allows for the rapid creation of jammed initial conditions (to be used for further studies) and for the simulation of quasi-static deformation problems. The major advantage of the new method is that it allows for truly static deformations. The system does not evolve with time, but rather with the externally applied strain or load, so that there is no kinetic energy in the system, in contrast to other quasi-static methods. The performance of the algorithm for both types of applications of the method is tested. Therefore we look at the required number of iterations, for the system to converge to a stable solution. For each single iteration, the required computational effort scales linearly with the number of particles. During the process of creating initial conditions, the required number of iterations for two-dimensional systems scales with the square root of the number of particles in the system. The required number of iterations increases for systems closer to the jamming packing fraction. For a quasi-static pure shear deformation simulation, the results of the new method are validated by regular soft-particle dynamics simulations. The energy minimization algorithm is able to capture the evolution of the

  11. Literacy Matters.

    ERIC Educational Resources Information Center

    Macedo, Donaldo

    2003-01-01

    Suggests that in an era of excessive high-stakes testing and a blind embrace of "technicism," literacy not only matters, but may represent one of the last hopes to "salvage our already feeble democracy." Concludes that literacy matters if, and only if, it is viewed as a democratic right and as a human right. (SG)

  12. Pecan shell-based granular activated carbon for treatment of chemical oxygen demand (COD) in municipal wastewater.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2004-09-01

    The present investigation was undertaken to compare the adsorption efficiency of pecan shell-based granular activated carbon with the adsorption efficiency of the commercial carbon Filtrasorb 200 with respect to uptake of the organic components responsible for the chemical oxygen demand (COD) of municipal wastewater. Adsorption efficiencies for these two sets of carbons (experimental and commercial) were analyzed by the Freundlich adsorption model. The results indicate that steam-activated and acid-activated pecan shell-based carbons had higher adsorption for organic matter measured as COD, than carbon dioxide-activated pecan shell-based carbon or Filtrasorb 200 at all the carbon dosages used during the experiment. The higher adsorption may be related to surface area as the two carbons with the highest surface area also had the highest organic matter adsorption. These results show that granular activated carbons made from agricultural waste (pecan shells) can be used with greater effectiveness for organic matter removal from municipal wastewater than a coal-based commercial carbon.

  13. Granular and particle-laden flows: from laboratory experiments to field observations

    NASA Astrophysics Data System (ADS)

    Delannay, R.; Valance, A.; Mangeney, A.; Roche, O.; Richard, P.

    2017-02-01

    This review article provides an overview of dry granular flows and particle fluid mixtures, including experimental and numerical modeling at the laboratory scale, large scale hydrodynamics approaches and field observations. Over the past ten years, the theoretical and numerical approaches have made such significant progress that they are capable of providing qualitative and quantitative estimates of particle concentration and particle velocity profiles in steady and fully developed particulate flows. The next step which is currently developed is the extension of these approaches to unsteady and inhomogeneous flow configurations relevant to most of geophysical flows. We also emphasize that the up-scaling from laboratory experiments to large scale geophysical flows still poses some theoretical physical challenges. For example, the reduction of the dissipation that is responsible for the unexpected long run-out of large scale granular avalanches is not observed at the laboratory scale and its physical origin is still a matter of debate. However, we believe that the theoretical approaches have reached a mature state and that it is now reasonable to tackle complex particulate flows that incorporate more and more degrees of complexity of natural flows.

  14. Evaluating the main and side effects of high salinity on aerobic granular sludge.

    PubMed

    Pronk, M; Bassin, J P; de Kreuk, M K; Kleerebezem, R; van Loosdrecht, M C M

    2014-02-01

    Salinity can adversely affect the performance of most biological processes involved in wastewater treatment. The effect of salt on the main conversion processes in an aerobic granular sludge (AGS) process accomplishing simultaneous organic matter, nitrogen, and phosphate removal was evaluated in this work. Hereto, an AGS sequencing batch reactor was subjected to different salt concentrations (0.2 to 20 g Cl(-) l(-1)). Granular structure was stable throughout the whole experimental period, although granule size decreased and a significant effluent turbidity was observed at the highest salinity tested. A weaker gel structure at higher salt concentrations was hypothesised to be the cause of such turbidity. Ammonium oxidation was not affected at any of the salt concentrations applied. However, nitrite oxidation was severely affected, especially at 20 g Cl(-) l(-1), in which a complete inhibition was observed. Consequently, high nitrite accumulation occurred. Phosphate removal was also found to be inhibited at the highest salt concentration tested. Complementary experiments have shown that a cascade inhibition effect took place: first, the deterioration of nitrite oxidation resulted in high nitrite concentrations and this in turn resulted in a detrimental effect to polyphosphate-accumulating organisms. By preventing the occurrence of the nitrification process and therefore avoiding the nitrite accumulation, the effect of salt concentrations on the bio-P removal process was shown to be negligible up to 13 g Cl(-) l(-1). Salt concentrations equal to 20 g Cl(-) l(-1) or higher in absence of nitrite also significantly reduced phosphate removal efficiency in the system.

