NASA Astrophysics Data System (ADS)
Bellhouse, E. M.; McDermid, J. R.
2012-07-01
Selective oxidation and reactive wetting during continuous galvanizing were studied for a low-alloy transformation induced plasticity (TRIP)-assisted steel with 0.2 pct C, 1.5 pct Mn, 1.0 pct Al and 0.5 pct Si. Three process atmospheres were tested during annealing prior to galvanizing: 220 K (-53 °C) dew point (dp) N2-20 pct H2, 243 K (-30 °C) dp N2-5 pct H2 and 278 K (+5 °C) dp N2-5 pct H2. The process atmosphere oxygen partial pressure affected the oxide chemistry, morphology and thickness. For the 220 K (-53 °C) dp and 243 K (-30 °C) dp process atmospheres, film and nodule-type manganese, silicon and aluminum containing oxides were observed at the surface. For the 278 K (+5 °C) dp atmosphere, MnO was observed at the grain boundaries and as thicker localized surface films. Oxide morphology, thickness and chemistry affected reactive wetting, with complete wetting being observed for the 220 K (-53 °C) dp and 243 K (-30 °C) dp process atmospheres and incomplete reactive wetting being observed for the 278 K (+5 °C) dp atmosphere. Complete reactive wetting for the 220 K (-53 °C) dp and 243 K (-30 °C) dp process atmospheres was attributed to a combination of zinc bridging of oxides, aluminothermic reduction of surface oxides and wetting of the oxides. Incomplete wetting for the 278 K (+5 °C) dp atmosphere was attributed to localized thick MnO films.
Chung, Jinwook; Lee, Mikyung; Ahn, Jaehwan; Bae, Wookeun; Lee, Yong-Woo; Shim, Hojae
2009-02-15
Wet air oxidation processes are to treat highly concentrated organic compounds including refractory materials, sludge, and night soil, and usually operated at supercritical water conditions of high temperature and pressure. In this study, the effects of operational conditions including temperature, pressure, and oxidant dose on sludge degradation and conversion into subsequent intermediates such as organic acids were investigated at low critical wet oxidation conditions. The reaction time and temperature in the wet air oxidation process was shown an important factor affecting the liquefaction of volatile solids, with more significant effect on the thermal hydrolysis reaction rather than the oxidation reaction. The degradation efficiency of sludge and the formation of organic acids were improved with longer reaction time and higher reaction temperature. For the sludge reduction and the organic acids formation under the wet air oxidation, the optimal conditions for reaction temperature, time, pressure, and oxidant dose were shown approximately 240 degrees C, 30min, 60atm, and 2.0L/min, respectively.
Wet-air oxidation cleans up black wastewater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-09-01
Sterling Organics produces the analgesic paracetamol (acetaminophen) at its Dudley, England, plant. The wastewater from the batch process contains intermediates such as para-aminophenol (PAP) and byproducts such as thiosulfates, sulfites and sulfides. To stay ahead of increasingly strict environmental legislation, Sterling Organics installed a wet-air oxidation system at the Dudley facility in August 1992. The system is made by Zimpro Environmental Inc. (Rothschild, Wis.). Zimpro's wet-air oxidation system finds a way around the limitations of purely chemical or physical processes. In the process, compressed air at elevated temperature and pressure oxidizes the process intermediates and byproducts and removes the colormore » from the wastewater.« less
A kinetic model of municipal sludge degradation during non-catalytic wet oxidation.
Prince-Pike, Arrian; Wilson, David I; Baroutian, Saeid; Andrews, John; Gapes, Daniel J
2015-12-15
Wet oxidation is a successful process for the treatment of municipal sludge. In addition, the resulting effluent from wet oxidation is a useful carbon source for subsequent biological nutrient removal processes in wastewater treatment. Owing to limitations with current kinetic models, this study produced a kinetic model which predicts the concentrations of key intermediate components during wet oxidation. The model was regressed from lab-scale experiments and then subsequently validated using data from a wet oxidation pilot plant. The model was shown to be accurate in predicting the concentrations of each component, and produced good results when applied to a plant 500 times larger in size. A statistical study was undertaken to investigate the validity of the regressed model parameters. Finally the usefulness of the model was demonstrated by suggesting optimum operating conditions such that volatile fatty acids were maximised. Copyright © 2015 Elsevier Ltd. All rights reserved.
Specific features of aluminum nanoparticle water and wet air oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lozhkomoev, Aleksandr S., E-mail: asl@ispms.tsc.ru; Glazkova, Elena A., E-mail: eagl@ispms.tsc.ru; Svarovskaya, Natalia V., E-mail: nvsv@ispms.tsc.ru
2015-10-27
The oxidation processes of the electrically exploded aluminum nanopowders in water and in wet air are examined in the paper. The morphology of the intermediate reaction products of aluminum oxidation has been studied using the transmission electron microscopy. It was shown that the aluminum nanopowder water oxidation causes the formation of the hollow spheres with mesoporous boehmite nanosheets coating. The wedge-like bayerite particles are formed during aluminum nanopowder wet air oxidation.
Process of forming catalytic surfaces for wet oxidation reactions
NASA Technical Reports Server (NTRS)
Jagow, R. B. (Inventor)
1977-01-01
A wet oxidation process was developed for oxidizing waste materials, comprising dissolved ruthenium salt in a reactant feed stream containing the waste materials. The feed stream is introduced into a reactor, and the reactor contents are then raised to an elevated temperature to effect deposition of a catalytic surface of ruthenium black on the interior walls of the reactor. The feed stream is then maintained in the reactor for a period of time sufficient to effect at least partial oxidation of the waste materials.
Development studies of a novel wet oxidation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, T.W.; Dhooge, P.M.
1995-10-01
Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. Incineration and similar combustive processes do not appear to be viable options for treatment of these waste streams due to various considerations. The objective of this project is to develop a novel catalytic wet oxidation process for the treatment of multi-component wastes. The DETOX process uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials.
Removal of ammonia solutions used in catalytic wet oxidation processes.
Hung, Chang Mao; Lou, Jie Chung; Lin, Chia Hua
2003-08-01
Ammonia (NH(3)) is an important product used in the chemical industry, and is common place in industrial wastewater. Industrial wastewater containing ammonia is generally either toxic or has concentrations or temperatures such that direct biological treatment is unfeasible. This investigation used aqueous solutions containing more of ammonia for catalytic liquid-phase oxidation in a trickle-bed reactor (TBR) based on Cu/La/Ce composite catalysts, prepared by co-precipitation of Cu(NO(3))(2), La(NO(3))(2), and Ce(NO(3))(3) at 7:2:1 molar concentrations. The experimental results indicated that the ammonia conversion of the wet oxidation in the presence of the Cu/La/Ce composite catalysts was determined by the Cu/La/Ce catalyst. Minimal ammonia was removed from the solution by the wet oxidation in the absence of any catalyst, while approximately 91% ammonia removal was achieved by wet oxidation over the Cu/La/Ce catalyst at 230 degrees C with oxygen partial pressure of 2.0 MPa. Furthermore, the effluent streams were conducted at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes, and a reaction pathway was found linking the oxidizing ammonia to nitric oxide, nitrogen and water. The solution contained by-products, including nitrates and nitrites. Nitrite selectivity was minimized and ammonia removal maximized when the feed ammonia solution had a pH of around 12.0.
1976-12-01
This investigation evaluated the feasibility of destruction of NDMA using the wet air oxidation process. From the limited data evaluated, it was...determined that NDMA was amenable to destruction by wet air oxidation to approximately the 1.0 mg/l level with relative ease. Reduction below the 1.0 mg
Phenol wastewater remediation: advanced oxidation processes coupled to a biological treatment.
Rubalcaba, A; Suárez-Ojeda, M E; Stüber, F; Fortuny, A; Bengoa, C; Metcalfe, I; Font, J; Carrera, J; Fabregat, A
2007-01-01
Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. Therefore, different advanced oxidation processes were investigated as suitable precursors for the biological treatment of industrial effluents containing phenol. Wet air oxidation and Fenton process were tested batch wise, while catalytic wet air oxidation and H2O2-promoted catalytic wet air oxidation processes were studied in a trickle bed reactor, the last two using over activated carbon as catalyst. Effluent characterisation was made by means of substrate conversion (using high liquid performance chromatography), chemical oxygen demand and total organic carbon. Biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) were obtained from respirometric tests using activated sludge from an urban biological wastewater treatment plant (WWTP). The main goal was to find the proper conditions in terms of biodegradability enhancement, so that these phenolic effluents could be successfully treated in an urban biological WWTP. Results show promising research ways for the development of efficient coupled processes for the treatment of wastewater containing toxic or biologically non-degradable compounds.
NASA Technical Reports Server (NTRS)
Weitzmann, A. L.
1977-01-01
The wet oxidation process is considered as a potential treatment method for wastes aboard manned spacecraft for these reasons: (1) Fecal and urine wastes are processed to sterile water and CO2 gas. However, the water requires post-treatment to remove salts and odor; (2) the residual ash is negligible in quantity, sterile and easily collected; and (3) the product CO2 gas can be processed through a reduction step to aid in material balance if needed. Reaction of waste materials with oxygen at elevated temperature and pressure also produces some nitrous oxide, as well as trace amounts of a few other gases.
DETOX{sup SM} catalyzed wet oxidation as a highly suitable pretreatment for vitrification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, T.W.; Dhooge, P.M.; Goldblatt, S.D.
1995-11-01
A catalyzed wet oxidation process has been developed which uses ferric iron in an acidic water solution to oxidize organic compounds in the presence of platinum ion and/or ruthenium ion catalysts. The process is capable of oxidizing a wide range of organic compounds to carbon dioxide and water with great efficiency. The process has been tested in the bench-scale with many different types of organics. Conceptual engineering for application of the process to treatment of liquid and solid organic waste materials has been followed by engineering design for a demonstration unit. Fabrication of the unit and demonstration on hazardous andmore » mixed wastes at two Department of Energy sites is planned in 1995 through 1997.« less
Treatment of industrial oily wastewaters by wet oxidation.
Zerva, C; Peschos, Z; Poulopoulos, S G; Philippopoulos, C J
2003-02-28
In the present work, the homogeneous wet oxidation (WO) of an oily wastewater (COD approximately 11,000 mg l(-1)), composed mainly of alcohols and phenolic compounds, was studied in a high-pressure agitated autoclave reactor in the temperature range of 180-260 degrees C and oxygen pressure 1 MPa. Temperature was found to have a significant impact on the oxidation of the contaminants in the wastewater. Among the compounds contained in the wastewater, ethylene glycol showed great resistance to wet oxidation. Temperatures above 240 degrees C were required for its effective degradation. Organic acids, mainly acetic acid, were the intermediate products of the wet oxidation process and their conversion to carbon dioxide was very slow. A generalised model based on a parallel reaction scheme was used to interpret the experimental data obtained. The activation energies obtained were in the range of 90-130 kJ mol(-1).
Wet air oxidation and catalytic wet air oxidation for dyes degradation.
Ovejero, Gabriel; Sotelo, José Luis; Rodríguez, Araceli; Vallet, Ana; García, Juan
2011-11-01
Textile industry produces wastewater which contributes to water pollution since it utilizes a lot of chemicals. Preliminary studies show that the wastewater from textile industries contains grease, wax, surfactant, and dyes. The objective of this study was to determine the treatment efficiency of the nickel catalysts supported on hydrotalcites in three-dye model compounds and two types of wastewater. Hydrotalcites were employed to prepare supported nickel catalysts by wetness impregnation technique. Metal loadings from 1 to 10 wt% were tested. Catalysts were characterized by several techniques. They were tested in a catalytic wet air oxidation of three dyes and two wastewaters with different origins. It could be observed that the higher the metal content, the lower the BET area, possibly due to sintering of Ni and the consequent blocking of the pores by the metal. In addition, metallic dispersion was also higher when the metal content was lower. Dye conversion was more than 95% for every catalyst showing no differences with the nickel content. A high degree of dye conversion was achieved. Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) processes have been proved to be extremely efficient in TOC removal for wastewaters. The CWAO process can be used to remove dyes from wastewater. Three different dyes were tested showing satisfactory results in all of them. TOC degradation and dye removal in the presence of the catalyst were effective. Also, the HTNi catalyst is very active for organic matter and toxicity removal in wastewaters.
Design, fabrication and testing of a wet oxidation waste processing system. [for manned space flight
NASA Technical Reports Server (NTRS)
1975-01-01
The wet oxidation of sewage sludge during space flight was studied for water and gas recovery, and the elimination of overboard venting. The components of the system are described. Slurry and oxygen supply modules were fabricated and tested. Recommendations for redesign of the equipment are included.
Hung, Chang-Mao
2009-04-15
Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H(2)PtCl(6), Pd(NO(3))(3) and Rh(NO(3))(3). Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes.
Selective Oxidation and Reactive Wetting during Galvanizing of a CMnAl TRIP-Assisted Steel
NASA Astrophysics Data System (ADS)
Bellhouse, E. M.; McDermid, J. R.
2011-09-01
A transformation induced plasticity (TRIP)-assisted steel with 0.2 pct C, 1.5 pct Mn, and 1.5 pct Al was successfully galvanized using a thermal cycle previously shown to produce an excellent combination of strength and ductility. The steel surface chemistry and oxide morphology were determined as a function of process atmosphere oxygen partial pressure. For the 220 K (-53 °C) dew point (dp) + 20 pct H2 atmosphere, the oxide morphology was a mixture of films and nodules. For the 243 K (-30 °C) dp + 5 pct H2 atmosphere, nodules of MnO were found primarily at grain boundaries. For the 278 K (+5 °C) dp + 5 pct H2 atmosphere, nodules of metallic Fe were found on the surface as a result of alloy element internal oxidation. The steel surface chemistry and oxide morphology were then related to the reactive wetting behavior during continuous hot dip galvanizing. Good wetting was obtained using the two lower oxygen partial pressure process atmospheres [220 K dp and 243 K dp (-53 °C dp and -30 °C dp)]. An increase in the number of bare spots was observed when using the higher oxygen partial pressure process atmosphere (+5 °C dp) due to the increased thickness of localized oxide films.
Enhanced kinetics of Al{sub 0.97}Ga{sub 0.03}As wet oxidation through the use of hydrogenation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Du, M.; Sagnes, I.; Beaudoin, G.
2006-09-11
This letter reports on a different kinetic behavior of the wet thermal oxidation process resulting in Al{sub x}O{sub y} material depending on the AlAs material growth method, molecular beam epitaxy (MBE) or metal organic vapor phase epitaxy (MOVPE). A higher oxidation rate for MOVPE-grown materia is systemically found. Considering the major role of hydrogen in the wet oxidation reaction, it is believed this observation could be linked with the higher hydrogen residual concentration in MOVPE layers. Using a hydrogen plasma, MBE-grown Al{sub 0.97}Ga{sub 0.03}As layers were hydrogened prior to oxidation. This hydrogenated sample showed a ten times enhanced oxidation ratemore » as compared to the nonhydrogenated Al{sub 0.97}Ga{sub 0.03}As sample. This behavior is mainly attributed to a hydrogen induced modification of the diffusion limited regime, enhancing the diffusion length of oxidizing species and reaction products in the oxidized layers.« less
Comparative surface studies on wet and dry sacrificial thermal oxidation on silicon carbide
NASA Astrophysics Data System (ADS)
Koh, A.; Kestle, A.; Wright, C.; Wilks, S. P.; Mawby, P. A.; Bowen, W. R.
2001-04-01
A comparative study on the effect of wet and dry thermal oxidation on 4H-silicon carbide (SiC) and on sacrificial silicon (Si) thermal oxidation on 4H-SiC surface has been conducted using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The AFM images show the formation of 'nano-islands' of varying density on the SiC surface after the removal of thermal oxide using hydrofluoric (HF) acid etch. These nano-islands are resistant to HF acid and have been previously linked to residual carbon [1-3] resulting from the oxidation process. This paper presents the use of a sacrificial silicon oxidation (SSO) step as a form of surface preparation that gives a reproducible clean SiC surface. XPS results show a slight electrical shift in binding energy between the wet and dry thermal oxidation on the standard SiC surface, while the surface produced by the SSO technique shows a minimal shift.
Impact of leachate composition on the advanced oxidation treatment.
Oulego, Paula; Collado, Sergio; Laca, Adriana; Díaz, Mario
2016-01-01
Advanced oxidation processes (AOPs) are gaining importance as an alternative to the biological or physicochemical treatments for the management of leachates. In this work, it has been studied the effect of the characteristics of the leachate (content in humic acids, landfill age and degree of stabilization) on the wet oxidation process and final quality of the treated effluent. A high concentration of humic acids in the leachate had a positive effect on the COD removal because this fraction is more easily oxidizable. Additionally, it has been demonstrated that the simultaneous presence of humic acid and the intermediates generated during the oxidation process improved the degradation of this acid, since such intermediates are stronger initiators of free radicals than the humic acid itself. Similar values of COD removals (49% and 51%) and biodegradability indices (0.30 and 0.35) were observed, after 8 h of wet oxidation, for the stabilised leachate (biologically pretreated) and the raw one, respectively. Nevertheless, final colour removal was much higher for the stabilised leachate, achieving values up to 91%, whereas for the raw one only 56% removal was attained for the same reaction time. Besides, wet oxidation treatment was more efficient for the young leachate than for the old one, with final COD conversions of 60% and 37%, respectively. Eventually, a triangular "three-lump" kinetic model, which considered direct oxidation to CO2 and partial oxidation through intermediate compounds, was here proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Czaplicka, Marianna; Kurowski, Ryszard; Jaworek, Katarzyna; Bratek, Łukasz
2013-01-01
The paper presents results of studies into advanced oxidation processes in 03 and 03/UV systems. An advanced oxidation process (AOP) was conducted to reduce the load of impurities in circulating waters from wet de-dusting of shaft furnace gases. Besides inorganic impurities, i.e. mainly arsenic compounds (16 g As L(-1) on average), lead, zinc, chlorides and sulphates, the waters also contain some organic material. The organic material is composed of a complex mixture that contains, amongst others, aliphatic compounds, phenol and its derivatives, pyridine bases, including pyridine, and its derivatives. The test results show degradation of organic and inorganic compounds during ozonation and photo-oxidation processes. Analysis of the solutions from the processes demonstrated that the complex organic material in the industrial water was oxidized in ozonation and in photo-oxidation, which resulted in formation of aldehydes and carboxylic acids. Kinetic degradation of selected pollutants is presented. Obtained results indicated that the O3/UV process is more effective in degradation of organic matter than ozonation. Depending on the process type, precipitation of the solid phase was observed. The efficiency of solid-phase formation was higher in photo-oxidation with ozone. It was found that the precipitated solid phase is composed mainly of arsenic, iron and oxygen.
Wet Oxidation as a Waste Treatment Method in Closed Systems
NASA Technical Reports Server (NTRS)
Onisko, B. L.; Wydeven, T.
1982-01-01
The chemistry of the wet oxidation process was investigated in relation to production of plant nutrients from plant and human waste materials as required for a closed life support system. Hydroponically grown lettuce plants were used as a model plant waste, and oxygen gas was used as an oxidant. Organic nitrogen content was decreased 88-100%, depending on feed material. Production of ammonia and nitrogen gas accounted for all of the observed decrease in organic nitrogen content. No nitrous oxide (N2O) was detected. The implications of these results for closed life support systems are discussed.
Wet oxidation as a waste treatment in closed systems
NASA Technical Reports Server (NTRS)
Onisko, B. L.; Wydeven, T.
1981-01-01
The chemistry of the wet oxidation process has been investigated in relation to production of plant nutrients from plant and human waste materials as required for a closed life-support system. Hydroponically grown lettuce plants were used as a model plant waste and oxygen gas was used as oxidant. Organic nitrogen content was decreased 88-100% depending on feed material. Production of ammonia and nitrogen gas account for all of the observed decrease in organic nitrogen content. No nitrous oxide (N2O) was detected. The implications of these results for closed life-support systems are discussed.
Hung, Chang-Mao; Lin, Wei-Bang; Ho, Ching-Lin; Shen, Yun-Hwei; Hsia, Shao-Yi
2010-08-01
This work adopted aqueous solutions of ammonia for use in catalytic liquid-phase reduction in a trickle-bed reactor with a platinum-rhodium bimetallic catalyst, prepared by the co-precipitation of chloroplatinic acid (H2PtCl6) and rhodium nitrate [Rh(NO3)3]. The experimental results demonstrated that a minimal amount of ammonia was removed from the solution by wet oxidation in the absence of any catalyst, while approximately 97.0% of the ammonia was removed by wet oxidation over the platinum-rhodium bimetallic catalyst at 230 degrees C with an oxygen partial pressure of 2.0 MPa. The oxidation of ammonia has been studied as a function of pH, and the main reaction products were determined. A synergistic effect is manifest in the platinum-rhodium bimetallic structure, in which the material has the greatest capacity to reduce ammonia. The reaction pathway linked the oxidizing ammonia to nitric oxide, nitrogen, and water.
Bench scale demonstration and conceptual engineering for DETOX{sup SM} catalyzed wet oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moslander, J.; Bell, R.; Robertson, D.
1994-06-01
Laboratory and bench scale studies of the DETOX{sup SM} catalyzed wet oxidation process have been performed with the object of developing the process for treatment of hazardous and mixed wastes. Reaction orders, apparent rates, and activation energies have been determined for a range of organic waste surrogates. Reaction intermediates and products have been analyzed. Metals` fates have been determined. Bench scale units have been designed, fabricated, and tested with solid and liquid organic waste surrogates. Results from the laboratory and bench scale studies have been used to develop conceptual designs for application of the process to hazardous and mixed wastes.
Guibelin, E
2004-01-01
Different treatment routes have been studied for a mixed sludge: the conventional agricultural use is compared with the thermal oxidation processes, including incineration (in gaseous phase) and wet air oxidation (in liquid phase). The interest of a sludge digestion prior to the final treatment has been also considered according to the two major criteria, which are the fossil energy utilisation and the greenhouse effect gases (CO2, CH4, N2O) release. Thermal energy has to be recovered on thermal processes to make these processes environmentally friendly, otherwise their main interest is to extract or destroy micropollutants and pathogens from the carbon cycle. In case of continuous energy recovery, incineration can produce more energy than it consumes. Digestion is especially interesting for agriculture: according to these two schemes, the energy final balance can also be in excess. As to wet air oxidation, it is probably one of the best ways to minimize greenhouse effect gases emission.
Padoley, K V; Tembhekar, P D; Saratchandra, T; Pandit, A B; Pandey, R A; Mudliar, S N
2012-09-01
This study looks at the possibility of wet air oxidation (WAO) based pretreatment of complex effluent to selectively enhance the biodegradability (without substantial COD destruction) and facilitate biogas generation potential. A lab-scale wet air oxidation reactor with biomethanated distillery wastewater (B-DWW) as a model complex effluent (COD 40,000 mg L(-1)) was used to demonstrate the proof-of-concept. The studies were conducted using a designed set of experiments and reaction temperature (150-200°C), air pressure (6-12 bar) and reaction time (15-120 min) were the main process variables of concern for WAO process optimization. WAO pretreatment of B-DWW enhanced the biodegradability of the complex wastewater by the virtue of enhancing its biodegradability index (BI) from 0.2 to 0.88, which indicate favorable Biochemical Methane Potential (BMP) for biogas generation. The kinetics of COD destruction and BI enhancement has also been reported. Copyright © 2012 Elsevier Ltd. All rights reserved.
Rapid, cool sintering of wet processed yttria-stabilized zirconia ceramic electrolyte thin films.
Park, Jun-Sik; Kim, Dug-Joong; Chung, Wan-Ho; Lim, Yonghyun; Kim, Hak-Sung; Kim, Young-Beom
2017-09-29
Here we report a photonic annealing process for yttria-stabilized zirconia films, which are one of the most well-known solid-state electrolytes for solid oxide fuel cells (SOFCs). Precursor films were coated using a wet-chemical method with a simple metal-organic precursor solution and directly annealed at standard pressure and temperature by two cycles of xenon flash lamp irradiation. The residual organics were almost completely decomposed in the first pre-annealing step, and the fluorite crystalline phases and good ionic conductivity were developed during the second annealing step. These films showed properties comparable to those of thermally annealed films. This process is much faster than conventional annealing processes (e.g. halogen furnaces); a few seconds compared to tens of hours, respectively. The significance of this work includes the treatment of solid-state electrolyte oxides for SOFCs and the demonstration of the feasibility of other oxide components for solid-state energy devices.
NASA Astrophysics Data System (ADS)
Kang, Jianxiong; Zhan, Wei; Li, Daosheng; Wang, Xiaocong; Song, Jing; Liu, Dongqi
This study investigated the feasibility of coupling a catalytic wet air oxidation (CWAO), with CuO/Al 2O 3 as catalyst, and an anaerobic/aerobic biological process to treat wastewater from Vitamin B 6 production. Results showed that the CWAO enhanced the biodegradability (BOD 5/COD) from 0.10 to 0.80. The oxidized effluents with COD of 10,000 mg l -1 was subjected to subsequent continuous anaerobic/aerobic oxidation, and 99.3% of total COD removal was achieved. The quality of the effluent obtained met the discharge standards of water pollutants for pharmaceutical industry Chemical Synthesis Products Category (GB21904-2008), and thereby it implies that the integrated CWAO and anaerobic/aerobic biological treatment may offer a promising process to treat wastewater from Vitamin B 6 production.
Quesada-Peñate, I; Julcour-Lebigue, C; Jáuregui-Haza, U J; Wilhelm, A M; Delmas, H
2012-06-30
The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties. Copyright © 2012 Elsevier B.V. All rights reserved.
Catalytic Wastewater Treatment Using Pillared Clays
NASA Astrophysics Data System (ADS)
Perathoner, Siglinda; Centi, Gabriele
After introduction on the use of solid catalysts in wastewater treatment technologies, particularly advanced oxidation processes (AOPs), this review discussed the use of pillared clay (PILC) materials in three applications: (i) wet air catalytic oxidation (WACO), (ii) wet hydrogen peroxide catalytic oxidation (WHPCO) on Cu-PILC and Fe-PILC, and (iii) behavior of Ti-PILC and Fe-PILC in the photocatalytic or photo-Fenton conversion of pollutants. Literature data are critically analyzed to evidence the main direction to further investigate, in particularly with reference to the possible practical application of these technologies to treat industrial, municipal, or agro-food production wastewater.
Reaction mechanisms at 4H-SiC/SiO2 interface during wet SiC oxidation
NASA Astrophysics Data System (ADS)
Akiyama, Toru; Hori, Shinsuke; Nakamura, Kohji; Ito, Tomonori; Kageshima, Hiroyuki; Uematsu, Masashi; Shiraishi, Kenji
2018-04-01
The reaction processes at the interface between SiC with 4H structure (4H-SiC) and SiO2 during wet oxidation are investigated by electronic structure calculations within the density functional theory. Our calculations for 4H-SiC/SiO2 interfaces with various orientations demonstrate characteristic features of the reaction depending on the crystal orientation of SiC: On the Si-face, the H2O molecule is stable in SiO2 and hardly reacts with the SiC substrate, while the O atom of H2O can form Si-O bonds at the C-face interface. Two OH groups are found to be at least necessary for forming new Si-O bonds at the Si-face interface, indicating that the oxidation rate on the Si-face is very low compared with that on the C-face. On the other hand, both the H2O molecule and the OH group are incorporated into the C-face interface, and the energy barrier for OH is similar to that for H2O. By comparing the calculated energy barriers for these reactants with the activation energies of oxide growth rate, we suggest the orientation-dependent rate-limiting processes during wet SiC oxidation.
Torabifard, Mina; Arjmandi, Reza; Rashidi, Alimorad; Nouri, Jafar; Mohammadfam, Iraj
2018-01-10
The health and environmental effects of chemical processes can be assessed during the initial stage of their production. In this paper, the Chemical Screening Tool for Exposure and Environmental Release (ChemSTEER) software was used to compare the health and environmental risks of spray pyrolysis and wet chemical techniques for the fabrication of nanostructured metal oxide on a semi-industrial scale with a capacity of 300 kg/day in Iran. The pollution sources identified in each production process were pairwise compared in Expert Choice software using indicators including respiratory damage, skin damage, and environmental damages including air, water, and soil pollution. The synthesis of nanostructured zinc oxide using the wet chemical technique (with 0.523 wt%) leads to lower health and environmental risks compared to when spray pyrolysis is used (with 0.477 wt%). The health and environmental risk assessment of nanomaterial production processes can help select safer processes, modify the operation conditions, and select or modify raw materials that can help eliminate the risks.
Vega, Esther; Martin, Maria J; Gonzalez-Olmos, Rafael
2014-08-01
The effectiveness of different advanced oxidation processes on the treatment of a multicomponent aqueous solution containing ethyl mercaptan, dimethyl sulphide and dimethyl disulphide (0.5 mg L(-1) of each sulphur compound) was investigated with the objective to assess which one is the most suitable treatment to be coupled in wet scrubbers used in odour treatment facilities. UV/H2O2, Fenton, photo-Fenton and ozone treatments were tested at mild conditions and the oxidation efficiency obtained was compared. The oxidation tests were carried out in magnetically stirred cylindrical quartz reactors using the same molar concentration of oxidants (hydrogen peroxide or ozone). The results show that ozone and photo-Fenton are the most efficient treatments, achieving up to 95% of sulphur compounds oxidation and a mineralisation degree around 70% in 10 min. Furthermore, the total costs of the treatments taking into account the capital and operational costs were also estimated for a comparative purpose. The economic analysis revealed that the Fenton treatment is the most economical option to be integrated in a wet scrubber to remove volatile organic sulphur compounds, as long as there are no space constraints to install the required reactor volume. In the case of reactor volume limitation or retrofitting complexities, the ozone and photo-Fenton treatments should be considered as viable alternatives. Copyright © 2014 Elsevier Ltd. All rights reserved.
Christopher G. Hunt; Steven Lacher; Kolby Hirth; Linda Lorenz; Kenneth E. Hammel
2017-01-01
The mechanisms by which chemical modifications, specifically acetylation, improve the decay resistance of wood are a topic of active research. In the early stages of decay, fungi secrete lowmolecular- weight oxidants or oxidant precursors. These oxidants diffuse through the wet wood cell wall and oxidize cell wall polymers, which enable the decay process to proceed....
Wet-cupping removes oxidants and decreases oxidative stress.
Tagil, Suleyman Murat; Celik, Huseyin Tugrul; Ciftci, Sefa; Kazanci, Fatmanur Hacievliyagil; Arslan, Muzeyyen; Erdamar, Nazan; Kesik, Yunus; Erdamar, Husamettin; Dane, Senol
2014-12-01
Wet-cupping therapy is one of the oldest known medical techniques. Although it is widely used in various conditions such as acute\\chronic inflammation, infectious diseases, and immune system disorders, its mechanism of action is not fully known. In this study, we investigated the oxidative status as the first step to elucidate possible mechanisms of action of wet cupping. Wet cupping therapy is implemented to 31 healthy volunteers. Venous blood samples and Wet cupping blood samples were taken concurrently. Serum nitricoxide, malondialdehyde levels and activity of superoxide dismutase and myeloperoxidase were measured spectrophotometrically. Wet cupping blood had higher activity of myeloperoxidase, lower activity of superoxide dismutase, higher levels of malondialdehyde and nitricoxide compared to the venous blood. Wet cupping removes oxidants and decreases oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.
Making Activated Carbon by Wet Pressurized Pyrolysis
NASA Technical Reports Server (NTRS)
Fisher, John W.; Pisharody, Suresh; Wignarajah, K.; Moran, Mark
2006-01-01
A wet pressurized pyrolysis (wet carbonization) process has been invented as a means of producing activated carbon from a wide variety of inedible biomass consisting principally of plant wastes. The principal intended use of this activated carbon is room-temperature adsorption of pollutant gases from cooled incinerator exhaust streams. Activated carbon is highly porous and has a large surface area. The surface area depends strongly on the raw material and the production process. Coconut shells and bituminous coal are the primary raw materials that, until now, were converted into activated carbon of commercially acceptable quality by use of traditional production processes that involve activation by use of steam or carbon dioxide. In the wet pressurized pyrolysis process, the plant material is subjected to high pressure and temperature in an aqueous medium in the absence of oxygen for a specified amount of time to break carbon-oxygen bonds in the organic material and modify the structure of the material to obtain large surface area. Plant materials that have been used in demonstrations of the process include inedible parts of wheat, rice, potato, soybean, and tomato plants. The raw plant material is ground and mixed with a specified proportion of water. The mixture is placed in a stirred autoclave, wherein it is pyrolized at a temperature between 450 and 590 F (approximately between 230 and 310 C) and a pressure between 1 and 1.4 kpsi (approximately between 7 and 10 MPa) for a time between 5 minutes and 1 hour. The solid fraction remaining after wet carbonization is dried, then activated at a temperature of 500 F (260 C) in nitrogen gas. The activated carbon thus produced is comparable to commercial activated carbon. It can be used to adsorb oxides of sulfur, oxides of nitrogen, and trace amounts of hydrocarbons, any or all of which can be present in flue gas. Alternatively, the dried solid fraction can be used, even without the activation treatment, to absorb oxides of nitrogen.
Removal of organic dyes using Cr-containing activated carbon prepared from leather waste.
Oliveira, Luiz C A; Coura, Camila Van Zanten; Guimarães, Iara R; Gonçalves, Maraisa
2011-09-15
In this work, hydrogen peroxide decomposition and oxidation of organics in aqueous medium were studied in the presence of activated carbon prepared from wet blue leather waste. The wet blue leather waste, after controlled pyrolysis under CO(2) flow, was transformed into chromium-containing activated carbons. The carbon with Cr showed high microporous surface area (up to 889 m(2)g(-1)). Moreover, the obtained carbon was impregnated with nanoparticles of chromium oxide from the wet blue leather. The chromium oxide was nanodispersed on the activated carbon, and the particle size increased with the activation time. It is proposed that these chromium species on the carbon can activate H(2)O(2) to generate HO radicals, which can lead to two competitive reactions, i.e. the hydrogen peroxide decomposition or the oxidation of organics in water. In fact, in this work we observed that activated carbon obtained from leather waste presented high removal of methylene blue dye combining the adsorption and oxidation processes. Copyright © 2011 Elsevier B.V. All rights reserved.
Oxidation resistant slurry coating for carbon-based materials
NASA Technical Reports Server (NTRS)
Smialek, J. L.; Rybicki, G. C. (Inventor)
1985-01-01
An oxidation resistant coating is produced on carbon-base materials, and the same processing step effects an infiltration of the substrate with silicon containing material. The process comprises making a slurry of nickel and silicon powders in a nitrocellulose lacquer, spraying onto the graphite or carbon-carbon substrate, and sintering in vacuum to form a fused coating that wets and covers the surface as well as penetrates into the pores of the substrate. Optimum wetting and infiltration occurs in the range of Ni-60 w/o Si to Ni-90 w/o Si with deposited thicknesses of 25-100 mg/sq. cm. Sintering temperatures of about 1200 C to about 1400 C are used, depending on the melting point of the specific coating composition. The sintered coating results in Ni-Si intermetallic phases and SiC, both of which are highly oxidation resistant.
Evaluations of catalysts for wet oxidation waste management in CELSS
NASA Astrophysics Data System (ADS)
Oguchi, Mitsuo; Nitta, Keiji
1992-11-01
A wet oxidation method is considered to be one of the most effective methods of waste processing and recycling in CELSS (Controlled Ecological Life Support System). The first test using rabbit waste as raw material was conducted under a decomposition temperature of 280 °C for 30 minutes and an initial pure oxygen pressure of 4.9 MPa (50 kgf/cm2) before heating, and the following results were obtained. The value of COD (Chemical Oxygen Demand) was reduced 82.5 % by the wet oxidation. And also the Kjeldahl nitrogen concentration was decreased 98.8%. However, the organic carbon compound in the residual solution was almost acetic acid and ammonia was produced. In order to activate the oxidation more strongly, the second tests using catalysts such as Pd, Ru and Ru+Rh were conducted. As the results of these tests, the effectiveness of catalysts for oxidizing raw material ws shown as follows: COD and the Kjeldahl nitrogen values were drastically decreased 99.65 % and 99.88 %, respectively. Furthermore, the quantity of acetic acid and ammonia were reduced considerably. On the other hand, nitrate was showed a value 30 times as much as without catalytic oxidation.
Design for application of the DETOX{sup SM} wet oxidation process to mixed wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, R.A.; Dhooge, P.M.
1994-04-01
Conceptual engineering has been performed for application of the DETOX{sup SM} wet oxidation process to treatment of specific mixed waste types. Chemical compositions, mass balances, energy balances, temperatures, pressures, and flows have been used to define design parameters for treatment units capable of destroying 5. Kg per hour of polychlorinated biphenyls and 25. Kg per hour of tributyl phosphate. Equipment for the units has been sized and materials of construction have been specified. Secondary waste streams have been defined. Environmental safety and health issues in design have been addressed. Capital and operating costs have been estimated based on the conceptualmore » designs.« less
Reductive stripping process for the recovery of uranium from wet-process phosphoric acid
Hurst, Fred J.; Crouse, David J.
1984-01-01
A reductive stripping flow sheet for recovery of uranium from wet-process phosphoric acid is described. Uranium is stripped from a uranium-loaded organic phase by a redox reaction converting the uranyl to uranous ion. The uranous ion is reoxidized to the uranyl oxidation state to form an aqueous feed solution highly concentrated in uranium. Processing of this feed through a second solvent extraction cycle requires far less stripping reagent as compared to a flow sheet which does not include the reductive stripping reaction.
This EnviroAtlas dataset includes annual nitrogen and sulfur deposition within each 12-digit HUC subwatershed for the year 2002. Values are provided for total oxidized nitrogen (HNO3, NO, NO2, N2O5, NH3, HONO, PAN, organic nitrogen, and particulate NO3), oxidized nitrogen wet deposition, oxidized nitrogen dry deposition, total reduced nitrogen (NH3 and particulate NH4), reduced nitrogen dry deposition, reduced nitrogen wet deposition, total dry nitrogen deposition, total wet nitrogen deposition, total nitrogen deposition (wet+dry), total sulfur (SO2 + particulate SO4) dry deposition, total sulfur wet deposition, and total sulfur deposition. The dataset is based on output from the Community Multiscale Air Quality modeling system (CMAQ) v5.0.2 run using the bidirectional flux option for the 12-km grid size for the US, Canada, and Mexico. The CMAQ output has been post-processed to adjust the wet deposition for errors in the location and amount of precipitation and for regional biases in the TNO3 (HNO3 + NO3), NHx (NH4 + NH3), and sulfate wet deposition. Model predicted values of dry deposition were not adjusted. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadab
This EnviroAtlas dataset includes annual nitrogen and sulfur deposition within each 12-digit HUC subwatershed for the year 2011. Values are provided for total oxidized nitrogen (HNO3, NO, NO2, N2O5, NH3, HONO, PAN, organic nitrogen, and particulate NO3), oxidized nitrogen wet deposition, oxidized nitrogen dry deposition, total reduced nitrogen (NH3 and particulate NH4), reduced nitrogen dry deposition, reduced nitrogen wet deposition, total dry nitrogen deposition, total wet nitrogen deposition, total nitrogen deposition (wet+dry), total sulfur (SO2 + particulate SO4) dry deposition, total sulfur wet deposition, and total sulfur deposition. The dataset is based on output from the Community Multiscale Air Quality modeling system (CMAQ) run using the bidirectional flux option for the 12-km grid size for the US, Canada, and Mexico. The CMAQ output has been post-processed to adjust the wet deposition for errors in the location and amount of precipitation and for regional biases in the TNO3 (HNO3 + NO3), NHx (NH4 + NH3), and sulfate wet deposition. Model predicted values of dry deposition were not adjusted. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data
This EnviroAtlas dataset includes annual nitrogen and sulfur deposition within each 12-digit HUC subwatershed for the year 2006. Values are provided for total oxidized nitrogen (HNO3, NO, NO2, N2O5, NH3, HONO, PAN, organic nitrogen, and particulate NO3), oxidized nitrogen wet deposition, oxidized nitrogen dry deposition, total reduced nitrogen (NH3 and particulate NH4), reduced nitrogen dry deposition, reduced nitrogen wet deposition, total dry nitrogen deposition, total wet nitrogen deposition, total nitrogen deposition (wet+dry), total sulfur (SO2 + particulate SO4) dry deposition, total sulfur wet deposition, and total sulfur deposition. The dataset is based on output from the Community Multiscale Air Quality modeling system (CMAQ) run using the bidirectional flux option for the 12-km grid size for the US, Canada, and Mexico. The CMAQ output has been post-processed to adjust the wet deposition for errors in the location and amount of precipitation and for regional biases in the TNO3 (HNO3 + NO3), NHx (NH4 + NH3), and sulfate wet deposition. Model predicted values of dry deposition were not adjusted. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable dat
Growth and surface analysis of SiO2 on 4H-SiC for MOS devices
NASA Astrophysics Data System (ADS)
Kodigala, Subba Ramaiah; Chattopadhyay, Somnath; Overton, Charles; Ardoin, Ira; Gordon, B. J.; Johnstone, D.; Roy, D.; Barone, D.
2015-03-01
The SiO2 layers have been grown onto C-face and Si-face 4H-SiC substrates by two different techniques such as wet thermal oxidize process and sputtering. The deposition recipes of these techniques are carefully optimized by trails and error method. The growth effects of SiO2 on the C-face and Si-face 4H-SiC substrates are thoroughly investigated by AFM analysis. The growth mechanism of different species involved in the growth process of SiO2 by wet thermal oxide is now proposed by adopting two body classical projectile scattering. This mechanism drives to determine growth of secondary phases such as α-CH nano-islands in the grown SiO2 layer. The effect of HF etchings on the SiO2 layers grown by both techniques and on both the C-face and Si-face substrates are legitimately studied. The thicknesses of the layers determined by AFM and ellipsometry techniques are widely promulgated. The MOS capacitors are made on the Si-face 4H-SiC wafers by wet oxidation and sputtering processes, which are studied by capacitance versus voltage (CV) technique. From CV measurements, the density of trap states with variation of trap level for MOS devices is estimated.
Thermally grown oxide and diffusions for automatic processing of integrated circuits
NASA Technical Reports Server (NTRS)
Kennedy, B. W.
1979-01-01
A totally automated facility for semiconductor oxidation and diffusion was developed using a state-of-the-art diffusion furnace and high temperature grown oxides. Major innovations include: (1) a process controller specifically for semiconductor processing; (2) an automatic loading system to accept wafers from an air track, insert them into a quartz carrier and then place the carrier on a paddle for insertion into the furnace; (3) automatic unloading of the wafers back onto the air track, and (4) boron diffusion using diborane with plus or minus 5 percent uniformity. Processes demonstrated include Wet and dry oxidation for general use and for gate oxide, boron diffusion, phosphorous diffusion, and sintering.
40 CFR Appendix I to Part 265 - Recordkeeping Instructions
Code of Federal Regulations, 2014 CFR
2014-07-01
... T10Infrared furnace incinerator T11Molten salt destructor T12Pyrolysis T13Wet Air oxidation T14Calcination... T21Chemical fixation T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination... Chloride Process Oxidation Reactor T89Methane Reforming Furnace T90Pulping Liquor Recovery Furnace...
40 CFR Appendix I to Part 265 - Recordkeeping Instructions
Code of Federal Regulations, 2011 CFR
2011-07-01
... T10Infrared furnace incinerator T11Molten salt destructor T12Pyrolysis T13Wet Air oxidation T14Calcination... T21Chemical fixation T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination... Chloride Process Oxidation Reactor T89Methane Reforming Furnace T90Pulping Liquor Recovery Furnace...
40 CFR Appendix I to Part 265 - Recordkeeping Instructions
Code of Federal Regulations, 2013 CFR
2013-07-01
... T10Infrared furnace incinerator T11Molten salt destructor T12Pyrolysis T13Wet Air oxidation T14Calcination... T21Chemical fixation T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination... Chloride Process Oxidation Reactor T89Methane Reforming Furnace T90Pulping Liquor Recovery Furnace...
40 CFR Appendix I to Part 264 - Recordkeeping Instructions
Code of Federal Regulations, 2011 CFR
2011-07-01
... incinerator T11Molten salt destructor T12Pyrolysis T13Wet air oxidation T14Calcination T15Microwave discharge... T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination T26Chlorinolysis... Furnace T87Smelting, Melting, or Refining Furnace T88Titanium Dioxide Chloride Process Oxidation Reactor...
40 CFR Appendix I to Part 264 - Recordkeeping Instructions
Code of Federal Regulations, 2012 CFR
2012-07-01
... incinerator T11Molten salt destructor T12Pyrolysis T13Wet air oxidation T14Calcination T15Microwave discharge... T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination T26Chlorinolysis... Furnace T87Smelting, Melting, or Refining Furnace T88Titanium Dioxide Chloride Process Oxidation Reactor...
40 CFR Appendix I to Part 264 - Recordkeeping Instructions
Code of Federal Regulations, 2013 CFR
2013-07-01
... incinerator T11Molten salt destructor T12Pyrolysis T13Wet air oxidation T14Calcination T15Microwave discharge... T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination T26Chlorinolysis... Furnace T87Smelting, Melting, or Refining Furnace T88Titanium Dioxide Chloride Process Oxidation Reactor...
40 CFR Appendix I to Part 265 - Recordkeeping Instructions
Code of Federal Regulations, 2012 CFR
2012-07-01
... T10Infrared furnace incinerator T11Molten salt destructor T12Pyrolysis T13Wet Air oxidation T14Calcination... T21Chemical fixation T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination... Chloride Process Oxidation Reactor T89Methane Reforming Furnace T90Pulping Liquor Recovery Furnace...
40 CFR Appendix I to Part 264 - Recordkeeping Instructions
Code of Federal Regulations, 2014 CFR
2014-07-01
... incinerator T11Molten salt destructor T12Pyrolysis T13Wet air oxidation T14Calcination T15Microwave discharge... T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination T26Chlorinolysis... Furnace T87Smelting, Melting, or Refining Furnace T88Titanium Dioxide Chloride Process Oxidation Reactor...
Spin-on metal oxide materials with high etch selectivity and wet strippability
NASA Astrophysics Data System (ADS)
Yao, Huirong; Mullen, Salem; Wolfer, Elizabeth; McKenzie, Douglas; Rahman, Dalil; Cho, JoonYeon; Padmanaban, Munirathna; Petermann, Claire; Hong, SungEun; Her, YoungJun
2016-03-01
Metal oxide or metal nitride films are used as hard mask materials in semiconductor industry for patterning purposes due to their excellent etch resistances against the plasma etches. Chemical vapor deposition (CVD) or atomic layer deposition (ALD) techniques are usually used to deposit the metal containing materials on substrates or underlying films, which uses specialized equipment and can lead to high cost-of-ownership and low throughput. We have reported novel spin-on coatings that provide simple and cost effective method to generate metal oxide films possessing good etch selectivity and can be removed by chemical agents. In this paper, new spin-on Al oxide and Zr oxide hard mask formulations are reported. The new metal oxide formulations provide higher metal content compared to previously reported material of specific metal oxides under similar processing conditions. These metal oxide films demonstrate ultra-high etch selectivity and good pattern transfer capability. The cured films can be removed by various chemical agents such as developer, solvents or wet etchants/strippers commonly used in the fab environment. With high metal MHM material as an underlayer, the pattern transfer process is simplified by reducing the number of layers in the stack and the size of the nano structure is minimized by replacement of a thicker film ACL. Therefore, these novel AZ® spinon metal oxide hard mask materials can potentially be used to replace any CVD or ALD metal, metal oxide, metal nitride or spin-on silicon-containing hard mask films in 193 nm or EUV process.
Technological and life cycle assessment of organics processing odour control technologies.
Bindra, Navin; Dubey, Brajesh; Dutta, Animesh
2015-09-15
As more municipalities and communities across developed world look towards implementing organic waste management programmes or upgrading existing ones, composting facilities are emerging as a popular choice. However, odour from these facilities continues to be one of the most important concerns in terms of cost & effective mitigation. This paper provides a technological and life cycle assessment of some of the different odour control technologies and treatment methods that can be implemented in organics processing facilities. The technological assessment compared biofilters, packed tower wet scrubbers, fine mist wet scrubbers, activated carbon adsorption, thermal oxidization, oxidization chemicals and masking agents. The technologies/treatment methods were evaluated and compared based on a variety of operational, usage and cost parameters. Based on the technological assessment it was found that, biofilters and packed bed wet scrubbers are the most applicable odour control technologies for use in organics processing faculties. A life cycle assessment was then done to compare the environmental impacts of the packed-bed wet scrubber system, organic (wood-chip media) bio-filter and inorganic (synthetic media) bio-filter systems. Twelve impact categories were assessed; cumulative energy demand (CED), climate change, human toxicity, photochemical oxidant formation, metal depletion, fossil depletion, terrestrial acidification, freshwater eutrophication, marine eutrophication, terrestrial eco-toxicity, freshwater eco-toxicity and marine eco-toxicity. The results showed that for all impact categories the synthetic media biofilter had the highest environmental impact, followed by the wood chip media bio-filter system. The packed-bed system had the lowest environmental impact for all categories. Copyright © 2015 Elsevier B.V. All rights reserved.
Srinivas, Keerthi; de Carvalho Oliveira, Fernanda; Teller, Philip Johan; Gonҫalves, Adilson Roberto; Helms, Gregory L; Ahring, Birgitte Kaer
2016-12-01
Harvested forest residues are usually considered a fire hazards and used as "hog-fuel" which results in air pollution. In this study, the biorefinery lignin stream obtained after wet explosion pretreatment and enzymatic hydrolysis of forestry residues of Douglas Fir (FS-10) was characterized and further wet oxidized under alkaline conditions. The studies indicated that at 10% solids, 11.7wt% alkali and 15min residence time, maximum yields were obtained for glucose (12.9wt%), vanillin (0.4wt%) at 230°C; formic acid (11.6wt%) at 250°C; acetic acid (10.7wt%), hydroxybenzaldehyde (0.2wt%), syringaldehyde (0.13wt%) at 280°C; and lactic acid (12.4wt%) at 300°C. FTIR analysis of the solid residue after wet oxidation showed that the aromatic skeletal vibrations relating to lignin compounds increased with temperature indicating that higher severity could result in increased lignin oxidation products. The results obtained, as part of the study, is significant for understanding and optimizing processes for producing high-value bioproducts from forestry residues. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fabrication of Aligned Polyaniline Nanofiber Array via a Facile Wet Chemical Process.
Sun, Qunhui; Bi, Wu; Fuller, Thomas F; Ding, Yong; Deng, Yulin
2009-06-17
In this work, we demonstrate for the first time a template free approach to synthesize aligned polyaniline nanofiber (PN) array on a passivated gold (Au) substrate via a facile wet chemical process. The Au surface was first modified using 4-aminothiophenol (4-ATP) to afford the surface functionality, followed subsequently by an oxidation polymerization of aniline (AN) monomer in an aqueous medium using ammonium persulfate as the oxidant and tartaric acid as the doping agent. The results show that a vertically aligned PANI nanofiber array with individual fiber diameters of ca. 100 nm, heights of ca. 600 nm and a packing density of ca. 40 pieces·µm(-2) , was synthesized. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sources of nitric oxide and nitrous oxide following wetting of dry soil
NASA Technical Reports Server (NTRS)
Davidson, Eric A.
1992-01-01
A study is presented which is aimed at distinguishing among autotrophic nitrification, denitrification, and abiological processes as sources of NO and N2O production following wetting of dry soil. To distinguish among these processes, combinations of treatments in laboratory incubations of soil were used which included varying soil water content, autoclaving, C2H2 inhibition, and NO2(-) addition. Biological sources of NO and N2O commenced within minutes of wetting dry soil. Acetylene inhibition revealed that emissions of NO were dependent on nitrification, although a combination of NO2(-) production by nitrifiers and abiological reduction of NO2(-) to NO is also possible. NO emissions exceeded N2O emissions, and nitrification was the dominant source of both gases when soil water was below field capacity. It is concluded that NO emissions appear to be more important when good soil aeration favors nitrification, whereas N2O emissions appear more important when elevated soil water favors denitrification.
Shearing, Paul R.; Brightman, Edward; Brett, Dan J. L.; Brandon, Nigel P.; Cohen, Lesley F.
2016-01-01
The redox properties of gadolinium doped ceria (CGO) and nickel oxide (NiO) composite cermets underpin the operation of solid oxide electrochemical cells. Although these systems have been widely studied, a full comprehension of the reaction dynamics at the interface of these materials is lacking. Here, in situ Raman spectroscopic monitoring of the redox cycle is used to investigate the interplay between the dynamic and competing processes of hydrogen spillover and water dissociation on the doped ceria surface. In order to elucidate these mechanisms, the redox process in pure CGO and NiO is studied when exposed to wet and dry hydrogen and is compared to the cermet behavior. In dry hydrogen, CGO reduces relatively rapidly via a series of intermediate phases, while NiO reduces via a single‐step process. In wet reducing atmospheres, however, the oxidation state of pure CGO is initially stabilized due to the dissociation of water by reduced Ce(III) and subsequent incorporation of oxygen into the structure. In the reduction process involving the composite cermet, the close proximity of the NiO improves the efficiency and speed of the composite reduction process. Although NiO is already incorporated into working cells, these observations suggest direct routes to further improve cell performance. PMID:27595058
Maher, Robert C; Shearing, Paul R; Brightman, Edward; Brett, Dan J L; Brandon, Nigel P; Cohen, Lesley F
2016-01-01
The redox properties of gadolinium doped ceria (CGO) and nickel oxide (NiO) composite cermets underpin the operation of solid oxide electrochemical cells. Although these systems have been widely studied, a full comprehension of the reaction dynamics at the interface of these materials is lacking. Here, in situ Raman spectroscopic monitoring of the redox cycle is used to investigate the interplay between the dynamic and competing processes of hydrogen spillover and water dissociation on the doped ceria surface. In order to elucidate these mechanisms, the redox process in pure CGO and NiO is studied when exposed to wet and dry hydrogen and is compared to the cermet behavior. In dry hydrogen, CGO reduces relatively rapidly via a series of intermediate phases, while NiO reduces via a single-step process. In wet reducing atmospheres, however, the oxidation state of pure CGO is initially stabilized due to the dissociation of water by reduced Ce(III) and subsequent incorporation of oxygen into the structure. In the reduction process involving the composite cermet, the close proximity of the NiO improves the efficiency and speed of the composite reduction process. Although NiO is already incorporated into working cells, these observations suggest direct routes to further improve cell performance.
NASA Astrophysics Data System (ADS)
Gusman, M. H.; Sastroredjo, P. N. E.; Prawisudha, P.; Hardianto, T.; Pasek, A. D.
2017-05-01
Less utilized empty fruit bunch (EFB) is seldom used as solid biofuel due to its high alkali content that potentially cause ash deposit called slagging and fouling. This phenomenon could harm biomass-fired power plant equipment. Some pre-treatment of EFB is needed to reduce EFB ash deposit potential. The effect of wet torrefaction pre-treatment in laboratory scale was successfully proven in decreasing slagging and fouling potential while increasing EFB calorific value that could fulfill clean solid fuel criteria. This research focuses on wet torrefaction process that conducted on a pilot scale with the capacity of 250 liters. It was found that wet torrefaction process can improve the product’s calorific value up to 9.41% while reduce its ash content down to 1.01% comparing to the raw EFB. The reduction of ash content also leads to the reduction of slagging and fouling tendency that presents in terms of alkali index. Alkali index is a quantitative method that can be calculated after obtaining metal oxides fraction on solid fuel. Metal oxides could be obtained by using energy dispersive x-ray spectroscopy.
Wet oxidation of GeSi strained layers by rapid thermal processing
NASA Astrophysics Data System (ADS)
Nayak, D. K.; Kamjoo, K.; Park, J. S.; Woo, J. C. S.; Wang, K. L.
1990-07-01
A cold-wall rapid thermal processor is used for the wet oxidation of the commensurately grown GexSi1-x layers on Si substrates. The rate of oxidation of the GexSi1-x layer is found to be significantly higher than that of pure Si, and the oxidation rate increases with the increase in the Ge content in GexSi1-x layer. The oxidation rate of GexSi1-x appears to decrease with increasing oxidation time for the time-temperature cycles considered here. Employing high-frequency and quasi-static capacitance-voltage measurements, it is found that a fixed negative oxide charge density in the range of 1011- 1012/cm2 and the interface trap level density (in the mid-gap region) of about 1012/cm2 eV are present. Further, the density of this fixed interface charge at the SiO2/GeSi interface is found to increase with the Ge concentration in the commensurately grown GeSi layers.
NASA Astrophysics Data System (ADS)
Vivanco, M. G.; Bessagnet, B.; Cuvelier, C.; Theobald, M. R.; Tsyro, S.; Pirovano, G.; Aulinger, A.; Bieser, J.; Calori, G.; Ciarelli, G.; Manders, A.; Mircea, M.; Aksoyoglu, S.; Briganti, G.; Cappelletti, A.; Colette, A.; Couvidat, F.; D'Isidoro, M.; Kranenburg, R.; Meleux, F.; Menut, L.; Pay, M. T.; Rouïl, L.; Silibello, C.; Thunis, P.; Ung, A.
2017-02-01
In the framework of the UNECE Task Force on Measurement and Modelling (TFMM) under the Convention on Long-range Transboundary Air Pollution (LRTAP), the EURODELTAIII project is evaluating how well air quality models are able to reproduce observed pollutant air concentrations and deposition fluxes in Europe. In this paper the sulphur and nitrogen deposition estimates of six state-of-the-art regional models (CAMx, CHIMERE, EMEP MSC-W, LOTOS-EUROS, MINNI and CMAQ) are evaluated and compared for four intensive EMEP measurement periods (25 Feb-26 Mar 2009; 17 Sep-15 Oct 2008; 8 Jan-4 Feb 2007 and 1-30 Jun 2006). For sulphur, this study shows the importance of including sea salt sulphate emissions for obtaining better model results; CMAQ, the only model considering these emissions in its formulation, was the only model able to reproduce the high measured values of wet deposition of sulphur at coastal sites. MINNI and LOTOS-EUROS underestimate sulphate wet deposition for all periods and have low wet deposition efficiency for sulphur. For reduced nitrogen, all the models underestimate both wet deposition and total air concentrations (ammonia plus ammonium) in the summer campaign, highlighting a potential lack of emissions (or incoming fluxes) in this period. In the rest of campaigns there is a general underestimation of wet deposition by all models (MINNI and CMAQ with the highest negative bias), with the exception of EMEP, which underestimates the least and even overestimates deposition in two campaigns. This model has higher scavenging deposition efficiency for the aerosol component, which seems to partly explain the different behaviour of the models. For oxidized nitrogen, CMAQ, CAMx and MINNI predict the lowest wet deposition and the highest total air concentrations (nitric acid plus nitrates). Comparison with observations indicates a general underestimation of wet oxidized nitrogen deposition by these models, as well as an overestimation of total air concentration for all the campaigns, except for the 2006 campaign. This points to a low efficiency in the wet deposition of oxidized nitrogen for these models, especially with regards to the scavenging of nitric acid, which is the main driver of oxidized N deposition for all the models. CHIMERE, LOTOS-EUROS and EMEP agree better with the observations for both wet deposition and air concentration of oxidized nitrogen, although CHIMERE seems to overestimate wet deposition in the summer period. This requires further investigation, as the gas-particle equilibrium seems to be biased towards the gas phase (nitric acid) for this model. In the case of MINNI, the frequent underestimation of wet deposition combined with an overestimation of atmospheric concentrations for the three pollutants indicates a low efficiency of the wet deposition processes. This can be due to several reasons, such as an underestimation of scavenging ratios, large vertical concentration gradients (resulting in small concentrations at cloud height) or a poor parameterization of clouds. Large differences between models were also found for the estimates of dry deposition. However, the lack of suitable measurements makes it impossible to assess model performance for this process. These uncertainties should be addressed in future research, since dry deposition contributes significantly to the total deposition for the three deposited species, with values in the same range as wet deposition for most of the models, and with even higher values for some of them, especially for reduced nitrogen.
Crovadore, Julien; Soljan, Vice; Calmin, Gautier; Chablais, Romain; Cochard, Bastien; Lefort, François
2017-10-01
Anaerobic digestion is a common method for reducing the amount of sludge solids in used waters and enabling biogas production. The wet oxidation process (WOX) improves anaerobic digestion by converting carbon into methane through oxidation of organic compounds. WOX produces effluents rich in ammonia, which must be removed to maintain the activity of methanogens. Ammonia removal from WOX could be biologically operated by aerobic granules. To this end, granulation experiments were conducted in 2 bioreactors containing an activated sludge (AS). For the first time, the dynamics of the microbial community structure and the expression levels of 7 enzymes of the nitrogen metabolism in such active microbial communities were followed in regard to time by metagenomics and metatranscriptomics. It was shown that bacterial communities adapt to the wet oxidation effluent by increasing the expression level of the nitrogen metabolism, suggesting that these biological activities could be a less costly alternative for the elimination of ammonia, resulting in a reduction of the use of chemicals and energy consumption in sewage plants. This study reached a strong sequencing depth (from 4.4 to 7.6 Gb) and enlightened a yet unknown diversity of the microorganisms involved in the nitrogen pathway. Moreover, this approach revealed the abundance and expression levels of specialised enzymes involved in nitrification, denitrification, ammonification, dissimilatory nitrate reduction to ammonium (DNRA) and nitrogen fixation processes in AS.
Catalytic wet-oxidation of a mixed liquid waste: COD and AOX abatement.
Goi, D; de Leitenburg, C; Trovarelli, A; Dolcetti, G
2004-12-01
A series of catalytic wet oxidation (CWO) reactions, at temperatures of 430-500 K and in a batch bench-top pressure vessel were carried out utilizing a strong wastewater composed of landfill leachate and heavily organic halogen polluted industrial wastewater. A CeO2-SiO2 mixed oxide catalyst with large surface area to assure optimal oxidation performance was prepared. The catalytic process was examined during batch reactions controlling Chemical Oxygen Demand (COD) and Adsorbable Organic Halogen (AOX) parameters, resulting AOX abatement to achieve better effect. Color and pH were also controlled during batch tests. A simple first order-two stage reaction behavior was supposed and verified with the considered parameters. Finally an OUR test was carried out to evaluate biodegradability changes of wastewater as a result of the catalytic reaction.
Pett-Ridge, Jennifer; Petersen, Dorthe G; Nuccio, Erin; Firestone, Mary K
2013-07-01
Ammonia oxidation is a key process in the global nitrogen cycle. However, in tropical soils, little is known about ammonia-oxidizing microorganisms and how characteristically variable oxygen regimes affect their activity. We investigated the influence of brief anaerobic periods on ammonia oxidation along an elevation, moisture, and oxygen availability gradient in wet tropical soils. Soils from three forest types were incubated for up to 36 weeks in lab microcosms under three regimes: (1) static aerobic; (2) static anaerobic; and (3) fluctuating (aerobic/anaerobic). Nitrification potential was measured in field-fresh soils and incubated soils. The native ammonia-oxidizing community was also characterized, based on diversity assessments (clone libraries) and quantification of the ammonia monooxygenase α-subunit (amoA) gene. These relatively low pH soils appear to be dominated by ammonia-oxidizing archaea (AOA), and AOA communities in the three soil types differed significantly in their ability to oxidize ammonia. Soils from an intermediate elevation, and those incubated with fluctuating redox conditions, tended to have the highest nitrification potential following an influx of oxygen, although all soils retained the capacity to nitrify even after long anoxic periods. Together, these results suggest that wet tropical soil AOA are tolerant of extended periods of anoxia. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
An analytical method for 14C in environmental water based on a wet-oxidation process.
Huang, Yan-Jun; Guo, Gui-Yin; Wu, Lian-Sheng; Zhang, Bing; Chen, Chao-Feng; Zhang, Hai-Ying; Qin, Hong-Juan; Shang-Guan, Zhi-Hong
2015-04-01
An analytical method for (14)C in environmental water based on a wet-oxidation process was developed. The method can be used to determine the activity concentrations of organic and inorganic (14)C in environmental water, or total (14)C, including in drinking water, surface water, rainwater and seawater. The wet-oxidation of the organic component allows the conversion of organic carbon to an inorganic form, and the extraction of the inorganic (14)C can be achieved by acidification and nitrogen purging. Environmental water with a volume of 20 L can be used for the wet-oxidation and extraction, and a detection limit of about 0.02 Bq/g(C) can be achieved for water with carbon content above 15 mg(C)/L, obviously lower than the natural level of (14)C in the environment. The collected carbon is sufficient for measurement with a low level liquid scintillation counter (LSC) for typical samples. Extraction or recovery experiments for inorganic carbon and organic carbon from typical materials, including analytical reagents of organic benzoquinone, sucrose, glutamic acid, nicotinic acid, humic acid, ethane diol, et cetera., were conducted with excellent results based on measurement on a total organic carbon analyzer and LSC. The recovery rate for inorganic carbon ranged tween 98.7%-99.0% with a mean of 98.9(± 0.1)%, for organic carbon recovery ranged between 93.8% and 100.0% with a mean of 97.1(± 2.6)%. Verification and an uncertainty budget of the method are also presented for a representative environmental water. The method is appropriate for (14)C analysis in environmental water, and can be applied also to the analysis of liquid effluent from nuclear facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lowering the environmental impact of high-kappa/ metal gate stack surface preparation processes
NASA Astrophysics Data System (ADS)
Zamani, Davoud
ABSTRACT Hafnium based oxides and silicates are promising high-κ dielectrics to replace SiO2 as gate material for state-of-the-art semiconductor devices. However, integrating these new high-κ materials into the existing complementary metal-oxide semiconductor (CMOS) process remains a challenge. One particular area of concern is the use of large amounts of HF during wet etching of hafnium based oxides and silicates. The patterning of thin films of these materials is accomplished by wet etching in HF solutions. The use of HF allows dissolution of hafnium as an anionic fluoride complex. Etch selectivity with respect to SiO2 is achieved by appropriately diluting the solutions and using slightly elevated temperatures. From an ESH point of view, it would be beneficial to develop methods which would lower the use of HF. The first objective of this study is to find new chemistries and developments of new wet etch methods to reduce fluoride consumption during wet etching of hafnium based high-κ materials. Another related issue with major environmental impact is the usage of large amounts of rinsing water for removal of HF in post-etch cleaning step. Both of these require a better understanding of the HF interaction with the high-κ surface during the etching, cleaning, and rinsing processes. During the rinse, the cleaning chemical is removed from the wafers. Ensuring optimal resource usage and cycle time during the rinse requires a sound understanding and quantitative description of the transport effects that dominate the removal rate of the cleaning chemicals from the surfaces. Multiple processes, such as desorption and re-adsorption, diffusion, migration and convection, all factor into the removal rate of the cleaning chemical during the rinse. Any of these processes can be the removal rate limiting process, the bottleneck of the rinse. In fact, the process limiting the removal rate generally changes as the rinse progresses, offering the opportunity to save resources. The second objective of this study is to develop new rinse methods to reduce water and energy usage during rinsing and cleaning of hafnium based high-κ materials in single wafer-cleaning tools. It is necessary to have a metrology method which can study the effect of all process parameters that affect the rinsing by knowing surface concentration of contaminants in patterned hafnium based oxides and silicate wafers. This has been achieved by the introduction of a metrology method at The University of Arizona which monitors the transport of contaminant concentrations inside micro- and nano- structures. This is the only metrology which will be able to provide surface concentration of contaminants inside hafnium based oxides and silicate micro-structures while the rinsing process is taking place. The goal of this research is to study the effect of various process parameters on rinsing of patterned hafnium based oxides and silicate wafers, and modify a metrology method for end point detection.
Catalytic wet-oxidation of human wastes produced in space: the effects of temperature elevation.
Takeda, N; Takahashi, Y
1992-01-01
The filtrate of non-catalytical wet-oxidation sewage sludge was wet-oxidized again at 290 degrees C and 300 degrees C with a Ru-Rh catalyst. At each temperature, repeated batch tests were carried out. Both oxidation and denitrification efficiency of organic matter in the raw material were studied. In the 16 times batch tests at 300 degrees C, high and stable oxidation occurred. 98.0% of organic carbon in the raw material was oxidized and 98.3% of organic nitrogen was denitrified. At 290 degrees C, though high and stable denitrification occurred, oxidation did not occur highly and stably. A catalytic wet-oxidation system studied at 300 degrees C will be useful as a waste management system for a human life support system, where almost all food is resupplied from the earth. This system can prevent organic waste accumulation in the life support system.
Solid waste treatment processes for space station
NASA Technical Reports Server (NTRS)
Marrero, T. R.
1983-01-01
The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.
Preparation of gallium nitride surfaces for atomic layer deposition of aluminum oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, A. J.; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093; Chagarov, E.
2014-09-14
A combined wet and dry cleaning process for GaN(0001) has been investigated with XPS and DFT-MD modeling to determine the molecular-level mechanisms for cleaning and the subsequent nucleation of gate oxide atomic layer deposition (ALD). In situ XPS studies show that for the wet sulfur treatment on GaN(0001), sulfur desorbs at room temperature in vacuum prior to gate oxide deposition. Angle resolved depth profiling XPS post-ALD deposition shows that the a-Al{sub 2}O{sub 3} gate oxide bonds directly to the GaN substrate leaving both the gallium surface atoms and the oxide interfacial atoms with XPS chemical shifts consistent with bulk-like charge.more » These results are in agreement with DFT calculations that predict the oxide/GaN(0001) interface will have bulk-like charges and a low density of band gap states. This passivation is consistent with the oxide restoring the surface gallium atoms to tetrahedral bonding by eliminating the gallium empty dangling bonds on bulk terminated GaN(0001)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debellefontaine, H.; Foussard, J.N.