  15. Extraction of sediment-associated polycyclic aromatic hydrocarbons with granular activated carbon.

    PubMed

    Rakowska, M I; Kupryianchyk, D; Grotenhuis, T; Rijnaarts, H H M; Koelmans, A A

    2013-02-01

    Addition of activated carbon (AC) to sediments has been proposed as a method to reduce ecotoxicological risks of sediment-bound contaminants. The present study explores the effectiveness of granular AC (GAC) in extracting polycyclic aromatic hydrocarbon (PAH) from highly contaminated sediments. Four candidate GAC materials were screened in terms of PAH extraction efficiency using single-step 24-h GAC extractions, with traditional 24-h Tenax extraction as a reference. Subsequently, sorption of native PAHs to the best performing GAC 1240W (0.45-1.70 mm) was studied for sediment only and for GAC-sediment mixtures at different GAC-sediment weight ratios, using 76-µm polyoxymethylene (POM) passive samplers. Granular AC sorption parameters for PAHs were determined by subtracting the contribution of PAH sorption to sediment from PAH sorption to the GAC-sediment mixture. It appears that the binding of PAHs and the effectiveness of GAC to reduce sediment porewater concentrations were highly dependent on the GAC-sediment mixing ratio and hydrophobicity of the PAH. Despite the considerable fouling of GAC by organic matter and oil, 50 to 90% of the most available PAH was extracted by the GAC during a 28-d contact time, at a dose as low as 4%, which also is a feasible dose in field-scale applications aimed at cleaning the sediment by GAC addition and removal.

  16. Granular media filtration: old process, new thoughts.

    PubMed

    Lawler, D F; Nason, J A

    2006-01-01

    The design of granular media filters has evolved over many years so that modern filters have larger media sizes and higher filtration velocities than in earlier times. The fundamental understanding of filtration has also improved over time, with current models that account reasonably for all characteristics of the media, the suspension and the filter operation. The methodology for design, however, has not kept pace with these improvements; current designs are based on pilot plants, past experience, or a simple guideline (the ratio of the bed depth to media grain size). We propose that design should be based universally on a characteristic removal length, with the provision of a bed depth that is some multiple of that characteristic length. This characteristic removal length is calculated using the most recent (and most complete) fundamental model and is based on the particle size with the minimum removal efficiency in a filter. The multiple of the characteristic length that yields the required bed depth has been calibrated to existing, successful filters.

  17. Penetration of projectiles into granular targets

    NASA Astrophysics Data System (ADS)

    Ruiz-Suárez, J. C.

    2013-06-01

    Energetic collisions of subatomic particles with fixed or moving targets have been very valuable to penetrate into the mysteries of nature. But the mysteries are quite intriguing when projectiles and targets are macroscopically immense. We know that countless debris wandering in space impacted (and still do) large asteroids, moons and planets; and that millions of craters on their surfaces are traces of such collisions. By classifying and studying the morphology of such craters, geologists and astrophysicists obtain important clues to understand the origin and evolution of the Solar System. This review surveys knowledge about crater phenomena in the planetary science context, avoiding detailed descriptions already found in excellent papers on the subject. Then, it examines the most important results reported in the literature related to impact and penetration phenomena in granular targets obtained by doing simple experiments. The main goal is to discern whether both schools, one that takes into account the right ingredients (planetary bodies and very high energies) but cannot physically reproduce the collisions, and the other that easily carries out the collisions but uses laboratory ingredients (small projectiles and low energies), can arrive at a synergistic intersection point.

  18. Phase diagram for inertial granular flows

    NASA Astrophysics Data System (ADS)

    DeGiuli, E.; McElwaine, J. N.; Wyart, M.