2000-07-01
Aqueous wastes containing organic pollutants can be efficiently treated by wet air oxidation (WAO), i.e., oxidation (or combustion) by molecular oxygen in the liquid phase, at high temperature (200--325 C) and pressure (up to 175 bar). This method is suited to the elimination of special aqueous wastes from the chemical industry as well as to the treatment of domestic sludge. It is an enclosed process, with a limited interaction with the environment, as opposed to incineration. Usually, the operating cost is lower than 95 Euro M{sup {minus}3} and the preferred COD load ranges from 10 to 80 kg m{sup {minus}3}.more » Only a handful of industrial reactors are in operation world-wide, mainly because of the high capital investment they require. This paper reviews the major results obtained with the WAO process and assess its field of possible application to industrial wastes. In addition, as only a very few studies have been devoted to the scientific design of such reactors (bubble columns), what needs to be known for this scientific design is discussed. At present, a computer program aimed at determining the performance of a wet air oxidation reactor depending on the various operating parameters has been implemented at the laboratory. Some typical results are presented, pointing out the most important parameters and the specific behavior of these units.« less
NASA Astrophysics Data System (ADS)
Liu, J.; Wang, J.; Wang, H.; Zhu, L.; Wu, W.
2017-06-01
Lower Ti/Al/Ni/Au Ohmic contact resistance on AlGaN/GaN with wider rapid thermal annealing (RTA) temperature window was achieved using recessed Ohmic contact structure based on self-terminating thermal oxidation assisted wet etching technique (STOAWET), in comparison with conventional Ohmic contacts. Even at lower temperature such as 650°C, recessed structure by STOAWET could still obtain Ohmic contact with contact resistance of 1.97Ω·mm, while conventional Ohmic structure mainly featured as Schottky contact. Actually, both Ohmic contact recess and mesa isolation processes could be accomplished by STOAWET in one process step and the process window of STOAWET is wide, simplifying AlGaN/GaN HEMT device process. Our experiment shows that the isolation leakage current by STOAWET is about one order of magnitude lower than that by inductivity coupled plasma (ICP) performed on the same wafer.
Li, Yanhui; Sun, Jiankun; Du, Qiuju; Zhang, Luhui; Yang, Xiaoxia; Wu, Shaoling; Xia, Yanzhi; Wang, Zonghua; Xia, Linhua; Cao, Anyuan
2014-02-15
Graphene oxide/chitosan composite fibers were prepared by a wet spinning method, and their mechanical properties were investigated. Experimental results showed that the introduction of graphene oxide at 4 wt% loading can improve the tensile strengths of chitosan fibers. Batch adsorption experiments were carried out to study the effect of various parameters, such as the initial pH value, adsorbent dosage, contact time and temperature on adsorption of fuchsin acid dye. The Langmuir model was used to fit the experimental data of adsorption isotherm, and kinetic studies showed that the adsorption data followed the pseudo-second order model. Thermodynamic studies indicated that the adsorption of fuchsin acid dye on graphene oxide/chitosan fibers was a spontaneous and exothermic process. Our results indicate that the graphene oxide/chitosan fibers have excellent mechanical properties and can serve as a promising adsorbent for the removal of dyes from aqueous solutions. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Marshall, Maurice R.
Ash refers to the inorganic residue remaining after either ignition or complete oxidation of organic matter in a foodstuff. A basic knowledge of the characteristics of various ashing procedures and types of equipment is essential to ensure reliable results. Two major types of ashing are used: dry ashing, primarily for proximate composition and for some types of specific mineral analyses; wet ashing (oxidation), as a preparation for the analysis of certain minerals. Microwave systems now are available for both dry and wet ashing, to speed the processes. Most dry samples (i.e., whole grain, cereals, dried vegetables) need no preparation, while fresh vegetables need to be dried prior to ashing. High-fat products such as meats may need to be dried and fat extracted before ashing. The ash content of foods can be expressed on either a wet weight (as is) or on a dry weight basis. For general and food-specific information on measuring ash content, see references (1-11).
[Catalytic stability in wet air oxidation of carboxylic acids over ZnFe0.25Al1.75 O4 catalyst].
Xu, Ai-hua; Yang, Min; Du, Hong-zhang; Peng, Fu-yong; Sun, Cheng-lin
2007-07-01
Oxalic, formic and acetic acid are main intermediate products in catalytic wet air oxidation process (CWAO). The catalytic activity and stability in CWAO of the three short-chain organic acids over ZnFe0.25Al1.75O4 catalyst were studied. Oxalic acid is the only oxidizable intermediate and the largest amount of Fe leaching is 9.5 mg L(-1) at 160 degrees C during CWAO process. Formic and acetic acid have little influence on Fe leaching. Due to the strong reducible ability of oxalic acid, the amount of Fe leaching is larger in nitrogen atmosphere than that in oxygen atmosphere. Salicylic acid can be also degraded by ZnFe0.25Al1.75O4 catalyst with a high catalytic activity and stability.
Looking Southwest to Dry and Wet Exterior Scrubbers at Rear ...
Looking Southwest to Dry and Wet Exterior Scrubbers at Rear of Oxide Building - Hematite Fuel Fabrication Facility, Oxide Building & Oxide Loading Dock, 3300 State Road P, Festus, Jefferson County, MO
Direct oxidation of strong waste waters, simulating combined wastes in extended-mission space cabins
NASA Technical Reports Server (NTRS)
Ross, L. W.
1973-01-01
The applications of modern technology to the resolution of the problem of solid wastes in space cabin environments was studied with emphasis on the exploration of operating conditions that would permit lowering of process temperatures in wet oxidation of combined human wastes. It was found that the ultimate degree of degradation is not enhanced by use of a catalyst. However, the rate of oxidation is increased, and the temperature of oxidation is reduced to 400 F.
Julcour Lebigue, Carine; Andriantsiferana, Caroline; N'Guessan Krou; Ayral, Catherine; Mohamed, Elham; Wilhelm, Anne-Marie; Delmas, Henri; Le Coq, Laurence; Gerente, Claire; Smith, Karl M; Pullket, Suangusa; Fowler, Geoffrey D; Graham, Nigel J D
2010-12-01
This paper describes a preliminary evaluation of the performance of carbonaceous materials prepared from sewage sludges (SBCMs) in a hybrid water treatment process based on adsorption and catalytic wet air oxidation; phenol was used as the model pollutant. Three different sewage sludges were treated by either carbonisation or steam activation, and the physico-chemical properties of the resultant carbonaceous materials (e.g. hardness, BET surface area, ash and elemental content, surface chemistry) were evaluated and compared with a commercial reference activated carbon (PICA F22). The adsorption capacity for phenol of the SBCMs was greater than suggested by their BET surface area, but less than F22; a steam activated, dewatered raw sludge (SA_DRAW) had the greatest adsorption capacity of the SBCMs in the investigated range of concentrations (<0.05 mol L(-1)). In batch oxidation tests, the SBCMs demonstrated catalytic behaviour arising from their substrate adsorptivity and metal content. Recycling of SA_DRAW in successive oxidations led to significant structural attrition and a hardened SA_DRAW was evaluated, but found to be unsatisfactory during the oxidation step. In a combined adsorption-oxidation sequence, both the PICA carbon and a selected SBCM showed deterioration in phenol adsorption after oxidative regeneration, but a steady state performance was reached after 2 or 3 cycles. Copyright © 2010 Elsevier Ltd. All rights reserved.
The use of catalyst to enhance the wet oxidation process.
Maugans, C; Kumfer, B
2007-01-01
Wet oxidation tests were performed on two pure compound streams: acetic acid and ammonia; and on two wastewater streams: acrylic acid wastewater and sulphide laden spent caustic. Test results showed that Mn/Ce and Pt/TiO2 were effective catalysts that greatly enhanced acetic acid, ammonia and acrylic acid wastewater destruction. However, the Mn/Ce catalyst performance appears to be inhibited by concentrated salts dissolved in solution. This could limit the applicability of this catalyst for the treatment of brackish wastewaters. Zr, Ce and Ce nanoparticles were also shown to exhibit some catalytic activity, however not to the extent of the Mn/Ce and the Pt/TiO2.
850-nm implanted and oxide VCSELs in multigigabit data communication application
NASA Astrophysics Data System (ADS)
Pan, Jin-Shan; Lin, Yung-Sen; Li, Chao-Fang A.; Lai, Horng-Ching; Wu, Chang-Cherng; Huang, Kai-Feng
2001-10-01
In this paper, we will present the results of the 850nm implanted and oxide-confined vertical cavity surface emitting lasers in multi-Gigabit application. In TrueLight, we have a lot of experience in manufacturing VCSEL with ion-implantation and wet-oxidation technologies for single device Gigabit data transmission application. The ion-implanted VCSEL is reliable with the Mean Time To Failure (MTTF) up to 108 hours at room temperature operation. For the gigabit Ethernet data communication, it provides a very promising solution in short haul application. In transmission experiment we demonstrated the devices could be modulated up to 2.5Gbps and 3.2Gbps data rate. For oxide-confined VCSEL devices, we use wet oxidation technology to approach the device processing and get very good result to achieve the mutli-gigabit data communication application in single device form. The VCSEL device with oxide aperture around 12um could be modulated up to 2.5Gbps and 3.2Gbps. A data of employing VCSEL in high data rate POF transmission is also presented.
A method to monitor the quality of ultra-thin nitride for trench DRAM with a buried strap structure
NASA Astrophysics Data System (ADS)
Wu, Yung-Hsien; Wang, Chun-Yao; Chang, Ian; Kao, Chien-Kang; Kuo, Chia-Ming; Ku, Alex
2007-02-01
A new approach to monitor the quality of an ultra-thin nitride film has been proposed. The nitride quality is monitored by observing the oxide thickness for the nitride film after wet oxidation since the resistance to oxidation strongly depends on its quality. To obtain a stable oxide thickness without interference from extrinsic factors for process monitoring, monitor wafers without dilute HF solution clean are suggested because the native-oxide containing surface is less sensitive to oxygen and therefore forms the nitride film with stable quality. In addition, the correlation between variable retention time (VRT) performance of a real dynamic random access memory (DRAM) product and oxide thickness from different nitride process temperatures can be successfully explained and this correlation can also be used to establish the appropriate oxide thickness range for process monitoring.
The Role of Zinc Layer During Wetting of Aluminium on Zinc-coated Steel in Laser Brazing and Welding
NASA Astrophysics Data System (ADS)
Gatzen, M.; Radel, T.; Thomy, C.; Vollertsen, F.
The zinc layer of zinc-coated steel is known to be a crucial factor for the spreading of liquid aluminium on the coated surface. For industrial brazing and welding processes these zinc-coatings enable a fluxless joining between aluminium and steel in many cases. Yet, the reason for the beneficial effect of the zinc to the wetting process is not completely understood. Fundamental investigations on the wetting behaviour of single aluminium droplets on different zinc-coated steel surfaces have revealed a distinct difference between coated surfaces at room temperature and at elevated temperature regarding the influence of different coating thicknesses. In this paper the case of continuous laser brazing and welding processes of aluminium and commercial galvanized zinc-coated steel sheets are presented. It is shown that in the case of bead-on-plate laser beam brazing, the coating thickness has a measureable effect on the resulting wetting angle and length but does not have a significant impact in case of overlap laser beam welding. This might be linked to different heat transfer conditions. The results also strongly indicate that proper initialbreakup of oxide layers is still required to accomplish good wetting on zinc-coated surfaces.
Planar-type ferromagnetic tunnel junctions fabricated by SPM local oxidation
NASA Astrophysics Data System (ADS)
Tomoda, Y.; Kayashima, S.; Ogino, T.; Motoyama, M.; Takemura, Y.; Shirakashi, J.
Nanometer-scale oxide wires were fabricated by local oxidation nanolithography using scanning probe microscope (SPM). This technique was applied to the fabrication of planar-type Ni/Ni oxide/Ni ferromagnetic tunnel junctions. In order to induce magnetic shape anisotropy, asymmetrical channel structure was patterned by conventional photolithography and wet etching processes. The magnetoresistance (MR) characteristics were clearly shown in the planar-type Ni/Ni oxide/Ni ferromagnetic tunnel junctions. MR ratio of above 100% was obtained at 17 K. This result suggests that the local oxidation nanolithography using SPM is useful for the application to planar-type ferromagnetic tunnel junctions.
Research on silicon microchannel array oxidation insulation technology and stress issues
NASA Astrophysics Data System (ADS)
Chai, Jin; Li, Mo; Liang, Yong-zhao; Yang, Ji-kai; Wang, Guo-zheng; Duanmu, Qing-duo
2013-08-01
Microchannel plate is widely used in the field of low light level night vision, photomultiplier, tubes, X-ray enhancer and so on. In order to meet the requirement of microchannel plate electron multiplier, we used the method of thermal oxidation to produce a thin film of silicon dioxide which could play a role in electric insulation. Silicon dioxide film has a high breakdown voltage, it can satisfy the high breakdown voltage requirements of electron multiplier. We should find the reasonable parameter values and preparation process in the oxidation so that the thickness and uniformity of the silicon dioxide layer would meet requirement. This article has been focused on researching and analyzing of the problem of oxide insulation and thermal stress in the process of production of silicon dioxide film. In this experiment, dry oxygen and wet oxygen were carried out respectively for 8 hours. The thickness of dry oxygen silicon dioxide films was 458 nm and wet oxygen silicon dioxide films was 1.4 μm. Under these conditions, the silicon microchannel is uniformity and neat, meanwhile the insulating layer's breakdown voltage was measured at 450 V after the wet oxygen oxidation. By using ANSYS finite element software, we analyze the thermal stress, which came from the microchannel oxygen processes, under the conditions of which ambient temperature was 27 ℃ and porosity was 64%, we simulated the thermal stress in the temperature of 1200 ℃ and 1000 ℃, finally we got the maximum equivalent thermal stress of 472 MPa and 403 MPa respectively. The higher thermal stress area was spread over Si-SiO2 interface, by simulate conditions 50% porosity silicon microchannel sample was selected for simulation analysis at 1100 ℃, we got the maximum equivalent thermal stress of 472 MPa, Thermal stress is the minimum value of 410 MPa.
Processing of fused silicide coatings for carbon-based materials
NASA Technical Reports Server (NTRS)
Smialek, J. L.
1982-01-01
The processing and oxidation resistance of fused Al-Si and Ni-Si slurry coatings on ATJ graphite was studied. Ni-Si coatings in the 70 to 90 percent Si range were successfully processed to melt, wet, and bond to the graphite. The molten coatings also infiltrated the porosity in graphite and reacted with it to form SiC in the coating. Cyclic oxidation at 1200 C showed that these coatings were not totally protective because of local attack of the substrate, due to the extreme thinness of the coatings in combination with coating cracks.
Capodaglio, Andrea G; Bojanowska-Czajka, Anna; Trojanowicz, Marek
2018-04-18
Carbamazepine and diclofenac are two examples of drugs with widespread geographical and environmental media proliferation that are poorly removed by traditional wastewater treatment processes. Advanced oxidation processes (AOPs) have been proposed as alternative methods to remove these compounds in solution. AOPs are based on a wide class of powerful technologies, including UV radiation, ozone, hydrogen peroxide, Fenton process, catalytic wet peroxide oxidation, heterogeneous photocatalysis, electrochemical oxidation and their combinations, sonolysis, and microwaves applicable to both water and wastewater. Moreover, processes rely on the production of oxidizing radicals (•OH and others) in a solution to decompose present pollutants. Water radiolysis-based processes, which are an alternative to the former, involve the use of concentrated energy (beams of accelerated electrons or γ-rays) to split water molecules, generating strong oxidants and reductants (radicals) at the same time. In this paper, the degradation of carbamazepine and diclofenac by means of all these processes is discussed and compared. Energy and byproduct generation issues are also addressed.
ERIC Educational Resources Information Center
Josephson, Julian
1978-01-01
Describes technologies used to conserve energy by using process wastes in the following situations: (1) incineration at a photographic company, (2) wet oxidation at a paper mill, and (3) sewage skimmings fuel at a municipal waste water plant. (MA)
The removal of sulfur dioxide from flue gases
Kettner, Helmut
1965-01-01
The growth of industrialization makes it imperative to reduce the amounts of sulfur dioxide emitted into the atmosphere. This article describes various processes for cleaning flue gases, and gives details of new methods being investigated. Wet scrubbing with water, though widely practised, has many disadvantages. Scrubbing with zinc oxide, feasible in zinc works, is more satisfactory. Dry methods use a solid absorbent; they have the advantage of a high emission temperature. Other methods are based on the addition to the fuel or the flue gases of substances such as activated metal oxides, which react with the sulfur to form compounds less harmful than sulfur dioxide. Also being investigated are a two-stage combustion system, in which the sulfur dioxide is removed in the first stage, and the injection of activated powdered dolomite into burning fuel; the resulting sulfates being removed by electrostatic precipitation. A wet catalysis process has recently been developed. Most of the cleaning processes are not yet technically mature, but first results show good efficiency and relatively low cost. PMID:14315714
Detox{sup SM} wet oxidation system studies for engineering scale up
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, D.T.; Moslander, J.E.; Zigmond, J.A.
1995-12-31
Catalyzed wet oxidation utilizing iron(III) has been shown to have promise for treating many hazardous and mixed wastes. The reaction occurs at the surface of contact between an aqueous iron(III) solution and organic material. Studies with liquid- and vapor-phase organic waste surrogates have established reaction kinetics and the limits of reaction rate based on organic concentration and iron(III) diffusion. Continuing engineering studies have concentrated on reaction vessel agitator and solids feed configurations, an improved bench scale reflux condenser and reflux condenser calculations, sparging of organic compounds from the process condensate water, filtration of solids from the process solution, and flammabilitymore » limits for volatile organic compounds in the headspace of the reaction vessel under the reaction conditions. Detailed engineering design and fabrication of a demonstration unit for treatment of mixed waste is in progress.« less
Development studies for a novel wet oxidation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhooge, P.M.; Hakim, L.B.
1994-01-01
A catalytic wet oxidation process (DETOX), which uses an acidic iron solution to oxidize organic compounds to carbon dioxide, water, and other simple products, was investigated as a potential method for the treatment of multicomponent hazardous and mixed wastes. The organic compounds picric acid, poly(vinyl chloride), tetrachlorothiophene, pentachloropyridine, Aroclor 1260 (a polychlorinated biphenyl), and hexachlorobenzene were oxidized in 125 ml reaction vessels. The metals arsenic, barium, beryllium, cadmium, cerium (as a surrogate for plutonium), chromium, lead, mercury, neodymium (as a surrogate for uranium), nickel, and vanadium were tested in the DETOX solution. Barium, beryllium, cerium, chromium, mercury, neodymium, nickel, andmore » vanadium were all found to be very soluble (>100 g/l) in the DETOX chloride-based solution. Arsenic, barium, cadmium, and lead solubilities were lower. Lead could be selectively precipitated from the DETOX solution. Chromium(VI) was reduced to relatively non-toxic chromium(III) by the solution. Six soils were contaminated with arsenic, barium, beryllium, chromium, lead, and neodymium oxides at approximately 0.1% by weight, and benzene, trichloroethene, mineral oil, and Aroclor 1260 at approximately 5% by weight total, and 5.g amounts treated with the DETOX solution in unstirred 125. ml reaction bombs. It is felt that soil treatment in a properly designed system is entirely possible despite incomplete oxidation of the less volatile organic materials in these unstirred tests.« less
Development of a novel wet oxidation process for hazardous and mixed wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhooge, P.M.
1994-11-01
This article describes and evaluates the DETOX{sup sm} process for processing of mixed wastes. Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides, often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. The DETOX{sup sm} process, patented by Delphi Research, uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials. Included are the following subject areas: project description (phases I-IV); results of all phases; and future work. 5 figs., 1 tab.
Enhanced wet air oxidation : synergistic rate acceleration upon effluent recirculation
Matthew J. Birchmeier; Charles G. Hill; Carl J. Houtman; Rajai H. Atalla; Ira A. Weinstock
2000-01-01
Wet air oxidation (WAO) reactions of cellobiose, phenol, and syringic acid were carried out under mild conditions (155°C; 0.93MPa 02; soluble catalyst, Na5[PV2Mo10O40]). Initial oxidation rates were rapid but decreased to small values as less reactive oxidation products accumulated. Recalcitrant oxidation products were consumed more rapidly, however, if additional...
Activated carbon as catalyst for microwave-assisted wet peroxide oxidation of aromatic hydrocarbons.
Garcia-Costa, Alicia L; Lopez-Perela, Lucia; Xu, Xiyan; Zazo, Juan A; Rodriguez, Juan J; Casas, Jose A
2018-05-21
This paper addresses the removal of four aromatic hydrocarbons typically found in petrochemical wastewater: benzene (B), toluene (T), o-xylene (X), and naphthalene (N), by microwave-assisted catalytic wet peroxide oxidation (MW-CWPO) using activated carbon (AC) as catalyst. Under the studied conditions, complete pollutant elimination (B, 1.28 mM; T, 1.09 mM; X, 0.94 mM; and N, 0.78 mM) was achieved, with more than 90% TOC removal after only 15-min reaction time, working at 120 °C, pH 0 = 3, AC at 1 g L -1 , and H 2 O 2 at the stoichiometric dose. Furthermore, in the case of toluene, naphthalene, and xylene, the hydroxylation and breakdown of the ring is very rapid and toxic intermediates were not detected. The process follows two steps: (i) pollutant adsorption onto AC followed by (ii) adsorbed compounds oxidation. Thus, MW-CWPO with AC as catalyst appears a promising way for a fast and effective process for B, T, X, and N removal in aqueous phase.
NASA Astrophysics Data System (ADS)
Lo, Yi-Chuan; Lee, Chih-Hsiung; Lin, Hsun-Peng; Peng, Chiou-Shian
1998-06-01
Several continuous splits for wafer alignment target topography conditions to improve epitaxy film alignment were applied. The alignment evaluation among former layer pad oxide thickness (250 angstrom - 500 angstrom), drive oxide thickness (6000 angstrom - 10000 angstrom), nitride film thickness (600 angstrom - 1500 angstrom), initial oxide etch (fully wet etch, fully dry etch and dry plus wet etch) will be split to this experiment. Also various epitaxy deposition recipe such as: epitaxy source (SiHCl2 or SiCHCl3) and growth rate (1.3 micrometer/min approximately 2.0 micrometer/min) will be used to optimize the process window for alignment issue. All the reflectance signal and cross section photography of alignment target during NIKON stepper alignment process will be examined. Experimental results show epitaxy recipe plays an important role to wafer alignment. Low growth rate with good performance conformity epitaxy lead to alignment target avoid washout, pattern shift and distortion. All the results (signal monitor and film character) combined with NIKON's stepper standard laser scanning alignment system will be discussed in this paper.
High-strength, creep-resistant molybdenum alloy and process for producing the same
Bianco, R.; Buckman, R.W. Jr.; Geller, C.B.
1999-02-09
A wet-doping process for producing an oxide-dispersion strengthened (ODS), creep-resistant molybdenum alloy is disclosed. The alloy is made by adding nitrate or acetate salts of lanthanum, cerium, thorium, or yttrium to molybdenum oxide to produce a slurry, heating the slurry in a hydrogen atmosphere to produce a powder, mixing and cold isostatically pressing the powder, sintering in a hydrogen atmosphere, and thermomechanically processing (swaging, extruding, cold drawing) the product. The ODS molybdenum alloy produced by the process contains 2--4% by volume (ca. 1--4% by weight) of an oxide of lanthanum, cerium, thorium, or yttrium. The alloy has high strength and improved creep-resistance at temperatures greater than 0.55T{sub m} of molybdenum. 10 figs.
High-strength, creep-resistant molybdenum alloy and process for producing the same
Bianco, Robert; Buckman, Jr., R. William; Geller, Clint B.
1999-01-01
A wet-doping process for producing an oxide-dispersion strengthened (ODS), creep-resistant molybdenum alloy is disclosed. The alloy is made by adding nitrate or acetate salts of lanthanum, cerium, thorium, or yttrium to molybdenum oxide to produce a slurry, heating the slurry in a hydrogen atmosphere to produce a powder, mixing and cold isostatically pressing the powder, sintering in a hydrogen atmosphere, and thermomechanically processing (swaging, extruding, cold drawing) the product. The ODS molybdenum alloy produced by the process contains 2-4% by volume (.about.1-4% by weight) of an oxide of lanthanum, cerium, thorium, or yttrium. The alloy has high strength and improved creep-resistance at temperatures greater than 0.55T.sub.m of molybdenum.
NASA Astrophysics Data System (ADS)
Gocalinska, A.; Rubini, S.; Pelucchi, E.
2016-10-01
The time dependent transition from hydrophobic to hydrophilic states of the metalorganic vapour phase epitaxy (MOVPE) grown InP, GaAs and InAs is systematically documented by contact angle measurements. Natural oxides forming on the surfaces of air-exposed materials, as well as the results of some typical wet chemical process to remove those oxides, were studied by X-ray photoemission spectroscopy (XPS), revealing, surprisingly, a fundamental lack of strong correlations between the surface oxide composition and the reported systematic changes in hydrophobicity.
Kaplan, Renata; Erjavec, Boštjan; Senila, Marin; Pintar, Albin
2014-10-01
Catalytic wet air oxidation (CWAO) is classified as an advanced oxidation process, which proved to be highly efficient for the removal of emerging organic pollutant bisphenol A (BPA) from water. In this study, BPA was successfully removed in a batch-recycle trickle-bed reactor over bare titanate nanotube-based catalysts at very short space time of 0.6 min gCAT g(-1). The as-prepared titanate nanotubes, which underwent heat treatment at 600 °C, showed high activity for the removal of aqueous BPA. Liquid-phase recycling (5- or 10-fold recycle) enabled complete BPA conversion already at 200 °C, together with high conversion of total organic carbon (TOC), i.e., 73 and 98 %, respectively. The catalyst was chemically stable in the given range of operating conditions for 189 h on stream.
Simulation of sulfide buildup in wastewater and atmosphere of sewer networks.
Nielsen, A H; Yongsiri, C; Hvitved-Jacobsen, T; Vollertsen, J
2005-01-01
A model concept for prediction of sulfide buildup in sewer networks is presented. The model concept is an extension to--and a further development of--the WATS model (Wastewater Aerobic-anaerobic Transformations in Sewers), which has been developed by Hvitved-Jacobsen and co-workers at Aalborg University. In addition to the sulfur cycle, the WATS model simulates changes in dissolved oxygen and carbon fractions of different biodegradability. The sulfur cycle was introduced via six processes: 1. sulfide production taking place in the biofilm covering the permanently wetted sewer walls; 2. biological sulfide oxidation in the permanently wetted biofilm; 3. chemical and biological sulfide oxidation in the water phase; 4. sulfide precipitation with metals present in the wastewater; 5. emission of hydrogen sulfide to the sewer atmosphere and 6. adsorption and oxidation of hydrogen sulfide on the moist sewer walls where concrete corrosion may take place.
NASA Astrophysics Data System (ADS)
Travnikov, Oleg; Angot, Hélène; Artaxo, Paulo; Bencardino, Mariantonia; Bieser, Johannes; D'Amore, Francesco; Dastoor, Ashu; De Simone, Francesco; Diéguez, María del Carmen; Dommergue, Aurélien; Ebinghaus, Ralf; Feng, Xin Bin; Gencarelli, Christian N.; Hedgecock, Ian M.; Magand, Olivier; Martin, Lynwill; Matthias, Volker; Mashyanov, Nikolay; Pirrone, Nicola; Ramachandran, Ramesh; Read, Katie Alana; Ryjkov, Andrei; Selin, Noelle E.; Sena, Fabrizio; Song, Shaojie; Sprovieri, Francesca; Wip, Dennis; Wängberg, Ingvar; Yang, Xin
2017-04-01
Current understanding of mercury (Hg) behavior in the atmosphere contains significant gaps. Some key characteristics of Hg processes, including anthropogenic and geogenic emissions, atmospheric chemistry, and air-surface exchange, are still poorly known. This study provides a complex analysis of processes governing Hg fate in the atmosphere involving both measured data from ground-based sites and simulation results from chemical transport models. A variety of long-term measurements of gaseous elemental Hg (GEM) and reactive Hg (RM) concentration as well as Hg wet deposition flux have been compiled from different global and regional monitoring networks. Four contemporary global-scale transport models for Hg were used, both in their state-of-the-art configurations and for a number of numerical experiments to evaluate particular processes. Results of the model simulations were evaluated against measurements. As follows from the analysis, the interhemispheric GEM gradient is largely formed by the prevailing spatial distribution of anthropogenic emissions in the Northern Hemisphere. The contributions of natural and secondary emissions enhance the south-to-north gradient, but their effect is less significant. Atmospheric chemistry has a limited effect on the spatial distribution and temporal variation of GEM concentration in surface air. In contrast, RM air concentration and wet deposition are largely defined by oxidation chemistry. The Br oxidation mechanism can reproduce successfully the observed seasonal variation of the RM / GEM ratio in the near-surface layer, but it predicts a wet deposition maximum in spring instead of in summer as observed at monitoring sites in North America and Europe. Model runs with OH chemistry correctly simulate both the periods of maximum and minimum values and the amplitude of observed seasonal variation but shift the maximum RM / GEM ratios from spring to summer. O3 chemistry does not predict significant seasonal variation of Hg oxidation. Hence, the performance of the Hg oxidation mechanisms under study differs in the extent to which they can reproduce the various observed parameters. This variation implies possibility of more complex chemistry and multiple Hg oxidation pathways occurring concurrently in various parts of the atmosphere.
The Oxidation of AlN in Dry and Wet Oxygen
NASA Technical Reports Server (NTRS)
Opila, Elizabeth; Humphrey, Donald; Jacobson, Nathan; Yoshio, Tetsuo; Oda, Kohei
1998-01-01
The oxidation kinetics of AlN containing 3.5 wt% Y2O3 were studied by thermogravimetric analysis in dry oxygen and 10% H2O/balance oxygen at temperatures between 1000 and 1200 C for times between 48 and 100 h. The oxidation kinetics for AlN in dry oxygen were parabolic and of approximately the same magnitude and temperature dependence as other alumina forming materials. In this case, diffusion of oxygen and/or aluminum through the alumina scale is the rate limiting mechanism. The oxidation kinetics for AlN in wet oxygen were nearly linear and much more rapid than rates observed in dry oxygen. Numerous micropores were observed in the alumina formed on AIN in wet oxygen. These pores provide a fast path for oxygen transport. The linear kinetics observed in this case suggest that the interface reaction rate of AlN with wet oxygen is the oxidation rate limiting step.
A new active solder for joining electronic components
DOE Office of Scientific and Technical Information (OSTI.GOV)
SMITH,RONALD W.; VIANCO,PAUL T.; HERNANDEZ,CYNTHIA L.
Electronic components and micro-sensors utilize ceramic substrates, copper and aluminum interconnect and silicon. The joining of these combinations require pre-metallization such that solders with fluxes can wet such combinations of metals and ceramics. The paper will present a new solder alloy that can bond metals, ceramics and composites. The alloy directly wets and bonds in air without the use flux or premetallized layers. The paper will present typical processing steps and joint microstructures in copper, aluminum, aluminum oxide, aluminum nitride, and silicon joints.
Barge, Aditti S; Vaidya, Prakash D
2018-04-15
Wet air oxidation (WAO) is a candidate technique for the effective treatment of spent caustic wastewater. In this work, cresols were chosen as model compounds to represent cresylic spent caustic wash. Graphene oxide (GO) is a promising catalyst as well as support for the wet oxidation process, due to its unique structure and properties. For the first time, GO and ruthenium supported on graphene oxide (Ru/GO) were employed for WAO of cresylic isomers. The aforesaid materials were synthesized by modified Hummer's method and characterized using scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analysis. The performance of the investigated materials for WAO of cresols was studied in a slurry reactor. The best reaction conditions for GO were 175 °C and 0.69 MPa O 2 pressure. Total organic carbon (TOC) degradation achieved at these conditions was 54.9, 48.9 and 61.2% for o-cresol, m-cresol and p-cresol, respectively. The amount of TOC degradation obtained by using Ru/GO at the same reaction conditions was 66.4, 53.4 and 73.9% for o-cresol, m-cresol and p-cresol, respectively. It was found that the order of reactivity for cresols was p-cresol > o-cresol > m-cresol. Finally, kinetics of TOC destruction during CWAO of p-cresol over GO was described using a two-step power law model. Copyright © 2018 Elsevier Ltd. All rights reserved.
Processing of fused silicide coatings for carbon-based materials
NASA Technical Reports Server (NTRS)
Smialek, J. L.
1983-01-01
The processing and oxidation resistance of fused Al-Si and Ni-Si slurry coatings on ATJ graphite was studied. Ni-Si coatings in the 70 to 90 percent Si range were successfully processed to melt, wet, and bond to the graphite. The molten coatings also infiltrated the porosity in graphite and reacted with it to form SiC in the coating. Cyclic oxidation at 1200 C showed that these coatings were not totally protective because of local attack of the substrate, due to the extreme thinness of the coatings in combination with coating cracks. Previously announced in STAR as N83-27019
Development of a novel wet oxidation process for hazardous and mixed wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhooge, P.M.
1994-12-31
Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. The over all objective of the effort described here is to develop a novel catalytic wet oxidation process for the treatment of these multi-component wastes, with the aim of providing a versatile, non-thermal method which will destroy hazardous organic compounds while simultaneously containing and concentrating toxic and radioactive metals for recovery or disposal in a readily stabilized matrix. The DETOX process usesmore » a unique combination of metal catalysts to increase the rate of oxidation of organic materials. The metal catalysts are in the form of salts dissolved in a dilute acid solution. A typical catalyst composition is 60% ferric chloride, 3--4% hydrochloric acid, 0.13% platinum ions, and 0.13% ruthenium ions in a water solution. The catalyst solution is maintained at 423--473 K. Wastes are introduced into contact with the solution, where their organic portion is oxidized to carbon dioxide and water. If the organic portion is chlorinated, hydrogen chloride will be produced as a product. The process is a viable alternative to incineration for the treatment of organic mixed wastes. Estimated costs for waste treatment using the process are from $2.50/kg to $25.00/kg, depending on the size of the unit and the amount of waste processed. Process units can be mobile for on-site treatment of wastes. Results from phase 1 and 2, design and engineering studies, are described.« less
Liu, Yangxian; Wang, Qian; Pan, Jianfeng
2016-12-06
A novel process for NO and SO 2 simultaneous removal using a vacuum ultraviolet (VUV, with 185 nm wavelength)-activated O 2 /H 2 O/H 2 O 2 system in a wet VUV-spraying reactor was developed. The influence of different process variables on NO and SO 2 removal was evaluated. Active species (O 3 and ·OH) and liquid products (SO 3 2- , NO 2 - , SO 4 2- , and NO 3 - ) were analyzed. The chemistry and routes of NO and SO 2 removal were investigated. The oxidation removal system exhibits excellent simultaneous removal capacity for NO and SO 2 , and a maximum removal of 96.8% for NO and complete SO 2 removal were obtained under optimized conditions. SO 2 reaches 100% removal efficiency under most of test conditions. NO removal is obviously affected by several process variables. Increasing VUV power, H 2 O 2 concentration, solution pH, liquid-to-gas ratio, and O 2 concentration greatly enhances NO removal. Increasing NO and SO 2 concentration obviously reduces NO removal. Temperature has a dual impact on NO removal, which has an optimal temperature of 318 K. Sulfuric acid and nitric acid are the main removal products of NO and SO 2 . NO removals by oxidation of O 3 , O·, and ·OH are the primary routes. NO removals by H 2 O 2 oxidation and VUV photolysis are the complementary routes. A potential scaled-up removal process was also proposed initially.
Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution.
Hung, Chang-Mao
2009-07-30
Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h(-1).
Hwang, Gaeun; Park, Hyungmin; Bok, Taesoo; Choi, Sinho; Lee, Sungjun; Hwang, Inchan; Choi, Nam-Soon; Seo, Kwanyong; Park, Soojin
2015-03-14
Nanostructured micrometer-sized Al-Si particles are synthesized via a facile selective etching process of Al-Si alloy powder. Subsequent thin Al2O3 layers are introduced on the Si foam surface via a selective thermal wet oxidation process of etched Al-Si particles. The resulting Si/Al2O3 foam anodes exhibit outstanding cycling stability (a capacity retention of 78% after 300 cycles at the C/5 rate) and excellent rate capability.
NASA Astrophysics Data System (ADS)
Angermann, H.; Rappich, J.; Korte, L.; Sieber, I.; Conrad, E.; Schmidt, M.; Hübener, K.; Polte, J.; Hauschild, J.
2008-04-01
Special sequences of wet-chemical oxidation and etching steps were optimised with respect to the etching behaviour of differently oriented silicon to prepare very smooth silicon interfaces with excellent electronic properties on mono- and poly-crystalline substrates. Surface photovoltage (SPV) and photoluminescence (PL) measurements, atomic force microscopy (AFM) and scanning electron microscopy (SEM) investigations were utilised to develop wet-chemical smoothing procedures for atomically flat and structured surfaces, respectively. Hydrogen-termination as well as passivation by wet-chemical oxides were used to inhibit surface contamination and native oxidation during the technological processing. Compared to conventional pre-treatments, significantly lower micro-roughness and densities of surface states were achieved on mono-crystalline Si(100), on evenly distributed atomic steps, such as on vicinal Si(111), on silicon wafers with randomly distributed upside pyramids, and on poly-crystalline EFG ( Edge-defined Film-fed- Growth) silicon substrates. The recombination loss at a-Si:H/c-Si interfaces prepared on c-Si substrates with randomly distributed upside pyramids was markedly reduced by an optimised wet-chemical smoothing procedure, as determined by PL measurements. For amorphous-crystalline hetero-junction solar cells (ZnO/a-Si:H(n)/c-Si(p)/Al) with textured c-Si substrates the smoothening procedure results in a significant increase of short circuit current Isc, fill factor and efficiency η. The scatter in the cell parameters for measurements on different cells is much narrower, as compared to conventional pre-treatments, indicating more well-defined and reproducible surface conditions prior to a-Si:H emitter deposition and/or a higher stability of the c-Si surface against variations in the a-Si:H deposition conditions.
Process for strengthening silicon based ceramics
Kim, Hyoun-Ee; Moorhead, A. J.
1993-01-01
A process for strengthening silicon based ceramic monolithic materials and omposite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400.degree. C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts , or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.
Process for strengthening silicon based ceramics
Kim, Hyoun-Ee; Moorhead, A. J.
1993-04-06
A process for strengthening silicon based ceramic monolithic materials and omposite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400.degree. C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts , or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.
Qiu, Guanglei; Song, Yonghui; Zeng, Ping; Xiao, Shuhu; Duan, Liang
2011-06-01
Fosfomycin pharmaceutical wastewater contains highly concentrated and refractory antibiotic organic phosphorus (OP) compounds. Wet air oxidation (WAO)-phosphate crystallization process was developed and applied to fosfomycin pharmaceutical wastewater pretreatment and phosphorus recovery. Firstly, WAO was used to transform concentrated and refractory OP substances into inorganic phosphate (IP). At 200°C, 1.0MPa and pH 11.2, 99% total OP (TOP) was transformed into IP and 58% COD was reduced. Subsequently, the WAO effluent was subjected to phosphate crystallization process for phosphorus recovery. At Ca/P molar ratio 2.0:1.0 or Mg/N/P molar ratio 1.1:1.0:1.0, 99.9% phosphate removal and recovery were obtained and the recovered products were proven to be hydroxyapatite and struvite, respectively. After WAO-phosphate crystallization, the BOD/COD ratio of the wastewater increased from 0 to more than 0.5, which was suitable for biological treatment. The WAO-phosphate crystallization process was proven to be an effective method for phosphorus recovery and for fosfomycin pharmaceutical wastewater pretreatment. Copyright © 2011 Elsevier Ltd. All rights reserved.
Control of Alq3 wetting layer thickness via substrate surface functionalization.
Tsoi, Shufen; Szeto, Bryan; Fleischauer, Michael D; Veinot, Jonathan G C; Brett, Michael J
2007-06-05
The effects of substrate surface energy and vapor deposition rate on the initial growth of porous columnar tris(8-hydroxyquinoline)aluminum (Alq3) nanostructures were investigated. Alq3 nanostructures thermally evaporated onto as-supplied Si substrates bearing an oxide were observed to form a solid wetting layer, likely caused by an interfacial energy mismatch between the substrate and Alq3. Wetting layer thickness control is important for potential optoelectronic applications. A dramatic decrease in wetting layer thickness was achieved by depositing Alq3 onto alkyltrichlorosilane-derivatized Si/oxide substrates. Similar effects were noted with increasing deposition rates. These two effects enable tailoring of the wetting layer thickness.
Environmental comparison of alternative treatments for sewage sludge: An Italian case study.
Lombardi, Lidia; Nocita, Cristina; Bettazzi, Elena; Fibbi, Donatella; Carnevale, Ennio
2017-11-01
A Life Cycle Assessment (LCA) was applied to compare different alternatives for sewage sludge treatment: such as land spreading, composting, incineration, landfill and wet oxidation. The LCA system boundaries include mechanical dewatering, the alternative treatment, transport, and final disposal/recovery of residues. Cases of recovered materials produced as outputs from the systems, were resolved by expanding the system boundaries to include avoided primary productions. The impact assessment was calculated using the CML-IA baseline method. Results showed that the incineration of sewage sludge with electricity production and solid residues recovery collects the lowest impact indicator values in the categories human toxicity, fresh water aquatic ecotoxicity, acidification and eutrophication, while it has the highest values for the categories global warming and ozone layer depletion. Land spreading has the lowest values for the categories abiotic depletion, fossil fuel depletion, global warming, ozone layer depletion and photochemical oxidation, while it collects the highest values for terrestrial ecotoxicity and eutrophication. Wet oxidation has just one of the best indicators (terrestrial ecotoxicity) and three of the worst ones (abiotic depletion, human toxicity and fresh water aquatic ecotoxicity). Composting process shows intermediate results. Landfill has the worst performances in global warming, photochemical oxidation and acidification. Results indicate that if the aim is to reduce the effect of the common practice of sludge land spreading on human and ecosystem toxicity, on acidification and on eutrophication, incineration with energy recovery would clearly improve the environmental performance of those indicators, but an increase in resource depletion and global warming is unavoidable. However, these conclusions are strictly linked to the effective recovery of solid residues from incineration, as the results are shown to be very sensitive with respect to this assumption. Similarly, the quality of the wet oxidation process residues plays an important role in defining the impact of this treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wet air oxidation induced enhanced biodegradability of distillery effluent.
Malik, S N; Saratchandra, T; Tembhekar, P D; Padoley, K V; Mudliar, S L; Mudliar, S N
2014-04-01
The present study reports the feasibility of Wet Air Oxidation (WAO) as a pretreatment option for enhanced biodegradation of complex distillery effluent. Initially, the distillery effluent was pretreated by WAO at different process conditions (pressure, temperature and time) to facilitate enhancement in the biodegradability index (BI = BOD5: COD ratio). The biodegradability of WAO pretreated effluent was evaluated by subjecting it to aerobic biodegradation and anaerobic followed by aerobic biodegradation. Aerobic biodegradation of pretreated effluent with enhanced biodegradability index (BI = 0.4-0.8) showed enhanced COD reduction of up to 67.7%, whereas the untreated effluent (BI = 0.17) indicated poor COD reduction of only 22.5%. Anaerobic followed by aerobic biodegradation of pretreated effluent has shown up to 87.9% COD reduction, while the untreated effluent has shown only 43.1% COD reduction. Bio-kinetic parameters also confirmed the increased rate of bio-oxidation at enhanced BIs. The results indicate that the WAO pretreatment facilitates enhanced bio-oxidation/bio-degradation of complex effluents like the distillery spent wash. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wen, Xin; Ma, Zhenhua; Zhang, Lei; Sha, Xiangling; He, Huibin; Zeng, Tianyou; Wang, Yusu; Chen, Jihao
2017-01-01
Selective catalytic oxidation (SCO) method is commonly used in wet denitration technology; NO after the catalytic oxidation can be removed with SO2 together by wet method. Among the SCO denitration catalysts, pyrolysis coke is favored by the advantages of low cost and high catalytic activity. In this paper, SCO method combined with pyrolysis coke catalyst was used to remove NO from flue gas. The effects of different SCO operating conditions and different pyrolysis coke catalyst made under different process conditions were studied. Besides, the specific surface area of the catalyst and functional groups were analyzed with surface area analyzer and Beohm titration. The results are: (1) The optimum operating conditions of SCO is as follows: the reaction temperature is 150°C and the oxygen content is 6%. (2) The optimum pyrolysis coke catalyst preparation processes are as follows: the pyrolysis final temperature is 750°C, and the heating rate is 44°C / min. (3) The characterization analysis can be obtained: In the denitration reaction, the basic functional groups and the phenolic hydroxyl groups of the catalyst play a major role while the specific surface area not. PMID:28793346
Boinovich, Ludmila B; Emelyanenko, Alexandre M; Modestov, Alexander D; Domantovsky, Alexandr G; Emelyanenko, Kirill A
2015-09-02
We report a new efficient method for fabricating a superhydrophobic oxidized surface of aluminum alloys with enhanced resistance to pitting corrosion in sodium chloride solutions. The developed coatings are considered very prospective materials for the automotive industry, shipbuilding, aviation, construction, and medicine. The method is based on nanosecond laser treatment of the surface followed by chemisorption of a hydrophobic agent to achieve the superhydrophobic state of the alloy surface. We have shown that the surface texturing used to fabricate multimodal roughness of the surface may be simultaneously used for modifying the physicochemical properties of the thick surface layer of the substrate itself. Electrochemical and wetting experiments demonstrated that the superhydrophobic state of the metal surface inhibits corrosion processes in chloride solutions for a few days. However, during long-term contact of a superhydrophobic coating with a solution, the wetted area of the coating is subjected to corrosion processes due to the formation of defects. In contrast, the combination of an oxide layer with good barrier properties and the superhydrophobic state of the coating provides remarkable corrosion resistance. The mechanisms for enhancing corrosion protective properties are discussed.
Development of a Catalytic Wet Air Oxidation Method to Produce Feedstock Gases from Waste Polymers
NASA Technical Reports Server (NTRS)
Kulis, Michael J.; Guerrero-Medina, Karen J.; Hepp, Aloysius F.
2012-01-01
Given the high cost of space launch, the repurposing of biological and plastic wastes to reduce the need for logistical support during long distance and long duration space missions has long been recognized as a high priority. Described in this paper are the preliminary efforts to develop a wet air oxidation system in order to produce fuels from waste polymers. Preliminary results of partial oxidation in near supercritical water conditions are presented. Inherent corrosion and salt precipitation are discussed as system design issues for a thorough assessment of a second generation wet air oxidation system. This work is currently being supported by the In-Situ Resource Utilization Project.
Uranium (III)-Plutonium (III) co-precipitation in molten chloride
NASA Astrophysics Data System (ADS)
Vigier, Jean-François; Laplace, Annabelle; Renard, Catherine; Miguirditchian, Manuel; Abraham, Francis
2018-02-01
Co-management of the actinides in an integrated closed fuel cycle by a pyrochemical process is studied at the laboratory scale in France in the CEA-ATALANTE facility. In this context the co-precipitation of U(III) and Pu(III) by wet argon sparging in LiCl-CaCl2 (30-70 mol%) molten salt at 705 °C is studied. Pu(III) is prepared in situ in the molten salt by carbochlorination of PuO2 and U(III) is then introduced as UCl3 after chlorine purge by argon to avoid any oxidation of uranium up to U(VI) by Cl2. The oxide conversion yield through wet argon sparging is quantitative. However, the preferential oxidation of U(III) in comparison to Pu(III) is responsible for a successive conversion of the two actinides, giving a mixture of UO2 and PuO2 oxides. Surprisingly, the conversion of sole Pu(III) in the same conditions leads to a mixture of PuO2 and PuOCl, characteristic of a partial oxidation of Pu(III) to Pu(IV). This is in contrast with coconversion of U(III)-Pu(III) mixtures but in agreement with the conversion of Ce(III).
NASA Astrophysics Data System (ADS)
Zaijin, Li; Liming, Hu; Ye, Wang; Ye, Yang; Hangyu, Peng; Jinlong, Zhang; Li, Qin; Yun, Liu; Lijun, Wang
2010-03-01
A novel process for the wet cleaning of GaAs surface is presented. It is designed for technological simplicity and minimum damage generated within the GaAs surface. It combines GaAs cleaning with three conditions consisting of (1) removal of thermodynamically unstable species and (2) surface oxide layers must be completely removed after thermal cleaning, and (3) a smooth surface must be provided. Revolving ultrasonic atomization technology is adopted in the cleaning process. At first impurity removal is achieved by organic solvents; second NH4OH:H2O2:H2O = 1:1:10 solution and HCl: H2O2:H2O = 1:1:20 solution in succession to etch a very thin GaAs layer, the goal of the step is removing metallic contaminants and forming a very thin oxidation layer on the GaAs wafer surface; NH4OH:H2O = 1:5 solution is used as the removed oxide layers in the end. The effectiveness of the process is demonstrated by the operation of the GaAs wafer. Characterization of the oxide composition was carried out by X-ray photoelectron spectroscopy. Metal-contamination and surface morphology was observed by a total reflection X-ray fluorescence spectroscopy and atomic force microscope. The research results show that the cleaned surface is without contamination or metal contamination. Also, the GaAs substrates surface is very smooth for epitaxial growth using the rotary ultrasonic atomization technology.
Development studies for a novel wet oxidation process. Phase 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-07-01
DETOX{sup SM} is a catalyzed wet oxidation process which destroys organic materials in an acidic water solution of iron at 373 to 473 K. The solution can be used repeatedly to destroy great amounts of organic materials. Since the process is conducted in a contained vessel, air emissions from the process can be well controlled. The solution is also capable of dissolving and concentrating many heavy and radioactive metals for eventual stabilization and disposal. The Phase 2 effort for this project is site selection and engineering design for a DETOX demonstration unit. Site selection was made using a set ofmore » site selection criteria and evaluation factors. A survey of mixed wastes at DOE sites was conducted using the Interim Mixed Waste Inventory Report. Sites with likely suitable waste types were identified. Potential demonstration sites were ranked based on waste types, interest, regulatory needs, scheduling, ability to provide support, and available facilities. Engineering design for the demonstration unit is in progress and is being performed by Jacobs Applied Technology. The engineering design proceeded through preliminary process flow diagrams (PFDs), calculation of mass and energy balances for representative waste types, process and instrumentation diagrams (P and IDs), preparation of component specifications, and a firm cost estimate for fabrication of the demonstration unit.« less
“Towards building better linkages between aqueous phase chemistry and microphysics in CMAQ”
Currently, CMAQ’s aqueous phase chemistry routine (AQCHEM-base) assumes Henry’s Law equilibrium and employs a forward Euler method to solve a small set of oxidation equations, considering the additional processes of aitken scavenging and wet deposition in series and e...
Development studies of a novel wet oxidation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, T.W.; Dhooge, P.M.
1995-12-01
Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. Incineration and similar combustive processes do not appear to be viable options for treatment of these waste streams due to various considerations. There is a need for non-combustion processes with a wide application range to treat the large majority of these waste forms. The non-combustion process should also be safe, effective, cost-competitive, permit-able, and preferrably mobile. This paper describes the DETOX processmore » of organic waste oxidation.« less
Bench-scale operation of the DETOX wet oxidation process for mixed waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhooge, P.M.
1993-01-01
Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. A means of destroying hazardous organic components while safely containing and concentrating metals would be extremely useful in mixed waste volume reduction or conversion to a radioactive-only form. Previous studies have found the DETOX, a patented process utilizing a novel catalytic wet oxidation by iron(III) oxidant, cold have successful application to mixed wastes, and to many other waste types. This paper describes the results of bench scale studies of DETOX applied to the componentsmore » of liquid mixed wastes, with the goal of establishing parameters for the design of a prototype waste treatment unit. Apparent organic reaction rate orders, and the dependence of apparent reaction rate on the contact area, were measured for vacuum pump oil, scintillation fluids, and trichloroethylene. It was found that reaction rate was proportional to contact area above about 2.% w/w loading of organic. Oxidations in a 4 liter. volume, mixed bench top reactor have given destruction efficiencies of 99.9999+% for common organics. Reaction rates achieved in the mixedbench top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10. to 100.+ grams of organic per liter-hour,depending on the nature and concentration of the organic.« less
Bench-scale operation of the DETOX wet oxidation process for mixed waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhooge, P.M.
1993-03-01
Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. A means of destroying hazardous organic components while safely containing and concentrating metals would be extremely useful in mixed waste volume reduction or conversion to a radioactive-only form. Previous studies have found the DETOX, a patented process utilizing a novel catalytic wet oxidation by iron(III) oxidant, cold have successful application to mixed wastes, and to many other waste types. This paper describes the results of bench scale studies of DETOX applied to the componentsmore » of liquid mixed wastes, with the goal of establishing parameters for the design of a prototype waste treatment unit. Apparent organic reaction rate orders, and the dependence of apparent reaction rate on the contact area, were measured for vacuum pump oil, scintillation fluids, and trichloroethylene. It was found that reaction rate was proportional to contact area above about 2.% w/w loading of organic. Oxidations in a 4 liter. volume, mixed bench top reactor have given destruction efficiencies of 99.9999+% for common organics. Reaction rates achieved in the mixedbench top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10. to 100.+ grams of organic per liter-hour,depending on the nature and concentration of the organic.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belkacemi, K.; Larachi, F.; Hamoudi, S.
1999-06-01
The removal efficiency of total organic carbon (TOC) from raw high-strength alcohol-distillery waste liquors was evaluated using three different treatments: thermolysis (T), noncatalytic wet oxidation (WO), and solid-catalyzed wet oxidation (CWO). The distillery liquors (TOC = 22,500 mg/l, sugars = 18,000 mg/l, and proteins = 13,500 mg/l) were produced by alcoholic fermentation of enzymatic hydrolyzates from steam-exploded timothy grass. TOC-abatement studies were conducted batchwise in a stirred autoclave to evaluate the influence of the catalyst (7:3, MnO{sub 2}/CeO{sub 2} mixed oxide), oxygen partial pressure (0.5--2.5 MPa), and temperature (453--523 K) on T, WO, and CWO processes. Although CWO outperformed Tmore » and WO, TOC conversions did not exceed {approximately}60% at the highest temperature used. Experiments provided prima facie evidence for a gradual fouling of the catalyst and a developing inhibition in the liquors which impaired deep TOC removals. Occurrence of catalyst deactivation by carbonaceous deposits was proven experimentally through quantitative and qualitative experiments such as elemental analysis and X-ray photoelectron spectroscopy. Inhibition toward further degradation of the liquors was ascribed to the occurrence of highly stable antioxidant intermediates via the Maillard reactions between dissolved sugars and proteins. A lumping kinetic model involving both reaction inhibition by dissolved intermediates and catalyst deactivation by carbonaceous deposits was proposed to account for the distribution of carbon in the liquid, solid, and the vapor phases.« less
Cau, Camille; Guari, Yannick; Chave, Tony; Larionova, Joulia; Nikitenko, Sergey I
2014-07-01
Porous (Ce0.5Zr0.5)O2 solid solutions were prepared by thermolysis (T=285 °C) or sonolysis (20 kHz, I=32 W cm(-2), Pac=0.46 W mL(-1), T=200 °C) of Ce(III) and Zr(IV) acetylacetonates in oleylamine or hexadecylamine under argon followed by heat treatment of the precipitates obtained in air at 450 °C. Transmission Electron Microscopy images of the samples show nanoparticles of ca. 4-6 nm for the two synthetic approaches. The powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray and μ-Raman spectroscopy of solids obtained after heat treatment indicate the formation of (Ce0.5Zr0.5)O2 solid solutions with a metastable tetragonal crystal structure for the two synthetic routes. The specific surface area of the samples varies between 78 and 149 m(2) g(-1) depending on synthesis conditions. The use of Barrett-Joyner-Halenda and t-plot methods reveal the formation of mixed oxides with a hybrid morphology that combines mesoporosity and microporosity regardless of the method of preparation. Platinum nanoparticles were deposited on the surface of the mixed oxides by sonochemical reduction of Pt(IV). It was found that the materials prepared by sonochemistry exhibit better resistance to dissolution during the deposition process of platinum. X-ray photoelectron spectroscopy analysis shows the presence of Pt(0) and Pt(II) on the surface of mixed oxides. Porous (Ce0.5Zr0.5)O2 mixed oxides loaded with 1.5%wt. platinum exhibit high activity in catalytic wet air oxidation of formic acid at 40 °C. Copyright © 2014 Elsevier B.V. All rights reserved.
The effects of fire on biogenic soil emissions of nitric oxide and nitrous oxide
NASA Technical Reports Server (NTRS)
Levine, Joel S.; Cofer, Wesley R., III; Sebacher, Daniel I.; Boston, Penelope J.; Winstead, Edward L.; Sebacher, Shirley
1988-01-01
Measurements of biogenic soil emissions of nitric oxide (NO) and nitrous oxide (N2O) before and after a controlled burn conducted in a chaparral ecosystem on June 22, 1987, showed significantly enhanced emissions of both gases after the burn. Mean NO emissions from heavily burned and wetted (to simulate rainfall) sites exceeded 40 ng N/sq m s, and increase of 2 to 3 compared to preburn wetted site measurements. N2O emissions from burned and wetted sites ranged from 9 to 22 ng N/sq m s. Preburn N2O emissions from these wetted sites were all below the detection level of the instrumentation, indicating a flux below 2 ng N/sq m s. The flux of NO exceeded the N2O flux from burned wetted sites by factors ranging from 2.7 to 3.4. These measurements, coupled with preburn and postburn measurements of ammonium and nitrate in the soil of this chaparral ecosystem and measurements of NO and N2O emissions obtained under controlled laboratory conditions, suggest that the postfire enhancement of NO and N2O emissions is due to production of these gases by nitrifying bacteria.
SiGe-on-insulator fabricated via germanium condensation following high-fluence Ge+ ion implantation
NASA Astrophysics Data System (ADS)
Anthony, R.; Haddara, Y. M.; Crowe, I. F.; Knights, A. P.
2017-08-01
Germanium condensation is demonstrated using a two-step wet oxidation of germanium implanted Silicon-On-Insulator (SOI). Samples of 220 nm thick SOI are implanted with a nominal fluence of 5 × 1016 cm-2 Ge+ at an energy of 33 keV. Primary post-implantation wet oxidation is performed initially at 870 °C for 70 min, with the aim of capping the sample without causing significant dose loss via Ge evaporation through the sample surface. This is followed by a secondary higher temperature wet oxidation at either 900 °C, 1000 °C, or 1080 °C. The germanium retained dose and concentration profile, and the oxide thickness is examined after primary oxidation, and various secondary oxidation times, using Rutherford backscattering analysis. A mixed SiGe oxide is observed to form during the primary oxidation followed by a pure silicon oxide after higher temperature secondary oxidation. The peak germanium concentration, which varies with secondary oxidation condition, is found to range from 43 at. % to 95 at. %, while the FWHM of the Ge profile varies from 13 to 5 nm, respectively. It is also observed that both the diffusion of germanium and the rate of oxidation are enhanced at 870 and 900 °C compared to equilibrium expectations. Transmission electron microscopy of a representative sample with secondary oxidation at 1080 °C for 20 min shows that the SiGe layer is crystalline in nature and seeded from the underlying silicon. Raman spectroscopy is used to determine residual strain in the SiGe region following secondary oxidation. The strain is compressive in nature and increases with Ge concentration to a maximum of approximately 1% in the samples probed. In order to elucidate the physical mechanisms, which govern the implantation-condensation process, we fit the experimental profiles of the samples with a model that uses a modified segregation boundary condition; a modified linear rate constant for the oxidation; and an enhanced diffusion coefficient of germanium where the enhancement is inversely proportional to the temperature and decays with increasing time. Comparison of the modeled and experimental results shows reasonable agreement and allows conclusions to be made regarding the dominant physical mechanisms, despite the semi-empirical nature of the model used.
NASA Astrophysics Data System (ADS)
Lu, Haifei; Sun, Jingsong; Zhang, Hong; Lu, Shunmian; Choy, Wallace C. H.
2016-03-01
The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self-assembly approach under ambient atmosphere, which can effectively prevent the penetration of liquid or gaseous halides and their corrosion against the silver nano-network underneath. Importantly, we simultaneously achieve good work function alignment and surface wetting properties for a practical bottom electrode by controlling the degree of reduction of GO flakes. Finally, flexible PVSC adopting the room-temperature and solution-processed nano-composite as the flexible transparent bottom electrode has been demonstrated on a polyethylene terephthalate (PET) substrate. As a consequence, the demonstration of our room-temperature solution-processed and metal oxide-free flexible transparent bottom electrode will contribute to the emerging large-area flexible PVSC technologies.The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self-assembly approach under ambient atmosphere, which can effectively prevent the penetration of liquid or gaseous halides and their corrosion against the silver nano-network underneath. Importantly, we simultaneously achieve good work function alignment and surface wetting properties for a practical bottom electrode by controlling the degree of reduction of GO flakes. Finally, flexible PVSC adopting the room-temperature and solution-processed nano-composite as the flexible transparent bottom electrode has been demonstrated on a polyethylene terephthalate (PET) substrate. As a consequence, the demonstration of our room-temperature solution-processed and metal oxide-free flexible transparent bottom electrode will contribute to the emerging large-area flexible PVSC technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00011h
NASA Astrophysics Data System (ADS)
Cho, Lawrence; Lee, Seok Jae; Kim, Myung Soo; Kim, Young Ha; De Cooman, Bruno C.
2013-01-01
The selective oxidation and reactive wetting of intercritically annealed Si-bearing CMnSi transformation-induced plasticity steels were investigated by high-resolution transmission electron microscopy. In a N2 + 10 pct H2 gas atmosphere with a dew point (DP) ranging from 213 K to 278 K (-60 °C to 5 °C), a continuous layer of selective oxides was formed on the surface. Annealing in a higher DP gas atmosphere resulted in a thinner layer of external oxidation and a greater depth of internal oxidation. The hot dipping was carried out in a Zn bath containing 0.22 mass pct Al, and the bath temperature was 733 K (460 °C). Coarse and discontinuous Fe2Al5- x Zn x grains and Fe-Zn intermetallics (ζ and δ) were observed at the steel/coating interface after the hot dip galvanizing (HDG) of panels were annealed in a low DP atmosphere 213 K (-60 °C). The Fe-Zn intermetallics were formed both in areas where the Fe2Al5- x Zn x inhibition layer had not been formed and on top of non-stoichiometric Fe-Al-Zn crystals. Poor wetting was observed on panels annealed in a low DP atmosphere because of the formation of thick film-type oxides on the surface. After annealing in higher DP gas atmospheres, i.e., 263 K and 278 K (-10 °C and 5 °C), a continuous and fine-grained Fe2Al5- x Zn x layer was formed. No Fe-Zn intermetallics were formed. The small grain size of the inhibition layer was attributed to the nucleation of the Fe2Al5- x Zn x grains on small ferrite sub-surface grains and the presence of granular surface oxides. A high DP atmosphere can therefore significantly contribute to the decrease of Zn-coating defects on CMnSi TRIP steels processed in HDG lines.
Xu, Pengyun; Coyle, Thomas W; Pershin, Larry; Mostaghimi, Javad
2018-08-01
Superhydrophobic surfaces are often created by fabricating suitable surface structures from low-surface-energy organic materials using processes that are not suitable for large-scale fabrication. Rare earth oxides (REO) exhibit hydrophobic behavior that is unusual among oxides. Solution precursor plasma spray (SPPS) deposition is a rapid, one-step process that can produce ceramic coatings with fine scale columnar structures. Manipulation of the structure of REO coatings through variation in deposition conditions may allow the wetting behavior to be controlled. Yb 2 O 3 coatings were fabricated via SPPS. Coating structure was investigated by scanning electron microscopy, digital optical microscopy, and x-ray diffraction. The static water contact angle and roll-off angle were measured, and the dynamic impact of water droplets on the coating surface recorded. Superhydrophobic behavior was observed; the best coating exhibited a water contact angle of ∼163°, a roll-off angle of ∼6°, and complete droplet rebound behavior. All coatings were crystalline Yb 2 O 3 , with a nano-scale roughness superimposed on a micron-scale columnar structure. The wetting behaviors of coatings deposited at different standoff distances were correlated with the coating microstructures and surface topographies. The self-cleaning, water flushing and water jetting tests were conducted and further demonstrated the excellent and durable hydrophobicity of the coatings. Copyright © 2018 Elsevier Inc. All rights reserved.
Advanced Antireflection Coatings for High-Performance Solar Energy Applications
NASA Technical Reports Server (NTRS)
Pan, Noren
2015-01-01
Phase II objectives: Develop and refine antireflection coatings incorporating lanthanum titanate as an intermediate refractive index material; Investigate wet/dry thermal oxidation of aluminum containing semiconductor compounds as a means of forming a more transparent window layer with equal or better optical properties than its unoxidized form; Develop a fabrication process that allows integration of the oxidized window layer and maintains the necessary electrical properties for contacting the solar cell; Conduct an experimental demonstration of the best candidates for improved antireflection coatings.
NASA Astrophysics Data System (ADS)
Yin, Ruiyuan; Li, Yue; Sun, Yu; Wen, Cheng P.; Hao, Yilong; Wang, Maojun
2018-06-01
We report the effect of the gate recess process and the surface of as-etched GaN on the gate oxide quality and first reveal the correlation between border traps and exposed surface properties in normally-off Al2O3/GaN MOSFET. The inductively coupled plasma (ICP) dry etching gate recess with large damage presents a rough and active surface that is prone to form detrimental GaxO validated by atomic force microscopy and X-ray photoelectron spectroscopy. Lower drain current noise spectral density of the 1/f form and less dispersive ac transconductance are observed in GaN MOSFETs fabricated with oxygen assisted wet etching compared with devices based on ICP dry etching. One decade lower density of border traps is extracted in devices with wet etching according to the carrier number fluctuation model, which is consistent with the result from the ac transconductance method. Both methods show that the density of border traps is skewed towards the interface, indicating that GaxO is of higher trap density than the bulk gate oxide. GaxO located close to the interface is the major location of border traps. The damage-free oxidation assisted wet etching gate recess technique presents a relatively smooth and stable surface, resulting in lower border trap density, which would lead to better MOS channel quality and improved device reliability.
Gallium nitride microcavities formed by photoenhanced wet oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, L.-H.; Lu, C.-Y.; Wu, W.-H.
We report the formation of gallium nitride (GaN) microcavities by manipulating a photoenhanced oxidation rate difference between the polar and nonpolar crystallographic planes of GaN. When immersed in a buffered acetic (CH{sub 3}COOH) electrolyte of pH{approx}6.2 at room temperature, it is shown that the photo-oxidation can proceed at a rate that is one order of magnitude slower on the nonpolar plane of {l_brace}1100{r_brace}{sub GaN} than on the polar plane of {l_brace}0001{r_brace}{sub GaN} due to the reduced surface field action. Gallium nitride microcavities bounded by optically smooth {l_brace}1100{r_brace} and {l_brace}1103{r_brace} facets can thus be preferentially formed on the c-plane sapphire substratemore » after dissolving the oxide layer. The optical properties of these GaN hexagonal cavities reveal characteristic peaks of whispering gallery modes in resonance with the GaN band edge emission spectrum. A typical cavity Q factor of 10{sup 3} is observed in these GaN microcavities due to a reduced optical scattering loss in the wet chemical reaction process.« less
Clarke, Catherine; Tourney, Janette; Johnson, Karen
2012-02-29
PAHs are a common problem in contaminated urban soils due to their recalcitrance. This study presents results on the oxidation of anthracene on synthetic and natural Mn oxide surfaces. Evaporation of anthracene spiked Mn oxide slurries in air results in the oxidation of 30% of the anthracene to anthraquinone. Control minerals, quartz and calcite, also oxidised a small but significant proportion of the anthracene (4.5% and 14% conversion, respectively) when spiked mineral slurries were evaporated in air. However, only Mn oxide minerals showed significant anthracene oxidation (5-10%) when evaporation took place in the absence of oxygen (N2 atmosphere). In the fully hydrated systems where no drying took place, natural Mn oxides showed an increase in anthracene oxidation with decreasing pH, with a conversion of 75% anthracene at pH 4. These results show both acidification and drying favor the oxidation of anthracene on Mn oxide mineral surfaces. It has also been demonstrated that non-redox active mineral surfaces, such as calcite, may play a role in contaminant breakdown during wetting and drying sequences. Given that climate changes suggest that wetting and drying sequences are likely to become more significant these results have important implications for contaminated land remediation technologies. Copyright © 2012 Elsevier B.V. All rights reserved.
Wet oxidation of real coke wastewater containing high thiocyanate concentration.
Oulego, Paula; Collado, Sergio; Garrido, Laura; Laca, Adriana; Rendueles, Manuel; Díaz, Mario
2014-01-01
Coke wastewaters, in particular those with high thiocyanate concentrations, represent an important environmental problem because of their very low biodegradability. In this work, the treatment by wet oxidation of real coke wastewaters containing concentrations of thiocyanate above 17 mM has been studied in a 1-L semi-batch reactor at temperatures between 453 and 493 K, with total oxygen pressures in the range of 2.0-8.0 MPa. A positive effect of the matrix of real coke wastewater was observed, resulting in faster thiocyanate degradation than was obtained with synthetic wastewaters. Besides, the effect of oxygen concentration and temperature on thiocyanate wet oxidation was more noticeable in real effluents than in synthetic wastewaters containing only thiocyanate. It was also observed that the degree of mineralization of the matrix organic compounds was higher when the initial thiocyanate concentration increased. Taking into account the experimental data, kinetic models were obtained, and a mechanism implying free radicals was proposed for thiocyanate oxidation in the matrix considered. In all cases, sulphate, carbonates and ammonium were identified as the main reaction products of thiocyanate wet oxidation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhou, Fanglei; Tien, Huynh Ngoc; Xu, Weiwei L; Chen, Jung-Tsai; Liu, Qiuli; Hicks, Ethan; Fathizadeh, Mahdi; Li, Shiguang; Yu, Miao
2017-12-13
Among the current CO 2 capture technologies, membrane gas separation has many inherent advantages over other conventional techniques. However, fabricating gas separation membranes with both high CO 2 permeance and high CO 2 /N 2 selectivity, especially under wet conditions, is a challenge. In this study, sub-20-nm thick, layered graphene oxide (GO)-based hollow fiber membranes with grafted, brush-like CO 2 -philic agent alternating between GO layers are prepared by a facile coating process for highly efficient CO 2 /N 2 separation under wet conditions. Piperazine, as an effective CO 2 -philic agent, is introduced as a carrier-brush into the GO nanochannels with chemical bonding. The membrane exhibits excellent separation performance under simulated flue gas conditions with CO 2 permeance of 1,020 GPU and CO 2 /N 2 selectivity as high as 680, demonstrating its potential for CO 2 capture from flue gas. We expect this GO-based membrane structure combined with the facile coating process to facilitate the development of ultrathin GO-based membranes for CO 2 capture.
Greenhouse gas microbiology in wet and dry straw crust covering pig slurry.
Hansen, Rikke R; Nielsen, Daniel Aa; Schramm, Andreas; Nielsen, Lars P; Revsbech, Niels P; Hansen, Martin N
2009-01-01
Liquid manure (slurry) storages are sources of gases such as ammonia (NH(3)) and methane (CH(4)). Danish slurry storages are required to be covered to reduce NH(3) emissions and often a floating crust of straw is applied. This study investigated whether physical properties of the crust or crust microbiology had an effect on the emission of the potent greenhouse gases CH(4) and nitrous oxide (N(2)O) when crust moisture was manipulated ("dry", "moderate", and "wet"). The dry crust had the deepest oxygen penetration (45 mm as compared to 20 mm in the wet treatment) as measured with microsensors, the highest amounts of nitrogen oxides (NO(2)(-) and NO(3)(-)) (up to 36 mumol g(-1) wet weight) and the highest emissions of N(2)O and CH(4). Fluorescent in situ hybridization and gene-specific polymerase chain reaction (PCR) were used to detect occurrence of bacterial groups. Ammonia-oxidizing bacteria (AOB) were abundant in all three crust types, whereas nitrite-oxidizing bacteria (NOB) were undetectable and methane-oxidizing bacteria (MOB) were only sparsely present in the wet treatment. A change to anoxia did not affect the CH(4) emission indicating the virtual absence of aerobic methane oxidation in the investigated 2-mo old crusts. However, an increase in N(2)O emission was observed in all crusted treatments exposed to anoxia, and this was probably a result of denitrification based on NO(x)(-) that had accumulated in the crust during oxic conditions. To reduce overall greenhouse gas emissions, floating crust should be managed to optimize conditions for methanotrophs.
Catalytic processes for space station waste conversion
NASA Technical Reports Server (NTRS)
Schoonover, M. W.; Madsen, R. A.
1986-01-01
Catalytic techniques for processing waste products onboard space vehicles were evaluated. The goal of the study was the conversion of waste to carbon, wash water, oxygen and nitrogen. However, the ultimate goal is conversion to plant nutrients and other materials useful in closure of an ecological life support system for extended planetary missions. The resulting process studied involves hydrolysis at 250 C and 600 psia to break down and compact cellulose material, distillation at 100 C to remove water, coking at 450 C and atmospheric pressure, and catalytic oxidation at 450 to 600 C and atmospheric pressure. Tests were conducted with a model waste to characterize the hydrolysis and coking processes. An oxidizer reactor was sized based on automotive catalytic conversion experience. Products obtained from the hydrolysis and coking steps included a solid residue, gases, water condensate streams, and a volatile coker oil. Based on the data obtained, sufficient component sizing was performed to make a preliminary comparison of the catalytic technique with oxidation for processing waste for a six-man spacecraft. Wet oxidation seems to be the preferred technique from the standpoint of both component simplicity and power consumption.
XPS and EELS characterization of Mn2SiO4, MnSiO3 and MnAl2O4
NASA Astrophysics Data System (ADS)
Grosvenor, A. P.; Bellhouse, E. M.; Korinek, A.; Bugnet, M.; McDermid, J. R.
2016-08-01
X-ray Photoelectron Spectroscopy (XPS) and Electron Energy Loss Spectroscopy (EELS) are strong candidate techniques for characterizing steel surfaces and substrate-coating interfaces when investigating the selective oxidation and reactive wetting of advanced high strength steels (AHSS) during the continuous galvanizing process. However, unambiguous identification of ternary oxides such as Mn2SiO4, MnSiO3, and MnAl2O4 by XPS or EELS, which can play a significant role in substrate reactive wetting, is difficult due to the lack of fully characterized standards in the literature. To resolve this issue, samples of Mn2SiO4, MnSiO3 and MnAl2O4 were synthesized and characterized by XPS and EELS. The unique features of the XPS and EELS spectra for the Mn2SiO4, MnSiO3 and MnAl2O4 standards were successfully derived, thereby allowing investigators to fully differentiate and identify these oxides at the surface and subsurface of Mn, Si and Al alloyed AHSS using these techniques.
de Carvalho Oliveira, Fernanda; Srinivas, Keerthi; Helms, Gregory L; Isern, Nancy G; Cort, John R; Gonçalves, Adilson Roberto; Ahring, Birgitte Kiær
2018-06-01
The full use of biomass in future biorefineries has stimulated studies on utilization of lignin from agricultural crops, such as coffee husk, a major residue from coffee processing. This study focuses on characterizing the lignin obtained from coffee husk and its further wet oxidation products as a function of alkali loading, temperature and residence time. The lignin fraction after diluted acid and alkali pretreatments is composed primarily of p-hydroxylphenyl units (≥49%), with fewer guaiacyl and syringyl units. Linkages appear to be mainly β-O-4 ether linkages. Thermal degradation of pretreated lignin during wet oxidation occurred in two stages. Carboxylic acids were the main degradation product. Due to the condensed structure of this lignin, relatively low yields of aromatic aldehydes were achieved, except with temperatures over 210 °C, 5 min residence time and 11.7 wt% NaOH. Optimization of the pretreatment and oxidation parameters are important to maximizing yield of high-value bioproducts from lignin. Copyright © 2018. Published by Elsevier Ltd.
Wetting of water on graphene nanopowders of different thicknesses
NASA Astrophysics Data System (ADS)
Bera, Bijoyendra; Shahidzadeh, Noushine; Mishra, Himanshu; Belyaeva, Liubov A.; Schneider, Grégory F.; Bonn, Daniel
2018-04-01
We study the wetting of graphene nanopowders by measuring the water adsorption in nanopowder flakes of different flake thicknesses. Chemical analysis shows that the graphene flakes, especially the thin ones, might exist in the partially oxidized state. We observe that the thinnest graphene nanopowder flakes do not adsorb water at all, independent of the relative humidity. Thicker flakes, on the other hand, do adsorb an increasing amount of water with increasing humidity. This allows us to assess their wetting behavior which is actually the result of the competition between the adhesive interactions of water and graphene and the cohesive interactions of water. Explicit calculation of these contributions from the van der Waals interactions confirms that the adhesive interactions between very thin flakes of graphene oxide and water are extremely weak, which makes the flakes superhydrophobic. "Liquid marble" tests with graphene nanopowder flakes confirm the superhydrophobicity. This shows that the origin of the much debated "wetting transparency" of graphene is due to the fact that a single graphene or graphene oxide layer does not contribute significantly to the adhesion between a wetting phase and the substrate.
Synthesis, characterization and applications of graphene architectures
NASA Astrophysics Data System (ADS)
Thomas, Abhay Varghese
Graphene, a two--dimensional sheet of sp2 hybridized carbon atoms arranged in a honeycomb lattice structure, has garnered tremendous interest from the scientific community for its unique combination of properties. It has interesting electrical, thermal, optical and mechanical properties that scientists and engineers are trying to understand and harness to improve current products as well as focus on disruptive technologies that can be made possible by this next generation material. In this thesis the synthesis, characterization and applications of various graphene architectures were explored from the context of a bottom--up and top--down synthesis approach. The work is divided into three main chapters and each one deals with a unique architecture of graphene as well as its properties and an application to a real world problem. In Chapter 2, we focus on bottom--up synthesis of graphene sheets by chemical vapor deposition. We then studied the wetting properties of graphene coated surfaces. More specifically the wetting properties of single and multilayer graphene films on flat and nanoscale rough surfaces are explored and the insights gained are used in improving heat transfer performance of copper surfaces. Single layer graphene, on certain flat surfaces, was shown to exhibit `wetting transparency' as a result of its sheer thinness and this property is of interest in various wetting related applications. Surface protection from corrosion and/or oxidation without change in wetting properties is tremendously useful in multiple fields and we looked to apply this property to dehumidification of copper surfaces. The short time scales results demonstrated that graphene indeed served to prevent oxidation of the surface which in turn promoted increased heat transfer co--efficients with respect to the oxidized copper surfaces. Closer inspection of the surface over long time scales however revealed that the oxide layer changed the wetting properties and this was detrimental to the heat transfer process. In Chapter 3, we explore the assembly of graphene papers by top down methods (i.e. exfoliation of bulk graphite). We then explore the use of such graphene papers as an anode material in Lithium--ion batteries. The morphologically novel electrode fabrication and its exceptional performance as a lithium ion battery anode were explored and an in--depth investigation was carried out to determine the precise reason for the enhanced anode performance. A modified thermal reduction technique of a stable graphene oxide paper was developed to create a novel, free standing, binder free, reduced graphene oxide architecture using the top--down synthesis approach. The process was optimized to maximize the capacity by varying temperature and time as the critical parameters for reduction. An in--depth study was undertaken using raman spectroscopy, computational modelling, scanning electron microscopy, x--ray diffraction and x--ray photoelectron spectroscopy to show that lithium metal was plated into the nano--pores of the anode and the defective nature of the graphene sheets acted as seed points for this plating. In Chapter 4 we focus on graphene oxide papers produced by top--down exfoliation methods. More specifically, controlled instabilities or wrinkles created on graphene oxide thin films were developed as a tunable optical transmission layer for use in dynamic glazing systems. Graphene oxide thin films, prepared using the top--down synthesis, were subjected to compressive strains in the uni--axial and bi--axial direction to create uniform wrinkling of the films. Scanning electron, optical and atomic force microscopy was used to image the wrinkling morphology to qualitatively understand the behavior of the films and delaminated buckling of the graphene oxide films was determined to be the cause of the wrinkling. UV--VIS--NIR transmission measurements were carried out to determine the average transmission of the films with uni-axial and bi-axial wrinkling. Maximization of the dynamic range of optical transmission in the visible wavelength region was achieved with bi--axial wrinkling and this method was studied in depth to understand the role of applied strain, substrate pre--strain, graphene oxide film thickness and cycling stability.
Moore, Albert S.; Verhoff, Francis H.
1980-01-01
The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.
In-situ transesterification of wet spent coffee grounds for sustainable biodiesel production.
Park, Jeongseok; Kim, Bora; Lee, Jae W
2016-12-01
This work addresses in-situ transesterification of wet spent coffee grounds (SCGs) for the production of biodiesel. For in-situ transesterification process, the methanol, organic solvent and acid catalyst were mixed with wet SCG in one pot and the mixture was heated for simultaneous lipid extraction and transesterification. Maximum yield of fatty acid methyl esters (FAME) was 16.75wt.% based on the weight of dry SCG at 95°C. Comprehensive experiments were conducted with varying temperatures and various amounts of moisture, methanol, co-solvent and acid catalyst. Moderate polar and alcohol-miscible organic solvent is suitable for the high FAME yield. Unsaturated FAMEs are subject to oxidative cleavage by nitric acid and shorter chain (C6 and C10) FAMEs were mainly produced while sulfuric acid yielded long chain unsaturated FAMEs (C16 and C18). Utilization of wet SCGs as a biodiesel feedstock gives economic and environmental benefits by recycling the municipal waste. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doyle, F.M.
1993-12-31
The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in term of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the thirteenth quarter, wet oxidation tests were done on coal samples from the Pennsylvania State Coal Bank. As-received and oxidized coal samples were studied bymore » Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy to detect functional groups that might be responsible for changing the hydrophobicity of coal samples. Coal samples from the Pennsylvania State Coal Bank were oxidized for 5 hours at room temperature using 10% H{sub 2}O{sub 2} at pH 1.0, 1.0 M HNO{sub 3} or 0.05 M Fe{sub 2}(SO{sub 4}){sub 3} at pH 1.0. Details of the experimental procedure used in the wet oxidation tests were provided in our September 30, 1993 report, along with results of ion-exchange analysis and film flotation tests on as-received and oxidized coal samples. Table II shows the weight percentage of carboxylic and phenolic group oxygen generated by oxidation with different treatments, as determined by ion-exchange. DRIFT spectroscopic analysis was done on as-received and oxidized samples to identify different functionalities directly, to supplement the information on carboxylic and phenolic groups obtained indirectly by ion-exchange methods. The procedure for DRIFT analysis was reported in our June 30, 1993 report.« less
System and method for 3D printing of aerogels
Worsley, Marcus A.; Duoss, Eric; Kuntz, Joshua; Spadaccini, Christopher; Zhu, Cheng
2016-03-08
A method of forming an aerogel. The method may involve providing a graphene oxide powder and mixing the graphene oxide powder with a solution to form an ink. A 3D printing technique may be used to write the ink into a catalytic solution that is contained in a fluid containment member to form a wet part. The wet part may then be cured in a sealed container for a predetermined period of time at a predetermined temperature. The cured wet part may then be dried to form a finished aerogel part.
Biskupek, Johannes; Kaiser, Ute; Falk, Fritz
2008-06-01
In this study, we describe the transport of gold (Au) nanoparticles from the surface into crystalline silicon (Si) covered by silicon oxide (SiO(2)) as revealed by in situ high-resolution transmission electron microscopy. Complete crystalline Au nanoparticles sink through the SiO(2) layer into the Si substrate when high-dose electron irradiation is applied and temperature is raised above 150 degrees C. Above temperatures of 250 degrees C, the Au nanoparticles finally dissolve into fragments accompanied by crystallization of the amorphized Si substrate around these fragments. The transport process is explained by a wetting process followed by Stokes motion. Modelling this process yields boundaries for the interface energies involved.
Lift-off process for fine-patterned PZT film using metal oxide as a sacrificial layer
NASA Astrophysics Data System (ADS)
Trong Tue, Phan; Shimoda, Tatsuya; Takamura, Yuzuru
2017-01-01
Patterning of lead zirconium titanate (PZT) films is crucial for highly integrated piezoelectric/ferroelectric micro-devices. In this work, we report a novel lift-off method using solution-processed indium zinc oxide (IZO) thin film as a sacrificial layer for sub-5 µm fine-patterning PZT film. The processes include IZO layer deposition and patterning, PZT film preparation, and final lift-off. The results reveal that the lift-off PZT processes provide better structural and electrical properties than those formed by the conventional wet-etching method. The successful patterning by the lift-off was mainly due to the fact that the IZO sacrificial layer is easy to etch and has a high-temperature resistance. This finding shows great promise for highly integrated electronic devices.
ERIC Educational Resources Information Center
Filer, Herb; Broste, Dale
This lesson was developed for a course in sludge treatment and disposal. The lesson describes the Porteous heat treatment method of sludge conditioning and compares that system to the Zimpro wet air oxidation process. The theory of heat treatment, system of components and functions, and concepts of operation are addressed in the lesson. The…
NASA Astrophysics Data System (ADS)
Mao, Huiting; Ye, Zhuyun; Driscoll, Charles
2017-11-01
An analysis of weekly measurement data of mercury (Hg) wet deposition was conducted for Huntington Wildlife Forest (HWF), a forest ecosystem in Upstate New York and a biological Hg hotspot, during 2000-2015. Annual accumulated Hg wet deposition flux was found to decrease at a rate of -0.13 μg m-2 yr-1 (2% yr-1) (p = 0.09), and volume weighted mean (VWM) Hg precipitation concentrations at -0.14 ng L-1 yr-1 (2.5% yr-1) (p = 0.00). In examining data by season, no trends were identified for the two variables. It was found that the North Atlantic Oscillation (NAO) affected Hg wet deposition predominantly in spring, as did the position of the U.S. East Coast trough in summer, which suggests different dominant mechanisms driving Hg wet deposition in different seasons. The impacts of such large scale circulation processes were facilitated via variations in precipitation amounts. This was manifested in spring 2011 with the strongest positive phase of NAO, resulting in the wettest spring with the largest Hg wet deposition flux, and in summer 2007 with the U.S. East Coast trough positioned the farthest out over the Atlantic Ocean, causing the driest summer with the lowest Hg wet deposition flux of the study period. Extreme precipitation amounts in spring could singularly drive the overall long-term trend in Hg wet deposition whereas in summer other factors could just be as important. Similar mechanisms were thought to control the long term variations of Hg wet deposition and precipitation concentrations in all seasons but summer as indicated in their significant correlation in all but summer. Atmospheric concentrations of gaseous oxidized mercury (GOM) and particulate borne mercury (PBM) at HWF over 2009-2015 hardly exhibited correlations with Hg wet deposition or precipitation concentrations. Chemical transport model simulations strongly supported efficient scavenging of oxidized Hg by precipitation resulting in the lowest concentration of GOM in the warm season despite the supposedly largest GOM production. Our findings suggest that over the long run climate change could play an important role in atmospheric deposition of Hg into ecosystems facilitated by precipitation amounts, which is closely linked to variations in large scale circulation.
NASA Astrophysics Data System (ADS)
Ueda, Hirokazu; Ventzek, Peter L. G.; Oka, Masahiro; Kobayashi, Yuuki; Sugimoto, Yasuhiro
2015-06-01
Topographic structures such as Fin FETs and silicon nanowires for advanced gate fabrication require ultra-shallow high dose infusion of dopants into the silicon subsurface. Plasma doping meets this requirement by supplying a flux of inert ions and dopant radicals to the surface. However, the helium ion bombardment needed to infuse dopants into the fin surface can cause poor dose retention. This is due to the interaction between substrate damage and post doping process wet cleaning solutions required in the front end of line large-scale integration fabrication. We present findings from surface microscopy experiments that reveal the mechanism for dose retention in arsenic doped silicon fin samples using a microwave RLSA™ plasma source. Dilute aqueous hydrofluoric acid (DHF) cleans by themselves are incompatible with plasma doping processes because the films deposited over the dosed silicon and ion bombardment damaged silicon are readily removed. Oxidizing wet cleaning chemistries help retain the dose as silica rich over-layers are not significantly degraded. Furthermore, the dosed retention after a DHF clean following an oxidizing wet clean is unchanged. Still, the initial ion bombardment energy and flux are important. Large ion fluxes at energies below the sputter threshold and above the silicon damage threshold, before the silicon surface is covered by an amorphous mixed phase layer, allow for enhanced uptake of dopant into the silicon. The resulting dopant concentration is beyond the saturation limit of crystalline silicon.
The applicability of the catalytic wet-oxidation to CELSS
NASA Technical Reports Server (NTRS)
Takahashi, Y.; Nitta, K.; Ohya, H.; Oguchi, M.
1987-01-01
The wet oxidation catalysis of Au, Pd, Pt, Rh or Ru on a ceramic honeycomb carrier was traced in detail by 16 to 20 repetitive batch tests each. As a result, Pt or Pd on a honeycomb carrier was shown to catalyze complete nitrogen gasification as N2. Though the catalysts which realize both complete nitrogen gasification and complete oxidation could not be found, the Ru+Rh catalyst was found to be most promising. Ru honeycomb catalyzed both nitrification and nitrogen gasification.
Luo, Dongxiang; Zhao, Mingjie; Xu, Miao; Li, Min; Chen, Zikai; Wang, Lang; Zou, Jianhua; Tao, Hong; Wang, Lei; Peng, Junbiao
2014-07-23
Amorphous indium-zinc-oxide thin film transistors (IZO-TFTs) with damage-free back channel wet-etch (BCE) process were investigated. A carbon (C) nanofilm was inserted into the interface between IZO layer and source/drain (S/D) electrodes as a barrier layer. Transmittance electron microscope images revealed that the 3 nm-thick C nanofilm exhibited a good corrosion resistance to a commonly used H3PO4-based etchant and could be easily eliminated. The TFT device with a 3 nm-thick C barrier layer showed a saturated field effect mobility of 14.4 cm(2) V(-1) s(-1), a subthreshold swing of 0.21 V/decade, an on-to-off current ratio of 8.3 × 10(10), and a threshold voltage of 2.0 V. The favorable electrical performance of this kind of IZO-TFTs was due to the protection of the inserted C to IZO layer in the back-channel-etch process. Moreover, the low contact resistance of the devices was proved to be due to the graphitization of the C nanofilms after annealing. In addition, the hysteresis and thermal stress testing confirmed that the usage of C barrier nanofilms is an effective method to fabricate the damage-free BCE-type devices with high reliability.
NASA Astrophysics Data System (ADS)
Shiomi, Hiromu; Kitai, Hidenori; Tsujimura, Masatoshi; Kiuchi, Yuji; Nakata, Daisuke; Ono, Shuichi; Kojima, Kazutoshi; Fukuda, Kenji; Sakamoto, Kunihiro; Yamasaki, Kimiyohi; Okumura, Hajime
2016-04-01
The effects of oxynitridation and wet oxidation at the interface of SiO2/4H-SiC(0001) and (000\\bar{1}) were investigated using both electrical and physical characterization methods. Hall measurements and split capacitance-voltage (C-V) measurements revealed that the difference in field-effect mobility between wet oxide and dry oxynitride interfaces was mainly attributed to the ratio of the mobile electron density to the total induced electron density. The surface states close to the conduction band edge causing a significant trapping of inversion carriers were also evaluated. High-resolution Rutherford backscattering spectroscopy (HR-RBS) analysis and high-resolution elastic recoil detection analysis (HR-ERDA) were employed to show the nanometer-scale compositional profile of the SiC-MOS interfaces for the first time. These analyses, together with cathode luminescence (CL) spectroscopy and transmission electron microscopy (TEM), suggested that the deviations of stoichiometry and roughness at the interface defined the effects of oxynitridation and wet oxidation at the interface of SiO2/4H-SiC(0001) and (000\\bar{1}).
WHY DOES FLUE GAS ELEMENTAL MERCURY CONCENTRATION INCREASE ACROSS A WET SCRUBBER?
The paper describes the results of research investigating the potential reduction of oxidized mercury (Hg2+) to elemental mercury (Hg0) and subsequent emission of Hg0 from wet scrubbers. Experiments were performed in a bench-scale, wet scrubber simulator containing solutions used...
Investigation Of A Mercury Speciation Technique For Flue Gas Desulfurization Materials
Most of the synthetic gypsum generated from wet flue gas desulfurization (FGD) scrubbers is currently being used for wallboard production. Because oxidized mercury is readily captured by the wet FGD scrubber, and coal-fired power plants equipped with wet scrubbers desire to bene...
Towards large-scale plasma-assisted synthesis of nanowires
NASA Astrophysics Data System (ADS)
Cvelbar, U.
2011-05-01
Large quantities of nanomaterials, e.g. nanowires (NWs), are needed to overcome the high market price of nanomaterials and make nanotechnology widely available for general public use and applications to numerous devices. Therefore, there is an enormous need for new methods or routes for synthesis of those nanostructures. Here plasma technologies for synthesis of NWs, nanotubes, nanoparticles or other nanostructures might play a key role in the near future. This paper presents a three-dimensional problem of large-scale synthesis connected with the time, quantity and quality of nanostructures. Herein, four different plasma methods for NW synthesis are presented in contrast to other methods, e.g. thermal processes, chemical vapour deposition or wet chemical processes. The pros and cons are discussed in detail for the case of two metal oxides: iron oxide and zinc oxide NWs, which are important for many applications.
[Kinetics of catalytic wet air oxidation of phenol in trickle bed reactor].
Li, Guang-ming; Zhao, Jian-fu; Wang, Hua; Zhao, Xiu-hua; Zhou, Yang-yuan
2004-05-01
By using a trickle bed reactor which was designed by the authors, the catalytic wet air oxidation reaction of phenol on CuO/gamma-Al2O3 catalyst was studied. The results showed that in mild operation conditions (at temperature of 180 degrees C, pressure of 3 MPa, liquid feed rate of 1.668 L x h(-1) and oxygen feed rate of 160 L x h(-1)), the removal of phenol can be over 90%. The curve of phenol conversion is similar to "S" like autocatalytic reaction, and is accordance with chain reaction of free radical. The kinetic model of pseudo homogenous reactor fits the catalytic wet air oxidation reaction of phenol. The effects of initial concentration of phenol, liquid feed rate and temperature for reaction also were investigated.
Selective dry etching of silicon containing anti-reflective coating
NASA Astrophysics Data System (ADS)
Sridhar, Shyam; Nolan, Andrew; Wang, Li; Karakas, Erdinc; Voronin, Sergey; Biolsi, Peter; Ranjan, Alok
2018-03-01
Multi-layer patterning schemes involve the use of Silicon containing Anti-Reflective Coating (SiARC) films for their anti-reflective properties. Patterning transfer completion requires complete and selective removal of SiARC which is very difficult due to its high silicon content (>40%). Typically, SiARC removal is accomplished through a non-selective etch during the pattern transfer process using fluorine containing plasmas, or an ex-situ wet etch process using hydrofluoric acid is employed to remove the residual SiARC, post pattern transfer. Using a non-selective etch may result in profile distortion or wiggling, due to distortion of the underlying organic layer. The drawbacks of using wet etch process for SiARC removal are increased overall processing time and the need for additional equipment. Many applications may involve patterning of active structures in a poly-Si layer with an underlying oxide stopping layer. In such applications, SiARC removal selective to oxide using a wet process may prove futile. Removing SiARC selectively to SiO2 using a dry etch process is also challenging, due to similarity in the nature of chemical bonds (Si - O) in the two materials. In this work, we present highly selective etching of SiARC, in a plasma driven by a surface wave radial line slot antenna. The first step in the process involves an in-situ modification of the SiARC layer in O2 plasma followed by selective etching in a NF3/H2 plasma. Surface treatment in O2 plasma resulted in enhanced etching of the SiARC layer. For the right processing conditions, in-situ NF3/H2 dry etch process demonstrated selectivity values greater than 15:1 with respect to SiO2. The etching chemistry, however, was sensitive to NF3:H2 gas ratio. For dilute NF3 in H2, no SiARC etching was observed. Presumably, this is due to the deposition of ammonium fluorosilicate layer that occurs for dilute NF3/H2 plasmas. Additionally, challenges involved in selective SiARC removal (selective to SiO2, organic and Si layers) post pattern transfer, in a multi-layer structure will be discussed.
Release of MEMS devices with hard-baked polyimide sacrificial layer
NASA Astrophysics Data System (ADS)
Boroumand Azad, Javaneh; Rezadad, Imen; Nath, Janardan; Smith, Evan; Peale, Robert E.
2013-03-01
Removal of polyimides used as sacrificial layer in fabricating MEMS devices can be challenging after hardbaking, which may easily result by the end of multiple-step processing. We consider the specific commercial co-developable polyimide ProLift 100 (Brewer Science). Excessive heat hardens this material, so that during wet release in TMAH based solvents, intact sheets break free from the substrate, move around in the solution, and break delicate structures. On the other hand, dry reactive-ion etching of hard-baked ProLift is so slow, that MEMS structures are damaged from undesirably-prolonged physical bombardment by plasma ions. We found that blanket exposure to ultraviolet light allows rapid dry etch of the ProLift surrounding the desired structures without damaging them. Subsequent removal of ProLift from under the devices can then be safely performed using wet or dry etch. We demonstrate the approach on PECVD-grown silicon-oxide cantilevers of 100 micron × 100 micron area supported 2 microns above the substrate by ~100-micron-long 8-micron-wide oxide arms.
NASA Technical Reports Server (NTRS)
Cooper, C. David
1997-01-01
Emissions of nitrogen oxides NO(x) are a significant problem in the United States. NO(x) are formed in any combustion process, therefore it is not surprising that NO(x) are emitted from the boilers at KSC. Research at UCF has shown (in the laboratory) that injecting H2O2 into hot simulated flue gases can oxidize the NO and NO2 to their acid gas forms, HNO2 and HNO3, respectively. These acid gases are much more water soluble than their counterparts, and theoretically can be removed easily by wet scrubbing. This technology was of interest to NASA, both for their boilers at KSC, and for their combustion sources elsewhere. However, it was necessary to field test the technology and to provide pilot-scale data to aid in design of full-scale facilities. Hence this project was initiated in May of 1996.
NASA Astrophysics Data System (ADS)
Su, Shui-Hsiang; Kong, Hsieng-Jen; Tseng, Chun-Lung; Chen, Guan-Yu
2018-01-01
In the article, we describe the etching mechanism of indium-tin oxide (ITO) film, which was wet-etched using a solution of hydrochloric acid (HCl) and ferric chloride (FeCl3). The etching mechanism is analyzed at various etching durations of ITO films by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and selective area diffraction (SAD) analysis. In comparison with the crystalline phase of SnO2, the In2O3 phase can be more easily transformed to In3+ and can form an inverted conical structure during the etching process. By adjusting the etching duration, the residual ITO is completely removed to show a designed pattern. This is attributed to the negative Gibbs energy of In2O3 transformed to In3+. The result also corresponds to the finding of energy-dispersive X-ray spectroscopy (EDS) analysis that the Sn/In ratio increases with increasing etching duration.
Supercritical waste oxidation of aqueous wastes
NASA Technical Reports Server (NTRS)
Modell, M.
1986-01-01
For aqueous wastes containing 1 to 20 wt% organics, supercritical water oxidation is less costly than controlled incineration or activated carbon treatment and far more efficient than wet oxidation. Above the critical temperature (374 C) and pressure (218 atm) of water, organic materials and gases are completely miscible with water. In supercritical water oxidation, organics, air and water are brought together in a mixture at 250 atm and temperatures above 400 C. Organic oxidation is initiated spontaneously at these conditions. The heat of combustion is released within the fluid and results in a rise in temperature 600 to 650 C. Under these conditions, organics are destroyed rapidly with efficiencies in excess of 99.999%. Heteroatoms are oxidized to acids, which can be precipitated out as salts by adding a base to the feed. Examples are given for process configurations to treat aqueous wastes with 10 and 2 wt% organics.
NASA Astrophysics Data System (ADS)
Rashid, Zeeshan; Atay, Ipek; Soydan, Seren; Yagci, M. Baris; Jonáš, Alexandr; Yilgor, Emel; Kiraz, Alper; Yilgor, Iskender
2018-05-01
Polymer surfaces reversibly switchable from superhydrophobic to superhydrophilic by exposure to oxygen plasma and subsequent thermal treatment are demonstrated. Two inherently different polymers, hydrophobic segmented polydimethylsiloxane-urea copolymer (TPSC) and hydrophilic poly(methyl methacrylate) (PMMA) are modified with fumed silica nanoparticles to prepare superhydrophobic surfaces with roughness on nanometer to micrometer scale. Smooth TPSC and PMMA surfaces are also used as control samples. Regardless of their chemical structure and surface topography, all surfaces display completely reversible wetting behavior changing from hydrophobic to hydrophilic and back for many cycles upon plasma oxidation followed by thermal annealing. Influence of plasma power, plasma exposure time, annealing temperature and annealing time on the wetting behavior of polymeric surfaces are investigated. Surface compositions, textures and topographies are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and white light interferometry (WLI), before and after oxidation and thermal annealing. Wetting properties of the surfaces are determined by measuring their static, advancing and receding water contact angle. We conclude that the chemical structure and surface topography of the polymers play a relatively minor role in reversible wetting behavior, where the essential factors are surface oxidation and migration of polymer molecules to the surface upon thermal annealing. Reconfigurable water channels on polymer surfaces are produced by plasma treatment using a mask and thermal annealing cycles. Such patterned reconfigurable hydrophilic regions can find use in surface microfluidics and optofluidics applications.
Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbide in Wet Oxygen
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.
1994-01-01
The oxidation kinetics of chemically vapor-deposited SiC in dry oxygen and wet oxygen (P(sub H2O) = 0.1 atm) at temperatures between 1200 C and 1400 C were monitored using thermogravimetric analysis. It was found that in a clean environment, 10% water vapor enhanced the oxidation kinetics of SiC only very slightly compared to rates found in dry oxygen. Oxidation kinetics were examined in terms of the Deal and Grove model for oxidation of silicon. It was found that in an environment containing even small amounts of impurities, such as high-purity Al2O3 reaction tubes containing 200 ppm Na, water vapor enhanced the transport of these impurities to the oxidation sample. Oxidation rates increased under these conditions presumably because of the formation of less protective sodium alumino-silicate scales.
Phytoxicity study of the products of wet oxidation of a representative biomass (lettuce)
NASA Technical Reports Server (NTRS)
Onisko, B. L.; Wydeven, T.
1983-01-01
In an attempt to verify the results reported previously concerning the phytotoxicity of wet-oxidation (wet-ox) products, lettuce solids were suspended in water and then heated to 548 K for 3.6 ksec (1 hr) under 4.1x10 to the -7 Pa (400 psig at 294 K) oxygen pressure and 1.52x10 to the 8th (1500 psig at 548 K) total pressure. Such treatment resulted in oxidation of 80% of the initial organic carbon to carbon dioxide. Thirty-three percent of the remaining organic carbon was present in acetic acid. Organic nitrogen in the feed was decreased 90% by the wet-ox treatment. Ammonia and nitrogen gas were the main nitrogen products. Analysis of the liquid product of wet-ox indicated that most of the minerals essential for plant growth were present. However, when tested using a lettuce-root growth-rate assay, the solution was toxic. This toxicity was not due to excessive salt or ammonia or to an improper pH. Analysis of the wet-ox solution revealed the presence of silver and chromium, thus implicating reactor corrosion as the cause of the phytotoxicity. Both cation and anion exchange resins removed the silver and the toxicity of the liquid effluent, indicating silver as the toxic component. Uptake of both silver and chromium by lettuce roots correlated with diminished root growth. Toxicity of the solution from wet-ox was not observed when precautions were taken to minimize contact of the liquid in the reactor with the metal reactor components.
Assefa, Zerihun; Haire, R G; Caulder, D L; Shuh, D K
2004-07-01
Sol-gel glass matrices containing lanthanides have numerous technological applications and their formation involves several chemical facets. In the case of cerium, its ability to exist in two different oxidation states or in mixed valence state provides additional complexities for the sol-gel process. The oxidation state of cerium present during different facets of preparation of sol-gel glasses, and also as a function of the starting oxidation state of cerium added, were studied both by optical spectroscopy and X-ray absorption near-edge structures (XANES). The findings acquired by each approach were compared. The primary focus was on the redox chemistries associated with sample preparation, gelation, and thermal treatment. When Ce3+ is introduced into the starting sols, the trivalent state normally prevails in the wet and room temperature-dried gels. Heating in air at >100 degrees C can generate a light yellow coloration with partial oxidation to the tetravalent state. Above 200 degrees C and up to approximately 1000 degrees C, cerium is oxidized to its tetravalent state. In contrast, when tetravalent cerium is introduced into the sol, both the wet and room temperature-dried gels lose the yellow-brown color of the initial ceric ammonium nitrate solution. When the sol-gel is heated to 110 degrees C it turns yellowish as the cerium tends to be re-oxidized. The yellow color is believed to represent the effect of oxidation and oligomerization of the cerium-silanol units in the matrix. The luminescence properties are also affected by these changes, the details of which are reported herein.
Inagaki, Fumio; Tsunogai, Urumu; Suzuki, Masae; Kosaka, Ayako; Machiyama, Hideaki; Takai, Ken; Nunoura, Takuro; Nealson, Kenneth H.; Horikoshi, Koki
2004-01-01
Samples from three submerged sites (MC, a core obtained in the methane seep area; MR, a reference core obtained at a distance from the methane seep; and HC, a gas-bubbling carbonate sample) at the Kuroshima Knoll in the southern Ryuku arc were analyzed to gain insight into the organisms present and the processes involved in this oxic-anoxic methane seep environment. 16S rRNA gene analyses by quantitative real-time PCR and clone library sequencing revealed that the MC core sediments contained abundant archaea (∼34% of the total prokaryotes), including both mesophilic methanogens related to the genus Methanolobus and ANME-2 members of the Methanosarcinales, as well as members of the δ-Proteobacteria, suggesting that both anaerobic methane oxidation and methanogenesis occurred at this site. In addition, several functional genes connected with methane metabolism were analyzed by quantitative competitive-PCR, including the genes encoding particulate methane monooxygenase (pmoA), soluble methane monooxygenase (mmoX), methanol dehydrogenese (mxaF), and methyl coenzyme M reductase (mcrA). In the MC core sediments, the most abundant gene was mcrA (2.5 × 106 copies/g [wet weight]), while the pmoA gene of the type I methanotrophs (5.9 × 106 copies/g [wet weight]) was most abundant at the surface of the MC core. These results indicate that there is a very complex environment in which methane production, anaerobic methane oxidation, and aerobic methane oxidation all occur in close proximity. The HC carbonate site was rich in γ-Proteobacteria and had a high copy number of mxaF (7.1 × 106 copies/g [wet weight]) and a much lower copy number of the pmoA gene (3.2 × 102 copies/g [wet weight]). The mmoX gene was never detected. In contrast, the reference core contained familiar sequences of marine sedimentary archaeal and bacterial groups but not groups specific to C1 metabolism. Geochemical characterization of the amounts and isotopic composition of pore water methane and sulfate strongly supported the notion that in this zone both aerobic methane oxidation and anaerobic methane oxidation, as well as methanogenesis, occur. PMID:15574947
Domestic applications for aerospace waste and water management technologies
NASA Technical Reports Server (NTRS)
Disanto, F.; Murray, R. W.
1972-01-01
Some of the aerospace developments in solid waste disposal and water purification, which are applicable to specific domestic problems are explored. Also provided is an overview of the management techniques used in defining the need, in utilizing the available tools, and in synthesizing a solution. Specifically, several water recovery processes will be compared for domestic applicability. Examples are filtration, distillation, catalytic oxidation, reverse osmosis, and electrodialysis. Solid disposal methods will be discussed, including chemical treatment, drying, incineration, and wet oxidation. The latest developments in reducing household water requirements and some concepts for reusing water will be outlined.
Development and Research on the Mechanism of Novel Mist Etching Method for Oxide Thin Films
NASA Astrophysics Data System (ADS)
Kawaharamura, Toshiyuki; Hirao, Takashi
2012-03-01
A novel etching process with etchant mist was developed and applied to oxide thin films such as zinc oxide (ZnO), zinc magnesium oxide (ZnMgO), and indium tin oxide (ITO). By using this process, it was shown that precise control of the etching characteristics is possible with a reasonable etching rate, for example, in the range of 10-100 nm/min, and a fine pattern of high accuracy can also be realized, even though this is usually very difficult by conventional wet etching processes, for ZnO and ZnMgO. The mist etching process was found to be similarly and successfully applied to ITO. The mechanism of mist etching has been studied by examining the etching temperature dependence of pattern accuracy, and it was shown that the mechanism was different from that of conventional liquid-phase spray etching. It was ascertained that fine pattern etching was attained using mist droplets completely (or partly) gasified by the heat applied to the substrate. This technique was applied to the fabrication of a ZnO thin-film transistor (TFT) with a ZnO active channel length of 4 µm. The electrical properties of the TFT were found to be excellent with fine uniformity over the entire 4-in. wafer.
Performance of Diffusion Aluminide Coatings Applied on Alloy CF8C-Plus at 800oC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Deepak; Dryepondt, Sebastien N; Zhang, Ying
2012-01-01
High performance cast stainless steel, CF8C-Plus, is a low cost alloy with prospective applications ranging from covers and casings of small and medium size gas turbines to turbocharger housing and manifolds in internal combustion engines. Diffusion aluminide coatings were applied on this alloy as a potential strategy for improved oxidation resistance, particularly in wet air and steam. In this paper the performance of the aluminide coatings evaluated by cyclic oxidation experiments in air containing 10 vol.% H2O at 800 C and conventional tension-compression low-cycle-fatigue tests in air at 800 C with a strain range of 0.5% is presented. The resultsmore » show that specimens coated by a chemical vapor deposition process provide better oxidation resistance than those coated by an Al-slurry coating process. The application of a coating by pack cementation reduced the fatigue life by 15%.« less
Influence of atmospheric processes on the solubility and composition of iron in Saharan dust
Longo, Amelia F.; Feng, Yan; Lai, Barry; ...
2016-06-10
Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation statemore » became more reduced, and aerosol acidity increased. As a result, atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.« less
Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust.
Longo, Amelia F; Feng, Yan; Lai, Barry; Landing, William M; Shelley, Rachel U; Nenes, Athanasios; Mihalopoulos, Nikolaos; Violaki, Kalliopi; Ingall, Ellery D
2016-07-05
Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation state became more reduced, and aerosol acidity increased. Atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Sungjin; Mativenga, Mallory; Kim, Youngoo
2014-08-04
We demonstrate back channel improvement of back-channel-etch amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors by using solution-processed yttrium oxide (Y{sub 2}O{sub 3}) passivation. Two different solvents, which are acetonitrile (35%) + ethylene glycol (65%), solvent A and deionized water, solvent B are investigated for the spin-on process of the Y{sub 2}O{sub 3} passivation—performed after patterning source/drain (S/D) Mo electrodes by a conventional HNO{sub 3}-based wet-etch process. Both solvents yield devices with good performance but those passivated by using solvent B exhibit better light and bias stability. Presence of yttrium at the a-IGZO back interface, where it occupies metal vacancy sites, is confirmed by X-ray photoelectronmore » spectroscopy. The passivation effect of yttrium is more significant when solvent A is used because of the existence of more metal vacancies, given that the alcohol (65% ethylene glycol) in solvent A may dissolve the metal oxide (a-IGZO) through the formation of alkoxides and water.« less
Tian, Mingliang; Xu, Shengyong; Wang, Jinguo; Kumar, Nitesh; Wertz, Eric; Li, Qi; Campbell, Paul M; Chan, Moses H W; Mallouk, Thomas E
2005-04-01
A simple method for penetrating the barrier layer of an anodic aluminum oxide (AAO) film and for detaching the AAO film from residual Al foil was developed by reversing the bias voltage in situ after the anodization process is completed. With this technique, we have been able to obtain large pieces of free-standing AAO membranes with regular pore sizes of sub-10 nm. By combining Ar ion milling and wetting enhancement processes, Au nanowires were grown in the sub-10 nm pores of the AAO films. Further scaling down of the pore size and extension to the deposition of nanowires and nanotubes of materials other than Au should be possible by further optimizing this procedure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swain, Basudev, E-mail: swain@iae.re.kr; Mishra, Chinmayee; Hong, Hyun Seon
Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11 kg/m{sup 3} of copper and 1.35 kg/m{sup 3} of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered usingmore » various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100–500 nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process. - Highlights: • From the Indium-Tin-Oxide etching wastewater, copper nanopowder was synthesized. • Solution chemistry of ITO etching wastewater is addressed. • A techno-economical feasible, environment friendly and occupational safe process. • Brings back the material to production stream and address the circular economy. • A cradle to cradle technology management lowers the futuristic carbon economy.« less
Predicting the mineral composition of dust aerosols - Part 1: Representing key processes
NASA Astrophysics Data System (ADS)
Perlwitz, J. P.; Pérez García-Pando, C.; Miller, R. L.
2015-10-01
Soil dust aerosols created by wind erosion are typically assigned globally uniform physical and chemical properties within Earth system models, despite known regional variations in the mineral content of the parent soil. Mineral composition of the aerosol particles is important to their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Here, aerosol mineral composition is derived by extending a method that provides the composition of a wet-sieved soil. The extension accounts for measurements showing significant differences between the mineral fractions of the wet-sieved soil and the emitted aerosol concentration. For example, some phyllosilicate aerosols are more prevalent at silt sizes, even though they are nearly absent at these diameters in a soil whose aggregates are dispersed by wet sieving. We calculate the emitted mass of each mineral with respect to size by accounting for the disintegration of soil aggregates during wet sieving. These aggregates are emitted during mobilization and fragmentation of the original undispersed soil that is subject to wind erosion. The emitted aggregates are carried far downwind from their parent soil. The soil mineral fractions used to calculate the aggregates also include larger particles that are suspended only in the vicinity of the source. We calculate the emitted size distribution of these particles using a normalized distribution derived from aerosol measurements. In addition, a method is proposed for mixing minerals with small impurities composed of iron oxides. These mixtures are important for transporting iron far from the dust source, because pure iron oxides are more dense and vulnerable to gravitational removal than most minerals comprising dust aerosols. A limited comparison to measurements from North Africa shows that the model extensions result in better agreement, consistent with a more extensive comparison to global observations as well as measurements of elemental composition downwind of the Sahara, as described in companion articles.
Hydrogen passivation of silicon(100) used as templates for low-temperature epitaxy and oxidation
NASA Astrophysics Data System (ADS)
Atluri, Vasudeva Prasad
Epitaxial growth, oxidation and ohmic contacts require surfaces as free as possible of physical defects and chemical contaminants, especially, oxygen and hydrocarbons. Wet chemical cleaning typically involves a RCA clean to remove contaminants by stripping the native oxide and regrowing a chemical oxide with only trace levels of carbon and metallic impurities. Low temperature epitaxy, T<800sp° C, limits the thermal budget for the desorption of impurities and surface oxides, and can be performed on processed structures. But, silicon dioxide cannot be desorbed at temperatures lower than 800sp°C. Recently, hydrogen passivation of Si(111) has been reported to produce stable and ordered surfaces at low temperatures. Hydrogen can then be desorbed between 200sp°C and 600sp°C prior to deposition. In this work, Si(100) is passivated via a solution of hydrofluoric acid in alcohol (methanol, ethanol, or isopropyl alcohol) with HF concentrations between 0.5 to 10%. A rinse in water or alcohol is performed after etching to remove excess fluorine. This work investigates wet chemical cleaning of Si(100) to produce ordered, hydrogen-terminated, oxygen- and carbon-free surfaces to be used as templates for low temperature epitaxial growth and rapid thermal oxidation. Ion beam analysis, Tapping mode atomic force microscopy, Fourier transform infrared spectroscopy, Secondary ion mass spectroscopy, Chemical etching, Capacitance-voltage measurements and Ellipsometry are used to measure, at the surface and interface, impurities concentration, residual disorder, crystalline order, surface topography, roughness, chemical composition, defects density, electrical characteristics, thickness, and refractive index as a function of cleaning conditions for homoepitaxial silicon growth and oxidation. The wetting characteristics of the Si(100) surfaces are measured with a tilting plate technique. Different materials are analyzed by ion beam analysis for use as hydrogen standards in elastic recoil detection of hydrogen on sample surfaces. The results obtained in this study provide a quantitative optimization of passivation of Si(100) surfaces and their use as templates for low temperature epitaxy and rapid thermal oxidation. Ion beam analysis shows that the total coverage of H increases during passivation of Si(100) via HF in alcohol, while Fourier transform infrared spectroscopy indicates that more complex termination than the formation of simple silicon hydrides occurs.
Enhancement of green electroluminescence from nanocrystalline silicon by wet and dry processes.
Sato, Keisuke; Hirakuri, Kenji
2006-01-01
Correlation between defects and luminescence property from electroluminescent (EL) device composed of nanocrystalline silicon (nc-Si) prepared by wet and dry processes such as hydrofluoric (HF) acid solution treatment and annealing have investigated using electron spin resonance and EL measurements. The EL device using HF-treated nc-Si emitted strong red light, because of existence of only P'ce-centers (radiative recombination centers) on the surface vicinity. On the other hand, the EL device using annealed nc-Si above 400 degrees C exhibited green luminescence by the reduction of particle size due to surface oxidation. When the annealing temperature was risen from 400 degrees C up to 600 degrees C, the green luminescence strengthened with increasing the P'ce-centers. These results indicate that the formation of many radiative recombination centers onto the nc-Si surface vicinity lead to the enhancement of green luminescence from the nc-Si based EL device.
Effects of a modular two-step ozone-water and annealing process on silicon carbide graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, Matthew J., E-mail: matthew.webb@cantab.net; Lundstedt, Anna; Grennberg, Helena
By combining ozone and water, the effect of exposing epitaxial graphene on silicon carbide to an aggressive wet-chemical process has been evaluated after high temperature annealing in ultra high vacuum. The decomposition of ozone in water produces a number of oxidizing species, however, despite long exposure times to the aqueous-ozone environment, no graphene oxide was observed after the two-step process. The systems were comprehensively characterized before and after processing using Raman spectroscopy, core level photoemission spectroscopy, and angle resolved photoemission spectroscopy together with low energy electron diffraction, low energy electron microscopy, and atomic force microscopy. In spite of the chemicalmore » potential of the aqueous-ozone reaction environment, the graphene domains were largely unaffected raising the prospect of employing such simple chemical and annealing protocols to clean or prepare epitaxial graphene surfaces.« less
A study of the dispersity of iron oxide and iron oxide-noble metal (Me = Pd, Pt) supported systems
NASA Astrophysics Data System (ADS)
Cherkezova-Zheleva, Z. P.; Shopska, M. G.; Krstić, J. B.; Jovanović, D. M.; Mitov, I. G.; Kadinov, G. B.
2007-09-01
Samples of one-(Fe) and two-component (Fe-Pd and Fe-Pt) catalysts were prepared by incipient wetness impregnation of four different supports: TiO2 (anatase), γ-Al2O3, activated carbon, and diatomite. The chosen synthesis conditions resulted in the formation of nanosized supported phases—iron oxide (in the one-component samples), or iron oxide-noble metal (in the two-component ones). Different agglomeration degrees of these phases were obtained as a result of thermal treatment. Ultradisperse size of the supported phase was maintained in some samples, while a process of partial agglomeration occurred in others, giving rise to nearly bidisperse (ultra-and highdisperse) supported particles. The different texture of the used supports and their chemical composition are the reasons for the different stability of the nanosized supported phases. The samples were tested as heterogeneous catalysts in total benzene oxidation reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chopra, Nitin, E-mail: nchopra@eng.ua.edu; Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487; Shi, Wenwu
2014-10-15
Nanoscale heterostructures composed of standing copper oxide nanowires decorated with Au nanoparticles and shells of titania and indium tin oxide were fabricated. The fabrication process involved surfactant-free and wet-chemical nucleation of gold nanoparticles on copper oxide nanowires followed by a line-of-sight sputtering of titania or indium tin oxide. The heterostructures were characterized using high resolution electron microscopy, diffraction, and energy dispersive spectroscopy. The interfaces, morphologies, crystallinity, phases, and chemical compositions were analyzed. The process of direct nucleation of gold nanoparticles on copper oxide nanoparticles resulted in low energy interface with aligned lattice for both the components. Coatings of polycrystalline titaniamore » or amorphous indium tin oxide were deposited on standing copper oxide nanowire–gold nanoparticle heterostructures. Self-shadowing effect due to standing nanowire heterostructures was observed for line-of-sight sputter deposition of titania or indium tin oxide coatings. Finally, the heterostructures were studied using Raman spectroscopy and ultraviolet–visible spectroscopy, including band gap energy analysis. Tailing in the band gap energy at longer wavelengths (or lower energies) was observed for the nanowire heterostructures. - Highlights: • Heterostructures comprised of CuO nanowires coated with Au nanoparticles. • Au nanoparticles exhibited nearly flat and low energy interface with nanowire. • Heterostructures were further sputter-coated with oxide shell of TiO{sub 2} or ITO. • The process resulted in coating of polycrystalline TiO{sub 2} and amorphous ITO shell.« less
Pulsed corona discharge oxidation of aqueous lignin: decomposition and aldehydes formation.
Panorel, Iris; Kaijanen, Laura; Kornev, Iakov; Preis, Sergei; Louhi-Kultanen, Marjatta; Sirén, Heli
2014-01-01
Lignin is the mass waste product of pulp and paper industry mostly incinerated for energy recovery. Lignin is, however, a substantial source of raw material for derivatives currently produced in costly wet oxidation processes. The pulsed corona discharge (PCD) for the first time was applied to lignin oxidation aiming a cost-effective environmentally friendly lignin removal and transformation to aldehydes. The experimental research into treatment of coniferous kraft lignin aqueous solutions was undertaken to establish the dependence of lignin oxidation and aldehyde formation on the discharge parameters, initial concentration of lignin and gas phase composition. The rate and the energy efficiency of lignin oxidation increased with increasing oxygen concentration reaching up to 82 g kW-1 h-1 in 89% vol. oxygen. Oxidation energy efficiency in PCD treatment exceeds the one for conventional ozonation by the factor of two under the experimental conditions. Oxidation at low oxygen concentrations showed a tendency of the increasing aldehydes and glyoxylic acid formation yield.
Conaway, Christopher; Thomas, Randal B.; Saad, Nabil; Thordsen, James J.; Kharaka, Yousif K.
2015-01-01
This work examines the performance and limitations of a wet chemical oxidation carbon analyser interfaced with a cavity ring-down spectrometer (WCO-CRDS) in a continuous flow (CF) configuration for measuring δ13C of dissolved organic carbon (δ13C-DOC) in natural water samples. Low-chloride matrix (<5 g Cl/L) DOC solutions were analysed with as little as 2.5 mg C/L in a 9 mL aliquot with a precision of 0.5 ‰. In high-chloride matrix (10–100 g Cl/L) DOC solutions, bias towards lighter δ13C-DOC was observed because of incomplete oxidation despite using high-concentration oxidant, extended reaction time, or post-wet chemical oxidation gas-phase combustion. However, through a combination of dilution, chloride removal, and increasing the oxidant:sample ratio, high-salinity samples with sufficient DOC (>22.5 µg C/aliquot) may be analysed. The WCO-CRDS approach requires more total carbon (µg C/aliquot) than conventional CF-isotope ratio mass spectrometer, but is nonetheless applicable to a wide range of DOC concentration and water types, including brackish water, produced water, and basinal brines.
Electrical Transport Ability of Nanostructured Potassium-Doped Titanium Oxide Film
NASA Astrophysics Data System (ADS)
Lee, So-Yoon; Matsuno, Ryosuke; Ishihara, Kazuhiko; Takai, Madoka
2011-02-01
Potassium-doped nanostructured titanium oxide films were fabricated using a wet corrosion process with various KOH solutions. The doped condition of potassium in TiO2 was confirmed by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Nanotubular were synthesized at a dopant concentration of <0.27% when the dopant concentration increased to >0.27%, these structures disappeared. To investigate the electrical properties of K-doped TiO2, pseudo metal-oxide-semiconductor field-effect transistor (MOSFET) samples were fabricated. The samples exhibited a distinct electrical behavior and p-type characteristics. The electrical behavior was governed by the volume of the dopant when the dopant concentration was <0.10% and the volume of the TiO2 phase when the dopant concentration was >0.18%.
Heo, Jinhwa; Kang, Taegon; Jang, Se Gyu; Hwang, Dong Soo; Spruell, Jason M.; Killops, Kato L.; Waite, J. Herbert; Hawker, Craig J.
2012-01-01
A facile synthetic strategy for introducing catecholic moieties into polymeric materials based on a readily available precursor – eugenol – and efficient chemistries – tris(pentafluorophenyl)borane catalyzed silation and thiol-ene coupling is reported. Silyl-protection is shown to be critical for the oxidative stability of catecholic moieties during synthesis and processing which allows functionalized polysiloxane derivatives to be fabricated into 3-D microstructures as well as 2-D patterned surfaces. Deprotection gives stable catechol surfaces with adhesion to a variety of oxide surfaces being precisely tuned by the level of catechol incorporation. The advantage of silyl-protection for catechol functionalized polysiloxanes is demonstrated and represents a promising and versatile new platform for underwater surface treatments. PMID:23181614
Soil emissions of nitric oxide in a seasonally dry tropical forest of Mexico
NASA Technical Reports Server (NTRS)
Davidson, Eric A.; Vitousek, Peter M.; Riley, Ralph; Matson, Pamela A.; Garcia-Mendez, Georgina; Maass, J. M.
1991-01-01
Soil emissions of NO were measured at the Chamela Biological Station, Mexico, using soil covers and a field apparatus of NO detection based on CrO3 conversion of NO to NO2 and detection of NO2 by chemiluminescence with Luminol. Mean NO fluxes from forest soils ranged from 0.14 to 0.52 ng NO-N/sq cm/hr during the dry season and from 0.73 to 1.27 ng NO-N/sq cm/hr during the wet season. A fertilized floodplain pasture exhibited higher fluxes, but an unfertilized upland pasture, which represents the fastest growing land use in the region, had flux rates similar to the forest sites. Wetting experiments at the end of the dry season caused large pulses of NO flux, equaling 10 percent to 20 percent of the estimated annual NO emissions of 0.5-1.0 kg N/ha from the forest sites. Absence of a forest canopy during the dry season and the first wet season rain probably results in substantial NO(x) export from the forest system that may be important to regional atmospheric chemical processes. Wetting experiments during the wet season and a natural rain event had little or no stimulatory effect on NO flux rates.
The Increasing Importance of Deposition of Reduced Nitrogen ...
Rapid development of agricultural activities and fossil fuel combustion in the United States has led to a great increase in reactive nitrogen (Nr) emissions in the second half of the twentieth century. These emissions have been linked to excess nitrogen (N) deposition (i.e. deposition exceeding critical loads) in natural ecosystems through dry and wet deposition pathways. U.S. efforts to reduce nitrogen oxides (NOx) emissions since the 1970s have substantially reduced nitrate deposition, as evidenced by decreasing trends in long-term wet deposition data. These decreases in nitrate deposition along with increases in wet ammonium deposition have altered the balance between oxidized (nitrate) and reduced (ammonium) nitrogen deposition. Across most of the U.S., wet deposition has transitioned from being nitrate dominated in the 1980s to ammonium dominated in recent years. Because ammonia has not been a regulated air pollutant in the U.S., it has historically not been commonly measured. Recent measurement efforts, however, provide a more comprehensive look at ammonia concentrations across several regions of the U.S. These data, along with more routine measurements of gas phase nitric acid and fine particle ammonium and nitrate, permit new insight into the balance of oxidized and reduced nitrogen in the total (wet + dry) U.S. inorganic reactive nitrogen deposition budget. Utilizing two years of N-containing gas and fine particle observations from 37 U.S. monitoring si
Solder for oxide layer-building metals and alloys
Kronberg, James W.
1992-01-01
A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel. The comosition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than aproximatley 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300.degree. C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.
Solder for oxide layer-building metals and alloys
Kronberg, J.W.
1992-09-15
A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel is disclosed. The composition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than approximately 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300 C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.
Dust emission from wet, low-emission coke quenching process
NASA Astrophysics Data System (ADS)
Komosiński, Bogusław; Bobik, Bartłomiej; Konieczny, Tomasz; Cieślik, Ewelina
2018-01-01
Coke plants, which produce various types of coke (metallurgical, foundry or heating), at temperatures between 600 and 1200°C, with limited access to oxygen, are major emitters of particulates and gaseous pollutants to air, water and soils. Primarily, the process of wet quenching should be mentioned, as one of the most cumbersome. Atmospheric pollutants include particulates, tar substances, organic pollutants including B(a)P and many others. Pollutants are also formed from the decomposition of water used to quench coke (CO, phenol, HCN, H2S, NH3, cresol) and decomposition of hot coke in the first phase of quenching (CO, H2S, SO2) [1]. The development of the coke oven technology has resulted in the changes made to different types of technological installations, such as the use of baffles in quench towers, the removal of nitrogen oxides by selective NOx reduction, and the introduction of fabric filters for particulates removal. The BAT conclusions for coke plants [2] provide a methodology for the measurement of particulate emission from a wet, low-emission technology using Mohrhauer probes. The conclusions define the emission level for wet quenching process as 25 g/Mgcoke. The conducted research was aimed at verification of the presented method. For two of three quench towers (A and C) the requirements included in the BAT conclusions are not met and emissions amount to 87.34 and 61.35 g/Mgcoke respectively. The lowest particulates emission was recorded on the quench tower B and amounted to 22.5 g/Mgcoke, therefore not exceeding the requirements.
Wet Deposition Flux of Reactive Organic Carbon
NASA Astrophysics Data System (ADS)
Safieddine, S.; Heald, C. L.
2016-12-01
Reactive organic carbon (ROC) is the sum of non-methane volatile organic compounds (NMVOCs) and primary and secondary organic aerosols (OA). ROC plays a key role in driving the chemistry of the atmosphere, affecting the hydroxyl radical concentrations, methane lifetime, ozone formation, heterogeneous chemical reactions, and cloud formation, thereby impacting human health and climate. Uncertainties on the lifecycle of ROC in the atmosphere remain large. In part this can be attributed to the large uncertainties associated with the wet deposition fluxes. Little is known about the global magnitude of wet deposition as a sink of both gas and particle phase organic carbon, making this an important area for research and sensitivity testing in order to better understand the global ROC budget. In this study, we simulate the wet deposition fluxes of the reactive organic carbon of the troposphere using a global chemistry transport model, GEOS-Chem. We start by showing the current modeled global distribution of ROC wet deposition fluxes and investigate the sensitivity of these fluxes to variability in Henry's law solubility constants and spatial resolution. The average carbon oxidation state (OSc) is a useful metric that depicts the degree of oxidation of atmospheric reactive carbon. Here, we present for the first time the simulated gas and particle phase OSc of the global troposphere. We compare the OSc in the wet deposited reactive carbon flux and the dry deposited reactive carbon flux to the OSc of atmospheric ROC to gain insight into the degree of oxidation in deposited material and, more generally, the aging of organic material in the troposphere.
NASA Astrophysics Data System (ADS)
Choi, Yun-Il; Beom, Won-Jin; Park, Chan-Jin; Paik, Doojin; Hong, Moon-Hi
2010-12-01
This study examined the surface oxidation of high-strength steels electrodeposited with Cu or Fe and the resultant defect formation in their coating during the following galvanizing and galvannealing processes. The high-strength steels were coated with an Cu or Fe layer by the electroplating method. Then, the coated steels were annealed in a reducing atmosphere, dipped in a molten zinc, and finally transformed into galvannealed steels through the galvannealing process. The formation of Si and Mn oxides on the surface of the high-strength steel was effectively suppressed, and the density of surface defects on the galvanized steel was significantly reduced by the pre-electrodeposition of Cu and Fe. This effect was more prominent for the steels electrodeposited at higher cathodic current densities. The finer electrodeposit layer formed at higher cathodic current density on the steels enabled the suppression of partial surface oxidation by Mn or Si and better wetting of Zn on the surface of the steels in the following galvanizing process. Furthermore, the pre-electrodeposited steels exhibited a smoother surface without surface cracks after the galvannealing process compared with the untreated steel. The diffusion of Fe and Zn in the Zn coating layer in the pre-electrodeposited steels appears to occur more uniformly during the galvannealing process due to the low density of surface defects induced by oxides.
Kaparaju, Prasad; Felby, Claus
2010-05-01
The objective of the study was to characterize and map changes in lignin during hydrothermal and wet explosion pre-treatments of wheat straw and corn stover. Chemical composition, microscopic (atomic force microscopy and scanning electron microscopy) and spectroscopic (attenuated total reflectance Fourier transform infrared spectroscopy, ATR-FTIR) analyses were performed. Results showed that both pre-treatments improved the cellulose and lignin content with substantial removal of hemicellulose in the pre-treated biomasses. These values were slightly higher for hydrothermal compared to wet explosion pre-treatment. ATR-FTIR analyses also confirmed these results. Microscopic analysis showed that pre-treatments affected the biomass by partial difibration. Lignin deposition on the surface of the hydrothermally pre-treated fibre was very distinct while severe loss of fibril integrity was noticed with wet exploded fibre. The present study thus revealed that the lignin cannot be removed by the studied pre-treatments. However, both pre-treatments improved the accessibility of the biomass towards enzymatic hydrolysis. Copyright 2009 Elsevier Ltd. All rights reserved.
Engineering design and test plan for demonstrating DETOX treatment of mixed wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldblatt, S.; Dhooge, P.
1995-03-01
DETOX is a cocatalyzed wet oxidation process in which the catalysts are a relatively great concentration of iron ions (typically as iron(III) chloride) in the presence of small amounts of platinum and ruthenium ions. Organic compounds are oxidized completely to carbon dioxide, water, and (if chlorinated) hydrogen chloride. The process has shown promise as a non-thermal alternative to incineration for treatment and/or volume reduction of hazardous, radioactive, and mixed wastes. Design and fabrication of a demonstration unit capable of destroying 25. Kg/hr of organic material is now in progress. This paper describes the Title 2 design of the demonstration unit,more » and the planned demonstration effort at Savannah River Site (SRS) and Weldon Spring Site Remedial Action Project (WSSRAP).« less
NASA Astrophysics Data System (ADS)
Passos, Tassia R. G.; Artur, Adriana G.; Nóbrega, Gabriel N.; Otero, Xosé L.; Ferreira, Tiago O.
2016-06-01
The performance of the Walkley-Black wet oxidation chemical method for soil organic carbon (SOC) determination in coastal wetland soils (mangroves, coastal lagoons, and hypersaline tidal flats) was evaluated in the state of Ceará along the semiarid coast of Brazil, assessing pyrite oxidation and its effects on soil C stock (SCS) quantification. SOC determined by the chemical oxidation method (CWB) was compared to that assessed by means of a standard elemental analyzer (CEA) for surficial samples (<30 cm depth) from the three wetland settings. The pyrite fraction was quantified in various steps of the chemical oxidation method, evaluating the effects of pyrite oxidation. Regardless of the method used, and consistent with site-specific physicochemical conditions, higher pyrite and SOC contents were recorded in the mangroves, whereas lower values were found in the other settings. CWB values were higher than CEA values. Significant differences in SCS calculations based on CWB and CEA were recorded for the coastal lagoons and hypersaline tidal flats. Nevertheless, the CWB and CEA values were strongly correlated, indicating that the wet oxidation chemical method can be used in such settings. In contrast, the absence of correlation for the mangroves provides evidence of the inadequacy of this method for these soils. Air drying and oxidation decrease the pyrite content, with larger effects rooted in oxidation. Thus, the wet oxidation chemical method is not recommended for mangrove soils, but seems appropriate for SOC/SCS quantification in hypersaline tidal flat and coastal lagoon soils characterized by lower pyrite contents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, H.J.; Choi, K.C.; Choi, K.S.
2013-07-01
As a destructive quantification method of {sup 3}H in low and intermediate level radwastes, bomb oxidation, sample oxidation, and wet oxidation methods have been introduced. These methods have some merits and demerits in the radiochemical separation of {sup 3}H radionuclides. That is, since the bomb oxidation and sample oxidation methods are techniques using heating at high temperature, the separation methods of the radionuclides are relatively simple. However, since {sup 3}H radionuclide has a property of being diffused deeply into the inside of metals, {sup 3}H which is distributed on the surface of the metals can only be extracted if themore » methods are applied. As an another separation method, the wet oxidation method makes {sup 3}H oxidized with an acidic solution, and extracted completely to an oxidized HTO compound. However, incomplete oxidized {sup 3}H compounds, which are produced by reactions of acidic solutions and metallic radwastes, can be released into the air. Thus, in this study, a wet oxidation method to extract and quantify the {sup 3}H radionuclide from metallic radwastes was established. In particular, a complete extraction method and complete oxidation method of incomplete chemical compounds of {sup 3}H using a Pt catalyst were studied. The radioactivity of {sup 3}H in metallic radwastes is extracted and measured using a wet oxidation method and liquid scintillation counter. Considering the surface dose rate of the sample, the appropriate size of the sample was determined and weighed, and a mixture of oxidants was added to a 200 ml round flask with 3 tubes. The flask was quickly connected to the distilling apparatus. 20 mL of 16 wt% H{sub 2}SO{sub 4} was given into the 200-ml round flask through a dropping funnel while under stirring and refluxing. After dropping, the temperature of the mixture was raised to 96 deg. C and the sample was leached and oxidized by refluxing for 3 hours. At that time, the incomplete oxidized {sup 3}H compounds were completely oxidized using the Pt catalysts and produced a stable HTO compound. After that, about a 20 ml solution was distilled in the separation apparatus, and the distillate was mixed with an ultimagold LLT as a cocktail solution. The solution in the vial was left standing for at least 24 hours. The radioactivity of {sup 3}H was counted directly using a liquid scintillation analyzer (Packard, 2500 TR/AB, Alpha and Beta Liquid Scintillation Analyzer). (authors)« less
NASA Technical Reports Server (NTRS)
Hapke, B.
1974-01-01
A variety of glasses of lunar composition were prepared with different amounts of Fe and Ti under both reducing and oxidizing conditions, and also by sputter-deposition and thermal evaporation and condensation. These materials were analyzed by wet chemical, electron microprobe, ESR, Mossbauer and magnetic methods. The effects of darkening processes on surface soils of airless bodies are discussed along with the effects of vapor phase deposition processes on the optical, chemical, and magnetic properties of the lunar regolith.
NASA Astrophysics Data System (ADS)
Gesheva, K.; Ivanova, T.; Bodurov, G.; Szilágyi, I. M.; Justh, N.; Kéri, O.; Boyadjiev, S.; Nagy, D.; Aleksandrova, M.
2016-02-01
“Smart windows” are envisaged for future low-energy, high-efficient architectural buildings, as well as for the car industry. By switching from coloured to fully bleached state, these windows regulate the energy of solar flux entering the interior. Functional layers in these devices are the transition metals oxides. The materials (transitional metal oxides) used in smart windows can be also applied as photoelectrodes in water splitting photocells for hydrogen production or as photocatalytic materials for self-cleaning surfaces, waste water treatment and pollution removal. Solar energy utilization is recently in the main scope of numerous world research laboratories and energy organizations, working on protection against conventional fuel exhaustion. The paper presents results from research on transition metal oxide thin films, fabricated by different methods - atomic layer deposition, atmospheric pressure chemical vapour deposition, physical vapour deposition, and wet chemical methods, suitable for flowthrough production process. The lower price of the chemical deposition processes is especially important when the method is related to large-scale glazing applications. Conclusions are derived about which processes are recently considered as most prospective, related to electrochromic materials and devices manufacturing.