    2016-07-01

    Flows of hard granular materials depend strongly on the interparticle friction coefficient μp and on the inertial number I , which characterizes proximity to the jamming transition where flow stops. Guided by numerical simulations, we derive the phase diagram of dense inertial flow of spherical particles, finding three regimes for 10-4≲I ≲10-1 : frictionless, frictional sliding, and rolling. These are distinguished by the dominant means of energy dissipation, changing from collisional to sliding friction, and back to collisional, as μp increases from zero at constant I . The three regimes differ in their kinetics and rheology; in particular, the velocity fluctuations and the stress ratio both display nonmonotonic behavior with μp, corresponding to transitions between the three regimes of flow. We rationalize the phase boundaries between these regimes, show that energy balance yields scaling relations between microscopic properties in each of them, and derive the strain scale at which particles lose memory of their velocity. For the frictional sliding regime most relevant experimentally, we find for I ≥10-2.5 that the growth of the macroscopic friction μ (I ) with I is induced by an increase of collisional dissipation. This implies in that range that μ (I ) -μ (0 ) ˜I1 -2 b , where b ≈0.2 is an exponent that characterizes both the dimensionless velocity fluctuations L ˜I-b and the density of sliding contacts χ ˜Ib .

  19. Saturn's ring "propellers": gravitational or granular?

    NASA Astrophysics Data System (ADS)

    Burns, Joseph A.; Lawney, B. P.; Jenkins, J. T.

    2010-05-01

    Propeller-shaped brightness features observed in Saturn's A ring are density disturbances, usually thought to be induced by gravity. Embedded masses larger than tens of meters disturb the smooth Keplerian shear of typical small ring particles (cm to m in radius) sufficiently to be visible in Cassini images. Instead we investigate whether propeller formation could be solely a collisional phenomenon involving the collisional energy dissipation, moon-to-particle size ratio, and the initial areal fractional coverage. Our two-dimensional, event-driven molecular dynamics simulation, which is carried out within Hill's equations and ignores gravity between the moon and the particles, develops "propeller-like” structures. We argue that the relatively low agitation and density of ring material is responsible for a low sound speed, resulting in predominantly supersonic flow of ring particles relative to the moon. In this framework, "propellers” are viewed as the locus of a granular shock, analogous to shocks in compressible gases, across which the ring material experiences significant changes in density, velocity, pressure, and the analog of temperature. We model these changes analytically and through numerical simulations to determine the propeller's size. We anticipate that inferences about the embedded objects will change with this different model.

  20. Measurements of gravity driven granular channel flows

    NASA Astrophysics Data System (ADS)

    Facto, Kevin

    This dissertation presents experiments that studied two gravity driven granular channel flows. The first experiment used magnetic resonance imaging to measure the density and displacement distributions of poppy seeds flowing in a rough walled channel. Time-averaged measurements of normalized velocity and density showed little flow speed dependence. Instantaneous measurements, however, showed marked velocity dependence in the displacement distributions. There was evidence of aperiodic starting and stopping at lower flow speeds and the onset of density waves on a continuous flow at higher speeds. The second experiment measured forces in all three spatial directions at the boundary of a flow of steel balls. The relationship between the normal and the tangential forces were examined statistically and compared to the Coulomb friction model. For both large and small forces, the tangential and normal forces are unrelated, as there appears to be a strong tendency for the tangential force to maintain a value that will bear the weight the weight of the particles in flow.

  1. Deflagration to detonation experiments in granular HMX

    SciTech Connect

    Burnside, N.J.; Son, S.F.; Asay, B.W.; Dickson, P.M.

    1998-03-01

    In this paper the authors report on continuing work involving a series of deflagration-to-detonation transition (DDT) experiments in which they study the piston-initiated DDT of heavily confined granular cyclotetramethylenetetranitramine (HMX). These experiments were designed to he useful in model development and evaluation. A main focus of these experiments is the effect of density on the DDT event. Particle size distribution and morphology are carefully characterized. In this paper they present recent surface area analysis. Earlier studies demonstrated extensive fracturing and agglomeration in samples at densities as low as 75% TMD as evidenced by dramatic decreases in particle size distribution due to mild stimulus. This is qualitatively confirmed with SEM images and quantitatively studied with gas absorption surface area analysis. Also, in this paper they present initial results using a microwave interferometer technique. Dynamic calibration of the technique was performed, a 35 GHz signal is used to increase resolution, and the system has been designed to be inexpensive for repeated experiments. The distance to where deformation of the inner wall begins for various densities is reported. This result is compared with the microwave interferometer measurements.

  2. Dielectric elastomer actuators with granular coupling

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Frediani, Gabriele; Nanni, Massimo; De Rossi, Danilo