Effect of friction on oxidative graphite intercalation and high-quality graphene formation.
Seiler, Steffen; Halbig, Christian E; Grote, Fabian; Rietsch, Philipp; Börrnert, Felix; Kaiser, Ute; Meyer, Bernd; Eigler, Siegfried
2018-02-26
Oxidative wet-chemical delamination of graphene from graphite is expected to become a scalable production method. However, the formation process of the intermediate stage-1 graphite sulfate by sulfuric acid intercalation and its subsequent oxidation are poorly understood and lattice defect formation must be avoided. Here, we demonstrate film formation of micrometer-sized graphene flakes with lattice defects down to 0.02% and visualize the carbon lattice by transmission electron microscopy at atomic resolution. Interestingly, we find that only well-ordered, highly crystalline graphite delaminates into oxo-functionalized graphene, whereas other graphite grades do not form a proper stage-1 intercalate and revert back to graphite upon hydrolysis. Ab initio molecular dynamics simulations show that ideal stacking and electronic oxidation of the graphite layers significantly reduce the friction of the moving sulfuric acid molecules, thereby facilitating intercalation. Furthermore, the evaluation of the stability of oxo-species in graphite sulfate supports an oxidation mechanism that obviates intercalation of the oxidant.
NASA Astrophysics Data System (ADS)
Nagura, Takuya; Kawachi, Shingo; Chokawa, Kenta; Shirakawa, Hiroki; Araidai, Masaaki; Kageshima, Hiroyuki; Endoh, Tetsuo; Shiraishi, Kenji
2018-04-01
It is expected that the off-state leakage current of MOSFETs can be reduced by employing vertical body channel MOSFETs (V-MOSFETs). However, in fabricating these devices, the structure of the Si pillars sometimes cannot be maintained during oxidation, since Si atoms sometimes disappear from the Si/oxide interface (Si missing). Thus, in this study, we used first-principles calculations based on the density functional theory, and investigated the Si emission behavior at the various interfaces on the basis of the Si emission model including its atomistic structure and dependence on Si crystal orientation. The results show that the order in which Si atoms are more likely to be emitted during thermal oxidation is (111) > (110) > (310) > (100). Moreover, the emission of Si atoms is enhanced as the compressive strain increases. Therefore, the emission of Si atoms occurs more easily in V-MOSFETs than in planar MOSFETs. To reduce Si missing in V-MOSFETs, oxidation processes that induce less strain, such as wet or pyrogenic oxidation, are necessary.
Predicting the mineral composition of dust aerosols - Part 1: Representing key processes
NASA Astrophysics Data System (ADS)
Perlwitz, J. P.; Pérez García-Pando, C.; Miller, R. L.
2015-02-01
Soil dust aerosols created by wind erosion are typically assigned globally uniform physical and chemical properties within Earth system models, despite known regional variations in the mineral content of the parent soil. Mineral composition of the aerosol particles is important to their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, coating by heterogeneous uptake of sulfates and nitrates, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Here, aerosol mineral composition is derived by extending a method that provides the composition of a wet-sieved soil. The extension accounts for measurements showing significant differences between the mineral fractions of the wet-sieved soil and the resulting aerosol concentration. For example, some phyllosilicate aerosols are more prevalent at silt sizes, even though they are nearly absent in a soil whose aggregates are dispersed by wet sieving during analysis. We reconstruct the undispersed size distribution of the original soil that is subject to wind erosion. An empirical constraint upon the relative emission of clay and silt is applied that further differentiates the soil and aerosol mineral composition. In addition, a method is proposed for mixing minerals with small impurities composed of iron oxides. These mixtures are important for transporting iron far from the dust source, because pure iron oxides are more dense and vulnerable to gravitational removal than most minerals comprising dust aerosols. A limited comparison to measurements from North Africa shows that the extension brings the model into better agreement, consistent with a more extensive comparison to global observations as well as measurements of elemental composition downwind of the Sahara, as described in companion articles.
NASA Astrophysics Data System (ADS)
Datta, A.; Adhya, T. K.
2014-08-01
We have studied the effects of application of different nitrification inhibitors on methane (CH4) and nitrous oxide (N2O) emissions from rice paddy and associated soil chemical and biological dynamics during wet and dry seasons of rice crop in a tropical climate of eastern India. The experiment consisted of four treatments viz. (i) Prilled urea amended control (ii) urea + Dicyandiamide (DCD), (iii) urea + Nimin and (iv) urea + Karanjin. CH4 emission was significantly higher from the DCD (372.36 kg ha-1) and Karanjin (153.07 kg ha-1) applied plots during the wet and dry season, respectively. N2O emission was significantly inhibited in the Nimin applied plots during both seasons (69% and 85% over control during wet season and dry season respectively). CH4 and N2O emissions per Mg of rice grain yield were lowest from the Nimin applied plots during both seasons. Global warming potential (GWP) of the plot treated with DCD (13.93) was significantly higher during the experimental period. CH4 production potential was significantly higher from the nitrification inhibitor applied plots compared to control. While, CH4 oxidation potential followed the order; urea + Nimin > urea + Karanjin > urea + DCD > control. Application of Nimin significantly increased the methanotrophic bacterial population in the soil during the maximum tillering to flowering stage and may be attributed to low CH4 emission from the plots. Denitrification enzyme activity (DEA) of the soil was significantly low from the Nimin and Karanjin applied plots. Results suggest that apart from being potent nitrification inhibitors, Nimin and Karanjin also have the potential to reduce the denitrification activity in the soil. This in turn, would reduce N2O emission from flooded paddy where both nitrification and denitrification processes causes N2O emission.
Arunima, S; Rajamohan, T
2013-09-01
Virgin coconut oil (VCO) extracted by wet processing is popular among the scientific field and society nowadays. The present study was carried out to examine the comparative effect of VCO with copra oil (CO), olive oil (OO) and sunflower oil (SFO) on endogenous antioxidant status and paraoxonase 1 activity in ameliorating the oxidative stress in rats. Male Sprague-Dawley rats were fed different oils at 8% level for 45 days along with the synthetic diet. Results revealed that dietary VCO improved the antioxidant status compared to other three oil fed groups (P < 0.05), which is evident from the increased activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase in tissues. Concentration of reduced glutathione was also found to be increased significantly in liver (532.97 mM per 100 g liver), heart (15.77 mM per 100 g heart) and kidney (1.58 mM per 100 g kidney) of VCO fed rats compared to those fed with CO, OO and SFO (P < 0.05). In addition, the activity of paraoxonase 1 was significantly increased in VCO fed rats compared to other oil fed groups (P < 0.05). Furthermore, VCO administration prevented the oxidative stress, which is indicated by the decreased formation of lipid peroxidation and protein oxidation products like malondialdehyde, hydroperoxides, conjugated dienes and protein carbonyls in serum and tissues compared to other oil fed rats (P < 0.05). Wet processing of VCO retains higher amounts of biologically active unsaponifiable components like polyphenols (84 mg per 100 g oil) and tocopherols (33.12 μg per 100 g oil) etc. compared to other oils (P < 0.05). From these observations, it is concluded that VCO has a beneficial role in improving antioxidant status and hence preventing lipid and protein oxidation.
Mercury removal in utility wet scrubber using a chelating agent
Amrhein, Gerald T.
2001-01-01
A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.
NASA Astrophysics Data System (ADS)
Cho, Lawrence; Kim, Myung Soo; Kim, Young Ha; De Cooman, Bruno C.
2014-09-01
The influence of the addition of minor alloying elements on the selective oxidation and the reactive wetting of CMnSi transformation-induced plasticity (TRIP) steels was studied by means of galvanizing simulator tests. Five TRIP steels containing small alloying additions of Cr, Ni, Ti, Cu, and Sn were investigated. After intercritical annealing (IA) at 1093 K (820 °C) in a N2 + 5 pct H2 gas atmosphere with a dew point of 213 K (-60 °C), two types of oxides were formed on the strip surface: Mn-rich xMnO·SiO2 ( x > 1.5) and Si-rich xMnO·SiO2 ( x < 0.3) oxides. The addition of the minor alloying elements changed the morphology of the Si-rich oxides from a continuous film to discrete islands and this improved the wettability by molten Zn. The improved wetting effect of the minor alloying elements was attributed to an increased area fraction of the surface where the oxides were thinner, enabling a direct unhindered reaction between Fe and the Al in the liquid Zn and the formation of the inhibition layer during the hot dip galvanizing. The addition of a small amount of Sn is shown to significantly decrease the density of Zn-coating defects on CMnSi TRIP steels.
Rare-earth leaching from Florida phosphate rock in wet-process phosphoric acid production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Haijun; Zhang, Patrick; Jin, Zhen
Phosphorite, or phosphate rock, is the most significant secondary rare-earth resource. It contains high amounts of phosphate-bearing minerals along with low contents of rare earth elements (REEs). In Florida, about 19 Mt of phosphate rock are mined annually and most are used to manufacture fertilizers using a wet process, in which sulfuric acid reacts with phosphates to produce phosphoric acid and phosphogypsum. In the wet process, REEs are also leached out into solution and eventually get lost in the leaching residue and phosphate fertilizer. Recovering REEs from Florida phosphate rock in the wet process will be beneficial to broadening rare-earthmore » availability, improving the quality of phosphoric acid product and protecting the environment. Here, this study focuses on the influences of wet-process operating conditions on REE leaching efficiency. The results indicate that REE leaching efficiency increases with phosphoric acid addition in the initial pulp. At a temperature of 75 °C, a stoichiometric ratio of sulfuric acid (H2 SO4 ) to calcium oxide (CaO) of 1.05 and a weight ratio of liquid to solid of 3.5, REE leaching efficiency reached a relatively high value of 52.82 percent. The trends of REE leaching efficiency were similar to those for phosphoric acid (P2O5 ). Extensive tests on the leaching residue showed that during leaching, about 90 percent of the REEs were released from the phosphate rock but only 52.82 percent ended up in the leaching solution. This phenomenon can be attributed to two factors: (1) the effect of phosphate ions (PO43-) in the solution, which caused REE ions to form REE phosphates and be precipitated into the leaching residue, and (2) the influence of large amounts of anions such as sulfate (SO42-), dihydrogen phosphate (H2 PO4-) and hydrogen phosphate (HPO42-) anions as well as the polar molecule H3 PO4 , which surrounded the REE cations and formed an ion atmosphere that prevented the PO43- from contacting and combining with REE cations. Finally, interaction of these two opposite effects determined the REE distribution between leaching solution and residue.« less
Rare-earth leaching from Florida phosphate rock in wet-process phosphoric acid production
Liang, Haijun; Zhang, Patrick; Jin, Zhen; ...
2017-08-01
Phosphorite, or phosphate rock, is the most significant secondary rare-earth resource. It contains high amounts of phosphate-bearing minerals along with low contents of rare earth elements (REEs). In Florida, about 19 Mt of phosphate rock are mined annually and most are used to manufacture fertilizers using a wet process, in which sulfuric acid reacts with phosphates to produce phosphoric acid and phosphogypsum. In the wet process, REEs are also leached out into solution and eventually get lost in the leaching residue and phosphate fertilizer. Recovering REEs from Florida phosphate rock in the wet process will be beneficial to broadening rare-earthmore » availability, improving the quality of phosphoric acid product and protecting the environment. Here, this study focuses on the influences of wet-process operating conditions on REE leaching efficiency. The results indicate that REE leaching efficiency increases with phosphoric acid addition in the initial pulp. At a temperature of 75 °C, a stoichiometric ratio of sulfuric acid (H2 SO4 ) to calcium oxide (CaO) of 1.05 and a weight ratio of liquid to solid of 3.5, REE leaching efficiency reached a relatively high value of 52.82 percent. The trends of REE leaching efficiency were similar to those for phosphoric acid (P2O5 ). Extensive tests on the leaching residue showed that during leaching, about 90 percent of the REEs were released from the phosphate rock but only 52.82 percent ended up in the leaching solution. This phenomenon can be attributed to two factors: (1) the effect of phosphate ions (PO43-) in the solution, which caused REE ions to form REE phosphates and be precipitated into the leaching residue, and (2) the influence of large amounts of anions such as sulfate (SO42-), dihydrogen phosphate (H2 PO4-) and hydrogen phosphate (HPO42-) anions as well as the polar molecule H3 PO4 , which surrounded the REE cations and formed an ion atmosphere that prevented the PO43- from contacting and combining with REE cations. Finally, interaction of these two opposite effects determined the REE distribution between leaching solution and residue.« less
Lee, So Yoon; Lee, Choong Hyun; Kim, Do Yun; Locquet, Jean-Pierre; Seo, Jin Won
2015-01-01
Nanostructured potassium-incorporated Ti-based oxides have attracted much attention because the incorporated potassium can influence their structural and physico-chemical properties. With the aim of tuning the structural and physical properties, we have demonstrated the wet corrosion process (WCP) as a simple method for nanostructure fabrication using various Ti-based materials, namely Ti–6Al–4V alloy (TAV), Ti–Ni (TN) alloy and pure Ti, which have 90%, 50% and 100% initial Ti content, respectively. We have systematically investigated the relationship between the Ti content in the initial metal and the precise condition of WCP to control the structural and physical properties of the resulting nanostructures. The WCP treatment involved various concentrations of KOH solutions. The precise conditions for producing K-incorporated nanostructured titanium oxide films (nTOFs) were strongly dependent on the Ti content of the initial metal. Ti and TAV yielded one-dimensional nanowires of K-incorporated nTOFs after treatment with 10 mol/L-KOH solution, whereas TN required a higher concentration (20 mol/L-KOH solution) to produce comparable nanostructures. The obtained nanostructures revealed a blue-shift in UV absorption spectra due to the quantum confinement effects. A significant enhancement of the photocatalytic activity was observed via the chromomeric change and the intermediate formation of methylene blue molecules under UV irradiation. This study demonstrates the WCP as a simple, versatile and scalable method for the production of nanostructured K-incorporated nTOFs to be used as high-performance photocatalysts for environmental and energy applications. PMID:28347071
Membrane of Functionalized Reduced Graphene Oxide Nanoplates with Angstrom-Level Channels
Lee, Byeongho; Li, Kunzhou; Yoon, Hong Sik; Yoon, Jeyong; Mok, Yeongbong; Lee, Yan; Lee, Hong H.; Kim, Yong Hyup
2016-01-01
Membranes with atomic level pores or constrictions are valuable for separation and catalysis. We report a graphene-based membrane with an interlayer spacing of 3.7 angstrom (Å). When graphene oxide nanoplates are functionalized and then reduced, the laminated reduced graphene oxide (rGO) nanoplates or functionalized rGO membrane is little affected by an intercalated fluid, and the interlayer spacing of 3.7 Å increases only to 4.4 Å in wetted state, in contrast to the graphene oxide (GO) membrane whose interlayer spacing increases from 9 Å to 13 Å in wetted state. When applied to ion separation, this membrane reduced the permeation rate of small ions such as K+ and Na+ by three orders of magnitude compared to the GO membrane. PMID:27306853
Weber, Bernd; Chavez, Alma; Morales-Mejia, Julio; Eichenauer, Sabrina; Stadlbauer, Ernst A; Almanza, Rafael
2015-09-15
Wastewater treatment systems are important tools to enhance sustainability in terms of reducing environmental impact and complying with sanitary requirements. This work addresses the wet air oxidation (WAO) process for pre-treatment of phenolic wastewater effluents. The aim was to increase biodegradability prior to a subsequent anaerobic stage. In WAO laboratory experiments using a micro-autoclave, the model compound resorcinol was degraded under different oxygen availability regims within the temperature range 150 °C-270 °C. The activation energy was determined to be 51.5 kJ/mol. Analysis of the products revealed that after 3 h of reaction at 230 °C, 97.5% degradation of resorcinol was achieved. At 250 °C and the same reaction time complete removal of resorcinol was observed. In this case the total organic carbon content was reduced down to 29%, from 118.0 mg/L down to 34.4 mg/L. Under these process conditions, the pollutant was only partially mineralized and the ratio of the biological oxygen demand relative to the chemical oxygen demand, which is 0.07 for resorcinol, was increased to a value exceeding 0.5. The main by-product acetic acid, which is a preferred compound for methanogenic bacteria, was found to account for 33% of the total organic carbon. Copyright © 2015 Elsevier Ltd. All rights reserved.
Improving the Representation of Soluble Iron in Climate Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez Garcia-Pando, Carlos
2016-03-13
Mineral dust produced in the arid and semi-arid regions of the world is the dominant source of iron (Fe) in atmospheric aerosol inputs to the open ocean. The bioavailable Fe fraction of atmospheric dust is thought to regulate and occasionally limit the primary productivity in large oceanic regions, which influences the CO2 uptake from the atmosphere affecting the Earth’s climate. Because Fe bioavailability cannot be directly measured, it is assumed that the dissolved Fe or highly reactive Fe in the dust is bioavailable. The fraction of soluble Fe in dust is mainly controlled by: (1) the mineral composition of themore » soils and the emitted dust from the source areas; (2) the atmospheric processing that converts the Fe in Fe-bearing minerals into highly soluble forms of Fe. The project has mainly focused on constraining the mineral composition of dust aerosols (1), a previously neglected, yet a key issue to constrain the deposition of soluble iron. Deriving aerosol mineral composition requires global knowledge of the soil mineral content, which is available from poorly constrained global atlases. In addition, the mineral content of the emitted aerosol differs from that of the parent soil. Measurements of soil mineral fractions are based upon wet sedimentation (or ’wet sieving’) techniques that disturb the soil sample, breaking aggregates that are found in the original, undispersed soil that is subject to wind erosion. Wet sieving alters the soil size distribution, replacing aggregates that are potentially mobilized as aerosols with a collection of smaller particles. A major challenge is to derive the size-distributed mineral fractions of the emitted dust based upon their fractions measured from wet-sieved soils. Finally, representations of dust mineral composition need to account for mixtures of minerals. Examination of individual particles shows that iron, an element that is central to many climate processes, is often found as trace impurities of iron oxide attached to aggregates of other minerals. This is another challenge that has been tackled by the project. The project has produced a major step forward on our understanding of the key processes needed to predict the mineral composition of dust aerosols by connecting theory, modeling and observations. The project has produced novel semi-empirical and theoretical methods to estimate the emitted size distribution and mineral composition of dust aerosols. These methods account for soil aggregates that are potentially emitted from the original undisturbed soil but are destroyed during wet sieving. The methods construct the emitted size distribution of individual minerals building upon brittle fragmentation theory, reconstructions of wet-sieved soil mineral size distributions, and/or characteristic mineral size distributions estimated from observations at times of high concentration. Based on an unprecedented evaluation with a new global compilation of observations produced with the project support, we showed that the new methods remedy some key deficiencies compared to the previous state-of-the-art. This includes the correct representation of Fe-bearing phyllosilicates at silt sizes, where they are abundant according to observations. In addition, the quartz fraction of silt particles is in better agreement with measured values. In addition, we represent an additional class of iron oxide aerosol that is a small impurity embedded within other minerals, allowing it to travel farther than in its pure crystalline state. We assume that these impurities are least frequent in soils rich in iron oxides (as a result of the assumed effect of weathering that creates pure iron oxide crystals). The mineral composition of dust is also important to other interaction with climate - through shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, and the heterogeneous formation of sulfates and nitrates - and to its impacts upon human health. Despite the importance of mineral composition, models have typically assumed that soil dust aerosols have globally uniform composition. The results of this project will allow an improved estimation of the dust effects upon climate and health.« less
Wet-oxidation waste management system for CELSS
NASA Technical Reports Server (NTRS)
Takahashi, Y.; Ohya, H.
1986-01-01
A wet oxidation system will be useful in the Closed Ecological Life Support System (CELSS) as a facility to treat organic wastes and to redistribute inorganic compounds and elements. However at rather higher temperatures needed in this reaction, for instance, at 260 deg C, only 80% of organic in a raw material can be oxidized, and 20% of it will remain in the liquid mainly as acetic acid, which is virtually noncombustible. Furthermore, nitrogen is transformed to ammonium ions which normally cannot be absorbed by plants. To resolve these problems, it becomes necessary to use catalysts. Noble metals such as Ru, Rh and so on have proved to be partially effective as these catalysts. That is, oxidation does not occur completely, and the unexpected denitrification, instead of the expected nitrification, occurs. So, it is essential to develop the catalysts which are able to realize the complete oxidation and the nitrification.
Dehzangi, Arash; Larki, Farhad; Hutagalung, Sabar D.; Goodarz Naseri, Mahmood; Majlis, Burhanuddin Y.; Navasery, Manizheh; Hamid, Norihan Abdul; Noor, Mimiwaty Mohd
2013-01-01
In this letter, we investigate the fabrication of Silicon nanostructure patterned on lightly doped (1015 cm−3) p-type silicon-on-insulator by atomic force microscope nanolithography technique. The local anodic oxidation followed by two wet etching steps, potassium hydroxide etching for silicon removal and hydrofluoric etching for oxide removal, are implemented to reach the structures. The impact of contributing parameters in oxidation such as tip materials, applying voltage on the tip, relative humidity and exposure time are studied. The effect of the etchant concentration (10% to 30% wt) of potassium hydroxide and its mixture with isopropyl alcohol (10%vol. IPA ) at different temperatures on silicon surface are expressed. For different KOH concentrations, the effect of etching with the IPA admixture and the effect of the immersing time in the etching process on the structure are investigated. The etching processes are accurately optimized by 30%wt. KOH +10%vol. IPA in appropriate time, temperature, and humidity. PMID:23776479
Sawada, Kozue; Toyota, Koki
2015-01-01
Wet and dry anaerobic fermentation processes are operated for biogas production from organic matter, resulting in wet and dry digestates as by-products, respectively. The application of these digestates to soil as fertilizer has increased in recent years. Therefore, we herein compared the effects of applying wet digestates (pH 8.2, C/N ratio 4.5), dry digestates (pH 8.8, C/N ratio 23.4), and a chemical fertilizer to Japanese paddy and upland soils on short-term nitrification under laboratory aerobic conditions. Chloroform-labile C, an indicator of microbial biomass, was only minimally affected by these applications, indicating that a small amount of labile N was immobilized by microbes. All applications led to rapid increases in NO3 -N contents in both soils, and ammonia-oxidizing bacteria, but not archaea may play a critical role in net nitrification in the amended soils. The net nitrification rates for both soils were the highest after the application of dry digestates, followed by wet digestates and then the chemical fertilizer in order of decreasing soil pH. These results suggest that the immediate effects of applying digestates, especially dry digestates with the highest pH, on nitrate leaching need to be considered when digestates are used as alternative fertilizers. PMID:25740173
Sawada, Kozue; Toyota, Koki
2015-01-01
Wet and dry anaerobic fermentation processes are operated for biogas production from organic matter, resulting in wet and dry digestates as by-products, respectively. The application of these digestates to soil as fertilizer has increased in recent years. Therefore, we herein compared the effects of applying wet digestates (pH 8.2, C/N ratio 4.5), dry digestates (pH 8.8, C/N ratio 23.4), and a chemical fertilizer to Japanese paddy and upland soils on short-term nitrification under laboratory aerobic conditions. Chloroform-labile C, an indicator of microbial biomass, was only minimally affected by these applications, indicating that a small amount of labile N was immobilized by microbes. All applications led to rapid increases in NO3 -N contents in both soils, and ammonia-oxidizing bacteria, but not archaea may play a critical role in net nitrification in the amended soils. The net nitrification rates for both soils were the highest after the application of dry digestates, followed by wet digestates and then the chemical fertilizer in order of decreasing soil pH. These results suggest that the immediate effects of applying digestates, especially dry digestates with the highest pH, on nitrate leaching need to be considered when digestates are used as alternative fertilizers.
NASA Astrophysics Data System (ADS)
Chen, De-Jun; Zhang, Qian-Li; Feng, Jin-Xia; Ju, Ke-Jian; Wang, Ai-Jun; Wei, Jie; Feng, Jiu-Ju
2015-08-01
In this work, a simple, rapid and facile one-pot wet-chemical co-reduction method is developed for synthesis of bimetallic Au-Pt alloyed nanochains supported on reduced graphene oxide (Au-Pt NCs/RGO), in which caffeine is acted as a capping agent and a structure-directing agent, while no any seed, template, surfactant or polymer involved. The as-prepared nanocomposites display enlarged electrochemical active surface area, significantly enhanced catalytic activity and better stability for methanol and ethylene glycol oxidation, compared with commercial Pt-C (Pt 50 wt%), PtRu-C (Pt 30 wt% and Ru 15 wt%) and Pt black.
WETTING STIMULATES ATMOSPHERIC CH4 OXIDATION BY ALPINE SOIL (R823442)
Studies were done to assess the effects of soil moisture manipulations on CH4 oxidation in soils from a dry alpine tundra site. When water was added to these soils there was a stimulation of CH4 oxidation. This stimulation of CH4 oxidation took ti...
Increasing importance of deposition of reduced nitrogen in the United States
Li, Yi; Schichtel, Bret A.; Walker, John T.; Schwede, Donna B.; Chen, Xi; Lehmann, Christopher M. B.; Puchalski, Melissa A.; Gay, David A.; Collett, Jeffrey L.
2016-01-01
Rapid development of agriculture and fossil fuel combustion greatly increased US reactive nitrogen emissions to the atmosphere in the second half of the 20th century, resulting in excess nitrogen deposition to natural ecosystems. Recent efforts to lower nitrogen oxides emissions have substantially decreased nitrate wet deposition. Levels of wet ammonium deposition, by contrast, have increased in many regions. Together these changes have altered the balance between oxidized and reduced nitrogen deposition. Across most of the United States, wet deposition has transitioned from being nitrate-dominated in the 1980s to ammonium-dominated in recent years. Ammonia has historically not been routinely measured because there are no specific regulatory requirements for its measurement. Recent expansion in ammonia observations, however, along with ongoing measurements of nitric acid and fine particle ammonium and nitrate, permit new insight into the balance of oxidized and reduced nitrogen in the total (wet + dry) US nitrogen deposition budget. Observations from 37 sites reveal that reduced nitrogen contributes, on average, ∼65% of the total inorganic nitrogen deposition budget. Dry deposition of ammonia plays an especially key role in nitrogen deposition, contributing from 19% to 65% in different regions. Future progress toward reducing US nitrogen deposition will be increasingly difficult without a reduction in ammonia emissions. PMID:27162336
NASA Astrophysics Data System (ADS)
Nelson, Mark
2015-04-01
This paper reports work on the optimization of energy usage in a promising approach to increasing cycling of key nutrients in space bioregenerative life support systems (BLSS). The work comes from researchers at the Institute of Biophysics, Krasnoyarsk who have since their landmark BLSS test bed, Bios-3, continued to advance the field. They have been working on methods to return the key components of human waste products and inedible biomass to biotic availability in the system. The approach uses wet oxidation with hydrogen peroxide (H2O2) powered by an alternating electric current. Previous research has demonstrated that the hydrogen peroxide can be generated within a BLSS and that the liquid and gas products of the wet oxidation can be used to grow food crops without any loss of productivity. The paper reports that at the beginning of organic waste processing by this method, reaction rates are doubled using 35 Hz meander current compared to 50 Hz sinusoidal current (Fig. 1). This represents a 17-18% reduction in energy consumption. A possible explanation for this finding is that meander current involves sharp alternations in current, as opposed to the smoother variations in sinusoidal currents, which results in greater breakdown of H2O2 into the OH- radical which is responsible for most breakdown of organic wastes. When long-term (30 day) oxidation is evaluated, there is little difference between the tested variations of the activating current due to the overall increase in the number of radicals. But long-term oxidation and storage may be inadvisable in the rapidly cycling BLSS due to increased production of potentially hazardous gaseous by-products such as ammonia, volatile organic compounds, and hydrogen peroxide vapor. These problematic byproducts are minimized if the wet oxidation is done quickly and if smaller amounts of organic materials are processed at a time. The authors note that limits in efficiency of using hydrogen peroxide have not been reached as some of it breaks down into hydrogen and oxygen (H2 and O2) which are not effective in organic matter reactions. They suggest efficiency may be increased in further research through experiments with smaller amounts of hydrogen peroxide combined with tighter controls of reaction rates while trying varying voltages. The paper is significant as it advances the development of bioregenerative life support systems by increasing degree of closure by fuller recycling of nutrients and minimizing energy needs, a limiting factor in any space applications. Improving both factors makes BLSS systems more efficient and competitive with other approaches for space life support.
The influence of dew point during annealing on the power loss of electrical steel sheets
NASA Astrophysics Data System (ADS)
Broddefalk, Arvid; Jenkins, Keith; Silk, Nick; Lindenmo, Magnus
Decarburization is a necessary part of the processing of electrical steels if their carbon content is above a certain level. The process is usually carried out in a wet hydrogen-nitrogen atmosphere. Having a high dew point has a negative influence on the power loss, though. This is due to oxidation of the steel, which hinders domain wall motion near the surface. In this study, an increase of the power loss was only observed at a fairly high dew point (>20 °C). It was also only at these high dew points where a subsurface oxide layer was observed. The surfaces of samples with and without this layer were etched in steps. The magnetic properties of the etched samples corresponded well with the expected behavior based on GDOES profiles of the samples.
Metal-oxide-based energetic materials and synthesis thereof
Tillotson, Thomas M. , Simpson; Randall, L [Livermore, CA; Hrubesh, Lawrence W [Pleasanton, CA
2006-01-17
A method of preparing energetic metal-oxide-based energetic materials using sol-gel chemistry has been invented. The wet chemical sol-gel processing provides an improvement in both safety and performance. Essentially, a metal-oxide oxidizer skeletal structure is prepared from hydrolyzable metals (metal salts or metal alkoxides) with fuel added to the sol prior to gelation or synthesized within the porosity metal-oxide gel matrix. With metal salt precursors a proton scavenger is used to destabilize the sol and induce gelation. With metal alkoxide precursors standard well-known sol-gel hydrolysis and condensation reactions are used. Drying is done by standard sol-gel practices, either by a slow evaporation of the liquid residing within the pores to produce a high density solid nanocomposite, or by supercritical extraction to produce a lower density, high porous nanocomposite. Other ingredients may be added to this basic nanostructure to change physical and chemical properties, which include organic constituents for binders or gas generators during reactions, burn rate modifiers, or spectral emitters.
Characterization of Nano-Hydroxyapatite Synthesized from Sea Shells Through Wet Chemical Method
NASA Astrophysics Data System (ADS)
Santhosh, S.; Prabu, S. Balasivanandha
2012-10-01
Nano-hydroxyapatite (HA) was synthesized by a wet chemical reaction using powdered sea shells (CaO) as starting material which was converted to calcium hydroxide (Ca(OH)2) and subsequently reacted with phosphoric acid (H3PO4). Initially raw sea shells (CaCO3) were thermally converted to amorphous calcium oxide by heat treatment. Two sets of experiments were done; in the first experiment, HA powder was dried in an electric furnace and in the second experiment, the reactants were irradiated in a domestic microwave oven followed by microwave drying. In each set of experiments, the concentrations of the reactants were decreased gradually. HA was synthesized by slow addition of phosphoric acid (H3PO4) in to calcium hydroxide (Ca(OH)2) maintaining the pH of the solution at 10 to avoid the formation of calcium deficient apatites. In both the experiments, Ca:P ratio of 1.67 was maintained for the reagents. The synthesized samples showed X-ray diffraction (XRD) patterns corresponding to hydroxyapatite. The wet chemical process with furnace drying resulted in HA particles of size 7-34 nm, whereas microwave irradiated process yielded HA particles of size 34-102 nm as evidenced from XRD analyses. The above experimental work done by wet chemical synthesis to produce HA powder from sea shells is a simple processing method at room temperature. Microwave irradiation leads to uniform crystallite sizes as evident from this study, at differing concentrations of the reactants and is a comparatively easy method to synthesize HA. The high resolution scanning electron microscopy (HRSEM)/transmission electron microscopic (TEM) analyses revealed the characteristic rod-shaped nanoparticles of HA for the present study.
Patole, Shashikant P; Shin, Dong Wook; Fugetsu, Bunshi; Yoo, Ji-Beom
2013-11-01
Transparent conducting films (TCF) made up from carbon nanotubes (CNTs) have a tremendous potential in replacing the indium tin oxide films. Compare to single wall CNTs multiwall CNTs are more metallic and are more suitable candidate for the TCF. In this letter we report the use of selectively grown mm-scale, few-wall, vertically aligned CNTs for the fabrication of TCF. Water-assisted chemical vapor deposition was used to grow the mm-scale CNTs within short growth time. A special post-growth water-vapor treatment allowed us to remove the catalyst-free CNT forest very easily from the substrate and use it for the further process. A filtration-wet transfer process was used to form the TCF. The TCF shows sheet resistance of 228 omega/sq. at 72% transparency (at 550 nm). The ratio of optical conductivity to dc conductivity was observed in between 0.21 to 0.25 for below 80% transmission.
Catechol-Cation Synergy in Wet Adhesive Materials
NASA Astrophysics Data System (ADS)
Maier, Gregory Peter
In physiological fluids and seawater, adhesion of synthetic polymers to solid surfaces is impaired by high salt, pH, and hydration. However, mussels have evolved effective strategies for wet adhesion despite these impediments. Inspection of mussel foot proteins (Mfps) provides insights into adhesive adaptations. Catecholic Dopa (3,4-dihydroxyphenylalanine) and lysine residues are present in high mole percent in the interfacial Mfps. The siderophore cyclic trichrysobactin also contains high mole percent of catechol and lysine and serves as a simplified mimic of Mfps. This work is focused on use of Mfp-mimetic siderophores and synthetic siderophore analogs as model systems for dissecting the chemical and physical interactions that enable wet adhesion. Variation in number and identity of functional groups appended to the synthetic siderophore analogs allows identification of the specific contributions of those functional groups to wet adhesion. Both catechol and amine functional groups are critical to strong wet adhesion. The primary amine of lysine and catechol cooperatively displace interfacial hydration and bind to the underlying substrate. Variation in the amine identity as well as the amine to catechol ratio within siderophore analogs also has a significant impact on wet adhesive performance. Catechol undergoes a pH-dependent autoxidation in which higher pH leads to faster oxidation by dioxygen. This oxidation abolishes all adhesion of Mfps to mica by pH 7.5, yet many applications of synthetic wet adhesives require adhesion at physiological or oceanic pH. A better understanding of catechol redox chemistry is critical to the design of wet adhesives. To this end, the pH-dependent autoxidation of catechol and substituted catechols was investigated and results are consistent with a mechanism in which O2 oxidizes both the mono-deprotonated and di-deprotonated catechol. A linear Hammett correlation for the pH-independent second order rate constants for catechol autoxidation indicates that catechols become resistant to autoxidation when functionalized with electron withdrawing groups and more susceptible to autoxidation when functionalized with electron donating groups. Analysis of substituent effects through Hammett correlation allows for selection of functionalized catechols with redox properties ideally suited for a given application.
NASA Astrophysics Data System (ADS)
Nelson, David M.; Tsunogai, Urumu; Ding, Dong; Ohyama, Takuya; Komatsu, Daisuke D.; Nakagawa, Fumiko; Noguchi, Izumi; Yamaguchi, Takashi
2018-05-01
Atmospheric nitrate deposition resulting from anthropogenic activities negatively affects human and environmental health. Identifying deposited nitrate that is produced locally vs. that originating from long-distance transport would help inform efforts to mitigate such impacts. However, distinguishing the relative transport distances of atmospheric nitrate in urban areas remains a major challenge since it may be produced locally and/or be transported from upwind regions. To address this uncertainty we assessed spatiotemporal variation in monthly weighted-average Δ17O and δ15N values of wet and dry nitrate deposition during one year at urban and rural sites along the western coast of the northern Japanese island of Hokkaido, downwind of the East Asian continent. Δ17O values of nitrate in wet deposition at the urban site mirrored those of wet and dry deposition at the rural site, ranging between ˜ +23 and +31 ‰ with higher values during winter and lower values in summer, which suggests the greater relative importance of oxidation of NO2 by O3 during winter and OH during summer. In contrast, Δ17O values of nitrate in dry deposition at the urban site were lower (+19 - +25 ‰) and displayed less distinct seasonal variation. Furthermore, the difference between δ15N values of nitrate in wet and dry nitrate deposition was, on average, 3 ‰ greater at the urban than rural site, and Δ17O and δ15N values were correlated for both forms of deposition at both sites with the exception of dry deposition at the urban site. These results suggest that, relative to nitrate in wet and dry deposition in rural environments and wet deposition in urban environments, nitrate in dry deposition in urban environments forms from relatively greater oxidation of NO by peroxy radicals and/or oxidation of NO2 by OH. Given greater concentrations of peroxy radicals and OH in cities, these results imply that dry nitrate deposition results from local NOx emissions more so than wet deposition, which is transported longer distances. These results illustrate the value of stable isotope data for distinguishing the transport distances and reaction pathways of atmospheric nitrate pollution.
Predicting the mineral composition of dust aerosols – Part 1: Representing key processes
Perlwitz, J. P.; Perez Garcia-Pando, C.; Miller, R. L.
2015-10-21
Soil dust aerosols created by wind erosion are typically assigned globally uniform physical and chemical properties within Earth system models, despite known regional variations in the mineral content of the parent soil. Mineral composition of the aerosol particles is important to their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Here, aerosol mineral composition is derived by extending a method that provides the composition of a wet-sieved soil. The extension accountsmore » for measurements showing significant differences between the mineral fractions of the wet-sieved soil and the emitted aerosol concentration. For example, some phyllosilicate aerosols are more prevalent at silt sizes, even though they are nearly absent at these diameters in a soil whose aggregates are dispersed by wet sieving. We calculate the emitted mass of each mineral with respect to size by accounting for the disintegration of soil aggregates during wet sieving. These aggregates are emitted during mobilization and fragmentation of the original undispersed soil that is subject to wind erosion. The emitted aggregates are carried far downwind from their parent soil. The soil mineral fractions used to calculate the aggregates also include larger particles that are suspended only in the vicinity of the source. We calculate the emitted size distribution of these particles using a normalized distribution derived from aerosol measurements. In addition, a method is proposed for mixing minerals with small impurities composed of iron oxides. These mixtures are important for transporting iron far from the dust source, because pure iron oxides are more dense and vulnerable to gravitational removal than most minerals comprising dust aerosols. Finally, a limited comparison to measurements from North Africa shows that the model extensions result in better agreement, consistent with a more extensive comparison to global observations as well as measurements of elemental composition downwind of the Sahara, as described in companion articles.« less
New concept in brazing metallic honeycomb panels
NASA Technical Reports Server (NTRS)
Carter, P. D.; Layton, R. E.; Stratton, F. W.
1973-01-01
Aluminum oxide coating provides surface which will not be wetted by brazing alloy and which stops metallic diffusion welding of tooling materials to part being produced. This method eliminates loss of tooling materials and parts from braze wetting and allows fall-apart disassembly of tooling after brazing.
NASA Technical Reports Server (NTRS)
Spurlock, J. M.
1975-01-01
Promising candidate designs currently being considered for the management of spacecraft solid waste and waste-water materials were assessed. The candidate processes were: (1) the radioisotope thermal energy evaporation/incinerator process; (2) the dry incineration process; and (3) the wet oxidation process. The types of spacecraft waste materials that were included in the base-line computational input to the candidate systems were feces, urine residues, trash and waste-water concentrates. The performance characteristics and system requirements for each candidate process to handle this input and produce the specified acceptable output (i.e., potable water, a storable dry ash, and vapor phase products that can be handled by a spacecraft atmosphere control system) were estimated and compared. Recommendations are presented.
Graphite oxide and molybdenum disulfide composite for hydrogen evolution reaction
NASA Astrophysics Data System (ADS)
Niyitanga, Theophile; Jeong, Hae Kyung
2017-10-01
Graphite oxide and molybdenum disulfide (GO-MoS2) composite is prepared through a wet process by using hydrolysis of ammonium tetrathiomolybdate, and it exhibits excellent catalytic activity of the hydrogen evolution reaction (HER) with a low overpotential of -0.47 V, which is almost two and three times lower than those of precursor MoS2 and GO. The high performance of HER of the composite attributes to the reduced GO supporting MoS2, providing a conducting network for fast electron transport from MoS2 to electrodes. The composite also shows high stability after 500 cycles, demonstrating a synergistic effect of MoS2 and GO for efficient HER.
Contact Resistance and Stability Analysis of Oxide-Based Thin Film Transistors
2006-09-19
layer (~ 50 nm) is deposited via RF magnetron sputtering from a 2 inch target (Cerac, Inc.; ZnO and IGO (1:1 molar ratio of In2O3: Ga2O3 )) at a pressure...10.2 600 ~ 50 IGO (1:1, In2O3: Ga2O3 ) 90%/10% 5 ~ 3.7 ~ 10.2 600 ~ 50 Table 4.1: Summary of process parameters for TFTs fabricated on thermal silicon...oxide and furnace annealed. Channel Material Wet Etch Etch Rate ZnO ~ 0.01 M HCl ~ 17.5 Å/s IGO (1:1, In2O3: Ga2O3 ) ~ 2 M HCl ~ 6.3 Å/s
Wu, Chengli; Cao, Yan; Dong, Zhongbing; Cheng, Chinmin; Li, Hanxu; Pan, Weiping
2010-01-01
Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulfurization (FGD) systems have the co-benefits of air pollutant and mercury removal. Configuration and operational conditions of APCDs and mercury speciation affect mercury removal efficiently at coal-fired utilities. The Ontario Hydro Method (OHM) recommended by the U.S. Environmental Protection Agency (EPA) was used to determine mercury speciation simultaneously at five sampling locations through SCR-ESP-FGD at a 190 MW unit. Chlorine in coal had been suggested as a factor affecting the mercury speciation in flue gas; and low-chlorine coal was purported to produce less oxidized mercury (Hg2+) and more elemental mercury (Hg0) at the SCR inlet compared to higher chlorine coal. SCR could oxidize elemental mercury into oxidized mercury when SCR was in service, and oxidation efficiency reached 71.0%. Therefore, oxidized mercury removal efficiency was enhanced through a wet FGD system. In the non-ozone season, about 89.5%-96.8% of oxidized mercury was controlled, but only 54.9%-68.8% of the total mercury was captured through wet FGD. Oxidized mercury removal efficiency was 95.9%-98.0%, and there was a big difference in the total mercury removal efficiencies from 78.0% to 90.2% in the ozone season. Mercury mass balance was evaluated to validate reliability of OHM testing data, and the ratio of mercury input in the coal to mercury output at the stack was from 0.84 to 1.08.
NASA Astrophysics Data System (ADS)
MÄ dzik, Mateusz; Elamurugu, Elangovan; Viegas, Jaime
2017-03-01
Despite recent advances in metal oxide thin-film transistor technology, there are no foundry processes available yet for large-scale deployment of metal oxide electronics and photonics, in a similar way as found for silicon based electronics and photonics. One of the biggest challenges of the metal oxide platform is the stability of the fabricated devices. Also, there is wide dispersion on the measured specifications of fabricated TFT, from lot-to-lot and from different research groups. This can be partially explained by the importance of the deposition method and its parameters, which determine thin film microstructure and thus its electrical properties. Furthermore, substrate pretreatment is an important factor, as it may act as a template for material growth. Not so often mentioned, plasma processes can also affect the morphology of deposited films on further deposition steps, such as inducing nanoparticle formation, which strongly impact the conduction mechanism in the channel layer of the TFT. In this study, molybdenum doped indium oxide is sputtered onto ALD deposited HfO2 with or without pattering, and etched by RIE chlorine based processing. Nanoparticle formation is observed when photoresist is removed by oxygen plasma ashing. HfO2 etching in CF4/Ar plasma prior to resist stripping in oxygen plasma promotes the aggregation of nanoparticles into nanosized branched structures. Such nanostructuring is absent when oxygen plasma steps are replaced by chemical wet processing with acetone. Finally, in order to understand the electronic transport effect of the nanoparticles on metal oxide thin film transistors, TFT have been fabricated and electrically characterized.
NASA Astrophysics Data System (ADS)
Wong, Kin Mun
In this article, a simple, low cost and combined surface treatment method [pre-oxidation immersion of the p-type silicon (Si) substrate in hydrogen peroxide (H2O2) and post oxidation ultra-violet (UV) irradiation of the silicon-dioxide (SiO2) film] at room temperature is investigated. The interface trap density at midgap [Dit(mg)] of the resulting SiO2 film (denoted as sample 1A) is quantified from the full width at half-maximum of the scanning capacitance microscopy (SCM) differential capacitance (dC/dV) characteristics by utilizing a previously validated theoretical model. The Dit(mg) of sample 1A is significantly lower than the sample without any surface treatments which indicates that it is a viable technique for improving the interfacial quality of the thicker SiO2 films prepared by wet oxidation. Moreover, the proposed combined surface treatment method may possibly complement the commonly used forming gas anneal process to further improve the interfacial quality of the SiO2 films. The positive shift of the flatband voltage due to the overall oxide charges (estimated from the probe tip dc bias at the peak dC/dV spectra) of sample 1A suggests the presence of negative oxide fixed charge density (Nf) in the oxide. In addition, an analytical formula is derived to approximate the difference of the Nf values between the oxide samples that are immersed in H2O2 and UV irradiated from their measured SCM dC/dV spectra. Conversely, some physical mechanisms are proposed that result in the ionization of the SiO- species (which are converted from the neutral SiOH groups that originate from the pre-oxidation immersion in H2O2 and ensuing wet oxidation) during the UV irradiation as well as the UV photo-injected electrons from the Si substrate (which did not interact with the SiOH groups). They constitute the source of mobile electrons which partially passivate the positively charged empty donor-like interface traps at the Si-SiO2 interface.
Krzyzynska, Renata; Hutson, Nick D
2012-06-01
In this study, removing sulfur dioxide (SO2), nitrogen oxides (NO(x)), and mercury (Hg) from simulated flue gas was investigated in two laboratory-sized bubbling reactors that simulated an oxidizing reactor (where the NO and Hg(0) oxidation reactions are expected to occur) and a wet limestone scrubber, respectively. A sodium chlorite solution was used as the oxidizing agent. The sodium chlorite solution was an effective additive that enhanced the NO(x), Hg, and SO2 capture from the flue gas. Furthermore, it was discovered that the location of the sodium chlorite application (before, in, or after the wet scrubber) greatly influences which pollutants are removed and the amount removed. This effect is related to the chemical conditions (pH, absence/presence of particular gases) that are present at different positions throughout the flue gas cleaning system profile. The research results indicated that there is a potential to achieve nearly zero SO2, NO(x), and Hg emissions (complete SO2, NO, and Hg removals and -90% of NO(x) absorption from initial values of 1500 ppmv of SO2, 200 ppmv of NO(x), and 206 microg/m3 of Hg(0)) from the flue gas when sodium chlorite was applied before the wet limestone scrubber. However applying the oxidizer after the wet limestone scrubber was the most effective configuration for Hg and NO(x) control for extremely low chlorite concentrations (below 0.002 M) and therefore appears to be the best configuration for Hg control or as an additional step in NO(x) recleaning (after other NO(x) control facilities). The multipollutant scrubber, into which the chlorite was injected simultaneously with the calcium carbonate slurry, appeared to be the least expensive solution (when consider only capital cost), but exhibited the lowest NO(x) absorption at -50%. The bench-scale test results presented can be used to develop performance predictions for a full- or pilot-scale multipollutant flue gas cleaning system equipped with wet flue gas desulfurization scrubber.
Solvent-annealing-induced nanowetting in templates: towards tailored polymer nanostructures.
Chen, Jiun-Tai; Lee, Chih-Wei; Chi, Mu-Huan; Yao, I-Chun
2013-02-25
We study the solvent-annealing-induced nanowetting in templates using porous anodic aluminum oxide membranes. The morphology of polystyrene and poly(methyl methacrylate) nanostructures can be controlled, depending on whether the swollen polymers are in the partial or complete wetting regimes, which are characterized by the spreading coefficient. When the swollen polymers are in the partial wetting regime, polymers wet the nanopores by capillary action, resulting in the formation of polymer nanorods. When the swollen polymers are in the complete wetting regime, polymers form wetting layers in the nanopores, resulting in the formation of polymer nanotubes. The solubility parameters of polymers and solvents are also used to predict the wetting behavior of swollen polymers in cylindrical geometry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Jallorina, Michael Paul A.; Bermundo, Juan Paolo S.; Fujii, Mami N.; Ishikawa, Yasuaki; Uraoka, Yukiharu
2018-05-01
Transparent amorphous oxide semiconducting materials such as amorphous InGaZnO used in thin film transistors (TFTs) are typically annealed at temperatures higher than 250 °C to remove any defects present and improve the electrical characteristics of the device. Previous research has shown that low cost and low temperature methods improve the electrical characteristics of the TFT. With the aid of surface and bulk characterization techniques in comparison to the device characteristics, this work aims to elucidate further on the improvement mechanisms of wet and dry annealing ambients that affect the electrical characteristics of the device. Secondary Ion Mass Spectrometry results show that despite outward diffusion of -H and -OH species, humid annealing ambients counteract outward diffusion of these species, leading to defect sites which can be passivated by the wet ambient. X-ray Photoelectron Spectroscopy results show that for devices annealed for only 30 min in a wet annealing environment, the concentration of metal-oxide bonds increased by as much as 21.8% and defects such as oxygen vacancies were reduced by as much as 18.2% compared to an unannealed device. Our work shows that due to the oxidizing power of water vapor, defects are reduced, and overall electrical characteristics are improved as evidenced with the 150 °C wet O2, 30 min annealed sample which exhibited the highest mobility of 5.00 cm2/V s, compared to 2.36 cm2/V s for a sample that was annealed at 150 °C in a dry ambient atmospheric environment for 2 h.
Effect of ball milling materials and methods on powder processing of Bi2223 superconductors
NASA Astrophysics Data System (ADS)
Yavuz, M.; Maeda, H.; Vance, L.; Liu, H. K.; Dou, S. X.
1998-10-01
Various milling systems consisting of agate and polypropylene grinding containers, agate and YSZ balls, and dry and wet milling were used in planetary ball-milling and YSZ balls and YSZ container were used in wet and dry attrition milling. The differently milled powders were then evaluated by measurements of particle size, surface area, porosity, size distribution and chemical analysis of the Si, Zr and C contents. The results show that dry milling is much more efficient for particle size reduction in planetary milling than wet milling, whereas wet milling and dry milling gave quite similar results in attrition milling. Meanwhile 0953-2048/11/10/056/img6 contamination was found in powder milled with an agate container with agate balls. Some C contamination from the polypropylene container was detected after milling, but negligible Zr from YSZ balls and C from the grinding carrier (hexane). It was found that after 1 h milling in the planetary mill fracture mechanisms transform from the elastic to the plastic region. Therefore, further milling is not very effective. It was also shown that the Bi2212 phase decomposes into several non-superconducting oxides such as 0953-2048/11/10/056/img7, CuO and a main amorphous phase after extensive dry milling.
WET OXIDATION OF MUNICIPAL SLUDGE BY THE VERTICAL TUBE REACTOR
A study was undertaken to assess the feasibility of carrying out oxidation of dilute sewage sludge by means of the vertical tube reactor (VTR) system. A pilot scale facility along with a laboratory reactor were used for this study. Dilute sewage sludge was oxidized in the laborat...
Differential response of ammonia-oxidizing archaea and bacteria to the wetting of salty arid soil.
Sher, Yonatan; Ronen, Zeev; Nejidat, Ali
2016-08-01
Ammonia-oxidizing archaea and bacteria (AOA, AOB) catalyze the first and rate-limiting step of nitrification. To examine their differential responses to the wetting of dry and salty arid soil, AOA and AOB amoA genes (encoding subunit A of the ammonia monooxygenase) and transcripts were enumerated in dry (summer) and wet (after the first rainfall) soil under the canopy of halophytic shrubs and between the shrubs. AOA and AOB were more abundant under shrub canopies than between shrubs in both the dry and wetted soil. Soil wetting caused a significant decrease in AOB abundance under the canopy and an increase of AOA between the shrubs. The abundance of the archaeal amoA gene transcript was similar for both the wet and dry soil, and the transcript-to-gene ratios were < 1 independent of niche or water content. In contrast, the bacterial amoA transcript-to-gene ratios were between 78 and 514. The lowest ratio was in dry soil under the canopy and the highest in the soil between the shrubs. The results suggest that the AOA are more resilient to stress conditions and maintain a basic activity in arid ecosystems, while the AOB are more responsive to changes in the biotic and abiotic conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microstructure of a base metal thick film system. [Glass frit with base metal oxide addition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mentley, D.E.
1976-06-01
A base metal thick film conductor system using glass frits with base metal oxide additions was investigated as metallization for hybrid microcircuits. Application of previous work on wetting and chemical bonding was made to this system. The observation of changes in the properties of the thick film was made by photomicrographs of screened samples and sheet resistivity measurements. In addition to the chemical and wetting properties, the effect of glass frit particle size on conductivity was also analyzed. The base metal oxide addition was found to produce a more consistent thick film conductor at low volume percentages of metal bymore » inhibiting the formation of low melting redox reaction products.« less
Beneficial effects of virgin coconut oil on lipid parameters and in vitro LDL oxidation.
Nevin, K G; Rajamohan, T
2004-09-01
The present study was conducted to investigate the effect of consumption of virgin coconut oil (VCO) on various lipid parameters in comparison with copra oil (CO). In addition, the preventive effect of polyphenol fraction (PF) from test oils on copper induced oxidation of LDL and carbonyl formation was also studied. After 45 days of oil feeding to Sprague-Dawley rats, several lipid parameters and lipoprotein levels were determined. PF was isolated from the oils and its effect on in vitro LDL oxidation was assessed. VCO obtained by wet process has a beneficial effect in lowering lipid components compared to CO. It reduced total cholesterol, triglycerides, phospholipids, LDL, and VLDL cholesterol levels and increased HDL cholesterol in serum and tissues. The PF of virgin coconut oil was also found to be capable of preventing in vitro LDL oxidation with reduced carbonyl formation. The results demonstrated the potential beneficiary effect of virgin coconut oil in lowering lipid levels in serum and tissues and LDL oxidation by physiological oxidants. This property of VCO may be attributed to the biologically active polyphenol components present in the oil.
NASA Technical Reports Server (NTRS)
Schmidt, W. G.
1974-01-01
The thermal stability of perchlorate composite propellants was studied at 135 and 170 C. The experimental efforts were concentrated on determining the importance of heterogeneous oxidizer-fuel reactions in the thermal degradation process. The experimental approach used to elucidate the mechanisms by which the oxidizer fuel composites thermally degrade was divided into two parts: (1) keeping the fuel constant and varying the nature of the oxidizers, and (2) holding the oxidizer constant and varying the fuel components. The fuel component primarily utilized in the first phase was polyethylene. Oxidizers included KClO4, KClO3, NH4ClO4 and NH4ClO4 doped with materials such as chlorate, phosphate and arsenate. In the second phase the oxidizer used was primarily NH4ClO4 while the fuels included saturated and unsaturated polybutadiene prepolymers and a series of bonding agents. Techniques employed in the current study include thermogravimetric measurements, differential thermal analysis, infrared, mass spectrometry, electron microscopy, and appropriate wet chemical analysis.
NASA Astrophysics Data System (ADS)
Park, Se Min; Koo, Yang Mo; Shim, Byoung Yul; Lee, Dong Nyung
2017-01-01
In Fe-3%Si-0.3%C steel sheet, a relatively strong <100>//ND texture can evolve in the surface layer through the α→γ→α phase transformation in relatively low vacuum (4 Pa) for an annealing time of 10 min and at a cooling rate of 20 K/s. Oxidation of the steel sheet surface prevents the evolution of the <100>//ND texture. However, vacuum-annealing under a vacuum pressure of 1.3×10-3 Pa causes decarburization of the steel sheet, which suppresses oxidation of the steel sheet surface, and subsequent annealing in wet hydrogen of 363 K in dew points causes a columnar grain structure with the <100>//ND texture. After the two-step-annealing (the vacuum annealing under a vacuum pressure of 1.3×10-3 Pa and subsequent decarburizing annealing in wet hydrogen of 363 K in dew points), the decarburized steel sheet exhibits good soft magnetic properties in NO with 3%Si, W15/50 (core loss at 1.5T and 50 Hz) = 2.47 W/kg and B50 (magnetic flux density at 5000 A/m) = 1.71 T.
Wang, Zhongying; Tonderys, Daniel; Leggett, Susan E.; Williams, Evelyn Kendall; Kiani, Mehrdad T.; Steinberg, Ruben Spitz; Qiu, Yang; Wong, Ian Y.; Hurt, Robert H.
2015-01-01
Textured surfaces with periodic topographical features and long-range order are highly attractive for directing cell-material interactions. They mimic physiological environments more accurately than planar surfaces and can fundamentally alter cell alignment, shape, gene expression, and cellular assembly into superstructures or microtissues. Here we demonstrate for the first time that wrinkled graphene-based surfaces are suitable as textured cell attachment substrates, and that engineered wrinkling can dramatically alter cell alignment and morphology. The wrinkled surfaces are fabricated by graphene oxide wet deposition onto pre-stretched elastomers followed by relaxation and mild thermal treatment to stabilize the films in cell culture medium. Multilayer graphene oxide films form periodic, delaminated buckle textures whose wavelengths and amplitudes can be systematically tuned by variation in the wet deposition process. Human and murine fibroblasts attach to these textured films and remain viable, while developing pronounced alignment and elongation relative to those on planar graphene controls. Compared to lithographic patterning of nanogratings, this method has advantages in the simplicity and scalability of fabrication, as well as the opportunity to couple the use of topographic cues with the unique conductive, adsorptive, or barrier properties of graphene materials for functional biomedical devices. PMID:25848137
Proteomic effects of wet cupping (Al-hijamah).
Almaiman, Amer A
2018-01-01
Wet cupping (Al-hijamah) is a therapeutic technique practiced worldwide as a part of the Unani system of medicine. It involves bloodletting from acupoints on a patient's skin to produce a therapeutic outcome. A thorough review of research articles on wet cupping with relevance to proteomics field that are indexed by Google Scholar, PubMed, and/or Science Direct databases was performed. Eight original research articles were summarized in this paper. Overall, wet cupping did not have a significant effect on C-reactive protein, Hsp-27, sister chromatid exchanges, and cell replication index. In contrast, wet cupping was found to produce higher oxygen saturation, eliminate lactate from subcutaneous tissues, remove blood containing higher levels of malondialdehyde and nitric oxide, and produce higher activity of myeloperoxidase. The proteomic effects of wet cupping therapy have not been adequately investigated. Thus, future studies on wet cupping that use systemic and sound protocols to avoid bias should be conducted.
Proteomic effects of wet cupping (Al-hijamah)
Almaiman, Amer A.
2018-01-01
Wet cupping (Al-hijamah) is a therapeutic technique practiced worldwide as a part of the Unani system of medicine. It involves bloodletting from acupoints on a patient’s skin to produce a therapeutic outcome. A thorough review of research articles on wet cupping with relevance to proteomics field that are indexed by Google Scholar, PubMed, and/or Science Direct databases was performed. Eight original research articles were summarized in this paper. Overall, wet cupping did not have a significant effect on C-reactive protein, Hsp-27, sister chromatid exchanges, and cell replication index. In contrast, wet cupping was found to produce higher oxygen saturation, eliminate lactate from subcutaneous tissues, remove blood containing higher levels of malondialdehyde and nitric oxide, and produce higher activity of myeloperoxidase. The proteomic effects of wet cupping therapy have not been adequately investigated. Thus, future studies on wet cupping that use systemic and sound protocols to avoid bias should be conducted. PMID:29332103
Sharma, A K; Dhingra, S; Khaper, N; Singal, P K
2007-09-01
Changes in oxidative stress and apoptotic process were studied during the progression of a compensated hypertrophy to a decompensated heart failure in guinea pigs. Banding of the ascending aorta resulted in heart hypertrophy. At 10 wk, ventricle-to-body weight ratio and thickness of the interventricular septum as well as the left ventricular wall were increased significantly. Although fractional shortening and ejection fraction were decreased, there were no signs of heart failure. Furthermore, there was no increase in wet-to-dry weight ratios for the lungs and liver at this stage. However, at 20 wk, heart failure was characterized by a significant depression in heart function as indicated by a decrease in fractional shortening, and ejection fraction and a lesser increase in wall thickness from diastole to systole. Animals also showed clinical signs of heart failure, and the wet-to-dry weight ratios of the lungs and liver were significantly higher. Cardiomyocyte oxidative stress was significantly higher in the 20-wk aortic-banded group. The ratio of Bax to Bcl-xl showed an increase at 10 wk, and there was a further increase at 20 wk. Mitochondrial membrane potential in the aortic-banded animals was significantly decreased at 10 and 20 wk. Cytochrome c levels were higher in the cytosol compared with the mitochondria, leading to a considerable increase in the expression of p17 subunit of caspase-3. At 20 wk, both early and late stages of apoptosis were observed in isolated cardiomyocytes. It is suggested that an increase in oxidative stress initiates mitochondrial death pathway during the hypertrophic stage, leading to apoptosis and heart failure at a later stage.
NASA Astrophysics Data System (ADS)
Wu, Chia-Yun
High speed Atomic Force Microscopy (AFM) has a wide variety of applications ranging from nanomanufacturing to biophysics. In order to have higher scanning speed of certain AFM modes, high resonant frequency cantilevers are needed; therefore, the goal of this research is to investigate using polymer derived ceramics for possible applications in making high resonant frequency AFM cantilevers using complex cross sections. The polymer derived ceramic that will be studied, is silicon carbide. Polymer derived ceramics offer a potentially more economic fabrication approach for MEMS due to their relatively low processing temperatures and ease of complex shape design. Photolithography was used to make the desired cantilever shapes with micron scale size followed by a wet etching process to release the cantilevers from the substrates. The whole manufacturing process we use borrow well-developed techniques from the semiconducting industry, and as such this project also could offer the opportunity to reduce the fabrication cost of AFM cantilevers and MEMS in general. The characteristics of silicon carbide made from the precursor polymer, SMP-10 (Starfire Systems), were studied. In order to produce high qualities of silicon carbide cantilevers, where the major concern is defects, proper process parameters needed to be determined. Films of polymer derived ceramics often have defects due to shrinkage during the conversion process. Thus control of defects was a central issue in this study. A second, related concern was preventing oxidation; the polymer derived ceramics we chose is easily oxidized during processing. Establishing an environment without oxygen in the whole process was a significant challenge in the project. The optimization of the parameters for using photolithography and wet etching process was the final and central goal of the project; well established techniques used in microfabrication were modified for use in making the cantilever in the project. The techniques developed here open a path to the fabrication of cantilevers with unconventional cross sections.
Rueda-Márquez, J J; Sillanpää, M; Pocostales, P; Acevedo, A; Manzano, M A
2015-03-15
In this paper the feasibility of a multi-barrier treatment (MBT) for the regeneration of synthetic industrial wastewater (SIWW) was evaluated. Industrial pollutants (orange II, phenol, 4-chlorophenol and phenanthrene) were added to the effluent of municipal wastewater treatment plant. The proposed MBT begins with a microfiltration membrane pretreatment (MF), followed by hydrogen peroxide photolysis (H2O2/UVC) and finishing, as a polishing step, with catalytic wet peroxide oxidation (CWPO) using granular activated carbon (GAC) at ambient conditions. During the microfiltration step (0.7 μm) the decrease of suspended solids concentration, turbidity and Escherichia coli in treated water were 88, 94 and 99%, respectively. Also, the effluent's transmittance (254 nm) was increased by 14.7%. Removal of more than 99.9% of all added pollutants, mineralization of 63% of organic compounds and complete disinfection of total coliforms were reached during the H2O2/UVC treatment step (H2O2:TOC w/w ratio = 5 and an UVC average dose accumulated by wastewater 8.80 WUVC s cm(-2)). The power and efficiency of the lamp, the water transmittance and photoreactor geometry are taken into account and a new equation to estimate the accumulated dose in water is suggested. Remaining organic pollutants with a higher oxidation state of carbon atoms (+0.47) and toxic concentration of residual H2O2 were present in the effluent of the H2O2/UVC process. After 2.3 min of contact time with GAC at CWPO step, 90 and 100% of total organic carbon and residual H2O2 were removed, respectively. Also, the wastewater toxicity was studied using Vibrio fischeri and Sparus aurata larvae. The MBT operational and maintenance costs (O&M) was estimated to be 0.59 € m(-3). Copyright © 2015 Elsevier Ltd. All rights reserved.
Some recent developments in spacecraft environmental control/life support subsystems
NASA Technical Reports Server (NTRS)
Gillen, R. J.; Olcott, T. M.
1974-01-01
The subsystems considered include a flash evaporator for heat rejection, a regenerable carbon dioxide and humidity control subsystem, an iodinating subsystem for potable water, a cabin contaminant control subsystem, and a wet oxidation subsystem for processing spacecraft wastes. The flash evaporator discussed is a simple unit which efficiently controls life support system temperatures over a wide range of heat loads. For certain advanced spacecraft applications the control of cabin carbon dioxide and humidity can be successfully achieved by a regenerable solid amine subsystem.
Process for combined control of mercury and nitric oxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livengood, C. D.; Mendelsohn, M. H.
Continuing concern about the effects of mercury in the environment may lead to requirements for the control of mercury emissions from coal-fired power plants. If such controls are mandated, the use of existing flue-gas cleanup systems, such as wet scrubbers currently employed for flue-gas desulfurization, would be desirable, Such scrubbers have been shown to be effective for capturing oxidized forms of mercury, but cannot capture the very insoluble elemental mercury (Hg{sup 0}) that can form a significant fraction of the total emissions. At Argonne National Laboratory, we have proposed and tested a concept for enhancing removal of Hg{sup 0}, as well as nitric oxide, through introduction of an oxidizing agent into the flue gas upstream of a scrubber, which readily absorbs the soluble reaction products. Recently, we developed a new method for introducing the oxidizing agent into the flue-gas stream that dramatically improved reactant utilization. The oxidizing agent employed was NOXSORB{trademark}, which is a commercial product containing chloric acid and sodium chlorate. When a dilute solution of this agent was introduced into a gas stream containing Hg{sup 0} and other typical flue-gas species at 300 F, we found that about 100% of the mercury was removed from the gas phase and recovered in process liquids. At the same time, approximately 80% of the nitric oxide was removed. The effect of sulfur dioxide on this process was also investigated and the results showed that it slightly decreased the amount of Hg{sup 0} oxidized while appearing to increase the removal of nitric oxide from the gas phase. We are currently testing the effects of variations in NOXSORB{trademark} concentration, sulfur dioxide concentration, nitric oxide concentration, and reaction time (residence time). Preliminary economic projections based on the results to date indicate that the chemical cost for nitric oxide oxidation could be less thanmore » $$5,000/ton removed, while for Hg{sup 0} oxidation it would be about $$20,000/lb removed.« less
Litzov, Ivan; Brabec, Christoph J.
2013-01-01
Solution-processed inverted bulk heterojunction (BHJ) solar cells have gained much more attention during the last decade, because of their significantly better environmental stability compared to the normal architecture BHJ solar cells. Transparent metal oxides (MeOx) play an important role as the dominant class for solution-processed interface materials in this development, due to their excellent optical transparency, their relatively high electrical conductivity and their tunable work function. This article reviews the advantages and disadvantages of the most common synthesis methods used for the wet chemical preparation of the most relevant n-type- and p-type-like MeOx interface materials consisting of binary compounds AxBy. Their performance for applications as electron transport/extraction layers (ETL/EEL) and as hole transport/extraction layers (HTL/HEL) in inverted BHJ solar cells will be reviewed and discussed. PMID:28788423
Litzov, Ivan; Brabec, Christoph J
2013-12-10
Solution-processed inverted bulk heterojunction (BHJ) solar cells have gained much more attention during the last decade, because of their significantly better environmental stability compared to the normal architecture BHJ solar cells. Transparent metal oxides (MeO x ) play an important role as the dominant class for solution-processed interface materials in this development, due to their excellent optical transparency, their relatively high electrical conductivity and their tunable work function. This article reviews the advantages and disadvantages of the most common synthesis methods used for the wet chemical preparation of the most relevant n -type- and p -type-like MeO x interface materials consisting of binary compounds A x B y . Their performance for applications as electron transport/extraction layers (ETL/EEL) and as hole transport/extraction layers (HTL/HEL) in inverted BHJ solar cells will be reviewed and discussed.
Hoshide, Tatsumasa; Zheng, Yuanchuan; Hou, Junyu; Wang, Zhiqiang; Li, Qingwen; Zhao, Zhigang; Ma, Renzhi; Sasaki, Takayoshi; Geng, Fengxia
2017-06-14
Increasing interest has recently been devoted to developing small, rapid, and portable electronic devices; thus, it is becoming critically important to provide matching light and flexible energy-storage systems to power them. To this end, compared with the inevitable drawbacks of being bulky, heavy, and rigid for traditional planar sandwiched structures, linear fiber-shaped lithium-ion batteries (LIB) have become increasingly important owing to their combined superiorities of miniaturization, adaptability, and weavability, the progress of which being heavily dependent on the development of new fiber-shaped electrodes. Here, we report a novel fiber battery electrode based on the most widely used LIB material, titanium oxide, which is processed into two-dimensional nanosheets and assembled into a macroscopic fiber by a scalable wet-spinning process. The titania sheets are regularly stacked and conformally hybridized in situ with reduced graphene oxide (rGO), thereby serving as efficient current collectors, which endows the novel fiber electrode with excellent integrated mechanical properties combined with superior battery performances in terms of linear densities, rate capabilities, and cyclic behaviors. The present study clearly demonstrates a new material-design paradigm toward novel fiber electrodes by assembling metal oxide nanosheets into an ordered macroscopic structure, which would represent the most-promising solution to advanced flexible energy-storage systems.
NASA Astrophysics Data System (ADS)
Nielsen, Jimmi; Persson, Åsa H.; Sudireddy, Bhaskar R.; Irvine, John T. S.; Thydén, Karl
2017-12-01
For improved robustness, durability and to avoid severe processing challenges alternatives to the Ni:YSZ composite electrode is highly desirable. The Ni:YSZ composite electrode is conventionally used for solid oxide fuel cell and solid oxide electrolysis cell. In the present study we report on high performing nanostructured Ni:CGO electrocatalyst coated A site deficient Lanthanum doped Strontium Titanate (La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3) based anodes. The anodes were incorporated into the co-sintered DTU metal supported solid oxide fuel cell design and large sized 12 cm × 12 cm cells were fabricated. The titanate material showed good processing characteristics and surface wetting properties towards the Ni:CGO electrocatalyst coating. The cell performances were evaluated on single cell level (active area 16 cm2) and a power density at 0.7 V and 700 °C of 0.650 Wcm-2 with a fuel utilization of 31% was achieved. Taking the temperature into account the performances of the studied anodes are among the best reported for redox stable and corrosion resistant alternatives to the conventional Ni:YSZ composite solid oxide cell electrode.
NASA Astrophysics Data System (ADS)
Arafat, M. M.; Ong, J. Y.; Haseeb, A. S. M. A.
2018-03-01
In this research, the gas sensing behavior of Pd nanoparticles loaded zinc stannate/zinc oxide (Zn2SnO4/ZnO) nanowires were investigated. The Zn2SnO4/ZnO nanowires were grown on Au interdigitated alumina substrate by carbon assisted thermal evaporation process. Pd nanoparticles were loaded on the Zn2SnO4/ZnO nanowires by wet reduction process. The nanowires were characterized by X-ray diffractometer, field emission scanning electron microscope and energy dispersive X-ray spectroscope. The Zn2SnO4/ZnO and Pd nanoparticles loaded Zn2SnO4/ZnO nanowires were investigated for detecting H2, H2S and C2H5OH gases in N2 background. Results revealed that the average diameter and length of as-grown Zn2SnO4/ZnO nanowires were 74 nm and 30 μm, respectively. During wet reduction process,Pd particles having size of 20-60 nm were evenly distributed on the Zn2SnO4/ZnO nanowires. The Zn2SnO4/ZnO nanowires based sensors showed selective response towards C2H5OH whereas Pd nanoparticles loaded Zn2SnO4/ZnO nanowires showed selective response towards H2. The recovery time of the sensors reduced with Pd loading on Zn2SnO4/ZnO nanowires. A mechanism is proposed to elucidate the gas sensing mechanism of Pd nanoparticles loaded Zn2SnO4/ZnO nanowires.
Cathode Wetting Studies in Magnesium Electrolysis
NASA Astrophysics Data System (ADS)
McLean, Kevin; Pettingill, James; Davis, Boyd
The effects of cathode materials and electrolyte additives on magnesium wetting were studied with the goal of improving current efficiency in a magnesium electrolysis cell. The study consisted of static wetting and electrolysis tests, both conducted in a visual cell with a molten salt electrolyte of MgCl2-CaCl2-NaCl-KCl-CaF2. The wetting conditions were tested using high resolution photography and contact angle software. The electrolysis tests were completed to qualitatively assess the effect of additives to the melt and were recorded with a digital video camcorder. Results from the static wetting tests showed a significant variation in wetting depending on the material used for the cathode. Mo and a Mo-W alloy, with contact angles of 60° and 52° respectively, demonstrated excellent wetting. The contact angle for steel was 132° and it ranged from 142°-154° for graphite depending on the type. Improvements to the cathode wetting were observed with tungsten and molybdenum oxide additives.
Applications of selective catalytic reduction (SCR) systems and wet flue gas desulfurization (FGD) scrubbers on coal-fired boilers have led to substantial reductions in emissions of nitrogen oxides (NOX) and sulfur dioxide (SO2). However, observations of pilot- and full-scale tes...
Increasing importance of deposition of reduced nitrogen in the United States
Yi Li; Bret A. Schichtel; John T. Walker; Donna B. Schwede; Xi Chen; Christopher M. B. Lehmann; Melissa A. Puchalski; David A. Gay; Jeffrey L. Collett
2016-01-01
Rapid development of agriculture and fossil fuel combustion greatly increased US reactive nitrogen emissions to the atmosphere in the second half of the 20th century, resulting in excess nitrogen deposition to natural ecosystems. Recent efforts to lower nitrogen oxides emissions have substantially decreased nitrate wet deposition. Levels of wet ammonium...
Ma, Yue; Tai, Cheuk-Wai; Li, Shaowen; Edström, Kristina; Wei, Bingqing
2018-06-13
Interconnected macro/mesoporous structures of mixed metal oxide (MMO) are developed on nickel foam as freestanding anodes for Li-ion batteries. The sustainable production is realized via a wet chemical etching process with bio-friendly chemicals. By means of divalent iron doping during an in situ recrystallization process, the as-developed MMO anodes exhibit enhanced levels of cycling efficiency. Furthermore, this atomic-scale modification coherently synergizes with the encapsulation layer across a micrometer scale. During this step, we develop a quasi-gel-state tri-copolymer, i.e., F127-resorcinol-melamine, as the N-doped carbon source to regulate the interfacial chemistry of the MMO electrodes. Electrochemical tests of the modified Fe x Ni 1- x O@NC-NiF anode in both half-cell and full-cell configurations unravel the favorable suppression of the irreversible capacity loss and satisfactory cyclability at the high rates. This study highlights a proof-of-concept modification strategy across multiple scales to govern the interfacial chemical process of the electrodes toward better reversibility.
Reactive nitrogen deposition to South East Asian rainforest
NASA Astrophysics Data System (ADS)
di Marco, Chiara F.; Phillips, Gavin J.; Thomas, Rick; Tang, Sim; Nemitz, Eiko; Sutton, Mark A.; Fowler, David; Lim, Sei F.
2010-05-01
The supply of reactive nitrogen (N) to global terrestrial ecosystems has doubled since the 1960s as a consequence of human activities, such as fertilizer application and production of nitrogen oxides by fossil-fuel burning. The deposition of atmospheric N species constitutes a major nutrient input to the biosphere. Tropical forests have been undergoing a radical land use change by increasing cultivation of sugar cane and oil palms and the remaining forests are increasingly affected by anthropogenic activities. Yet, quantifications of atmospheric nitrogen deposition to tropical forests, and nitrogen cycling under near-pristine and polluted conditions are rare. The OP3 project ("Oxidant and Particle Photochemical Processes above a Southeast Asian Tropical Rainforest") was conceived to study how emissions of reactive trace gases from a tropical rain forest mediate the regional scale production and processing of oxidants and particles, and to better understand the impact of these processes on local, regional and global scale atmospheric composition, chemistry and climate. As part of this study we have measured reactive, nitrogen containing trace gas (ammonia, nitric acid) and the associated aerosol components (ammonium, nitrate) at monthly time resolution using a simple filter / denuder for 16 months. These measurements were made at the Bukit Atur Global Atmospheric Watch tower near Danum Valley in the Malaysian state of Sabah, Borneo. In addition, the same compounds were measured at hourly time-resolution during an intensive measurement period, with a combination of a wet-chemistry system based on denuders and steam jet aerosol collectors and an aerosol mass spectrometer (HR-ToF-AMS), providing additional information on the temporal controls. During this period, concentrations and fluxes of NO, NO2 and N2O were also measured. The measurements are used for inferential dry deposition modelling and combined with wet deposition data from the South East Asian Acid Deposition Network to estimate the total annual atmospheric reactive nitrogen deposition to this tropical forest ecosystem and to quantify the relative contribution of the different chemical compounds.
Chu, Chiang-Jui; Chung, Pei-Yun; Chi, Mu-Huan; Kao, Yi-Huei; Chen, Jiun-Tai
2014-09-01
Block copolymers have been extensively studied over the last few decades because they can self-assemble into well-ordered nanoscale structures. The morphologies of block copolymers in confined geometries, however, are still not fully understood. In this work, the fabrication and morphologies of three-dimensional polystyrene-block-polydimethylsiloxane (PS-b-PDMS) nanostructures confined in the nanopores of anodic aluminum oxide (AAO) templates are studied. It is discovered that the block copolymers can wet the nanopores using a novel solvent-annealing-induced nanowetting in templates (SAINT) method. The unique advantage of this method is that the problem of thermal degradation can be avoided. In addition, the morphologies of PS-b-PDMS nanostructures can be controlled by changing the wetting conditions. Different solvents are used as the annealing solvent, including toluene, hexane, and a co-solvent of toluene and hexane. When the block copolymer wets the nanopores in toluene vapors, a perpendicular morphology is observed. When the block copolymer wets the nanopores in co-solvent vapors (toluene/hexane = 3:2), unusual circular and helical morphologies are obtained. These three-dimensional nanostructures can serve as naontemplates for refilling with other functional materials, such as Au, Ag, ZnO, and TiO2 . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Enhancing oxygen transport through Mixed-Ionic-and-Electronic-Conducting ceramic membranes
NASA Astrophysics Data System (ADS)
Yu, Anthony S.
Ceramic membranes based on Mixed-Ionic-and-Electronic-Conducting (MIEC) oxides are capable of separating oxygen from air in the presence of an oxygen partial-pressure gradient. These MIEC membranes show great promise for oxygen consuming industrial processes, such as the production of syngas from steam reforming of natural gas (SRM), as well as for electricity generation in Solid Oxide Fuel Cells (SOFC). For both applications, the overall performance is dictated by the rate of oxygen transport across the membrane. Oxygen transport across MIEC membranes is composed of a bulk oxygen-ion diffusion process and surface processes, such as surface reactions and adsorption/desorption of gaseous reactants/products. The main goal of this thesis was to determine which process is rate-limiting in order to significantly enhance the overall rate of oxygen transport in MIEC membrane systems. The rate-limiting step was determined by evaluating the total resistance to oxygen transfer, Rtot. Rtot is the sum of a bulk diffusion resistance in the membrane itself, Rb, and interfacial loss components, Rs. Rb is a function of the membrane's ionic conductivity and thickness, while Rs arises primarily from slow surface-exchange kinetics that cause the P(O2) at the surfaces of the membrane to differ from the P(O 2) in the adjacent gas phases. Rtot can be calculated from the Nernst potential across the membrane and the measured oxygen flux. The rate-limiting process can be determined by evaluating the relative contributions of the various losses, Rs and Rb, to Rtot. Using this method, this thesis demonstrates that for most membrane systems, Rs is the dominating factor. In the development of membrane systems with high oxygen transport rates, thin membranes with high ionic conductivities are required to achieve fast bulk oxygen-ion diffusion. However, as membrane thickness is decreased, surface reaction kinetics become more important in determining the overall transport rate. The two approaches to increase surface reaction kinetics and decrease Rs that were examined in this thesis involved modifying the surface microstructure, as well as adding both metallic (e.g. Pt) and oxide (e.g. CeO2, La0.8Sr0.2FeO3) catalysts to both membrane surfaces. These two approaches were investigated for single-phase MIEC membrane reactors (La0.9Ca0.1FeO3-delta ), as well as composite membrane reactors composed of an electronic conductor (La0.8Sr-0.2CrO3-delta) and an ionic conductor (YSZ). The use of catalysts and microstructure modifications to decrease interfacial losses is equally important for SOFCs. In this thesis, the electrochemical activity and microstructure of metallic catalysts formed by "ex-solving" metals from an oxide lattice, and oxide catalysts deposited by Atomic Layer Deposition (ALD) were investigated. It is shown that these methods for depositing catalysts resulted in very different effects on electrode performance when compared to the same catalysts deposited by wet impregnation. For example, when transition metals, such as Ni and Co, were "ex-solved" from a La0.8Sr0.2CrO3-delta anode lattice, these "ex-solved" metal particles not only exhibited great catalytic activity, they were also less prone to coking compared to their wet impregnated counterparts. On the cathode side, thin layers of various oxides (e.g. Al 2O3, CeOx, SrO) that were deposited using ALD also exhibited drastically different electrochemical activity compared to their wet impregnated counterparts. It was determined that differences in electrochemical activity could be attributed to a difference in the oxide morphology, showing that a catalyst's microstructure and morphology are very important in dictating its overall activity in SOFC electrodes.
NASA Astrophysics Data System (ADS)
Dang, Trung-Dung; Banerjee, Arghya Narayan; Tran, Quang-Tung; Roy, Sudipta
2016-11-01
By a simple wet-chemical procedure using a permanganate in the acidic medium, diatomite coated with amorphous manganese oxide nanoparticles was synthesized. The structural, microstructural and morphological characterizations of the as-synthesized catalysts confirmed the nanostructure of MnO2 and its stabilization on the support - diatomite. The highly efficient and rapid degradation of methylene blue and methyl orange over synthesized MnO2 coated Diatomite has been carried out. The results revealed considerably faster degradation of the dyes against the previously reported data. The proposed mechanism of the dye-degradation is considered to be a combinatorial effect of chemical, physicochemical and physical processes. Therefore, the fabricated catalysts have potential application in waste water treatment, and pollution degradation for environmental remediation.
Wet air co-oxidation of decabromodiphenyl ether (BDE209) and tetrahydrofuran.
Zhao, Hongxia; Zhang, Feifang; Qu, Baocheng; Xue, Xingya; Liang, Xinmiao
2009-09-30
The wet air co-oxidation (WACO) of a major commercial polybrominated diphenyl ether flame retardant congener, decabromodiphenyl ether (BDE209), was investigated using tetrahydrofuran (THF) as an initiator in a stainless autoclave at temperature range of 120-170 degrees C and 0.5MPa oxygen pressure. Compared to the single oxidation of BDE209 under the same conditions, the addition of THF in the reaction system greatly improved the removal efficiency of BDE209. The effect of temperature on the reaction was studied. The removals of BDE209 and Br increased with increasing temperature. In addition, the effect of NaNO(2) as the catalyst on the WACO was also investigated and the results showed that the addition of NaNO(2) could improve the Br removal efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longo, Amelia F.; Feng, Yan; Lai, Barry
Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation statemore » became more reduced, and aerosol acidity increased. As a result, atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.« less
NASA Technical Reports Server (NTRS)
Modell, M.; Meissner, H.; Karel, M.; Carden, J.; Lewis, S.
1981-01-01
The research program entitled 'Development of a Prototype Experiment for Treating CELSS (Controlled Ecological Life Support Systems) and PCELSS (Partially Controlled Ecological Life Support Systems) Wastes to Produce Nutrients for Plant Growth' consists of two phases: (1) the development of the neccessary facilities, chemical methodologies and models for meaningful experimentation, and (2) the application of what methods and devices are developed to the interfacing of waste oxidation with plant growth. Homogeneous samples of freeze-dried human feces and urine have been prepared to ensure comparability of test results between CELSS waste treatment research groups. A model of PCELSS food processing wastes has been developed, and an automated gas chromatographic system to analyze oxidizer effluents was designed and brought to operational status. Attention is given the component configuration of the wet oxidation system used by the studies.
NASA Astrophysics Data System (ADS)
Kozak, Dmytro S.; Sergiienko, Ruslan A.; Shibata, Etsuro; Iizuka, Atsushi; Nakamura, Takashi
2016-02-01
Electrolytic processes are widely used to synthesize different nanomaterials and it does not depend on what kind of the method has been applied (wet-chemistry, sonochemistry, plasma chemistry, electrolysis and so on). Generally, the reactions in the electrolyte are considered to be reduction/oxidation (REDOX) reactions between chemical reagents or the deposition of matter on the electrodes, in line with Faraday’s law. Due to the presence of electroconductive additives in any electrolyte, the polarization effect of polar molecules conducting an electrical current disappears, when external high-strength electric field is induced. Because initially of the charge transfer always belongs of electroconductive additive and it does not depend on applied voltage. The polarization of ethanol molecules has been applied to conduct an electric current by surface plasma interaction for the synthesis of a copper oxide/carbon nanocomposite material.
Cao, Yan; Gao, Zhengyang; Zhu, Jiashun; Wang, Quanhai; Huang, Yaji; Chiu, Chengchung; Parker, Bruce; Chu, Paul; Pant, Wei-Ping
2008-01-01
This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0)concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH3 addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH3 reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation.
Evaluating the oxidation of shale during hydraulic fracturing using SEM-EDS and spectrocolorimetry
NASA Astrophysics Data System (ADS)
Tan, X. Y.; Nakashima, S.
2017-12-01
During hydraulic fracturing (fracking) for shale gas/oil extraction, oxygen is introduced into deep oxygen-poor environments, and Fe2+-bearing minerals in rocks can be oxidized thus leading to the degradation of rock quality. Akita diatomaceous shale is considered to be one of the source rocks for oil and gas fields in northwestern Japan. Outcrops of Akita shale often show presence of jarosite (Fe sulfate: yellow) and/or goethite (Fe hydroxide: brown to orange) as oxidation products of pyrite (FeS2). Several series of oxidation experiments of Akita shale under dry, humid, and wet conditions were conducted at temperatures of around 30 oC and 50oC for 30-40 days. Portable color spectro-colorimeters were used to monitor color changes of the rock surfaces every hour. SEM-EDS, UV-Vis, and Raman spectroscopic analyses were performed on the rock sample surface to examine the chemical and mineralogical compositions of Akita shale before and after the dry, humid, and wet experiments. In SEM-EDS analyses before the humid experiment, Fe and S containing phases show their atomic ratio close to 1:2 indicating that this is pyrite (FeS2). After the experiment, the ratio changed to around 1:1 suggesting a conversion from pyrite (FeS2) to mackinawite-like mineral (FeS). In addition, the formation of Ca sulfate (possibly gypsum: CaSO4.2H2O) and goethite-like Fe hydroxide were identified which were not present initially. Therefore, oxidation pathways of iron sulfide (pyrite: FeS2) via FeS to sulfate is confirmed by our humid experiments around 30oC on Akita shale. These oxidation processes might occur during the fracking of shale within relatively short time periods associated with precipitation of sulfates and hydroxides. Therefore, further studies are needed for their effects on rock properties and gas/oil production.
Predicting the Mineral Composition of Dust Aerosols. Part 1; Representing Key Processes
NASA Technical Reports Server (NTRS)
Perlwitz, J. P.; Garcia-Pando, C. Perez; Miller, R. L.
2015-01-01
Soil dust aerosols created by wind erosion are typically assigned globally uniform physical and chemical properties within Earth system models, despite known regional variations in the mineral content of the parent soil. Mineral composition of the aerosol particles is important to their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Here, aerosol mineral composition is derived by extending a method that provides the composition of a wet-sieved soil. The extension accounts for measurements showing significant differences between the mineral fractions of the wetsieved soil and the emitted aerosol concentration. For example, some phyllosilicate aerosols are more prevalent at silt sizes, even though they are nearly absent at these diameters in a soil whose aggregates are dispersed by wet sieving. We calculate the emitted mass of each mineral with respect to size by accounting for the disintegration of soil aggregates during wet sieving. These aggregates are emitted during mobilization and fragmentation of the original undispersed soil that is subject to wind erosion. The emitted aggregates are carried far downwind from their parent soil. The soil mineral fractions used to calculate the aggregates also include larger particles that are suspended only in the vicinity of the source. We calculate the emitted size distribution of these particles using a normalized distribution derived from aerosol measurements. In addition, a method is proposed for mixing minerals with small impurities composed of iron oxides. These mixtures are important for transporting iron far from the dust source, because pure iron oxides are more dense and vulnerable to gravitational removal than most minerals comprising dust aerosols. A limited comparison to measurements from North Africa shows that the model extensions result in better agreement, consistent with a more extensive comparison to global observations as well as measurements of elemental composition downwind of the Sahara, as described in companion articles.
Bistan, Mirjana; Tišler, Tatjana; Pintar, Albin
2012-06-01
Estrogen 17β-estradiol (E2), produced by human body and excreted into municipal wastewaters, belongs to the group of endocrine disrupting compounds that are resistant to biological degradation. The aim of this study was to assess the efficiency of E2 removal from aqueous solutions by means of catalytic wet-air oxidation (CWAO) and photolytic/photocatalytic oxidation. CWAO experiments were conducted in a trickle-bed reactor at temperatures up to 230 °C and oxygen partial pressure of 10 bar over TiO2 and Ru/TiO2 solids. Photolytic/photocatalytic oxidation was carried out in a batch slurry reactor employing a TiO2 P-25 (Degussa) catalyst under visible or UV light. HPLC analysis and yeast estrogen screen assay were used to evaluate the removal of E2 and estrogenicity of treated samples. The latter was completely removed during photolytic/photocatalytic oxidation under UV (365 nm) light and photocatalytic oxidation under visible light. In CWAO experiments, complete removal of both E2 and estrogenicity from the feed solution were noticed in the presence of TiO2 and Ru/TiO2 catalysts.
NASA Astrophysics Data System (ADS)
Cheng, Irene; Zhang, Leiming; Mao, Huiting
2015-08-01
Relative contributions to mercury wet deposition by gaseous oxidized mercury (%GOM) and fine and coarse particle-bound mercury (%FPBM and %CPBM) were estimated making use of monitored FPBM air concentration and mercury wet deposition at nine North American locations. Scavenging ratios of particulate inorganic ions (K+ and Ca2+, Mg2+ and Na+) were used as a surrogate for those of FPBM and CPBM, respectively. FPBM and CPBM were estimated to contribute 8-36% and 5-27%, respectively, depending on the location, to total wet deposition. The rest of the 39-87% was attributed to the contribution of GOM. The average %GOM, %FPBM and %CPBM among all locations were 65%, 17%, and 18%, respectively. The relative distributions of %GOM, %FPBM, and %CPBM were influenced by Hg(II) gas-particle partitioning, urban site characteristics, and precipitation type. At the regional scale, %GOM dominated over %FPBM and %CPBM. However, the sum of FPBM and CPBM contributed to nearly half of the total Hg wet deposition in urban areas, which was greater than other site categories and is attributed to higher FPBM air concentrations. At four locations, %FPBM exceeded %GOM during winter in contrast to summer, suggesting the efficient snow scavenging of aerosols. The results from this study are useful in improving mercury transport models since most of these models do not estimate CPBM, but frequently use monitored mercury wet deposition data for model evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holzman, M.I.; Gammie, L.A.; Gilbert, P.E.
1997-12-31
The Metropolitan District (MDC) Water Pollution Control Plant located in Hartford, Connecticut operates a state-of-the-art composting facility to process municipal sewage sludge. An air emissions test program was performed to determine emission rates of criteria and non-criteria pollutants and to evaluate the performance of two types of emissions/odor control systems (biofiltration and wet scrubbing). The purpose of this report is to further the limited available emissions and control performance data on a municipal sewage sludge composting facility operation. The MDC`s sludge composting facility consists of a Biocell train and a Cure Cell train, each of which can currently receive approximatelymore » 20 wet tons per hour of sludge at 60% of full capacity. The minimum retention time in each train is 10.5 days. Air emissions from the Biocell train are treated by both a biofiltration system and a three-stage wet scrubber system. The biofilter and wet scrubber system operate in parallel, so as to allow direct comparison of performance. Emissions from the Cure Cell train are treated by a single biofiltration system. The wet scrubber system consists of a first stage reducing absorber (ammonia solution), followed by a second stage oxidation absorber (sodium hypochlorite and sulfuric acid), and a final residual scrubber (sodium hydroxide solution). The two biofiltration systems are identically sized at 10,000 square feet surface area and three feet depth. The emissions testing program was designed to obtain simultaneous inlet and outlet data across each control device. The measured pollutants included organo-sulfides, alcohols, aldehydes, ketones, pinenes, terpenes, total reduced sulfur compounds, chlorinated hydrocarbons, sulfuric acid, sodium hydroxide, ammonia, carbon monoxide and volatile organic compounds.« less
Why Batteries Deliver a Fairly Constant Voltage until Dead
ERIC Educational Resources Information Center
Smith, Garon C.; Hossain, Md. Mainul; MacCarthy, Patrick
2012-01-01
Two characteristics of batteries, their delivery of nearly constant voltage and their rapid failure, are explained through a visual examination of the Nernst equation. Two Galvanic cells are described in detail: (1) a wet cell involving iron and copper salts and (2) a mercury oxide dry cell. A complete description of the wet cell requires a…
V6O13 films by control of the oxidation state from aqueous precursor to crystalline phase.
Peys, Nick; Ling, Yun; Dewulf, Daan; Gielis, Sven; De Dobbelaere, Christopher; Cuypers, Daniel; Adriaensens, Peter; Van Doorslaer, Sabine; De Gendt, Stefan; Hardy, An; Van Bael, Marlies K
2013-01-28
An aqueous deposition process for V(6)O(13) films is developed whereby the vanadium oxidation state is continuously controlled throughout the entire process. In the precursor stage, a controlled wet chemical reduction of the vanadium(V) source with oxalic acid is achieved and monitored by (51)Vanadium Nuclear Magnetic Resonance ((51)V-NMR) and Ultraviolet-Visible (UV-Vis) spectroscopy. The resulting vanadium(IV) species in the aqueous solution are identified as mononuclear citrato-oxovanadate(IV) complexes by Electron Paramagnetic Resonance (EPR) and Fourier Transform Infra-Red (FTIR) spectroscopy. This precursor is successfully employed for the deposition of uniform, thin films. The optimal deposition and annealing conditions for the formation of crystalline V(6)O(13), including the control of the vanadium oxidation state, are determined through an elaborate study of processing temperature and O(2) partial pressure. To ensure a sub 100 nm adjustable film thickness, a non-oxidative intermediate thermal treatment is carried out at the end of each deposition cycle, allowing maximal precursor decomposition while still avoiding V(IV) oxidation. The resulting surface hydrophilicity, indispensable for the homogeneous deposition of the next layer, is explained by an increased surface roughness and the increased availability of surface vanadyl groups. Crystalline V(6)O(13) with a preferential (002) orientation is obtained after a post deposition annealing in a 0.1% O(2) ambient for thin films with a thickness of 20 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi K.
Nitrate contamination in soils, sediments, and water bodies is a significant issue. Although much is known about nitrate degradation in these environments, especially via microbial pathways, a complete understanding of all degradation processes, especially in clay mineral-rich soils, is still lacking. The objective of this study was to study the potential of removing nitrate contaminant using structural Fe(II) in clay mineral nontronite. Specifically, the coupled processes of microbial oxidation of Fe(II) in microbially reduced nontronite (NAu-2) and nitrate reduction by Pseudogulbenkiania species strain 2002 was investigated. Bio-oxidation experiments were conducted in bicarbonate-buffered medium under both growth and nongrowth conditions. Themore » extents of Fe(II) oxidation and nitrate reduction were measured by wet chemical methods. X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), and 57Fe-Mössbauer spectroscopy were used to observe mineralogical changes associated with Fe(III) reduction and Fe(II) oxidation in nontronite. The bio-oxidation extent under growth and nongrowth conditions reached 93% and 57%, respectively. Over the same time period, nitrate was completely reduced under both conditions to nitrogen gas (N2), via an intermediate product nitrite. Magnetite was a mineral product of nitrate-dependent Fe(II) oxidation, as evidenced by XRD data and TEM diffraction patterns. The results of this study highlight the importance of iron-bearing clay minerals in the global nitrogen cycle with potential applications in nitrate removal in soils.« less
Cho, Heesook; Yoo, Hana; Park, Soojin
2010-05-18
Disposable topographic silicon oxide patterns were fabricated from polymeric replicas of sawtoothed glass surfaces, spin-coating of poly(dimethylsiloxane) (PDMS) thin films, and thermal annealing at certain temperature and followed by oxygen plasma treatment of the thin PDMS layer. A simple imprinting process was used to fabricate the replicated PDMS and PS patterns from sawtoothed glass surfaces. Next, thin layers of PDMS films having different thicknesses were spin-coated onto the sawtoothed PS surfaces and annealed at 60 degrees C to be drawn the PDMS into the valley of the sawtoothed PS surfaces, followed by oxygen plasma treatment to fabricate topographic silicon oxide patterns. By control of the thickness of PDMS layers, silicon oxide patterns having various line widths were fabricated. The silicon oxide topographic patterns were used to direct the self-assembly of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer thin films via solvent annealing process. A highly ordered PS-b-P2VP micellar structure was used to let gold precursor complex with P2VP chains, and followed by oxygen plasma treatment. When the PS-b-P2VP thin films containing gold salts were exposed to oxygen plasma environments, gold salts were reduced to pure gold nanoparticles without changing high degree of lateral order, while polymers were completely degraded. As the width of trough and crest in topographic patterns increases, the number of gold arrays and size of gold nanoparticles are tuned. In the final step, the silicon oxide topographic patterns were selectively removed by wet etching process without changing the arrays of gold nanoparticles.
Method for the removal of elemental mercury from a gas stream
Mendelsohn, Marshall H.; Huang, Hann-Sheng
1999-01-01
A method is provided to remove elemental mercury from a gas stream by reacting the gas stream with an oxidizing solution to convert the elemental mercury to soluble mercury compounds. Other constituents are also oxidized. The gas stream is then passed through a wet scrubber to remove the mercuric compounds and oxidized constituents.
Method for the removal of elemental mercury from a gas stream
Mendelsohn, M.H.; Huang, H.S.
1999-05-04
A method is provided to remove elemental mercury from a gas stream by reacting the gas stream with an oxidizing solution to convert the elemental mercury to soluble mercury compounds. Other constituents are also oxidized. The gas stream is then passed through a wet scrubber to remove the mercuric compounds and oxidized constituents. 7 figs.
Fabricating porous materials using interpenetrating inorganic-organic composite gels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Dong-Kyun; Volosin, Alex
Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite materialmore » can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.« less
Ceramics for Molten Materials Containment, Transfer and Handling on the Lunar Surface
NASA Technical Reports Server (NTRS)
Standish, Evan; Stefanescu, Doru M.; Curreri, Peter A.
2009-01-01
As part of a project on Molten Materials Transfer and Handling on the Lunar Surface, molten materials containment samples of various ceramics were tested to determine their performance in contact with a melt of lunar regolith simulant. The test temperature was 1600 C with contact times ranging from 0 to 12 hours. Regolith simulant was pressed into cylinders with the approximate dimensions of 1.25 dia x 1.25cm height and then melted on ceramic substrates. The regolith-ceramic interface was examined after processing to determine the melt/ceramic interaction. It was found that the molten regolith wetted all oxide ceramics tested extremely well which resulted in chemical reaction between the materials in each case. Alumina substrates were identified which withstood contact at the operating temperature of a molten regolith electrolysis cell (1600 C) for eight hours with little interaction or deformation. This represents an improvement over alumina grades currently in use and will provide a lifetime adequate for electrolysis experiments lasting 24 hours or more. Two types of non-oxide ceramics were also tested. It was found that they interacted to a limited degree with the melt resulting in little corrosion. These ceramics, Sic and BN, were not wetted as well as the oxides by the melt, and so remain possible materials for molten regolith handling. Tests wing longer holding periods and larger volumes of regolith are necessary to determine the ultimate performance of the tested ceramics.
NASA Astrophysics Data System (ADS)
Johnson, J. B.; Haneef, S. J.; Hepburn, B. J.; Hutchinson, A. J.; Thompson, G. E.; Wood, G. C.
The design philosophy, construction and use of two exposure test systems are described, in which the objective is to simulate the degradation of stone samples under, respectively, the 'dry' and 'wet' deposition of atmospheric pollutants. Some element of realistic acceleration is possible in certain experiments. Particular emphasis is placed upon using known presentation rates of the pollutants, both in respect of typical depositions of pollutants and their oxidation products appropriate for an industrial atmosphere. In the dry deposition rig, SO 2, NO 2, NO, HCl and the oxidant O 3 are presented individually or together at realistic deposition rates. In the wet deposition apparatus, SO 2-4, NO -3 and Cl - at a pH of 3.5, simulating 'acid rain' but in a more concentrated form, are deposited. The dry deposition chamber can be operated at constant relative humidity (typically 84%) with pre-dried or precisely wetted stones to simulate episodic rain wetting, or using other methods of wet/dry cycling, which are also a feature of the wet deposition chamber. Heating and cooling of the samples is also possible, as is the use of shaped or coupled stones of different kinds such as are found in a building facade. The results are illustrated in terms of data on the weight change, the anion content of stone and run-off, the pH change of run-off and the total calcium reacted, using Portland stone, as a prelude to later papers in which behaviour of a whole matrix of stone types and environments is presented and discussed. Such an approach permits the eventual production of 'pollutant-material response' relationships and damage functions for comparison with and prediction of external exposure results.
Saxena, Nakul; George, Pradeep Paul; Heng, Bee Hoon; Lim, Tock Han; Yong, Shao Onn
2015-06-01
To determine if providing high dose anti-oxidant vitamins and zinc treatment age-related eye disease study (AREDS formulation) to patients with intermediate age-related macular degeneration (AMD) aged 40-79 years from Singapore is cost-effective in preventing progression to wet AMD. A hypothetical cohort of category 3 and 4 AMD patients from Singapore was followed for 5 calendar years to determine the number of patients who would progress to wet AMD given the following treatment scenarios: (a) AREDS formulation or placebo followed by ranibizumab (as needed) for wet AMD. (b) AREDS formulation or placebo followed by bevacizumab (monthly) for wet AMD. (c) AREDS formulation or placebo followed by aflibercept (VIEW I and II trial treatment regimen). Costs were estimated for the above scenarios from the providers' perspective, and cost-effectiveness was measured by cost per disability-adjusted life year (DALY) averted with a disability weight of 0.22 for wet AMD. The costs were discounted at an annual rate of 3%. Over 5400 patients could be prevented from progressing to wet AMD cumulatively if AREDS formulation were prescribed. AREDS formulation followed by ranibizumab was cost-effective compared to placebo-ranibizumab or placebo-aflibercept combinations (cost per DALY averted: SGD$23,662.3 and SGD$21,138.8, respectively). However, bevacizumab (monthly injections) alone was more cost-effective compared to AREDS formulation followed by bevacizumab. Prophylactic treatment with AREDS formulation for intermediate AMD patients followed by ranibizumab or for patients who progressed to wet AMD was found to be cost-effective. These findings have implications for intermediate AMD screening, treatment and healthcare planning in Singapore.
Suárez-Ojeda, María Eugenia; Kim, Jungkwon; Carrera, Julián; Metcalfe, Ian S; Font, Josep
2007-06-18
Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were investigated as suitable precursors for the biological treatment of industrial wastewater containing sodium dodecylbenzene sulfonate (DBS). Two hours WAO semi-batch experiments were conducted at 15 bar of oxygen partial pressure (P(O2)) and at 180, 200 and 220 degrees C. It was found that the highest temperature provides appreciable total organic carbon (TOC) and chemical oxygen demand (COD) abatement of about 42 and 47%, correspondingly. Based on the main identified intermediates (acetic acid and sulfobenzoic acid) a reaction pathway for DBS and a kinetic model in WAO were proposed. In the case of CWAO experiments, seventy-two hours tests were done in a fixed bed reactor in continuous trickle flow regime, using a commercial activated carbon (AC) as catalyst. The temperature and P(O2) were 140-160 degrees C and 2-9 bar, respectively. The influence of the operating conditions on the DBS oxidation, the occurrence of oxidative coupling reactions over the AC, and the catalytic activity (in terms of substrate removal) were established. The results show that the AC without any supported active metal behaves bi-functional as adsorbent and catalyst, giving TOC conversions up to 52% at 160 degrees C and 2 bar of P(O2), which were comparable to those obtained in WAO experiments. Respirometric tests were completed before and after CWAO and to the main intermediates identified through the WAO and CWAO oxidation route. Then, the readily biodegradable COD (COD(RB)) of the CWAO and WAO effluents were found. Taking into account these results it was possible to compare whether or not the CWAO or WAO effluents were suitable for a conventional activated sludge plant inoculated with non adapted culture.
Advanced in-duct sorbent injection for SO{sub 2} control. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stouffer, M.R.; Withium, J.A.; Rosenhoover, W.A.
1994-12-01
The objective of this research project was to develop a second generation duct sorbent injection technology as a cost-effective compliance option for the 1990 Clean Air Act Amendments. Research and development work was focused on the Advanced Coolside process, which showed the potential for exceeding the original performance targets of 90% SO{sub 2} removal and 60% sorbent utilization. Process development was conducted in a 1000 acfm pilot plant. The pilot plant testing showed that the Advanced Coolside process can achieve 90% SO{sub 2} removal at sorbent utilizations up to 75%. The testing also showed that the process has the potentialmore » to achieve very high removal efficiency (90 to >99%). By conducting conceptual process design and economic evaluations periodically during the project, development work was focused on process design improvements which substantially lowered process capital and operating costs, A final process economic study projects capital costs less than one half of those for limestone forced oxidation wet FGD. Projected total SO{sub 2} control cost is about 25% lower than wet FGD for a 260 MWe plant burning a 2.5% sulfur coal. A waste management study showed the acceptability of landfill disposal; it also identified a potential avenue for by-product utilization which should be further investigated. Based on the pilot plant performance and on the above economic projections, future work to scale up the Advanced Coolside process is recommended.« less
NASA Astrophysics Data System (ADS)
Brandt, Erik G.; Agosta, Lorenzo; Lyubartsev, Alexander P.
2016-07-01
Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity.Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity. Electronic supplementary information (ESI) available: Simulation data on equilibration of energies and structures (root-mean-square-deviations and coordination numbers); radial distribution functions for all O-Ti pairs over the entire data domain; comparison of coordination number distributions for dry and wet nanoparticles; dynamics of water reactivity; high-resolution electron density for the rutile NP. A movie of the simulation trajectory for the rutile (TiO2)24.30H2O system. See DOI: 10.1039/C6NR02791A
Interfacial properties and coal cleaning in the LICADO process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, S.M.B.
1986-01-01
The LICADO LIquid CArbon DiOxide process is currently being investigated as a new technique for cleaning coal. It relies on the relative wettability of clean coal and mineral particles between liquid CO/sub 2/ and water so that when liquid CO/sub 2/ is dispersed into a coal-water slurry, it tends to form agglomerates with the clean coal particles and float them to the liquid CO/sub 2/ phase. The mineral particles, on the other hand, remain in the aqueous phase as refuse. Since the surface/interfacial properties of fine coal particles play such an important role in this coal cleaning operation, an understandingmore » of their behavior becomes indispensable. In order to understand the separation mechanisms involved in the LICADO process, it is necessary to study the interfacial interactions occurring in the CO/sub 2/-water-coal system. It is believed that a relationship between the process performance and the wetting characteristics of the coal/refuse particles can be established. Upper Freeport -200 mesh coal from Indiana County, PA with 23.5% ash content was selected for the experimental work. A specially designed high pressure experimental unit, equipped with necessary optical and photographic accessories, was constructed for this study. Contact angles were also measured on the coal surface under two different sample pretreatment conditions: water-first-wet and liquid CO/sub 2/-first-wet. The results infer that an optimum mixing is necessary to provide sufficient shear force to expose the clean coal particles to the CO/sub 2/ droplets. The coal maceral and mineral association on the coal particle surface was determined based on the reflective grey level distinction between the mineral and Litho-type of various coal components.« less
Köhler, Malte; Pomaska, Manuel; Lentz, Florian; Finger, Friedhelm; Rau, Uwe; Ding, Kaining
2018-05-02
Transparent passivated contacts (TPCs) using a wide band gap microcrystalline silicon carbide (μc-SiC:H(n)), silicon tunnel oxide (SiO 2 ) stack are an alternative to amorphous silicon-based contacts for the front side of silicon heterojunction solar cells. In a systematic study of the μc-SiC:H(n)/SiO 2 /c-Si contact, we investigated selected wet-chemical oxidation methods for the formation of ultrathin SiO 2 , in order to passivate the silicon surface while ensuring a low contact resistivity. By tuning the SiO 2 properties, implied open-circuit voltages of 714 mV and contact resistivities of 32 mΩ cm 2 were achieved using μc-SiC:H(n)/SiO 2 /c-Si as transparent passivated contacts.
Automated Tow Placed LaRC(TM)-PETI-5 Composites
NASA Technical Reports Server (NTRS)
Hou, T. H.; Belvin, H. L.; Johnston, N. J.
2001-01-01
LaRC(TM)-PETI-5 is a PhenylEthynyl-Terminated Imide resin developed at NASA Langley Research Center (LaRC) during the 1990s. It offers a combination of attractive composite and adhesive properties. IM7/LaRC(TM)-PETI-5 composites exhibit thermal and thermo-oxidative stability typical of polyimides, superior chemical resistance and processability, excellent mechanical properties, toughness and damage tolerance. It was selected for study in the High Speed Research program aimed at developing technologies for a future supersonic aircraft, the High Speed Civil Transport, with a projected life span of 60 000 h at a cruise speed up to Mach 2.4. Robust autoclave processing cycles for LaRC(TM)-PETI-5 composites have been thoroughly designed and demonstrated, which involved hand lay-up of solvent-ladened 'wet' prepregs. However, this type of processing is not only costly but also environmentally unfriendly. Volatile management and shrinkage could become serious problems in the fabrication of large complex airframe structural subcomponents. Robotic tow placement technology utilizing 'dry' material forms represents a new fabrication process which overcomes these deficiencies. This work evaluates and compares mechanical properties of composites fabricated by heated head automated tow placement (dry process) with those obtained by hand lay-up/autoclave fabrication (wet process). Thermal and rheological properties of the robotically as-placed uncured composites were measured. A post-cure cycle was designed due to the requirement of the PETI-5 resin for a 370 C/1 h hold to reach full cure, conditions which cannot be duplicated during heated head robotic placement. Mechanical properties such as 0 degree flexural strength and modulus, open hole tensile and compressive strength and moduli, reduced section compression dogbone compressive strength, and modified zippora-medium small (MZ-MS) tensile and compressive properties were obtained on the post-cured panels. These properties compared favourably with those obtained from the wet process.
Jung, Hye Jin; Nam, Kyusuk; Sung, Hong-Gye; Hyun, Hyung Soo; Sohn, Youngku; Shin, Weon Gyu
2016-01-01
TiO2-coated boron particles were prepared by a wet ball milling method, with the particle size distribution and average particle size being easily controlled by varying the milling operation time. Based on the results from X-ray photoelectron spectroscopy, transmission electron microscopy, energy dispersive X-ray analysis, and Fourier transform infrared spectroscopy, it was confirmed that the initial oxide layer on the boron particles surface was removed by the wet milling process, and that a new B–O–Ti bond was formed on the boron surface. The uniform TiO2 layer on the 150 nm boron particles was estimated to be 10 nm thick. Based on linear sweep voltammetry, cyclic voltammetry, current-time amperometry, and electrochemical impedance analyses, the potential for the application of TiO2-coated boron particles as a photoelectrochemical catalyst was demonstrated. A current of 250 μA was obtained at a potential of 0.5 V for hydrogen evolution, with an onset potential near to 0.0 V. Finally, a current of 220 μA was obtained at a potential of 1.0 V for oxygen evolution. PMID:28774132
Catalytic wet air oxidation of aniline with nanocasted Mn-Ce-oxide catalyst.
Levi, R; Milman, M; Landau, M V; Brenner, A; Herskowitz, M
2008-07-15
The catalytic wet air oxidation of aqueous solution containing 1000 ppm aniline was conducted in a trickle-bed reactor packed with a novel nanocasted Mn-Ce-oxide catalyst (surface area of 300 m2/g) prepared using SBA-15 silica as a hard template. A range of liquid hourly space velocities (5-20 h(-1)) and temperatures (110-140 degrees C) at 10 bar of oxygen were tested. The experiments were conducted to provide the intrinsic performance of the catalysts. Complete aniline conversion, 90% TOC conversion, and 80% nitrogen mineralization were achieved at 140 degrees C and 5 h(-1). Blank experiments yielded relatively low homogeneous aniline (<35%) and negligible TOC conversions. Fast deactivation of the catalysts was experienced due to leaching caused by complexation with aniline. Acidification of the solution with HCI (molar HCI to aniline ratio of 1.2) was necessary to avoid colloidization and leaching of the nanoparticulate catalyst components. The catalyst displayed stable performance for over 200 h on stream.
Fabrication of nano-scale Cu bond pads with seal design in 3D integration applications.
Chen, K N; Tsang, C K; Wu, W W; Lee, S H; Lu, J Q
2011-04-01
A method to fabricate nano-scale Cu bond pads for improving bonding quality in 3D integration applications is reported. The effect of Cu bonding quality on inter-level via structural reliability for 3D integration applications is investigated. We developed a Cu nano-scale-height bond pad structure and fabrication process for improved bonding quality by recessing oxides using a combination of SiO2 CMP process and dilute HF wet etching. In addition, in order to achieve improved wafer-level bonding, we introduced a seal design concept that prevents corrosion and provides extra mechanical support. Demonstrations of these concepts and processes provide the feasibility of reliable nano-scale 3D integration applications.
NASA Technical Reports Server (NTRS)
Colombo, G. V.; Putnam, D. F.
1977-01-01
The effluent gas stream from an electrolytic urine pretreatment process was analyzed by gas chromatography-mass spectroscopy and wet chemical methods to determine its composition. The major constituents were identified as: hydrogen, carbon dioxide, oxygen, nitrogen, water vapor, and chlorine. The trace impurities were chlorinated light hydrocarbons, and a number of other organic impurities in the low ppm range. Several methods of removing all of the undesirable gases to levels acceptable for return to a space cabin atmosphere were investigated experimentally. A subsystem concept comprised of the following sequential unit processes and operations was successfully demonstrated: (1) raw urine scrubbing, (2) silica gel sorption, (3) dilution with cabin air, and (4) catalytic oxidation.
Yang, Aiqing; Ren, Guofeng; Tang, Ling; Jiang, Weiwei
2009-03-01
To explore the inhibitive effect of soybean isoflavone on the prostatic hyperplasia on the expressions of nitric oxid and nitric oxide synthase in the prostatic hyperplasia rats. Subcutaneously injected testosterone propionate were to induce prostate hyperplasia in rats. The changes of prostate wet weight, prostatic index, liver index, the changes of some biochemical indexes in rat prostate tissue in the control and the treatment, the low, moderate, high dose groups of soybean isoflavone groups were observed. The prostate wet weight and prostatic index in all dose groups were merely lower than those in the treatment and the moderate groups were lowest in all dose group. There were no significant differences in liver index, urea nitrogen, glutamic-pyruvic transaminase of each group. Acid phosphatase, prostatic acid phosphatase and lactate dehydrogenase in all dose groups were merely lower than those in the treatment group. Nitric oxide and nitric oxide synthase in all dose groups were merely higher than those in the treatment group. Soybean isoflavone could inhibit prostate hyperplasia and increase the expressions of nitric oxide and nitric oxide synthase in rats.
Closed-loop system for growth of aquatic biomass and gasification thereof
Oyler, James R.
2017-09-19
Processes, systems, and methods for producing combustible gas from wet biomass are provided. In one aspect, for example, a process for generating a combustible gas from a wet biomass in a closed system is provided. Such a process may include growing a wet biomass in a growth chamber, moving at least a portion of the wet biomass to a reactor, heating the portion of the wet biomass under high pressure in the reactor to gasify the wet biomass into a total gas component, separating the gasified component into a liquid component, a non-combustible gas component, and a combustible gas component, and introducing the liquid component and non-combustible gas component containing carbon dioxide into the growth chamber to stimulate new wet biomass growth.
Das, Saprativ P; Ravindran, Rajeev; Deka, Deepmoni; Jawed, Mohammad; Das, Debasish; Goyal, Arun
2013-01-01
The present study describes the usage of dried leafy biomass of mango (Mangifera indica) containing 26.3% (w/w) cellulose, 54.4% (w/w) hemicellulose, and 16.9% (w/w) lignin, as a substrate for bioethanol production from Zymomonas mobilis and Candida shehatae. The substrate was subjected to two different pretreatment strategies, namely, wet oxidation and an organosolv process. An ethanol concentration (1.21 g/L) was obtained with Z. mobilis in a shake-flask simultaneous saccharification and fermentation (SSF) trial using 1% (w/v) wet oxidation pretreated mango leaves along with mixed enzymatic consortium of Bacillus subtilis cellulase and recombinant hemicellulase (GH43), whereas C. shehatae gave a slightly higher (8%) ethanol titer of 1.31 g/L. Employing 1% (w/v) organosolv pretreated mango leaves and using Z. mobilis and C. shehatae separately in the SSF, the ethanol titers of 1.33 g/L and 1.52 g/L, respectively, were obtained. The SSF experiments performed with 5% (w/v) organosolv-pretreated substrate along with C. shehatae as fermentative organism gave a significantly enhanced ethanol titer value of 8.11 g/L using the shake flask and 12.33 g/L at the bioreactor level. From the bioreactor, 94.4% (v/v) ethanol was recovered by rotary evaporator with 21% purification efficiency.
Decomposition and Mineralization of Dimethyl Phthalate in an Aqueous Solution by Wet Oxidation
Ji, Dar-Ren; Chang, Chia-Chi; Chen, Shih-Yun; Chiu, Chun-Yu; Tseng, Jyi-Yeong; Chang, Ching-Yuan; Chang, Chiung-Fen; Chiang, Sheng-Wei; Hung, Zang-Sie; Shie, Je-Lueng; Yuan, Min-Hao
2015-01-01
Dimethyl phthalate (DMP) was treated via wet oxygen oxidation process (WOP). The decomposition efficiency η DMP of DMP and mineralization efficiency η TOC of total organic carbons were measured to evaluate the effects of operation parameters on the performance of WOP. The results revealed that reaction temperature T is the most affecting factor, with a higher T offering higher η DMP and η TOC as expected. The η DMP increases as rotating speed increases from 300 to 500 rpm with stirring enhancement of gas liquid mass transfer. However, it exhibits reduction effect at 700 rpm due to purging of dissolved oxygen by overstirring. Regarding the effects of pressure P T, a higher P T provides more oxygen for the forward reaction with DMP, while overhigh P T increases the absorption of gaseous products such as CO2 and decomposes short-chain hydrocarbon fragments back into the solution thus hindering the forward reaction. For the tested P T of 2.41 to 3.45 MPa, the results indicated that 2.41 MPa is appropriate. A longer reaction time of course gives better performance. At 500 rpm, 483 K, 2.41 MPa, and 180 min, the η DMP and η TOC are 93 and 36%, respectively. PMID:26236768
Study of uranium oxidation states in geological material.
Pidchenko, I; Salminen-Paatero, S; Rothe, J; Suksi, J
2013-10-01
A wet chemical method to determine uranium (U) oxidation states in geological material has been developed and tested. The problem faced in oxidation state determinations with wet chemical methods is that U redox state may change when extracted from the sample material, thereby leading to erroneous results. In order to quantify and monitor U redox behavior during the acidic extraction in the procedure, an analysis of added isotopic redox tracers, (236)U(VI) and (232)U(IV), and of variations in natural uranium isotope ratio ((234)U/(238)U) of indigenous U(IV) and U(VI) fractions was performed. Two sample materials with varying redox activity, U bearing rock and U-rich clayey lignite sediment, were used for the tests. The Fe(II)/Fe(III) redox-pair of the mineral phases was postulated as a potentially disturbing redox agent. The impact of Fe(III) on U was studied by reducing Fe(III) with ascorbic acid, which was added to the extraction solution. We observed that ascorbic acid protected most of the U from oxidation. The measured (234)U/(238)U ratio in U(IV) and U(VI) fractions in the sediment samples provided a unique tool to quantify U oxidation caused by Fe(III). Annealing (sample heating) to temperatures above 500 °C was supposed to heal ionizing radiation induced defects in the material that can disturb U redox state during extraction. Good agreement between two independent methods was obtained for DL-1a material: an average 38% of U(IV) determined by redox tracer corrected wet chemistry and 45% for XANES. Copyright © 2013 Elsevier Ltd. All rights reserved.
Development studies of a novel wet oxidation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, T.W.; Dooge, P.M.
1996-12-31
The objective of this study is to develop a novel catalytic chemical oxidation process that can be used to effectively treat multi-component wastes with a minimum of pretreatment characterization, thus providing a versatile, non-combustion method which will destroy hazardous organic compounds while simultaneously containing and concentrating toxic and radioactive metals for recovery or disposal in a readily stabilized matrix. Although the DETOX{sup SM} process had been tested to a limited extent for potential application to mixed wastes, there had not been sufficient experience with the process to determine its range of application to multicomponent waste forms. The potential applications ofmore » the process needed to be better identified. Then, the process needed to be demonstrated on wastes and remediate types on a practical scale in order that data could be obtained on application range, equipment size, capital and operating costs, effectiveness, safety, reliability, permittability, and potential commercial applications of the process. The approach for the project was, therefore, to identify the potential range of applications of the process (Phase I), to choose demonstration sites and design a demonstration prototype (Phase II), to fabricate and shakedown the demonstration unit (Phase III), then finally to demonstrate the process on surrogate hazardous and mixed wastes, and on actual mixed wastes (Phase IV).« less
Pollution damage to the Powell Building, Reston, Virginia
Doe, B.R.; Reddy, M.M.; Eggleston, J.R.
1999-01-01
Concrete column segments of the Powell Building (Reston, VA) exposed to the elements and wetted by precipitation were `cleaned' and roughened, but sheltered portions of the columns retained their smoothness and pollution accumulates, similar to observations for limestone, marble, and sandstone. Weathering effects on the columns were dominated by precipitation run-off and not the acidity of the precipitation. The process may be dry deposition of sulfur dioxide (SO2) and nitric oxides (NOx) that formed soluble salts in the presence of humid air or dew, salts that were removed by precipitation run-off.
NASA Astrophysics Data System (ADS)
Huo, Hanyu; Zhao, Ning; Sun, Jiyang; Du, Fuming; Li, Yiqiu; Guo, Xiangxin
2017-12-01
Paramount attention has been paid on solid polymer electrolytes due to their potential in enhancement of energy density as well as improvement of safety. Herein, the composite electrolytes consisting of Li-salt-free polyethylene oxides and 200 nm-sized Li6.4La3Zr1.4Ta0.6O12 particles interfacially wetted by [BMIM]TF2N of 1.8 μL cm-2 have been prepared. Such wetted ionic liquid remains the solid state of membrane electrolytes and decreases the interface impedance between the electrodes and the electrolytes. There is no release of the liquid phase from the PEO matrix when the pressure of 5.0 × 104 Pa being applied for 24 h. The interfacially wetted membrane electrolytes show the conductivity of 2.2 × 10-4 S cm-1 at 20 °C, which is one order of magnitude greater than that of the membranes without the wetted ionic liquids. The conduction mechanism is related to a large number of lithium ions releasing from Li6.4La3Zr1.4Ta0.6O12 particles and the improved conductive paths along the ion-liquid-wetted interfaces between the polymer matrix and ceramic grains. When the membranes being used in the solid-state LiFePO4/Li and LiFe0.15Mn0.85PO4/Li cells at 25 °C, the excellent rate capability and superior cycle stability has been shown. The results provide a new prospect for solid polymer electrolytes used for room-temperature solid-state lithium batteries.
NASA Technical Reports Server (NTRS)
Ferrall, Joe; Rohatgi, Naresh K.; Seshan, P. K.
1992-01-01
A model has been developed for NASA to quantitatively compare and select life support systems and technology options. The model consists of a modular, top-down hierarchical breakdown of the life support system into subsystems, and further breakdown of subsystems into functional elements representing individual processing technologies. This paper includes the technology trades for a Mars mission, using solid waste treatment technologies to recover water from selected liquid and solid waste streams. Technologies include freeze drying, thermal drying, wet oxidation, combustion, and supercritical-water oxidation. The use of these technologies does not have any significant advantages with respect to weight; however, significant power penalties are incurred. A benefit is the ability to convert hazardous waste into a useful resource, namely water.
Bonotto, Daniel Marcos; Jiménez-Rueda, Jairo Roberto; Fagundes, Isabella Cruz; Filho, Carlos Roberto Alves Fonseca
2017-01-01
This study reports the use of the U-series radionuclides 238 U and 234 U for dating two soil profiles. The soil horizons developed over sandstones from Tatuí and Pirambóia formations at the Paraná sedimentary basin, São Paulo State, Brazil. Chemical data in conjunction with the 234 U/ 238 U activity ratios (AR's) of the soil horizons allowed investigating the U-isotopes mobility in the shallow oxidizing environment. Kaolinization and laterization processes are taking place in the profiles sampled, as they are especially common in regions characterized by a wet and dry tropical climate and a water table that is close to the surface. These processes are implied by inverse significant correlations between silica and iron in both soil profiles. Iron oxides were also very important to retain uranium in the two sites investigated, helping on the understanding of the weathering processes acting there. 238 U and its progeny 234 U permitted evaluating the processes of physical and chemical alteration, allowing the suggestion of a possible timescale corresponding to the Middle Pleistocene for the development of the more superficial soil horizons. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shin, Jungho; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon
2016-01-01
The development of a low-cost, fast, and large-scale process for the synthesis and manipulation of nanostructured metal oxides is essential for incorporating materials with diverse practical applications. Herein, we present a facile one-pot synthesis method using combustion waves that simultaneously achieves fast reduction and direct formation of carbon coating layers on metal oxide nanostructures. Hybrid composites of Fe2O3 nanoparticles and nitrocellulose on the cm scale were fabricated by a wet impregnation process. We demonstrated that self-propagating combustion waves along interfacial boundaries between the surface of the metal oxide and the chemical fuels enabled the release of oxygen from Fe2O3. This accelerated reaction directly transformed Fe2O3 into Fe3O4 nanostructures. The distinctive color change from reddish-brown Fe2O3 to dark-gray Fe3O4 confirmed the transition of oxidation states and the change in the fundamental properties of the material. Furthermore, it simultaneously formed carbon layers of 5–20 nm thickness coating the surfaces of the resulting Fe3O4 nanoparticles, which may aid in maintaining the nanostructures and improving the conductivity of the composites. This newly developed use of combustion waves in hybridized nanostructures may permit the precise manipulation of the chemical compositions of other metal oxide nanostructures, as well as the formation of organic/inorganic hybrid nanostructures. PMID:26902260
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolker,A.; Huggins, F.
2007-01-01
Naturally occurring pyrite commonly contains minor substituted metals and metalloids (As, Se, Hg, Cu, Ni, etc.) that can be released to the environment as a result of its weathering. Arsenic, often the most abundant minor constituent in pyrite, is a sensitive monitor of progressive pyrite oxidation in coal. To test the effect of pyrite composition and environmental parameters on the rate and extent of pyrite oxidation in coal, splits of five bituminous coal samples having differing amounts of pyrite and extents of As substitution in the pyrite, were exposed to a range of simulated weathering conditions over a period ofmore » 17 months. Samples investigated include a Springfield coal from Indiana (whole coal pyritic S = 2.13 wt.%; As in pyrite = detection limit (d.l.) to 0.06 wt.%), two Pittsburgh coal samples from West Virginia (pyritic S = 1.32-1.58 wt.%; As in pyrite = d.l. to 0.34 wt.%), and two samples from the Warrior Basin, Alabama (pyritic S = 0.26-0.27 wt.%; As in pyrite = d.l. to 2.72 wt.%). Samples were collected from active mine faces, and expected differences in the concentration of As in pyrite were confirmed by electron microprobe analysis. Experimental weathering conditions in test chambers were maintained as follows: (1) dry Ar atmosphere; (2) dry O{sub 2} atmosphere; (3) room atmosphere (relative humidity {approx}20-60%); and (4) room atmosphere with samples wetted periodically with double-distilled water. Sample splits were removed after one month, nine months, and 17 months to monitor the extent of As and Fe oxidation using As X-ray absorption near-edge structure (XANES) spectroscopy and {sup 57}Fe Mossbauer spectroscopy, respectively. Arsenic XANES spectroscopy shows progressive oxidation of pyritic As to arsenate, with wetted samples showing the most rapid oxidation. {sup 57}Fe Mossbauer spectroscopy also shows a much greater proportion of Fe{sup 3+} forms (jarosite, Fe{sup 3+} sulfate, FeOOH) for samples stored under wet conditions, but much less difference among samples stored under dry conditions in different atmospheres. The air-wet experiments show evidence of pyrite re-precipitation from soluble ferric sulfates, with As retention in the jarosite phase. Extents of As and Fe oxidation were similar for samples having differing As substitution in pyrite, suggesting that environmental conditions outweigh the composition and amount of pyrite as factors influencing the oxidation rate of Fe sulfides in coal.« less
Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08)
NASA Astrophysics Data System (ADS)
Chen, Q.; Farmer, D. K.; Rizzo, L. V.; Pauliquevis, T.; Kuwata, M.; Karl, T. G.; Guenther, A.; Allan, J. D.; Coe, H.; Andreae, M. O.; Pöschl, U.; Jimenez, J. L.; Artaxo, P.; Martin, S. T.
2015-04-01
Real-time mass spectra of the non-refractory species in submicron aerosol particles were recorded in a tropical rainforest in the central Amazon Basin during the wet season from February to March 2008, as a part of the Amazonian Aerosol Characterization Experiment (AMAZE-08). Organic material accounted on average for more than 80% of the non-refractory submicron particle mass concentrations during the period of measurements. There was insufficient ammonium to neutralize sulfate. In this acidic, isoprene-rich, HO2-dominant environment, positive-matrix factorization of the time series of particle mass spectra identified four statistical factors to account for the 99% of the variance in the signal intensities of the organic constituents. The first factor was identified as associated with regional and local pollution and labeled "HOA" for its hydrocarbon-like characteristics. A second factor was associated with long-range transport and labeled "OOA-1" for its oxygenated characteristics. A third factor, labeled "OOA-2," was implicated as associated with the reactive uptake of isoprene oxidation products, especially of epoxydiols to acidic haze, fog, or cloud droplets. A fourth factor, labeled "OOA-3," was consistent with an association with the fresh production of secondary organic material (SOM) by the mechanism of gas-phase oxidation of biogenic volatile organic precursors followed by gas-to-particle conversion of the oxidation products. The suffixes 1, 2, and 3 on the OOA labels signify ordinal ranking with respect to the extent of oxidation represented by the factor. The process of aqueous-phase oxidation of water-soluble products of gas-phase photochemistry might also have been associated to some extent with the OOA-2 factor. The campaign-average factor loadings had a ratio of 1.4:1 for OOA-2 : OOA-3, suggesting the comparable importance of particle-phase compared to gas-phase pathways for the production of SOM during the study period.
NASA Astrophysics Data System (ADS)
Liu, Tengyu; Huang, Dan Dan; Li, Zijun; Liu, Qianyun; Chan, ManNin; Chan, Chak K.
2018-04-01
The formation of secondary organic aerosol (SOA) has been widely studied in the presence of dry seed particles at low relative humidity (RH). At higher RH, initially dry seed particles can exist as wet particles due to water uptake by the seeds as well as the SOA. Here, we investigated the formation of SOA from the photooxidation of toluene using an oxidation flow reactor in the absence of NOx under a range of OH exposures on initially wet or dry ammonium sulfate (AS) seed particles at an RH of 68 %. The ratio of the SOA yield on wet AS seeds to that on dry AS seeds, the relative SOA yield, decreased from 1.31 ± 0.02 at an OH exposure of 4.66 × 1010 molecules cm-3 s to 1.01 ± 0.01 at an OH exposure of 5.28 × 1011 molecules cm-3 s. This decrease may be due to the early deliquescence of initially dry AS seeds after being coated by highly oxidized toluene-derived SOA. SOA formation lowered the deliquescence RH of AS and resulted in the uptake of water by both AS and SOA. Hence the initially dry AS seeds contained aerosol liquid water (ALW) soon after SOA formed, and the SOA yield and ALW approached those of the initially wet AS seeds as OH exposure and ALW increased, especially at high OH exposure. However, a higher oxidation state of the SOA on initially wet AS seeds than that on dry AS seeds was observed at all levels of OH exposure. The difference in mass fractions of m / z 29, 43 and 44 of SOA mass spectra, obtained using an aerosol mass spectrometer (AMS), indicated that SOA formed on initially wet seeds may be enriched in earlier-generation products containing carbonyl functional groups at low OH exposures and later-generation products containing acidic functional groups at high exposures. Our results suggest that inorganic dry seeds become at least partially deliquesced particles during SOA formation and hence that ALW is inevitably involved in the SOA formation at moderate RH. More laboratory experiments conducted with a wide variety of SOA precursors and inorganic seeds under different NOx and RH conditions are warranted.
Dissolution Behaviour of Hazardous Materials from Steel Slag with Wet Grinding Method
NASA Astrophysics Data System (ADS)
Hisyamudin Muhd Nor, Nik; Norhana Selamat, Siti; Hanif Abd Rashid, Muhammad; Fauzi Ahmad, Mohd; Jamian, Saifulnizan; Chee Kiong, Sia; Fahrul Hassan, Mohd; Mohamad, Fariza; Yokoyama, Seiji
2016-06-01
Steel slag is a by-product from steel industry and it contains variety of hazardous materials. In this study, the dissolution behaviour and removal potential of hazardous materials from steel slag with the wet grinding method was investigated. The slag was wet ground in the CO2 atmosphere and the slurry produced was filtered using centrifugal separator to separate the liquid and solid sediments. Then, the concentrations of dissolved metal elements in the liquid sediment were analyzed by ICP-MS. The changes of pH during the grinding were also investigated. It was found that the pHs were decreased immediately after the CO2 gas introduced into the vessel. The pHs were ranging from 6.8 to 7.6 at the end of grinding. The dissolved concentration of Zn and Cr were ranging from 5~45 [mg/dm3] and 0.2~2.5 [mg/dm3] respectively. The ratios of Zn removal for stainless steel oxidizing and reducing slag were very high, but those from normal steel oxidizing and reducing slag were very low. It is assumed that the Zn dissolved as ZnOH+ from Zn(OH)2 that formed due to the reaction between ZnO and water. Dissolution of Cr also occurred but in very low quantity compared to the dissolution of Zn. The dissolution of Cr occurred due to the grinding process and small amount of Cr(OH)3 was formed during the grinding. This small formation of Cr(OH)3 resulted to the low dissolved concentration of Cr in the form of Cr(OH)2+. According to the XRD analysis, the Cr mostly existed in the slags as Cr(IIl) in the form of MgCr2O4 and FeCr2O4.
NASA Astrophysics Data System (ADS)
Tengeler, Sven; Kaiser, Bernhard; Ferro, Gabriel; Chaussende, Didier; Jaegermann, Wolfram
2018-01-01
The (001) surface of cubic silicon carbide (3C SiC) after cleaning, Ar sputtering and three different wet chemical etching procedures was thoroughly investigated via (angle resolved) XPS, HREELS, and LEED. While Ar sputtering was found to be unsuitable for surface preparation, all three employed wet chemical etching procedures (piranha/NH4F, piranha/HF, and RCA) provide a clean surface. HF as oxide removal agent tends to result in fluorine traces on the sample surface, despite thorough rinsing. All procedures yield a 1 × 1 Si-OH/C-H terminated surface. However, the XPS spectra reveal some differences in the resulting surface states. NH4F for oxide removal produces a flat band situation, whereas the other two procedures result in a slight downward (HF) or upward (RCA) band bending. Because the band bending is small, it can be concluded that the number of unsaturated surface defects is low.
Dopamine-Mediated Sclerotization of Regenerated Chitin in Ionic Liquid.
Oh, Dongyeop X; Shin, Sara; Lim, Chanoong; Hwang, Dong Soo
2013-09-06
Chitin is a promising structural material for biomedical applications, due to its many advantageous properties and abundance in nature. However, its usage and development in the biomedical field have been stagnant, because of chitin's poor mechanical properties in wet conditions and the difficulties in transforming it into an applicable form. To overcome these challenges, we created a novel biomimetic chitin composite. This regenerated chitin, prepared with ionic liquid, showed improved mechanical properties in wet conditions by mimicking insect cuticle and squid beak sclerotization, i.e. , catechol-meditated cross-linking. By ionic liquid-based heat treatment, dopamine oxidation produced melanin-like compounds and dopamine-meditated cross-links without any solvent evaporation and oxidant utilization. The dopamine-meditated sclerotization increased the ultimate tensile strength (UTS) of the regenerated chitin by 2.52-fold, measured after six weeks of phosphate-buffered saline (PBS) submersion. In addition, the linear swelling ratio (LSR) of the chitin film was reduced by about 22%. This strategy raises a possibility of using regenerated chitin as an artificial hard tissue in wet conditions.
Seifert, Susan; Simon, Frank; Baumann, Giesela; Hietschold, Michael; Seifert, Andreas; Spange, Stefan
2011-12-06
The adsorption of poly(vinyl formamide) (PVFA) and the statistic copolymers poly(vinyl formamide-co-vinyl amine) (PVFA-co-PVAm) onto zinc and iron metal particles as well as their oxides was investigated. The adsorbates were characterized by means of XPS, DRIFT spectroscopy, wet chemical analysis, and solvatochromic probes. Dicyano-bis-(1,10-phenanthroline)-iron(II) (1), 3-(4-amino-3-methylphenyl)-7-phenyl-benzo-[1,2-b:4,5-b']difuran-2,6-dione (2), and 4-tert-butyl-2-(dicyano-methylene)-5-[4-(diethylamino)-benzylidene]-Δ(3)-thiazoline (3) as solvatochromic probes were coadsorbed onto zinc oxide to measure various effects of surface polarity. The experimental findings showed that the adsorption mechanism of PVFA and PVFA-co-PVAm strongly depends on the degree of hydrolysis of PVFA and pH values and also on the kind of metal or metal oxide surfaces that were employed as adsorbents. The adsorption mechanism of PVFA/PVFA-co-PVAm onto zinc oxide and iron oxide surfaces is mainly affected by electrostatic interactions. Particularly in the region of pH 5, the adsorption of PVFA/PVFA-co-PVAm onto zinc and iron metal particles is additionally influenced by redox processes, dissolution, and complexation reactions. © 2011 American Chemical Society
Diffusion reaction of oxygen in HfO2/SiO2/Si stacks.