    2011-04-01

    So-called 'hydrostatically coupled' dielectric elastomer actuators (HC-DEAs) have recently been shown to offer new opportunities for actuation devices made of electrically responsive elastomeric insulators. HC-DEAs include an incompressible fluid that mechanically couples a dielectric elastomer based active part to a passive part interfaced to the load, so as to enable hydrostatic transmission. Drawing inspiration from that concept, this paper presents a new kind of actuators, analogous to HC-DEAs, except for the fact that the fluid is replaced by fine powder. The related technology, here referred to as 'granularly coupled' DEAs (GC-DEAs), relies entirely on solid-state materials. This permits to avoid drawbacks (such as handling and leakage) inherent to usage of fluids, especially those in liquid phase. The paper presents functionality and actuation performance of bubble-like GC-DEAs, in direct comparison with HC-DEAs. For this purpose, prototype actuators made of two pre-stretched membranes of acrylic elastomer, coupled via talcum powder (for GC-DEA) or silicone grease (for HC-DEA), were manufactured and comparatively tested. As compared to HC-DEAs, GC-DEAs showed a higher maximum stress, the same maximum relative displacement, and nearly the same bandwidth. The paper presents characterization results and discusses advantages and drawbacks of GC-DEAs, in comparison with HC-DEAs.

  3. Penetration in bimodal, polydisperse granular material.

    PubMed

    Kouraytem, N; Thoroddsen, S T; Marston, J O

    2016-11-01

    We investigate the impact penetration of spheres into granular media which are compositions of two discrete size ranges, thus creating a polydisperse bimodal material. We examine the penetration depth as a function of the composition (volume fractions of the respective sizes) and impact speed. Penetration depths were found to vary between δ=0.5D_{0} and δ=7D_{0}, which, for mono-modal media only, could be correlated in terms of the total drop height, H=h+δ, as in previous studies, by incorporating correction factors for the packing fraction. Bimodal data can only be collapsed by deriving a critical packing fraction for each mass fraction. The data for the mixed grains exhibit a surprising lubricating effect, which was most significant when the finest grains [d_{s}∼O(30) μm] were added to the larger particles [d_{l}∼O(200-500) μm], with a size ratio, ε=d_{l}/d_{s}, larger than 3 and mass fractions over 25%, despite the increased packing fraction. We postulate that the small grains get between the large grains and reduce their intergrain friction, only when their mass fraction is sufficiently large to prevent them from simply rattling in the voids between the large particles. This is supported by our experimental observations of the largest lubrication effect produced by adding small glass beads to a bed of large sand particles with rough surfaces.

  4. Penetration in bimodal, polydisperse granular material

    NASA Astrophysics Data System (ADS)

    Kouraytem, N.; Thoroddsen, S. T.; Marston, J. O.

    2016-11-01

    We investigate the impact penetration of spheres into granular media which are compositions of two discrete size ranges, thus creating a polydisperse bimodal material. We examine the penetration depth as a function of the composition (volume fractions of the respective sizes) and impact speed. Penetration depths were found to vary between δ =0.5 D0 and δ =7 D0 , which, for mono-modal media only, could be correlated in terms of the total drop height, H =h +δ , as in previous studies, by incorporating correction factors for the packing fraction. Bimodal data can only be collapsed by deriving a critical packing fraction for each mass fraction. The data for the mixed grains exhibit a surprising lubricating effect, which was most significant when the finest grains [ds˜O (30 ) μ m ] were added to the larger particles [dl˜O (200 -500 ) μ m ] , with a size ratio, ɛ =dl/ds , larger than 3 and mass fractions over 25%, despite the increased packing fraction. We postulate that the small grains get between the large grains and reduce their intergrain friction, only when their mass fraction is sufficiently large to prevent them from simply rattling in the voids between the large particles. This is supported by our experimental observations of the largest lubrication effect produced by adding small glass beads to a bed of large sand particles with rough surfaces.

  5. Flow characteristics of the Cascade granular blanket

    SciTech Connect

    Pitts, J.H.; Walton, O.R.

    1985-07-01

    Analysis of a single granule on a rotating cone shows that for the 35/sup 0/ half-angle, double-cone-shaped Cascade chamber, blanket granules will stay against the chamber wall if the rotational speed is 50 rpm or greater. The granules move axially down the wall with a slight (5-mm or less) sinusoidal oscillation in the circumferential direction. Granule chute-flow experiments confirm that two-layered flow can be obtained when the chute is inclined slightly above the granular material angle of repose. The top surface layer is thin and fast moving (supercritical flow). A thick bottom layer moves more slowly (subcritical flow controlled at the exit) with a velocity that increases with distance from the bottom of the chute. This is a desirable velocity profile because in the Cascade chamber about one-third of the fusion energy is deposited in the form of x rays and fusion-fuel-pellet debris in the top surface (inner-radius) layer.