Ferrari, S; Fanciulli, M
2006-08-03
We study the oxidation mechanism of silicon in the presence of a thin HfO2 layer. We performed a set of annealing in 18O2 atmosphere on HfO2/SiO2/Si stacks observing the 18O distribution in the SiO2 layer with time-of-flight secondary ion mass spectrometry (ToF-SIMS). The 18O distribution in HfO2/SiO2/Si stacks upon 18O2 annealing suggests that what is responsible for SiO2 growth is the molecular O2, whereas no contribution is found of the atomic oxygen to the oxidation. By studying the dependence of the oxidation velocity from oxygen partial pressure and annealing temperature, we demonstrate that the rate-determining step of the oxidation is the oxygen exchange at the HfO2/SiO2 interface. When moisture is chemisorbed in HfO2 films, the oxidation of the underlying silicon substrate becomes extremely fast and its kinetics can be described as a wet silicon oxidation process. The silicon oxidation during O2 annealing of the atomic layer deposited HfO2/Si is fast in its early stage due to chemisorbed moisture and becomes slow after the first 10 s.
NASA Astrophysics Data System (ADS)
Okada, Yukimasa; Ono, Kouichi; Eriguchi, Koji
2017-06-01
Aggressive shrinkage and geometrical transition to three-dimensional structures in metal-oxide-semiconductor field-effect transistors (MOSFETs) lead to potentially serious problems regarding plasma processing such as plasma-induced physical damage (PPD). For the precise control of material processing and future device designs, it is extremely important to clarify the depth and energy profiles of PPD. Conventional methods to estimate the PPD profile (e.g., wet etching) are time-consuming. In this study, we propose an advanced method using a simple capacitance-voltage (C-V) measurement. The method first assumes the depth and energy profiles of defects in Si substrates, and then optimizes the C-V curves. We applied this methodology to evaluate the defect generation in (100), (111), and (110) Si substrates. No orientation dependence was found regarding the surface-oxide layers, whereas a large number of defects was assigned in the case of (110). The damaged layer thickness and areal density were estimated. This method provides the highly sensitive PPD prediction indispensable for designing future low-damage plasma processes.
Influences of electric current on the wettability and interfacial microstructure in Sn/Fe system
NASA Astrophysics Data System (ADS)
Shen, Ping; Gu, Yan; Yang, Nan-Nan; Zheng, Rui-Peng; Ren, Li-Hua
2015-02-01
The wettability of oxidized and clean Fe substrates by liquid Sn was investigated using a dispensed sessile drop method with and without the application of a direct current (DC) and their interfacial microstructures were compared. The initial contact angles were 107 ± 3° at 623 K when the Fe substrate was covered by an oxide film, and they did not show an appreciable decrease during isothermal dwells in the absence of DC application but progressively decreased to 42 ± 3° when a 7.5 ampere current was applied. However, in the case of the oxide film being removed by a high-vacuum pre-annealing treatment at 1073 K, the current and its polarity had a negligible effect on the wetting behavior. Nevertheless, they had a noticeable influence on the interfacial microstructure. In the absence of DC, the interface was covered by a product layer consisting of a single FeSn2 phase for the samples tested at 623 K and the FeSn2/FeSn2 grain boundaries were incompletely wetted by the Sn melt; whereas, under DC, the reaction layer was much thicker and the Sn melt wet well the FeSn2/FeSn2 grain boundaries. Moreover, a FeSn phase also formed as a result of enhanced mass transfer. The amount of the FeSn phase was larger and the grain boundary wetting of FeSn2 by liquid Sn was better for the current flowing from the molten Sn drop to the Fe substrate due to an electromigration effect.
Effects of iron-aluminium oxides and organic carbon on aggregate stability of bauxite residues.
Zhu, Feng; Li, Yubing; Xue, Shengguo; Hartley, William; Wu, Hao
2016-05-01
In order to successfully establish vegetation on bauxite residue, properties such as aggregate structure and stability require improvement. Spontaneous plant colonization on the deposits in Central China over the last 20 years has revealed that natural processes may improve the physical condition of bauxite residues. Samples from three different stacking ages were selected to determine aggregate formation and stability and its relationship with iron-aluminium oxides and organic carbon. The residue aggregate particles became coarser in both dry and wet sieving processes. The mean weight diameter (MWD) and geometry mean diameter (GMD) increased significantly, and the proportion of aggregate destruction (PAD) decreased. Natural stacking processes could increase aggregate stability and erosion resistant of bauxite residues. Free iron oxides and amorphous aluminium oxides were the major forms in bauxite residues, but there was no significant correlation between the iron-aluminium oxides and aggregate stability. Aromatic-C, alkanes-C, aliphatic-C and alkenes-C were the major functional groups present in the residues. With increasing stacking age, total organic carbon content and aggregate-associated organic carbon both increased. Alkanes-C, aliphatic-C and alkenes-C increased and were mainly distributed in macro-aggregates, whereas aromatic-C was mainly distributed in <0.05-mm aggregates. Organic carbon stability in micro-aggregates was higher than that in macro-aggregates and became more stable. Organic carbon contents in total residues, and within different aggregate sizes, were all negatively correlated with PAD. It indicated that organic materials had a more significant effect on macro-aggregate stability and the effects of iron-aluminium oxides maybe more important for stability of micro-aggregates.
40 CFR Appendix D to Part 300 - Appropriate Actions and Methods of Remedying Releases
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Neutralization. (D) Equalization. (E) Chemical oxidation. (iii) Physical methods, including the following: (A... treatment. (F) Wet air oxidation. (G) Solidification. (H) Encapsulation. (I) Soil washing or flushing. (J... containment. (iv) Leachate control, including the following: (A) Subsurface drains. (B) Drainage ditches. (C...
40 CFR Appendix D to Part 300 - Appropriate Actions and Methods of Remedying Releases
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Neutralization. (D) Equalization. (E) Chemical oxidation. (iii) Physical methods, including the following: (A... treatment. (F) Wet air oxidation. (G) Solidification. (H) Encapsulation. (I) Soil washing or flushing. (J... containment. (iv) Leachate control, including the following: (A) Subsurface drains. (B) Drainage ditches. (C...
40 CFR Appendix D to Part 300 - Appropriate Actions and Methods of Remedying Releases
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Neutralization. (D) Equalization. (E) Chemical oxidation. (iii) Physical methods, including the following: (A... treatment. (F) Wet air oxidation. (G) Solidification. (H) Encapsulation. (I) Soil washing or flushing. (J... containment. (iv) Leachate control, including the following: (A) Subsurface drains. (B) Drainage ditches. (C...
In most ecosystems, atmospheric deposition is the primary input of mercury. The total wet deposition of mercury in atmospheric chemistry models is sensitive to parameterization of the aqueous-phase reduction of divalent oxidized mercury (Hg2+). However, most atmospheric chemistry...
NASA Astrophysics Data System (ADS)
Li, Xiuyi; Wang, Pengzhao; Wang, Haoren; Li, Chunyi
2018-05-01
In this paper, the Co/Al2O3 catalyst was prepared by incipient wetness impregnation method, and different post treatment methods were used to promote its dehydrogenation properties. Interestingly, we found that Co/Al2O3 catalysts with different post treatment protocols exhibited totally different catalytic behaviors in propane dehydrogenation. Fresh catalyst showed an induction period and was highly active for pyrolysis and coking at 10-30 min of reaction. The pre-reduction led to complete pyrolysis and coking at the beginning of reaction. However, the re-oxidation treatment gave a high selectivity (∼93.0%) to propylene at the whole process. XRD, H2-TPR, XPS, TEM and hydrogen chemisorption investigations showed that the post treatment has a great impact on the state of cobalt species and the performance of propane dehydrogenation over Co/Al2O3 catalysts. Specifically, the poorly dispersed metal Co led to pyrolysis and coking, while highly dispersed metal Co were responsible for the dehydrogenation of propane. The large Co3O4 particles (DFresh = 33.68 nm) result in the large metal Co grains (DPre-reduced = 24.90 nm) after the reduction or reaction process. While during the re-oxidization process, the surface metal Co was re-oxidized in a mild environment and got re-dispersion (DRe-oxidized = 6.07 nm). And the surface cobalt oxides layer is more readily to be reduced to metal Co during the reaction thus leading to the shortened induction period.
Catalytic conversion of hydrocarbons to hydrogen and high-value carbon
Shah, Naresh; Panjala, Devadas; Huffman, Gerald P.
2005-04-05
The present invention provides novel catalysts for accomplishing catalytic decomposition of undiluted light hydrocarbons to a hydrogen product, and methods for preparing such catalysts. In one aspect, a method is provided for preparing a catalyst by admixing an aqueous solution of an iron salt, at least one additional catalyst metal salt, and a suitable oxide substrate support, and precipitating metal oxyhydroxides onto the substrate support. An incipient wetness method, comprising addition of aqueous solutions of metal salts to a dry oxide substrate support, extruding the resulting paste to pellet form, and calcining the pellets in air is also discloses. In yet another aspect, a process is provided for producing hydrogen from an undiluted light hydrocarbon reactant, comprising contacting the hydrocarbon reactant with a catalyst as described above in a reactor, and recovering a substantially carbon monoxide-free hydrogen product stream. In still yet another aspect, a process is provided for catalytic decomposition of an undiluted light hydrocarbon reactant to obtain hydrogen and a valuable multi-walled carbon nanotube coproduct.
NASA Astrophysics Data System (ADS)
Van Toan, Nguyen; Inomata, Naoki; Trung, Nguyen Huu; Ono, Takahito
2018-05-01
This work describes the fabrication and evaluation of the Knudsen pump for on-chip vacuum pumping that works based on the principle of a thermal transpiration. Three AFM (atomic force microscope) cantilevers are integrated into small chambers with a size of 5 mm × 3 mm × 0.4 mm for the pump’s evaluation. Knudsen pump is fabricated using deep RIE (reactive ion etching), wet thermal oxidation and anodic bonding processes. The fabricated device is evaluated by monitoring the quality (Q) factor of the integrated cantilevers. The Q factor of the cantilever is increased from 300 -1150 in cases without and with a temperature difference approximately 25 °C between the top (the hot side at 40 °C) and bottom (the cold side at 15 °C) sides of the fabricated device, respectively. The evacuated chamber pressure of around 10 kPa is estimated from the Q factor of the integrated cantilevers.
NASA Astrophysics Data System (ADS)
Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.
2011-06-01
Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid is an important intermediate in aqueous methylglyoxal oxidation and a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. Altieri et al. (2008) proposed that acetic acid was the precursor of oligoesters observed in methylglyoxal oxidation. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid at concentrations relevant to atmospheric waters (20 μM-10 mM) was oxidized by OH radical. Products were analyzed by ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS), and IC-ESI-MS. The formation of glyoxylic, glycolic, and oxalic acids were observed. In contrast to methylglyoxal oxidation, succinic acid and oligomers were not detected. Using results from these and methylglyoxal + OH radical experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sloan, J.M.; Pergantis, C.G.
Organic and organo-metallic coatings are presently being applied over bare copper as an approach to improve the co-planarity of circuit boards. Conformal organic solderability preservative coatings (OSP) are environmentally and economically advantageous over the more commonly used lead based coatings. Problems arise in assessing the solderability of the bare copper and the integrity of the organic coating. Specular reflectance Fourier transform infrared spectroscopy (FT-IR) was utilized to monitor and evaluate the formation of Cu oxides occurring on copper substrates used in the manufacturing of electronic circuit boards. Previous studies reported the utility of this technique. By measuring the oxide andmore » protective coating characteristics of these surfaces, their solderability performance can rapidly be evaluated in a manufacturing environment. OSP coated test specimens were subjected to hot-dry and hot-wet environmental conditions using MIL-STD-202F and MIL-STD-883E as guides. The resultant FT-IR spectra provided clear evidence for the formation of various Cu oxides at the Cu/OSP interface over exposure time, for the samples subjected to the hot-dry environment. IR spectral bands consistent with O-Cu-O and Cu{sub 2}O{sub 2} formation appear, while very minimal deterioration to the OSP coating was observed. The appearance of the Cu oxide layers grew steadily with increased environmental exposure. Specimens subjected to the hot-wet conditions showed no significant signs of deterioration. The IR data can be directly correlated to solderability performance as evaluated by wet balance testing.« less
Narang, Ajit S; Sheverev, Valery; Freeman, Tim; Both, Douglas; Stepaniuk, Vadim; Delancy, Michael; Millington-Smith, Doug; Macias, Kevin; Subramanian, Ganeshkumar
2016-01-01
Drag flow force (DFF) sensor that measures the force exerted by wet mass in a granulator on a thin cylindrical probe was shown as a promising process analytical technology for real-time in-line high-resolution monitoring of wet mass consistency during high shear wet granulation. Our previous studies indicated that this process analytical technology tool could be correlated to granulation end point established independently through drug product critical quality attributes. In this study, the measurements of flow force by a DFF sensor, taken during wet granulation of 3 placebo formulations with different binder content, are compared with concurrent at line FT4 Powder Rheometer characterization of wet granules collected at different time points of the processing. The wet mass consistency measured by the DFF sensor correlated well with the granulation's resistance to flow and interparticulate interactions as measured by FT4 Powder Rheometer. This indicated that the force pulse magnitude measured by the DFF sensor was indicative of fundamental material properties (e.g., shear viscosity and granule size/density), as they were changing during the granulation process. These studies indicate that DFF sensor can be a valuable tool for wet granulation formulation and process development and scale up, as well as for routine monitoring and control during manufacturing. Copyright © 2016. Published by Elsevier Inc.
Polymer composites with graphene nanofillers: electrical properties and applications.
Tjong, Sie Chin
2014-02-01
Graphene with extraordinary high elastic modulus and excellent electrical conductivity has good prospects for use as the filler material for fabricating novel polymer composites designed for electrostatic discharge and EMI shielding protection, field emission, gas sensor, and fuel cell applications. Large amounts of graphene oxide (GO) can be obtained by wet chemical oxidation of graphite into a mixture of concentrated sulfuric acid, sodium nitrate and potassium permanganate. Accordingly, carbon atoms in the basal plane and edges of GO are decorated with oxygenated functional groups, forming an electrical insulator. To restore electrical conductivity, chemical reduction or thermal annealing is needed to eliminate oxygenated groups of GO. However, such treatments induce internal defects and remove oxygenated atoms of GO partially. The remnant-oxygenated groups affect electrical conductivity of graphene greatly. Nevertheless, reduced graphene oxide and thermally reduced graphene oxide are sufficiently conductive to form polymer nanocomposites at very low percolation threshold. This review provides the fundamentals and state-of-the-art developments in the fabrication methods and electrical property characterizations as well as the applications of novel graphene/polymer nanocomposites. Particular attention is paid to their processing-structural-electrical property relationships.
Yang, M; Sun, Y; Xu, A H; Lu, X Y; Du, H Z; Sun, C L; Li, C
2007-07-01
Catalytic wet air of coke-plant wastewater was studied in a bubbling bed reactor. Two types of supported Ru-based catalysts, eggshell and uniform catalysts, were employed. Compared with the results in the wet air oxidation of coke-plant wastewater, supported Ru uniform catalysts showed high activity for chemical oxygen demand (COD) and ammonia/ammonium compounds (NH3-N) removal at temperature of 250 degrees C and pressure of 4.8 MPa, and it has been demonstrated that the catalytic activity of uniform catalyst depended strongly on the distribution of active sites of Ru on catalyst. Compared to the corresponding uniform catalysts with the same Ru loading (0.25 wt.% and 0.1 wt.%, respectively), the eggshell catalysts showed higher activities for CODcr removal and much higher activities for NH3-N degradation. The high activity of eggshell catalyst for treatment of coke-plant wastewater can be attributed to the higher density of active Ru sites in the shell layer than that of the corresponding uniform catalyst with the same Ru loading. It has been also evidenced that the active Ru sites in the internal core of uniform catalyst have very little or no contribution to CODcr and NH3-N removal in the total oxidation of coke-plant wastewater.
Electrolysis with diamond anodes: Eventually, there are refractory species!
Mena, Ismael F; Cotillas, Salvador; Díaz, Elena; Sáez, Cristina; Rodríguez, Juan J; Cañizares, P; Mohedano, Ángel F; Rodrigo, Manuel A
2018-03-01
In this work, synthetic wastewater polluted with ionic liquid 1-butyl-3-methylimidazolium (Bmim) bis(trifluoromethanesulfonyl)imide (NTf 2 ) undergoes four electrolytic treatments with diamond anodes (bare electrolysis, electrolysis enhanced with peroxosulfate promoters, irradiated with UV light and with US) and results obtained were compared with those obtained with the application of Catalytic Wet Peroxide Oxidation (CWPO). Despite its complex heterocyclic structure, Bmim + cation is successfully depleted with the five technologies tested, being transformed into intermediates that eventually can be mineralized. Photoelectrolysis attained the lowest concentration of intermediates, while CWPO is the technology less efficient in their degradation. However, the most surprising result is that concentration of NTf 2 - anion does not change during the five advanced oxidation processes tested, pointing out its strong refractory character, being the first species that exhibits this character in wastewater undergoing electrolysis with diamond. This means that the hydroxyl and sulfate radicals mediated oxidation and the direct electrolysis are inefficient for breaking the C-S, C-F and S-N bounds of the NTf 2 - anion, which is a very interesting mechanistic information to understand the complex processes undergone in electrolysis with diamond. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pourmajidian, Maedeh; McDermid, Joseph R.
2018-03-01
The present study investigates the selective oxidation of a 0.1C-6Mn-2Si medium-Mn advanced high-strength steel during austenization annealing heat treatments as a function of process atmosphere oxygen partial pressure and annealing time. It was determined that the surface oxide growth kinetics followed a parabolic rate law with the minimum rate belonging to the lowest oxygen partial pressure atmosphere at a dew point of 223 K (- 50 °C). The chemistry of the surface and subsurface oxides was studied using STEM + EELS on the sample cross sections, and it was found that the surface oxides formed under the 223 K (- 50 °C) dew-point atmosphere consisted of a layered configuration of SiO2, MnSiO3, and MnO, while in the case of the higher pO2 process atmospheres, only MnO was detected at the surface. Consistent with the Wagner calculations, it was shown that the transition to internal oxidation for Mn occurred under the 243 K (- 30 °C) and 278 K (+ 5 °C) dew-point atmospheres. However, the predictions of the external to internal oxidation for Si using the Wagner model did not correlate well with the experimental findings nor did the predictions of the Mataigne et al. model for multi-element alloys. Investigations of the internal oxide network at the grain boundaries revealed a multilayer oxide structure composed of amorphous SiO2 and crystalline MnSiO3, respectively, at the oxide core and outer shell. A mechanism for the formation of the oxide morphologies observed, based on kinetic and thermodynamic factors, was proposed. It is expected that only the fine and nodule-like MnO oxides formed on the surface of the samples annealed under the 278 K (+ 5 °C) dew-point process atmosphere for 60 and 120 seconds are sufficiently thin and of the desired dispersed morphology to promote reactive wetting by the molten galvanizing bath.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anglada, Angela; Urtiaga, Ane; Ortiz, Inmaculada
2011-08-15
Highlights: > Landfill leachates can be treated effectively by catalytic wet oxidation. > Addition of H{sub 2}O{sub 2} in the presence of transition metals promotes degradation. > Factorial design evaluates the statistically significant operating conditions. > H{sub 2}O{sub 2}, reaction time and temperature are critical in determining performance. - Abstract: The wet air oxidation (WAO) of municipal landfill leachate catalyzed by cupric ions and promoted by hydrogen peroxide was investigated. The effect of operating conditions such as WAO treatment time (15-30 min), temperature (160-200 deg. C), Cu{sup 2+} concentration (250-750 mg L{sup -1}) and H{sub 2}O{sub 2} concentration (0-1500 mgmore » L{sup -1}) on chemical oxygen demand (COD) removal was investigated by factorial design considering a two-stage, sequential process comprising the heating-up of the reactor and the actual WAO. The leachate, at an initial COD of 4920 mg L{sup -1}, was acidified to pH 3 leading to 31% COD decrease presumably due to the coagulation/precipitation of colloidal and other organic matter. During the 45 min long heating-up period of the WAO reactor under an inert atmosphere, COD removal values up to 35% (based on the initial COD value) were recorded as a result of the catalytic decomposition of H{sub 2}O{sub 2} to reactive hydroxyl radicals. WAO at 2.5 MPa oxygen partial pressure advanced treatment further; for example, 22 min of oxidation at 200 deg. C, 250 mg L{sup -1} Cu{sup 2+} and 0-1500 mg L{sup -1} H{sub 2}O{sub 2} resulted in an overall (i.e. including acidification and heating-up) COD reduction of 78%. Amongst the operating variables in question, temperature had the strongest influence on both the heating-up and WAO stages, while H{sub 2}O{sub 2} concentration strongly affected the former and reaction time the latter. Nonetheless, the effects of temperature and H{sub 2}O{sub 2} concentration were found to depend on the concentration levels of catalyst as suggested by the significance of their 3rd order interaction term.« less
NASA Astrophysics Data System (ADS)
Zhang, Yongli; Zhou, Yanbo; Peng, Chao; Shi, Junjun; Wang, Qingyu; He, Lingfeng; Shi, Liang
2018-04-01
By successive impregnation method, the Ce-modified Cu-O/γ-Al2O3 catalyst was prepared and characterized using nitrogen adsorption-desorption, scanning electron microscopy energy dispersive X-ray analysis (SEM-EDS), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman, and H2-Temperature programming reduction (H2-TPR). In catalytic wet-air oxidation (CWAO) process for the printing and dyeing wastewater (PDW), the effects of Ce addition on performance, mechanism and kinetics of the catalyst were investigated. The Ce addition increases the Brunauer-Emmett-Teller (BET) surface area and pore volume of the catalyst and makes the active components uniformly distributed on the catalyst surface. Formation of a stable CuAl2O4 solid solution by anchoring Cu onto the γ-Al2O3 crystal lattice leads to a significant decrease in metal leaching of the Ce-modified catalyst. The proportion of lattice oxygen in the catalyst substantially increases and the apparent activation energy of Cu-O/γ-Al2O3 catalyst decreases owing to Ce addition. Therefore, the catalytic activity and stability of the Ce-modified catalyst are considerably improved. The scavengers experiments identify the active species existed in the CWAO reaction system, with the order of reactivity: h+ > O2•- > H2O2 > HO•. This novel Cu-Ce-O/γ-Al2O3 catalyst has great potential in applications for treatment of concentrated organic wastewater due to its superior catalytic activity and improved stability.
Controllable Electrochromic Polyamide Film and Device Produced by Facile Ultrasonic Spray-coating.
Liu, Huan-Shen; Chang, Wei-Chieh; Chou, Chin-Yen; Pan, Bo-Cheng; Chou, Yi-Shan; Liou, Guey-Sheng; Liu, Cheng-Liang
2017-09-20
Thermally stable TPA-OMe polyamide films with high transmittance modulation in response to applied potential are formed by facile ultrasonic spray-coating. Four processing conditions (Film A, Film B, Film C and Film D) through tuning both solution concentrations and deposition temperatures can be utilized for the formation of wet and dry deposited films with two film thickness intervals. The electrochromic results show that the dry deposited rough films at higher deposition temperature generally reveal a faster electrochromic response, lower charge requirements (Q) and less conspicuous color changes (smaller optical density change (ΔOD) and lightness change (ΔL*)) during the oxidation process as compared to the wet deposited smooth films at lower deposition temperature. Moreover, thicker electrochromic films from increased solution concentration exhibit more obvious changes between coloration and bleaching transition. All these four polyamide films display colorless-to-turquoise electrochromic switching with good redox stability. The large scale patterned electrochromic film and its application for assembled device (10 × 10 cm 2 in size) are also produced and reversibly operated for color changes. These represent a major solution-processing technique produced by ultrasonic spray-coating method towards scalable and cost-effective production, allowing more freedoms to facilitate the designed electrochromic devices as required.
Examining Wetting and Dewetting Processes in Thin-films on Crystalline Substrates at the Nanoscale
NASA Astrophysics Data System (ADS)
Hihath, Sahar
Controlling the wetting and dewetting of ultra-thin films on solid substrates is important for a variety of technological and fundamental research applications. These applications include film deposition for semiconductor manufacturing, the growth of nanowires through nanoparticle-based catalysis sites, to making ordered arrays of nanoscale particles for electronic and optical devices. However, despite the importance of these processes, the underlying mechanisms by which a film wets a surface or dewets from it is still often unclear and widely debated. In this dissertation we examine wetting and dewetting processes in three materials systems that are relevant for device applications with the ultimate goal of understanding what mechanisms drive the wetting (or dewetting) process in each case. First, we examine the formation of wetting layers between nanoparticle films and highly conductive GaAs substrates for spintronic applications. In this case, the formation of a wetting layer is important for nanoparticle adhesion on the substrate surface. Wetting layers can be made by annealing these systems, which causes elemental diffusion from nanoparticles into the substrate, thereby adhesion between the nanoparticles and the substrate. Here we investigate the feasibility of forming a wetting layer underneath nanoparticles post-annealing in a system of Fe3O4 nanoparticles on a (100) GaAs substrate by studying the interface structure and composition via Transmission Electron Microscopy (TEM), Scanning Transmission Electron Microscopy (STEM), Electron Energy Loss Spectroscopy (EELS) and Energy Dispersive X-ray Spectroscopy (EDXS). Electron Energy-Loss fine structures of the Fe-L 3,2 and O-K absorption edges were quantitatively analyzed to gain insight about the compositional gradient of the interface between the nanoparticles and the GaAs substrate. Additionally, real-space density functional theory calculations of the dynamical form factor was performed to confirm the experimental observations. Second, the fundamental mechanisms that govern the onset of dewetting of thin metal films in both liquid and solid state are investigated. Dewetting processes are used in numerous technological applications. For instance, the dewetting of thin films on substrates is used for making spatially ordered nanoparticle arrays for use in plasmonics, nanophotonics, and magnetics. [1] In addition to dewetting applications in industry and research, dewetting processes have adverse impact on the reliability of semiconductor devices as it can limit the functionality of metal contacts utilized in transistors at elevated temperatures. The morphological changes during dewetting have been studied previously in plan-view by Scanning Electron Microscopy (SEM) after the annealing is completed, and in some cases in cross-section via real-time Transmission Electron Microscopy (TEM). However, due to temporal limitations of image acquisition in TEM, which is in the range of milliseconds, it has not been possible thus far to investigate the dynamics of the dewetting process with high-speed time resolution from nano- to micro-seconds. To gain insights into the fundamental mechanisms involved in dewetting, the early stages of the dewetting process were investigated via Dynamic Transmission Electron Microscopy (DTEM) with nanosecond time and nanometer spatial resolution. The experiments were performed on plan-view TEM samples consisting of nickel thin-films on (100) silicon substrates with a 2-3 nm thick native oxide. The laser ablation dynamics were captured, which involved liquid phase dewetting of the nickel film followed by substrate fracture and nanoscale particle expulsion. Finally, to capture the full dynamics of the dewetting process the experiments were performed on a system of nickel thin-films on (100) Strontium Titanate (STO) substrates. Samples of nickel thin-films on STO substrates have lower thermal expansion coefficient mismatch compared to the system discussed above. Thus, the STO substrates did not fracture after laser irradiation and enabled us to capture the progress of hole growth with time. Valence Electron Energy Loss spectroscopy was used to find the thickness of the TEM sample in order to calculate the geometry and simulate the temperature fields via finite element analysis with COMSOL Multiphysics package. Spatio-temporal temperature plots acquired from finite element modeling suggests that both liquid and solid-state dewetting processes were observed depending upon the magnitude of the laser energy used.
NASA Astrophysics Data System (ADS)
Liu, X.; Day, D. A.; Ziemann, P. J.; Krechmer, J. E.; Jimenez, J. L.
2017-12-01
The partitioning of semivolatile organic compounds (SVOCs) into and out of particles plays an essential role in secondary organic aerosol (SOA) formation and evolution. Most atmospheric models treat the gas/particle partitioning as an equilibrium between bulk gas and particle phases, despite potential kinetic limitations and differences in thermodynamics as a function of SOA and pre-existing OA composition. This study directly measures the partitioning of oxidized compounds in a Teflon chamber in the presence of single component seeds of different phases and polarities, including oleic acid, squalane, dioctyl sebacate, pentaethylene glycol, dry/wet ammonium sulfate, and dry/wet sucrose. The oxidized compounds are generated by a fast OH oxidation of a series of alkanols under high nitric oxide conditions. The observed SOA mass enhancements are highest with oleic acid, and lowest with wet ammonium sulfate and sucrose. A chemical ionization mass spectrometer (CIMS) was used to measure the decay of gas-phase organic nitrates, which reflects uptake by particles and chamber walls. We observed clear changes in equilibrium timescales with varying seed concentrations and in equilibrium gas-phase concentrations across different seeds. In general, the gas evolution can be reproduced by a kinetic box model that considers partitioning and evaporation with particles and chamber walls, except for the wet sucrose system. The accommodation coefficient and saturation mass concentration of each species in the presence of each seed are derived using the model. The changes in particle size distributions and composition monitored by a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) are investigated to probe the SOA formation mechanism. Based on these results, the applicability of partitioning theory to these systems and the relevant quantitative parameters, including the dependencies on seed particle composition, will be discussed.
Concurrent extraction and reaction for the production of biodiesel from wet microalgae.
Im, Hanjin; Lee, HanSol; Park, Min S; Yang, Ji-Won; Lee, Jae W
2014-01-01
This work addresses a reliable in situ transesterification process which integrates lipid extraction from wet microalgae, and its conversion to biodiesel, with a yield higher than 90 wt.%. This process enables single-step production of biodiesel from microalgae by mixing wet microalgal cells with solvent, methanol, and acid catalyst; and then heating them in one pot. The effects of reaction parameters such as reaction temperature, wet cell weight, reaction time, and catalyst volume on the conversion yield are investigated. This simultaneous extraction and transesterification of wet microalgae may enable a significant reduction in energy consumption by eliminating the drying process of algal cells and realize the economic production of biodiesel using wet microalgae. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lin, Chia-Feng; Lee, Wen-Che; Shieh, Bing-Cheng; Chen, Danti; Wang, Dili; Han, Jung
2014-12-24
We report here a simple and robust process to convert embedded conductive GaN epilayers into insulating GaOx and demonstrate its efficacy in vertical current blocking and lateral current steering in a working LED device. The fabrication processes consist of laser scribing, electrochemical (EC) wet-etching, photoelectrochemical (PEC) oxidation, and thermal oxidization of a sacrificial n(+)-GaN:Si layer. The conversion of GaN is made possible through an intermediate stage of porosification where the standard n-type GaN epilayers can be laterally and selectively anodized into a nanoporous (NP) texture while keeping the rest of the layers intact. The fibrous texture of NP GaN with an average wall thickness of less than 100 nm dramatically increases the surface-to-volume ratio and facilitates a rapid oxidation process of GaN into GaOX. The GaOX aperture was formed on the n-side of the LED between the active region and the n-type GaN layer. The wavelength blueshift phenomena of electroluminescence spectra is observed in the treated aperture-emission LED structure (441.5 nm) when compared to nontreated LED structure (443.7 nm) at 0.1 mA. The observation of aperture-confined electroluminescence from an InGaN LED structure suggests that the NP GaN based oxidation will play an enabling role in the design and fabrication of III-nitride photonic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, Shusuke, E-mail: shusuke-okada@aist.go.jp; Takagi, Kenta; Ozaki, Kimihiro
Submicron-sized Sm{sub 2}Fe{sub 17} powder samples were fabricated by a non-pulverizing process through reduction-diffusion of precursors prepared by a wet-chemical technique. Three precursors having different morphologies, which were micron-sized porous Sm-Fe oxide-impregnated iron nitrate, acicular goethite impregnated-samarium nitrate, and a conventional Sm-Fe coprecipitate, were prepared and subjected to hydrogen reduction and reduction-diffusion treatment to clarify whether these precursors could be convert to Sm{sub 2}Fe{sub 17} without impurity phases and which precursor is the most attractive for producing submicron-sized Sm{sub 2}Fe{sub 17} powder. As a result, all three precursors were successfully converted to Sm{sub 2}Fe{sub 17} powders without impurity phases, andmore » the synthesis route using iron-oxide particle-impregnated samarium oxide was revealed to have the greatest potential among the three routes.« less
Giant and switchable surface activity of liquid metal via surface oxidation
Khan, Mohammad Rashed; Eaker, Collin B.; Bowden, Edmond F.; Dickey, Michael D.
2014-01-01
We present a method to control the interfacial tension of a liquid alloy of gallium via electrochemical deposition (or removal) of the oxide layer on its surface. In sharp contrast with conventional surfactants, this method provides unprecedented lowering of surface tension (∼500 mJ/m2 to near zero) using very low voltage, and the change is completely reversible. This dramatic change in the interfacial tension enables a variety of electrohydrodynamic phenomena. The ability to manipulate the interfacial properties of the metal promises rich opportunities in shape-reconfigurable metallic components in electronic, electromagnetic, and microfluidic devices without the use of toxic mercury. This work suggests that the wetting properties of surface oxides—which are ubiquitous on most metals and semiconductors—are intrinsic “surfactants.” The inherent asymmetric nature of the surface coupled with the ability to actively manipulate its energetics is expected to have important applications in electrohydrodynamics, composites, and melt processing of oxide-forming materials. PMID:25228767
NASA Astrophysics Data System (ADS)
Pai, Rajesh V.; Mollick, P. K.; Kumar, Ashok; Banerjee, J.; Radhakrishna, J.; Chakravartty, J. K.
2016-05-01
UO2 microspheres prepared by internal gelation technique were coated with pyrolytic carbon and silicon carbide using CVD technique. The particles which were not meeting the specifications were rejected. The rejected/failed UO2 based coated particles prepared by CVD technique was used for oxidation and recovery and recycling. The oxidation behaviour of sintered UO2 microspheres coated with different layers of carbon and SiC was studied by thermal techniques to develop a method for recycling and recovery of uranium from the failed/rejected coated particles. It was observed that the complete removal of outer carbon from the spheres is difficult. The crushing of microspheres enabled easier accessibility of oxygen and oxidation of carbon and uranium at 800-1000 °C. With the optimized process of multiple crushing using die & plunger and sieving the broken coated layers, we could recycle around fifty percent of the UO2 microspheres which could be directly recoated. The rest of the particles were recycled using a wet recycling method.
Fathima, Nishtar Nishad; Aravindhan, Rathinam; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni
2008-01-01
Catalytic wet hydrogen peroxide oxidation of an anionic dye has been explored in this study. Copper(II) complex of NN'-ethylene bis(salicylidene-aminato) (salenH2) has been encapsulated in super cages of zeolite-Y by flexible ligand method. The catalyst has been characterized by Fourier transforms infra red spectroscopy, X-ray powder diffractograms, Thermo-gravimetric and differential thermal analysis and nitrogen adsorption studies. The effects of various parameters such as pH, catalyst and hydrogen peroxide concentration on the oxidation of dye were studied. The results indicate that complete removal of color has been obtained after a period of less than 1h at 60 degrees C, 0.175M H2O2 and 0.3g l(-1) catalyst. More than 95% dye removal has been achieved using this catalyst for commercial effluent. These studies indicate that copper salen complex encapsulated in zeolite framework is a potential heterogeneous catalyst for removal of color from wastewaters.
Nanosize Fe x O y @SBA-3: A Comparative Study Between Conventional and Microwave Assisted Synthesis.
Barik, Sunita; Badamali, Sushanta K; Sahoo, Sagarika; Behera, Nandakishor; Dapurkar, Sudhir E
2018-01-01
The present study is focussed on development of highly dispersed nanosize iron oxide (FexOy) particles within the uniform mesopore channels of SBA-3. Herein we report a comparative study between conventional incipient wetness and microwave assisted synthesis routes adopted to devise nanoparticles. The developed materials are characterised by following X-ray diffraction, high resolution transmission electron microscopy, proton induced X-ray emission, diffuse reflectance UV-visible spectroscopy, thermogravimetry and Fourier transform infrared spectroscopy. Mesoporous siliceous SBA-3 was prepared at room temperature to obtain samples with good crystallinity and ordered pore structure. Pore channels of SBA-3 were used as nanoreactor for developing iron oxide nanoparticles. Iron oxide nanoparticles developed under microwave activation showed uniform distribution within the SBA-3 structure along with retaining the orderness of the pore architecture. On the contrary, iron oxides developed under incipient wetness method followed by conventional heating resulted in agglomeration of nanoparticles along with significant loss in SBA-3 pore structure. Proton induced X-ray emission studies revealed the extremely high purity of the samples and almost thrice higher amount of iron oxide particles are encapsulated within the host by microwave assisted preparation as compared to incipient/conventional heating method.
Pauzauskie, Peter J; Worsley, Marcus A; Baumann, Theodore F; Satcher, Jr., Joe H; Biener, Juergen
2015-03-31
Graphene aerogels with high conductivity and surface areas including a method for making a graphene aerogel, including the following steps: (1) preparing a reaction mixture comprising a graphene oxide suspension and at least one catalyst; (2) curing the reaction mixture to produce a wet gel; (3) drying the wet gel to produce a dry gel; and (4) pyrolyzing the dry gel to produce a graphene aerogel. Applications include electrical energy storage including batteries and supercapacitors.
Air pollution: Tropospheric ozone, and wet deposition of sulfate and inorganic nitrogen
John W. Coulston
2009-01-01
The influence of air pollutants on ecosystems in the United States is an important environmental issue. The term âair pollutionâ encompasses a wide range of topics, but acid deposition and ozone are primary concerns in the context of forest health. Acid deposition partially results from emissions of sulfur dioxide, nitrogen oxides, and ammonia that are deposited in wet...
Observations on Mildew Susceptibility of Painted Surfaces in Tropical Chamber Exposure
1983-12-01
resins of iron oxide, red iron urea formaldehyde or oxide. blends of urea / melamine + modifiers, stabili- zers, wetting and sus- pension agents. MIL-E...type, modified or chromate yellow, molyb- with not less than 20% date orange, carbazole di- butylated melamine oxazine violet, yellow formaldehyde ...com- Pure short oil length Enamel, Modified Alkyd posed of cobalt, zinc, phthalic alkyd resin Camouflage, Lusterless and chromium oxides, and/ baking
NASA Astrophysics Data System (ADS)
Massengale, Alan Ross
1998-12-01
The discovery in 1990 that the wet thermal oxidation of AlAs can create a stable native oxide has added a new constituent, AlAs-oxide, to the AlGaAs/GaAs materials system. Native oxides of high Al mole-fraction AlGaAs are being used to confine electrical and/or optical fields in many types of electronic and optoelectronic structures with very promising results. Among these devices are collector-up heterojunction bipolar transistors (HBTs). Collector-up HBTs offer a means to reduce base-collector capacitance relative to their emitter-up counterparts, and thus to improve device performance. A novel method for fabricating collector-up AlGaAs/GaAs HBTs where an AlAs layer is inserted into the emitter layer and is oxidized in water vapor at 450sp°C has been developed. The resulting AlAs-oxide serves as a current confining layer that constricts collector current flow to the intrinsic portion of the device. Compared to previous methods of fabricating these devices, the process of converting AlAs into an insulator requires only one growth, and does not suffer from implant damage in the base. Because the lateral oxidation of AlAs is a process that proceeds at rates of microns per minute, one of the major challenges facing its implementation is the ability to accurately control the oxidation rate over the wafer, and from one wafer to the next. In the course of work on the oxidation of AlAs, a method to lithographically form lateral oxidation stop layers has been achieved. This technique utilizes impurity induced layer disordering (IILD) in heavily Si-doped buried planes, combined with selective surface patterning and thermal annealing, to create a lateral variation in the Al mole-fraction of the layer to be oxidized.
NASA Astrophysics Data System (ADS)
Potanina, Ekaterina; Golovkina, Ludmila; Orlova, Albina; Nokhrin, Aleksey; Boldin, Maksim; Sakharov, Nikita
2016-05-01
Complex oxide Y2.5Nd0.5Al5O12 with garnet structure and phosphates NdPO4 and GdPO4 with monazite structure were obtained by using precipitation methods. Ceramics Y2.5Nd0.5Al5O12 and NdPO4 were processed by Spark Plasma Sintering (SPS). Relative density more 98%, sintering time did not exceed 8 min, sintering temperature 1330-1390 °C. Leaching rates of elements from ceramics were 10-6-10-7 g/(cm2 d). The process of ceramics sintering has two-stage character: the first step of sintering-compaction process is related to the plastic flow of the material, the second step-to the process of grain boundary diffusion and grain growth.
NASA Astrophysics Data System (ADS)
Thomas, Randal; Conaway, Christopher; Saad, Nabil; Kharaka, Yousif
2013-04-01
Identification of fluid migration and escape from intentionally altered subsurface geologic systems, such as in hydraulic fracturing, enhanced oil recovery, and carbon sequestration activities, is an important issue for environmental regulators based on the traction that the "fracking" process is gathering across the United States. Given diverse injected fluid compositions and the potential for toxic or regulated compounds to be released, one of the most important steps in the process is accurately identifying evidence of injected fluid escape during and after injection processes. An important tool in identifying differences between the natural groundwater and injected fluid is the isotopic composition of dissolved constituents including inorganic components such as Sr and carbon isotopes of the dissolved organic compounds. Since biological processes in the mesothermal subsurface can rapidly alter the organic composition of a fluid, stable carbon isotopes of the dissolved organic compounds (DOC) are an effective means to identify differences in the origin of two fluids, especially when coupled with inorganic compound analyses. The burgeoning field of cavity ring-down spectroscopy (CRDS) for isotopic analysis presents an opportunity to obtain rapid, reliable and cost-effective isotopic measurements of DOC in potentially affected groundwater for the identification of leakage or the improvement of hydrogeochemical pathway models. Here we adapt the use of the novel hyphenated TOC-CRDS carbon isotope analyzer for the analysis of DOC in produced water by wet oxidation and describe the methods to evaluate performance and obtain useful information at higher salinities. Our methods are applied to a specific field example in a CO2-enhanced EOR field in Cranfield, Mississippi (USA) as a means to demonstrate the ability to distinguish natural and injected DOC using the stable isotopic composition of the dissolved organic carbon when employing the novel TOC-CRDS instrumentation set up.
NASA Astrophysics Data System (ADS)
Weydanz, W. J.; Reisenweber, H.; Gottschalk, A.; Schulz, M.; Knoche, T.; Reinhart, G.; Masuch, M.; Franke, J.; Gilles, R.
2018-03-01
The process of filling electrolyte into lithium ion cells is time consuming and critical to the overall battery quality. However, this process is not well understood. This is partially due to the fact, that it is hard to observe it in situ. A powerful tool for visualization of the process is neutron imaging. The filling and wetting process of the electrode stack can be clearly visualized in situ without destruction of the actual cell. The wetting of certain areas inside the electrode stack can clearly be seen when using this technique. Results showed that wetting of the electrode stack takes place in a mostly isotropic manner from the outside towards a center point of the cell at very similar speed. When the electrolyte reaches the center point, the wetting process can be considered complete. The electrode wetting is a slow but rather steady process for hard case prismatic cells. It starts with a certain speed, which is reduced over the progress of the wetting. Vacuum can assist the process and accelerate it by about a factor of two as was experimentally shown. This gives a considerable time and cost advantage for designing the production process for large-scale battery cell production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashiwagi, Y., E-mail: kasiwagi@omtri.or.jp; Yamamoto, M.; Saitoh, M.
2014-12-01
Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25 nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850 °C for 10 min under atmospheric conditions, the resistivity of the ITO film was 5.2 mΩ cm. The fabricated LED up to 3 mm square surface emitted red light when the on-voltage was exceeded.
NASA Astrophysics Data System (ADS)
Kashiwagi, Y.; Koizumi, A.; Takemura, Y.; Furuta, S.; Yamamoto, M.; Saitoh, M.; Takahashi, M.; Ohno, T.; Fujiwara, Y.; Murahashi, K.; Ohtsuka, K.; Nakamoto, M.
2014-12-01
Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25 nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850 °C for 10 min under atmospheric conditions, the resistivity of the ITO film was 5.2 mΩ cm. The fabricated LED up to 3 mm square surface emitted red light when the on-voltage was exceeded.
Bimetallic catalysts for continuous catalytic wet air oxidation of phenol.
Fortuny, A; Bengoa, C; Font, J; Fabregat, A
1999-01-29
Catalytic wet oxidation has proved to be effective at eliminating hazardous organic compounds, such as phenol, from waste waters. However, the lack of active long-life oxidation catalysts which can perform in aqueous phase is its main drawback. This study explores the ability of bimetallic supported catalysts to oxidize aqueous phenol solutions using air as oxidant. Combinations of 2% of CoO, Fe2O3, MnO or ZnO with 10% CuO were supported on gamma-alumina by pore filling, calcined and later tested. The oxidation was carried out in a packed bed reactor operating in trickle flow regime at 140 degrees C and 900 kPa of oxygen partial pressure. Lifetime tests were conducted for 8 days. The pH of the feed solution was also varied. The results show that all the catalysts tested undergo severe deactivation during the first 2 days of operation. Later, the catalysts present steady activity until the end of the test. The highest residual phenol conversion was obtained for the ZnO-CuO, which was significantly higher than that obtained with the 10% CuO catalyst used as reference. The catalyst deactivation is related to the dissolution of the metal oxides from the catalyst surface due to the acidic reaction conditions. Generally, the performance of the catalysts was better when the pH of the feed solution was increased.
Does seasonal snowpacks enhance or decrease mercury contamination of high elevation ecosystems?
NASA Astrophysics Data System (ADS)
Pierce, A.; Fain, X.; Obrist, D.; Helmig, D.; Barth, C.; Jacques, H.; Chowanski, K.; Boyle, D.; William, M.
2009-12-01
Mercury (Hg) is an extremely toxic pollutant globally dispersed in the environment. Natural and anthropogenic sources emit Hg to the atmosphere, either as gaseous elemental mercury (GEM; Hg0) or as divalent mercury species. Due to the long lifetime of GEM mercury contamination is not limited to industrialized sites, but also a concern in remote areas such as high elevation mountain environments. During winter and spring 2009, we investigated the fate of atmospheric mercury deposited to mountain ecosystems in the Sierra Nevada (Sagehen station, California, USA) and the Rocky Mountains (Niwot Ridge station, Colorado, USA). At Sagehen, we monitored mercury in snow (surface snow sampling and snow pits), wet deposition, and stream water during the snow-dominated season. Comparison of Hg stream discharge to snow Hg wet deposition showed that only a small fraction of Hg wet deposition reached stream in the melt water. Furthermore, Hg concentration in soil transects (25 different locations) showed no correlations to wet deposition Hg loads due to pronounced altitudinal precipitation gradient suggesting that Hg deposited to the snowpack was not transferred to ecosystems. At Niwot Ridge, further characterization of the chemical transformation involving mercury species within snowpacks was achieved by 3-months of continuous monitoring of GEM and ozone concentrations in the snow air at eight depths from the soil-snow interface to the top of the up to 2 meter deep snowpack. Divalent mercury concentrations were monitored as well (surface snow sampling and snow pits). GEM levels in snow air exhibited strong diurnal pattern indicative of both oxidation and reduction processes. Low levels of divalent mercury concentrations in snow pack suggest that large fractions of Hg originally deposited as wet deposition was reemitted back to the atmosphere after reduction. Hence, these results suggest that the presence of a seasonal snowpack may decrease effective wet deposition of mercury and transfer to the underlying ground due to significant evasion losses of Hg from the snowpack to the atmosphere.
Carbon Nanotube Bonding Strength Enhancement Using Metal "Wicking" Process
NASA Technical Reports Server (NTRS)
Lamb, James L.; Dickie, Matthew R.; Kowalczyk, Robert S.; Liao, Anna; Bronikowski, Michael J.
2012-01-01
Carbon nanotubes grown from a surface typically have poor bonding strength at the interface. A process has been developed for adding a metal coat to the surface of carbon nano tubes (CNTs) through a wicking process, which could lead to an enhanced bonding strength at the interface. This process involves merging CNTs with indium as a bump-bonding enhancement. Classical capillary theory would not normally allow materials that do not wet carbon or graphite to be drawn into the spacings by capillary action because the contact angle is greater than 90 degrees. However, capillary action can be induced through JPL's ability to fabricate oriented CNT bundles to desired spacings, and through the use of deposition techniques and temperature to control the size and mobility of the liquid metal streams and associated reservoirs. A reflow and plasma cleaning process has also been developed and demonstrated to remove indium oxide, and to obtain smooth coatings on the CNT bundles.
X-ray diffraction and TGA kinetic analyses for chemical looping combustion applications.
Tijani, Mansour Mohammedramadan; Aqsha, Aqsha; Mahinpey, Nader
2018-04-01
Synthesis and characterization of supported metal-based oxygen carriers were carried out to provide information related to the use of oxygen carriers for chemical looping combustion processes. The Cu, Co, Fe, Ni metals supported with Al 2 O 3 , CeO 2 , TiO 2 , ZrO 2 were prepared using the wetness impregnation technique. Then, the X-ray Diffraction (XRD) characterization of oxidized and reduced samples was obtained and presented. The kinetic analysis using Thermogravimetric analyzer (TGA) of the synthesized samples was conducted. The kinetics of reduction reaction of all samples were estimated and explained.
Defense Science Study Group IV: Study Reports 1994-1995. Volume I
1996-02-01
100_<- 9 800 70 _ 60- > ~50- P CD 20- 10 450 500 550 600 650 700 750 800 850 900 WAVELENGTH NANOMETEtS 01 GEN II +- EARLY GEN III 0 TYPICAL GEN III...lva•) 6.5 Somlval.ief1 Cd : 3.25 "sle Cd :. 1 Cd : 60 TI:3.25 .pglAdscm[ Pbt:I0 Pb:100 Cd.Pb40 Pb:is Low Volotie ",metas 0 (Am. Be. Cr. ON (Ilk As. Cr...mixed radioactive-hazardous wastes include steam reforming, wet air oxidation, and high pressure hydrothermal processing[11]. High pressure hydrothermal
Non-Thermal Removal of Gaseous Pollutants
NASA Technical Reports Server (NTRS)
Srivastava, S.; McGowan, J. William; Chiu, K. C. Ray
1995-01-01
The removal of fluorine based exhaust gases such as CFC's, PFC's, NF3, and SF6 used for plasma etching of and deposition on semi-conductors is a subject of increasing interest because of safety, air pollution, and global warming issues. Conventional treatment methods for removing exhaust gas pollutants are wet scrubbing, carbon and resin adsorption, catalytic oxidation, and thermal incineration. However, there are drawbacks associated with each of these methods which include difficulties in implementation, problems with the disposal of solid and liquid pollutant waste, large water and fuel consumption, and additional pollutants such as NOx emissions which are generated in thermal incineration processes.
Water and waste water reclamation in a 21st century space colony
NASA Technical Reports Server (NTRS)
Jebens, H. J.; Johnson, R. D.
1977-01-01
The paper presents the results of research on closed-life support systems initiated during a system design study on space colonization and concentrates on the water and waste water components. Metabolic requirements for the 10,000 inhabitants were supplied by an assumed earth-like diet from an intensive agriculture system. Condensed atmospheric moisture provided a source of potable water and a portion of the irrigation water. Waste water was reclaimed by wet oxidation. The dual-water supply required the condensation of 175 kg/person-day of atmospheric water and the processing of 250 kg/person-day of waste water.
Impact of Ti Incorporation on Hydroxylation and Wetting of Fe 3 O 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoerzinger, Kelsey A.; Pearce, Carolyn I.; Droubay, Timothy C.
2017-08-24
Understanding the interaction of water with compositionally tuned metal oxides is central to exploiting their unique catalytic and magnetic properties. However, processes such as hydroxylation, wetting, and resulting changes in electronic structure at ambient conditions are challenging to probe in situ. Here, we examine the hydroxylation and wetting of Fe(3-x)TixO4 epitaxial films directly using ambient pressure X-ray photoelectron spectroscopy under controlled relative humidity. Fe2+ formation promoted by Ti4+ substitution for Fe3+ increases with hydroxylation, commensurate with a decrease in the surface work function or change in the surface dipole. The incorporation of small amounts of Ti (x=0.25) as a bulkmore » dopant dramatically impacts hydroxylation, in part due to surface segregation, leading to coverages closer to that of TiO2 than Fe3O4. However, the Fe(3-x)TixO4 compositional series shows a similar affinity for water physisorption, which begins at notably lower relative humidity than on TiO2. The findings suggest that relative humidity rather than surface hydroxyl density controls wettability. Studies of this kind directly relate to rational design of doped magnetite into more active catalysts for UV/Fenton degradation, the adsorption of contaminants, and the development of spin filters.« less
Combined wet and dry cleaning of SiGe(001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sang Wook; Kaufman-Osborn, Tobin; Kim, Hyonwoong
Combined wet and dry cleaning via hydrofluoric acid (HF) and atomic hydrogen on Si{sub 0.6}Ge{sub 0.4}(001) surface was studied at the atomic level using ultrahigh vacuum scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and x-ray photoelectron spectroscopy to understand the chemical transformations of the surface. Aqueous HF removes native oxide, but residual carbon and oxygen are still observed on Si{sub 0.6}Ge{sub 0.4}(001) due to hydrocarbon contamination from post HF exposure to ambient. The oxygen contamination can be eliminated by shielding the sample from ambient via covering the sample in the HF cleaning solution until the sample is introduced tomore » the vacuum chamber or by transferring the sample in an inert environment; however, both processes still leave carbon contaminant. Dry in-situ atomic hydrogen cleaning above 330 °C removes the carbon contamination on the surface consistent with a thermally activated atomic hydrogen reaction with surface hydrocarbon. A postdeposition anneal at 550 °C induces formation of an atomically flat and ordered SiGe surface observed by STM. STS verifies that the wet and dry cleaned surface has an unpinned Fermi level with no states between the conduction and valence band edge comparable to sputter cleaned SiGe surfaces.« less
NASA Astrophysics Data System (ADS)
Quintero, Yenny Cardona; Nagarajan, Ramanathan
2018-09-01
Titania, among the metal oxides, has shown promising characteristics for the adsorption and decontamination of chemical warfare nerve agents, due to its high stability and rapid decomposition rates. In this study, the adsorption energy and geometry of the nerve agents Sarin and Soman, and their simulant dimethyl methyl phosphonate (DMMP) on TiO2 rutile (110) surface were calculated using density functional theory. The molecular and dissociative adsorption of the agents and simulant on dry as well as wet metal oxide surfaces were considered. For the wet system, computations were done for the cases of both molecularly adsorbed water (hydrated conformation) and dissociatively adsorbed water (hydroxylated conformation). DFT calculations show that dissociative adsorption of the agents and simulant is preferred over molecular adsorption for both dry and wet TiO2. The dissociative adsorption on hydrated TiO2 shows higher stability among the different configurations considered. The dissociative structure of DMMP on hydrated TiO2 (the most stable one) was identified as the dissociation of a methyl group and its adsorption on the TiO2 surface. For the nerve agents Sarin and Soman on hydrated TiO2 the dissociative structure was by the dissociation of the F atom from the molecule and its interaction with a Ti atom from the surface, which could indicate a reduction in the toxicity of the products. This study shows the relevance of water adsorption on the metal oxide surface for the stability and dissociation of the simulant DMMP and the nerve agents Sarin and Soman on TiO2.
NASA Astrophysics Data System (ADS)
Yang, Xueliang; Liu, Wei; Chen, Jingwei; Sun, Yun
2018-04-01
Using metal oxides to form a carrier-selective interface on crystalline silicon (c-Si) has recently generated considerable interest for use with c-Si photovoltaics because of the potential to reduce cost. n-type oxides, such as MoO3, V2O5, and WO3, have been widely studied. In this work, a p-type oxide, Cu-doped NiO (NiO:Cu), is explored as a transparent hole-selective contact to n-Si. An ultrathin SiOx layer, fabricated by a wet-chemical method (wet-SiOx), is introduced at the NiO:Cu/n-Si interface to achieve a tunnelling junction solar cell. Interestingly, it was observed that the interface quality of the NiO:Cu/wet-SiOx/n-Si heterojunction was dramatically enhanced by post-deposition annealing (PDA) at a temperature of 200 °C. Our device exhibits an improved power conversion efficiency of 10.8%, which is the highest efficiency among NiO/Si heterojunction photo-electric devices to date. It is demonstrated that the 200 °C PDA treatment enhances the built-in field by a reduction in the interface density of states (Dit) but does not influence the work function of the NiO:Cu thin layer. This stable work function after the PDA treatment is in conflict with the changed built-in field according to the Schottky model. Thus, the Bardeen model is introduced for this physical insight: the enhancement of the built-in field originates from the unpinning of the Fermi levels of NiO:Cu and n-Si by the interface state reduction.
ZnO deposition on metal substrates: Relating fabrication, morphology, and wettability
NASA Astrophysics Data System (ADS)
Beaini, Sara S.; Kronawitter, Coleman X.; Carey, Van P.; Mao, Samuel S.
2013-05-01
It is not common practice to deposit thin films on metal substrates, especially copper, which is a common heat exchanger metal and practical engineering material known for its heat transfer properties. While single crystal substrates offer ideal surfaces with uniform structure for compatibility with oxide deposition, metallic surfaces needed for industrial applications exhibit non-idealities that complicate the fabrication of oxide nanostructure arrays. The following study explored different ZnO fabrication techniques to deposit a (super)hydrophobic thin film of ZnO on a metal substrate, specifically copper, in order to explore its feasibility as an enhanced condensing surface. ZnO was selected for its non-toxicity, ability to be made (super)hydrophobic with hierarchical roughness, and its photoinduced hydrophilicity characteristic, which could be utilized to pattern it to have both hydrophobic-hydrophilic regions. We investigated the variation of ZnO's morphology and wetting state, using SEMs and sessile drop contact angle measurements, as a function of different fabrication techniques: sputtering, pulsed laser deposition (PLD), electrodeposition and annealing Zn. We successfully fabricated (super)hydrophobic ZnO on a mirror finish, commercially available copper substrate using the scalable electrodeposition technique. PLD for ZnO deposition did not prove viable, as the ZnO samples on metal substrates were hydrophilic and the process does not lend itself to scalability. The annealed Zn sheets did not exhibit consistent wetting state results.
Nb/Al-AlOx/Nb Edge Junctions for Distributed Mixers
NASA Astrophysics Data System (ADS)
Amos, R. S.; Lichtenberger, A. W.; Tong, C. E.; Blundell, R.; Pan, S.-K.; Kerr, A. R.
We have fabricated high quality Nb/Al-oxide/Al/Nb edge junctions using a Nb/SiO/sub 2/ bi-layer film as the base electrode, suitable for use as traveling wave mixers. An edge is cut in the bi-layer with an ion gun at a 45 degree angle using a photoresist mask. The wafer is then cleaned in-situ with a physical ion gun clean followed by the deposition of a thin Al (a1) film, which is then thermally oxidized, an optional second Al (a2) layer, and a Nb counter electrode. It was found that devices with an a2 layer resulted in superior electrical characteristics, though proximity effects increased strongly with a2 thickness. The counter electrode is defined with an SF/sub 6/+N/sub 2/ reactive ion etch, using the Al barrier layer as an etch stop. The Al barrier layer is then either removed with an Al wet etch to isolate the individual devices, or the devices are separated with an anodization process. Various ion gun cleaning conditions have been examined; in addition, both wet and plasma etch bi-layer edge surface pre-treatments were investigated. It was found that edge junctions with large widths (i.e., those more suitable for traveling wave mixers) typically benefited more from such treatments. Initial receiver results at 260 GHz have yielded a DSB noise temperature of 60 K.
Enzymatic corn wet milling: engineering process and cost model
Ramírez, Edna C; Johnston, David B; McAloon, Andrew J; Singh, Vijay
2009-01-01
Background Enzymatic corn wet milling (E-milling) is a process derived from conventional wet milling for the recovery and purification of starch and co-products using proteases to eliminate the need for sulfites and decrease the steeping time. In 2006, the total starch production in USA by conventional wet milling equaled 23 billion kilograms, including modified starches and starches used for sweeteners and ethanol production [1]. Process engineering and cost models for an E-milling process have been developed for a processing plant with a capacity of 2.54 million kg of corn per day (100,000 bu/day). These models are based on the previously published models for a traditional wet milling plant with the same capacity. The E-milling process includes grain cleaning, pretreatment, enzymatic treatment, germ separation and recovery, fiber separation and recovery, gluten separation and recovery and starch separation. Information for the development of the conventional models was obtained from a variety of technical sources including commercial wet milling companies, industry experts and equipment suppliers. Additional information for the present models was obtained from our own experience with the development of the E-milling process and trials in the laboratory and at the pilot plant scale. The models were developed using process and cost simulation software (SuperPro Designer®) and include processing information such as composition and flow rates of the various process streams, descriptions of the various unit operations and detailed breakdowns of the operating and capital cost of the facility. Results Based on the information from the model, we can estimate the cost of production per kilogram of starch using the input prices for corn, enzyme and other wet milling co-products. The work presented here describes the E-milling process and compares the process, the operation and costs with the conventional process. Conclusion The E-milling process was found to be cost competitive with the conventional process during periods of high corn feedstock costs since the enzymatic process enhances the yields of the products in a corn wet milling process. This model is available upon request from the authors for educational, research and non-commercial uses. PMID:19154623
NASA Astrophysics Data System (ADS)
Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.
2012-01-01
Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM-10 mM) was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.
Relevance of ammonium oxidation within biological soil crust communities
Johnson, S.L.; Budinoff, C.R.; Belnap, J.; Garcia-Pichel, F.
2005-01-01
Thin, vertically structured topsoil communities that become ecologically important in arid regions (biological soil crusts or BSCs) are responsible for much of the nitrogen inputs into pristine arid lands. We studied N2 fixation and ammonium oxidation (AO) at subcentimetre resolution within BSCs from the Colorado Plateau. Pools of dissolved porewater nitrate/ nitrite, ammonium and organic nitrogen in wetted BSCs were high in comparison with those typical of aridosoils. They remained stable during incubations, indicating that input and output processes were of similar magnitude. Areal N2 fixation rates (6.5-48 ??mol C2H2 m-2 h -1) were high, the vertical distribution of N2 fixation peaking close to the surface if populations of heterocystous cyanobacteria were present, but in the subsurface if they were absent. Areal AO rates (19-46 ??mol N m-2 h-1) were commensurate with N2 fixation inputs. When considering oxygen availability, AO activity invariably peaked 2-3 mm deep and was limited by oxygen (not ammonium) supply. Most probable number (MPN)-enumerated ammonia-oxidizing bacteria (6.7-7.9 ?? 103 cells g-1 on average) clearly peaked at 2-3 mm depth. Thus, AO (hence nitrification) is a spatially restricted but important process in the nitrogen cycling of BSC, turning much of the biologically fixed nitrogen into oxidized forms, the fate of which remains to be determined.
Heather Erickson; Michael Keller; Eric Davidson
2001-01-01
The effects of changes in tropical land use on soil emissions of nitrous oxide (N2O) and nitric oxide (NO) are not well understood. We examined emissions of N2O and NO and their relationships to land use and forest composition, litterfall, soil nitrogen (N) pools and turnover, soil moisture, and patterns of carbon (C) cycling in a lower montane, subtropical wet region...
Durability Enhancement of a Microelectromechanical System-Based Liquid Droplet Lens
NASA Astrophysics Data System (ADS)
Kyoo Lee, June; Park, Kyung-Woo; Kim, Hak-Rin; Kong, Seong Ho
2010-06-01
In this paper, we propose methods to enhance the durability of a microelectromechanical system (MEMS)-based liquid droplet lens driven by electrowetting. The enhanced durability of the lens is achieved through not only improvement in quality of dielectric layer for electrowetting by minimizing concentration of coarse pinholes, but also mitigation of physical and electrostatic stresses by reforming lens cavity. Silicon dioxide layer is deposited using plasma enhanced chemical vapor deposition, splitting the process into several steps to minimize the pinhole concentration in the oxide layer. And the stresses-reduced cavity in a form of overturned tetra-angular truncated pyramid with rounded corners, which is based on simulated results, is proposed and realized using silicon wet etching processes combined into anisotropic and isotropic etching.
NOx control techniques for the CPI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, D.; McGowan, T.F.
1996-06-01
After years of air pollution control innovation, the control of emissions of nitrogen oxide compounds stands out as an area where much work remains to be performed in the chemical process industries (CPI). Federal regulations, ozone non-attainment areas, acid rain provisions of the US Clean Air Act, and corporate goals for emission reductions are all motivators. Primary CPI sources are high-temperature combustion systems, including fired heaters, boilers and Kilns. Nitrogen-based processes such as nitric acid manufacture also contribute. The paper discusses the regulations which define the problem and some solutions. These include fuel switching, low-excess air burners, fluegas recirculation, stagedmore » combustion, out of service burners, and wet scrubbing of flue gas. The paper briefly discusses costs of these options.« less
Heat treated twin wire arc spray AISI 420 coatings under dry and wet abrasive wear
NASA Astrophysics Data System (ADS)
Rodriguez, E.; González, M. A.; Monjardín, H. R.; Jimenez, O.; Flores, M.; Ibarra, J.
2017-11-01
The influence of applying two different heat treatments such as: deep cryogenic and tempering on dry/wet abrasive wear resistance of twin wire arc spray martensitic AISI 420 coatings was evaluated by using a modified rubber wheel type test apparatus. A load dependency was observed on the abrasive wear rate behavior of both; dry and wet tests. Three body (rolling) and two body (sliding) wear mechanisms were identified in dry conditions, prevailing rolling at lower and higher loads. However, at higher loads, more presence of grooving and pits formation was observed. Coatings tempered at 205 °C/1 h displayed better wear resistance than cryogenic treated ones. A change in wear mechanism between dry and wet conditions was observed; two body wear mechanism predominated respect to three body. In both; dry and wet conditions the microstructure (several inter-splat oxides) as well as strain and residual stress promotes brittle material removal which was more evident in cryogenic and as-sprayed samples during dry test and at higher loads in wet conditions.
NASA Astrophysics Data System (ADS)
Dubey, Shivangi; Subohi, Oroosa; Kurchania, Rajnish
2018-07-01
This paper reports the detailed study of the effect of different wet chemical synthesis routes (solution combustion, co-precipitation, and sol-gel route) on the microstructure, phase formation, dielectric, electrical, and ferroelectric properties of five-layered Aurivillius oxides: A2Bi4Ti5O18 (A = Ba, Pb, and Sr). Different synthesis parameters like the precursors used, synthesis temperature, and reaction time affects the morphology of the ceramics. Microstructure in turn influences the dielectric and ferroelectric properties. It was observed that the sol-gel-synthesized ceramics possess higher dielectric constant and remanent polarization, low dielectric loss due to lower conductivity in these samples as a result of higher density in these compounds as compared to those synthesized by other wet chemical synthesis routes such as solution combustion route and co-precipitation technique. The XRD data are used for phase analysis and surface morphology is studied using SEM images. Dielectric and electrical properties are investigated as a function of frequency and temperature.
Dopamine-Mediated Sclerotization of Regenerated Chitin in Ionic Liquid
Oh, Dongyeop X.; Shin, Sara; Lim, Chanoong; Hwang, Dong Soo
2013-01-01
Chitin is a promising structural material for biomedical applications, due to its many advantageous properties and abundance in nature. However, its usage and development in the biomedical field have been stagnant, because of chitin’s poor mechanical properties in wet conditions and the difficulties in transforming it into an applicable form. To overcome these challenges, we created a novel biomimetic chitin composite. This regenerated chitin, prepared with ionic liquid, showed improved mechanical properties in wet conditions by mimicking insect cuticle and squid beak sclerotization, i.e., catechol-meditated cross-linking. By ionic liquid-based heat treatment, dopamine oxidation produced melanin-like compounds and dopamine-meditated cross-links without any solvent evaporation and oxidant utilization. The dopamine-meditated sclerotization increased the ultimate tensile strength (UTS) of the regenerated chitin by 2.52-fold, measured after six weeks of phosphate-buffered saline (PBS) submersion. In addition, the linear swelling ratio (LSR) of the chitin film was reduced by about 22%. This strategy raises a possibility of using regenerated chitin as an artificial hard tissue in wet conditions. PMID:28788308
NASA Astrophysics Data System (ADS)
Reyerson, P. E.; Santos, G.; Alexandre, A. E.; Harutyunyan, A.; Badeck, F.; Cattivelli, L.
2013-12-01
Radiocarbon dating of C encapsulated in phytoliths (phytC) is being explored as an age control tool in many Earth Science disciplines with limited success. However, because plants take up small amounts of C (1-3%) of varying ages from soils, recent studies have suggested that phytC is at least partially derived from soil organic matter (SOM) based on anomalously old 14C phytC ages derived from living plants. It appears that most phytolith digestion methods are not able to fully dissolve the more weathering-resistant SOM already stored in plant tissue [2,3], leading to a proportional increase of transported soil-C residues, thus biasing the 14C values [4]. We extracted phytoliths from graminae spp. grown in free-air carbon enrichment experiments (FACE). For each grass set, one group was grown under 14C-free elevated CO2 conditions (shifting the bulk plant tissue towards thousands of years old) while the other was grown under ambient atmospheric CO2. We used two newly developed protocols, which produce pure phytoliths [5]: a multiple-step wet-oxidation process with KOH digestion (pH≥14); and a multiple-step dry ashing at 500°C coupled with wet-oxidation. Radiocarbon analyses of phytC yielded initially contradictory results: a) when phytoliths were extracted by both protocols, ambient-air phytC 14C ages were thousands of years old; b) when a mild wet-oxidation extraction was employed (KOH; pH≥11), ambient-air 14C phytC values were post-bomb (modern), but still 14C depleted. To evaluate the thermal behavior of the C species of phytC, we used a thermal-optical C aerosol analyzer, with a stepwise temperature ramp from zero to 860°C under an oxidizing atmosphere. Thermograms indicate that the phytoliths contain a complex array of phytC molecules, with some of the C species released at temperatures as low as 300°C, and suggesting that phytC is formed by a continuum of C (possibly of several ages). This was verified by 'roasting' duplicates of pure phytolith extracts obtained through wet-oxidation protocol (enriched and ambient), which yielded ages thousands of years old, similar to the previous 14C results. These findings suggest that aggressive cleaning steps (ashing at 500°C, high pH) isolate this oldest C fraction, as less recalcitrant forms of C were lost. These results imply that most phytC is of photosynthetic origin; however, phytC from living plants often fail to produce contemporaneous 14C values, which also implies that some of the old soil-C stored in plant tissue can be transported and encapsulated within phytoliths leading to erroneous 14C age chronologies. We also attempted to map the Si distribution of individual phytoliths and biosilica fragments through SEM and NanoSIMS, which will also be shown and discussed. [1] Santos et al. 2010 Radiocarbon 52:113 [2] Santos et al. 2012 Biogeosci. 9:1873 [3] Sullivan and Parr 2013 Biogeosci. 10:977 [4] Santos et al. 2012 Biogeosci. Discussion 9:C6114 [5] Corbineau et al. 2013 R. Paleobot. Palyn. 197: 179
Modulation of cytokine and nitric oxide by mesenchymal stem cell transfer in lung injury/fibrosis
2010-01-01
Background No effective treatment for acute lung injury and fibrosis currently exists. Aim of this study was to investigate the time-dependent effect of bone marrow-derived mesenchymal stem cells (BMDMSCs) on bleomycin (BLM)-induced acute lung injury and fibrosis and nitric oxide metabolites and inflammatory cytokine production. Methods BMDMSCs were transferred 4 days after BLM inhalation. Wet/dry ratio, bronchoalveolar lavage cell profiles, histologic changes and deposition of collagen were analyzed. Results Nitrite, nitrate and cytokines were measured weekly through day 28. At day 7, the wet/dry ratio, neutrophilic inflammation, and amount of collagen were elevated in BLM-treated rats compared to sham rats (p = 0.05-0.002). Levels nitrite, nitrate, IL-1β, IL-6, TNF-α, TGF-β and VEGF were also higher at day 7 (p < 0.05). Degree of lymphocyte and macrophage infiltration increased steadily over time. BMDMSC transfer significantly reduced the BLM-induced increase in wet/dry ratio, degree of neutrophilic infiltration, collagen deposition, and levels of the cytokines, nitrite, and nitrate to those in sham-treated rats (p < 0.05). Fluorescence in situ hybridization localized the engrafted cells to areas of lung injury. Conclusion Systemic transfer of BMDMSCs effectively reduced the BLM-induced lung injury and fibrosis through the down-regulation of nitric oxide metabolites, and proinflammatory and angiogenic cytokines. PMID:20137099
USDA-ARS?s Scientific Manuscript database
Future liquid fuel demand from renewable sources may, in part, be met by converting the seasonally wet portions of the landscape currently managed for soil and water conservation to perennial energy crops. However, this shift may increase nitrous oxide (N2O) emissions, thus limiting the carbon benef...
NASA Astrophysics Data System (ADS)
Tikhomirov, Alexander A.; Kudenko, Yurii; Trifonov, Sergei; Ushakova, Sofya
Inclusion of products of human and plant wastes' `wet' incineration in 22 medium using alter-nating current into matter recycling of biological-technical life support system (BTLSS) has been considered. Fluid and gaseous components have been shown to be the products of such processing. In particular, the final product contained all necessary for plant cultivation nitrogen forms: NO2, NO3, NH4+. As the base solution included urine than NH4+ form dominated. At human solid wastes' mineralization NO2 NH4+ were registered in approximately equal amount. Comparative analysis of mineral composition of oxidized human wastes' and standard Knop solutions has been carried out. On the grounds of that analysis the dilution methods of solutions prepared with addition of oxidized human wastes for their further use for plant irrigation have been suggested. Reasonable levels of wheat productivity cultivated at use of given solutions have been obtained. CO2, N2 and O2 have been determined to be the main gas components of the gas admixture emitted within the given process. These gases easily integrate in matter recycling process of closed ecosystem. The data of plants' cultivation feasibility in the atmosphere obtained after closing of gas loop including physicochemical facility and vegetation chamber with plants-representatives of LSS phototrophic unit has been received. Conclusion of advance research on creation of matter recycling process in the integrated physical-chemical-biological model system has been drawn.
Effects of wet etch processing on laser-induced damage of fused silica surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battersby, C.L.; Kozlowski, M.R.; Sheehan, L.M.
1998-12-22
Laser-induced damage of transparent fused silica optical components by 355 nm illumination occurs primarily at surface defects produced during the grinding and polishing processes. These defects can either be surface defects or sub-surface damage.Wet etch processing in a buffered hydrogen fluoride (HF) solution has been examined as a tool for characterizing such defects. A study was conducted to understand the effects of etch depth on the damage threshold of fused silica substrates. The study used a 355 nm, 7.5 ns, 10 Hz Nd:YAG laser to damage test fused silica optics through various wet etch processing steps. Inspection of the surfacemore » quality was performed with Nomarski microscopy and Total Internal Reflection Microscopy. The damage test data and inspection results were correlated with polishing process specifics. The results show that a wet etch exposes subsurface damage while maintaining or improving the laser damage performance. The benefits of a wet etch must be evaluated for each polishing process.« less
NASA Astrophysics Data System (ADS)
Su, Junwei
Dropwise condensation (DWC) on hydrophobic surfaces is attracting attention for its great potential in many industrial applications, such as steam power plants, water desalination, and de-icing of aerodynamic surfaces, to list a few. The direct dynamic characterization of liquid/solid interaction can significantly accelerate the progress toward a full understanding of the thermal and mass transport mechanisms during DWC processes. The research focuses on the development of a novel acoustic-based technique for analyzing the liquid/solid interactions of different condensations on micro- and nanostructured surfaces including DWC. hi addition. the newly developed technology was demonstrated for quantitatively sensing different wetting states of liquid on rough surfaces. First, different micro/nanostructures were fabricated on the quartz crystal microbalance (QCM), which serves as acoustic sensor. Polymethyl methacrylate (PMMA) micropillars, with varying heights from 6.03 to 25.02 microm, were fabricated on a quartz crystal microbalance (QCM) substrate by thermal nanoimprinting lithography to form pillar-based QCM (QCM-P). For nanostructured QCM. a copper layer was deposited on the QCM surface and then nanostructures of copper oxide (CuO) films were formed via chemical oxidation in an alkaline solution. Then, these surfaces were treated to make them superhydrophilic or superhydrophobic using oxygen plasma treatment or with coating of 1H,1 H,2H,2H-perfluorooctyl-trichlorosilane (PFOTS). Based on the geometry of these micro/nanostructures, the relationship between the frequency responses of QCM and the wetting states of these surfaces was theoretically investigated. Different theoretical models were established to describing the frequency shift of the micro- and nanostructured QCM in different wetting states. For the microstructured surface, the cantilever based model and a two-degree-of-freedom dynamic model were applied to predict the frequency shift of the QCM-P in different wetting states, by taking advantage of the well-defined micropillar structures. For the nanostructured surface, the gravimetric term was applied for the penetrated liquid as it moves synchronously with the oscillating crystal surface. It was revealed that the penetrated wetting state (Wenzel state) causes one order of magnitude higher frequency shift of the QCM than the suspended state (Cassie state) does. For the suspended state, the equivalent liquid mass on the tips of the roughness dominates the frequency shift signal instead of the damping. A nonlinear relationship appears between the frequency shift and micropillar height for both Cassie and Wenzel wetting states, due to the vibration phase veering at the "critical height". This implied that a significant improvement of sensitivity of QCM-P over traditional QCM occurred in the suspended state, as well as in the penetrated state. Besides, the suspended state provides a much higher quality factor than penetrated state. Using the insights gained from the experimental results and modeling results, the frequency shift of the QCM was normalized to reveal the wetting state directly. Then. the QCM device together with the microscopic observation was used to probe the droplets' growth and their coalescence processes. The normalized frequency shifts of QCM devices are clearly linked to the different condensation states at a global level, which cannot be characterized by other techniques such as E-SEM and TEM. The characterization of the trapped liquid in micro/nanostructures, which is very challenging for microscopic observation, can be easily carried out by this acoustic technique. These results quantitatively demonstrated the different condensation states. In addition, the transition between the Cassie and the Wenzel states was successfully captured by this method. The newly developed QCM system provides a valuable tool for the dynamic characterization of different condensation processes.
NASA Astrophysics Data System (ADS)
Kazil, J.; McKeen, S.; Kim, S.-W.; Ahmadov, R.; Grell, G. A.; Talukdar, R. K.; Ravishankara, A. R.
2014-12-01
Currently, HFC-134a (1,1,1,2-tetrafluoroethane) is the most common refrigerant in automobile air conditioners. This high global warming potential substance (100 year GWP of 1370) will likely be phased out and replaced with HFO-1234yf (2,3,3,3-tetrafluoropropene) that has a 100 year GWP of 4. HFO-1234yf will be oxidized to produce trifluoroacetic acid (TFA) in clouds. TFA, a mildly toxic substance with detrimental effects on some aquatic organisms at high concentrations (≥100μgL-1), would be transported by rain to the surface and enter bodies of water. We investigated the dry and wet deposition of TFA from HFO-1234yf over the contiguous USA using the Advanced Research Weather Research and Forecasting model (ARW) with interactive chemical, aerosol, and cloud processes (WRF/Chem) model. Special focus was placed on emissions from three continental USA regions with different meteorological characteristics. WRF/Chem simulated meteorology, cloud processes, gas and aqueous phase chemistry, and dry and wet deposition between May and September 2006. The model reproduced well the multimonth total sulfate wet deposition (4% bias) and its spatial variability (r = 0.86) observed by the National Atmospheric Deposition Program. HFO-1234yf emissions were obtained by assuming the number of automobile air conditioners to remain unchanged, and substituting HFO-1234yf, mole-per-mole for HFC-134a. Our estimates of current HFC-134a emissions were in agreement with field data. Average TFA rainwater concentration was 0.89μgL-1, with peak values of 7.8μgL-1, for the May-September 2006 period over the contiguous USA. TFA rainwater concentrations over the dry western USA were often significantly higher, but wet-deposited TFA amounts remained relatively low at such locations.
Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Q.; Farmer, D. K.; Rizzo, L. V.
Real-time mass spectra of non-refractory component of submicron aerosol particles were recorded in a tropical rainforest in the central Amazon basin during the wet season of 2008, as a part of the Amazonian Aerosol Characterization Experiment (AMAZE-08). Organic components accounted on average for more than 80% of the non-refractory submicron particle mass concentrations during the period of measurements. Ammonium was present in sufficient quantities to halfway neutralize sulfate. In this acidic, isoprene-dominated, low-NOx environment the high-resolution mass spectra as well as mass closures with ion chromatography measurements did not provide evidence for significant contributions of organosulfate species, at least atmore » concentrations above uncertainty levels. Positive-matrix factorization of the time series of particle mass spectra identified four statistical factors to account for the variance of the signal intensities of the organic constituents: a factor HOA having a hydrocarbon-like signature and identified as regional emissions of primary organic material, a factor OOA-1 associated with fresh production of secondary organic material by a mechanism of BVOC oxidation followed by gas-to-particle conversion, a factor OOA-2 consistent with reactive uptake of isoprene oxidation products, especially epoxydiols by acidic particles, and a factor OOA-3 associated with long range transport and atmospheric aging. The OOA-1, -2, and -3 factors had progressively more oxidized signatures. Diameter-resolved mass spectral markers also suggested enhanced reactive uptake of isoprene oxidation products to the accumulation mode for the OOA-2 factor, and such size partitioning can be indicative of in-cloud process. The campaign-average factor loadings were in a ratio of 1.1:1.0 for the OOA-1 compared to the OOA-2 pathway, suggesting the comparable importance of gas-phase compared to particle-phase (including cloud waters) production pathways of secondary organic material during the study period.« less
Corrosion Behavior of Ti60 Alloy under a Solid NaCl Deposit in Wet Oxygen Flow at 600 °C
Fan, Lei; Liu, Li; Yu, Zhongfen; Cao, Min; Li, Ying; Wang, Fuhui
2016-01-01
The corrosion behavior of Ti60 alloy covered with a solid NaCl deposit in wet oxygen flow at 600 °C has been studied further by SEM, EDX, XPS, XRD, TEM and EPMA analysis. The results show that solid NaCl and H2O react with Ti oxides, which destroyed the Ti oxide scale to yield the non-protective Na4Ti5O12 and other volatile species. The resulting corrosion product scale was multilayered and contained abundant rapid diffusion channels leading to the fast diffusion which improved the corrosion rate. A possible mechanism has been proposed for the NaCl-covered Ti60 alloy, based on the experimental results. PMID:27357732
Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols.
McNeill, V Faye
2015-02-03
Over the past decade, it has become clear that aqueous chemical processes occurring in cloud droplets and wet atmospheric particles are an important source of organic atmospheric particulate matter. Reactions of water-soluble volatile (or semivolatile) organic gases (VOCs or SVOCs) in these aqueous media lead to the formation of highly oxidized organic particulate matter (secondary organic aerosol; SOA) and key tracer species, such as organosulfates. These processes are often driven by a combination of anthropogenic and biogenic emissions, and therefore their accurate representation in models is important for effective air quality management. Despite considerable progress, mechanistic understanding of some key aqueous processes is still lacking, and these pathways are incompletely represented in 3D atmospheric chemistry and air quality models. In this article, the concepts, historical context, and current state of the science of aqueous pathways of SOA formation are discussed.
Integration of Electrodeposited Ni-Fe in MEMS with Low-Temperature Deposition and Etch Processes
Schiavone, Giuseppe; Murray, Jeremy; Perry, Richard; Mount, Andrew R.; Desmulliez, Marc P. Y.; Walton, Anthony J.
2017-01-01
This article presents a set of low-temperature deposition and etching processes for the integration of electrochemically deposited Ni-Fe alloys in complex magnetic microelectromechanical systems, as Ni-Fe is known to suffer from detrimental stress development when subjected to excessive thermal loads. A selective etch process is reported which enables the copper seed layer used for electrodeposition to be removed while preserving the integrity of Ni-Fe. In addition, a low temperature deposition and surface micromachining process is presented in which silicon dioxide and silicon nitride are used, respectively, as sacrificial material and structural dielectric. The sacrificial layer can be patterned and removed by wet buffered oxide etch or vapour HF etching. The reported methods limit the thermal budget and minimise the stress development in Ni-Fe. This combination of techniques represents an advance towards the reliable integration of Ni-Fe components in complex surface micromachined magnetic MEMS. PMID:28772683
Chondritic Meteorites: Nebular and Parent-Body Formation Process
NASA Technical Reports Server (NTRS)
Rubin, Alan E.
1997-01-01
Chondritic meteorites are the products of condensation, agglomeration and accretion of material in the solar nebula; these objects are the best sources of information regarding processes occurring during the early history of the solar system. We obtain large amounts of high-quality chemical and petrographic data and use them to infer chemical fractionation processes that occurred in the solar nebula and on meteorite parent bodies during thermal metamorphism, shock metamorphism and aqueous alteration. We compare diverse groups of chondrites and model their different properties in terms of processes that differed at different nebular locations or on different parent-bodies. In order to expand our set of geochemically important elements (particularly Si, C, P and S) and to distinguish the different oxidation states of Fe, Greg Kallemeyn spent three months (1 Sept. - 30 Nov. 1995) at the Smithsonian Institution to learn Eugene Jarosewich's wet chemical techniques. Key specimens from the recently established CK, CR and R chondrite groups were analyzed.
A wet chemical method for the estimation of carbon in uranium carbides.
Chandramouli, V; Yadav, R B; Rao, P R
1987-09-01
A wet chemical method for the estimation of carbon in uranium carbides has been developed, based on oxidation with a saturated solution of sodium dichromate in 9M sulphuric acid, absorption of the evolved carbon dioxide in a known excess of barium hydroxide solution, and titration of the excess of barium hydroxide with standard potassium hydrogen phthalate solution. The carbon content obtained is in good agreement with that obtained by combustion and titration.
NASA Astrophysics Data System (ADS)
Ayers, J. C.; Patton, B.; Fry, D. C.; Goodbred, S. L., Jr.
2017-12-01
Soil samples were collected on Polder 32 in the coastal zone of SW Bangladesh in wet (October) and dry (May) seasons from 2013-2017 and analyzed to characterize the problems of soil salinization and arsenic contamination and identify their causes. Soils are entisols formed from recently deposited, predominantly silt-sized sediments with low carbon concentrations typical of the local mangrove forests. Soluble (DI extract) arsenic concentrations were below the Government of Bangladesh limit of 50 ppb for drinking water. Soil acidity and extract arsenic concentrations exhibit spatial variation but no consistent trends. In October soil extract As is higher and S and pH are lower than in May. These observations suggest that wet season rainwater oxidizes pyrite, reducing soil S and releasing H+, causing pH to decrease. Released iron is oxidized to form Hydrous Ferric Oxyhydroxides (HFOs), which sorb As and increase extractable As in wet season soils. Changes in pH are small due to pH buffering by soil carbonates. Soil and rice paddy water salinities are consistently higher in May than October, reaching levels in May that reduce rice yields. Rice grown in paddies should be unaffected by salt concentrations in the wet season, while arsenic concentrations in soil may be high enough to cause unsafe As levels in produced rice.
Method for making monolithic metal oxide aerogels
Droege, M.W.; Coronado, P.R.; Hair, L.M.
1995-03-07
Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels. 6 figs.
Method for making monolithic metal oxide aerogels
Droege, Michael W.; Coronado, Paul R.; Hair, Lucy M.
1995-01-01
Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels.
An investigation into underwater wet welding using the flux cored arc welding process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brydon, A.M.; Nixon, J.H.
1995-12-31
For the last two years, Cranfield has been carrying out a program of process investigations into wet underwater welding (Graham and Nixon 1993, Nixon and Webb 1994), and has demonstrated that it is possible to markedly improve the stability and consistency of the process by using control techniques developed for hyperbaric welding. In the project reported below, an initial evaluation of wet flux cored arc welding was undertaken. Although there continues to be considerable resistance to the use of wet welding on structures in the North Sea, continued pressure to reduce repair and maintenance costs is causing the industry tomore » re-examine techniques previously discounted, such as wet welding (Anon 1993).« less
Abushammala, Mohammed F M; Basri, Noor Ezlin Ahmad; Elfithri, Rahmah
2013-12-01
Methane (CH₄) emissions and oxidation were measured at the Air Hitam sanitary landfill in Malaysia and were modeled using the Intergovernmental Panel on Climate Change waste model to estimate the CH₄ generation rate constant, k. The emissions were measured at several locations using a fabricated static flux chamber. A combination of gas concentrations in soil profiles and surface CH₄ and carbon dioxide (CO₂) emissions at four monitoring locations were used to estimate the CH₄ oxidation capacity. The temporal variations in CH₄ and CO₂ emissions were also investigated in this study. Geospatial means using point kriging and inverse distance weight (IDW), as well as arithmetic and geometric means, were used to estimate total CH₄ emissions. The point kriging, IDW, and arithmetic means were almost identical and were two times higher than the geometric mean. The CH₄ emission geospatial means estimated using the kriging and IDW methods were 30.81 and 30.49 gm(−2) day(−1), respectively. The total CH₄ emissions from the studied area were 53.8 kg day(−1). The mean of the CH₄ oxidation capacity was 27.5 %. The estimated value of k is 0.138 year(−1). Special consideration must be given to the CH₄ oxidation in the wet tropical climate for enhancing CH₄ emission reduction.
An oxidized liquid metal-based microfluidic platform for tunable electronic device applications.
Li, Guangyong; Parmar, Mitesh; Lee, Dong-Weon
2015-02-07
Easy movement of oxidized Galinstan in microfluidic channels is a promising way for the wide application of the non-toxic liquid metal. In this paper, two different surface modification techniques (physical and chemical) are reported, which dramatically improve the non-wetting characteristics of oxidized Galinstan in the microfluidic channel. In the physical technique, normal paper textures are transferred to the inner wall of polydimethylsiloxane (PDMS) channels and four types of nanoparticles are then coated on the surface of the wall for further improvement of the non-wetting characteristics. Highest advancing angle of 167° and receding angle of 151° are achieved on the paper-textured PDMS with titanium oxide (TiO2) nanoparticles. In the chemical technique, three types of inorganic acids are employed to generate dual-scale structures on the PDMS surface. The inner wall surface treated with sulfuric acid (H2SO4) shows the highest contact angle of 167° and a low hysteresis of ~14° in the dynamic measurement. Creating, transporting, separating and merging of oxidized Galinstan droplets are successfully demonstrated in the fabricated PDMS microfluidic channels. After optimization of these modification techniques, the potential application of tunable capacitors and electronic filters is realized by using liquid metal-based microfluidic devices.
Dispersion of Cobalt Nanoparticles on Nanowires Grown on Silicon Carbide-Alumina Nanocomposites.
Kim, Inho; Seo, Kyeong Won; Ahn, Byoung Sung; Moon, Dong Ju; Kim, Sang Woo
2017-04-01
Silicon carbide-alumina nanocomposite supports including a nanowire architecture for a high dispersion of cobalt nanocatalysts were fabricated using a modified sol–gel process and paste extrusion process to form cylindrical shape beads, followed by thermal treatment. Well-developed aluminosilicate nanowires were formed on a nanoporous support, which are grown from a catalytic metal seed at the nanowire growth tips during heat treatment at 1,100 °C for 1 h under nitrogen gas flow. Cobalt oxide precursors were highly dispersed on the nanowires grown on the surface of the nanoporous bodies through a supercritical carbon dioxide fluid-assisted wet-impregnation process. The highly-dispersed Co nanoparticles with size of less than 10 nm were finally obtained on the nanowires via phase transitions from Co₃O₄ to CoO and from CoO to Co during the thermal reduction.
The Soil Sink for Nitrous Oxide: Trivial Amount but Challenging Question
NASA Astrophysics Data System (ADS)
Davidson, E. A.; Savage, K. E.; Sihi, D.
2015-12-01
Net uptake of atmospheric nitrous oxide (N2O) has been observed sporadically for many years. Such observations have often been discounted as measurement error or noise, but they were reported frequently enough to gain some acceptance as valid. The advent of fast response field instruments with good sensitivity and precision has permitted confirmation that some soils can be small sinks of N2O. With regards to "closing the global N2O budget" the soil sink is trivial, because it is smaller than the error terms of most other budget components. Although not important from a global budget perspective, the existence of a soil sink for atmospheric N2O presents a fascinating challenge for understanding the physical, chemical, and biological processes that explain the sink. Reduction of N2O by classical biological denitrification requires reducing conditions generally found in wet soil, and yet we have measured the N2O sink in well drained soils, where we also simultaneously measure a sink for atmospheric methane (CH4). Co-occurrence of N2O reduction and CH4 oxidation would require a broad range of microsite conditions within the soil, spanning high and low oxygen concentrations. Abiotic sinks for N2O or other biological processes that consume N2O could exist, but have not yet been identified. We are attempting to simulate processes of diffusion of N2O, CH4, and O2 from the atmosphere and within a soil profile to determine if classical biological N2O reduction and CH4 oxidation at rates consistent with measured fluxes are plausible.
Hutchins, Daniel O; Acton, Orb; Weidner, Tobias; Cernetic, Nathan; Baio, Joe E; Castner, David G; Ma, Hong; Jen, Alex K-Y
2012-11-15
Ultra-thin self-assembled monolayer (SAM)-oxide hybrid dielectrics have gained significant interest for their application in low-voltage organic thin film transistors (OTFTs). A [8-(11-phenoxy-undecyloxy)-octyl]phosphonic acid (PhO-19-PA) SAM on ultrathin AlO x (2.5 nm) has been developed to significantly enhance the dielectric performance of inorganic oxides through reduction of leakage current while maintaining similar capacitance to the underlying oxide structure. Rapid processing of this SAM in ambient conditions is achieved by spin coating, however, as-cast monolayer density is not sufficient for dielectric applications. Thermal annealing of a bulk spun-cast PhO-19-PA molecular film is explored as a mechanism for SAM densification. SAM density, or surface coverage, and order are examined as a function of annealing temperature. These SAM characteristics are probed through atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure spectroscopy (NEXAFS). It is found that at temperatures sufficient to melt the as-cast bulk molecular film, SAM densification is achieved; leading to a rapid processing technique for high performance SAM-oxide hybrid dielectric systems utilizing a single wet processing step. To demonstrate low-voltage devices based on this hybrid dielectric (with leakage current density of 7.7×10 -8 A cm -2 and capacitance density of 0.62 µF cm -2 at 3 V), pentacene thin-film transistors (OTFTs) are fabricated and yield sub 2 V operation and charge carrier mobilites of up to 1.1 cm 2 V -1 s -1 .
Hutchins, Daniel O.; Acton, Orb; Weidner, Tobias; Cernetic, Nathan; Baio, Joe E.; Castner, David G.; Ma, Hong; Jen, Alex K.-Y.
2013-01-01
Ultra-thin self-assembled monolayer (SAM)-oxide hybrid dielectrics have gained significant interest for their application in low-voltage organic thin film transistors (OTFTs). A [8-(11-phenoxy-undecyloxy)-octyl]phosphonic acid (PhO-19-PA) SAM on ultrathin AlOx (2.5 nm) has been developed to significantly enhance the dielectric performance of inorganic oxides through reduction of leakage current while maintaining similar capacitance to the underlying oxide structure. Rapid processing of this SAM in ambient conditions is achieved by spin coating, however, as-cast monolayer density is not sufficient for dielectric applications. Thermal annealing of a bulk spun-cast PhO-19-PA molecular film is explored as a mechanism for SAM densification. SAM density, or surface coverage, and order are examined as a function of annealing temperature. These SAM characteristics are probed through atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure spectroscopy (NEXAFS). It is found that at temperatures sufficient to melt the as-cast bulk molecular film, SAM densification is achieved; leading to a rapid processing technique for high performance SAM-oxide hybrid dielectric systems utilizing a single wet processing step. To demonstrate low-voltage devices based on this hybrid dielectric (with leakage current density of 7.7×10−8 A cm−2 and capacitance density of 0.62 µF cm−2 at 3 V), pentacene thin-film transistors (OTFTs) are fabricated and yield sub 2 V operation and charge carrier mobilites of up to 1.1 cm2 V−1 s−1. PMID:24288423
Volatiles in the Earth: All shallow and all recycled
NASA Technical Reports Server (NTRS)
Anderson, Don L.
1994-01-01
A case can be made that accretion of the Earth was a high-temperature process and that the primordial Earth was dry. A radial zone-refining process during accretion may have excluded low-melting point and volatile material, including large-ion lithophile elements toward the surface, leaving a refractory and zoned interior. Water, sediments and altered hydrous oceanic crust are introduced back into the interior by subduction, a process that may be more efficient today than in the past. Seismic tomography strongly suggests that a large part of the uppermantle is above the solidus, and this implies wet melting. The mantle beneath Archean cratons has very fast seismic velocities and appears to be strong to 150 km or greater. This is consistent with very dry mantle. It is argued that recycling of substantial quantities of water occurs in the shallow mantle but only minor amounts recycle to depths greater than 200 km. Recycling also oxidizes that mantle; ocean island ('hotspot') basalts are intermediate in oxidation state to island-arc and midocean ridge basalts (MORB). This suggests a deep uncontaminated reservoir for MORB. Plate tectonics on a dry Earth is discussed in order to focus attention on inconsistencies in current geochemical models of terrestrial evolution and recycling.
Engineering development and demonstration of DETOX{sup SM} wet oxidation for mixed waste treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhooge, P.M.; Goldblatt, S.D.; Moslander, J.E.
1997-12-01
DETOX{sup SM}, a catalyzed chemical oxidation process, is under development for treatment of hazardous and mixed wastes at Department of Energy sites. To support this effort, developmental engineering studies have been formed for aspects of the process to help ensure safe and effective operation. Subscale agitation studies have been preformed to identify a suitable mixing head and speed for the primary reaction vessel agitator. Mechanisms for feeding solid waste materials to the primary reaction vessel have been investigated. Filtration to remove solid field process residue, and the use of various filtration aids, has been studied. Extended compatibility studies on themore » materials of construction have been performed. Due to a change to Rocky Flats Environmental Technology Site (RFETS) for the mixed waste portion of the demonstration, types of wastes suitable and appropriate for treatment at RFETS had to be chosen. A Prototype unit has been fabricated and will be demonstrated on hazardous and mixed wastes at Savannah River Site (SRS) and RFETS during 1997 and 1998. The unit is in shakedown testing at present. Data validation and an engineering evaluation will be performed during the demonstration.« less
Towards the Knittability of Graphene Oxide Fibres
Seyedin, Shayan; Romano, Mark S.; Minett, Andrew I.; Razal, Joselito M.
2015-01-01
Recent developments in graphene oxide fibre (GO) processing include exciting demonstrations of hand woven textile structures. However, it is uncertain whether the fibres produced can meet the processing requirements of conventional textile manufacturing. This work reports for the first time the production of highly flexible and tough GO fibres that can be knitted using textile machinery. The GO fibres are made by using a dry-jet wet-spinning method, which allows drawing of the spinning solution (the GO dispersion) in several stages of the fibre spinning process. The coagulation composition and spinning conditions are evaluated in detail, which led to the production of densely packed fibres with near-circular cross-sections and highly ordered GO domains. The results are knittable GO fibres with Young’s modulus of ~7.9 GPa, tensile strength of ~135.8 MPa, breaking strain of ~5.9%, and toughness of ~5.7 MJ m−3. The combination of suitable spinning method, coagulation composition, and spinning conditions led to GO fibres with remarkable toughness; the key factor in their successful knitting. This work highlights important progress in realising the full potential of GO fibres as a new class of textile. PMID:26459866
NASA Technical Reports Server (NTRS)
Jagow, R. B.
1972-01-01
Laboratory investigations to define optimum process conditions for oxidation of fecal/urine slurries were conducted in a one-liter batch reactor. The results of these tests formed the basis for the design, fabrication, and testing of an initial prototype system, including a 100-hour design verification test. Areas of further development were identified during this test. Development of a high pressure slurry pump, materials corrosion studies, oxygen supply trade studies, comparison of salt removal water recovery devices, ammonia removal investigation, development of a solids grinder, reactor design studies and bearing life tests, and development of shutoff valves and a back pressure regulator were undertaken. The development work has progressed to the point where a prototype system suitable for manned chamber testing can be fabricated and tested with a high degree of confidence of success.
Duan, Qiannan; Lee, Jianchao; Chen, Han; Zheng, Yunyun
2017-12-01
A novel magnetically separable magnetic activated carbon supporting-copper (MCAC) catalyst for catalytic wet peroxide oxidation (CWPO) was prepared by chemical impregnation. The prepared samples were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, and scanning electron microscopy (SEM) equipped with energy dispersive spectrometry (EDS). The catalytic performance of the catalysts was evaluated by direct violet (D-BL) degradation in CWPO experiments. The influence of preparative and operational parameters (dipping conditions, calcination temperature, catalyst loading H 2 O 2 dosage, pH, reaction temperature, additive salt ions and initial D-BL concentration) on degradation performance of CWPO process was investigated. The resulting MCAC catalyst showed higher reusability in direct violet oxidation than the magnetic activated carbon (MAC). Besides, dynamic tests also showed the maximal degradation rate reached 90.16% and its general decoloring ability of MCAC was 34 mg g -1 for aqueous D-BL.
Gao, Qiuyue; Shi, Zhenyu; Xue, Kaiming; Ye, Ziran; Hong, Zhanglian; Yu, Xinyao; Zhi, Mingjia
2018-05-25
This work introduces the anion exchange method into the sol-gel process for the first time to prepare a metal sulfide aerogel. A porous Co 9 S 8 aerogel with a high surface area (274.2 m 2 g -1 ) and large pore volume (0.87 cm 3 g -1 ) has been successfully prepared by exchanging cobalt citrate wet gel in thioacetamide and subsequently drying in supercritical ethanol. Such a Co 9 S 8 aerogel shows enhanced supercapacitive performance and catalytic activity toward oxygen evolution reaction (OER) compared to its oxide aerogel counterpart. High specific capacitance (950 F g -1 at 1 A g -1 ), good rate capability (74.3% capacitance retention from 1 to 20 A g -1 ) and low onset overpotential for OER (220 mV) were observed. The results demonstrated here have implications in preparing various sulfide chalcogels.
Muscle sarcomere lesions and thrombosis after spaceflight and suspension unloading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, D.A.; Ellis, S.; Giometti, C.S.
1992-08-01
Extended exposure of humans to spaceflight produces a progressive loss of skeletal muscle strength. This process must be understood to design effective countermeasures. The present investigation examined hindlimb muscles from flight rats killed as close to landing as possible. Spaceflight and tail suspension-hindlimb unloading (unloaded) produced significant decreases in fiber cross-sectional areas of the adductor longus (AL), a slow-twitch antigravity muscle. However, the mean wet weight of the flight AL muscles was near normal, whereas that of the suspension unloaded AL muscles was significantly reduced. Interstitial edema within the flight AL, but not in the unloaded AL, appeared to accountmore » for this apparent disagreement.In both conditions, the slow-twitch oxidative fibers atrophied more than the fast-twitch oxidative-glycolytic fibers. Microcirculation was also compromised by spaceflight, such that there was increased formation of thrombi in the postcapillary venules and capillaries.« less
NASA Astrophysics Data System (ADS)
Gao, Qiuyue; Shi, Zhenyu; Xue, Kaiming; Ye, Ziran; Hong, Zhanglian; Yu, Xinyao; Zhi, Mingjia
2018-05-01
This work introduces the anion exchange method into the sol-gel process for the first time to prepare a metal sulfide aerogel. A porous Co9S8 aerogel with a high surface area (274.2 m2 g‑1) and large pore volume (0.87 cm3 g‑1) has been successfully prepared by exchanging cobalt citrate wet gel in thioacetamide and subsequently drying in supercritical ethanol. Such a Co9S8 aerogel shows enhanced supercapacitive performance and catalytic activity toward oxygen evolution reaction (OER) compared to its oxide aerogel counterpart. High specific capacitance (950 F g‑1 at 1 A g‑1), good rate capability (74.3% capacitance retention from 1 to 20 A g‑1) and low onset overpotential for OER (220 mV) were observed. The results demonstrated here have implications in preparing various sulfide chalcogels.
Lin, Kun-Yi Andrew; Chang, Hsuan-Ang; Chen, Ru-Chieh
2015-07-01
Metal Organic Frameworks (MOFs) represents one of the most interesting and versatile materials nowadays. As interests to explore MOFs' functionality and potential continue to grow, using MOFs as a platform/template to develop other functional materials has received a great attention recently. Among these MOF-derived materials, MOF-derived carbonaceous materials are particularly attractive owing to its simple preparation and dual characteristics from carbon and metals. Herein, we propose to prepare a cobalt-based magnetic carbonaceous nanocomposite (MCN) by one-step carbonization of the cobalt-containing MOF, ZIF-67. Because of cobalt oxide (i.e., Co3O4) in MCN, MCN not only exhibits magnetic controllability but also catalytic activity to activate Oxone. To investigate and optimize this MCN-activated Oxone process, the decolorization of a cationic dye, Rhodamine B (Rh.B) in water is selected as a model reaction. This MCN-activated Oxone process was found to be the most effective when the ratio of Oxone/MCN was 5/1. While the high temperatures significantly improved the decolorization efficiency, the high initial pH was unfavorable for the Rh.B decolorization by this catalytic Oxone process. UV irradiation and ultrasonication were both found to enhance this MCN-activated Oxone process. The recyclability test revealed that MCN can be continuously used with constant and effective catalytic activity. These features enable MCN to be a promising and interesting catalyst for the wet chemical oxidation such as the Oxone oxidation process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Carbon-based nanostructured surfaces for enhanced phase-change cooling
NASA Astrophysics Data System (ADS)
Selvaraj Kousalya, Arun
To maintain acceptable device temperatures in the new generation of electronic devices under development for high-power applications, conventional liquid cooling schemes will likely be superseded by multi-phase cooling solutions to provide substantial enhancement to the cooling capability. The central theme of the current work is to investigate the two-phase thermal performance of carbon-based nanostructured coatings in passive and pumped liquid-vapor phase-change cooling schemes. Quantification of the critical parameters that influence thermal performance of the carbon nanostructured boiling surfaces presented herein will lead to improved understanding of the underlying evaporative and boiling mechanisms in such surfaces. A flow boiling experimental facility is developed to generate consistent and accurate heat transfer performance curves with degassed and deionized water as the working fluid. New means of boiling heat transfer enhancement by altering surface characteristics such as surface energy and wettability through light-surface interactions is explored in this work. In this regard, carbon nanotube (CNT) coatings are exposed to low-intensity irradiation emitted from a light emitting diode and the subcooled flow boiling performance is compared against a non-irradiated CNT-coated copper surface. A considerable reduction in surface superheat and enhancement in average heat transfer coefficient is observed. In another work involving CNTs, the thermal performance of CNT-integrated sintered wick structures is evaluated in a passively cooled vapor chamber. A physical vapor deposition process is used to coat the CNTs with varying thicknesses of copper to promote surface wetting with the working fluid, water. Thermal performance of the bare sintered copper powder sample and the copper-functionalized CNT-coated sintered copper powder wick samples is compared using an experimental facility that simulates the capillary fluid feeding conditions of a vapor chamber. Nanostructured samples having a thicker copper coating provided a considerable increase in dryout heat flux while maintaining lower surface superheat temperatures compared to a bare sintered powder sample; this enhancement is attributed primarily to the improved surface wettability. Dynamic contact angle measurements are conducted to quantitatively compare the surface wetting trends for varying copper coating thicknesses and confirm the increase in hydrophilicity with increasing coating thickness. The second and relatively new carbon nanostructured coating, carbon nanotubes decorated with graphitic nanopetals, are used as a template to manufacture boiling surfaces with heterogeneous wettability. Heat transfer surfaces with parallel alternating superhydrophobic and superhydrophilic stripes are fabricated by a combination of oxygen plasma treatment, Teflon coating and shadow masking. Such composite wetting surfaces exhibit enhanced flow-boiling performance compared to homogeneous wetting surfaces. Flow visualization studies elucidate the physical differences in nucleate boiling mechanisms between the different heterogeneous wetting surfaces. The third and the final carbon nanomaterial, graphene, is examined as an oxidation barrier coating for liquid and liquid-vapor phase-change cooling systems. Forced convection heat transfer experiments on bare and graphene-coated copper surfaces reveal nearly identical liquid-phase and two-phase thermal performance for the two surfaces. Surface analysis after thermal testing indicates significant oxide formation on the entire surface of the bare copper substrate; however, oxidation is observed only along the grain boundaries of the graphene-coated substrate. Results suggest that few-layer graphene can act as a protective layer even under vigorous flow boiling conditions, indicating a broad application space of few-layer graphene as an ultra-thin oxidation barrier coating.
The role of nano-particles in the field of thermal spray coating technology
NASA Astrophysics Data System (ADS)
Siegmann, Stephan; Leparoux, Marc; Rohr, Lukas
2005-06-01
Nano-particles play not only a key role in recent research fields, but also in the public discussions about health and safety in nanotechnology. Nevertheless, the worldwide activities in nano-particles research increased dramatically during the last 5 to 10 years. There are different potential routes for the future production of nano-particles at large scale. The main directions envisaged are mechanical milling, wet chemical reactions or gas phase processes. Each of the processes has its specific advantages and limitations. Mechanical milling and wet chemical reactions are typically time intensive and batch processes, whereas gas phase productions by flames or plasma can be carried out continuously. Materials of interest are mainly oxide ceramics, carbides, nitrides, and pure metals. Nano-ceramics are interesting candidates for coating technologies due to expected higher coating toughness, better thermal shock and wear resistance. Especially embedded nano-carbides and-nitrides offer homogenously distributed hard phases, which enhance coatings hardness. Thermal spraying, a nearly 100 years old and world wide established coating technology, gets new possibilities thanks to optimized, nano-sized and/or nano-structured powders. Latest coating system developments like high velocity flame spraying (HVOF), cold gas deposition or liquid suspension spraying in combination with new powder qualities may open new applications and markets. This article gives an overview on the latest activities in nano-particle research and production in special relation to thermal spray coating technology.
Park, Jong Hyuk; Nagpal, Prashant; McPeak, Kevin M; Lindquist, Nathan C; Oh, Sang-Hyun; Norris, David J
2013-10-09
The template-stripping method can yield smooth patterned films without surface contamination. However, the process is typically limited to coinage metals such as silver and gold because other materials cannot be readily stripped from silicon templates due to strong adhesion. Herein, we report a more general template-stripping method that is applicable to a larger variety of materials, including refractory metals, semiconductors, and oxides. To address the adhesion issue, we introduce a thin gold layer between the template and the deposited materials. After peeling off the combined film from the template, the gold layer can be selectively removed via wet etching to reveal a smooth patterned structure of the desired material. Further, we demonstrate template-stripped multilayer structures that have potential applications for photovoltaics and solar absorbers. An entire patterned device, which can include a transparent conductor, semiconductor absorber, and back contact, can be fabricated. Since our approach can also produce many copies of the patterned structure with high fidelity by reusing the template, a low-cost and high-throughput process in micro- and nanofabrication is provided that is useful for electronics, plasmonics, and nanophotonics.
O'Reilly, Andrew M.; Chang, Ni-Bin; Wanielista, Martin P.
2012-01-01
A stormwater infiltration basin in north–central Florida, USA, was monitored from 2007 through 2008 to identify subsurface biogeochemical processes, with emphasis on N cycling, under the highly variable hydrologic conditions common in humid, subtropical climates. Cyclic variations in biogeochemical processes generally coincided with wet and dry hydrologic conditions. Oxidizing conditions in the subsurface persisted for about one month or less at the beginning of wet periods with dissolved O2 and NO3- showing similar temporal patterns. Reducing conditions in the subsurface evolved during prolonged flooding of the basin. At about the same time O2 and NO3- reduction concluded, Mn, Fe and SO42- reduction began, with the onset of methanogenesis one month later. Reducing conditions persisted up to six months, continuing into subsequent dry periods until the next major oxidizing infiltration event. Evidence of denitrification in shallow groundwater at the site is supported by median NO3-–N less than 0.016 mg L-1, excess N2 up to 3 mg L-1 progressively enriched in δ15N during prolonged basin flooding, and isotopically heavy δ15N and δ18O of NO3- (up to 25‰ and 15‰, respectively). Isotopic enrichment of newly infiltrated stormwater suggests denitrification was partially completed within two days. Soil and water chemistry data suggest that a biogeochemically active zone exists in the upper 1.4 m of soil, where organic carbon was the likely electron donor supplied by organic matter in soil solids or dissolved in infiltrating stormwater. The cyclic nature of reducing conditions effectively controlled the N cycle, switching N fate beneath the basin from NO3- leaching to reduction in the shallow saturated zone. Results can inform design of functionalized soil amendments that could replace the native soil in a stormwater infiltration basin and mitigate potential NO3- leaching to groundwater by replicating the biogeochemical conditions under the observed basin.
Transcriptional Response of Nitrifying Communities to Wetting of Dry Soil
Firestone, Mary K.
2013-01-01
The first rainfall following a severe dry period provides an abrupt water potential change that is both an acute physiological stress and a defined stimulus for the reawakening of soil microbial communities. We followed the responses of indigenous communities of ammonia-oxidizing bacteria, ammonia-oxidizing archaea, and nitrite-oxidizing bacteria to the addition of water to laboratory incubations of soils taken from two California annual grasslands following a typically dry Mediterranean summer. By quantifying transcripts for a subunit of bacterial and archaeal ammonia monooxygenases (amoA) and a bacterial nitrite oxidoreductase (nxrA) in soil from 15 min to 72 h after water addition, we identified transcriptional response patterns for each of these three groups of nitrifiers. An increase in quantity of bacterial amoA transcripts was detectable within 1 h of wet-up and continued until the size of the ammonium pool began to decrease, reflecting a possible role of transcription in upregulation of nitrification after drought-induced stasis. In one soil, the pulse of amoA transcription lasted for less than 24 h, demonstrating the transience of transcriptional pools and the tight coupling of transcription to the local soil environment. Analysis of 16S rRNA using a high-density microarray suggested that nitrite-oxidizing Nitrobacter spp. respond in tandem with ammonia-oxidizing bacteria while nitrite-oxidizing Nitrospina spp. and Nitrospira bacteria may not. Archaeal ammonia oxidizers may respond slightly later than bacterial ammonia oxidizers but may maintain elevated transcription longer. Despite months of desiccation-induced inactivation, we found rapid transcriptional response by all three groups of soil nitrifiers. PMID:23524666
Interfacial and capillary phenomena in solidification processing of metal-matrix composites
NASA Technical Reports Server (NTRS)
Asthana, R.; Tewari, S. N.
1993-01-01
Chemical and hydrodynamic aspects of wetting and interfacial phenomena during the solidification processing of metal-matrix composites are reviewed. Significant experimental results on fiber-matrix interactions and wetting under equilibrium and non-equilibrium conditions in composites of engineering interest have been compiled, based on a survey of the recent literature. Finally, certain aspects of wetting relevant to stir-casting and infiltration processing of composites are discussed.
Impregnation of Composite Materials: a Numerical Study
NASA Astrophysics Data System (ADS)
Baché, Elliott; Dupleix-Couderc, Chloé; Arquis, Eric; Berdoyes, Isabelle
2017-12-01
Oxide ceramic matrix composites are currently being developed for aerospace applications such as the exhaust, where the parts are subject to moderately high temperatures (≈ 700 ∘C) and oxidation. These composite materials are normally formed by, among other steps, impregnating a ceramic fabric with a slurry of ceramic particles. This impregnation process can be complex, with voids possibly forming in the fabric depending on the process parameters and material properties. Unwanted voids or macroporosity within the fabric can decrease the mechanical properties of the parts. In order to design an efficient manufacturing process able to impregnate the fabric well, numerical simulations may be used to design the process as well as the slurry. In this context, a tool is created for modeling different processes. Thétis, which solves the Navier-Stokes-Darcy-Brinkman equation using finite volumes, is expanded to take into account capillary pressures on the mesoscale. This formulation allows for more representativity than for Darcy's law (homogeneous preform) simulations while avoiding the prohibitive simulation times of a full discretization for the composing fibers at the representative elementary volume scale. The resulting tool is first used to investigate the effect of varying the slurry parameters on impregnation evolution. Two different processes, open bath impregnation and wet lay-up, are then studied with emphasis on varying their input parameters (e.g. inlet velocity).
Using Wet-FGD systems for mercury removal.
Díaz-Somoano, Mercedes; Unterberger, Sven; Hein, Klaus R G
2005-09-01
A plan to control mercury emissions to the atmosphere and to establish mercury emission limits has recently been elaborated by the European Commission, making it necessary to devise an efficient and cost effective mercury removal technology. Towards this end wet flue gas desulfurization units appear as a promising option for multi-pollutant control. However, more investigation on mercury removal and a greater mercury removal efficiency are required to achieve this objective. In the present work scrubber chemistry and the application of various solid additives to enhance mercury removal in wet scrubbers is evaluated. The results obtained show a significant correlation between mercury removal efficiency and the pH of the scrubber slurry and SO2 concentration. A weaker correlation was observed between oxygen or slurry concentration and removal efficiency. Finally several solid oxides were found to be effective additives for enhancing mercury capture in wet scrubbers.
A thermal microprobe fabricated with wafer-stage processing
NASA Astrophysics Data System (ADS)
Zhang, Yongxia; Zhang, Yanwei; Blaser, Juliana; Sriram, T. S.; Enver, Ahsan; Marcus, R. B.
1998-05-01
A thermal microprobe has been designed and built for high resolution temperature sensing. The thermal sensor is a thin-film thermocouple junction at the tip of an atomic force microprobe (AFM) silicon probe needle. Only wafer-stage processing steps are used for the fabrication. For high resolution temperature sensing it is essential that the junction be confined to a short distance at the AFM tip. This confinement is achieved by a controlled photoresist coating process. Experiment prototypes have been made with an Au/Pd junction confined to within 0.5 μm of the tip, with the two metals separated elsewhere by a thin insulating oxide layer. Processing begins with double-polished, n-type, 4 in. diameter, 300-μm-thick silicon wafers. Atomically sharp probe tips are formed by a combination of dry and wet chemical etching, and oxidation sharpening. The metal layers are sputtering deposited and the cantilevers are released by a combination of KOH and dry etching. A resistively heated calibration device was made for temperature calibration of the thermal microprobe over the temperature range 25-110 °C. Over this range the thermal outputs of two microprobes are 4.5 and 5.6 μV/K and is linear. Thermal and topographical images are also obtained from a heated tungsten thin film fuse.
Waldner, M H; Halter, R; Sigg, A; Brosch, B; Gehrmann, H J; Keunecke, M
2013-02-01
Traditionally EfW (Energy from Waste) plants apply a reciprocating grate to combust waste fuel. An integrated steam generator recovers the heat of combustion and converts it to steam for use in a steam turbine/generator set. This is followed by an array of flue gas cleaning technologies to meet regulatory limitations. Modern combustion applies a two-step method using primary air to fuel the combustion process on the grate. This generates a complex mixture of pyrolysis gases, combustion gases and unused combustion air. The post-combustion step in the first pass of the boiler above the grate is intended to "clean up" this mixture by oxidizing unburned gases with secondary air. This paper describes modifications to the combustion process to minimize exhaust gas volumes and the generation of noxious gases and thus improving the overall thermal efficiency of the EfW plant. The resulting process can be coupled with an innovative SNCR (Selective Non-Catalytic Reduction) technology to form a clean and efficient solid waste combustion system. Measurements immediately above the grate show that gas compositions along the grate vary from 10% CO, 5% H(2) and 0% O(2) to essentially unused "pure" air, in good agreement with results from a mathematical model. Introducing these diverse gas compositions to the post combustion process will overwhelm its ability to process all these gas fractions in an optimal manner. Inserting an intermediate step aimed at homogenizing the mixture above the grate has shown to significantly improve the quality of combustion, allowing for optimized process parameters. These measures also resulted in reduced formation of NO(x) (nitrogenous oxides) due to a lower oxygen level at which the combustion process was run (2.6 vol% O(2,)(wet) instead of 6.0 vol% O(2,)(wet)). This reduction establishes optimal conditions for the DyNOR™ (Dynamic NO(x) Reduction) NO(x) reduction process. This innovative SNCR technology is adapted to situations typically encountered in solid fuel combustion. DyNOR™ measures temperature in small furnace segments and delivers the reducing reagent to the exact location where it is most effective. The DyNOR™ distributor reacts precisely and dynamically to rapid changes in combustion conditions, resulting in very low NO(x) emissions from the stack. Copyright © 2012 Elsevier Ltd. All rights reserved.
Shanker, Uma; Bhushan, Brij; Bhattacharjee, G; Kamaluddin
2012-02-01
Iron oxide minerals are probable constituents of the sediments present in geothermal regions of the primitive earth. They might have adsorbed different organic monomers (amino acids, nucleotides etc.) and catalyzed polymerization processes leading to the formation of the first living cell. In the present work we tested the catalytic activity of three forms of iron oxides (Goethite, Akaganeite and Hematite) in the intermolecular condensation of each of the amino acids glycine and L-alanine. The effect of zinc oxide and titanium dioxide on the oligomerization has also been studied. Oligomerization studies were performed for 35 days at three different temperatures 50, 90 and 120°C without applying drying/wetting cycling. The products formed were characterized by HPLC and ESI-MS techniques. All three forms of iron oxides catalyzed peptide bond formation (23.2% of gly2 and 10.65% of ala2). The reaction was monitored every 7 days. Formation of peptides was observed to start after 7 days at 50°C. Maximum yield of peptides was found after 35 days at 90°C. Reaction at 120°C favors formation of diketopiperazine derivatives. It is also important to note that after 35 days of reaction, goethite produced dimer and trimer with the highest yield among the oxides tested. We suggest that the activity of goethite could probably be due to its high surface area and surface acidity.
Method for removal of nitrogen oxides from stationary combustion sources
NASA Technical Reports Server (NTRS)
Cooper, Charles D. (Inventor); Collins, Michelle M. (Inventor); Clausen, III, Christian A. (Inventor)
2004-01-01
A method for removing NO.sub.X from gas streams emanating from stationary combustion sources and manufacturing plants utilizes the injection of hydrogen peroxide into the gas stream for rapid gas-phase oxidation of NO to NO.sub.2 and water-soluble nitrogen acids HNO.sub.2 and HNO.sub.3. The nitrogen acids may be removed from the oxidized gas stream by wet scrubbing or by contact with a particulate alkaline material to form a nitrite/nitrate salt.
Highly porous ceramic oxide aerogels having improved flexibility
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor)
2012-01-01
Ceramic oxide aerogels incorporating periodically dispersed flexible linkages are provided. The flexible linkages impart greater flexibility than the native aerogels without those linkages, and have been shown to reduce or eliminate the need for supercritical CO.sub.2-mediated drying of the corresponding wet gels. The gels may also be polymer cross-linked via organic polymer chains that are attached to and extend from surface-bound functional groups provided or present over the internal surfaces of a mesoporous ceramic oxide particle network via appropriate chemical reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, Ting-Yang; Zhu, Jian; Li, Jian-Jun
Morphology modification of nanostructures is of great interest, because it can be used to fabricate nanostructures which are hard to be done using other methods. Different from traditional lithographic technique which is slow and expensive, morphology modification is easy, cheap, and reproducible. In this paper, modification of the optical and morphological properties of a hollow gold nanoshell (HGNS) is achieved by using H{sub 2}O{sub 2} as an oxidizer. The reshaping of these nanostructures has been demonstrated as a consequence of an oxidation process in which HGNSs are dissolved by H{sub 2}O{sub 2} under the acidic conditions provided by HCl. Wemore » investigate the oxidation process by a transmission electron microscope and propose a reshaping model involving four different shapes (HGNS, HGNS with hole, gold nanoring, and C-shaped gold nanoparticle) which are corresponding to the oxidation products of HGNSs at different pH values. Besides, the surface enhanced Raman scattering (SERS) activity of each oxidation product has been evaluated by using rhodamine 6G as the Raman active probe. It has been observed that the C-shaped gold nanoparticles which are corresponding to the oxidation products at the minimum pH value have the highest SERS activity and this result can also be interpreted by discrete-dipole approximation simulations. We demonstrate that the morphology modification of HGNSs becomes possible in a controlled manner using wet chemistry and can be used in preparation of gold nanoparticles such as HGNS with hole, gold nanoring, and C-shaped gold nanoparticle with large SERS activity. These nanostructures must have potential use in many plasmonic areas, including sensing, catalysis, and biomedicine.« less
Preparation of insect-cuticle-like biomimetic materials.
Miessner, M; Peter, M G; Vincent, J F
2001-01-01
A model system of tanning of a protein matrix within a fibrous structure, such as most commonly found in insect cuticle, was developed, using the cellulose of paper in place of chitin. The paper was impregnated with a tripeptide, DOPA-Gly-Gly, or a protein (BSA) plus catechol and treated with tyrosinase to oxidize the catechol. The resulting material was waterproof and had very high wet strength. If the material was wetted and dried repeatedly its water retention decreased by a factor of at least 2.
2005-07-01
induced selective Biochem Behav 37:825-829 tolerance in the rat. Pharmacol Biochem Behav 39:407-413 Watson NV, Gorzalka BB (1992) Concurrent wet dog shakes...Take S, Hori T, Oomura Y (1992) In vivo measurement wet- dog shake behaviour induced by 5-hydroxytryptophan in of hypothalamic serotonin release by...or the selective D2 antagonist raclopride into the SN was used to assess the differential contributions of these two receptor subtypes on glutamate
NASA Astrophysics Data System (ADS)
Sheu, Guey-Rong; Lin, Neng-Huei
2013-10-01
Thirty-four weekly rainwater samples were collected in 2009 at Pengjiayu, a remote islet in the subtropical Northwest (NW) Pacific Ocean, to study the distribution of rainwater mercury (Hg) concentrations and associated wet deposition fluxes. This is the first study concerning wet Hg deposition to the subtropical NW Pacific Ocean downwind of the East Asian continent, which is the major source region for Hg emissions worldwide. Sample Hg concentrations ranged from 2.25 to 22.33 ng L-1, with a volume-weighted mean (VWM) concentration of 8.85 ng L-1. The annual wet Hg deposition flux was 10.18 μg m-2, about 2.5 times the fluxes measured at sites on the Pacific coast of the USA, supporting the hypothesis that deposition is higher in the western than in the eastern Pacific. Seasonal VWM concentrations were 7.23, 11.58, 7.82, and 9.84 ng L-1, whereas seasonal wet deposition fluxes were 2.14, 3.45, 2.38, and 2.21 μg m-2, for spring, summer, fall and winter, respectively. Higher summer wet Hg deposition was a function of both higher rainwater Hg concentration and greater rainfall. The seasonal pattern of rainwater Hg concentrations was the opposite of the general seasonal pattern of the East Asian air pollutant export. Since there is no significant anthropogenic Hg emission source on the islet of Pengjiayu, the observed high summertime rainwater Hg concentration hints at the importance of Hg0 oxidation and/or scavenging of upper-altitude reactive gaseous Hg (RGM) by deep convection. Direct anthropogenic RGM emissions from the East Asian continent may not contribute significantly to the rainwater Hg concentrations, but anthropogenic Hg0 emissions could be transported to the upper troposphere or marine boundary layer (MBL) where they can be oxidized to produce RGM, which will then be effectively scavenged by cloud water and rainwater.
Method of adhesion between an oxide layer and a metal layer
Jennison, Dwight R.; Bogicevic, Alexander; Kelber, Jeffry A.; Chambers, Scott A.
2004-09-14
A method of controlling the wetting characteristics and increasing the adhesion between a metal and an oxide layer. By introducing a negatively-charged species to the surface of an oxide layer, layer-by-layer growth of metal deposited onto the oxide surface is promoted, increasing the adhesion strength of the metal-oxide interface. The negatively-charged species can either be deposited onto the oxide surface or a compound can be deposited that dissociates on, or reacts with, the surface to form the negatively-charged species. The deposited metal adatoms can thereby bond laterally to the negatively-charged species as well as vertically to the oxide surface as well as react with the negatively charged species, be oxidized, and incorporated on or into the surface of the oxide.
NASA Technical Reports Server (NTRS)
1975-01-01
Cost analyses and tradeoff studies are given for waste management in the Space Station, Lunar Surface Bases, and interplanetary space missions. Crew drinking water requirements are discussed and various systems to recycle water are examined. The systems were evaluated for efficiency and weight savings. The systems considered effective for urine water recovery were vapor compression, flash evaporation, and air evaporation with electrolytic pretreatment. For wash water recovery, the system of multifiltration was selected. A wet oxidation system, which can process many kinds of wastes, is also considered.
Laboratory studies of aqueous-phase oxidation of polyols in submicron particles
NASA Astrophysics Data System (ADS)
Daumit, K. E.; Carrasquillo, A. J.; Hunter, J. F.; Kroll, J. H.
2013-12-01
Aqueous-phase oxidation has received recent attention as a potential pathway for the formation of highly oxidized organic aerosol. However most aqueous oxidation studies are performed in bulk solutions rather than aqueous droplets. Here we describe experiments in which aqueous oxidation is carried out within submicron particles, allowing for gas-particle partitioning of reactants, intermediates, and products. Using Fenton chemistry as a source of hydroxyl radicals, and a high-resolution aerosol mass spectrometer (AMS) for online characterization of particle composition, we find that aqueous oxidation can be quite rapid. The formation of high concentrations of oxalic acid is observed in the particle phase with some loss of carbon to the gas phase, indicating the formation of volatile products. We see a rapid degradation of condensed-phase oxidation products upon exposure to ultraviolet lights (centered at 350 nm) suggesting that these products may exist as iron(III)-oxalate complexes. Similar results are also seen when oxidation is carried out in bulk solution (with AMS analysis of the atomized solution); however in some cases the mass loss is less than is observed for submicron particles, likely due to differences in partitioning of early-generation products. Such products can partition out of the aqueous phase at the low liquid water contents in the chamber but remain in solution for further aqueous processing in bulk oxidation experiments. This work suggests that the product distributions from oxidation in aqueous aerosol may be substantially different than those in bulk oxidation, pointing to the need to carry out aqueous oxidation studies under atmospherically relevant partitioning conditions (with liquid water contents mimicking those of cloud droplets or wet aerosol).
Postmortem Aging of Beef with a Special Reference to the Dry Aging
Khan, Muhammad I.; Jung, Samooel; Nam, Ki Chang; Jo, Cheorun
2016-01-01
Animal muscles are stored for specific period (aging) at refrigerated temperatures, during and after which the living muscles start to convert into meat and thus, attain certain superior properties in the final product. Proteolysis, lipolysis, and oxidation are the major biochemical processes involved during the postmortem aging of meat that affect the tenderness, juiciness, and flavor, as well as sometimes may introduce certain undesirable traits. This review analyzes the role of pre- and post-mortem factors that are important for aging and their effect on the chemical and physical changes in the “dry- and wet-aged meat.” Thus, if the meat processing manufacturers optimize the effects of aging for specific muscles, the palatability, color, and the shelf life of the aged meat products could be significantly enhanced. PMID:27194923
A review on solder reflow and flux application for flip chip
NASA Astrophysics Data System (ADS)
Suppiah, Sarveshvaran; Ong, Nestor Rubio; Sauli, Zaliman; Sarukunaselan, Karunavani; Alcain, Jesselyn Barro; Visvanathan, Susthitha Menon; Retnasamy, Vithyacharan
2017-09-01
This paper encompassed of the evolution and key findings, critical technical challenges, solutions and bonding equipment of solder reflow in flip chip bonding. Upon scrutinizing researches done by others, it can be deduced that peak temperature, time above liquidus, soak temperature, soak time, cooling rate and reflow environment played a vital role in achieving the desired bonding profile. In addition, flux is also needed with the purpose of removing oxides/contaminations on bump surface as well as to promote wetting of solder balls. Electromigration and warpage are the two main challenges faced by solder reflow process which can be overcome by the advancement in under bump metallization (UBM) and substrate technology. The review is ended with a brief description of the current equipment used in solder reflow process.
Pre-fired, refractory block slag dams for wet bottom furnace floors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vihnicka, R.S.; Meskimen, R.L.
1998-12-31
Slagging (wet bottom), utility boilers count on a refractory coating over the furnace floor tube structure for protection from corrosion damage from both the harsh, hot gas atmosphere from the burning fuel and the acidic coal slag. To protect and extend the life of this protective refractory coating the boiler original equipment manufacturers (OEMs) utilized a water-cooled monkey ring or slag chill ring (typically a 6--8 inch high ring of small diameter tubes) surrounding the slag tap locations on most wet bottom furnace floors (both utility and package boilers). The old water-cooled tube ring was such a high maintenance item,more » however, that it`s use has been discontinued in all but the most extreme environments throughout both utility and industrial applications. Where the use of the ring was discontinued, there has been a corresponding shortening of life on the protective floor refractory coatings (high maintenance cost), further aggravated by recent OSHA restrictions limiting the use of chrome oxide refractory materials in these types of boilers. This paper describes the developmental process and the final resultant product (a non-watercooled, slag dam made from pre-fired refractory shapes), undertaken by the inventors. Derived operational benefits a concept 2 project, with NO{sub x} Title 4 and Title 1 significance (which is currently underway) will also be detailed.« less
Growth mechanism changes in pseudo-dewetted monolayer poly(ethylene oxide) crystallization
NASA Astrophysics Data System (ADS)
Zhu, Dun-Shen; Chen, Er-Qiang; Shi, An-Chang; Cheng, Stephen
2006-03-01
Crystal growth mechanism changes have been observed in pseudo-dewetted monolayers of low molecular weight (LMW) (PEO) on freshly cleaved hydrophilic mica surfaces [HPEO(4250) which have -OH groups at both ends and MHPEO(4700) which has one -OH and one -OCH3 as end groups]. X-ray scattering reflectivity measurements show a wetted monolayer of molten PEO with a thickness of ˜ 4.5 nm on the mica surface. Non-adsorbed PEO droplets sit on top of the wetted monolayer. A two-step process for PEO single crystal growth under isothermal conditions was identified utilizing in-situ atomic force microscopy at different crystallization temperatures (Tx). In the first step, the crystal grows within the droplet which supplies the molten PEO that participates in the crystal formation. In this second-step, the wetted monolayer at the growth front is depleted by about 1.5 - 2.5 nm. The growing crystal lateral sizes obey a power law of t^α (t: time). At a high Tx of 63 C for MHPEO(4700), the growth behavior obeys r t (α = 1). While in the case of HPEO(4250), its growth behavior follows r t^0.5 (α = 0.5) in the whole Tx range. With decreasing Tx, the growth of MHPEO(4700) falls into a scaling law of r t^α (0.5 < α < 1).
Bouchar, Marie; Dillmann, Philippe; Neff, Delphine
2017-01-01
Reinforcing clamps made of low alloy steel from the Metz cathedral and corroded outdoors during 500 years were studied by OM, FESEM/EDS, and micro-Raman spectroscopy. The corrosion product layer is constituted of a dual structure. The outer layer is mainly constituted of goethite and lepidocrocite embedding exogenous elements such as Ca and P. The inner layer is mainly constituted of ferrihydrite. The behaviour of the inner layer under conditions simulating the wetting stage of the RH wet/dry atmospheric corrosion cycle was observed by in situ micro-Raman spectroscopy. The disappearance of ferrihydrite near the metal/oxide interface strongly suggests a mechanism of reductive dissolution caused by the oxidation of the metallic substrate and was observed for the first time in situ on an archaeological system. PMID:28773030
SETAC-U.S. EPA WET INITIATIVES: ALL WET AND NOTHING BUT WET
To ensure that sould scientific principles and sound science are applied to the challenging issues in t he Whole Effluent Toxicity (WET) process, the Society of Environmental Toxicology and Chemistry (SETAC) Foundation for Environmental Education was awarded a cooperative agreem...
Volatile organic compounds and isoprene oxidation products at a temperate deciduous forest site
NASA Astrophysics Data System (ADS)
Helmig, Detlev; Greenberg, Jim; Guenther, Alex; Zimmerman, Pat; Geron, Chris
1998-09-01
Biogenic volatile organic compounds (BVOCs) and their role in atmospheric oxidant formation were investigated at a forest site near Oak Ridge, Tennessee, as part of the Nashville Southern Oxidants Study (SOS) in July 1995. Of 98 VOCs detected, a major fraction were anthropogenic VOCs such as chlorofluorocarbons (CFCs), alkanes, alkenes and aromatic compounds. Isoprene was the dominant BVOC during daytime. Primary products from BVOC oxidation were methylvinylketone, methacrolein and 3-methylfuran. Other compounds studied include the BVOCs α-pinene, camphene, β-pinene, p-cymene, limonene and cis-3-hexenyl acetate and a series of light alkanes, aromatic hydrocarbons and seven of the CFCs. The correlation of meteorological parameters, with the mixing ratios of these different compounds, reveals information on atmospheric oxidation processes and transport. Long-lived VOCs show very steady mixing ratio time series. Regionally and anthropogenically emitted VOCs display distinct diurnal cycles with a strong mixing ratio decrease in the morning from the breakup of the nocturnal boundary layer. Nighttime mixing ratio increases of CFCs and anthropogenic VOCs are suspected to derive from emissions within the Knoxville urban area into the shallow nocturnal boundary layer. In contrast, the time series of BVOCs and their oxidation products are determined by a combination of emission control, atmospheric oxidation and deposition, and boundary layer dynamics. Mixing ratio time series data for monoterpenes and cis-3-hexenyl acetate suggest a temporarily emission rate increase during and after heavy rain events. The isoprene oxidation products demonstrate differences in the oxidation pathways during night and day and in their dry and wet deposition rates.
Kolar, Praveen; Kastner, James R
2010-02-01
Poultry rendering emissions contain volatile organic compounds (VOCs) that are nuisance, odorous, and smog and particulate matter precursors. Present treatment options, such as wet scrubbers, do not eliminate a significant fraction of the VOCs emitted including, 2-methylbutanal (2-MB), 3-methylbutanal, and hexanal. This research investigated the low-temperature (25-160 degrees C) catalytic oxidation of 2-MB and hexanal vapors in a differential, plug flow reactor using wood fly ash (WFA) as a catalyst and oxygen and ozone as oxidants. The oxidation rates of 2-MB and hexanal ranged between 3.0 and 3.5 x 10(-9)mol g(-1)s(-1) at 25 degrees C and the activation energies were 2.2 and 1.9 kcal mol(-1), respectively. The catalytic activity of WFA was comparable to other commercially available metal and metal oxide catalysts. We theorize that WFA catalyzed a free radical reaction in which 2-butanone and CO(2) were formed as end products of 2-MB oxidation, while CO(2), pentanal, and butanal were formed as end products of hexanal oxidation. When tested as a binary mixture at 25 and 160 degrees C, no inhibition was observed. Additionally, when ozone was tested as an oxidant at 160 degrees C, 100% removal was achieved within a 2-s reaction time. These results may be used to design catalytic oxidation processes for VOC removal at poultry rendering facilities and potentially replace energy and water intensive air pollution treatment technologies currently in use. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lesbani, Aldes; Novri Meilyana, Sarah; Karim, Nofi; Hidayati, Nurlisa; Said, Muhammad; Mohadi, Risfidian; Miksusanti
2018-01-01
Supported polyoxometalatate H4[γ-H2SiV2W10O40]·nH2O with metal oxide i.e. silica, titanium, and tantalum was successfully synthesized via wet impregnation method to form H4[γ-H2SiV2W10O40]·nH2O-Si, H4[γ-H2SiV2W10O40]·nH2O-Ti, and H4[γ-H2SiV2W10O40]·nH2O-Ta. Characterization was performed using FTIR spectroscopy, X-Ray analyses, and morphology analyses using SEM. All compounds were used as the catalyst for desulfurization of dibenzothiophene (DBT). Silica and titanium supported polyoxometalate H4[γ-H2SiV2W10O40]·nH2O better than tantalum due to retaining crystallinity after impregnation process. On the other hand, compound H H4[γ-H2SiV2W10O40]·nH2O-Ta showed high catalytic activity than other supported metal oxides for desulfurization of DBT. Optimization desulfurization process resulted in 99% conversion of DBT under a mild condition at 70 °C, 0.1 g catalyst, and reaction for 3 hours. Regeneration studies showed catalyst H4[γ-H2SiV2W10O40]·nH2O-Ti was remaining catalytic activity for desulfurization of DBT.