  6. Granular flows on a dissipative base.

    PubMed

    Louge, Michel Y; Valance, Alexandre; Lancelot, Paul; Delannay, Renaud; Artières, Olivier

    2015-08-01

    We study inclined channel flows of sand over a sensor-enabled composite geotextile fabric base that dissipates granular fluctuation energy. We record strain of the fabric along the flow direction with imbedded fiber-optic Bragg gratings, flow velocity on the surface by correlating grain position in successive images, flow thickness with the streamwise shift of an oblique laser light sheet, velocity depth profile through a transparent side wall using a high-speed camera, and overall discharge rate. These independent measurements at inclinations between 33∘ and 37∘ above the angle of repose at 32.1±0.8∘ are consistent with a mass flow rate scaling as the 3/2 power of the flow depth, which is markedly different than flows on a rigid bumpy boundary. However, this power changes to 5/2 when flows are forced on the sand bed below its angle of repose. Strain measurements imply that the mean solid volume fraction in the flowing layer above the angle of repose is 0.268±0.033, independent of discharge rate or inclination.

  7. Flow characteristics of the Cascade granular blanket

    SciTech Connect

    Pitts, J.H.; Walton, O.R.

    1985-04-15

    Analysis of a single granule on a rotating cone shows that for the 35/sup 0/ half-angle, double-cone-shaped Cascade chamber, blanket granules will stay against the chamber wall if the rotational speed is 50 rpm or greater. The granules move axially down the wall with a slight (5-mm or less) sinusoidal oscillation in the circumferential direction. Granule chute-flow experiments confirm that two-layered flow can be obtained when the chute is inclined slightly above the granular material angle of repose. The top surface layer is thin and fast moving (supercritical flow). A thick bottom layer moves more slowly (subcritical flow controlled at the exit) with a velocity that increases with distance from the bottom of the chute. This is a desirable velocity profile because in the Cascade chamber about one-third of the fusion energy is deposited in the form of x rays and fusion-fuel-pellet debris in the top surface (inner-radius) layer.

  8. Granular flows on a dissipative base

    NASA Astrophysics Data System (ADS)

    Louge, Michel Y.; Valance, Alexandre; Lancelot, Paul; Delannay, Renaud; Artières, Olivier

    2015-08-01

    We study inclined channel flows of sand over a sensor-enabled composite geotextile fabric base that dissipates granular fluctuation energy. We record strain of the fabric along the flow direction with imbedded fiber-optic Bragg gratings, flow velocity on the surface by correlating grain position in successive images, flow thickness with the streamwise shift of an oblique laser light sheet, velocity depth profile through a transparent side wall using a high-speed camera, and overall discharge rate. These independent measurements at inclinations between 33∘ and 37∘ above the angle of repose at 32.1 ±0 .8∘ are consistent with a mass flow rate scaling as the 3 /2 power of the flow depth, which is markedly different than flows on a rigid bumpy boundary. However, this power changes to 5 /2 when flows are forced on the sand bed below its angle of repose. Strain measurements imply that the mean solid volume fraction in the flowing layer above the angle of repose is 0.268 ±0.033 , independent of discharge rate or inclination.

  9. Fine granularity adaptive multireceiver video streaming

    NASA Astrophysics Data System (ADS)

    Eide, Viktor S. Wold; Eliassen, Frank; Michaelsen, Jørgen Andreas; Jensen, Frank

    2007-01-01

    Effcient delivery of video data over computer networks has been studied extensively for decades. Still, multi-receiver video delivery is challenging, due to heterogeneity and variability in network availability, end node capabilities, and receiver preferences. Our earlier work has shown that content-based networking is a viable technology for fine granularity multireceiver video streaming. By exploiting this technology, we have demonstrated that each video receiver is provided with fine grained and independent selectivity along the different video quality dimensions region of interest, signal to noise ratio for the luminance and the chrominance planes, and temporal resolution. Here we propose a novel adaptation scheme combining such video streaming with state-of-the-art techniques from the field of adaptation to provide receiver-driven multi-dimensional adaptive video streaming. The scheme allows each client to individually adapt the quality of the received video according to its currently available resources and own preferences. The proposed adaptation scheme is validated experimentally. The results demonstrate adaptation to variations in available bandwidth and CPU resources roughly over two orders of magnitude and that fine grained adaptation is feasible given radically different user preferences.

  10. Mechanics of coupled granular/fluid flows

    NASA Astrophysics Data System (ADS)

    Vinningland, J.; Toussaint, R.; Johnsen, O.; Flekkoy, E. G.; Maloy, K. J.

    2006-12-01

    We introduce a hybrid numerical model for coupled flow of solid grains and intersticial fluid, which renders for complex hydrodynamic interactions between mobile grains. This model treats the solid phase as discrete particles, interacting mechanically with the other particles and with the intersticial flowing fluid. The fluid is described by continuum equations rendering for its advection by the local grains, superposed to a pressure diffusion ruled by a Darcy flow with a permeability depending on the local solid fraction. This model is aimed at describing accurately such coupled flow. This model is tested for two model situations, where it is compared to experimental results: 1/ Injection of a localized overpressure in a grain/fluid filled cell lying horizontally, where gravity is unimportant. 2/ Sedimentation of heavy grains falling into an initially grain-free fluid region. The development of pattern-forming instabilities is obtained in these two situations, corresponding to granular/fluid equivalents of the two-fluids Saffman-Taylor and Rayleigh-Taylor instabilities. Numerical and experimental results are shown to be consistent with each other.

  11. Shock wave perturbation decay in granular materials

    SciTech Connect

    Vogler, Tracy J.

    2015-11-05

    A technique in which the evolution of a perturbation in a shock wave front is monitored as it travels through a sample is applied to granular materials. Although the approach was originally conceived as a way to measure the viscosity of the sample, here it is utilized as a means to probe the deviatoric strength of the material. Initial results for a tungsten carbide powder are presented that demonstrate the approach is viable. Simulations of the experiments using continuum and mesoscale modeling approaches are used to better understand the experiments. The best agreement with the limited experimental data is obtained for the mesoscale model, which has previously been shown to give good agreement with planar impact results. The continuum simulations indicate that the decay of the perturbation is controlled by material strength but is insensitive to the compaction response. Other sensitivities are assessed using the two modeling approaches. The simulations indicate that the configuration used in the preliminary experiments suffers from certain artifacts and should be modified to remove them. As a result, the limitations of the current instrumentation are discussed, and possible approaches to improve it are suggested.

  12. Shock wave perturbation decay in granular materials

    DOE PAGES

    Vogler, Tracy J.

    2015-11-05

    A technique in which the evolution of a perturbation in a shock wave front is monitored as it travels through a sample is applied to granular materials. Although the approach was originally conceived as a way to measure the viscosity of the sample, here it is utilized as a means to probe the deviatoric strength of the material. Initial results for a tungsten carbide powder are presented that demonstrate the approach is viable. Simulations of the experiments using continuum and mesoscale modeling approaches are used to better understand the experiments. The best agreement with the limited experimental data is obtainedmore » for the mesoscale model, which has previously been shown to give good agreement with planar impact results. The continuum simulations indicate that the decay of the perturbation is controlled by material strength but is insensitive to the compaction response. Other sensitivities are assessed using the two modeling approaches. The simulations indicate that the configuration used in the preliminary experiments suffers from certain artifacts and should be modified to remove them. As a result, the limitations of the current instrumentation are discussed, and possible approaches to improve it are suggested.« less

  13. Enhancing bulk superconductivity by engineering granular materials

    NASA Astrophysics Data System (ADS)

    Mayoh, James; García García, Antonio

    2014-03-01

    The quest for higher critical temperatures is one of the main driving forces in the field of superconductivity. Recent theoretical and experimental results indicate that quantum size effects in isolated nano-grains can boost superconductivity with respect to the bulk limit. Here we explore the optimal range of parameters that lead to an enhancement of the critical temperature in a large three dimensional array of these superconducting nano-grains by combining mean-field, semiclassical and percolation techniques. We identify a broad range of parameters for which the array critical temperature, TcArray, can be up to a few times greater than the non-granular bulk limit, Tc 0. This prediction, valid only for conventional superconductors, takes into account an experimentally realistic distribution of grain sizes in the array, charging effects, dissipation by quasiparticles and limitations related to the proliferation of thermal fluctuations for sufficiently small grains. For small resistances we find the transition is percolation driven. Whereas at larger resistances the transition occurs above the percolation threshold due to phase fluctuations. JM acknowledes support from an EPSRC Ph.D studentship, AMG acknowledges support from EPSRC, grant No. EP/I004637/1, FCT, grant PTDC/FIS/111348/2009 and a Marie Curie International Reintegration Grant PIRG07-GA-2010-268172.

  14. Granular Material Flows with Interstitial Fluid Effects

    NASA Technical Reports Server (NTRS)

    Hunt, Melany L.; Brennen, Christopher E.

    2004-01-01

    The research focused on experimental measurements of the rheological properties of liquid-solid and granular flows. In these flows, the viscous effects of the interstitial fluid, the inertia of the fluid and particles, and the collisional interactions of the particles may all contribute to the flow mechanics. These multiphase flows include industrial problems such as coal slurry pipelines, hydraulic fracturing processes, fluidized beds, mining and milling operation, abrasive water jet machining, and polishing and surface erosion technologies. In addition, there are a wide range of geophysical flows such as debris flows, landslides and sediment transport. In extraterrestrial applications, the study of transport of particulate materials is fundamental to the mining and processing of lunar and Martian soils and the transport of atmospheric dust (National Research Council 2000). The recent images from Mars Global Surveyor spacecraft dramatically depict the complex sand and dust flows on Mars, including dune formation and dust avalanches on the slip-face of dune surfaces. These Aeolian features involve a complex interaction of the prevailing winds and deposition or erosion of the sediment layer; these features make a good test bed for the verification of global circulation models of the Martian atmosphere.