NASA Astrophysics Data System (ADS)
Baker, N. R.; Allison, S. D.
2013-12-01
Traditional decomposition models developed in mesic ecosystems often consistently underestimate rates of decomposition in more arid ecosystems such as deserts and Mediterranean grasslands. Photodegradation of plant litter by ultraviolet radiation (UV) is hypothesized to be one of the mechanisms accounting for the greater-than-expected rates of decomposition observed in these ecosystems. Putatively, photodegradation preferentially degrades complex aromatic compounds in litter such as lignin, whose decomposition is considered a rate-limiting step in the microbial decomposition of plant litter. This study tested the effects of attenuated ultraviolet radiation on the decomposition of two litter types over the course of a year in a Southern California Mediterranean grassland. The two types of litter differed primarily in lignin content to test for a differential effect of UV on high-lignin versus low-lignin litter. Rates of litter mass loss, changes in litter chemistry, and changes in microbial activity and microbial biomass were observed, and assays of extracellular enzymes were conducted at 5 points through the year, beginning during the dry season and continuing until the end of the following dry season. Litter exposed to attenuated ultraviolet radiation during the dry season had lower rates of mass loss than litter exposed to ambient radiation (6.1% vs. 8.6%, respectively, p < 0.04). Extracellular enzyme activities were significantly affected by UV attenuation, as low lignin samples exposed to attenuated UV displayed elevated cellulase enzyme activity potential during the wet season, while high lignin samples displayed decreased oxidative enzyme activity potential during the wet season. For example, potential activity of the cellulase cellobiohydrolase in low-lignin, ambient UV samples was 5286 μmol/hr*g during the wet season, compared to 7969 μmol/hr*g in attenuated UV samples (p < 0.003). Conversely, potential activity of the oxidative enzyme peroxidase in high-lignin, ambient UV samples was 85.9 μmol/hr*g during the wet season, compared to 44.1 μmol/hr*g in attenuated UV samples (p < 0.028). This increased potential cellulase activity under attenuated UV may indicate that dry season photodegradation primes low-lignin litter for wet season decomposition, reducing the selective pressure for microbial decomposers to invest in costly extracellular enzyme production. Similarly, the reduced potential oxidative enzyme activity in high-lignin samples exposed to attenuated UV may indicate that photodegradation is necessary to facilitate the breakdown of more complex compounds such as lignin by microbial decomposers. We conclude that while abiotic factors such as photodegradation can have a significant effect on the mechanisms of plant matter decomposition in semiarid ecosystems, these effects are not only restricted to the dry season and may also facilitate wet season decomposition.
Janjua, Muhammad Ramzan Saeed Ashraf; Jamil, Saba; Jahan, Nazish; Khan, Shanza Rauf; Mirza, Saima
2017-05-31
Morphologically controlled synthesis of ferric oxide nano/micro particles has been carried out by using solvothermal route. Structural characterization displays that the predominant morphologies are porous hollow spheres, microspheres, micro rectangular platelets, octahedral and irregular shaped particles. It is also observed that solvent has significant effect on morphology such as shape and size of the particles. All the morphologies obtained by using different solvents are nearly uniform with narrow size distribution range. The values of full width at half maxima (FWHM) of all the products were calculated to compare their size distribution. The FWHM value varies with size of the particles for example small size particles show polydispersity whereas large size particles have shown monodispersity. The size of particles increases with decrease in polarity of the solvent whereas their shape changes from spherical to rectangular/irregular with decrease in polarity of the solvent. The catalytic activities of all the products were investigated for both dry and wet processes such as thermal decomposition of ammonium per chlorate (AP) and reduction of 4-nitrophenol in aqueous media. The results indicate that each product has a tendency to act as a catalyst. The porous hollow spheres decrease the thermal decomposition temperature of AP by 140 °C and octahedral Fe 3 O 4 particles decrease the decomposition temperature by 30 °C. The value of apparent rate constant (k app ) of reduction of 4-NP has also been calculated.
Nitrous oxide fluxes and nitrogen cycling along a pasturechronosequence in Central Amazonia, Brazil
B. Wick; E. Veldkamp; W. Z. de Mello; M. Keller; P. Crill
2005-01-01
We studied nitrous oxide (N2O) fluxes and soil nitrogen (N) cycling following forest conversion to pasture in the central Amazon near Santarém, Pará, Brazil. Two undisturbed forest sites and 27 pasture sites of 0.5 to 60 years were sampled once each during wet and dry seasons. In addition to soil-atmosphere fluxes of N...
Method for dispersing catalyst onto particulate material and product thereof
Utz, Bruce R.; Cugini, Anthony V.
1992-01-01
A method for dispersing finely divided catalyst precursors onto the surface of coal or other particulate material includes the steps of forming a wet paste mixture of the particulate material and a liquid solution containing a dissolved transition metal salt, for instance a solution of ferric nitrate. The wet paste mixture is in a state of incipient wetness with all of this solution adsorbed onto the surfaces of the particulate material without the presence of free moisture. On adding a precipitating agent such as ammonia, a catalyst precursor such as hydrated iron oxide is deposited on the surfaces of the coal. The catalyst is activated by converting it to the sulfide form for the hydrogenation or direct liquefaction of the coal.
Method for dispersing catalyst onto particulate material
Utz, Bruce R.; Cugini, Anthony V.
1992-01-01
A method for dispersing finely divided catalyst precursors onto the surface of coal or other particulate material includes the steps of forming a wet paste mixture of the particulate material and a liquid solution containing a dissolved transition metal salt, for instance a solution of ferric nitrate. The wet paste mixture is in a state of incipient wetness with all of this solution adsorbed onto the surfaces of the particulate material without the presence of free moisture. On adding a precipitating agent such as ammonia, a catalyst precursor such as hydrated iron oxide is deposited on the surfaces of the coal. The catalyst is activated by converting it to the sulfide form for the hydrogenation or direct liquefaction of the coal.
40 CFR 428.80 - Applicability; description of the wet digestion reclaimed rubber subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... digestion reclaimed rubber subcategory. 428.80 Section 428.80 Protection of Environment ENVIRONMENTAL... Wet Digestion Reclaimed Rubber Subcategory § 428.80 Applicability; description of the wet digestion... discharges resulting from the production of reclaimed rubber by use of the wet digestion process. ...
40 CFR 428.80 - Applicability; description of the wet digestion reclaimed rubber subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... digestion reclaimed rubber subcategory. 428.80 Section 428.80 Protection of Environment ENVIRONMENTAL... Wet Digestion Reclaimed Rubber Subcategory § 428.80 Applicability; description of the wet digestion... discharges resulting from the production of reclaimed rubber by use of the wet digestion process. ...
Water movement in glass bead porous media: 1. Experiments of capillary rise and hysteresis
NASA Astrophysics Data System (ADS)
Lu, T. X.; Biggar, J. W.; Nielsen, D. R.
1994-12-01
Experimental observations of capillary rise and hysteresis of water or ethanol in glass beads are presented to improve our understanding of those physical processes in porous media. The results provide evidence that capillary rise into porous media cannot be fully explained by a model of cylinders. They further demonstrate that the "Ink bottle" model does not provide an adequate explanation of hysteresis. Glass beads serving as a model for ideal soil are enclosed in a rectangular glass chamber model. A TV camera associated with a microscope was used to record the processes of capillary rise and drainage. It is clearly shown during capillary rise that the fluid exhibits a "jump" behavior at the neck of the pores in an initially dry profile or at the bottom of the water film in an initially wet profile. Under an initially dry condition, the jump initiates at the particle with smallest diameter. The jump process continues to higher elevations until at equilibrium the surface tensile force is balanced by the hydrostatic force. The wetting front at that time is readily observed as flat and saturated. Under an initially wet condition, capillary rise occurs as a water film thickening process associated with the jump process. Trapped air behind the wetting front renders the wetting front irregular and unsaturated. The capillary rise into an initially wet porous medium can be higher than that into an initially dry profile. During the drying process, large surface areas associated with the gas-liquid interface develop, allowing the porous medium to retain more water than during the wetting process at the same pressure. That mechanism explains better the hysteresis phenomenon in porous media in contrast to other mechanisms that now prevail.
Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering
NASA Astrophysics Data System (ADS)
Renaud, Gilles
Experimental determinations of the atomic structure of insulating oxide surfaces and metal/oxide interfaces are scarce, because surface science techniques are often limited by the insulating character of the substrate. Grazing incidence X-ray scattering (GIXS), which is not subject to charge effects, can provide very precise information on the atomic structure of oxide surfaces: roughness, relaxation and reconstruction. It is also well adapted to analyze the atomic structure, the registry, the misfit relaxation, elastic or plastic, the growth mode and the morphology of metal/oxide interfaces during their growth, performed in situ. GIXS also allows the analysis of thin films and buried interfaces, in a non-destructive way, yielding the epitaxial relationships, and, by variation of the grazing incidence angle, the lattice parameter relaxation along the growth direction. On semi-coherent interfaces, the existence of an ordered network of interfacial misfit dislocations can be demonstrated, its Burger's vector determined, its ordering during in situ annealing cycles followed, and sometimes even its atomic structure can be addressed. Careful analysis during growth allows the modeling of the dislocation nucleation process. This review emphasizes the new information that GIXS can bring to oxide surfaces and metal/oxide interfaces by comparison with other surface science techniques. The principles of X-ray diffraction by surfaces and interfaces are recalled, together with the advantages and properties of grazing angles. The specific experimental requirements are discussed. Recent results are presented on the determination of the atomic structure of relaxed or reconstructed oxide surfaces. A description of results obtained during the in situ growth of metal on oxide surfaces is also given, as well as investigations of thick metal films on oxide surfaces, with lattice parameter misfit relaxed by an array of dislocations. Recent work performed on oxide thin films having important physical properties such as superconductivity or magnetism is also briefly reviewed. The strengths and limitations of the technique, such as the need for single crystals and surfaces of high crystalline quality are discussed. Finally, an outlook of future prospects in the field is given, such as the study of more complex oxide surfaces, vicinal surfaces, reactive metal/oxide interfaces, metal oxidation processes, the use of surfactants to promote wetting of a metal deposited on an oxide surface or the study of oxide/liquid interfaces in a non-UHV environment.
Ko, Hao-Wen; Cheng, Ming-Hsiang; Chi, Mu-Huan; Chang, Chun-Wei; Chen, Jiun-Tai
2016-03-01
We demonstrate a novel wetting method to prepare hierarchical polymer films with polymer nanotubes on selective regions. This strategy is based on the selective wetting abilities of polymer chains, annealed in different solvent vapors, into the nanopores of porous templates. Phase-separated films of polystyrene (PS) and poly(methyl methacrylate) (PMMA), two commonly used polymers, are prepared as a model system. After anodic aluminum oxide (AAO) templates are placed on the films, the samples are annealed in vapors of acetic acid, in which the PMMA chains are swollen and wet the nanopores of the AAO templates selectively. As a result, hierarchical polymer films containing PMMA nanotubes can be obtained after the AAO templates are removed. The distribution of the PMMA nanotubes of the hierarchical polymer films can also be controlled by changing the compositions of the polymer blends. This work not only presents a novel method to fabricate hierarchical polymer films with polymer nanotubes on selective regions, but also gives a deeper understanding in the selective wetting ability of polymer chains in solvent vapors.
Production of orthophosphate suspension fertilizers from wet-process acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, T.M.; Burnell, J.R.
1984-01-01
For many years, the Tennessee Valley Authority (TVA) has worked toward development of suspension fertilizers. TVA has two plants for production of base suspension fertilizers from wet-process orthophosphoric acid. One is a demonstration-scale plant where a 13-38-0 grade base suspension is produced by a three-stage ammoniation process. The other is a new batch-type pilot plant which is capable of producing high-grade base suspensions of various ratios and grades from wet-process acid. In this batch plant, suspensions and solutions can also be produced from solid intermediates.
Kwon, Jinhyeong; Cho, Hyunmin; Jung, Jinwook; Lee, Habeom; Hong, Sukjoon; Yeo, Junyeob; Han, Seungyong; Ko, Seung Hwan
2018-05-12
To date, solar energy generation devices have been widely studied to meet a clean and sustainable energy source. Among them, water splitting photoelectrochemical cell is regarded as a promising energy generation way for splitting water molecules and generating hydrogen by sunlight. While many nanostructured metal oxides are considered as a candidate, most of them have an improper bandgap structure lowering energy transition efficiency. Herein, we introduce a novel wet-based, successive photoreduction process that can improve charge transfer efficiency by surface plasmon effect for a solar-driven water splitting device. The proposed process enables to fabricate ZnO/CuO/Ag or ZnO/CuO/Au hierarchical nanostructure, having an enhanced electrical, optical, photoelectrochemical property. The fabricated hierarchical nanostructures are demonstrated as a photocathode in the photoelectrochemical cell and characterized by using various analytic tools.
Kwon, Jinhyeong; Cho, Hyunmin; Jung, Jinwook; Lee, Habeom; Han, Seungyong
2018-01-01
To date, solar energy generation devices have been widely studied to meet a clean and sustainable energy source. Among them, water splitting photoelectrochemical cell is regarded as a promising energy generation way for splitting water molecules and generating hydrogen by sunlight. While many nanostructured metal oxides are considered as a candidate, most of them have an improper bandgap structure lowering energy transition efficiency. Herein, we introduce a novel wet-based, successive photoreduction process that can improve charge transfer efficiency by surface plasmon effect for a solar-driven water splitting device. The proposed process enables to fabricate ZnO/CuO/Ag or ZnO/CuO/Au hierarchical nanostructure, having an enhanced electrical, optical, photoelectrochemical property. The fabricated hierarchical nanostructures are demonstrated as a photocathode in the photoelectrochemical cell and characterized by using various analytic tools. PMID:29757225
Wang, Jianbing; Fu, Wantao; He, Xuwen; Yang, Shaoxia; Zhu, Wanpeng
2014-08-01
The development of highly active carbon material catalysts in catalytic wet air oxidation (CWAO) has attracted a great deal of attention. In this study different carbon material catalysts (multi-walled carbon nanotubes, carbon fibers and graphite) were developed to enhance the CWAO of phenol in aqueous solution. The functionalized carbon materials exhibited excellent catalytic activity in the CWAO of phenol. After 60 min reaction, the removal of phenol was nearly 100% over the functionalized multi-walled carbon, while it was only 14% over the purified multi-walled carbon under the same reaction conditions. Carboxylic acid groups introduced on the surface of the functionalized carbon materials play an important role in the catalytic activity in CWAO. They can promote the production of free radicals, which act as strong oxidants in CWAO. Based on the analysis of the intermediates produced in the CWAO reactions, a new reaction pathway for the CWAO of phenol was proposed in this study. There are some differences between the proposed reaction pathway and that reported in the literature. First, maleic acid is transformed directly into malonic acid. Second, acetic acid is oxidized into an unknown intermediate, which is then oxidized into CO2 and H2O. Finally, formic acid and oxalic acid can mutually interconvert when conditions are favorable. Copyright © 2014. Published by Elsevier B.V.
40 CFR 425.40 - Applicability; description of the retan-wet finish-sides subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... retan-wet finish-sides subcategory. 425.40 Section 425.40 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Retan-Wet Finish-Sides Subcategory § 425.40 Applicability; description of the retan-wet finish-sides subcategory. The provisions of this subpart are applicable to process wastewater...
40 CFR 425.40 - Applicability; description of the retan-wet finish-sides subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... retan-wet finish-sides subcategory. 425.40 Section 425.40 Protection of Environment ENVIRONMENTAL... CATEGORY Retan-Wet Finish-Sides Subcategory § 425.40 Applicability; description of the retan-wet finish-sides subcategory. The provisions of this subpart are applicable to process wastewater discharges...
40 CFR 425.40 - Applicability; description of the retan-wet finish-sides subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... retan-wet finish-sides subcategory. 425.40 Section 425.40 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Retan-Wet Finish-Sides Subcategory § 425.40 Applicability; description of the retan-wet finish-sides subcategory. The provisions of this subpart are applicable to process wastewater...
40 CFR 425.40 - Applicability; description of the retan-wet finish-sides subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... retan-wet finish-sides subcategory. 425.40 Section 425.40 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Retan-Wet Finish-Sides Subcategory § 425.40 Applicability; description of the retan-wet finish-sides subcategory. The provisions of this subpart are applicable to process wastewater...
40 CFR 429.100 - Applicability; description of the wet storage subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Applicability; description of the wet... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Wet Storage Subcategory § 429.100 Applicability; description of the wet storage subcategory. This subpart applies to...
40 CFR 429.100 - Applicability; description of the wet storage subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the wet... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Wet Storage Subcategory § 429.100 Applicability; description of the wet storage subcategory. This subpart applies to...
Effects of water vapor on protectiveness of Cr2O3 scale at 1073 K
NASA Astrophysics Data System (ADS)
Arifin, S. K.; Hamid, M.; Berahim, A. N.; Ani, M. H.
2018-01-01
Fe-Cr alloy is commonly being used as boiler tube’s material. It is subjected to prolonged exposure to water vapor oxidation. The ability to withstand high temperature corrosion can normally be attributed to the formation of a dense and slow growing Cr-rich-oxide scale known as chromia, Cr2O3 scale. However, oxidation may limit the alloy’s service lifetime due to decreasing of its protectiveness capability. This paper is to presents an experimental study of thermo gravimetric and Fourier transform infrared analysis of Cr2O3 at 1073 K in dry and humid environment. Samples were used from commercially available Cr2O3 powder. It was cold-pressed into pellet shape of 12 mm diameter and 3 mm thick with hydraulic press for 40 min at 48 MPa. It then sintered at 1173 K in inert gas environment for 8 h. The samples are cooled and placed in 5 mm diameter platinum pan. It is subjected to reaction in dry and wet environment at 1073 K by applying 100%-Ar and Ar-5%H2 gas. Each reaction period is 48 h utilizing Thermo Gravimetric Analyzer, TGA to quantify the mass changes. After the reaction, the samples then characterized with Fourier Transform Infrared Spectroscopy, FT-IR and Field Emission Electron Scanning Microscopy, FE-SEM. The TGA result shows mass decreasing ratio of Cr2O3 in wet (PH2O = 9.5x105Pa) and dry environment is at a factor of 1.2 while parabolic rate at 1.4. FT-IR results confirmed that water vapor significantly broaden the peaks, thus promotes the volatilization of Cr2O3 in wet sample. FESEM shows mostly packed and intact in dry while in wet sample, slightly porous particle arrangement compare to dry. It is concluded that water vapor species decreased Cr2O3 protectiveness capability.
Dry/Wet Cycles Change the Activity and Population Dynamics of Methanotrophs in Rice Field Soil
Ma, Ke; Conrad, Ralf
2013-01-01
The methanotrophs in rice field soil are crucial in regulating the emission of methane. Drainage substantially reduces methane emission from rice fields. However, it is poorly understood how drainage affects microbial methane oxidation. Therefore, we analyzed the dynamics of methane oxidation rates, composition (using terminal restriction fragment length polymorphism [T-RFLP]), and abundance (using quantitative PCR [qPCR]) of methanotroph pmoA genes (encoding a subunit of particulate methane monooxygenase) and their transcripts over the season and in response to alternate dry/wet cycles in planted paddy field microcosms. In situ methane oxidation accounted for less than 15% of total methane production but was enhanced by intermittent drainage. The dry/wet alternations resulted in distinct effects on the methanotrophic communities in different soil compartments (bulk soil, rhizosphere soil, surface soil). The methanotrophic communities of the different soil compartments also showed distinct seasonal dynamics. In bulk soil, potential methanotrophic activity and transcription of pmoA were relatively low but were significantly stimulated by drainage. In contrast, however, in the rhizosphere and surface soils, potential methanotrophic activity and pmoA transcription were relatively high but decreased after drainage events and resumed after reflooding. While type II methanotrophs dominated the communities in the bulk soil and rhizosphere soil compartments (and to a lesser extent also in the surface soil), it was the pmoA of type I methanotrophs that was mainly transcribed under flooded conditions. Drainage affected the composition of the methanotrophic community only minimally but strongly affected metabolically active methanotrophs. Our study revealed dramatic dynamics in the abundance, composition, and activity of the various type I and type II methanotrophs on both a seasonal and a spatial scale and showed strong effects of dry/wet alternation cycles, which enhanced the attenuation of methane flux into the atmosphere. PMID:23770899
Ceria-Based Anodes for Next Generation Solid Oxide Fuel Cells
NASA Astrophysics Data System (ADS)
Mirfakhraei, Behzad
Mixed ionic and electronic conducting materials (MIECs) have been suggested to represent the next generation of solid oxide fuel cell (SOFC) anodes, primarily due to their significantly enhanced active surface area and their tolerance to fuel components. In this thesis, the main focus has been on determining and tuning the physicochemical and electrochemical properties of ceria-based MIECs in the versatile perovskite or fluorite crystal structures. In one direction, BaZr0.1Ce0.7Y0.1 M0.1O3-delta (M = Fe, Ni, Co and Yb) (BZCY-M) perovskites were synthesized using solid-state or wet citric acid combustion methods and the effect of various transition metal dopants on the sintering behavior, crystal structure, chemical stability under CO2 and H 2S, and electrical conductivity, was investigated. BZCY-Ni, synthesized using the wet combustion method, was the best performing anode, giving a polarization resistance (RP) of 0.4 O.cm2 at 800 °C. Scanning electron microscopy and X-ray diffraction analysis showed that this was due to the exsolution of catalytic Ni nanoparticles onto the oxide surface. Evolving from this promising result, the effect of Mo-doped CeO 2 (nCMO) or Ni nanoparticle infiltration into a porous Gd-doped CeO 2 (GDC) anode (in the fluorite structure) was studied. While 3 wt. % Ni infiltration lowered RP by up to 90 %, giving 0.09 O.cm2 at 800 °C and exhibiting a ca. 5 times higher tolerance towards 10 ppm H2, nCMO infiltration enhanced the H2 stability by ca. 3 times, but had no influence on RP. In parallel work, a first-time study of the Ce3+ and Ce 4+ redox process (pseudocapacitance) within GDC anode materials was carried out using cyclic voltammetry (CV) in wet H2 at high temperatures. It was concluded that, at 500-600 °C, the Ce3+/Ce 4+ reaction is diffusion controlled, probably due to O2- transport limitations in the outer 5-10 layers of the GDC particles, giving a very high capacitance of ca. 70 F/g. Increasing the temperature ultimately diminished the observed capacitance, likely as the chemical reduction of GDC at high temperatures is irreversible.
NASA Astrophysics Data System (ADS)
Chen, Jie
2017-04-01
More frequent droughts and storms will occur globally in the prediction of global climate change model, which will influence soil microorganisms and nutrient cycles. Understanding the resistance of soil functional microorganisms and the associated biogeochemical cycles to such climate changes is important in evaluating responses of ecosystem functioning. In order to clarify the responses of soil functional microorganisms involved in nitrogen (N) cycle to the predicted precipitation scenarios, two contrasting precipitation manipulation experiments were conducted in an acidic subtropical forest soil. One experiment manipulated drier dry-season and wetter wet-season (DD) by reducing dry-season rainfall and adding the equivalently reduced rainfall to wet-season. Another experiment manipulated extending dry-season and wetter wet-season (ED) by reducing spring-season rainfall and adding the equivalent rainfall in the late wet-season. The resistance index of ammonia-oxidizing archaea (AOA) amoA and denitrifying (nirK, nirS and nosZ) genes abundance, soil net N mineralization and nitrification rates were calculated during experiments to examine their responses to precipitation changes. As the results, the resistance index of functional microbial abundance (-0.03 ± 0.08) was much lower than that of net N transformation rates (0.55 ± 0.02), indicating more sensitive of functional microorganisms in response to precipitation changes than the related N processes. Extending dry-season showed greater effects on both AOA amoA and denitrifying genes abundance than drier dry-season, with significant increases of these microbial abundance after extending dry-season. This was mainly due to the interaction effects of soil water content (SWC), dissolve organic carbon (DOC) and NH4+ concentration during rainfall reduction in spring-season. Interestingly, the resistance index of AOA amoA abundance was significantly higher than that of denitrifying gene abundance, indicating more resistant of AOA to precipitation changes. This was mainly because AOA have higher resource utilization efficiency and can acclimate to environmental changes more rapidly than denitrifiers, as indicated by less effects of N, C substrates and SWC on the resistance index of AOA abundance. This study demonstrated substantial disturbance of drier spring-season to soil nitrifying and denitrifying microorganisms, and greater stability of AOA community abundance in resistant to such disturbance.
Surface Selective Oxidation of Sn-Added CMnSi TRIP Steel
NASA Astrophysics Data System (ADS)
Cho, Lawrence; Seo, Eun Jung; Jung, Geun Su; Suh, Dong Woo; De Cooman, Bruno C.
2016-04-01
The influence of the addition of Sn on the selective oxidation and the reactive wetting of CMnSi transformation-induced plasticity (TRIP) steels was studied by means of galvanizing simulator tests. A reference TRIP steel and TRIP steels containing Sn in the range of 0.05 to 1 wt pct were intercritically annealed at 1093 K (820 °C) in an N2+ 5 pct H2 gas atmosphere with a dew point of -60 °C. The thin-film oxides formed on the surface of the Sn-added CMnSi TRIP steel were investigated using transmission electron microscopy and 3-dimensional atom probe tomography. The addition of Sn (≥0.05 wt pct) changed the morphology of the xMnO·SiO2 surface oxides from a continuous film morphology to a lens-shaped island morphology. It also suppressed the formation of the Mn-rich oxides of MnO and 2MnO·SiO2. The changes in the morphology and chemistry of the surface oxides were clearly related to the surface segregation of Sn, which appeared to result in a decrease of the oxygen permeability at the surface. The formation of lens-shaped oxides improved the wettability of the CMnSi TRIP steel surface by the molten Zn. The improved wetting effect was attributed to an increased area fraction of the surface where the oxide layer was thinner. This enabled a direct, unhindered reaction between Fe and the Al in the liquid Zn and the formation of the inhibition layer in the initial stages of the hot dipping. The addition of a small amount of Sn was also found to decrease significantly the density of Zn-coating defects on CMnSi TRIP steel.
Greenhouse Gas Emissions from Green Infrastructure vs. Conventional Wastewater Treatment Plants
NASA Astrophysics Data System (ADS)
Morse, N.; Walter, T.
2017-12-01
The need for resilient infrastructure and cities in the face of climate change has prompted an expansion of green infrastructure (GI) in suburban and urban areas. However, some researchers have begun to question if these engineered and vegetated systems could be contributing excess greenhouse gas (GHG) emissions. They theorize that the often inundated GI practices may be hot-spots for biogeochemical processes emitting GHGs. However, no studies have compared passive GI to the only available alternative for water treatment: conventional wastewater treatment plants (WWTPs). This study monitored the nitrous oxide (N2O) and methane (CH4) emissions from two GI detention basins in Ithaca, NY and compared these emissions with reported and modeled on-site emissions from WWTPs. One basin was often saturated ("Wet Basin"), while the other drained quickly and was rarely saturated ("Dry Basin"). The Wet Basin emitted more GHGs than nearby reference turfgrass (92 vs. 5 mg CO2 eq m-2 hr-), while the Dry Basin emitted less than reference turfgrass (0.9 vs 4 mg CO2 eq m-2 hr-). However, both basins emitted far less GHGs than conventional WWTPs. According to EPA calculations, aerobic WWTPs emit approximately 1,079 mg CO2 eq L-1, and the Wet and Dry Basin emitted roughly 117-516 and 0.28-2.56 mg CO2 eq L-1, respectively. Thus, on a per volume of water treated basis, conventional WWTPs are emitting approximately 3 and 750 times more GHGs than GI Wet and Dry Basins, respectively. This study highlights how passive GI provides a valuable ecosystem service (i.e., stormwater treatment) while producing less GHGs than WWTPs.
NASA Technical Reports Server (NTRS)
Chin, Mian; Rood, Richard B.; Lin, Shian-Jiann; Mueller, Jean-Francois; Thompson, Anne M.
2000-01-01
The Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model is used to simulate the atmospheric sulfur cycle. The model uses the simulated meteorological data from the Goddard Earth Observing System Data Assimilation System (GEOS DAS). Global sulfur budgets from a 6-year simulation for SO2, sulfate, dimethylsulfide (DMS), and methanesulfonic acid (MSA) are presented in this paper. In a normal year without major volcanic perturbations, about 20% of the sulfate precursor emission is from natural sources (biogenic and volcanic) and 80% is anthropogenic: the same sources contribute 339% and 67% respectively to the total sulfate burden. A sulfate production efficiency of 0.41 - 0.42 is estimated in the model, an efficiency which is defined as a ratio of the amount oi sulfate produced to the total amount of SO2 emitted and produced in the atmosphere. This value indicates that less than half of the SO2 entering the atmosphere contributes to the sulfate production, the rest being removed by dry and wet depositions. In a simulation for 1990, we estimate a total sulfate production of 39 Tg S /yr with 36% and 64% respectively from in-air and in-cloud oxidation of SO2. We also demonstrate that major volcanic eruptions, such as the Mt. Pinatubo eruption in 1991, can significantly change the sulfate formation pathways, distributions, abundance, and lifetime. Comparison with other models shows that the parameterizations for wet removal or wet production of sulfate are the most critical factors in determining the burdens of SO2 and sulfate. Therefore, a priority for future research should be to reduce the large uncertainties associated with the wet physical and chemical processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bela, Megan M.; Barth, Mary C.; Toon, Owen B.
We examine wet scavenging of soluble trace gases in storms observed during the Deep Convective Clouds and Chemistry (DC3) field campaign. We conduct high-resolution simulations with the Weather Research and Forecasting model with Chemistry (WRF-Chem) of a severe storm in Oklahoma. The model represents well the storm location, size, and structure as compared with Next Generation Weather Radar reflectivity, and simulated CO transport is consistent with aircraft observations. Scavenging efficiencies (SEs) between inflow and outflow of soluble species are calculated from aircraft measurements and model simulations. Using a simple wet scavenging scheme, we simulate the SE of each soluble speciesmore » within the error bars of the observations. The simulated SEs of all species except nitric acid (HNO3) are highly sensitive to the values specified for the fractions retained in ice when cloud water freezes. To reproduce the observations, we must assume zero ice retention for formaldehyde (CH2O) and hydrogen peroxide (H2O2) and complete retention for methyl hydrogen peroxide (CH3OOH) and sulfur dioxide (SO2), likely to compensate for the lack of aqueous chemistry in the model. We then compare scavenging efficiencies among storms that formed in Alabama and northeast Colorado and the Oklahoma storm. Significant differences in SEs are seen among storms and species. More scavenging of HNO3 and less removal of CH3OOH are seen in storms with higher maximum flash rates, an indication of more graupel mass. Graupel is associated with mixed-phase scavenging and lightning production of nitrogen oxides (NOx ), processes that may explain the observed differences in HNO3 and CH3OOH scavenging.« less
Pedrotti, Matheus F; Pereira, Leticia S F; Bizzi, Cezar A; Paniz, Jose N G; Barin, Juliano S; Flores, Erico M M
2017-11-01
In the present work, for the first time a systematic study was performed using an infrared camera and scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectrometry (EDS) to evaluate the mechanisms involved in microwave-induced combustion method, which has been extensively used for sample preparation. Cellulose and glass fiber discs, wetted with the igniter solution (6molL -1 NH 4 NO 3 ), were evaluated under microwave field in a monomode system. The temperature of the discs surface was recorded during microwave irradiation and the effect of NH 4 NO 3 concentration and irradiation time on cellulose oxidation was evaluated. The morphology of the discs surface was characterized by SEM before and after irradiation in an inert atmosphere. According to the results, the surface temperature of the discs increased near to 100°C and remained in this temperature for few seconds while water evaporate. After that, temperature increased over 200°C due to the thermal decomposition of NH 4 NO 3 salt, releasing a large amount of energy that accelerates cellulose oxidation. The higher the igniter concentration, the shorter was the microwave irradiation time for cellulose oxidation. The SEM images revealed that cellulose disc was more porous after microwave irradiation, enhancing oxygen diffusion within the paper and making easier its ignition. The EDS spectrum of cellulose and glass fiber discs showed that signal intensity for nitrogen decreased after microwave irradiation, showing that NH 4 NO 3 was consumed during this process. Therefore, it was demonstrated that the ignition process is the result of synergic interaction of NH 4 NO 3 thermal decomposition and organic matter oxidation (cellulose) releasing heat and feeding the chain reaction. Copyright © 2017 Elsevier B.V. All rights reserved.
Wet particle source identification and reduction using a new filter cleaning process
NASA Astrophysics Data System (ADS)
Umeda, Toru; Morita, Akihiko; Shimizu, Hideki; Tsuzuki, Shuichi
2014-03-01
Wet particle reduction during filter installation and start-up aligns closely with initiatives to reduce both chemical consumption and preventative maintenance time. The present study focuses on the effects of filter materials cleanliness on wet particle defectivity through evaluation of filters that have been treated with a new enhanced cleaning process focused on organic compounds reduction. Little difference in filter performance is observed between the two filter types at a size detection threshold of 60 nm, while clear differences are observed at that of 26 nm. It can be suggested that organic compounds can be identified as a potential source of wet particles. Pall recommends filters that have been treated with the special cleaning process for applications with a critical defect size of less than 60 nm. Standard filter products are capable to satisfy wet particle defect performance criteria in less critical lithography applications.
Feasibility study of fluxless brazing cemented carbides to steel
NASA Astrophysics Data System (ADS)
Tillmann, W.; Sievers, N.
2017-03-01
One of the most important brazing processes is the joints between cemented carbides and steel for the tool industry such as in rotary drill hammers or saw blades. Even though this technique has already been used for several decades, defects in the joint can still occur and lead to quality loss. Mostly, the joining process is facilitated by induction heating and the use of a flux to enhance the wetting of the filler alloy on the surface of the steel and cemented carbide in an ambient atmosphere. However, although the use of flux enables successful joining, it also generates voids within the joint, which reduces the strength of the connection while the chemicals within the flux are toxic and polluting. In this feasibility study, a fluxless brazing process is used to examine the joint between cemented carbides and steel for the first time. For this, ultrasound is applied during induction heating to enable the wetting between the liquid filler metal and the surfaces of the cemented carbide and steel. The ultrasound generates cavitations within the liquid filler metal, which remove the oxides from the surface. Several filler metals such as a silver based alloy Ag449, pure Zn, and an AlSi-alloy were used to reduce the brazing temperature and to lower the thermal residual stresses within the joint. As a result, every filler metal successfully wetted both materials and led to a dense connection. The ultrasound has to be applied carefully to prevent a damage of the cemented carbide. In this regard, it was observed that single grains of the cemented carbide broke out and remained in the joint. This positive result of brazing cemented carbides to steel without a flux but using ultrasound, allows future studies to focus on the shear strength of these joints as well as the behavior of the thermally induced residual stresses.
Trojanowicz, Marek; Bobrowski, Krzysztof; Szostek, Bogdan; Bojanowska-Czajka, Anna; Szreder, Tomasz; Bartoszewicz, Iwona; Kulisa, Krzysztof
2018-01-15
The monitoring of Advanced Oxidation/Reduction Processes (AO/RPs) for the evaluation of the yield and mechanisms of decomposition of perfluorinated compounds (PFCs) is often a more difficult task than their determination in the environmental, biological or food samples with complex matrices. This is mostly due to the formation of hundreds, or even thousands, of both intermediate and final products. The considered AO/RPs, involving free radical reactions, include photolytic and photocatalytic processes, Fenton reactions, sonolysis, ozonation, application of ionizing radiation and several wet oxidation processes. The main attention is paid to the most commonly occurring PFCs in the environment, namely PFOA and PFOS. The most powerful and widely exploited method for this purpose is without a doubt LC/MS/MS, which allows the identification and trace quantitation of all species with detectability and resolution power depending on the particular instrumental configurations. The GC/MS is often employed for the monitoring of volatile fluorocarbons, confirming the formation of radicals in the processes of C‒C and C‒S bonds cleavage. For the direct monitoring of radicals participating in the reactions of PFCs decomposition, the molecular spectrophotometry is employed, especially electron paramagnetic resonance (EPR). The UV/Vis spectrophotometry as a detection method is of special importance in the evaluation of kinetics of radical reactions with the use of pulse radiolysis methods. The most commonly employed for the determination of the yield of mineralization of PFCs is ion-chromatography, but there is also potentiometry with ion-selective electrode and the measurements of general parameters such as Total Organic Carbon and Total Organic Fluoride. The presented review is based on about 100 original papers published in both analytical and environmental journals. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ashokraja, C.; Sakar, M.; Balakumar, S.
2017-10-01
We report the hemolysis properties of silver and silver oxide nanoparticles (NPs) prepared by chemical and green-synthesis methods. The prepared silver and silver oxide NPs were analyzed using UV-vis spectroscopy to confirm their formation by characterizing their surface plasmon resonance (SPR) and absorption band peaks respectively. The Fourier transmission infrared (FTIR) spectra of the materials showed the characteristic functional groups corresponding to the molecules present in leaf extracts, which is proposed to be acted as reducing and capping agents that are also found on the surface of silver and silver oxide nanoparticles that synthesized via green-synthesis method. Zeta potential analysis revealed the surface charge and stability of the prepared NPs. HRTEM images showed almost spherical shape nanoparticles with an average size of 15.2 and 31.5 nm for wet chemical synthesized silver and silver oxide nanoparticles respectively. In the case of green synthesized silver and silver oxide nanoparticles, it was observed to be 19.4 and 30.4 nm respectively. The order of hemolysis efficacy of the materials is found to be as follows: chemically synthesized Ag2O> chemically synthesized Ag NPs followed by green-synthesized Ag2O and green-synthesized Ag NPs which showed almost similar hemolysis with respect to concentration. The relatively stable nature of the silver NPs could be attributed to their lower hemolysis efficacy, while the increased lysis properties of silver oxide could be attributed due to reductive/oxidative processes that give rise to the hemolysis through interfacial charge interactions with RBCs.
Emission control system for nitrogen oxides using enhanced oxidation, scrubbing, and biofiltration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, A.; Cabezas, J.
2009-05-15
Nitric oxide (NO) constitutes about 90% of the nitrogen oxide (NOx) species in the flue gases emitted from combustion processes, but NO is difficult to remove in existing scrubbers due to its low solubility. NO may be oxidized with hydrogen peroxide (H{sub 2}O{sub 2}) into soluble species that can be partially removed in wet scrubbers simultaneously with sulfur dioxide (SO{sub 2}) and biofilters located downstream of the scrubber can increase the removal efficiency. This article presents the results of a bench-scale evaluation of such an integrated system combining enhanced oxidation, scrubbing, and biofiltration. Main components of the bench-scale system consistedmore » of a quartz tube in a furnace to simulate the NO oxidation stage and two vertical packed bed cylinders constituting the scrubber and the biofilter. Inlet synthetic gas had a concentration of 50 mu L/L of NO. Overall removal efficiency by the integrated system was in the range of 53% to 93% with an average of 79%, absorption accounted for 43% and biofiltration for 36% of the total removal. Key parameters in the operation of the system are the H{sub 2}O{sub 2}:NO mole ratio, the reaction temperature, the liquid to gas flow ratio, and the biofilter residence time. Experimental results suggest a path for optimization of the technology focusing simultaneously in minimizing H{sub 2}O{sub 2} use in the enhanced oxidation stage, reducing water consumption in the scrubber stage and balancing the residence times in the three stages of the integrated system.« less
Harada, Shigeki; Yanagisawa, Mitsunori
2017-04-01
The town of Marumori in southern Miyagi Prefecture borders on Fukushima Prefecture, and following the accident at the Fukushima Daiichi nuclear power plant, there were concerns about cesium deposition in forested areas. One of the authors of this paper has continually surveyed leaf litter from the forested areas. As leaf litter may be a source of cesium contamination from the forest to downstream areas, we considered a simplified version of wet oxidation, a method previously presented by one of the authors of this study, as a technology to reduce leaf litter weight and cesium concentration, separating radioactive nuclides from non-radioactive ones, in leaf litter. We tested our method in three experiments. Experiment 1 used new leaf litter (232 Bq/kg) from the surface of a small stream at the forest edge nearby an area with air dose level higher than the national standard threshold of 0.23 μSv/h for the implementation of governmental decontamination works. Experiment 2 applied wet oxidation to older leaf litter (705 Bq/kg) harvested from a pasture nearby the stream mentioned above. We also used the same leaf litter in experiment 3 for a cesium release tests using pure water. In experiment 1 and 2 we treated leaf litter with a sodium hypochlorite solution, optimizing sodium hypochlorite concentration and reaction temperature. We measured a 50-60% decrease in the leaf litter weight and a 60% decrease in the cesium concentration. Moreover, we also measured the amount of cesium washout. The cesium budget of experiment 1 showed no cesium gasification (wet oxidation avoids airborne cesium as this element is prone to be volatile at 600 °C), and that high sodium hypochlorite concentration and high temperature had a strong positive effect on leaf litter volume reduction and cesium decontamination. Experiment 2 confirmed the reproducibility of these results in leaves with different cesium concentration and harvested in different conditions. We could also explain the mechanism behind leaf litter weight and cesium concentration reduction. Experiment 3 helped us to investigate the effects of the matter present on the surface of the water and the contribution of water soluble cesium. Concurrent experiments on changes in leaf litter chemical composition confirmed that our modified wet oxidation method had an effect on the removal of acid-insoluble lignin. Removal of lignin, a refractory component, might allow for a better utilization of the residue left after implementation of the proposed simplified wet oxidation. Thus, real wastes could be smaller than the residues. Together with the observed smaller cesium concentration in the residue, the proposed method in this study is expected to contribute to mitigate the risk due to the fallen leaves containing cesium. Copyright © 2017 Elsevier Ltd. All rights reserved.
Debasish Saha; Benjamin M. Rau; Jason P. Kaye; Felipe Montes; Paul R. Adler; Armen R. Kemanian
2016-01-01
Future liquid fuel demand from renewable sources may, in part, be met by converting the seasonally wet portions of the landscape currently managed for soil and water conservation to perennial energy crops. However, this shift may increase nitrous oxide (N2O) emissions, thus limiting the carbon (C) benefits of energy crops. Particularly high emissions may occur during...
High frequency capacitance-voltage characteristics of thermally grown SiO2 films on beta-SiC
NASA Technical Reports Server (NTRS)
Tang, S. M.; Berry, W. B.; Kwor, R.; Zeller, M. V.; Matus, L. G.
1990-01-01
Silicon dioxide films grown under dry and wet oxidation environment on beta-SiC films have been studied. The beta-SiC films had been heteroepitaxially grown on both on-axis and 2-deg off-axis (001) Si substrates. Capacitance-voltage and conductance-voltage characteristics of metal-oxide-semiconductor structures were measured in a frequency range of 10 kHz to 1 MHz. From these measurements, the interface trap density and the effective fixed oxide charge density were observed to be generally lower for off-axis samples.
Ren, Jing; Li, Jianfeng; Chen, Zuliang; Cheng, Fangqin
2018-06-02
Membrane distillation (MD) has been hindered in industrial applications due to the potential wetting or fouling caused by complicated organic compositions. This study investigated the correlations between the fate and wetting potential of bio-refractory organics in the MD process, where three coke wastewater samples pre-treated with bio-degradation and coagulation served as feed solutions. Results showed that although most of the bio-refractory organics in coke wastewater were rejected by the hydrophobic membrane, some volatile aromatic organics including benzenes, phenols, quinolines and naphthalenes passed through the membrane during the MD process. Interestingly, membrane wetting occurred coincidently with the penetration of phenolic and heterocyclic organics. The wetting rate was obviously correlated with the feed composition and membrane surface properties. Ultimately, novel insights into the anti-wetting strategy of MD with bio-refractory organics was proposed, illustrating that the polyaluminum chloride/polyacrylamide coagulation not only removed contaminants which could accelerate membrane wetting, but also retarded membrane wetting by the complexation with organics. The deposition of these complexes on the membrane surface introduced a secondary hydrophilic layer on the hydrophobic substrate, which established a composite membrane structure with superior wetting resistance. These new findings would be beneficial to wetting control in membrane distillation for wastewater treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Arsenic silicide formation by oxidation of arsenic implanted silicon
NASA Astrophysics Data System (ADS)
Hagmann, D.; Euen, W.; Schorer, G.; Metzger, G.
1989-07-01
Wet oxidations of (100) silicon implanted with an arsenic dose of 2 × 1016 cm-2 and an energy of 30 keV were carried out in the temperature range between 600 and 900° C. The oxidation rate is increased on the arsenic implanted samples up to a factor of 2000 as compared to undoped samples. During these oxidations the arsenic suicide phase AsSi is precipitated at the oxide/silicon interface. After short oxidation times at 600° C, a continuous AsSi layer is found. It is dissolved during extended oxidation times and finally almost all As is incorporated in the oxide. After 900° C oxidations, substantial AsSi crystallites remain at the Si/SiO2 interface. They are still observed up to the larg-est oxide thickness grown (2.3 µm). The AsSi phase and the distribution of the im-planted arsenic were analyzed by TEM, SIMS and XRF measurements.
Park, HyungDal; Shin, Hyun-Joon; Cho, Il-Joo; Yoon, Eui-sung; Suh, Jun-Kyo Francis; Im, Maesoon; Yoon, Euisik; Kim, Yong-Jun; Kim, Jinseok
2011-01-01
In this paper, we report a neural probe which can selectively stimulate target neurons optically through Si wet etched mirror surface and record extracellular neural signals in iridium oxide tetrodes. Consequently, the proposed approach provides to improve directional problem and achieve at least 150/m gap distance between stimulation and recording sites by wet etched mirror surface in V-groove. Also, we developed light source, blue laser diode (OSRAM Blue Laser Diode_PL 450), integration through simple jig for one-touch butt-coupling. Furthermore, optical power and impedance of iridium oxide tetrodes were measured as 200 μW on 5 mW from LD and 206.5 k Ω at 1 kHz and we demonstrated insertion test of probe in 0.5% agarose-gel successfully. We have successfully transmitted a light of 450 nm to optical fiber through the integrated LD using by butt-coupling method.
Sarat Chandra, T; Malik, S N; Suvidha, G; Padmere, M L; Shanmugam, P; Mudliar, S N
2014-04-01
The effluents from molasses-based distilleries after biomethanation are beset with problems of intensified dark brown color, high residual COD, low biodegradability index (BOD/COD ratio <0.2) and toxicity issues for possible land application as a potential fertilizer. Wet air oxidation (WAO) pretreatment of biomethanated distillery effluent resulted in substantial enhancement in the biodegradability index (BI) (up to 0.8). WAO pretreated effluent on anaerobic digestion indicated favorable biogas generation with methane content up to 64% along with concomitant COD reduction up to 54.75%. The HPLC analysis indicated that the pretreatment facilitated degradation of major color containing compounds-namely melanoidins, up to 97.8%. The pretreated effluent with enhanced biodegradability along with substantially reduced color also indicated positive effect on seed germination (up to 100%), implying toxicity reduction of the effluent post WAO pretreatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Microfluidic platforms for gallium-based liquid metal alloy
NASA Astrophysics Data System (ADS)
Kim, Daeyoung
As an alternative to toxic mercury, non-toxic gallium-based liquid metal alloy has been gaining popularity due to its higher thermal and electrical conductivities, and low toxicity along with liquid property. However, it is difficult to handle as the alloy becomes readily oxidized in atmospheric air environment. This instant oxidation causes the gallium-based liquid metal alloy to wet almost any solid surface. Therefore, it has been primarily limited to applications which rely only on its deformability, not on its mobility. In this research, various approaches to mobilize gallium-based liquid metal alloy were investigated. Multi-scale surface patterned with polydimethylsiloxane (PDMS) micro pillar array showed super-lyophobic property against gallium-based liquid metal alloy by minimizing the contact area between the solid surface and the liquid metal, and it was expanded to a three-dimensional tunnel shaped microfluidic channel. Vertically-aligned carbon nanotube forest leads to another promising super-lyophobic surface due to its hierarchical micro/nano scale combined structures and chemical inertness. When the carbon nanotubes were transferred onto flexible PDMS by imprinting, the super-lyophobic property was still maintained even under the mechanical deformation such as stretching and bending. Alternatively, the gallium-based liquid metal can be manipulated by modifying the surface of liquid metal itself. With chemical reaction with HCl 'vapor', the oxidized surface (mainly Ga2O3/Ga2O) of gallium-based liquid metal was converted to GaCl3/InCl 3 resulting in the recovery of non-wetting characteristics. Paper which is intrinsically porous is attractive as a super-lyophobic surface and it was found that hydrochloric acid (HCl) impregnation enhanced the anti-wetting property by the chemical reaction. As another alternative method, by coating the viscoelastic oxidized surface of liquid metal with ferromagnetic materials (CoNiMnP or Fe), it showed non-wetting property and became moveable by applying a magnetic field. Finally, using its metallic and liquid properties, microfluidic-based applications of gallium-based liquid metal alloy such as inkjet printing and reconfigurable photomask were investigated. A clog-free and oxide-free inkjet printing technique was developed by incorporating HCl-impregnated paper as orifice. Inkjet-printed liquid metal line can be used as a metallic interconnect even with significant deformation of the flexible substrate. Additionally, based on its ultraviolet light blocking property, a reconfigurable photolithography using gallium-based liquid metal alloy was demonstrated in a PDMS-based 7-segments microfluidic channel by showing single digit numbers ('0'˜'9') with attainable minimum feature size of 10 microm.
NASA Astrophysics Data System (ADS)
Katata, Genki; Held, Andreas; Mauder, Matthias
2014-05-01
The wetness of plant leaf surfaces (leaf wetness) is important in meteorological, agricultural, and environmental studies including plant disease management and the deposition process of atmospheric trace gases and particles. Although many models have been developed to predict leaf wetness, wetness data directly measured at the leaf surface for model validations are still limited. In the present study, the leaf wetness was monitored using seven electrical sensors directly clipped to living leaf surfaces of thin and broad-leaved grasses. The measurements were carried out at the pre-alpine grassland site in TERestrial ENvironmental Observatories (TERENO) networks in Germany from September 20 to November 8, 2013. Numerical simulations of a multi-layer atmosphere-SOiL-VEGetation model (SOLVEG) developed by the authors were carried out for analyzing the data. For numerical simulations, the additional routine meteorological data of wind speed, air temperature and humidity, radiation, rainfall, long-wave radiative surface temperature, surface fluxes, ceilometer backscatter, and canopy or snow depth were used. The model reproduced well the observed leaf wetness, net radiation, momentum and heat, water vapor, and CO2 fluxes, surface temperature, and soil temperature and moisture. In rain-free days, a typical diurnal cycle as a decrease and increase during the day- and night-time, respectively, was observed in leaf wetness data. The high wetness level was always monitored under rain, fog, and snowcover conditions. Leaf wetness was also often high in the early morning due to thawing of leaf surface water frozen during a cold night. In general, leaf wetness was well correlated with relative humidity (RH) in condensation process, while it rather depended on wind speed in evaporation process. The comparisons in RH-wetness relations between leaf characteristics showed that broad-leaved grasses tended to be wetter than thin grasses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Michael Z.; DePaoli, David W.; Kuritz, Tanya
We present a “bottom-up” fabrication approach to first grow a new class of inorganic (silica) long hair-like microfibers or microwires and then to form monolithic solid pellet that contains parallel arrays of bundled microfibers with a controlled orientation. During the sol-gel solution processing, reactive precursor species are utilized as molecular “building blocks” for the field-directed assembly growth of microfibers driven by an electric field of pulsed direct current (dc) with controlled frequency. In principle, this reactive electrofibrilation process that combines an external field with a solid-phase nucleation and growth process has no limitation on reactions (such as the one heremore » that involves sol-gel reaction chemistry) and on materials compositions (such as the example silica oxide), thus will enable bulk production of long microfibers of wide variety of inorganic materials (other oxides or metals). Furthermore, we have fabricated uniquely architectured monolithic solid materials containing aligned microfibers by “wet press” of the in-situ grown microfiber structure in the electric field. The consolidated monolithic slabs (1 cm x 1 cm x 3 mm) have shown anisotropic properties and desirable retention of DNA molecule fragments, thus, could serve as a platform stationary-phase materials for future development of capillary electrochromatography for biomolecule separations.« less
Hu, Michael Z.; DePaoli, David W.; Kuritz, Tanya; ...
2017-09-11
We present a “bottom-up” fabrication approach to first grow a new class of inorganic (silica) long hair-like microfibers or microwires and then to form monolithic solid pellet that contains parallel arrays of bundled microfibers with a controlled orientation. During the sol-gel solution processing, reactive precursor species are utilized as molecular “building blocks” for the field-directed assembly growth of microfibers driven by an electric field of pulsed direct current (dc) with controlled frequency. In principle, this reactive electrofibrilation process that combines an external field with a solid-phase nucleation and growth process has no limitation on reactions (such as the one heremore » that involves sol-gel reaction chemistry) and on materials compositions (such as the example silica oxide), thus will enable bulk production of long microfibers of wide variety of inorganic materials (other oxides or metals). Furthermore, we have fabricated uniquely architectured monolithic solid materials containing aligned microfibers by “wet press” of the in-situ grown microfiber structure in the electric field. The consolidated monolithic slabs (1 cm x 1 cm x 3 mm) have shown anisotropic properties and desirable retention of DNA molecule fragments, thus, could serve as a platform stationary-phase materials for future development of capillary electrochromatography for biomolecule separations.« less
NASA Astrophysics Data System (ADS)
Kim, Young-Min; Jung, In-Ho
2015-06-01
A complete literature review, critical evaluation, and thermodynamic optimization of phase equilibrium and thermodynamic properties of all available oxide phases in the MnO-B2O3 and MnO-B2O3-SiO2 systems at 1 bar pressure are presented. Due to the lack of the experimental data in these systems, the systematic trend of CaO- and MgO-containing systems were taken into account in the optimization. The molten oxide phase is described by the Modified Quasichemical Model. A set of optimized model parameters of all phases is obtained which reproduces all available and reliable thermodynamic and phase equilibrium data. The unexplored binary and ternary phase diagrams of the MnO-B2O3 and MnO-B2O3-SiO2 systems have been predicted for the first time. The thermodynamic calculations relevant to the oxidation of advanced high-strength steels containing boron were performed to find that B can form liquid B2O3-SiO2-rich phase in the annealing furnace under reducing N2-H2 atmosphere, which can significantly influence the wetting behavior of liquid Zn in Zn galvanizing process.
Double high refractive-index contrast grating VCSEL
NASA Astrophysics Data System (ADS)
Gebski, Marcin; Dems, Maciej; Wasiak, Michał; Sarzała, Robert P.; Lott, J. A.; Czyszanowski, Tomasz
2015-03-01
Distributed Bragg reflectors (DBRs) are typically used as the highly reflecting mirrors of vertical-cavity surface-emitting lasers (VCSELs). In order to provide optical field confinement, oxide apertures are often incorporated in the process of the selective wet oxidation of high aluminum-content DBR layers. This technology has some potential drawbacks such as difficulty in controlling the uniformity of the oxide aperture diameters across a large-diameter (≥ 6 inch) production wafers, high DBR series resistance especially for small diameters below about 5 μm despite elaborate grading and doping schemes, free carrier absorption at longer emission wavelengths in the p-doped DBRs, reduced reliability for oxide apertures placed close to the quantum wells, and low thermal conductivity for transporting heat away from the active region. A prospective alternative mirror is a high refractive index contrast grating (HCG) monolithically integrated with the VCSEL cavity. Two HCG mirrors potentially offer a very compact and simplified VCSEL design although the problems of resistance, heat dissipation, and reliability are not completely solved. We present an analysis of a double HCG 980 nm GaAs-based ultra-thin VCSEL. We analyze the optical confinement of such a structure with a total optical thickness is ~1.0λ including the optical cavity and the two opposing and parallel HCG mirrors.
On the role of organic adlayers in the anomalous water sorptivity of Lépine limestone.
Ioannou, Ioannis; Hoff, William D; Hall, Christopher
2004-11-01
Sorptivity data are reported for the capillary absorption of water, ethanol, propan-2-ol, and n-heptane by the calcitic limestone Lépine (Lavoux à grain). The data confirm that the water sorptivity is anomalously low, an indication of partial wetting by water. Results are expressed in terms of a wetting index. The water sorptivity increases after heat treatment and chemical oxidation by hydrogen peroxide bleaching, while the sorptivity with organic liquids is unchanged. These treatments, therefore, increase the water wetting index. The results provide strong evidence that the presence of a natural organic adlayer is responsible for the anomalously low water sorptivity of this particular limestone. This natural water repellency effect may be exploited in developing chemical treatments to modify the water transport properties of stone.
Shi, Jingjing; Cao, Hongxia; Wang, Ruiyu
2017-01-01
CeO2–MOx (M = Cu, Co, Ni) composite yolk–shell nanospheres with uniform size were fabricated by a general wet-chemical approach. It involved a non-equilibrium heat-treatment of Ce coordination polymer colloidal spheres (Ce-CPCSs) with a proper heating rate to produce CeO2 yolk–shell nanospheres, followed by a solvothermal treatment of as-synthesized CeO2 with M(CH3COO)2 in ethanol solution. During the solvothermal process, highly dispersed MOx species were decorated on the surface of CeO2 yolk–shell nanospheres to form CeO2–MOx composites. As a CO oxidation catalyst, the CeO2–MOx composite yolk–shell nanospheres showed strikingly higher catalytic activity than naked CeO2 due to the strong synergistic interaction at the interface sites between MOx and CeO2. Cycling tests demonstrate the good cycle stability of these yolk–shell nanospheres. The initial concentration of M(CH3COO)2·xH2O in the synthesis process played a significant role in catalytic performance for CO oxidation. Impressively, complete CO conversion as reached at a relatively low temperature of 145 °C over the CeO2–CuOx-2 sample. Furthermore, the CeO2–CuOx catalyst is more active than the CeO2–CoOx and CeO2–NiO catalysts, indicating that the catalytic activity is correlates with the metal oxide. Additionally, this versatile synthesis approach can be expected to create other ceria-based composite oxide systems with various structures for a broad range of technical applications. PMID:29234577
High-conversion hydrolysates and corn sweetener production in dry-grind corn process.
USDA-ARS?s Scientific Manuscript database
Most corn is processed to fuel ethanol and distillers’ grain animal feed using the dry grind process. However, wet milling is needed to refine corn starch. Corn starch is in turn processed to numerous products, including glucose and syrup. However, wet milling is a capital, labor, and energy intensi...
Yang, Weiwei; Zhang, Jianghao; Ma, Qingxin; Zhao, Yan; Liu, Yongchun; He, Hong
2017-07-03
Manganese oxides from anthropogenic sources can promote the formation of sulfate through catalytic oxidation of SO 2 . In this study, the kinetics of SO 2 reactions on MnO 2 with different morphologies (α, β, γ and δ) was investigated using flow tube reactor and in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). Under dry conditions, the reactivity towards SO 2 uptake was highest on δ-MnO 2 but lowest on β-MnO 2 , with a geometric uptake coefficient (γ obs ) of (2.42 ± 0.13) ×10 -2 and a corrected uptake coefficient (γ c ) of (1.48 ± 0.21) ×10 -6 for the former while γ obs of (3.35 ± 0.43) ×10 -3 and γ c of (7.46 ± 2.97) ×10 -7 for the latter. Under wet conditions, the presence of water altered the chemical form of sulfate and was in favor for the heterogeneous oxidation of SO 2 . The maximum sulfate formation rate was reached at 25% RH and 45% for δ-MnO 2 and γ-MnO 2 , respectively, possibly due to their different crystal structures. The results suggest that morphologies and RH are important factors influencing the heterogeneous reaction of SO 2 on mineral aerosols, and that aqueous oxidation process involving transition metals of Mn might be a potential important pathway for SO 2 oxidation in the atmosphere.
NASA Astrophysics Data System (ADS)
Ensling, D.; Hunger, R.; Kraft, D.; Mayer, Th.; Jaegermann, W.; Rodriguez-Girones, M.; Ichizli, V.; Hartnagel, H. L.
2003-01-01
Preparation steps of Pt/n-GaAs Schottky contacts as applied in the fabrication process of varactor diode arrays for THz applications are analysed by photoelectron spectroscopy. Pulsed cathodic deposition of Pt onto GaAs (1 0 0) wafer surfaces from acidic solution has been studied by core level photoelectron spectroscopy using different excitation energies. A laboratory AlKα source as well as synchrotron radiation of hν=130 and 645 eV at BESSY was used. Chemical analyses and semiquantitative estimates of layer thickness are given for the natural oxide of an untreated wafer surface, a surface conditioning NH 3 etching step, and stepwise pulse plating of Pt. The structural arrangement of the detected species and interface potentials are considered.
The emission of nitrous oxide upon wetting a rice soil following a dry season fallow
NASA Astrophysics Data System (ADS)
Byrnes, B. H.; Holt, L. S.; Austin, E. R.
1993-12-01
A greenhouse experiment was conducted to measure nitrous oxide (N2O) emissions from a soil, which had been planted to flooded transplanted rice, as it was rewetted to simulate the end of a dry season fallow period. The pots of soil had been cropped to transplanted rice with two commonly used nitrogen (N) fertilizer treatments and a control, and the soil had been puddled before transplanting. Large amounts of nitrate N accumulated in the soils during the dry season fallow, and the N fertilizers applied to the previous crop had little effect on nitrate accumulation. There was little N2O emission during the nitrification period. With water additions meant to simulate rainfall events at the beginning of a wet season, the soil redox dropped slightly, and large amounts of N2O began to be emitted. Large emissions began 5 days after each of the two simulated rainy season watering events and stopped abruptly at soil saturation, even though considerable amounts of nitrate still remained in the soil after saturation. Total measured emissions amounted to 6 to 7 kg N2O-N ha-1 for the period. Although these measurements were made in a system which may have favored nitrate accumulation, they are the first known measurements of N2O made from a rice soil as it is wetted. Nitrous oxide emitted from the flooding of rice soils that have accumulated nitrate during a dry season fallow may be a major source of N2O additions to the atmosphere.
NASA Astrophysics Data System (ADS)
Berry, Mark Simpson
The Environmental Protection Agency promulgated the Mercury and Air Toxics Standards rule, which requires that existing power plants reduce mercury emissions to meet an emission rate of 1.2 lb/TBtu on a 30-day rolling average and that new plants meet a 0.0002 lb/GWHr emission rate. This translates to mercury removals greater than 90% for existing units and greater than 99% for new units. Current state-of-the-art technology for the control of mercury emissions uses activated carbon injected upstream of a fabric filter, a costly proposition. For example, a fabric filter, if not already available, would require a 200M capital investment for a 700 MW size unit. A lower-cost option involves the injection of activated carbon into an existing cold-side electrostatic precipitator. Both options would incur the cost of activated carbon, upwards of 3M per year. The combination of selective catalytic reduction (SCR) reactors and wet flue gas desulphurization (wet FGD) systems have demonstrated the ability to substantially reduce mercury emissions, especially at units that burn coals containing sufficient halogens. Halogens are necessary for transforming elemental mercury to oxidized mercury, which is water-soluble. Plants burning halogen-deficient coals such as Power River Basin (PRB) coals currently have no alternative but to install activated carbon-based approaches to control mercury emissions. This research consisted of investigating calcium bromide addition onto PRB coal as a method of increasing flue gas halogen concentration. The treated coal was combusted in a 700 MW boiler and the subsequent treated flue gas was introduced into a wet FGD. Short-term parametric and an 83-day longer-term tests were completed to determine the ability of calcium bromine to oxidize mercury and to study the removal of the mercury in a wet FGD. The research goal was to show that calcium bromine addition to PRB coal was a viable approach for meeting the Mercury and Air Toxics Standards rule for existing boilers. The use of calcium bromide injection as an alternative to activated carbon approaches could save millions of dollars. The technology application described herein has the potential to reduce compliance cost by $200M for a 700 MW facility burning PRB coal.
A review of photocatalysts prepared by sol-gel method for VOCs removal.
Tseng, Ting Ke; Lin, Yi Shing; Chen, Yi Ju; Chu, Hsin
2010-05-28
The sol-gel process is a wet-chemical technique (chemical solution deposition), which has been widely used in the fields of materials science, ceramic engineering, and especially in the preparation of photocatalysts. Volatile organic compounds (VOCs) are prevalent components of indoor air pollution. Among the approaches to remove VOCs from indoor air, photocatalytic oxidation (PCO) is regarded as a promising method. This paper is a review of the status of research on the sol-gel method for photocatalyst preparation and for the PCO purification of VOCs. The review and discussion will focus on the preparation and coating of various photocatalysts, operational parameters, and will provide an overview of general PCO models described in the literature.
Growth and physical investigations of sprayed ZnMoO4 thin films along with wettability tests
NASA Astrophysics Data System (ADS)
Askri, Besma; Mhamdi, Ammar; Mahdhi, Noureddine; Amlouk, Mosbah
2018-06-01
Ternary oxides based on zinc and molybdenum elements have known as semiconductor oxides with large band gap energies. With the focus mainly on their synthesis by cost-effective process as thin films, the aspect of their stability and reactivity as transparent layers against both UV radiation and oxidation under wet medium due to their oxygen deficiency has so far not been investigated. This work covers the synthesis as well as the structural, electrical and the wettability properties of ZnMoO4 thin films which have been prepared by the spray pyrolysis method on glass substrates at 460 °C. First, X-ray diffraction analysis shows that this oxide crystallizes in triclinic structure with the space group P-1. The thickness value of ZnMoO4 thin film of about 1.5 μm was estimated by spectroscopic ellipsometry (SE). Moreover, a special emphasis has been focused on the photoluminescence properties of such films to reach possible presence of defaults and oxygen vacancy. Second, the electrical conductivity, conduction mechanism, relaxation model of these films were indeed studied using impedance spectroscopy technique in the frequency range 10-1-106 Hz at various temperatures (25-300 °C). At high temperature, σAC conductivity obeys to the power law established by Jonscher. Besides, the variation of σDC with the inverse of the temperature follows Arrhenius law. This evolution suggests that the conduction process is thermally activated and the activation energy of this process is equal to 0.97 eV. Finally, the wettability tests reveal that zinc molybdates loses its hydrophobic character during aging under UV radiation to become completely hydrophilic. All these physical investigations demonstrated that such ternary oxide contains oxygen deficiency which may be of interest for photocatalytic purposes and pave the way for various sensitivity applications like gas and bio-sensors.
Manufacture of radio frequency micromachined switches with annealing.
Lin, Cheng-Yang; Dai, Ching-Liang
2014-01-17
The fabrication and characterization of a radio frequency (RF) micromachined switch with annealing were presented. The structure of the RF switch consists of a membrane, coplanar waveguide (CPW) lines, and eight springs. The RF switch is manufactured using the complementary metal oxide semiconductor (CMOS) process. The switch requires a post-process to release the membrane and springs. The post-process uses a wet etching to remove the sacrificial silicon dioxide layer, and to obtain the suspended structures of the switch. In order to improve the residual stress of the switch, an annealing process is applied to the switch, and the membrane obtains an excellent flatness. The finite element method (FEM) software CoventorWare is utilized to simulate the stress and displacement of the RF switch. Experimental results show that the RF switch has an insertion loss of 0.9 dB at 35 GHz and an isolation of 21 dB at 39 GHz. The actuation voltage of the switch is 14 V.
Manufacture of Radio Frequency Micromachined Switches with Annealing
Lin, Cheng-Yang; Dai, Ching-Liang
2014-01-01
The fabrication and characterization of a radio frequency (RF) micromachined switch with annealing were presented. The structure of the RF switch consists of a membrane, coplanar waveguide (CPW) lines, and eight springs. The RF switch is manufactured using the complementary metal oxide semiconductor (CMOS) process. The switch requires a post-process to release the membrane and springs. The post-process uses a wet etching to remove the sacrificial silicon dioxide layer, and to obtain the suspended structures of the switch. In order to improve the residual stress of the switch, an annealing process is applied to the switch, and the membrane obtains an excellent flatness. The finite element method (FEM) software CoventorWare is utilized to simulate the stress and displacement of the RF switch. Experimental results show that the RF switch has an insertion loss of 0.9 dB at 35 GHz and an isolation of 21 dB at 39 GHz. The actuation voltage of the switch is 14 V. PMID:24445415
TOTAL NITROGEN DEPOSITION (WET+DRY) FROM THE ATMOSHERE
Oxides of Nitrogen are emitted primarily as by-products of combustion. Sources include power plants, industrial boilers, and automobiles. In addition, agricultural fertilization and concentrated animal feeding operations (CAFOs) also release Amonium into the air. All these com...
TOTAL NITROGEN DEPOSITION (WET+DRY) FROM THE ATMOSHERE (FUTURE)
Oxides of Nitrogen are emitted primarily as by-products of combustion. Sources include power plants, industrial boilers, and automobiles. In addition, agricultural fertilization and concentrated animal feeding operations (CAFOs) also release Amonium into the air. All these com...