  15. From Liquid Helium to Granular Materials

    NASA Astrophysics Data System (ADS)

    Behringer, Robert P.

    2016-11-01

    This article provides a brief history of work that I have either carried out with Horst Meyer, or that was connected in some way with experiences reaching back to the laboratory known as LTM for low temperature [physics] Meyer, at Duke University. It is not intended as a complete review of all relevant work, but rather to hit highlights. My work with Horst started with studies of critical phenomena in liquid helium. This system provided an extremely rich and diverse testing ground for then newly emerging theories of static and dynamic critical phenomena. A key aspect of the experimental work with Horst was high-precision measurements of temperature and pressure. The ability to measure thermal properties with exceptional precision was at the core of this work. It also provided a natural springboard for entirely different investigations of Rayleigh-Bénard convection, which had just been initiated by Guenter Ahlers. My postdoc with Guenter provided a whole new set of experiences involving convection, dynamical instabilities, and chaos, where again the special properties, measurement techniques, and creative approaches to research associated with liquid helium were critical. In fact, later, knowledge of these techniques allowed me to start a whole new research direction in granular materials, which is a primary focus of my current research.

  16. 2-d Packing of Prolate Granular Materials

    NASA Astrophysics Data System (ADS)

    Franklin, Scott

    2002-11-01

    Piles of extremely prolate (aspect ratio α=L/D>10) granular materials are qualitatively different than lower aspect-ratio particles. One can run a hand through sand, for example, but not through nails. In three dimensions this transition occurs at α ˜ 35. We investigate the two-dimensional packing of particles with aspect ratios ranging from 10-44, comparing experiments with Monte-Carlo simulations. Particle alignment can quantified by an orientational order correlation function and related to the packing fraction. In both simulation and experiment the correlation between particle orientation decays after a distance of two particle lengths. We also quantify the distribution of voids in the pile, finding it to follow a power law with exponent -β=-2.370.05. Dynamic experiments involve rotating the pile. Particles with aspect ratio as low as 10 do not appear to have a well defined angle of repose, suggesting that the transition to rigidity occurs at a far lower aspect ratio in two dimensions. Preliminary results from this experiment will be presented.

  17. Thin wetting film lensless imaging

    NASA Astrophysics Data System (ADS)

    Allier, C. P.; Poher, V.; Coutard, J. G.; Hiernard, G.; Dinten, J. M.

    2011-03-01

    Lensless imaging has recently attracted a lot of attention as a compact, easy-to-use method to image or detect biological objects like cells, but failed at detecting micron size objects like bacteria that often do not scatter enough light. In order to detect single bacterium, we have developed a method based on a thin wetting film that produces a micro-lens effect. Compared with previously reported results, a large improvement in signal to noise ratio is obtained due to the presence of a micro-lens on top of each bacterium. In these conditions, standard CMOS sensors are able to detect single bacterium, e.g. E.coli, Bacillus subtilis and Bacillus thuringiensis, with a large signal to noise ratio. This paper presents our sensor optimization to enhance the SNR; improve the detection of sub-micron objects; and increase the imaging FOV, from 4.3 mm2 to 12 mm2 to 24 mm2, which allows the detection of bacteria contained in 0.5μl to 4μl to 10μl, respectively.

  18. Symmetric model of compressible granular mixtures with permeable interfaces

    NASA Astrophysics Data System (ADS)

    Saurel, Richard; Le Martelot, Sébastien; Tosello, Robert; Lapébie, Emmanuel

    2014-12-01

    Compressible granular materials are involved in many applications, some of them being related to energetic porous media. Gas permeation effects are important during their compaction stage, as well as their eventual chemical decomposition. Also, many situations involve porous media separated from pure fluids through two-phase interfaces. It is thus important to develop theoretical and numerical formulations to deal with granular materials in the presence of both two-phase interfaces and gas permeation effects. Similar topic was addressed for fluid mixtures and interfaces with the Discrete Equations Method (DEM) [R. Abgrall and R. Saurel, "Discrete equations for physical and numerical compressible multiphase mixtures," J. Comput. Phys. 186(2), 361-396 (2003)] but it seemed impossible to extend this approach to granular media as intergranular stress [K. K. Kuo, V. Yang, and B. B. Moore, "Intragranular stress, particle-wall friction and speed of sound in granular propellant beds," J. Ballist. 4(1), 697-730 (1980)] and associated configuration energy [J. B. Bdzil, R. Menikoff, S. F. Son, A. K. Kapila, and D. S. Stewart, "Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues," Phys. Fluids 11, 378 (1999)] were present with significant effects. An approach to deal with fluid-porous media interfaces was derived in Saurel et al. ["Modelling dynamic and irreversible powder compaction," J. Fluid Mech. 664, 348-396 (2010)] but its validity was restricted to weak velocity disequilibrium only. Thanks to a deeper analysis, the DEM is successfully extended to granular media modelling in the present paper. It results in an enhanced version of the Baer and Nunziato ["A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials," Int. J. Multiphase Flow 12(6), 861-889 (1986)] model as symmetry of the formulation is now preserved. Several computational examples are

  19. Hydrodynamics of Close-Packed Levitating Granular Clusters

    NASA Astrophysics Data System (ADS)

    Meerson, Baruch

    2004-03-01

    Continuum modelling of flow of macroscopic grains is a challenging task, even within the greatly simplified model of rapid granular flow. The Navier-Stokes granular hydrodynamics (NSGH) [1], developed for the rapid flow, is expected to be valid quantitatively only for moderate granular densities and for nearly elastic particle collisions. In this work [2] we probe the boundaries of hydrodynamics by considering a dense granular system. We focus on the phenomenon of a close-packed levitating granular cluster observed in monodisperse granular materials fluidized by vertical vibrations. The close-packed floating cluster is an extreme form of the granular density inversion that results from energy losses in the particle collisions. The model we adopted is that of inelastically colliding hard disks driven from below by a ``thermal" plate in two dimensions. We limit ourselves to nearly elastic collisions, so that the standard NSGH breaks down because of large densities, not large inelasticity. Molecular dynamics simulations show, in a wide range of parameters, a close-packed cluster supported by a low-density region. We find that the steady-state density profile, including the close-packed cluster part, is well described by a variant of NSGH suggested by Grossman et al. [3]. A tentative explanation of the success of NSGH beyond the freezing point is provided by the absence of shear motions in the system. Indeed, in this case the apparent divergence of the viscosity beyond the freezing point becomes irrelevant. 3 NSGH P.K. Haff, J. Fluid Mech. 134, 401 (1983); J.T. Jenkins and M.W. Richman, Phys. Fluids 28, 3485 (1985); Arch. Rat. Mech. Anal. 87, 355 (1985); Phys. Fluids 28, 3485 (1986). paper B. Meerson, T. Pöschel and Y. Bromberg, Phys. Rev. Lett. 91, 024301 (2003). Grossmann E.L. Grossman, T. Zhou, and E. Ben-Naim, Phys. Rev. E 55, 4200 (1997). thebibliography

  20. Impact of long-term wetting on belowground respiration and methanogenesis in Luther Bog, Ontario

    NASA Astrophysics Data System (ADS)

    Goebel, Marie; Blodau, Christian

    2016-04-01

    Peatlands play a major role in the global carbon cycle. They store one-third of total world soil carbon, sequester carbon dioxide (CO2) and release CO2 and methane (CH4). Climate and land-use change are predicted to cause either wetter winters and wetter summers or wetter winters and drier summers in the area where northern peatlands are located. Feedback on processes in the peat is poorly understood on the time scale of decades. In this study, we investigated impacts of long-term wetting and long-term fluctuating water table on potential CO2 and CH4 production rates and organic matter quality of the fractions bulk peat, pore water and leachate. Bulk peat potential CO2 production rates of 2.38 to 25.55 μmol g-1 d-1 (aerobic) and 1.53 to 7.33 μmol g-1 d-1 (anaerobic) decreased with depth along with a decrease in organic matter quality. Potential CH4 production rates (0.002 to 2.60 μmol g-1 d-1) increased with anaerobic conditions and a lack of electron acceptors rather than being dependent on the availability of labile organic matter. This pattern was less evident in solute fraction samples where labile compounds in top layers were probably either too labile to be detected or water movement obscured differences between depths. Bulk peat potential anaerobic CO2 and CH4 production increased through long-term wetting. As wetting did not change organic matter quality or aerobic production rates, increased anaerobic production rates likely originate from microorganisms adapted to anaerobic conditions. All indicators of organic matter quality, FTIR ratios, SUVA254, E2:E3, HIX, FI and PARAFAC, provided similar results. Other than expected, wetting did not result in higher organic matter quality in bulk peat and leachate. Drier conditions in summer led to reduced organic matter quality. In pore water, long-term wetter conditions resulted in a higher organic matter quality. Slow-down of decomposition due to anaerobic conditions is unlikely, as this was not the case with